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Abstract. In this paper we investigate how many periodic attractors maps in a small
neighbourhood of a given map can have. For this purpose we develop new tools which
help to make uniform cross-ratio distortion estimates in a neighbourhood of a map with
degenerate critical points.

1. Introduction
Let N denote an interval or a circle and let f :N →N be a C∞ map. In this paper we use
the standard notions of a periodic point of f : its period, its immediate basin of attraction,
etc. One can find all relevant definitions in [dMvS93].

The map f can have infinitely many periodic attractors. However, this is a non-generic
situation: if all critical points of f are non-flat, the periods of the periodic attracting orbits
are bounded from above, therefore if f has infinitely many periodic attracting orbits, they
should accumulate on neutral periodic orbits and the periods of these neutral orbits are also
bounded; see [MdMvS92] or [dMvS93, Theorem B, p. 268]. If f has a flat critical point,
the periods of periodic attractors are not necessarily bounded; an example of such a map
is given in [KK11]. As usual, we call a critical point c non-flat if in a neighbourhood of
c the function f (x) can be written as ±(φ(x))d , where φ is a diffeomorphism and d ∈ N,
d ≥ 2. For C∞ maps it is equivalent to Dd f (c) 6= 0 for some d ≥ 2.

In this paper we will study whether a small perturbation of f can have infinitely many
periodic attractors and related questions. The simple answer to this problem is ‘yes’: one
can construct an example of a C∞ map f with a quadratic critical point which has a finite
number of periodic attractors such that in any C∞ neighbourhood of f there are maps
which have infinitely many periodic attracting points and the periods of these points can be
arbitrarily large; see [Koz12]. The source of these attractors is a parabolic fixed point, and
our first theorem shows that if f does not have neutral periodic orbits and all critical points
of f are quadratic, then this phenomenon of having an unbounded number of attractors for
maps in an arbitrarily small neighbourhood of f is not possible.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 01 Oct 2013 IP address: 137.205.50.42

1520 O. Kozlovski

THEOREM A. Let f :N →N be a C3 map with quadratic critical points. Suppose that
f does not have neutral periodic orbits. Then there exist a neighbourhood F ⊂ C3(N ) of
f and a natural number n0 such that if g ∈ F and O is an attracting periodic orbit of g,
then either the period of the orbit O is less than n0 or there exists a critical point c of g
whose iterates converge to O under iterations of the map g.

In particular, all maps in F have finitely many periodic attractors and the number of
these attractors is bounded by the number of attractors of f plus the number of critical
points of f .

In [dMvS93, Theorem B′, p. 268], a stronger statement is given: though the conclusion
in the statement is similar to Theorem A, it is not required that f has no neutral periodic
points and it is not required that all critical points of f are quadratic. As the example above
shows, this statement is not correct and the authors of [dMvS93] issued an erratum shortly
after the book was published.

So, we see that there are situations when small perturbations of f can create an
unbounded number of periodic attractors. If f has quadratic critical points, it is possible
to prove that this is not typical. More precisely, the following is proven in [Koz12]: let
S be a space of Cd , d ≥ 3, maps of N with all critical points quadratic, and exclude
diffeomorphisms of the circle from S ; then for a generic smooth family fλ of maps in S
there exists M > 0 such that the number of periodic attracting orbits of any map in this
family fλ is bounded by M . Interestingly enough, for a generic non-trivial smooth family
of circle diffeomorphisms such a bound does not exist, that is, there are maps in a generic
family with an arbitrarily large number of periodic attracting orbits.

The situation gets significantly more complicated if we allow degenerate (but non-flat)
critical points. By a degenerate non-flat critical point we mean a point c of f such that
D f k(c)= 0 for k = 1, 2, . . . , m − 1 and D f m(c) 6= 0, where m ≥ 3.

Let us construct an example showing that Theorem A does not hold if we allow
degenerate critical points of the map f . Let f ∈ Cω be a map of a circle topologically
equivalent to the doubling map x 7→ 2x (mod 1). Moreover, suppose that f has one
critical point c of cubic type and the orbit of c is dense. Then there are maps arbitrarily
close to f in Cω topology such that they still have a cubic critical point and its iterates are
attracted to a periodic attracting orbit of high period. We can perturb these maps so that
the maps obtained do not have critical points at all, but still have periodic attractors. Thus,
for any n0 we can find a map g arbitrarily close to f which has a periodic attracting orbit
of period larger than n0 and no critical points. This obviously contradicts the first part of
the conclusion of Theorem A.

One might think that if a map has critical points of even degree, then examples like
the above are impossible because critical points of even degree cannot be destroyed by
a small perturbation. Let us sketch an example showing that this is not the case. Let
f ∈ Cω be a unimodal map with a critical point c of degree four such that a = f n0(c)
is a repelling periodic point for some n0 (so the map f is Misiurewicz). There exist
an interval J0 containing the critical point c, a sequence of intervals Jk , k = 1, 2, . . . ,
such that Jk→ a as k→∞, and a sequence nk such that f nk (Jk)= J0 and f nk |Jk is a
diffeomorphism for all k. Moreover, under small perturbations of f the repelling periodic
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point a and the intervals Jk persist, that is, if g is close enough to f , there exist a repelling
periodic point ag of g close to a and of the same period, and intervals Jg,k such that
limk→∞ Jg,k = ag , f nk (Jg,k)= J0 and f nk |Jg,k is a diffeomorphism. Using these intervals
Jk , we can construct a sequence g1,k of perturbations of f in such a way that every map
g1,k has two critical points c2

1,k and c3
1,k of degrees two and three such that the quadratic

critical point c2
1,k is still mapped to ag1,k by gn0

1,k and the cubic critical point becomes a

superattractor so that gn0
1,k(c

3
1,k) ∈ Jg1,k ,k and gn0+nk

1,k (c3
1,k)= c3

1,k . In the same way we can
perturb each of g1,k and obtain maps g2,k which still have two critical points of degree
two and three, their cubic critical points are still superattractors of period n0 + nk and
the quadratic critical points become superattractors as well. Finally, we can break cubic
critical points of maps g2,k and obtain a sequence of maps g3,k which satisfies the following
properties: limk→∞ g3,k = f , g3,k are unimodal maps with quadratic critical points, every
map g3,k has two periodic attractors and the periods of these attractors tend to infinity as
k→∞. Again, this contradicts the conclusion of Theorem A.

These examples show that a degenerate critical point of f can disappear under a
perturbation or lose its degree, but the perturbed map g can have a periodic attractor related
to this disappeared critical point. We conjecture that the second part of Theorem A holds
in this case.

CONJECTURE. Let f :N →N be a C3 map with non-flat critical points. Suppose that f
does not have neutral periodic orbits. Then there exists a neighbourhood F ⊂ C3(N ) of
f such that for any g ∈ F the number of periodic attractors of g is bounded by the number
of attractors of f plus the number of critical points of f counted with their multiplicities.

By definition the multiplicity of a critical point c is m − 1, where m is such that
D f k(c)= 0, for k = 1, 2, . . . , m − 1, and D f m(c) 6= 0.

We have already mentioned that this conjecture does not hold if we allow neutral
periodic orbits for the map f and there might be no upper bound on the number of
attractors for maps close to f . The next theorem shows that nevertheless we can group
these attractors in such a way that periodic attracting orbits in the same group are related
to each other in a very simple way and there is a uniform bound on the number of these
groups. To state this result we need a few definitions first.

If p is a periodic point of f and n is its period, then we will call the number 2n the
orientation preserving period of p if D f n(p) < 0, and if D f n(p)≥ 0 then the orientation
preserving period of p is just n.

We will call a closed interval I ⊂N periodic if there is n ∈ N such that f n(I )= I and
f n
: I → I is a bijection. Any periodic interval I of period n contains one or more periodic

points of period n and if f n
|I is orientation reversing, it can contain periodic points of

period 2n. If n is even, I can contain a periodic point of period n/2 in its boundary. The
interval I cannot contain periodic points of any other periods except n, 2n, n/2.

A pack of periodic points is a collection of periodic points such that they all belong to
some closed periodic interval (perhaps degenerate) and there is no larger periodic interval
which contains more periodic points. A pack can consist of just one periodic point. All
periodic points in a pack either have the same period, or there is one periodic point of period
n which is orientation reversing and all other periodic points in the pack have period 2n.
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In other words, the orientation preserving period of all periodic points in a pack is the
same. To every pack of periodic points one can associate a pack of periodic orbits in an
obvious way.

We now state the main result of the paper.

THEOREM B. Let f :N →N be a C∞ map with non-flat critical points. There exist a
neighbourhood F ⊂ C∞ of f and M > 0, ρ > 0 such that for any g ∈ F there exist at
most M exceptional packs of periodic orbits such that if p is a periodic point of g which is
not a member of any of these exceptional packs, then

|Dgn(p)|> 1+ ρ,

where n is a period of p.

In other words, in the neighbourhood of f maps can possibly have many periodic
attractors, but the set of the periods of these attractors has a uniformly bounded cardinality.

The theorem is stated for C∞ maps. The only place where this is used is in the proof of
Proposition 3.4 where a result of [Ser76] is used. One can state this theorem for Ck maps;
however, in this case extra conditions should be put on the multiplicities of the critical
points of the map f .

2. Idea of the proofs and discussion
Let us discuss the main problems that arise when we want to carry over some properties
of a map f to the maps in a small neighbourhood of f . We will mainly keep in mind
the following three results closely related to Theorems A and B: the Singer theorem about
periodic attractors of maps with negative Schwarzian derivative [Sin78], a theorem about
the Schwarzian derivative of the first entry map to a small neighbourhood of a critical value
[Koz00, VV04], and [dMvS93, Theorem B, p. 268] which we have already mentioned
several times. Let us remind the reader that the Schwarzian derivative of a function f is
defined as S f (x)= D3 f (x)/D f (x)− (3/2)(D2 f (x)/D f (x))2. We will review some of
the properties of the Schwarzian derivative in §3.

The maps we consider in this paper do not have wandering intervals and one of the
consequences of this fact is the ‘contraction principle’: for every ε > 0 there exists δ > 0
such that if J is an interval with |J |< δ and not intersecting the immediate basin of a
periodic attractor, then for any n > 0 each component of f −n(J ) has length less than ε.
Of course, this statement holds for maps in a neighbourhood of the map f , but then δ can
depend on the choice of the map, and, in general, one cannot have a uniform version of
this statement. On the other hand, this is an important lemma in the proof of Theorem B
of [dMvS93] (see Lemma 10.3.2, p. 323) and in the proof of the fact that the first return
map to a small interval around a critical value has negative Schwarzian derivative.

If one examines the proof of the contraction principle, it will be apparent that the only
obstruction to the proof of its uniform version is the existence of parabolic points of f .

LEMMA 2.1. (Uniform contraction principle) Let f be a C1(N ) map and assume that f
does not have wandering intervals and neutral periodic points. Then for any ε > 0 there
exist a neighbourhood F ⊂ C1(N ) of f and δ > 0 such that if g ∈ F and J is an interval
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with |J |< δ and not intersecting the immediate basin of a periodic attractor of the map g,
then for any n > 0 each component of g−n(J ) has length less than ε.

The proof of this lemma is not hard and is given in Appendix A.
Using the uniform contraction principle, one can show that the first return map of g to

a small interval around a critical value has negative Schwarzian derivative and the size of
this interval is uniformly bounded by the following theorem.

THEOREM 2.2. Let f be a C3(N ) map of an interval or circle with quadratic critical
points. Suppose that f does not have neutral periodic orbits. Let c be a critical point of f
whose iterates do not converge to a periodic attractor. Then there exist a neighbourhood
F ⊂ C3(N ) of f and a neighbourhood J of c such that if g ∈ F and gn(x) ∈ J for some
x ∈N and n ≥ 0, then Sgn+1(x) < 0.

The proof of this theorem follows the same lines as the proof of its single map version;
see [Koz00, VV04]. One should notice that if all critical points of f are quadratic, one
can choose a neighbourhood of the critical points so that the Schwarzian derivative of
a perturbed map g will be negative with a uniform estimate on it (see Appendix A).
In particular, this implies that the cross-ratio distortion estimates similar to [dMvS89,
Theorem 1.2] hold uniformly. We will see that this is not the case if f has degenerate
critical points.

Now the proof of Theorem A is a straightforward consequence of the Singer and Mañé
theorems.

Proof of Theorem A. Take a neighbourhood U of all critical points of f whose iterates do
not converge to periodic attractors of f and so small that Theorem 2.2 holds; that is, if J is
a connected component of this neighbourhood, g ∈ F , and gn(x) ∈ J , then Sgn+1(x) < 0.
We can also assume that boundary points of each connected component of U are some
preimages of repelling periodic points of f . Decreasing F if necessary, we can assume that
these periodic repellers persist for maps in F and, thus, the set Ug can be defined so that
the boundary points of Ug are preimages of some repellers of g and continuously depend
on g, U f =U , and Sgn+1(x) < 0 if gn(x) ∈Ug . Let W ⊂U be a smaller neighbourhood
of critical points of f , and again by decreasing F we can assume that W ⊂Ug for all
g ∈ F .

Let O be an attracting periodic orbit of g of period n which intersects W . Let
p ∈W ∩O, J be a connected component of Ug containing p, and R : X→ J be the first
entry map of g to J . The immediate basin of attraction B of g(p) cannot contain preimages
of repelling periodic points, therefore it is entirely contained in a connected component of
X . This implies that Sgn(x) < 0 for all x ∈ B and Singer’s argument shows that there is an
iterate of a critical point of g in B.

The Mañé theorem [Man85] states that the set of points whose iterates under the map
f never enter the domain W consists of a hyperbolic set, and attraction basins of non-
degenerate periodic attracting orbits (because f does not have neutral periodic points).
Thus, for small perturbations of f the number of periodic attractors whose orbits do not
intersect W does not change. 2
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The statement about the negative Schwarzian derivative of the first return map for maps
in the neighbourhood of f holds only if all critical points of f are quadratic.

Indeed, consider the function φ(x)= x3. This function has negative Schwarzian
derivative everywhere and, moreover, the Schwarzian derivative of φ tends to minus
infinity when x goes to zero.

Now consider small perturbations of φ of the form φλ(x)= x3
+ λx , where |λ| � 1.

The Schwarzian derivative of φλ is

Sφλ(x)= 6
λ− 6x2

(λ+ 3x2)2
.

We see that for small values of λ at zero the Schwarzian derivative is 6/λ, thus it is positive
and very large and Theorem 2.2 cannot possibly hold if we drop the condition on the critical
points being quadratic.

In fact, the cross-ratio distortion estimates we have mentioned above also do not hold
uniformly if we allow degenerate critical points. To deal with this problem we will
introduce a notion of critical intervals in §3. These critical intervals will capture some
properties of the critical points when they cease to exist under a perturbation of the map.
In particular, we will show that the attracting periodic points of sufficiently high period
must have either a critical point or a definite part of a critical interval in their basin of
attraction. This will be the main step in proving Theorem B.

Another application of the critical intervals is given in §4 where we prove a uniform
version of the pullback estimates widely used in the literature. These estimates are also an
important part in the proof of Theorem B. Since they might be independently useful and
important in their own right we state them here. See §4 for more details.

THEOREM. (Theorem 4.5) Let f be a C∞(N ) map with all critical points non-flat. There
exist a neighbourhood F of f in C∞(N ) and a function ρ(ε, N ) such that the following
holds. Let g be in F , J ⊂ T be intervals such that gm

|T is a diffeomorphism and the
intersection multiplicity of the intervals gk(T ), k = 0, . . . , m − 1, is bounded by N. Then

D(T, J ) < ρ(D(gm(T ), gm(J )), N ),

where D(T, J )= |T ||J |/|L||R| denotes the cross-ratio.
Moreover, ρ(ε, N ) tends to zero when ε goes to zero and N is fixed.

THEOREM. (Theorem 4.6) Let f be a C∞(N ) map with all critical points non-flat. There
exist a neighbourhood F of f in C∞(N ) and a function ρ(ε, N ) such that the following
holds. Let g be in F , {Jk}

m
k=0 and {Tk}

m
k=0 be chains such that Jk ⊂ Tk for all 0≤ k ≤ m.

Assume that the intersection multiplicity of {Tk}
s
k=0 is at most N and that Tm contains an

ε-scaled neighbourhood of Jm . Then T0 contains ρ(ε, N )-scaled neighbourhood of J0.
Moreover, ρ(ε, N ) tends to infinity when ε goes to infinity and N is fixed.

3. Cross-ratio estimates in the presence of large positive Schwarzian
There are many well-known estimates for the cross-ratio distortion of a map; however,
these estimates often involve constants which implicitly depend on the map. In this section
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we will give a few explicit estimates for the cross-ratio distortion. First, we start with the
standard definitions of the cross-ratio and state a few of its well-known properties.

Let J ⊂ T be two intervals and L and R are connected components of T \J . The cross-
ratio of these intervals is defined as

D(T, J )=
|T ||J |

|L||R|
.

If f : T → R is monotone on T , we define the cross-ratio distortion of f by

B( f, T, J )=
D( f (T ), f (J ))

D(T, J )
.

Let f be a real differentiable function and {T j }
m
j=0 be a collection of intervals. The

intersection multiplicity of {T j }
m
j=0 is the maximal number of intervals with a non-empty

intersection. The order of {T j }
m
j=0 is the number of intervals containing a critical point

of f . This sequence of intervals {T j }
m
j=0 is called a chain if T j is a connected component

of f −1(T j+1).
If I is a real interval of the form (a − b, a + b) and λ > 0 then we define λI =

(a − λb, a + λb). By definition (1+ 2δ)I is called the δ-scaled neighbourhood of I . We
say that I is δ-well-inside J if J ⊃ (1+ 2δ)I .

Let f be a C3 mapping. The Schwarzian derivative of f is defined as

S f (x)=
D3 f (x)

D f (x)
−

3
2

(
D2 f (x)

D f (x)

)2

.

It is easy to check that the Schwarzian derivative of a composition of two maps has the
form

S( f ◦ g)(x)= S f (g(x))Dg(x)2 + Sg(x).

This formula implies that if a map has negative Schwarzian derivative then all its iterates
also have negative Schwarzian derivatives.

It is also well known that maps having negative Schwarzian derivative increase cross-
ratios. The next lemma gives an estimate of the cross-ratio distortion in terms of the map’s
Schwarzian derivative.

LEMMA 3.1. Let f : T → f (T ) be a C3 diffeomorphism and suppose that S f (x) < C for
all x in T and some constant C > 0. Moreover, suppose that C |T |2 < π2/2. Then, for any
J ⊂ T ,

B( f, T, J ) > cos2(
√

C/2|T |).

Remark. One does need a bound on the size of the interval (as in the lemma) in order to
have a non-trivial estimate on the cross-ratio distortion from below. More precisely, for
any ε > 0 there exist a C3 diffeomorphism f : [0, 1] → [0, 1] and an interval J ∈ [0, 1]
such that S f (x) < π2 and B( f, [0, 1], J ) < ε.

Proof. First, using rescaling, we can assume that T = [0, 1]. Let J = [a, b]. The
Schwarzian derivative of a Möbius transformation is zero, therefore post-composing the
map with a Möbius transformation does not change the cross-ratio distortion B( f, T, J )
and the map’s Schwarzian derivative. By post-composing the map f with an appropriate
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Möbius transformation we can assume that f (0)= 0, f (a)= a and f (1)= 1. Since f is
monotone, we can now assume that D f (x) > 0.

The interval [0, a] is mapped onto itself by f , therefore there exists a point u1 ∈ [0, a]
such that D f (u1)= 1. If f (b)≥ b, then B( f, T, J )≥ 1 and we are done. Otherwise, there
are points v1 ∈ [a, b], v2 ∈ [b, 1] such that

D f (v1)=
f (b)− a

b − a
< 1 and D f (v2)=

1− f (b)

1− b
> 1.

Hence, there exists a point u2 ∈ [v1, v2] such that D f (u2)= 1. Notice that B(g, T, J )=
D f (v1)/D f (v2) and in order to estimate the cross-ratio distortion from below we should
estimate D f (v1) from below and D f (v2) from above.

By a direct computation one can check that another form for the Schwarzian derivative
of f is

S f (x)=−2
√

D f (x)D2 1
√

D f (x)
.

This implies that if we denote 1/
√

D f (x) by φ(x), then the function φ satisfies the linear
second-order differential equation

φ′′(x)=− 1
2 S f (x)φ(x). (1)

Moreover, we know that

φ(u1)= φ(u2)= 1. (2)

Let us compare the solutions of this equation with the solutions of the equation

ψ ′′(x)=− 1
2 Cψ(x) (3)

with the same boundary conditions

ψ(u1)= ψ(u2)= 1. (4)

Claim. Suppose that φ : [0, 1] → R satisfies equations (1), (2) and φ(x) > 0 for all
x ∈ [0, 1]. Suppose that ψ : [0, 1] → R satisfies (3), (4). Then for all x ∈ [u1, u2] one
has φ(x)≤ ψ(x) and for all x ∈ [u2, 1] one has φ(x)≥ ψ(x).

To prove this claim let us first notice that the inequality C < π2/2 implies thatψ(x)≥ 0
for all x ∈ [0, 1].

Next, one can easily check that φ and ψ satisfy the Picone identity

D

(
φ(x)ψ(x) D

(
φ(x)

ψ(x)

))
=

1
2
(C − S f (x))φ(x)2 +

(
Dφ(x)−

φ(x)

ψ(x)
Dψ(x)

)2

.

Notice that the right-hand side in the Picone identity is always positive.
Set x0 = inf{x ∈ [u1, 1] : φ(x) > ψ(x)}. By continuity we get φ(x0)= ψ(x0) and

D(φ(x)/ψ(x))|x=x0 ≥ 0. The Picone identity implies that, for all x > x0,

φ(x)ψ(x)D

(
φ(x)

ψ(x)

)
> φ(x0)ψ(x0)D

(
φ(x)

ψ(x)

)∣∣∣∣
x=x0

.
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In particular, we get D(φ(x)/ψ(x)) > 0, and, therefore, φ(x)/ψ(x) > φ(x0)/ψ(x0)= 1
for all x ≥ x0.

If x0 < u2, we would have 1= φ(u2) > ψ(u2)= 1 which is not possible, so x0 ≥ u2

and we have proved the first part of the claim.
To prove the second part of the claim we should notice that since φ(u2)= ψ(u2)= 1

and φ(x)≤ ψ(x) for x ∈ [u1, u2] we get D(φ(x)/ψ(x))|x=u2 ≥ 0. Using the Picone
identity once more and arguing as before, we conclude that φ(x)≥ ψ(x) for all x ∈ [u2, 1]
and the proof of the claim is finished.

Using this claim, we can estimate the cross-ratio distortion in terms of the function ψ :

B( f, T, J )=
D f (v1)

D f (v2)
=

(
φ(v2)

φ(v1)

)2

>

(
ψ(v2)

ψ(v1)

)2

.

The solution of equations (3) and (4) is

ψ(x)=
cos(
√

C/2(x − (u1 + u2)/2))

cos(
√

C/2((u1 − u2)/2))
.

On the interval [0, 1] the function ψ reaches its maximum at the point (u1 + u2)/2 and its
minimum at one of the boundary points 0 or 1. Hence,

ψ(v2)

ψ(v1)
≥ min

{
cos
(√

C/2
(

u1 + u2

2

))
, cos

(√
C/2

(
1−

u1 + u2

2

))}
≥ cos(

√
C/2)

since (u1 + u2)/2 ∈ [0, 1] and
√

C/2< π/2. 2

If the Schwarzian derivative is strictly negative, the cross-ratio distortion is always
greater than one. If it is negative and bounded away from zero by some constant, in general,
one cannot improve this estimate on the cross-ratio distortion: the interval J can be small
and close to one of the end points of the interval T . However, if J is situated exactly in the
centre of T and not very small, we can get a definite increase of the cross-ratio as given
below.

LEMMA 3.2. Let f : T → f (T ) be a C3 diffeomorphism and suppose that S f (x) <−C
for all x in T and some constant C > 0. Then, for any interval J ⊂ T such that T is equal
to the δ-scaled neighbourhood of J ,

B( f, T, J ) >
1+ 2δ
√

C/2|T |
sinh

(√
C/2|T |

1+ 2δ

)
≥ 1+

1
12

C |T |2

(1+ 2δ)2
.

Proof. Start by rescaling T to [0, 1]. Then J = [a, 1− a], where a = δ/(1+ 2δ). By post-
composing f with a Möbius transformation we can assume that f (0)= 0, f (1)= 1 and
f (a)+ f (1− a)= 1. Since the Schwarzian derivative is negative on T we already know
that f (a)≤ a.

Let us denote the ratio f (a)/a by r . Notice that (1− f (1− a))/a is equal to r
as well and that r ≤ 1. By the mean value theorem there exist points u1 ∈ [0, a] and
u2 ∈ [1− a, 1] such that

D f (u1)= D f (u2)= r.
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As in the proof of the previous lemma let us denote 1/
√

D f (x) by φ(x). The function
φ satisfies equation (1) with boundary conditions

φ(u1)= φ(u2)=
1
√

r
. (5)

We will compare the solution of this equation with the function ψ which satisfies

ψ ′′ = 1
2 Cψ (6)

and the boundary conditions similar to (5). This equation is easy to solve and the solution
is

ψ(x)=
cosh(

√
C/2(x − (u1 + u2)/2))

√
r cosh(

√
C/2((u1 − u2)/2))

.

As in the proof of the previous lemma the following is true: φ(x)≤ ψ(x) for all
x ∈ [u1, u2]. Now, let us estimate the cross-ratio distortion

B( f, T, J )=
f (1− a)− f (a)

(1− 2a)r2

=
1

(1− 2a)r2

∫ 1−a

a
D f (t) dt

≥
cosh(

√
C/2((u1 − u2)/2))2

(1− 2a)r

∫ 1−a

a

1

cosh(
√

C/2(t − (u1 + u2)/2))2
dt

=
cosh(

√
C/2((u1 − u2)/2))2
√

C/2(1− 2a)r
tanh

(√
C/2

(
t −

u1 + u2

2

))∣∣∣∣1−a

t=a
.

By an elementary consideration one can show that under the restrictions u1 ∈ [0, a] and
u2 ∈ [1− a, 1] the last expression achieves its minimum when u1 = a and u2 = 1− a.
Thus,

B( f, T, J )≥ 2
cosh(

√
C/2( 1

2 − a))2
√

C/2(1− 2a)
tanh

(√
C/2

(
1
2
− a

))
=

sinh(
√

C/2(1− 2a))
√

C/2(1− 2a)
. 2

In order to understand the cross-ratio distortion for maps in a neighbourhood of a map
which has degenerate critical point we first study it in the case of the polynomials.

PROPOSITION 3.3. For any polynomial f of degree d there exist at most (d − 1)/2
intervals E j (which we will call critical intervals), j = 1, . . . , dE such that the following
results hold.
• Let κ ∈ (0, 1/4

√
dE ) be a number, T1, . . . , Tm be intervals and their intersection

multiplicity be bounded by N. Moreover, suppose that f |Ti is a diffeomorphism and
that

|Ti ∩ E j |< κ|E j |

for all i = 1, . . . , m, j = 1, . . . , dE . Then
m∏

i=1

B( f, Ti , Ji ) > exp(−16κNd2
E ),

where Ji ⊂ Ti are any intervals.
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• Let λ > 1, κ ∈ (0, 1/13
√

dE ) be numbers, J ⊂ T be intervals such that the interval
T is equal to the δ-scaled neighbourhood of J and f |T is a diffeomorphism.
Moreover, assume that

|T ∩ E j |< κ|E j |/λ

for all j = 1, . . . , dE and either there exists a critical point c of f contained in the
interval λT or there exists j0 ∈ [1, dE ] such that

T 6⊂ 2E j0 and λT ∩ E j0 6= ∅.

Then

B( f, T, J ) > 1+
1

12

(
16

17(1+ λ)2
− 32

κ2dE

λ2

)
1

(1+ 2δ)2
.

Notice that there is no dynamics involved in this proposition.

Proof. The derivative of f is also a polynomial; let xk , k = 1, . . . , d − 1, be its roots.
Then the Schwarzian derivative of f can be written as

S f (x) = 2
∑

1≤k<l≤d−1

1
(x − xk)(x − xl)

−
3
2

(d−1∑
k=1

1
x − xk

)2

= −

d−1∑
k=1

1

(x − xk)2
−

1
2

(d−1∑
k=1

1
x − xk

)2

.

Let a j ± ib j , j = 1, . . . , dE , be all non-real roots of D f among x1, . . . , xd−1. Then the
formula for the Schwarzian derivative above implies

S f (x) ≤ −
dE∑
j=1

(
1

(x − a j − ib j )2
+

1

(x − a j + ib j )2

)

= −2
dE∑
j=1

(x − a j )
2
− b2

j

((x − a j )2 + b2
j )

2
.

Define the critical intervals as E j = [a j − 2b j , a j + 2b j ]. It is easy to see that if x is a
point which is not contained in any of the intervals E j , then S f (x) < 0. Otherwise, let E j

be a critical interval of minimal length containing the point x . The above estimate for the
Schwarzian derivative implies that

S f (x) <
2dE

b2
j

.

If an interval Tk is not contained in any of the critical intervals (but can have non-empty
intersection with them), then Tk ∩ [a j − b j , a j + b j ] = ∅ for all j = 1, . . . , dE because
|Tk ∩ E j |< κ|E j |< |E j |/4, and therefore S f |Tk < 0 and B( f, Tk, Jk) > 1.

Fix a critical interval E j . Let Tk1 , . . . , Tkm′
be all intervals which are contained in E j

but are not contained in a critical interval of length smaller than |E j |. We have already
argued that S f |Tki

< 2dE/b2
j . By the choice of the number κ we know that√

1
2

max
x∈Tki

S f (x) |Tki | <

√
dE

b j
κ|E j |

<
π

2
. (7)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 01 Oct 2013 IP address: 137.205.50.42

1530 O. Kozlovski

So, we can apply Lemma 3.1 and get

log B( f, Tki , Jki ) > log
(

cos2
(√

dE

b j
|Tki |

))
> −

dE

b2
j

|Tki |
2.

Here we have used the fact that cos(x)≥ 1− x2 for all x ∈ R.
Now we can estimate the contribution of the cross-ratio distortions on all the

intervals Tki :

m′∑
i=1

log B( f, Tki , Jki ) > −
dE

b2
j

m′∑
i=1

|Tki |
2

> −
dE

b2
j

κ|E j |

m′∑
i=1

|Tki |

> −
dE

b2
j

κN |E j |
2

= −16κNdE .

Thus, we get
m∑

j=1

log B( f, Tk, Jk) > −16κNd2
E

and the first part of the proposition is proved.
We now prove the second part. First, suppose that we are in the first case, that is,

there exists a critical point c such that c ∈ λT . Set I = [c, T ]. Since c ∈ λT we get
(1+ λ)/2 |T | ≥ |I |.

If T is not contained in any critical interval, then arguing as before we get that S f (x) < 0
for all x ∈ T and

min
x∈T

(−S f (x)) |T |2 ≥
|T |2

|I |2

≥
4

(1+ λ)2
.

If T is contained in some critical intervals, let E j be such an interval of minimal length.
Using estimate (7) and estimating the contribution to the Schwarzian derivative of critical
intervals which contain T , we get

min
x∈T

(−S f (x)) |T |2 ≥
4

(1+ λ)2
− 32

κ2dE

λ2 .

Notice that since κ2 < 1/132dE the right-hand side of the inequality above is positive.
Now consider the remaining case and assume that λT ∩ E j0 6= ∅ and T 6⊂ 2E j0 . Denote

by A the interval [a j0 , T ]. Since T 6⊂ 2E j0 = [a j0 − 4b j0 , a j0 + 4b j0 ] we get

|A|> 4b j0 .

On the other hand, the condition λT ∩ E j0 6= ∅ implies that

|A| − (1+ λ)/2 |T |< 2b j0 .
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These two inequalities combined give an estimate on the length of the interval |T |:

(1+ λ)|T |> 4b j0 .

Another inequality we will be using which is easy to check is

−2
(x − a)2 − b2

((x − a)2 + b2)2
≤−

1

(x − a)2 + b2

if |x − a| ≥ 2b.
Using these inequalities leads to

min
x∈T

(−S f (x)) |T |2 ≥
|T |2

|A|2 + b2
j0

− 32
κ2dE

λ2 .

Let us estimate the term containing A and T :

|T |2

|A|2 + b2
j0

≥
|T |2

(2b j0 + (1+ λ)/2|T |)
2 + b2

j0

=
1

(2b j0/|T | + (1+ λ)/2)
2 + (b j0/|T |)

2

≥
1

((1+ λ)/2+ (1+ λ)/2)2 + ((1+ λ)/4)2

=
16

17(1+ λ)2
.

Applying Lemma 3.2 to the inequalities obtained concludes the proof. 2

PROPOSITION 3.4. Let f be a C∞(N ) map with all critical points non-flat. There exist
a neighbourhood F of f in C∞(N ) and d f ≥ 0 such that for any ε > 0, N > 0, δ > 0,
λ > 1 there exist κ > 0 and τ > 0 with the following properties. For any g ∈ F there exist
at most d f critical intervals E j , j = 1, . . . , dg such that:
• if J ⊂ T are intervals, gm

|T is a diffeomorphism, the intersection multiplicity
of {gk(T )}m−1

k=0 is bounded by N, |gk(T )|< κ , and |gk(T ) ∩ E j |< κ|E j | for all
k = 0, . . . , m − 1 and j = 1, . . . , dg , then

B(gm, T, J ) > 1− ε;

• if J is an interval, T = (1+ 2δ)J , g|T is a diffeomorphism, |T |< κ ,

|T ∩ E j |< κ|E j |/λ

for all j = 1, . . . , dg and either there exists a critical point c of g contained in the
interval λT or there exists j0 ∈ [1, dg] such that

T 6⊂ 2E j0 and λT ∩ E j0 6= ∅,

then
B(g, T, J ) > 1+ τ.
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Proof. Fix a small neighbourhood U of the critical set of f . Take a connected component
U0 of U . Decreasing U0 if necessary, we can assume that U0 contains only one critical
point of f of order d . In the domain U0 the function f can be written as f |U0 = (φ0)

d ,
where φ0 is a diffeomorphism. Take F small enough so that the function g ∈ F can be
decomposed as g|U0 = ψ ◦ P ◦ φ, where P is a polynomial of degree at most d , and ψ
and φ are diffeomorphisms such that ψ is C∞ close to the identity map and φ is C∞ close
to φ0; see [Ser76]. So, the Schwarzian derivatives ofψ and φ are uniformly bounded. Now
we can apply Lemma 3.1 to the functions φ, ψ and Proposition 3.3 to the polynomial P .

Take another neighbourhood W of the critical set of f so that W is compactly contained
in U . Decrease F if necessary so that the Schwarzian derivative of maps in F is uniformly
bounded from above outside W . Then Lemma 3.1 implies that there are constants C and κ
such that, for all g ∈ F ,

B(g, gk(T ), gk(J )) > 1− C |gk(T )|2

if the interval gk(T ) is disjoint from W and |gk(T )|< κ .
Decrease κ so that if an interval of length κ has a non-empty intersection with W , then

this interval is contained in U .
Now we can estimate the cross-ratio distortion:

log(B(gm, T, J ))=
m−1∑
k=1

log(B(g, gk(T ), gk(J )))

=

( ∑
gk (T )∩W=∅

+

∑
gk (T )∩W 6=∅

)
log(B(g, gk(T ), gk(J )))

>−C
m−1∑
k=1

|gk(T )|2 − 16κNd2
f

>−CκN |N | − 16κNd2
f .

The last expression can be made arbitrarily close to zero by decreasing κ . 2

4. Uniform pullback estimates
We also want to know a bound from below on the cross-ratio distortion when there are no
bounds on the length of the intervals gk(T ). Such a bound exists, though it is not as good
as in the proposition above. To prove this bound we need a few statements.

LEMMA 4.1. There exists a function ρ(ε, d) > 0 such that if f is a polynomial of degree
less than or equal to d, Ĵ ⊂ T̂ are intervals, T̂ contains the ε-scaled neighbourhood of Ĵ ,
T is a connected component of f −1(T̂ ), and J is a connected component of f −1( Ĵ ) which
is contained in T , then the interval T contains the ρ(ε, d)-scaled neighbourhood of J .

Moreover, ρ(ε, d) tends to infinity when ε goes to infinity with fixed d.

LEMMA 4.2. There exists a function ρ(ε, d) > 0 such that if f is a polynomial of degree
less than or equal to d, J ⊂ T are intervals, and f |T is a diffeomorphism, then

D(T, J ) < ρ(D( f (T ), f (J )), d).

Moreover, ρ(ε, d) tends to zero when ε goes to zero with fixed d.
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The second lemma is a straightforward consequence of the first, and we will prove here
only the first lemma.

Proof of Lemma 4.1. First, we can assume that T̂ is equal to the ε-scaled neighbourhood
of Ĵ . Next, we can rescale the polynomial f and assume that T = T̂ = [0, 1]. Thus,
f ([0, 1])⊂ [0, 1].

Let Ad be a set of polynomials of degree less than or equal to d such that for any
g ∈ Ad one has g(x) ∈ [0, 1] for any x ∈ [0, 1] and g(y) ∈ {0, 1} for y ∈ {0, 1}. The set
Ad is compact. Indeed, any polynomial d of degree less than or equal to d is uniquely
determined by its values at the points xk = k/d, where k = 0, . . . , d. So,

g(x)=
d∑

k=0

g(xk)Nk(x),

where Nk is a Newton polynomial

Nk(x)=

∏
i 6=k(x − xi )∏
i 6=k(xk − xi )

.

Since g(xk) ∈ [0, 1] for g ∈ Ad and all k = 0, . . . , d , we see that the set Ad is compact.
Therefore, the maximum of the derivatives of polynomials in Ad is bounded:

inf
g∈Ad

max
x∈[0,1]

|Dg(x)|< K .

This implies that both components T \J are greater than ε/K (1+ 2ε) and the function ρ
exists. Using the compactness argument once again, it is easy to show that ρ(ε, d)→∞
when ε→∞. 2

PROPOSITION 4.3. Let f be a C∞(N ) map with all critical points non-flat. There exist a
neighbourhood F of f in C∞ and a function ρ(ε) such that the following holds.

Let g be in F , Ĵ ⊂ T̂ are intervals, T̂ contains the ε-scaled neighbourhood of Ĵ , T is
a connected component of g−1(T̂ ), and J is a connected component of g−1( Ĵ ) which is
contained in T , then the interval T contains the ρ(ε)-scaled neighbourhood of J .

Moreover, ρ(ε) tends to infinity when ε goes to infinity.

Proof. The proof of this proposition is similar to the proof of Proposition 3.4.
Fix two neighbourhoods U ⊂U ′ of the critical set, and let each connected component

of U contain just one critical point of f and U ′ compactly contain U . Take F so small that
the distortion of the derivative of maps g ∈ F on the complement to U is bounded and that
inside every connected component of U ′ a map g ∈ F can be decomposed as ψ ◦ P ◦ φ,
where P is a polynomial of uniformly bounded degree and ψ , φ are diffeomorphisms; see
the proof of Proposition 3.4. From the lemma above it follows that if T ⊂U ′ then the
function ρ exists. Since the derivative distortion on the complement of U is uniformly
bounded, the function ρ exists also when T belongs to the complement of U . In the
remaining case the interval T must contain a component of U ′\U and cannot be small.
The set F is precompact in the C1 topology and, using a compactness argument again, we
get the function ρ in the remaining case too. 2
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Similarly, we obtain the following proposition.

PROPOSITION 4.4. Let f be a C∞(N ) map with all critical points non-flat. There exist a
neighbourhood F of f in C∞ and a function ρ(ε) such that the following holds.

Let g be in F , J ⊂ T are intervals, and g|T is a diffeomorphism, then

D(T, J ) < ρ(D(g(T ), g(J ))).

Moreover, ρ(ε) tends to zero when ε goes to zero.

THEOREM 4.5. Let f be a C∞(N ) map with all critical points non-flat. There exist a
neighbourhood F of f in C∞(N ) and a function ρ(ε, N ) such that the following holds.

Let g be in F , J ⊂ T be intervals such that gm
|T is a diffeomorphism and the

intersection multiplicity of the intervals gk(T ), k = 0, . . . , m − 1, is bounded by N. Then

D(T, J ) < ρ(D(gm(T ), gm(J )), N ).

Moreover, ρ(ε, N ) tends to zero when ε goes to zero and N is fixed.

Proof. Let F be so small that Proposition 3.4 holds with ε = 1
2 , and Proposition 4.4 holds

as well. Let κ be the constant given by the first proposition and ρ is a function given by
the second one. Fix g ∈ F and let E1, . . . , Ed be the corresponding critical intervals.

Let k1 < · · ·< km′ be all indexes such that for every ki either |gki (T )| ≥ κ or there is
j such that |gki (T ) ∩ E j | ≥ κ|E j |. If k 6= ki , then |gk(T )|< κ and |gk(T ) ∩ E j |< κ|E j |

for all j = 1, . . . , d , and the first part of Proposition 3.4 can be applied to such intervals.
Clearly, the number m′ of these indexes is bounded above by some constant which depends
only on κ , the number of critical intervals d and the intersection multiplicity N (and is
independent of the choice of g).

Due to Proposition 3.4,

D(gkm′+1(T ), gkm′+1(J )) < 2D(gm(T ), gm(J )).

Now we can apply Proposition 4.4 to the map g : gkm′ (T )→ gkm′+1(T ) and get

D(gkm′ (T ), gkm′ (J )) < ρ(2D(gm(T ), gm(J ))).

Denote ψ(D)= ρ(2D). Then

D(T, J ) < 2ψm′(D(gm(T ), gm(J )))

and, since m′ is uniformly bounded, the theorem is proved. 2

THEOREM 4.6. Let f be a C∞(N ) map with all critical points non-flat. There exist a
neighbourhood F of f in C∞(N ) and a function ρ(ε, N ) such that the following holds.

Let g be in F , and {Jk}
m
k=0 and {Tk}

m
k=0 be chains such that Jk ⊂ Tk for all 0≤ k ≤ m.

Assume that the intersection multiplicity of {Tk}
s
k=0 is at most N and that Tm contains an

ε-scaled neighbourhood of Jm . Then T0 contains the ρ(ε, N )-scaled neighbourhood of J0.
Moreover, ρ(ε, N ) tends to infinity when ε goes to infinity and N is fixed.
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Proof. This time let k1 < · · ·< km′ be all indexes such that the interval Tki contains at least
one critical point. If F is small, the number of critical points of a map g ∈ F is uniformly
bounded, and since the intersection multiplicity of the intervals {Tk}

m
k=0 is bounded by N ,

the number m′ is uniformly bounded as well.
Now we can apply the previous theorem to maps gki+1−ki+1

: g(Tki )→ Tki+1 and
Proposition 4.3 to maps g : Tki → Tki+1 and finish the proof. 2

5. Proof of Theorem B
The proof of this theorem uses the same ideas as in [MdMvS92] or [dMvS93], but we will
need to tweak that proof quite a bit. We will also follow the notation in the book [dMvS93]
where possible.

We start the proof by making a few trivial observations. If f is a diffeomorphism of a
circle, then the neighbourhood F of f can be taken so it consists only of diffeomorphisms.
In this case the theorem trivially holds as all periodic orbits of a circle diffeomorphism
form one pack.

If N is an interval, we can enlarge it and set Ñ = 3N . We can also extend the map f
smoothly to a map Ñ → Ñ so that no extra critical points are created. If N is a circle, we
set Ñ =N .

Take F such that Propositions 3.4, 4.3 and 4.4 and Theorems 4.5 and 4.6 hold. Fix some
small κ > 0.

If F is small enough, the number of critical points of maps in F is uniformly bounded.
Hence, there can be only a uniformly bounded number of periodic orbits of g ∈ F which
contain critical points in their basins of attraction.

Fix a map g : Ñ → Ñ which is C∞ close to f and let E j , j = 1, . . . , dg , be the critical
intervals of g given by Proposition 3.4. Let O ⊂N be a periodic orbit of g. Denote the
orientation preserving period of O by n.

Let p ∈N be a point of O and define Tp ⊂ Ñ be a maximal interval containing p such
that each component of Tp\p contains at most one point of O. Thus, the closure of Tp

contains five points of O if p is not one of the four points closest to the boundary of N .
Now fix p ∈O such that the corresponding interval Tp has minimal length. Set

Un = 3Tp. Obviously, the interval Un is a subset of Ñ and the closure of Un can contain at
most 13 points of the orbit O while Un itself contains at most 11 points of O in its interior.
Let {Ûk}

n
k=0 be a chain such that gk(p) ∈ Ûk for all k = 0, . . . , n and Ûn =Un .

LEMMA 5.1. The intersection multiplicity of the chain {Ûk}
n
k=0 is bounded by 44.

This is almost the same as [dMvS93, Lemma 10.3(i), p. 323], where it is formulated for
diffeomorphic pullbacks instead of chains. The proof is the same, though.

Proof. The interval Ûn contains at most 11 points of the orbit O, hence Ûk can contain at
most 11 points of O as well. Thus if an interval Ûi contains a point x , there exist at most
ten points of O between gi (p) and x .

Suppose that x ∈ Ûk1 ∩ · · · ∩ Ûkm with 0≤ k1 < · · ·< km ≤ n. Arguing as in the
previous paragraph, we see that gki (p) can be one of 22 points of O around x . 2
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We will denote by U l
n and U r

n the left and right components of Un\p and by {Û l
k}

n
k=0

and {Û r
k }

n
k=0 the corresponding chains. Notice that the point gk(p) is always a boundary

point of the intervals Û l
k and Û r

k .
Let us inductively define intervals U r

k , k = 0, . . . , n, by the following rule. U r
k is

the maximal interval containing gk(p) as its boundary point and satisfying the following
conditions:
• g(U r

k )⊂U r
k+1;

• g|U r
k

is a diffeomorphism;
• |U r

k | ≤ κ/2;
• if gk(p) ∈ 2E j for some j , then |U r

k | ≤ κ|E j |/2;
• if gk(p) 6∈ 2E j , then U r

k is disjoint from E j .
Notice that |U r

k ∩ E j | ≤ κ|E j |/2 for all k and j .
We will call k a cutting time if g(U r

k ) 6=U r
k+1. The cutting times can be of one of the

following types:
• a critical cutting time if U r

k contains a critical point of g in its boundary;
• an internal cutting time if |U r

k | = κ/2 or there exists a critical interval E j such that
gk(p) ∈ 2E j and |U r

k | = κ|E j |/2;
• a boundary cutting time if there exists a critical interval such that gk(p) 6∈ 2E j and

U r
k contains a boundary point of E j in its boundary.

Since the number of critical points and critical intervals of maps in F is uniformly
bounded and the intersection multiplicity of {U r

k }
n
k=1 is universally bounded, the number

of critical and boundary cutting times is uniformly bounded.
The intervals U l

k are defined in the same way. We also set Uk =U l
k ∪U r

k .
By the definition of the intervals Uk it follows that gn

|U0 is a diffeomorphism. A simple
argument shows that U0 ⊂ Tp; see [dMvS93, Lemma 10.2, p. 322].

Now consider two cases. First, suppose that gn(U r
0 ) is strictly contained in U r

0 . In this
case all periodic points in U r

0 belong to the same pack, and if a point in this interval is not
periodic, then it is in the attraction basin of one of the attracting points of the pack. Let k1

be the minimal cutting time in {U r
k }

n
k=1. If k1 is a critical time, then one of the iterates of

a critical point is in U r
0 , and therefore this critical point is in the attraction basin of some

periodic point in the pack. Since the number of critical points of maps in F is uniformly
bounded and the same critical point cannot be in the attraction basins of two different
orbits, the number of such packs is uniformly bounded. Similarly, if k1 is a boundary
cutting time, then a boundary point of one of the critical intervals is in the attraction basin
of a point from the pack and the number of critical intervals is also uniformly bounded.

Now consider the case where k1 is an internal cutting time and suppose that it
corresponds to the critical interval E j , that is, gk1(p) ∈ 2E j and |U r

k1
| = κ|E j |/2. Let p′

be another periodic point and suppose that if we perform a similar construction for p′, we
get the first cutting time k′1 internal and gn′(U r ′

0 )⊂U r ′
0 where U r ′

k are the corresponding
intervals. Since every point in U r

k as well as in U r ′
k′1

is either periodic or its iterates are

attracted to a periodic orbit, it follows that if the closures of these two intervals have
non-empty intersection, then the points p and p′ belong to the same pack of periodic
points. The interval U r

k1
has length κ|E j |/2; there are at most 2/κ + 1 disjoint intervals
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like this. If we take into account all critical intervals, then we see that there can exist at
most (1+ d f )(1+ 2/κ) packs of periodic orbits in this case.

Let us summarize. All periodic points p such that gn(U r
0 )⊂U r

0 belong to a finite
number of packs of periodic orbits. The number of these packs is bounded by some
constant which depends on κ , d f and the number of critical points of maps in F and
does not depend on the choice of g ∈ F .

From now on we will assume that U r
0 ⊂ gn(U r

0 ). Let U r
−k denote the diffeomorphic

pullback of U r
0 along the orbit of p, gk(U r

−k)=U r
0 .

LEMMA 5.2. If the interval U r
−n contains another periodic point p′ with order preserving

period n′ ≤ n, then the periodic points p and p′ belong to the same pack of periodic orbits.

Proof. We know that the interval U r
0 is a subset of Tp, so U r

0 contains at most one point of
O in its interior. Let q be this point if it exists, otherwise let q = p. If q = p′, we are done,
so assume that q 6= p′.

Since p′ ∈U r
−n we get gn(p′) ∈U r

0 , and therefore there are no periodic points from O
in the interval (q, gn(p′)). Let q ′ ∈O be another periodic point from the orbit O such that
p′ ∈ (q, q ′) and the open interval (q, q ′) does not contain any points of O.

If gn′(q)= q or gn′(q)= q ′, then the interval [q, p′] or [p′, q ′] is periodic and the
points q and p′ belong to the same pack of periodic orbits. Otherwise, the interval
(gn′(q), gn′(p′))= (gn′(q), p′) contains a point from the orbit O, and therefore, the
interval (q, gn(p′)) will contain a point from O as gn

: (q, p′)→ (q, gn(p′)) is a
diffeomorphism. This is a contradiction. 2

PROPOSITION 5.3. There exist constants ρ > 0 and κ0 > 0 such that for any κ ∈ (0, κ0)

there exists M ∈ N such that the following holds.
For every g ∈ F there are at most M exceptional packs of periodic orbits of g such that

if O is not in one of the exceptional packs, then there is a point θr
∈U r

0 such that

Dgn(θr ) > 1+ 2ρ.

Proof. We can assume that Dgn(x) < 2 for all x ∈U r
0 , otherwise we have nothing to prove.

Since Un = 3Tp and U0 ⊂ Tp the closure of the interval gn(U r
0 ) is contained in the interior

of Un . In particular, this implies that there exists at least one cutting time for {U r
k }

n
k=1. Let

m be the minimal cutting time, that is, there is no cutting time m′ with m′ < m. Another
property of the minimal cutting time is that gm(U r

0 )=U r
m .

Consider several cases now. First, suppose that m is critical or boundary cutting
time. Let M ′ = 1

3U r
m , and M ⊂U r

0 is a preimage of M ′ under gm . Due to the second
part of Proposition 3.4 we know that B(g,U r

m, M ′) > 1+ τ where τ > 0 is a constant
independent of the choice of g ∈ F . Moreover, τ does not change if we decrease κ .
We know that |gk(U r

0 ) ∩ E j | ≤ κ|E j |/2 for all k = 0, . . . , n − 1 and j , so we can apply
the first part of Proposition 3.4 to maps gm

:U r
0 →U r

m and gn−m−1
: g(U r

m)→ gn(U r
0 ).

Decreasing κ if necessary, we can get B(gn,U r
0 , M) > 1+ τ/2.

Let L and R be connected components of U r
0\M and let L contain the point p in its

boundary. According to Theorem 4.6, the interval gn(R) cannot be very small compared
to the interval gn(U r

0 ). Indeed, if gn(R) is small, then it has a huge space inside
U r

n , that is, Cgn(R)⊂U r
n for some large constant C . If we apply Theorem 4.6 to the
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map gn−m
: gm(R)⊂ Û r

m→ gn(R)⊂U r
n , we can see that the interval gm(R) would have

a big space in U r
m . However, one of the components of U r

m\g
m(R) has length 2|gm(R)|,

so the space is bounded. A similar argument holds for the interval gn(L); in this case we
should consider U l

n ∪ gn(U r
0 ) as a neighbourhood of gn(L).

Thus, there exists a constant β > 0 independent of the choice of g ∈ F such that

|gn(L)|> β|gn(U r
0 )| and |gn(R)|> β|gn(U r

0 )|.

Since U r
0 ⊂ gn(U r

0 ) and Dg|U r
0
< 2 it follows that

|L|> 1
2β|U

r
0 | and |R|> 1

2β|U
r
0 |.

Now we can apply the ‘first expansion principle’; see [dMvS93, Theorem 1.3, p. 280] to
the map gn

:U r
0 → gn(U r

0 ) and get a point θr
∈U r

0 with Dgn(θr ) > 1+ 2ρ, where ρ does
not depend on g ∈ F .

The remaining case we have to consider is when m is the internal cutting time. By
definition we know that in this case either |U r

m | = κ/2 or there exists a critical interval E j

such that gm(p) ∈ 2E j and |U r
m | = κ|E j |/2. We will consider only the second case; the

first can be dealt with in the exactly same way.
Consider an interval U r

−6n ⊂U r
0 . The derivative of gn on U r

0 is bounded by 2, therefore
|U r
−6n|> 2−7

|gn(U r
0 )| and the interval U r

0\U
r
−6n has a definite space inside the interval U r

n .

Applying Theorem 4.6 to the map gn−m
: Û r

m→U r
n , we get a constant γ > 0 such that

|U r
−7n+m |> γ |U

r
m | = γ κ|E j |/2. This constant is independent of g ∈ F and κ .

Define an interval W ⊂U r
m so that gm(p) is the boundary point of W and |W | =

1
8γ κ|E j |. Clearly, g6n

|W is a diffeomorphism.
Let O′ be another periodic orbit of g of period n′. Suppose that if for O′ we repeat the

construction we did for O, then the corresponding first cutting time m′ is also of internal
type with the same interval E j . Let W ′ be defined as W but for the orbit O′.

Claim. If the intervals W and W ′ have a non-empty intersection, then the orbits O and O′
belong to the same pack.

Without loss of generality we can assume that n′ ≥ n. Also observe that the intervals W
and W ′ have the same length.

Let us consider several cases of how the intervals W and W ′ can intersect. First, let us
suppose that gm(p) ∈W ′. Then gm+n′−m(p) ∈U r ′

−6n′ and, due to Lemma 5.2, the points p
and p′ are in the same pack.

Another case is gm(p) 6∈W ′ and gm′(p′) 6∈W . In this case it is easy to see that since
|U r ′
−7n′+m′ |> 4|W ′|, the interval U r ′

−7n′+m′ contains the point gm(p) and the same argument
as above can be applied.

The last case is gm(p) 6∈W ′ and gm′(p′) ∈W . If gm′+n(p′)= gm′(p′), then the interval
(gm(p), gm′(p′)) is periodic and the points p and p′ are in the same pack. If gm′+n(p′) is
in the interval (gm(p), gm′(p′)), then (gm(p), gm′(p′)) is mapped into itself and iterates
of the point gm′(p′) are attracted to some periodic attractor, which is impossible because
gm′(p) is a periodic point.

So, gm′+n(p′)6∈(gm(p), gm′(p′)). This implies that gm′+in(p′) ∈U r
m\(g

m(p), gm′(p′))
for i = 1, . . . , 6. The intervals U r

m and U r ′
m′ have the same length κ|E j |/2, therefore,
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in this case
U r

m\(g
m(p), gm′(p′))⊂U r ′

m′

and the interval gn′−m′(U r ′
m′) contains six points from the orbit O′ in its interior. This

contradicts the fact that U r
n ⊃ gn′−m′(U r ′

m′) contains at most five points from O′. The claim
is proved.

Now we can finish the proof of the proposition. It follows from the claim that there are
at most 8/(γ κ)+ 1 packs of periodic orbits such that a periodic point from such a pack
can have the minimal cutting time of boundary type associated with the critical interval E j .
Since the number of the critical intervals is uniformly bounded, the lemma follows. 2

The theorem easily follows from this proposition. Take κ ∈ (0, κ0) so small that
Proposition 3.4 holds with

ε = 1−
(

1+ ρ
1+ 2ρ

)1/3

and N = 44. For this choice of κ let θr
∈U r

0 and θ l
∈U l

0 be given by the proposition, so

Dgn(θr,l) > 1+ 2ρ.

Set T = (θ l , θr ). Since T ⊂U0, |gk(U0)| ≤ κ , and |gk(U0) ∩ Ei | ≤ κ|E j | for all k =
0, . . . , n − 1 and j and the map gn

: T → gn(T ) is a diffeomorphism, Proposition 3.4
can be applied to all intervals J ∗ ⊂ T ∗ ⊂ T . We get

B(gn, T ∗, J ∗)3 >
1+ ρ

1+ 2ρ
.

Now the ‘minimum principle’ (see [dMvS93, Theorem 1.1, p. 275]) can be applied and

Dgn(x) > 1+ ρ

for all x ∈ T . In particular, Dgn(p) > 1+ ρ.

A. Appendix. Proof of the uniform contraction principle
Following the suggestion of a referee, we outline here proofs of Lemma 2.1 and uniform
bounds on the Schwarzian derivative used in the proof of Theorem 2.2.

Proof of Lemma 2.1. Suppose that the conclusion of the lemma is false. This means that
there exist
• a map f ∈ C1(N ),
• a constant ε > 0,
• a sequence of maps gk ∈ C1(N ), k = 1, 2, . . . ,
• a sequence of intervals Ik ⊂N ,
• and a sequence of positive integers nk ,
such that the following properties are satisfied:
(1) f does not have wandering intervals;
(2) f does not have neutral periodic points;
(3) |Ik |> ε for all k;
(4) gk→ f in C1 norm as k→∞;
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(5) nk→+∞;
(6) |gnk

k (Ik)| → 0;
(7) gnk

k (Ik) does not intersect an immediate attraction basis of a periodic attractor of gk .

By considering a subsequence we can assume that the intervals Ik converge to an
interval I0. This interval I0 cannot be degenerate as its length is bounded by ε from below.
Notice that at this point we cannot claim that lim infn→+∞ | f n(I0)| = 0.

Claim 1. These are no periodic points of f in int( f n(I0)), n = 0, 1, . . . ,where int denotes
the interior of a set.

Indeed, if a ∈ int( f n0(I0)), for some n0 ≥ 0, is a periodic point, then a cannot be a
neutral point of f because of property (2). Hence, under a small perturbation of f the
point a persists and there exists k0 such that gn0

k (Ik) contains a periodic point of gk for all
k ≥ k0. If a is an attracting periodic point, then we get a contradiction with property (7).
If a is repelling, then there exists εa > 0 such that | f n(I0)|> εa for all n. This also holds
for small perturbations of f , and it contradicts property (6).

Similarly, one can prove the following claim.

Claim 2. Intervals f n(I0) cannot have a non-empty intersection with immediate basins of
attraction of attracting periodic points of f .

Let W =
⋃
∞

n=0 int( f n(I0)). The set W is not necessarily forward invariant, but its
closure is. Take a connected component U of W . If, for some m > 0, f m(U ) ∩U 6= ∅,
then f m(U )⊂ Ū , where Ū is the closure of U . Consider several cases.
(1) If U contains a periodic point of f , then one of the f n(I0) contains a periodic point

of f in its interior. This contradicts Claim 1.
(2) If U is an interval and there are no periodic points of f in U , then f m

|U is monotone
and one of the boundary points a of U is an attracting periodic point of f . Moreover,
the immediate basin of attraction of a contains U , and therefore some f n(I0) has a
non-empty intersection with it, which is impossible according to Claim 2.

(3) Let U be a circle. In this case N =W =U and the map f does not have periodic
points. By compactness there are finitely many 0≤ n1 < · · ·< nr such that N =⋃r

i=1 int( f nr (I0)). It is easy to see that there exist z ∈N and l > 0 such that the
points z and f l(z) are in int( f n0(I0)) for some n0. Let ε0 =minx∈N | f l(x)− x |.
Obviously ε0 > 0 as f has no periodic points. Then |gl(x)− x |> ε0/2 for all x if
g is sufficiently close to f . So, for large k one has that {z, gl

k(z)} ⊂ gn0
k (Ik) and

therefore |gn
k (Ik)|> ε0/2 for all n > n0. This contradicts property (6).

Finally, if the orbit of U is disjoint, then either U is a wandering interval of f or it
is attracted to a periodic attractor. Both cases are impossible because of property (1) and
Claim 2. 2

Let c be a quadratic critical point of f ∈ C3(N ) and let B = D f 2(c). Fix a
neighbourhood F ∈ C3(N ) of f and some interval T of c so f does not have other critical
points in T . We can assume that all maps in F have one quadratic critical point in T . If
F and T are small enough, we get D3g(x)Dg(x)− 3

2 (D
2g(x))2 <−B2 for all g ∈ F and

x ∈ T .
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Let cg ∈ T denote the critical point of g ∈ F . Due to the mean value theorem we get
Dg(x)= Dg(cg)+ D2g(z)(x − cg) for some z ∈ [cg, x]. Therefore, |Dg(x)|< A|x −
cg| for some A > 0 for all g ∈ F and x ∈ T . Combining these inequalities, we get

Sg(x)=
D3g(x)Dg(x)− 3

2 (D
2g(x))2

(Dg(x))2
<−

B2

A2|x − cg|
2 .

This is the required estimate. The rest of the proof of Theorem 2.2 literally follows the
proof in [Koz00] or [VV04].
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