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Abstract. In this paper we will study families of circle maps of the form x 7→ x + 2πr +
a f (x)(mod 2π) and investigate how many periodic trajectories maps from this family can
have for a ‘typical’ function f provided the parameter a is small.

1. Introduction
The Hilbert–Arnold problem ([AI85]; see also the discussion in [Ily02]) asks if a generic
family of planar vector fields has a uniformly bounded number of isolated limit cycles.
Originally this problem was formulated just for planar vector fields (or vector fields on the
two-dimensional sphere); however, the same question can be posed for vector fields on
other manifolds or even for families of a maps from some manifold to itself. In this paper
we consider a case of specific families of diffeomorphisms of the circle.

Consider a family of circle diffeomorphisms of this form:

Fr,a : x 7→ x + 2πr + a f (x) (mod 2π),

where f is some periodic function, r ∈ R, a ∈ [−a0, a0]. For a given 2π -periodic function
f this family will be called the corresponding family.

There have been various studies of such families for different choices of the function f .
If f = sin, F is usually called Arnold’s family.

For these families we will study periodic trajectories which originate from periodic
points of the rigid rotation and investigate whether for a ‘typical’ family F there is a bound
on the number of periodic trajectories which are born when a is small. In the original
Hilbert–Arnold problem ‘typical’ means Baire generic. Here we will consider several
other notions of typicality and we will see that the answer might depend on what notion of
typicality is used.

We will see that in many cases a ‘typical’ family will have infinite cyclicity: this means
that for any N ∈ N there exist parameter values r and a such that the map Fr,a has more
than N attracting periodic trajectories. On the other hand, families which have finite
cyclicity certainly exist: if f is a trigonometric polynomial of degree d, then the number
of attracting periodic trajectories of the map Fr,a is bounded by d; see [YAK85].
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All the questions we pose here for the specific family Fr,a can be asked for general
families of circle maps. Interestingly enough, a generic non-trivial family of Ck circle
diffeomorphisms has infinite cyclicity. This follows from Herman’s theorem, though to the
best of my knowledge it cannot be found in the literature. It seems that such a statement
holds only for families of diffeomorphisms. I conjecture that a generic family of critical
circle maps (that is, maps which have points where the derivative of the map is zero) has
finite cyclicity. The critical points in such families do not create significant problems for the
proof of this conjecture because periodic attractors near critical points can be controlled by
the negative Schwarzian derivative condition (see [KOZ00]). On the other hand, periodic
attractors of high period born in a perturbation of a neutral fixed point are hard to analyse.

2. Statements of results
For a diffeomorphism g of a circle let N (g) denote the number of attracting periodic
trajectories of the map g and let ρ(g) denote the rotation number of g. For the family
Fr,a : x 7→ x + 2πr + a f (x) (mod 2π) of circle maps define

B(F, ρ0)= lim sup
a1→0+

sup
ρ(Fr,a)=ρ0,|a|<a1

N (Fr,a).

So, B quantifies how many periodic attractors of a given rotation number are born when
we perturb the rigid rotation.

Definition 1. The family of circle maps Fr,a : x 7→ x + 2πr + a f (x) (mod 2π) is said to
have finite infinitesimal cyclicity if B(F, ρ) is uniformly bounded for all ρ. Otherwise, F
has infinite infinitesimal cyclicity.

We will study cyclicity of families F in different functional spaces and use the following
notation. Let X be some space of real functions on the circle. I C N (X)⊂ X will denote
a set of functions f in X whose corresponding families Fr,a : x 7→ x + 2πr + a f (x)
(mod 2π) have infinitesimal cyclicity bounded by N , that is, B(F, ρ)≤ N for all ρ ∈
R. I C fin(X)=

⋃
∞

N=1 I C N (X) will denote functions whose corresponding families have
finite infinitesimal cyclicity, and I C∞(X)= X\I C fin(X) functions whose corresponding
families have infinite cyclicity.

2.1. Topologically small sets. A standard way to define a topologically small set is to
set a subset E of a topological space X to be small if E is a countable union of nowhere
dense subsets of X . Such a subset E is also called meagre. The complement of a meagre
set is called a residual set and if some property holds for all elements of a residual set, we
say that this property is Baire generic.

Our first theorem states that infinite cyclicity is a Baire generic property.

THEOREM A. The set I C∞(Ck(S)), k = 2, . . . , as well as the set I C∞(Cω
δ (S)), is

residual. In other words, for a Baire generic function f ∈ Ck(S), k = 2, . . . , ω, the
corresponding family F has infinite infinitesimal cyclicity.

Here Cω
δ (S) denotes the space of real analytic 2π -periodic functions which can be

analytically continued to the strip R× (−δi, δi)⊂ C. The norm in this space is given
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by

‖ f ‖Cωδ (S) = sup
Im(z)<δ

| f (z)|.

2.2. 0l
b prevalence. It is well known that sets that are large in a topological sense can

have zero Lebesgue measure and be invisible from a ‘probabilistic’ point of view. The best-
known example here is the set of Liouville numbers: this set is residual but has Lebesgue
measure zero.

The space of circle functions is infinite-dimensional and there is no natural definition of
the Lebesgue measure in infinite-dimensional spaces. Thus, there is no natural (or unique)
way to define zero Lebesgue measure sets. Several different approaches to define metric
prevalent sets have been suggested; we will study a few of them and investigate their
relations to the cyclicity of families of circle maps.

First we consider a definition of a metric prevalent set which employs a mixture of the
topological and finite-dimensional metric prevalence.

Definition 2. Let X be some vector space. Let I b denote a unit cube in Rb. A subset
P ⊂ X is called 0l

b-prevalent if for a generic C l family g : I b
→ X the set g−1(P) has full

Lebesgue measure.

Though this notion of prevalence is arguably most popular in dynamics, 0l
b-prevalent

sets cannot be considered as a true generalization of full Lebesgue measure sets: one can
construct a zero Lebesgue measure set in R2 which is 0l

1-prevalent; see [JLT12] for the
details.

In our setting the space X is a space of circle functions, so to make use of the 0l
b

prevalence we will consider families with values in X as in the paragraph above. On the
other hand, for a map in X we will also consider the corresponding family of circle maps.
Notice that we use the same word ‘family’ in these two different settings; however, we
hope this will not cause any confusion.

THEOREM B. For a Baire generic C l family f : I b
→ Ck(S), for every parameter t ∈ I b

the infinitesimal cyclicity of the corresponding family x 7→ x + 2πr + a ft (x) is infinite.
Here b ≥ 1, l ≥ 0, k = 2, . . . , ω†.

Notice that the claim of this theorem is stronger than just 0l
b prevalence: the

corresponding family has infinite infinitesimal cyclicity for every value of the parameter.

2.3. Haar null sets. Another way do describe ‘small’ sets in infinite-dimensional spaces
was suggested in [Chr72, HSY92]. Let X be a complete separable normed linear space.

Definition 3. A Borel subset E of X is called a Haar null set if there is a Borel probability
measure µ such that µ(x + E)= 0 for all x ∈ X .

In [HSY92] such sets are called shy. The complement of a Haar null set will be called
Haar prevalent to avoid confusion with prevalence in the 0l

b sense.

† If k = ω, then we mean the space Cωδ (S) for some δ > 0.
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Haar null sets have many properties which zero Lebesgue measure sets enjoy in finite-
dimensional spaces; for example, the countable union of Haar null sets is a Haar null set
as well. See [BL00, HSY92, OY05] for more information.

The next theorem shows that in the finite smoothness case the infinite cyclicity is Haar
prevalent.

THEOREM C. The set I C∞(Ck(S)) of functions f such that the corresponding families
Fr,a : x 7→ x + 2πr + a f (x) (mod 2π) have infinite infinitesimal cyclicity is Haar
prevalent. Here k = 2, 3, . . . .

Surprisingly enough, in the analytic case the situation is completely the opposite: the
infinite infinitesimal cyclicity is Haar null. Moreover, a Haar typical family has only one
attracting cycle if its period is high enough. To make this precise we need the following
definition.

Definition 4. We say that the infinitesimal cyclicity of the family Fr,a is essentially
bounded by N if there exists Q ∈ N such that for any p, q ∈ N, q ≥ Q we have
B(F, p/q)≤ N .

In other words, if the period is large enough, at most N periodic attractors of this period
can appear from the rigid rotation. It is easy to show that if the infinitesimal cyclicity
of a family is essentially bounded by some N , then it is finite. For a given space X of
circle functions, I C e

N (X) will denote the set of functions f whose corresponding families
Fr,a : x 7→ x + 2πr + a f (x) (mod 2π) have infinitesimal cyclicity essentially bounded
by N .

THEOREM D. The set I C e
1(C

ω
δ (S)) is Haar prevalent.

The notion of Haar null set can be strengthened, and next we define cube null sets. From
the definition it will be clear that any cube null set is also Haar null.

Consider the Hilbert cube [0, 1]ℵ0 and a linear map T : [0, 1]ℵ0 → X defined by
T ((t1, t2, . . .))= x0 +

∑
∞

n=1 tn xn , where x0, x1, . . . ∈ X such that the vectors x1, x2, . . .

are linearly independent, have a dense linear span in X and
∑
∞

n=1 ‖xn‖<∞. The image
of the standard product measure on [0, 1]ℵ0 under T is called a cube measure and denoted
by µT . By definition, we call a set E cube null if µT (E)= 0 for any cube measure. The
complement of a cube null set we will call cube prevalent.

Similarly, one can define Gauss null sets where the Gauss distributions are used instead
of the uniform distributions. The Gauss null sets defined in this way appear to be cube null
and vice versa.

The next statement shows that the previous theorems cannot be strengthened to the case
of cube prevalence.

THEOREM E.
• The set I C∞(Ck(S)) is not cube prevalent.
• The sets I C e

1(C
ω
δ (S)) and I C fin(Cω

δ (S)) are not cube prevalent.

Notice that since the sets I C∞(Ck(S)) and I C fin(C
ω
δ (S)) are Haar prevalent they cannot

be cube null either.
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2.4. σ -porous sets. Yet another approach to define typical sets in infinite-dimensional
spaces is to use a notion of σ -porous sets.

Let X be a normed linear space. B(x, r)= {y ∈ X : ‖y − x‖< r} will denote a ball of
radius r centred at x ∈ X .

Definition 5. A subset E of X is called porous at x if there is c > 0 such that for any ε > 0
there is y ∈ X such that ‖y − x‖< ε and B(y, c‖y − x‖) ∩ E = ∅. A subset E ⊂ X is
called porous if E is porous at every x ∈ E . A subset is called σ -porous if it is a union of
countably many porous sets.

It is clear from the definition that porous sets are nowhere dense and that the
complement of a σ -porous set is residual. The Lebesgue density theorem implies that
if X is finite-dimensional, then every σ -porous set has zero Lebesgue measure.

There is a direct link between complements of σ -porous sets and 01
1-prevalent sets

discussed in one of the previous sections.

THEOREM 2.1. [JLT12] Let X be a Banach space with a separable dual and E ⊂ X be
σ -porous. Then for a Baire generic C1 family f : [a, b] → X the set f −1(E) has zero
Lebesgue measure.

We will show that the Ck functions with finite cyclicity form a σ -porous set if k
is finite; however, Theorem 2.1 would not imply Theorem B because the dual of the
space Ck(S) is not separable. Considering Sobolev spaces instead of Ck(S) spaces would
make application of Theorem 2.1 possible (and all theorems we prove here can be easily
generalized to Sobolev spaces); however, we would still get a statement much weaker than
that of Theorem B.

The next theorem tells us that in the case of smooth (non-analytic) functions infinite
cyclicity prevails once again.

THEOREM F. The set I C fin(Ck(S)), k = 2, . . . , of functions f whose corresponding
families Fr,a : x 7→ x + 2πr + a f (x) (mod 2π) have finite infinitesimal cyclicity is σ -
porous.

It is not clear if the sets I C fin(C
ω
δ (S)) and I C∞(Cω

δ (S)) are σ -porous or not.

2.5. Summary. For the convenience of the reader all results formulated in the previous
sections are summarized in the following table.

Prevalence Ck(S) Cω
δ (S)

Baire residual I C∞ I C∞
0l

b prevalent I C∞ I C∞
Haar prevalent I C∞ I C e

1
Cube prevalent None None
Complement to σ -porous I C∞ ?

http://journals.cambridge.org
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2.6. Torus vector fields. Instead of perturbations of rigid rotations of the circle we can
study perturbations of constant vector fields on the torus.

For two functions v1, v2 on the torus consider a family Vα,a of vector fields on the torus
given by

Vα,a(x1, x2)=

(
cos α
sin α

)
+ a

(
v1(x1, x2)

v2(x1, x2)

)
,

where α ∈ R and a ∈ (−a0, a0) are parameters. We could also consider a family(
cos α
sin α

)
+

(
a1v1(x1, x2)

a2v2(x1, x2)

)
,

which depends on two parameters a1 and a2 instead of only one parameter a. The definition
of the infinitesimal cyclicity for such families is straightforward; one should count the
number of attracting periodic limit cycles. Then the statements of Theorems A–F can
be reformulated in the obvious way for such families of vector fields and the statements
remain correct. In §8 we will justify why this can be done, but we will not re-prove all
these theorems as their proofs are almost identical to those corresponding to the families
of circle maps.

3. Perturbations of rigid rotations
Consider a family Fr,a : x 7→ x + 2πr + a f (x) (mod 2π). The nth iterate of Fr,a is

Fn
r,a(x)= x + 2πrn + a f (x)+ a f (x + 2πr + a f (x))+ · · · .

This formula shows that if Fr,a has a periodic trajectory of period q, then there is p ∈ Z
such that ∣∣∣∣r − p

q

∣∣∣∣≤ a

2π
‖ f ‖C0(S).

If f ∈ C2(S), and a is small, then the above formula implies that

Fn
r,a(x)= x + 2πrn + a

n−1∑
k=0

f (x + kr)+ O(a2).

Suppose that the function f can be represented as the following Fourier series:

f (x)=
+∞∑

l=−∞

f̃le
ilx .

A straightforward computation shows that if r = p/q, where p, q ∈ N, then

q−1∑
k=0

f (x + kr)= q
+∞∑

l=−∞

f̃qle
iqlx .

The following proposition immediately follows from the discussion above.

http://journals.cambridge.org
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PROPOSITION 3.1. Let f be in C2(S). Suppose that there exists R ∈ R such that the
equation

+∞∑
l=−∞

f̃qle
iqlx
= R

has d simple roots. Then for all sufficiently small non-zero a there exists r(a) ∈ [0, 2π)
such that the map Fr(a),a has at least d isolated periodic trajectories of period q.

The converse also holds at least in the analytic case.

PROPOSITION 3.2. Let f ∈ Cω
δ (S). Suppose that for any R ∈ R the equation

+∞∑
l=−∞

f̃qle
iqlx
= R

has at most d real roots (counted with multiplicity). Then there exists a0 > 0 such that for
any r ∈ R and a ∈ (−a0, a0)\{0} the map Fr,a has at most d periodic trajectories of period
q.

The proof of this proposition is a straightforward application of the argument principle.
Indeed, denote g(x)=

∑
+∞

l=−∞ f̃qleiqlx . For every value R0 ∈ R there exist β(R0) ∈ (0, δ)
and A(R0) > 0 such that the equation g(x)= R0 has at most d roots in the strip Im(x)≤
β(R) and supy∈R |g(±iβ(R0)+ y)− R0|> A(R0). Moreover, there exists r(R0) > 0
such that supy∈R |g(±iβ(R0)+ y)− R|> A(R0) for all R ∈ (R0 − r(R0), R0 + r(R0)).
By the argument principle for these values of R the equation g(x)= R still has at most
d roots in the strip Im(x)≤ β(R). Also, if |R|> ‖g‖Cωδ (S), then the equation g(x)= R
does not have roots at all. Consider a cover of the segment (−2‖g‖Cωδ (S), 2‖g‖Cωδ (S)) by
intervals of the form (R − r(R), R + r(R)) and take a finite subcover (R1 − r(R1), R1 +

r(R1)), . . . , (RL − r(RL), RL + r(RL)). Set β =min(‖g‖Cωδ (S), A(R1), . . . , A(RL)).
It is easy to see that due to the argument principle for all R ∈ R the equation g(x)+ h(x)=
R has at most d roots if ‖h‖Cωδ (S) < β. This proves the proposition.

4. Sturm–Hurwitz theorem
In order to provide a lower bound on the number of zeros of a function we employ a
version of the Sturm–Hurwitz theorem. The original Sturm–Hurwitz theorem states that if
all harmonic components of order less than n of a real continuous function g vanish, then
the function g has at least 2n zeros. We need a somewhat sharper statement, where the
harmonic components do not vanish but are small.

THEOREM 4.1. Let φ be a real differentiable 2π -periodic function and an be its Fourier
coefficients, an = (1/2π)

∫ 2π
0 φ(x)e−inx dx. Moreover, assume that for some n ∈ N,

n−1∑
k=−n+1

|ak |< 2−2n+3
|an|.

Then on the interval [0, 2π) the function φ changes its sign at least 2n times.

In the proof of this theorem the following statement will be used.

http://journals.cambridge.org
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PROPOSITION 4.1. Let φ be a positive real differentiable 2π -periodic function and an be
its Fourier coefficients. Then

|a0| ≥ 2|an|

for all n 6= 0.

The proof of this proposition can be found in [PS76, Part IV, N 51, p. 71], where it is
proved in the case where φ is a trigonometric polynomial. Since the Fourier partial sums
of a differentiable function converge uniformly the statement follows.

Proof of Theorem 4.1. We will prove this theorem by induction following the original proof
of Hurwitz [Hur03].

The case n = 1 follows immediately from the above proposition.
Now let us make an induction step and suppose that the theorem holds for some n.

Suppose that
n∑

k=−n

|ak |< 2−2n+1
|an+1|,

but φ changes its sign less than 2n + 2 times. Again, due to the previous proposition
the function φ cannot be positive (or negative) for all x and it changes its sign at least
twice. Denote these points where φ is zero by x1 and x2. Then the function φ̂(x)=
φ(x) sin((x − x1)/2) sin((x − x2)/2) is 2π -periodic and has less than 2n changes of sign.

Let us compute the Fourier coefficients of the function φ̂. Note that

sin
(

x − x1

2

)
sin
(

x − x2

2

)
=−

1
4

e((x1+x2)/2)i e−i x
+

1
2

cos
(

x1 − x2

2

)
−

1
4

e−((x1+x2)/2)i ei x .

This implies that the Fourier coefficients of φ̂ are

âk =−
1
4

e−((x1+x2)/2)i ak−1 +
1
2

cos
(

x1 − x2

2

)
ak −

1
4

e((x1+x2)/2)i ak+1.

Now we can estimate |âk | in terms of the Fourier coefficients of the function φ:

|ân| ≥
1
4 |an+1| −

1
2 |an| −

1
4 |an−1|,

|âk | ≤
1
4 |ak−1| +

1
2 |ak | +

1
4 |ak+1|.

Combining these inequalities, we obtain

n−1∑
k=−n+1

|âk | ≤ −
3
4
|a−n| −

1
4
|a−n+1| +

n∑
k=−n

|âk | −
1
4
|an−1| −

3
4
|an|

< 2−2n+1
|an+1| −

1
2
|an−1| −

3
2
|an|

≤ 2−2n+3
|ân|.

We see that we can apply the induction assumption to φ̂, therefore φ̂ changes its sign at
least 2n times and φ changes its sign at least 2n + 2 times. 2
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5. Baire genericity of infinite infinitesimal cyclicity

Proof of Theorem A. We will give the proof for the Ck(S) space; for the Cω
δ (S) spaces it

works in the same way.
Let p be a trigonometric polynomial of degree N . Let f (x)= p(x)+ c sin((N + 1)),

where d ∈ N, c ∈ R are constants, and let Fr,a(x)= x + 2πr + a f (x) (mod 2π) be the
corresponding family. Proposition 3.1 implies that for small values of a the map F1/(N+1),a

has d periodic attractors since

F N+1
1/(N+1),a(x)= x + ac(N + 1) sin((N + 1) x)+ O(a2) (mod 2π).

From the previous theorem we know that there is a neighbourhood of f such that for
any function in this neighbourhood the corresponding family will also have d periodic
attracting trajectories of period N + 1.

The trigonometric polynomials are dense in the space of Ck 2π -periodic functions, and
the constant c can be taken arbitrarily small, thus we have proved that the set of functions
f such that the cyclicity of the corresponding family is bounded by d is nowhere dense.
The union of these sets is meagre and the complement of this union is residual. 2

Proof of Theorem B. This proof uses similar ideas to those used in the proof of Theorem A.
First, consider the space Ck(S) for a finite k.

Let f : I b
→ Ck(S) be a C l family and let f̃n(t)= (1/2π)

∫ 2π
0 ft (x)e−inx dx be its

Fourier coefficients. The derivative of f with respect to the parameter t will be denoted by
f (m) where m = (m1, . . . , mb) is a multi-index.

LEMMA 5.1. For any ε0 > 0 there exists N = N (ε0) such that for all t ∈ I b, all n ∈ Z,
|n| ≥ N,

| f̃ (m)n (t)| ≤ ε0|n|
−k, (1)

for all |m| ≤ l.

Proof. Fix t0 ∈ I b. The Fourier coefficients of the kth derivative of ft0 with respect to x
have the form nk f̃n(t0). From the Riemann–Lebesgue lemma we know that |nk f̃n(t0)| → 0
as n→±∞. Hence there exists N (ε0, t0) such that for all |n|> N (ε0, t0) one has
| f̃n(t0)| ≤ ε0|n|−k/2.

Take δ(ε0, t0) > 0 so small that ‖ ft − ft0‖Ck (S) < ε0/2 if |t − t0|< δ. Then

|n|k | f̃n(t)− f̃n(t0)|< ε0/2 for all n ∈ Z. Combining this inequality with the inequality
in the previous paragraph, we get that for t ∈ I b, |t − t0|< δ(ε0, t0) and |n|> N (ε0, t0)
inequality (1) holds for m = 0.

The set I b is covered by open balls B(t, δ(ε0, t)). Using compactness of I b we can take
a finite subcover B(t1, δ(ε0, t1)), . . . , B(tL , δ(ε0, tL)) and set N (ε0)=maxi≤L N (ε0, ti ).
Obviously, inequality (1) holds for this choice of N if m = 0. For the other values of m the
argument is the same. 2

Now fix some positive integer d and ε > 0. Consider the family

f̂t (x) = ft (x)−
d+1∑
m=1

( f̃−m N (t)e
−im N x

+ f̃m N (t)e
im N x )

+ εN−k(d + 1)−k−1 sin(N (d + 1)x),
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where N is given by the claim above for ε0 = ε(d + 1)−1/2. The norm of the difference
of ft and f̂t can be estimated as

‖ f̂t − ft‖C l,k (S) < 2ε.

Arguing as before, due to Proposition 3.1 and Theorem 4.1 for arbitrary fixed t ∈ I b

the corresponding family F̂t,r,a : x 7→ x + 2πr + a f̂t (x) (mod 2π) has d + 1 periodic
attractors of period N , when r = 1/N and a is small. Moreover, there exists a
neighbourhood of the family f̂t in C l,k(S) such that the corresponding family has the same
property.

Thus, once again we have shown that the set of families ft whose infinitesimal cyclicity
is bounded by d for just one value of parameter t is nowhere dense. The claim of the
theorem follows.

The case of analytic functions can be dealt with in exactly the same way, except that
instead of inequality (1) one should use

| f̃ (m)n (t)| ≤ ε0e−δ|n|. 2

6. The case of finitely differentiable functions

Proof of Theorem F. Recall that I C N (Ck(S))⊂ Ck(S) denotes a set of functions such that
the cyclicity of the corresponding families is bounded by N . Let f be in I C N−1(Ck(S)),
f̃n denote its Fourier coefficients and fix δ > 0.

Due to the Riemann–Lebesgue lemma we know that limn→±∞ nk
| f̃n| = 0. Hence, there

is d > 0 such that
∑N

n=1(dn)k | f̃dn|< δ/8. Define a new function f̂ ∈ Ck(S) by

f̂ (x)= f (x)−
N∑

n=1

( f̃−dne−idnx
+ f̃dneidnx )+

δ

2(d N )k
sin(d N x).

It is easy to see that ‖ f − f̂ ‖Ck (S) < δ.

Consider an arbitrary function g ∈ Ck(S) such that ‖g − f̂ ‖Ck (S) < cδ, where

c =
1

8N k+14N
(2)

and let g̃n denote the Fourier coefficients of g. From the inequality above it follows that

|g̃n|< cδd−k

for n = d, 2d, . . . , (d − 1)N and

|g̃d N |>

(
1

4(d N )k
−

c

(d N )k

)
δ >

δ

8(d N )k
.

Therefore,

N−1∑
n=−N+1

|g̃dn| < |g̃0| +
2c(N − 1)δ

dk

< |g̃0| +
δ

4(d N )k4N

< |g̃0| + 2−2N+1
|g̃d N |.
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Let gd(x) denote the function
∑d−1

l=0 g(x + (2π/d)l). The Fourier series for this
function is

gd(x)= d
+∞∑

n=−∞

g̃dneidnx .

Having the estimate on
∑N−1

n=−N+1 |g̃dn|, we cannot apply Theorem 4.1 directly to the
function gd , as it would require the coefficient 2−2d N+3 in front of |g̃d N | and we have only
2−2N+1. However, gd is a (2π/d)-periodic function and we can apply Proposition 3.1 and
Theorem 4.1 together with the estimate above to the restriction gd |[0,2π/d] and get that the
equation gd(x)= dg̃0 has at least 2N zeros in the interval [0, 2π/d) and, therefore, at least
2d N zeros in [0, 2π).

Thus, the family Gr,a : x 7→ x + 2πr + ag(x) (mod 2π) has cyclicity at least N
because for small values of a the map G(1/d)−(g̃0/2π)a,a has at least N periodic attracting
trajectories of period d .

We have proved that arbitrarily near any function f ∈ Ck(S) we can find a function f̂
such that the ball B( f̂ , c‖ f − f̂ ‖), where c is given by (2), does not contain elements
from the set I C N−1(Ck(S)). Hence, the set I C N−1(Ck(S)) is porous, and the union⋃
∞

N=1 I C N (Ck(S)) is σ -porous. 2

Proof of Theorem C. Fix N ∈ N. We will construct a measure on Ck(S) and show that the
set I C N−1(Ck(S)) is Haar null with respect to this measure.

Let the sequence tm be given by

tm =
1

√
m N 2km

,

for m = 1, 2, . . . . Consider a sequence of independent random variables φm on [0, 1] such
that

|{w ∈ [0, 1] : φm(w)= 0}| = 1−
1
m
,

|{w ∈ [0, 1] : φm(w)= tm}| =
1
m
,

where | · | denotes the Lebesgue measure on [0, 1].
For w ∈ [0, 1] consider a function βw(x)=

∑
∞

m=1 φm(w)N 2km sin(N 2m x). Due to
Markov’s inequality we know that∣∣∣∣{w ∈ [0, 1] :

∞∑
m=1

φm(w)N
2km > X

}∣∣∣∣≤ 1
X

∞∑
m=1

E(φm)N
2km,

where X ∈ R and E denotes the expectation of a random variable. The sum∑
∞

m=1 E(φm)N 2km
=
∑
∞

m=1 m−3/2 is convergent, therefore the sum
∑
∞

m=1 φm(w)N 2km

converges for almost every w ∈ [0, 1]. This implies that the function given by the Fourier
series

∞∑
m=1

φm(w)N
2km sin(N 2m x)
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is continuous almost surely. Integrating this function k times, we see that for almost every
w ∈ [0, 1] the function

gw(x)=
∞∑

m=1

φm(w) sin(N 2m x)

is in Ck(S). The push-forward of the Lebesgue measure by the map [0, 1] → Ck(S) given
by w 7→ gw defines a measure on Ck(S) which we will denote by µ.

Take f ∈ Ck(S) and let f̃n be its Fourier coefficients. Our goal is to show that µ( f +
I C N−1(Ck(S)))= 0. Let g ∈ f + I C N−1(Ck(S)) and g̃n be the Fourier coefficients of g.

Since g − f ∈ I C N−1(Ck(S)), and due to Proposition 3.1 and Theorem 4.1, we know
that for all g ∈ f + I C N−1(Ck(S)),

N−1∑
d=1

|g̃N 2m−1d − f̃N 2m−1d | ≥ 2−2N+2
|g̃N 2m − f̃N 2m |,

for all m ∈ N. If this inequality did not hold for some m, then the map x 7→ x +
2πN 1−2m

− f̃0a + a(g(x)− f (x)) would have N periodic attractors of period N 2m−1 for
sufficiently small values of a.

Let us observe that µ-almost surely g̃n = 0 if n is not of the form ±N 2m for some
natural m; thus the above inequality implies that for µ-almost all g ∈ f + I C N−1(Ck(S)),

N∑
d=1

| f̃N 2m−1d | ≥ 2−2N+2
|g̃N 2m |.

Let cm = 22N−2 ∑N
d=1 | f̃N 2m−1d |. We have just shown that

µ( f + I C N−1(C
k(S)))≤ µ({g ∈ Ck(S) : ∀m ∈ N|g̃m | ≤ cm}).

A direct computation shows that

µ({g ∈ Ck(S) : ∀m ∈ N |g̃m | ≤ cm}) =
∏

tm>cm

(
1−

1
m

)
≤ exp

(
−

∑
tm>cm

1
m

)
. (3)

The function f is in Ck(S), hence its kth derivative is continuous and also belongs
to L2(S). The Fourier coefficients of f (k) are nk f̃n and by Perceval’s identity we have∑
∞

n=−∞ |n|
2k
| f̃n|

2 <∞. Then

∞∑
m=1

N 4km
|cm |

2
≤ 42N−2

∞∑
m=1

N 4km+1
N∑

d=1

| f̃N 2m−1d |
2

≤ 42N−2
N∑

d=1

N 2k+1d−2k
∞∑

m=1

N 2(2m−1)kd2k
| f̃N 2m−1d |

2 <∞.
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Therefore, ∑
tm≤cm

1
m
=

∑
tm≤cm

t2
m N 4km

≤

∑
tm≤cm

c2
m N 4km

≤

∞∑
m=1

c2
m N 4km <∞.

This implies that the series

∑
tm>cm

1
m
=

∞∑
m=1

1
m
−

∑
tm≤cm

1
m

diverges and, because of inequality (3), we get µ( f + I C N−1(Ck(S)))= 0.
So, we have proved that I C N−1(Ck(S)) is a Haar null set. A countable union of Haar

null sets is Haar null [HSY92], hence I C fin(Ck(S)) is Haar null too. 2

7. The case of analytic functions
First, we will prove the following simple lemma.

LEMMA 7.1. Let n ∈ N and the function g be in Cω
δ (S) with ‖g‖Cωδ (S) < (cosh(nδ)−

1)/2. Then the equation

r + a cos(nx)+ b sin(nx)+ g(x)= 0 (4)

has at most 2n real roots in [0, 2π) for any r ∈ R and a, b ∈ R with a2
+ b2
= 1.

Proof. The proof is elementary. By shifting x we can assume that a = 1 and b = 0.
Consider two cases. If |r | ≥ (cosh(nδ)+ 1)/2, then (4) has no real roots as g is less than
(cosh(nδ)− 1)/2 on the real line.

The image of the segment [iδ, iδ + 2π) under the map z 7→ cos(nz) is an ellipse
with semi-major axis cosh(nδ) and semi-minor axis sinh(nδ). It is easy to check that
the distance between the segment [−(cosh(δ)+ 1)/2, (cosh(δ)+ 1)/2] and this ellipse
is (cosh(nδ)− 1)/2. Due to the argument principle this implies that the function r +
cos(nx)+ g(x), where r ∈ (−(cosh(nδ)+ 1)/2, (cosh(nδ)+ 1)/2), has exactly 2n zeros
in the rectangle with vertices iδ, 2π + iδ, 2π − iδ,−iδ. The lemma follows. 2

Proof of Theorem D. Let f be in Cω
δ (S). Because of the Cauchy theorem the Fourier

coefficients of f can be written as

f̃n =
1

2π

∫
−iδ+2π

−iδ
e−inx f (x) dx =

e−δn

2π

∫ 2π

0
e−inx f (x − iδ) dx .

Thus, the Fourier coefficients decay exponentially: ‖ f̃n‖ ≤ e−δ|n|‖ f ‖Cωδ (S). On the

other hand, if δ′ > δ, ‖bn‖ ≤ Ce−δ
′
|n| for some C > 0, and b−n = b̄n , then the function∑

∞

n=−∞ bneinx is in Cω
δ (S).
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Let D1 ⊂ C be a unit disk in the complex plain. Denote the complex Hilbert cube Dℵ0
1

as Q and let τ be the standard product measure on Q. Consider the map φ : Q→ Cω
δ (S)

defined by

φ((w1, w2, . . .))=

∞∑
n=1

e−3/2δn(wneinx
+ w̄ne−inx ).

Since the Fourier coefficients decay exponentially faster than e−δn , the map is properly
defined for every element of Q. We denote by µ the image of the measure τ under this
map φ.

Let E be a set of functions in Cω
δ (S) such that the corresponding families have essential

infinitesimal cyclicity at least 2. Now we will show that for every f ∈ Cω
δ (S) one has

µ( f + E)= 0.
Let g belong to the support of the measure µ, which is equivalent to g ∈ Image(φ),

and g̃n be the Fourier coefficients of g. Arguing as before and due to Proposition 3.2 and
the lemma above, for arbitrarily small non-zero values of the parameter a there is r ∈ R
such that the map x 7→ x + 2πr + a(g(x)− f (x)) can have at least two periodic attracting
trajectories of period N if

|g̃N − f̃N | ≤
2

cosh(Nδ/6)− 1

∥∥∥∥ ∞∑
k=2

(g̃−k N − f̃−k N )e
−ik N x

+ (g̃k N − f̃k N )e
ik N x

∥∥∥∥
Cω
δ/6(S)

≤
4

cosh(Nδ/6)− 1

∞∑
k=2

(|g̃k N | + | f̃k N |)e
δk N/6

≤
4

cosh(Nδ/6)− 1

∞∑
k=2

(e−4/3δk N
+ ‖ f ‖Cωδ (S)e

−5/6δk N )

≤
4

cosh(Nδ/6)− 1

(
e−8/3δN

1− e−4/3δN
+ ‖ f ‖Cωδ (S)

e−5/3δN

1− e−5/6δN

)
≤ Ce−5/3δN , (5)

where the constant C depends on δ and f , but not on N .
We know that g̃N is uniformly distributed in the disk of radius e−3/2δN . Thus, the

probability that inequality (5) holds is less than C2e−δN/3.
Consider a sequence of random numbers pN = pN (g) such that pN is 1 if for arbitrarily

small non-zero values of the parameter a there is r ∈ R such that the map x 7→ x + 2πr +
a(g(x)− f (x)) can have at least two periodic attracting trajectories of period N and zero
otherwise.

According to Markov’s inequality, we have

µ

({
g :

∞∑
N=1

pN (g) > X

})
<

1
X

∞∑
N=1

E(pN ) <
1
X

∞∑
N=1

C2e−δN/3.

The last series converges, therefore µ({g :
∑
∞

N=1 pN (g)=∞})= 0. The sum∑
∞

N=1 pN (g) diverges exactly when the family under consideration has essential
infinitesimal cyclicity at least 2. Thus, µ( f + E)= 0 and the theorem is proved. 2
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Proof of Theorem E. First, consider the case of finitely differentiable functions Ck(S).
In the definition of the cube measure set x0 = (1− e−1 cos(x))/(1+ e−2

−

2e−1 cos(x)), xn = e−n2
sin(nx/2) if 2|n and xn = e−n2

cos((n − 1)x/2) otherwise. Let
µ be a cube measure on Ck(S) defined by these settings. Notice that the Fourier expansion
of x0 is 2+

∑
∞

m=1 e−m cos(mx).
Let f ∈ supp(µ) and f̃n be the Fourier coefficients of f . A direct computation shows

that for large values of N ,

| f̃N |>
2

cosh N − 1

∥∥∥∥ ∞∑
m=2

f̃−Nme−i Nmx
+ f̃Nmei Nmx

∥∥∥∥
Cω1 (S)

.

Arguing as in the proof of Theorem D and using Proposition 3.2 and Lemma 7.1, we see
that the family corresponding to f has infinitesimal cyclicity essentially bounded by one.
Thus, µ(I C∞(Ck(S)))= 0.

Now let us prove that the set I C fin(Cω
δ (S)) is not cube prevalent.

We leave the choice of xn as before, but now set x0 =
∑
∞

m=1 e−mm!δ cos(mm!x) and let
µ be the corresponding cube measure on Cω

δ (S). In this case one can check that for any
f ∈ supp(µ) and for N sufficiently large,

1

4M−1 | f̃N M | ≥

N−1∑
m=1

| f̃M m|,

where M = N (N−1)!. Using the same reasoning as in the proof of Theorem F and using
Proposition 3.1 and Theorem 2.1, we can conclude that the family corresponding to f
has at least N periodic attractors for a suitable choice of the parameters. Since N can be
arbitrarily large we can see that µ(I C fin(Cω

δ (S)))= 0. 2

8. Perturbations of constant vector fields on the torus
Let φt

α,a be the flow of the vector field Vα,a which we assume to be at least C2. Perturbation
theory tells us that for small values of a this flow can be expressed as

φt
α,a :

(
x1

x2

)
7→

(
x1

x2

)
+

(
cos α
sin α

)
t

+ a
∫ t

0

(
v1(x1 + cos ατ, x2 + sin ατ)
v2(x1 + cos ατ, x2 + sin ατ)

)
dτ + O(a2).

Now assume that cos α 6= 0 and compute the Poincaré map to the circle x1 = 0. This
map is

x2 7→ x2 + 2π tan α − a tan α
∫ 2π/ cos α

0
v1(cos ατ, x2 + sin ατ) dτ

+ a
∫ 2π/ cos α

0
v2(cos ατ, x2 + sin ατ) dτ + O(a2).

Let ṽ1,m,n , ṽ2,m,n be the Fourier coefficients of v1 and v2. Define

f̃n(α)=

∞∑
m=−∞

(− tan αṽ1,m,n + ṽ2,m,n)ψm,n(α),
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where ψm,n(α) is given by

ψm,n(α)=

2π/cos α if m cos α + n sin α = 0,

−i
e2π in tan α

− 1
m cos α + n sin α

otherwise.

Define the function f (x, α)=
∑
∞

n=−∞ f̃n(α)einx . It is easy to see that the Poincaré
map computed above can be written as

x 7→ x + 2π tan α + a f (x, α)+ O(a2).

This family looks almost like the families F we have been studying, but here the function
f depends on the parameter α. However, it does not make any difference for the proof
of the analog of Theorem A: if v1 and v2 are trigonometric polynomials, then f is
also a trigonometric polynomial (with coefficients depending on the parameter α) and all
arguments in the proof of Theorem A go through.

Another way to compute the Fourier coefficients f̃n is the following. Carry out the
Fourier transform of v1 and v2 only with respect to x2 and denote the Fourier coefficients
by v̆1,n , v̆2,n , that is,

v j (x1, x2)=

∞∑
n=−∞

v̆ j,n(x1)e
inx2 ,

where j = 1, 2. Then

f̃n(α)=

∫ 2π/cos α

0
(−tan α v̆1,n(cos(ατ))+ v̆2,n(cos(ατ)))ein sin(ατ) dτ.

In the proofs in previous sections we make several uses of the Riemann–Lebesgue
lemma. The analog of this lemma also holds for v̆ j,n . We will formulate this lemma
when v1 and v2 depend on a parameter t ∈ I b, so this statement can be applied to the proof
of the analog of Theorem B directly. If v1, v2 do not depend on a parameter, just set b = 0.

LEMMA 8.1. For any ε0 > 0 there exists N = N (ε0) such that for all t ∈ I b, x1 ∈ R, n ∈ Z,
|n| ≥ N,

|v̆
(k1,m)
j,n (x1, t)|< ε0|n|

−k2 ,

for all m ≤ l, k1, k2 ∈ N such that k1 + k2 = k, where v̆(k1,m)
j,n (x1, t) denotes the k1th

derivative of v̆ j,n(x1, t) with respect to x1 and mth derivative with respect to t .

The proof of this lemma is identical to the proof of Lemma 5.1.
Notice that this lemma implies that for any ε0 > 0 there is N such that for all n ∈ Z,

|n|> N ,
| f̃n|< ε0|n|

−k .

Using these settings, the proofs of the analogs of Theorems A, B, C and F go along the
same lines as before. For example, as the perturbed family in the proof of Theorem B one
should consider

v̂ j (x1, x2, t) = v j (x1, x2, t)−
d+1∑
m=1

(v̆ j,−m N (x1, t)e−im N x2 + v̆ j,m N (x1, t)eim N x2)

+ εN−k(d + 1)−k sin(N (d + 1)x2).
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In the case of Theorem D the measure µ is defined as the image of the measure τ under
the map φ : Qℵ0 → Cω

δ (T
2)× Cω

δ (T
2) defined by

φ((w1, w2, . . .))=

(
0,
∞∑

n=1

e−3/2δn(wneinx2 + w̄ne−inx2)

)
.

Again, the rest of the proof can be easily adjusted.
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