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Proportional-odds models for repeated composite and

long ordinal outcome scales

Nick R. Parsons1

Warwick Medical School, The University of Warwick,
Coventry, CV4 7AL, U.K.

Abstract

Composite or long ordinal scores, that is scores that have a large num-
ber of categories and a natural ordering often resulting from the sum of a
number of short ordinal scores, are widely used in many medical studies to
assess function or quality of life. Typically these are analysed using unjus-
tified assumptions of normality for the outcome measure, that are unlikely
to be even approximately true. Scores of this type are better analysed us-
ing methods reserved for more conventional (short) ordinal scores, such
as the proportional-odds model. The need for a large number of cut-point
parameters, that define the divisions between the score categories, for
long ordinal scores in the poroprtional-odds model can be avoided by the
inclusion of orthogonal polynomial contrasts. The repeated measures pro-
portional odds logistic regression model is introduced and modifications
to the generalized estimating equation methodology used for parameter
estimation are described for long ordinal outcomes. Data from a trial
assessing two surgical interventions are introduced and briefly described
and re-analysed using the new model; inferences from the new analysis are
compared to previously published results for the primary outcome mea-
sure (hip function at 12 months postoperatively). A simulation study is
used to illustrate how this model also has more general application for
conventional short ordinal scores, to select amongst competing models of
varying complexity for the cut-point parameters.

1 Introduction

Ordinal scores, that have a clear hierarchical ordering, recorded from the same
patient, sampling or experimental unit over time are widely used in many med-
ical studies to assess attributes such as pain or to diagnose a condition typically
using commonly understood terms such as mild, moderate or severe. It is gen-
erally difficult to assess symptoms or conditions of this type in any other way.
Typically patients are followed-up or monitored for a fixed period of time and
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the effect of an intervention assessed based on changes in observed ordinal scores
over time. For many more complex characteristics such as function or quality of
life, scores from a number of individual ordinal items are often summed to give
a composite score. The rationale for measuring a number of items and summing
or combining the scores is that it produces a more reliable, sensitive and valid
measure than a single item [1]. If the individual items are measuring the same
underlying construct (or latent trait) then it seems reasonable to consider the
total score to also be a measure of this same construct; although it is difficult
to imagine how one might test this hypothesis. Composite scores are sometimes
described, to distinguish them from conventional ordinal scores, as long ordinal
scores, that is, scores with a large number of categories and a natural ordering.

Clinical scoring systems such as the Oxford Hip Score (OHS) [2] or Multiple
Sclerosis Walking Scale (MSWS-12) [3] combine individual items measuring the
same construct; hip function for the former and walking ability for the latter
score. Although the OHS, for example, is widely used both as a tool to assess
treatment effectiveness and also for health service evaluation (e.g. Hospital
Episode Statistics for England [4]), there is little guidance for clinicians as to
the most appropriate statistical tests to use for comparing treatments or the
expected distribution of the scores [2]. There is, however, an acceptance that
the score distribution for populations of healthy and sick patients are likely to
be skewed [5, 6], due presumably to ceiling and floor effects. Typically scores
are considered to be a defendable approximation to an interval scale measuring
a latent variable, although in most cases there is little prima facie evidence
to indicate that they are anything other than ordinal. Parametric statistical
analysis, such as t-tests and linear regression, are usually applied, based on a
normal approximation for the distribution of the scores; see Costa et al. [7]
for an example of analyses of OHS data. Despite widespread reporting of the
results of analyses of long ordinal (composite) scores on an interval scale, it
is clearly erroneous to assume that clinically important differences should be
equivalent across the whole scale [8]. It may be that parametric analysis of
score totals is justified by the Central Limit Theorem for scores within the
middle of the score range. However, for many trials a sizeable proportion of
participants have recovered or returned to normal health at the trial endpoint,
when the definitive analysis is undertaken, and as such are likely to be at the
extremes of the score scale. Many composite scores, such as the OHS, are in
reality measures of accumulated dysfunctional (or functional) characteristics
(e.g. pain, walking ability etc), and it is the accumulation or sum of these
attributes that is seen to be clinically important as a kind of overall intensity
measure. Good face validity and sensitivity to change (e.g. for OHS [9]) often
contributing to their widespread use. A judgement of the relative importance of
the attribute items is deliberately not made for the score; recognition that if a
weighing did exist, it would almost certainly be different for each person. Scores
of this type should not be routinely analysed on the assumption that they are
defined on an interval scale, and would be better analysed in a similar manner
to conventional ordinal scores. Although we accept in principle that the sum
of a number of ordinal variables is itself not necessarily ordinal [10], for many
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composite scores, such as the OHS, that measure a single construct it seems a
not unreasonable assumption. Particularly given that these composite scores
are currently interpreted and information in the data used inefficiently, in much
the same manner that ordinal scores are (mis-)treated as if they were continuous
variables for the purposes of analysis [11, 12]. Although, whether one could ever
truly test whether a composite scale is ordinal is open to question. Choosing
to model composite scores, such as the OHS, with many categories (i.e. more
than thirty) using ordinal regression models seems to go against convention in
this area where normally models are restricted to outcomes with a relatively
small number of categories (less than seven). However, there appears to be no
strong rationale as to why this should be so, other than the observation that if
the distribution is spread over a reasonably large number of categories then it
can be assumed that the data were generated from a continuous distribution,
on the basis that the scale is likely to be approximately linear [13].

Regarding composite scores observed at a fixed number of occasions (e.g. 6,
12, 24 months) to be ordinal, for the purposes of analysis, suggests that methods
developed specifically for analysis of repeated scores of this type may be appro-
priate. Many approaches to the modelling of repeated ordinal scores have been
suggested, and this remains a widely studied statistical problem and an active
area of research; see for instance Agresti and Natarajan [14] for a comprehensive
review of available models and methods. Without doubt, the most commonly
used model for data of this type is the proportional-odds model [15]. The reasons
for the widespread use of this model is that the formulation follows naturally
from considering an ordinal score to be a continuous (unobserved) variable that
is sub-divided into categories to give an evaluation of a quantity that could not
be measured directly in any other way. The most widely used method for fit-
ting population-averaged proportional-odds models to repeated ordinal scores
uses the generalized estimating equation (GEE) method originally proposed by
Liang and Zeger [16]. There are various options for setting-up the model and
estimating parameters [17, 18, 19]; the method discussed here is the so-called
repeated measures proportional odds logistic regression model [20] available in
the R [21] function repolr. For the proportional-odds model, the cut-point
parameters that define divisions between the ordinal score categories are es-
timated together with regression parameters that characterise the treatment
effects. The cut-point parameters are often regarded as nuisance parameters
that cannot easily be interpreted. For long ordinal scores, with a large number
of categories, this presents a problem, as many cut-point parameters would need
to be estimated with presumably poor precision and likely convergence prob-
lems that are often particularly associated with models for repeated ordinals
scores [22, 23]. However, it seems that almost by definition as the number of
categories increases there will generally be less interest in individual cut-point
parameter estimates and more interest in the shape of the response, particu-
larly at the extremes of the score scale where deviations from linearity are likely
to be important. This suggests that modelling the cut-point parameters may
prove to be practical in this setting. Orthogonal polynomials, that partition the
variation due to the cut-points into single degree of freedom orthogonal polyno-
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mial contrasts, provide a convenient model for the cut-point parameters. These
polynomial models can be incorporated into existing GEE models for repeated
ordinals score to allow modelling of composite scores and thereby address what
appears to be the only obstacle to the widespread use of these models for scores
of this type. Others have suggested modelling cut-point parameters using gen-
eralized logistic and non-parametric functions in proportional-odds models for
continuous ordinal scores derived from visual analogue scales in a Bayesian set-
ting [24], but this is the first paper to develop models for long truly ordinal
scores.

Section 2 develops a cut-point parameter model and describes estimation and
interpretation. Example data are introduced and analyses described in Section
3, a simulation study is undertaken in Section 4 to explore the behaviour of the
cut-point model and the wider application of the model is discussed in Section
5.

2 Model

2.1 Proportional-odds

Let N experimental units be scored at each of T time points using an ordinal
scale with K categories, where the scores are made on an integer-valued scale

from 1 toK , whereK represents the optimum score. The score on the ith exper-

imental unit at the tth time is represented by Yit and the vector of scores for the

ith experimental unit over the set of T time points by Y ′i = (Yi1, Yi2, . . . , YiT ).
A multivariate vector of measured variables, xit, is also observed on each exper-
imental unit at each time point t. The probability µitk = P (Yit ≤ k) for ordinal
score Yit can be related to the measured variables xit by a proportional-odds
model based on cumulative logits [25]

log

(
µitk

1− µitk

)
= γK + x′itβ. (1)

The cut-points γK = (γ1, γ2, . . . , γK−1), where −∞ < γ1 < γ2 < · · · <
γK−1 <∞ , define the divisions between the ordinal score categories on the cu-
mulative logit scale and effectively transform the ordinal scale to a continuous
scale based on the linear predictor x′itβ. Model parameters γK and β can be es-
timated using modifications to the well known method of generalized estimating
equations (GEE), originally proposed by Liang and Zeger [16]; see for instance
repeated measures proportional odds logistic regression described in detail by
Parsons et al. [20] and available as function library repolr in R [21].

Before developing a new approach to modelling the cut-point parameters γK
it is informative to review how model (1) has previously been modified to ac-
commodate ’continuous’ ordinal outcomes, albeit using a very different method-
ology for parameter estimation. Manuguerra and Heller [24] discuss a cumula-
tive logistic ordinal model for continuous response variables log (ν/ (1− ν)) =
g (ν) + x′β where the function g (ν) is a continuous analogue of the (discrete)
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cut-point parameters −∞ < γ1 < γ2 < · · · < γK−1 < ∞ in the conven-
tional proportional-odds model The differentiable and increasing function g (ν)
maps the continuous ordinal score ν, on the scale (0, 1), to a notionally la-
tent variable on the scale (−∞,∞); for instance a generalized logistic func-
tion g (ν) = M + B−1 log

(
TνT /

(
1− νT

))
, with parameters M (intercept), B

(slope) and T (symmetry). This specification of g (ν) is problematic if the con-
tinuous ordinal score ν is defined on a closed (rather than open) interval as, if
the extremes of ν are observed, the model is not identifiable. This problem is
overcome by converting observations made at the extremes to arbitrarily small
(0.001) and large (0.999) values of ν within the open interval. This approach is
feasible for the applications Manuguerra and Heller describe, where essentially
continuous observations made on a visual acuity scale are converted to ordinal
scores. However, it would be nonsensical and simply unacceptable to re-code
data in an analogous manner for the long ordinal outcome scales discussed here,
particularly as behaviour at the extremes of the scale is of prime interest. A
much more natural modification of model (1), in the setting of linear models, is
to use an orthogonal polynomial decomposition of the ordered but unstructured
cut-point parameters γK . This retains the interpretation of γK , as divisions
between ordinal score categories on the cumulative logit (latent) scale, whilst at
the same time imposing constraints on the relative sizes of the score categories;
from equal spacing for the most simple model to totally unstructured for the
most complex possible model. Splines could also potentially be used as basis
functions within the conventional inferential regression framework, and may in
principle offer more parsimonious fits for some types of data. However, they lack
the simple interpretation provided by orthogonal polynomials and implementa-
tion would be complicated by knot selection [26]; unless more computationally
involved methods such as penalized regression splines [27, 24] were used, an
unnecessary level of complexity for inferences on what are effectively ancillary
parameters.

2.2 Cut-points γK

As an alternative to estimating K − 1 cut-point parameters in the conventional
manner, the cut-points can be modelled by orthogonal polynomials

γK = β0F (oK) (2)

for ordinal variables oK , where oK ∈ (1, 2, 3, . . . ,K) , and regression pa-
rameters β0 =

(
β00, β01, β02, . . . , β0(K−1)

)
. The complete (K − 1)×(K − 1) ma-

trix of polynomials F ′ (oK) = [f0 (oK) , f1 (oK) , f2 (oK) , . . . , fK−2 (oK)], where
fj (oK) is a polynomial of degree j in ok for normal orthogonal vectors
f0 (oK) , f1 (oK) , f2 (oK) , . . . , fK−2 (oK), is such that∑K−2

j=1
fj (oK) f ′j′ (oK) =

{
1 if j = j′

0 if j 6= j′

}
. (3)

For example, for the five category ordinal scale o5 ∈ (1, 2, 3, 4, 5), the mean,
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linear, quadratic and cubic components defining the divisions between the ordi-
nal score categories are as follows;
f0 (o5) = (1, 1, 1, 1), f1 (o5) = (−3,−1, 1, 3) /

√
20 , f2 (o5) = (1,−1,−1, 1) /2

and f3 (o5) = (−1, 3,−3, 1) /
√

20, where F (o5)F ′ (o5) = I4 as required; I4 is the
4 × 4 identity matrix. Clearly the complete matrix of orthogonal polynomials
simply provides an alternative parameterization for the cut-point parameters
to the conventional proportional odds model where, for the chosen example,
rather than including polynomial contrasts, setting F (o5) = I4 gives γ1 = β00,
γ2 = β01, γ3 = β02 and γ4 = β03. However, by using a selection of lower order
polynomial terms model (2) allows a simpler model for γK to be fitted than
would be possible with the conventional parameterization. This is a particu-
larly useful property for ordinal scales where K is large (>10) or for instance
where a specific form for the cut-points parameters is preferred, e.g. where it is
desirable that divisions between score categories increase uniformly towards the
extremes of the scale. Also, as model (2) does not require a full specification of
K−1 cut-point parameters, it naturally handles data where one or more ordinal
score categories are not recorded, by appropriate modification of the orthogonal
polynomials for unequal spacing [28].

2.3 Estimation

Proportional-odds models incorporating polynomial terms for γK can be fitted,
after modification of the complete data matrix Xi , using the iterative scheme
suggested by Parsons et al. [23] and implemented in the R [21] function repolr

[20]. Using the notation of Parsons et al. [23] for S explanatory variables xit
observed at each of the T time points and T ×S matrix of explanatory variates
for each sampling unit i = 1, . . . , N given by X0i = [xi1, xi2, . . . , xiT ]

′
, the

complete data matrix including the cut-points and the explanatory variables for

the ith sampling unit is Xi = [1T ⊗ IK−1, X0i ⊗ 1K−1]. Here, 1T and 1K−1 are
T dimensional and K−1 dimensional vectors of unit elements, respectively, and
IK−1 is the K−1 dimensional identity matrix. For the new polynomial cut-point
model, the matrix IK−1 that identifies the individual cut-point parameters, can
be replaced by the (K − 1)×(J + 1) matrix FJ (oK) of orthogonal polynomials of
degree J ≤ K−2. For the example five category ordinal scale o5 ∈ (1, 2, 3, 4, 5),
a model with mean, linear and quadratic terms can be implemented with

F2 (o5) = 1
2


1 −3/

√
5 1

1 −1/
√

5 −1

1 1/
√

5 −1

1 3/
√

5 1


and the T (K − 1) × (2 + 1 + S) dimensional complete data matrix for the ith

sampling unit Xi = [1T ⊗ F2 (o5) , X0i ⊗ 1K−1]. Model parameters are esti-
mated by solving an estimating equation Q (β, β0;α) = 0 for β and β0, where
the association parameter α is estimated by minimising the logarithm of the de-
terminant of the covariance matrix of the regression parameters at each step of
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the fitting algorithm, for a range of correlation models [20]. Code to implement
the polynomial cut-point models discussed here is available on request from the
author, and will also be incorporated in future releases of repolr.

2.4 Parameter interpretation

For the conventional model, where we set F (oK) = IK−1 in model (2), the pa-
rameters β0 (where γK = β0) are identified as the divisions between the ordinal
score categories on the cumulative logit scale. More generally parameter esti-
mates β̃0 represent polynomial effects that are not constrained in the manner
of γK , but can simply be transformed to give conventional cut-point estimates
γ̃K = β̃0F (oK). Model selection proceeds by calculating the quasilikelihood
under the independence model information criterion (QIC), which is given by
QIC = −2QI + 2p, where QI is the quasilikelihood for the independence model
and p (penalty term) is the number of model parameters [29]. Models of in-
creasing polynomial complexity for γK can be fitted and the model with the
smallest QIC criterion measure selected.

3 Example

3.1 Data

The Warwick Arthroplasty Trial [7] is a randomized controlled trial that com-
pared hip function in patients after surgery using one of two procedures, resur-
facing arthroplasty (RSA) and total hip arthroplasty (THA) [30]. A range of
outcome measures were reported at 6 weeks (t0), 3 months (t1), 6 months (t2)
and 12 months (t3) after surgery for 126 patients (60 in RSA and 66 in THA).
Foremost amongst these measures was the Oxford hip score (OHS). The OHS is
a patient-reported measure comprising of 12 ordinal score items, on a scale from
0 to 4, that are summed for a patient to give an overall score that quantifies
hip function on a scale from 0 to 48, where 0 indicates very poor hip function
and 48 excellent hip function. A difference of 5 points in the OHS at 12 months
between treatment groups was considered to be clinically important and this
was used to formally power the study. The primary analysis of the OHS, re-
ported previously, compared mean scores between groups using a t-test based
on a normal approximation for the distribution of the score at 12 months, using
an intention-to-treat analysis of complete data [7].

3.2 Analysis

Figure 1 shows patient counts of OHS at each assessment occasion. There
is a clear trend for increasing OHS with successive assessment occasions post
surgery, with many trial participants returning to excellent function (>42) [31]
by 12 months. Costa et al. [7] report mean scores and 95% confidence intervals
at the trial endpoint of 12 months for the RSA and THA groups of 40.4 (37.9,
42.9) and 38.2 (35.3, 41.0), and a p-value of 0.242 from a t-test (t = 1.176, d.f. =
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118). Adjusting for age and gender in a regression analysis made no qualitative
difference to the estimated treatment effect and the authors concluded that
although there was no evidence for a significant treatment effect in these data,
the estimated confidence interval (-1.52, 5.98) for the treatment effect (RSA
versus THA; 2.23) suggested that a clinically important effect could not be
ruled out; i.e. the minimum clinically important difference of 5 points was
contained within the 95% CI. Figure 1 shows that the OHS distribution was far
from normal by the trial endpoint. Consequently, given the poor adherence to
the distributional assumptions required for the reported analyses, is it sure that
there really was no significant treatment effect? And if this is indeed the case,
can stronger evidence be provided to support the analysis undertaken by Costa
et al. [7] and rule out a difference in OHS larger than 5 points.

Estimated polynomial cut-point parameters β0 and QIC values are shown
in Table 1 for proportional-odds models for the OHS, including treatment by
time interaction terms, a first order autoregressive correlation structure for the
association parameter [20] and using linear, quadratic, cubic and quartic or-
thogonal polynomial models for the cut-points. QIC values for higher order
polynomials suggested that there was no improvement for more complex mod-
els (Qquintic = 13021.94, Qsextic = 13024.25 and Qseptic = 13025.58). Forty four
of the available 48 score categories were observed for this population; therefore it
was necessary to make appropriate modification of the orthogonal polynomials
for the unequal spacing of categories. Transforming the polynomial cut-point
parameters (Table 1) to the more conventional cut-points parameters γK using
equation 2 gives the curves shown in Figure 2. The QIC suggests that a quar-
tic model for the cut-point parameters provides the most parsimonious model,
with important departures from linearity towards the lower end of the score
scale (Figure 2). The first order autoregressive correlation coefficient was small
with a point estimate of 0.14 for the quartic model. Regression parameter es-
timates for the quartic model, shown in Table 2, indicate significant temporal
effects, evidenced by the overall improvement in scores as the trial participants
recovered function after surgery, but a lack of significant treatment effect. Inter-
pretation of results from ordinal regression analysis can be aided by presentation
on the original score scale [32], using estimated score category probabilities from
equation 1. This can be combined with nonparametric cluster bootstrap resam-
pling [33], using 1000 samples with replacement from trial participants rather
than from individual data points, to give an estimate for the treatment group
difference and 95% confidence interval of 0.66 (-1.82, 3.15). With the conclusion
that a treatment group difference of 5 points seems to be much less likely than
was suggested by the analysis of Costa et al. [7].

4 Simulation study

The methodology proposed here, using polynomial terms to model the cut-point
parameters, also has application for analysis of short ordinal scores. Therefore
a simulation study was undertaken to explore the behaviour and properties of
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Figure 1: Counts of OHS scores by category and assessment occasion; (a) 6
weeks (t0), (b) 3 months (t1), (c) 6 months (t2) and (d) 12 months (t3).
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Table 1: Estimated polynomial cut-point parameters β0, with standard errors,

and QIC values for 1st, 2nd, 3rd and 4th order polynomial models.
Order

1st 2nd 3rd 4th

Est. s.e. Est. s.e. Est. s.e. Est. s.e.
β00 -1.41 0.26 -1.33 0.25 -1.39 0.26 -1.42 0.28
β01 258.24 20.43 245.76 20.69 264.00 25.52 271.38 30.75
β02 7.32 8.42 -17.79 16.42 -26.65 23.93
β03 16.20 8.44 25.41 17.31
β04 -5.19 7.39
QIC 13028.77 13035.12 13020.01 13019.85

Figure 2: Cut-point estimates from OHS data for polynomial models of 1st,

2nd, 3rd and 4th order.
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Table 2: Estimated regression parameters β, with standard errors, for the 4th

order polynomial model; where βt0 = 0 and βRSA = 0.
Est. s.e. Z

βt1 -0.79 0.17 -4.60
βt2 -1.55 0.22 -6.97
βt3 -1.88 0.26 -7.33
βTHA -0.29 0.30 -0.98
βt1 × βTHA 0.21 0.23 0.88
βt2 × βTHA 0.31 0.31 1.02
βt3 × βTHA 0.64 0.34 1.88

the proposed polynomial cut-point model compared to the usual fully specified
proportional-odds cut-point model, in a less complex setting than the example of
Section 3 using ordinal outcomes with 10 score categories. This simpler setting
also allows the process of model selection described in the data example to be un-
derstood more fully, particularly potential biases that may arise when estimating
model regression parameters. Ordinal data with 10 score categories were simu-
lated using the ordsample function available in the GenOrd library [34] in R [21]
for 250 subjects, divided into two equally sized groups, at two correlated time-
points (correlation parameter 0.6) and with randomly chosen cut-points in two
contrasting settings; (i) there was no difference in scores between groups (β = 0)
and (ii) scores were higher in one group than the other (β = 0.8). The conven-
tional proportional-odds model, together with models that used linear, cubic,
quintic and septic orthogonal polynomial models for the cut-points, were fitted
to each of 1000 data simulations, and model parameters estimated. Mean cut-
point parameter estimates are shown in Figure 3. Mean values of QIC suggested
an improvement in model fit for setting (i) with increasing complexity of poly-
nomial models (Qlinear = 5089.02, Qcubic = 5081.17, Qquintic = 5066.54 and
Qseptic = 5062.32), whereas for setting (ii) there was scant evidence for an im-
provement in fit for increasing complexity (Qlinear = 4704.21, Qcubic = 4698.95,
Qquintic = 4699.90 and Qseptic = 4702.67). This can be seen in Figure 3, where
for setting (i) the higher order polynomial curves provide closer fits to the con-
ventional proportional-odds model estimates of the cut-points. In setting (ii),
the cut-point spacing model is by chance (due to the random selection of cut-
points) much more linear, and as such higher order polynomial models provide
little or no improvement in fit. Estimates of the regression parameter for each
polynomial model (β1st , β3rd , β5th and β7th) were compared to the those from
the conventional proportional-odds model (βpo). Figure 4 shows that, as ex-
pected, for both settings, there was less scatter with increasing cut-point model
complexity; regression parameter estimates from the polynomial models tended
towards estimates from the conventional proportional-odds model, with increas-
ing cut-point model complexity. In setting (i) there was no evidence of bias in
the parameter estimates with increasing complexity; that is, differences between
regression parameter estimates βpo − βjth were distributed approximately sym-
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Figure 3: Cut-point estimates for polynomial models of 1st, 3rd, 5th and 7th

order and conventional K − 1 cut-point model (with 95% confidence intervals)
for simulation settings [i] and [ii].

metrically about zero, with interquartile ranges of (-0.0331, 0.0367), (-0.0207,
0.0218), (-0.0103, 0.0104) and (-0.0038, 0.0035) for linear, cubic, quintic and
septic cut-point models. Whereas for setting (ii), where there was little ev-
idence from QIC for models more complex than linear, regression parameter
estimates tended to be larger for higher order polynomial models, albeit by a
relatively small amount, than those from the fully specified proportional-odds
cut-point model; interquartile ranges were (-0.0148, 0.0328), (-0.0085, 0.0223),
(-0.0006, 0.0177) and (-0.0006, 0.0162) for linear, cubic, quintic and septic cut-
point models. In summary, there is inevitably some loss of precision in regression
parameter estimates when using the simpler polynomial cut-point model (with
fewer parameters), relative to the usual fully specified proportional-odds cut-
point model. When appropriate modelling strategies are used, that is cut-point
model complexity is informed by QIC, then parameter estimates were unbiased.
However, care must be taken when attempting to fit unnecessarily complex poly-
nomial models where there is no supporting evidence, as this may lead to some
(albeit small) bias in regression parameter estimates.
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Figure 4: Scatter plots of βpo − βjth versus βpo for linear (a), cubic (b), quintic
(c) and septic (d) polynomials for simulation settings [i] and [ii].
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5 Discussion

Scoring systems for complex characteristics such as function or quality of life
are widely reported in medicine and social science. Typically if there are a
small number of categories the scores are assumed to be ordinal and appropri-
ate methods for analysing data of this type are employed. However, for long
ordinal scores (with many categories) or composite scores, consisting of the sums
of many shorter scores, analysis is usually based on assumptions of normality
for the score distributions (e.g. t-tests, linear regression). This assumption is
unlikely to be even approximately true in for instance many clinical scenarios
where the outcome for most patients will be a return to normal function at the
study endpoint (the extremum of the scale). The selection of the method of
analysis based on the number of categories in the score scale seems arbitrary
and more to do with the perceived shortcomings of current ordinal methods
for anything more than a small number of categories (<10) than a belief that
scores with many categories can really be assumed to come from a continuous
distribution.

For the widely used proportional-odds model, a simple modification to the
cut-point model allows the number of estimated parameters to be reduced dras-
tically for ordinal scores with many categories, by constraining the form of the
spacing model that defines the divisions between the score categories to be a
polynomial of degree J ≤ K−1. Experience suggests that cubic or quintic poly-
nomials are usually of sufficient complexity to characterise the spacing model
between categories. For long ordinal scores, which for instance may have 50
categories, this reduces the number of cut-point parameters that need to be
estimated from 49 to no more than 4 or 6. By reducing the number of model
parameters, the methodology proposed here overcomes potential problems asso-
ciated with attempting to estimate cut-point parameters for saturated cut-point
models for repeated ordinals scores [23]. Also, as fewer cut-point parameters
are estimated they are less likely to simply be dismissed as nuisance param-
eters, and as their link to the category spacing model is made more explicit
(e.g. linear, cubic term), their interpretation is much easier. More generally,
constraining the form of the spacing model that defines the divisions between
the core categories is probably a desirable property that should also be consid-
ered for shorter ordinal scores (Section 4). The simulation study showed that
polynomial models are good alternatives to conventional fully specified (satu-
rated) cut-point models for short ordinal outcomes, and thus by extension it is
expected that the desirable properties reported in Section 4 are also true for
long ordinal scores, where fitting the fully specified cut-point model would be
at best problematic and generally not possible.

Inferences from analyses are always strongly dependent on modelling as-
sumptions, and this was the case for the example data in Section 3.1. Fitting
the proportional-odds model to the OHS data from the WAT suggested that the
interpretation of Costa et al. [7], based on assumed normality for the score dis-
tribution, were unduly cautious. The analysis presented here suggests that the
true treatment difference is considerably smaller than that reported previously
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(0.66 rather than 2.23) and the (95%) confidence interval for the treatment ef-
fect is such that a difference of 5 points can be ruled out as very unlikely. It may
be argued that composite scores such as the OHS should be differentiated from
other ordinal scores, as there is clearly no guarantee that the sum of a number
of ordinal variables is itself ordinal. However, for many composite scores the
individual components are rarely if ever reported or assessed separately and the
overall scores are treated and interpreted exactly as if they were ordinal. Given
that this is the case the approach suggested here for analysis seems appropriate
and therefore more efficient and sensitive than that offered by models based on
normal approximations.
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