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Abstract

This dissertation is a collection of three essays that share one common

feature: all three of them relate to the literature on Bargaining. The first

and second essay are joint work with my supervisor, Professor Andrés

Carvajal.

In our first essay we investigate the testable implications of the Nash

bargaining solution. We develop polynomial tests of the NBS under

different hypothesis about the default levels. For instance, with, and

without observation from the outside econometrician of the levels of

utility that the individuals would have obtained outside the negotiation.

We use the Tarski-Seindenberg algorithm to characterize rationalizable

data as those that satisfy a finite system of polynomial inequalities.

In our second essay we introduce a new equilibrium concept for games of

political competition. We model electoral competition within each party,

assuming inner-party members have somewhat conflicting preferences.

By using the bargaining protocol à la Baron and Ferejohn (1989) we

explicitly model party members’ strategic interactions, their incentives

and their decision of whom to elect. Our equilibrium concept attempts to

model each member’s decision as if each player were uncertain about, (i)

the faction that will eventually dominate the decision made by the other

party and (ii) the faction that will dominate in the party’s nomination.

In the last essay I focus on one of the classical problems in bargaining:
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the divide the dollar problem. In our framework we assume players’

utility functions mirror selfish and Rawlsian preferences. We derive the

set of subgame perfect equilibria for different arrangements of player

types and study why strategic generosity emerges under the bargaining

protocol we assume.
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Chapter 1

Essay one

On Refutability of the Nash Bargaining

Solution.

A. Carvajal and N. González

Department of Economics, University of Warwick
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.. I

Among the most prominent solution concepts to bargaining problems is the one

proposed by Nash in 1953. This solution has been used to describe a variety of de-

cision processes—for instance, to model the firm’s decision process as a bargaining

game between a itself and its union, the share of profits in a cartel or job-search

models. The purpose of this paper is to investigate the testable restrictions that the

NBS has on the allocations of an aggregate resource (i.e, sharing of a pie) from

a revealed preference analysis. We develop polynomial tests for the NBS, under

different hypotheses about the behaviour of disagreement levels, and use the Tarski-

Seindenberg algorithm to characterize rationalizable data as those that satisfy a

finite system of polynomial inequalities.

Related Literature: The studies that have investigated the empirical content of

the NBS can be divided in two main streams: the differential approach and the

revealed preference analysis. In the former, Manser and Brown (1980) studied the

empirical content of household decision making, (i.e, how to allocate resources and

gains). They step away from Becker’s (1973, 1974) bargaining rule that the house-

hold maximizes one individual’s utility function and explicitly allow for different

utility functions within a household inhabited by two individuals. They define gains

in a marriage to exist if the maximum utility that each individual can attain lies

inside the utility possibility frontier. If this occurs, the household must decide on a

distribution of resources and distribution of gains. They invoke two bargaining so-
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lution concepts, NBS and Kalai and Smorodinsky’s (1975) solution concept, and also

consider, what they call the Pareto optimal solution, which is the dictatorial case.

In all cases they assume that the two individuals have von Neuman-Morgenstern

utility functions and maximize subject to the corresponding constraints, which in

turn yield the demand functions. The comparative static properties of the demand

functions are compared with maximizing a single utility function, using the Slutsky

conditions. A drawback of their work is the presence of a bargaining rule like

the one allowed by Becker (1974) in order to guarantee the resolution of conflict.

Along the same vein, McElroy and Horney (1981 and 1990), derive a Nash gen-

eralization of the Slutsky conditions for household demand function and explain

behavior consistent with Nash behavior and the so-called neoclassical individual

utility maximizer.
1

For some time, the literature on collective household decision processes borrowed

solution concepts, such as NBS, Kalai-Smorodinsky and Nash-Zeuthen
2
, however,

Chiappori (1988) suggested that "these conditions are not restricitve, unless the

agents’ premaritial preferences are known." Instead, Chiappori (1992) derived, from a

collective setting, a set of testable restrictions on observable behaviour, using labour

supply, under the form of partial differential equations. Contrary to the Slutsky

1
For studies that refer to the differential approach, but use different solution concepts, see,

Lunderberg and Pollack (1993), Chen and Woolley (2001). In non-strategic settings, the differential

approach has allowed economists to argue that non-observed fundamentals can be unambiguously

recovered from observed equilibrium outcomes; for a survey of this literature, and also of early

literature on the revealed preference approach, see Carvajal et al (2004).

2
See, Svejnar (1980).
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equations obtained from the traditional models, he suggested an alternative way

of deriving structural conditions (i.e, conditions on parameters) on the functional

forms for demand or labour supply functions. Chiappori and Doni (2006) extends

this analysis to the case of the NBS.

The second strand of literature follows the discussion of Samuelson (1938),

Afriat (1967) and Varian (1982) which focuses on revealed preference theory of in-

dividual behaviour to characterize rationalizabilty using a finite set of consumption

data, that is, prices and quantities. Only until recently has the literature obtained

testable implications on data for game theoretical solution concepts. For example,

Sprumont (2000) considers a non-cooperative game played by a finite number of

players, each of whom can choose a strategy from a finite set, and identifies general

necessary and sufficient conditions for Nash-rationalizability. Ray and Zhou (2001)

focus on extensive form games and derive a set of necessary and sufficient condi-

tions for sub-game Nash rationalizability. Other related literature includes Carvajal

(2010), who studies whether Nash-Walras equilibrium imposes testable restrictions

on the equilibrium prices of economies with externalities, and Carvajal et al (2012),

who develop the revealed preference analysis of the Cournot model of oligopolistic

competition.

Following the revealed preference approach, we do not impose any specific func-

tional form, thus we do not test consistency of observed behaviour conditional on

a specific functional form. For instance, our results do not rely on empirical work

that uses parametric specifications or preferences, or other restrictive assumptions

of the parameters of the model. In this respect, Chambers and Echenique (2011) is
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closely related in the sense that the they too focus on the allocation of a single-

dimensional resource. The analyst has available data on how money is divided

amongst a fixed number of agents, but has no information on the individuals’ pref-

erences and the protocol that leads to the division. They select three theories that

could possibly explain the division of money, those of the utilitarian, Nash and

egalitarian max-min models (assuming the observed disagreement utility levels are

fixed) and show that all three models are observationally equivalent. A main dif-

ference is that we characterize rationalizable data as those that satisfy a system of

quadratic inequalities and apply the Tarski-Seindenberg algorithm to obtain a test

for the NBS (under various hypotheses about the behaviour of the default utility

levels), unlike them who use a dual characterization of the problem that satisfies a

system of polynomial inequalities. Under the hypothesis that default utility levels

vary they apply the Positivstellensatz to construct tests for Nash bargaining and

the utilitarian model. Also, Chambers and Echenique only consider a subset of the

scenarios that we study here.

Cherchye, Demuynck and De Rock (2011) also investigate the empirical content

of the NBS, but they focus on a different setting than ours: they consider a model

where a pair of agents bargain over a consumption bundle and allow agents to have

the option of making consumption purchases on their own, therefore they assume

disagreement points vary endogenously, whereas we bargain over the share of a pie

(e.g. divide the dollar) and default utility levels are exogenously determined. They

provide necessary and sufficient conditions to solve the system of inequalities that

must be satisfied should data be rationalizable. Finally, they design and conduct
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an experiment allowing them to obtain data on (i) individuals default utility levels

of consumption bundles and (ii) bargaining outcomes so that they could verify the

consistency of the pair of consumptions bundles with the Nash bargaining solution.

Outline of the paper: In section 2, we define the NBS under the assumption

that the outside econometrician can observe both, the allocation of an aggregate

endowment, and the utility levels individuals can obtain provided they do not reach

an agreement, and derive the necessary and sufficient conditions for a data set to be

rationalizable. Then, in section 3, we drop the strong assumption of default utilities

levels being observable, and find that the hypothesis has no scientific meaning, from

a Popperian viewpoint. We restore falsifiability when we impose some conditions

on the unobservable default utility levels. After showing that the solution concept

can be corroborated, or refuted, by imposing conditions on the unobserved default

levels, in section 4 and 5 we assume, instead, the econometrician has information

about the behaviour of income levels, individuals can attain outside the cooperative

agreement, and test if a data set is rationalizable. Due to the constricted nature

of our tests (i.e. the data either satisfies the optimisation hypothesis, or it does

not) if a test isn’t rationalizable, how do we know it isn’t the case that by applying

a small perturbation to the data, the test of rationalizability may pass? "If some

data fail the tests, but only by a small amount, we might be tempted to attribute

this failure to measurement error, left out variables, or other sorts of stochastic

influences rather than to reject the hypothesis outright" Varian (1985). Therefore,

in section 6, and in the tradition of Varian (1985) we measure the magnitude of

13



departure from the optimisation hypothesis, i.e. we construct a statistical version

of the test of rationalizability. In section 7 we generalize the setting of section 2

for an arbitrary number of players and asymmetric bargaining powers. Finally, in

section 8 we conclude.

.. N  

Suppose that we observe, for a finite number of situations, the way in which two

people split a common endowment: for each t in the set {1, . . . , T }, we observe the

allocation (x1t, x
2

t) ∈ R2
, of an aggregate resource Xt ∈ R. When can we guarantee

that this information can be modelled by the Nash bargaining solution, given that

we cannot observe the individuals’ utility functions?

Let us denote by ui(x) the utility level that individual i attains if she consumes

x units of the resource. If the collective decision of the two people is consistent

with the Nash solution, each observation must solve the program

max

x1,x2

{
[u1(x1) − v1t][u

2(x2) − v2t ] : x
1 + x2 = Xt and u

i(xi) > vit
}
, (1.1)

where v1t and v
2

t are exogenously determined utility levels that the players can obtain

by themselves if they break up the negotiations. Note that we assume, as in the

original work of Nash, that there is a feasible allocation that leaves both individuals

strictly better off than if they do withdraw from the negotiations. Now, suppose that

all an outside econometrician can observe is the data

{
(x1t, x

2

t ,Xt) : t = 1, . . . , T
}
, (1.2)

14



but he does not know the utility functions u1
and u2

. What restrictions does the

structure of Program (1.1) impose on data set (1.2)?
3

1.2.1. Under Observation of Default Utility Levels

Suppose, for the moment, that the analyst also has information about the utility

levels that both individuals would attain if they did not agree on how to share the

resource.
4
In this case, the data set would be of the form

{
(x1t, x

2

t ,Xt, v
1

t, v
2

t) : t = 1, . . . , T
}
, (1.3)

where we assume that x1t + x
2

t = Xt at all observations.
5

We say that data set (1.3) is rationalizable if there exist utility functions u1 : R→
R and u2 : R → R, both of which are strictly increasing and strictly concave, such

that at each observation t, the pair (x1t, x
2

t) solves Program (1.1).
6

3
It is important to note that we test the hypothesis that the observed outcome is derived from the

Nash bargaining solution under a restricted domain of problems: those corresponding to a given pair

of individuals, for a finite set of aggregate resources and default payoffs. This is in contrast to the

axiomatic analysis of the solution, where the entire universe of bargaining problems is considered.

In this sense, our results do not offer an axiomatization of the solution, but just the set of all the

necessary conditions that the data have to satisfy if they are derived from the solution in the finite

set of observations of the individuals.

4
Surely, later we will relax the assumption that these status quo utility levels are observable.

5
We comment, below, why we do not allow for waste of the aggregate resource.

6
Since we impose strict monotonicity of preferences, it is an immediate testable implication of

the rationalizability definition that the individuals do not want to waste resources. Of course, there

are other solution concepts in which the latter is not true, and the assumption that x1t + x
2

t = Xt
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1.2.2. A test of rationalizability: necessary conditions

P 1. If a data set of form (1.3) is rationalizable, then there exists an array

of numbers {
(µ1

t,µ
2

t , λt) : t = 1, . . . , T
}

that solves the following system: for all t and t ′,

µit ′ 6 µ
i
t + λt(µ

i
t − v

i
t)(x

i
t ′ − x

i
t), (1.4)

with strict inequality if xit 6= xit ′ ; for all i and all t,

µit > v
i
t; (1.5)

and for all t,

λt > 0. (1.6)

Proof: Under strict monotonicity, we can re-write Program (1.1) as

min

x

{
ft(x) : u

1(x) > v1t and u
2(Xt − x) > v

2

t

}
, (1.7)

where

ft(x) := [v1t − u
1(x)][u2(X− x) − v2t ].

Since both utility functions are concave, they are Lipschitz continuous and,

hence, a necessary condition for x1t to solve Program (1.7) is that 0 ∈ ∂ft(x1t).7 By

construction, 0 ∈ ∂ft(x1t) only if there exist δ1t ∈ ∂u1(x1t) and δ2t ∈ ∂u2(x2t) such that

δ1t[u
2(Xt − x

1

t) − v
2

t ] = δ
2

t [u
1(x1t) − v

1

t].

would be restrictive if we were studying those solutions. For the focus of our paper, the question is

what restrictions, other than the fact that there is no waste, are implied by the solution hypothesis.

7
We use ∂g to denote the subgradient of any function g.
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Since function u1
is strictly increasing, if we define the number

λt :=
δ1t

u1(x1t) − v
1

t

> 0,

we get that, for both individuals, necessarily, δit = λt[u
i(xit) − v

i
t]. Since both u1

and

u2
are strictly concave and δit ∈ ∂ui(xit), the latter implies that, for all x ∈ R, x 6= xit,

ui(x) < ui(xit) + λt[u
i(xit) − v

i
t](x− x

i
t).

Thus, we can define the numbers µit := u
i(xit) > v

i
t. Q.E.D.

A comment on the implications of this proposition is in order.
8

It is well

known that the Nash bargaining solution treats the preferences of the individuals

as cardinal objects. It may then seem paradoxical that our revealed preferences

approach is applicable in this context, since this approach is normally of ordinal

nature. But it is then important to note that the necessary condition (1.4) imposes

a common factor to the term that appears on the right-hand side of the usual

Afriat expansion: λt is common to both individuals. This commonality gives the

whole system cardinal content: the λt that solves Eq. (1.4) is not robust to arbitrary

transformations of the preferences of the individuals, even if they preserve their

ordinal content.

While this result provides a necessary condition for rationalizability, by itself it

does not constitute a test of the hypothesis, for in principle it could be that the nec-

essary condition is tautological, in which case any data set would be rationalizable

and the hypothesis would not be refutable.

8
We thank Alejandro Saporiti for this observation.
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1.2.3. Power of the test: sufficiency and non-tautology of the necessary condition

Our next claim is that the existence of a solution to the system of inequalities

defined by Eqs. (1.4) to (1.6) exhausts the necessary conditions of the hypothesis

that a data set is rationalizable, as this condition is also sufficient for the hypothesis.

P 2. Given a data set of form (1.3), suppose that there exists an array of

numbers {
(µ1

t,µ
2

t , λt) : t = 1, . . . , T
}

that solves the system of inequalities (1.4) to (1.6), defined in Proposition 1. Then, the

data set is rationalizable, and the utility functions that rationalize it can be constructed

in the class C2.

Proof: Given a solution

{
(µ1

t,µ
2

t , λt) : t = 1, . . . , T
}

to the system of inequalities,

construct the following utility functions: for each player i,

ui
0
(x) := min

{
µit + λt(µ

i
t − v

i
t)(x− x

i
t) : t = 1, . . . , T

}
,

mapping R into R. These functions are continuous, concave and strictly increasing,

and are C∞
at all but a finite number of points in R.

With these constructions, and for any observation t, note that ui
0
(xit) 6 µit. If

this inequality was strict, then for some other observation t ′ we would have that

µit ′ + λt ′(µ
i
t ′ − v

i
t ′)(x

i
t − x

i
t ′) < µ

i
t,

which contradicts Eq. (1.4),
9
so we must conclude that ui

0
(xit) = µ

i
t.

9
By Eqs. (1.4) the linear approximation must be the tangent line to the general function, i.e.

ui
0
(xit) = u

i(xit).
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Now, consider any pair (x1, x2) 6= (x1t, x
2

t) that is feasible in the program

max

x1,x2

{
[u1

0
(x1) − v1t][u

2

0
(x2) − v2t ] : x

1 + x2 6 Xt and u
i
0
(xi) > vit

}
. (1.8)

By definition and construction,

0 < ui
0
(xi) − vit 6 µ

i
t + λt(µ

i
t − v

i
t)(x

i − xit) − v
i
t

for both i = 1, 2. Multiplying, we thus get that

[u1

0
(x1) − v1t][u

2

0
(x2) − v2t ] 6 [µ1t + λt(µ

1

t − v
1

t)(x
1 − x1t) − v

1

t][µ
2

t + λt(µ
2

t − v
2

t )(x
2 − x2t ) − v

2

t ]

= (µ1t − v
1

t)(µ
2

t − v
2

t )[1+ λt(x
1 − x1t)][1+ λt(x

2 − x2t )]

= (µ1t − v
1

t)(µ
2

t − v
2

t )[1+ λt(x
1 + x2 − Xt) + (λt)

2(x1 − x1t)(x
2 − x2t )],

where, in the last line, we have used the fact that x1t + x
2

t = Xt. Now, consider each

of the terms on the right-hand side of the latter expression: first, by feasibility of

(x1, x2), we have that

µ1

t − v
1

t > 0 and µ2

t − v
2

t > 0;

also, by Eq. (1.6) and feasibility, we have that

λt(x
1 + x2 − Xt) 6 0;

and, finally, we have that

(x1 − x1t)(x
2 − x2t) 6 0,

since again, by feasibility, x1+x2 6 Xt = x1t+x
2

t . Since (x1, x2) 6= (x1t, x
2

t), the previous

two inequalities cannot hold with equality at the same time. This implies that

1+ λt(x
1 + x2 − Xt) + (λt)

2(x1 − x1t)(x
2 − x2t) < 1,
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and hence that

(µ1

t − v
1

t)(µ
2

t − v
2

t)[1+ λt(x
1 + x2 − Xt) + (λt)

2(x1 − x1t)(x
2 − x2t)] < (µ1

t − v
1

t)(µ
2

t − v
2

t).

We conclude, hence, that

[u1

0
(x1) − v1t][u

2

0
(x2) − v2t ] < (µ1

t − v
1

t)(µ
2

t − v
2

t) = [u1

0
(x1t) − v

1

t][u
2

0
(x2t) − v

2

t ], (1.9)

and since, by Eq. (1.5), ui
0
(xit) > v

i
t for both i = 1, 2, and x1t + x

2

t = Xt, we conclude

that (x1t, x
2

t) solves Program (1.8).

To complete the proof, we ought to show that u1

0
and u2

0
can be deformed into

functions u1
and u2

that are strictly concave and smooth. This can be done, using

a convolution, since the inequalities of Eq. (1.4) and Eq. (1.9) are all strict when-

ever xit 6= xit ′ , and since the number of observations is finite. The details of this

construction are deferred to Appendix A. Q.E.D.

An implication of the proposition is that, as is commonly the case in the revealed

preference literature, an analyst would need at least two observations in order to

be able to reject the hypothesis of the Nash bargaining solution: if T = 1, then

condition 1.4 is vacuous and the whole system is always satisfied.
10

10
An explicit construction that rationalizes any single observation (x1, x2,X, v1, v2) is as follows:

assume, with no loss of generality, that x2 > x1 > 0, and let u1(x) = ln x + α and u2(x) = ln x + β,

with β > v2 +max{0,− ln x2} and

α = v1 − ln x1 +
x2

x1
(ln x2 + β− v2).
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More importantly, together with Proposition 1, this latter result allows us to

claim that the hypothesis of rationalizability is testable, and to state the type of test

an analyst can develop.

P 3. There exists a non-tautological condition that a data set of form (1.3)

satisfies if, and only if, it is rationalizable. Moreover, this condition is a finite set of

polynomial inequalities on
{
(x1t, x

2

t ,Xt, v
1

t, v
2

t) : t = 1, . . . , T
}
.

Proof: The set of values of

{
(x1t, x

2

t ,Xt, v
1

t, v
2

t ,µ
1

t,µ
2

t , λt) : t = 1, . . . , T
}

that satisfy the system of inequalities defined by Eqs. (1.4) to (1.6) is, by definition,

a semi-algebraic set. By the Tarski-Seidenberg algorithm, the projection of this

set into the space of data (that is, of values of

{
(x1t, x

2

t ,Xt, v
1

t, v
2

t) : t = 1, . . . , T
}
) is

semi-algebraic as well, which means that it can be characterized by a finite set of

polynomial inequalities. Then, by Propositions 1 and 2, a data set is rationalizable

if, and only if, it satisfies these polynomial inequalities (or, put another way, if it

lies in the latter projected set).

To see that such system of polynomial inequalities is not tautological, it suffices

to find a non-rationalizable data set. To see this, consider a set of the form (1.3)

where, for a pair of observations t and t ′ one has that v1t = v1t ′ , v
2

t = v2t ′ , Xt < Xt ′

and x1t > x1t ′ . If such set were rationalizable, there would exist δit ∈ ∂ui(xit) and

δit ′ ∈ ∂ui(xit ′), for i = 1, 2, such that

δ1t[u
2(x2t) − v

2

t ] = δ
2

t [u
1(x1t) − v

1

t] (1.10)
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and

δ1t ′[u
2(x2t ′) − v

2

t ′] = δ
2

t ′[u
1(x1t ′) − v

1

t ′]. (1.11)

By concavity of the utility functions, δ1t < δ
1

t ′ and δ
2

t > δ
2

t ′ , given that x2t < x
2

t ′ since

Xt < Xt ′ . By their monotoniciy, similarly, u1(x1t) > u
1(x1t ′) and u2(x2t) < u

2(x2t ′). It

then follows that

δ1t[u
2(x2t) − v

2

t ] < δ
1

t ′[u
2(x2t ′) − v

2

t ]

= δ1t ′[u
2(x2t ′) − v

2

t ′]

= δ2t ′[u
1(x1t ′) − v

1

t ′]

= δ2t ′[u
1(x1t ′) − v

1

t]

< δ2t [u
1(x1t) − v

1

t]

= δ1t[u
2(x2t) − v

2

t ],

where the second equality follows from Eq. (1.11), and the last one from (1.10). This

is obviously impossible, so we conclude that the data set cannot be rationalized.

Q.E.D.

In fact, it is useful to complement the proof of this proposition with an analysis

of the comparative statics of Program (1.1), for the case when the utility functions

are differentiable twice. In such case, note that we can write the first-order condition

of program

max

x1,x2

{
[u1(x1) − v1][u2(X− x1) − v2] : u1(x1) > v1 and u2(X− x1) > v2

}
,
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as

∂u1(x1)[u2(X− x1) − v2] = ∂u2(X− x1)[u1(x1) − v1].

If we totally differentiate this equation, we get that, over the manifold of solutions

to the program, dx1 equals{
∂2u2(x2)[u1(x1) − v1] − ∂u1(x1)∂u2(x2)

}
dX− ∂u2(x2)dv1 + ∂u1(x1)dv2

∂2u1(x1)[u2(x2) − v2] − 2∂u1(x1)∂u2(x2) + ∂2u2(x2)[u1(x1) − v1]
. (1.12)

Since both utility functions are strictly increasing and strictly concave, and since

u1(x1) > v1 and u2(X − x1) > v2, it follows that the denominator in this equation

is negative. For the same reasons, the term that multiplies dX in the numerator

is negative too, while the terms that multiply dv1 and dv2 are both positive. As a

consequence, it follows that if dX > 0, dv1 > 0 and dv2 < 0, then, unambiguously,

dx1 > 0. It then follows that a data set of form (1.3) is not rationalizable if it

contains a pair of distinct observations, t and t ′, such that

Xt > Xt ′ , v
1

t > v
1

t ′ , v
2

t < v
2

t ′ and x
1

t < x
1

t ′ .

Subsequently, this observation will allow us to claim that, under differentiable utility

functions, the hypothesis of rationalizability is refutable on the basis of a test.

.. W O  D U L

Suppose now that the observer has no information about the default utility levels

of the two individuals, so that the data set reduces to (1.2).
11

11
We maintain the assumption that x1t + x

2

t = Xt at all observations.
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1.3.1. No assumptions on the default utility levels: unfalsifiability

Suppose that the analyst is not willing to impose any conditions on the (unobserved)

utility levels that the individuals could have obtained by withdrawing from the ne-

gotiation. In this setting, we shall say that the data set of form (1.2) is rationalizable

if there exist default utility levels v1t and v
2

t , for t = 1, . . . , T , and individual utility

functions u1 : R → R and u2 : R → R, both of which are strictly increasing and

strictly concave, and are such that at each observation t, the pair (x1t, x
2

t) solves

Program (1.1).

Our next result shows that in this case the hypothesis of rationalizability becomes

irrefutable.

P 4. Any data set of the form (1.2) is rationalizable. Moreover, in the

rationalization both utility functions can be constructed in the class C2.

Before proving the proposition, we introduce a lemma that will be useful for the

result.

L 1. For any finite set of numbers {xs : s = 1, . . . ,S}, there exists an array of

pairs of numbers, {(µs, δs) : s = 1, . . . ,S}, such that δs > 0 for all s, and

µs ′ < µs + δs(xs ′ − xs)

for all s and all s ′ 6= s.

Proof: With no loss of generality, let us assume that x1 > x2 > . . . > xS. We can

re-write the desired conditions as

µs ′ − µs + δs(xs − xs ′) < 0,
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for all s and all s ′ 6= s, with −δs < 0 for all s.

If such system has no solution, then, by the Theorem of the Alternative,
12

we

can find a double array of non-negative numbers {αs,s ′ : s, s
′ = 1, . . . ,S, s ′ 6= s} and

an array of non-negative numbers {βs : s = 1, . . . ,S} such that, for all s,

∑
s ′ 6=s

αs,s ′ =
∑
s ′ 6=s

αs ′,s (1.13)

and ∑
s ′ 6=s

αs,s ′(xs − xs ′) = βs, (1.14)

with at least one of the numbers in these two arrays being different from zero.

Aggregating Eq. (1.14) across observations,

∑
s

∑
s ′ 6=s αs,s ′(xs − xs ′) =

∑
s βs. By

Eq. (1.13), the left-hand side of the latter expression is null, which in turn implies

that βs = 0 for all s. Using this, Eq. (1.14) implies that

∑
s ′ 6=1

α1,s ′(x1 − xs ′) = 0. But

note that, since x1 > xs for all s 6= 1, this equality is possible only if α1,s ′ = 0 for

all s ′ 6= 1. Then, (1.13) implies that, moreover, αs ′,1 = 0 for all s ′ 6= 1. But then, for

s = 2, (1.14) implies that

∑
s>3

α2,s ′(x2 − xs ′) =
∑
s ′ 6=2

α2,s ′(x2 − xs ′) = 0.

Again, since x2 > xs for all s > 3, the latter implies that α2,s ′ = 0 for all s ′ 6= 2,

and (1.13) again implies that αs ′,2 = 0 for all s ′ 6= 2. Continuing in this fashion, we

obtain that αs,s ′ = 0 for all s and all s ′ 6= s, which contradicts the fact that at least

one of the numbers in the two arrays is different from zero. Q.E.D.

12
See, for example, R. Tyrell Rockafellar, Convex Analysis, Princeton University Press, 1970.
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This lemma is the key step in the proof of Proposition 4:

Proof of Proposition 4: Given the data set, by Lemma 1 we have that for each

individual i = 1, 2, we can find numbers µit and δ
i
t > 0 for all t, such that

µit ′ 6 µ
i
t + δ

i
t(x

i
t ′ − x

i
t),

with strict inequality if xit ′ 6= xit.

Now, fix an arbitrary array of numbers

{
v1t : t = 1, . . . , T

}
such that v1t < µ

1

t at all

t. Using these numbers, define, for each t,

λt :=
δ1t

µ1

t − v
1

t

and

v2t := µ
2

t −
δ2t
λt
.

By construction, λt > 0 and v2t < µ
2

t , while it is immediate that

µit + λt(µ
i
t − v

i
t)(x

i
t ′ − x

i
t) = µ

i
t + δ

i
t(x

i
t ′ − x

i
t) > µ

i
t ′ .

with strict inequality if xit ′−x
i
t. By Proposition 2, it follows that there are individual

utility functions u1
and u2

that satisfy the desired properties and are such that at

each observation t, the pair (x1t, x
2

t) solves Program (1.1). Q.E.D.

Proposition 4 tells the analyst that if he is not willing to make any assumptions

on the levels of utility that the two individuals could secure for themselves by

breaking up the negotiations, or on the evolution of these levels, the hypothesis that
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the data can be explained using the Nash bargaining solution is not refutable and,

hence, the hypothesis itself is unscientific from a Popperian perspective. In fact,

a careful look at the proof of that proposition shows that even if the analyst had

observations of the default utility levels of one of the individuals, but not on the

levels of the other one, then the hypothesis of Nash bargaining solution would be

unfalsifiable: this is, indeed, what the proof actually shows. Moreover, with a small

modification of the proof one can show that the player for whom the analyst has

observed the default utility levels need not be the same at all observations: if, for

each observation, one observes vit but not v¬it , the argument continues to hold by

defining

λt :=
δit

µit − v
i
t

> 0

and

v¬it := µ¬i
t −

δ¬it
λt
< µ¬i

t ;

even in this case, the hypothesis continues to be irrefutable.

1.3.2. Some assumptions on the default utility levels: falsifiability restored

We now know that, in order to have a testable theory, the analyst has to impose

conditions on the evolution of default utility levels. These conditions will now form

part of the hypothesis being tested,
13

and rejection of this joint test does not inform

which of the hypotheses drove the rejection. Still, if in a given exercise the analyst

13
As much as, for instance, the conditions that define the class of utility functions that are being

allowed by our definitions.
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can reasonably impose structure on these unobserved variables, if this structure is

‘enough’ it may restore the refutability of the hypothesis.

For instance, say that a data set of the form (1.2) is rationalizable with invariant

default utility levels if there exist two numbers v1 and v2, and individual utility

functions u1 : R → R and u2 : R → R, both of which are strictly increasing and

strictly concave, such that at each observation t, the pair (x1t, x
2

t) solves program

max

x1,x2

{
[u1(x1) − v1][u2(x2) − v2] : x1 + x2 6 Xt and u

i(xi) > vi
}
.

Our next result is that this extra assumption on the unobserved utility levels

strengthens the hypothesis and renders it refutable again.

P 5. There exists a non-tautological condition that a data set of form

(1.2) satisfies if, and only if, it is rationalizable with invariant default utility levels.

Moreover, this condition is a finite set of polynomial inequalities on

{
(x1t, x

2

t ,Xt) : t = 1, . . . , T
}
.

Proof: Since the details of the argument are similar to previous ones, we shall omit

them. First, as in the proof of Proposition 1 if the data set is rationalizable with

invariant default utility levels, there must exist a pair of numbers (v1, v2) and an

array of numbers {
(µ1

t,µ
2

t , λt) : t = 1, . . . , T
}

that solves the following system:

µit ′ 6 µ
i
t + λt(µ

i
t − v

i)(xit ′ − x
i
t), (1.15)
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with strict inequality if xit ′ 6= xit,

µit > v
i
, (1.16)

and

λt > 0. (1.17)

On the other hand, it follows from Proposition 2 that the existence of this

solution to the system is sufficient for the data set to be rationalizable, and since

the pair (v1, v2) remains constant across all observations, the data set is, a fortiori,

rationalized with invariant default utility levels.

Now, as in the proof of Proposition 3, the system of inequalities (1.15), (1.16) and

(1.17) defines a semi-algebraic set, so its projection into the space of data is semi-

algebraic as well, and is characterized by a finite set of polynomial inequalities. In

order to see that such condition is non-tautological, it suffices to observe that, as

in Proposition 3, any data set in which xit and Xt are not co-monotone cannot be

rationalized with invariant default utilities.
14 Q.E.D.

Invariance of the unobserved utility levels is not the only case in which the ana-

lyst can recover refutability: our argument can be extended to argue that the hypoth-

esis is refutable if it imposes that the unobserved utility levels

{
(v1t, v

2

t) : t = 1, . . . , T
}
,

while not being observed, satisfy that, v1t is weakly co-monotone with Xt and v
2

t is

weakly anti-co-monotone with Xt. Indeed, in this case the necessary and sufficient

14
Variables yt and zt are said to be co-monotone if yt > yt′ occurs when, and only when,

zt > zt′ . They are anti-co-monotone if yt > yt′ occurs when, and only when, zt 6 zt′ .
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system of inequalities is defined on the array

{
(µ1

t,µ
2

t , v
1

t, v
2

t , λt) : t = 1, . . . , T
}
,

and it includes Eqs. (1.4), (1.5) and (1.6), as well as the following two requirements,

which are immediate from the new assumptions: for every t and every t ′

(v1t − v
1

t ′)(Xt − Xt ′) > 0,

while

(v2t − v
2

t ′)(Xt − Xt ′) 6 0.

Since these extra inequalities are polynomial, the set of solutions remains semi-

algebraic and our analysis of its projection is still valid. On the other hand, it fol-

lows immediately from Eq. (1.12) that in this case x1t and Xt must be co-monotonic,

so the system that characterizes the projection is again non-tautological.
15

.. D I L

The model under consideration, and the way in which we have dealt with it so far,

specifies utility levels that the individuals can attain by withdrawing from the nego-

tiation without reaching an agreement. We have seen that even if utility levels are

observed, or at least are restricted by the econometrician when they are unobserved,

makes a significant difference in terms of the empirical implications of the model.

However, it is more realistic to assume that the analyst has some information, or

hypothesis, about the behavior of the income levels that the individuals can obtain

15
Now, though, we cannot say anything about the co-variation of x2t and Xt.
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outside the cooperative agreement as opposed to the utility they derive from these

income levels. So, suppose now that the data set is of the form

{
(x1t, x

2

t ,Xt,y
1

t,y
2

t) : t = 1, . . . , T
}
, (1.18)

where yit represents the default income level that individual i could have obtained

at observation t if an agreement had not been reached. We continue to assume

that x1t + x
2

t = Xt, and additionally, suppose that xit > y
i
t at all observations.

We will say that a data set of the form (1.18) is rationalizable if there exist utility

functions u1 : R → R and u2 : R → R, both of which are strictly increasing and

strictly concave, such that at each observation t, the pair (x1t, x
2

t) solves the program

max

x1,x2

{
[u1(x1) − u1(y1t)][u

2(x2) − u2(y2t )] : x
1 + x2 6 Xt and u

i(xi) > ui(yit)
}
. (1.19)

The next result, which is analogous to Proposition 1, says that a necessary con-

dition for rationalizability is the existence of a solution to a system of polynomial

inequalities. The system required for this new setting, however, is slightly more

complicated as we now need to account for more points in the domain of the utility

functions.

P 6. If a data set of the form (1.18) is rationalizable, then there exists an

array of numbers {
(µ1

t,µ
2

t , v
1

t, v
2

t , δ
1

t, δ
2

t , λt) : t = 1, . . . , T
}

that solves the following system:

µit ′ 6 µ
i
t + λt(µ

i
t − v

i
t)(x

i
t ′ − x

i
t), (1.20)
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with strict inequality if xit ′ 6= xit;

vit ′ 6 v
i
t + δ

i
t(y

i
t ′ − y

i
t), (1.21)

with strict inequality if yit ′ 6= yit;

µit ′ 6 v
i
t + δ

i
t(x

i
t ′ − y

i
t), (1.22)

with strict inequality if xit ′ 6= yit;

vit ′ 6 µ
i
t + λt(µ

i
t − v

i
t)(y

i
t ′ − x

i
t) (1.23)

with strict inequality if yit ′ 6= xit;

µit > v
i
t (1.24)

and

δit > 0 (1.25)

for all i, all t and all t ′ 6= t; and

λt > 0 (1.26)

for all t.

Proof: As in the proof of Proposition 1, the first-order necessary condition of

Program (1.19) require that for some δ1t ∈ ∂u1(x1t) and δ2t ∈ ∂u2(x2t), we have that

δ1t[u
2(x2t) − u

2(y2t)] = δ
2

t [u
1(x1t) − u

1(y1t)].

Since u1
is strictly increasing, defining the number

λt =
δ1t

u1(x1t) − u
1(y1t)

> 0,
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we get that

δit = λt[u
i(xit) − v

i
t].

Now, if we also pick δit ∈ ∂ui(yit) > 0, µit = u
i(xit) and v

i
t = u

i(yit), we get Eqs. (1.20)

to (1.23) from the fact that u1
and u2

are strictly concave, while we get Eq. (1.24)

from their strict monotonicity, given that xit > yit by assumption. The other two

conditions, Eqs. (1.25) and (1.26), also follow from monotonicity. Q.E.D.

Since we now need to account for more points in the domains of the utility

functions, the system of inequalities in this setting is more complex. The first con-

dition in the system, Eq. (1.20), compares the utility level at the attained income

of observation t ′ with its first-order approximation around the attained income of

observation t. This was the same comparison that we had in the system of Propo-

sition 1. Now, we also need to compare the utility level at the default income of

observation t ′ with its linear approximation around the default income of obser-

vation t, which is done by Eq. (1.21); the utility level at the attained income of

observation t ′ with its linear approximation around the default income of obser-

vation t, which is Eq. (1.22); and the utility at the default income of observation

t ′ with its approximation around the attained income of observation t, namely Eq.

(1.23). Importantly, while the hypothesis of rationalizability imposes a condition on

the derivatives of the utility functions at the attained income levels (i.e., the equality

given by the first-order condition of Program (1.19)), their derivatives at the default

income levels are only constrained to be positive.
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These extra conditions have to be imposed as part of the system, for otherwise

we cannot guarantee its sufficiency, which we obtain in the following result.

P 7. Given a data set of the form (1.18), suppose that there exists an array

of numbers {
(µ1

t,µ
2

t , v
1

t, v
2

t , δ
1

t, δ
2

t , λt) : t = 1, . . . , T
}

that solves the system of inequalities defined in Proposition 6. Then, the data set is

rationalizable and, moreover, the utility functions that rationalize it can be constructed

in the class C2.

Proof: The argument resembles the proof of Proposition 2. Given a solution

{
(µ1

t,µ
2

t , v
1

t, v
2

t , δ
1

t, δ
2

t , λt) : t = 1, . . . , T
}

to the system of inequalities, construct the functions

ui
0
(x) := min

{
min

{
µit + λt(µ

i
t − v

i
t)(x− x

i
t), v

i
t + δ

i
t(x− y

i
t)
}
: t = 1, . . . , T

}
.

which satisfy that ui
0
(xit) = µ

i
t and u

i
0
(yit) = v

i
t.
16

Taking, as before, any pair (x1, x2) 6= (x1t, x
2

t) that is feasible in the program

max

x1,x2

{
[u1

0
(x1) − v1t][u

2

0
(x2) − v2t ] : x

1 + x2 6 Xt and u
i
0
(xi) > vit

}
,

we still get that

0 < ui
0
(xi) − vit 6 µ

i
t + λt(µ

i
t − v

i
t)(x− x

i
t) − v

i
t.

16
And which are continuous, concave and strictly increasing, and are C∞

at all but a finite

number of points in R.
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Since this is what was required for the argument of Proposition 2, we can omit the

remaining details. Q.E.D.

Importantly, the conditions that are added to the system are still polynomial

inequalities, so the set of arrays

{
(x1t, x

2

t ,Xt,y
1

t,y
2

t , v
1

t, v
2

t ,µ
1

t,µ
2

t , δ
1

t, δ
2

t , λt) : t = 1, . . . , T
}

that satisfy the system is semi-algebraic, and so is, therefore, its projection into

the space of data. As before, this set is, thus, characterized by a finite set of poly-

nomial inequalities, which constitute the strongest possible test of the hypothesis

of rationalizability in this setting. Assuming that the utility functions that ratio-

nalize the data are C2
, we can see that the test is not a tautology by replacing

dvi = ∂ui(yi)dyi in Eq. (1.12), in order to obtain comparative statics for the case

that we are considering: dx1 now equals the ratio of

{
∂2u2(x2)[u1(x1) − u1(y1)] − ∂u1(x1)∂u2(x2)

}
dX

−∂u2(x2)∂u1(y1)dy1 + ∂u1(x1)∂u2(y2)dy2

and

∂2u1(x1)[u2(x2) − u2(y2)] − 2∂u1(x1)∂u2(x2) + ∂2u2(x2)[u1(x1) − u1(y1)].

Under monotonicity, the latter implies that no set that contains a pair of observa-

tions for which

Xt > Xt ′ ,y
1

t > y
1

t ′ ,y
2

t < y
2

t ′ and x1t < x
1

t ′

can be rationalized. Thus, the following proposition summarizes these observations.
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P 8. There exists a non-tautological condition that a data set of form

(1.18) satisfies if, and only if, it is rationalizable by utility functions in the class C2.

Moreover, this condition is a finite set of polynomial inequalities on

{
(x1t, x

2

t ,Xt,y
1

t,y
2

t) : t = 1, . . . , T
}
.

.. B  U D I L

The analysis of the case when default income levels are observed allows us to

address a weakness that our previous results display. Consider again the setting of

Section 1.2.1, where we have data of the form (1.3). Our definition of rationalizability

in that section did not require the existence of an unobserved default income level

at which the individuals would obtain the observed default utility levels under our

construction of the utility functions: indeed, the definition of rationalizability does

not require that there exist numbers

{(y1t,y
2

t) : t = 1, . . . , T }

such that u1(y1t) = v1t and u2(y2t) = v2t at all observations. And while our con-

struction in Proposition 2 delivers us this extra requirement, for the functions ui

constructed in the proof are unbounded below, it may still be the case that in such

construction the implicit yit for which ui(yit) = v
i
t is not plausible from the point of

view of the analyst, for some i and some t – for instance, it could be the case that

such income level has to be allowed to take negative values.

This problem can be addressed by extending the system of Proposition 1 in
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the same way as Eqs. (1.20) to (1.26). For instance, let Yit ⊆ R be a nonempty

set of default income levels that the analyst considers possible for individual i at

observation t, and denote by Y the collection of all these constraints:

Y :=
{
(Y1

t , Y
2

t ) : t = 1, . . . , T
}
.

Say that a data set of the form 1.3 is rationalizable with respect to Y if there exist

utility functions u1 : R→ R and u2 : R→ R, both of which are C2
, strictly increasing

and strictly concave, and default income levels

{
(y1t,y

2

t) : t = 1, . . . , T
}

such that (i) at each observation t, the pair (x1t, x
2

t) solves Program (1.1); (ii) at each

observation t, the default income levels are feasible, in the sense that y1t ∈ Y1

t and

y2t ∈ Y2

t ; and (iii) the default income levels deliver the observed default utilities: for

all t, u1(y1t) = v
1

t and u
2(y2t) = v

2

t .

The following analysis strengthens the results of Section 1.2.1 for this definition

of rationalizability. In addition to the assumptions introduced there, we here assume

that all the sets Yit contain at least one y < xit. As the results can be proven by

arguments similar to the ones given in Section 1.4, we state them without a detailed

proof.

P 9. Fix the collection Y of constraints. A data set of the form (1.18) is

rationalizable with respect to Y if, and only if, there exists an array of numbers

{
(µ1

t,µ
2

t ,y
1

t,y
2

t , δ
1

t, δ
1

t, λt) : t = 1, . . . , T
}

that solves the system of equations (1.20) to (1.26), with yit ∈ Yit and yit < xit for all i

and all t. If, moreover, all the constraints in Y are semi-algebraic, then there exists a
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non-tautological condition that a data set satisfies if, and only if, it is rationalizable

with respect to Y. This condition is a finite set of polynomial inequalities on

{
(x1t, x

2

t ,Xt, v
1

t, v
2

t) : t = 1, . . . , T
}
.

Proof: Only the fact that the condition imposed by the hypothesis of rationaliz-

ability with respect to Y is non-tautological requires a comment. The reason why

this is the case is, simply, that if a set is rationalizable with respect to Y then it

is rationalizable (in the sense of Section 1.2.1). But since there are data sets that

cannot be rationalized, then there are sets that cannot be rationalizable with respect

to Y and it follows that the projection of the set of solutions to the system defined

in the proposition into the space of data has to be a proper subset of that space.

Since we are assuming that all the sets in Y are semi-algebraic, the fact that the

condition is non-tautological is implied by the Tarski-Seidenberg Theorem. Q.E.D.

.. A S T

A possible weakness of the results we have obtained so far is the lack of a measure

of how strong a rejection of the hypothesis of rationalizability is: that is, the

application of our tests is dichotomic in the sense that a data set is rationalizable

or not, but when a test is not rationalizable we still do not know how big or small

a perturbation to the data would make it consistent with the hypothesis. If a very

‘small’ perturbation to one of the observations sufficed for the data set to pass the

test of rationalizability, the analyst may want to consider the data consistent with
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the hypothesis, attributing the ‘small error’ to causes like, for instance, an error in

the collection of the data.

This criticism is common to all the basic literature on revealed preferences, but

can be addressed by extending the analysis in the direction of the construction

of statistical versions of the test (as is done in that literature as well) following,

Varian (1985).

For the most plausible framework, suppose that the observed data consists of

{
(x1t, x

2

t ,y
1

t,y
2

t) : t = 1, . . . , T
}
,

as in Section 1.4, only with the caveat that we now let Xt be constructed as x1t + x
2

t ,

instead of it being observed.
17

The analyst may believe that the real income of

individual i at observation t was xit+ ε
x
i,t, and that her default income was yit+ ε

y
i,t,

accounting for measurement error by the (unobserved) perturbations

ε :=
{
(εx

1,t, ε
x
2,t, ε

y
1,t, ε

y
2,t) : t = 1, . . . , T

}
In this setting, as in Varian (1985), we can construct a statistical version of the

test of rationalizability. First, let D be the set of all values of

{
(x̆1t, x̆

2

t , y̆
1

t, y̆
2

t) : t = 1, . . . , T
}

that satisfy the condition given by Proposition 3, using X̆t = x̆
1

t+ x̆
2

t (or, equivalently

for which there exist a solution to the system of conditions defined in Eqs. (1.20)

to (1.26)). Second, for the array

e :=
{
(ex

1,t, e
x
2,t, e

y
1,t, e

y
2,t) : t = 1, . . . , T

}
,

17
The reason for this will be apparent momentarily.
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define χ as the minimum value of the sum of squared errors, e · e, subject to the

constraint that

(x1t + e
x
1,t, x

2

t + e
x
2,t,y

1

t + e
y
1,t,y

2

t + e
y
2,t)

T
t=1
∈ D.

Under the assumption that the perturbations vector ε follows a normal distribu-

tion with mean (0, . . . , 0) and variance-covariance matrix σI, it is immediate that

χ/σ follows the χ2 distribution with 4T degrees of freedom. This statistic can be

used to test the hypothesis of rationalizability, using the null hypothesis that χ = 0.

.. G: A B  A

N  P

The results we have obtained so far can be generalized to an arbitrary numbers of

players whose bargaining powers may differ (but are assumed to be constant). For

simplicity of presentation, we concentrate on the setting where default utility levels

are observed.

That is, suppose that the analyst has observed data of the form

{
(xit, v

i
t) : i = 1, . . . , I and t = 1, . . . , T

}
, (1.27)

and let Xt :=
∑

i x
i
t. Fix a vector α = (α1, . . . ,αI) � 0, and say that one such data

set is α-rationalizable if there exist utility functions ui : R → R, for i = 1, . . . , I,

all of which are C2
, strictly increasing and strictly concave, such that each vector

(x1t, . . . , x
I
t) solves the program

max

(x1,...,xI)

{∏
i[u

i(xi) − vit]
αi :
∑

i x
i 6 Xt and ui(xi) > vit

}
, (1.28)
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where the coefficient αi > 0 represents individual i’s bargaining power.
18

As in Section 1.2.1, the first-order conditions of this problem are that for all

individuals we have that

αi∂u
i(xit)

ui(xit) − v
i
t

= λt, (1.29)

for some λt > 0.
19

For all individuals, then,

∂ui(xit) =
1

αi
λt[u

i(xit) − v
i
t].

Since ui is strictly concave, the latter implies that, for all x ∈ R, x 6= xit,

ui(x) < ui(xit) +
1

αi
λt[u

i(xit) − v
i
t](x− x

i
t),

and, therefore, defining the numbers µit := ui(xit), we have proved the following

proposition:

P 10. Let α� 0. If a data set of form (1.27) is α-rationalizable, then there

exists an array of numbers

{
(µ1

t, . . . ,µ
I
t, λt) : t = 1, . . . , T

}
that solves the following system:

µit ′ 6 µ
i
t +

1

αi
λt(µ

i
t − v

i
t)(x

i
t ′ − x

i
t), (1.30)

18
Note that the vector α is part of the hypothesis being tested. That is, the researcher must specify

the bargaining powers that are to be tested. We do not consider the weaker hypothesis of whether

there exist some bargaining powers under which the data can be rationalized, which would amount

to the introduction of an existential quantifier for α in the system below.

19
With a slight abuse of notation, we now use ∂ui to denote the derivative of function ui, given

that we have assumed that these functions are all differentiable.
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with strict inequality if xit ′ 6= xit,

µit > v
i
t, (1.31)

and

λt > 0. (1.32)

Perhaps it is not surprising, but it is important that the necessary condition we

just proposed is sufficient as well.

P 11. Given a data set of form (1.27) and a vector α � 0, suppose that

there exists an array of numbers

{
(µ1

t, . . . ,µ
I
t, λt) : t = 1, . . . , T

}
that solves the system of inequalities defined in Proposition 10. Then, the data set is

α-rationalizable.

Proof: Given the array

{
(µ1

t, . . . ,µ
I
t, λt) : t = 1, . . . , T

}
that solves the system of in-

equalities, construct, for each player i,

ui
0
(x) := min

{
µit +

1

αi
λt(µ

i
t − v

i
t)(x− x

i
t) : t = 1, . . . , T

}
,

mapping R into R. This functions gives ui
0
(xit) = µ

i
t at all t, is continuous, concave

and strictly increasing, and is C∞
at all but a finite number of points in R. Since

the inequalities are strict, using the argument presented in Appendix A, the function

can be transformed into a C2
, strictly concave and strictly increasing function ui

such that ui(xit) = u
i
0
(xit) and ∂ui(xit) = ∂u

i
0
(xit).
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With these constructions, since Program (1.28) is log-concave, it suffices to show

that vector (x1t, . . . , x
I
t) satisfies its first-order conditions, namely Eq. (1.29), for it to

be its solution. But this is immediate, by construction, for

αi∂u
i(xit)

ui(xit) − v
i
t

=
αi∂u

i
0
(xit)

ui
0
(xit) − v

i
t

= λt

for all i. Q.E.D.

Also, the comparative statics of Eq. (1.12) generalize to the current setting. For

instance, keeping for simplicity the assumption that there are only two players but

letting their bargaining powers be α1 and α2, we get that

dx1 =

{
α2∂

2u2(x2)[u1(x1) − v1] − α1∂u
1(x1)∂u2(x2)

}
dX− α2∂u

2(x2)dv1 + α1∂u
1(x1)dv2

α1∂2u1(x1)[u2(x2) − v2] − (α1 + α2)∂u1(x1)∂u2(x2) + α2∂2u2(x2)[u1(x1) − v1]
,

which suffices to imply that no data set can be α-rationalized if it contains a pair

of distinct observations, t and t ′, such that

Xt > Xt ′ , v
1

t > v
1

t ′ , v
2

t < v
2

t ′ and x
1

t < x
1

t ′ .

(In the case of I players, if there are t and t ′, such that

Xt > Xt ′ , v
1

t > v
1

t ′ , v
i
t < v

i
t ′ for all i 6= 1 and x1t < x

1

t ′ .)

In consequence, we have proven the following result.

P 12. Let α� 0. There exists a non-tautological condition that a data set

of form (1.27) satisfies if, and only if, it is α-rationalizable. Moreover, this condition

is a finite set of polynomial inequalities on

{
(xit, v

i
t) : i = 1, . . . , I and t = 1, . . . , T

}
.
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.. C

We study the empirical implications of the Nash bargaining solution, assuming that

the outside analyst observes a finite set of bargaining outcomes, under different

hypotheses about the behaviour of the disagreement levels. We first consider a

model where two agents bargain over the division of an aggregate endowment, and

follow a revealed preference approach to verify the empirical validity of the Nash

bargaining solution. In addition, we extend our study for the case of n agents,

whose bargaining power may be asymmetric (but constant).

We derive a revealed preference characterization of the Nash bargaining solution

for the cases where default levels are observed, and when the analyst has some

information on the behaviour of the disagreement levels, for instance, invariance

of unobserved default utility levels. Furthermore, we recover refutability under the

hypothesis that the disagreement point, while not being observed or invariant, is

weakly co-montone with the aggregate resource, in the case of one agent and weakly

anti-comonotone with the aggregate resource for the other.

We use the Tarski-Sidenberg algorithm to construct the type of test an observer

can develop to claim the hypothesis that the data can be explained by using the Nash

bargaining solution. We also construct a statistical version of the rationalizability

test, to give specific content as to when we can attribute the failure of the hypothesis

of rationalizability to measurement error.
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Chapter 2

Essay two

On Inter- and Intra-Party Politics.

A. Carvajal and N. González

Department of Economics, University of Warwick
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.. I

The extent to which political science and economics have modeled electoral com-

petition, is ample, and in many cases diametrically opposed. Downs (1957) used

Hotelling’s (1929) model of spatial competition to explain a competition between two

candidates whose motivation for practising politics is to enjoy benefits and power

of governing. A key assumption is that, voters care about policies and therefore

they would vote for the candidate (or party) who was closest to his or her political

standpoint, yet candidates are solely motivated by the desire to win office as an

opportunity to enjoy a successful career. This, in turn, drove parties to adopt the

political standpoint of the median voter. The history of democracy has showed

us that political parties are both formed and influenced by interest and advocacy

groups which have cared about policies. So, to propose a model in which candidates

do not care about policies was viewed to be historically inaccurate.

Contrary to Downs, Wittman (1973) proposed a model of electoral competition

in which parties have policy goals, which does not mean that politicians are ideo-

logically dogmatic or lethargic about winning elections, or even value the position

of their platform as an end in itself, but, like voters, candidates are solely interested

in policy implementation. Although Wittman managed to overcome the ahistorical

feature of the Downs model, that is, he modeled political competition between par-

ties that have policy preferences, he could not escape the conclusion that political

equilibria consists of both parties playing the same policy.
1

1
This common result hods for the case when both parties know for certain the distribution of
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Together with the assumptions about candidates’ motivation and parties not

having complete information about voters’ preferences Calvert (1985) concluded

that, in equilibrium, as long as candidates share the same beliefs about the electorate

both parties propose the same policies. Using the same changes in the traditional

assumptions as Wittman (1977), Calvert gradually departed from the former results.
2

Nonetheless, both strong policy orientation and uncertainty will lead to candidate

divergence, as Wittman had claimed. But, if policy orientation and uncertainty

are limited then only small perturbations of candidate convergence emerge.
3

Put

differently, the median policy result is quite robust to changes in its key assumptions:

candidate motivation or uncertainty.

A major drawback of models in electoral competition with a unidimensional

policy space, is that they predict a unique equilibrium in which party platforms are

identical, which is seldom observed. A possible explanation for these findings is that

they fail to recognize voters’ uncertainty about the candidates. In other words, they

neglect the importance of voters’ expectations as a determinant of votes. Among

those that offered an alternative approach are Berndhardt and Ingerman (1985)

voters types in a unidimensional policy space. However, if candidates are uncertain about vote

behaviour, in other words, if they know the probability distribution over the possible distribution of

voter types in a one dimensional policy space, Downs continued to predict that, in equilibrium, both

candidates propose identical policies, whereas Wittman predicted differentiated equilibria.

2
If candidates are not motivated by the desire to win office, but, by the quality of the policies

that follow from an election, in a k-issue space, both candidates propose equilibrium policies that

will diverge, Wittman (1983).

3
If both these non-standard assumptions are made together, the convergence result no longer

holds, see Calvert (1985).
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who introduced the idea that voters’ choices are influenced by their expectations

about the candidates. One can argue that by allowing voters to treat candidates’

positions as lotteries over uncertain outcomes, classical models had, indeed, intro-

duced voter’s uncertainty about the candidates. Although the motivation of these

models had been to study if a candidate preferred, or not, a more or less noisy lot-

tery, they also suggest that voters’ subjective probabilistic valuation of post-election

outcomes, given the election of candidate a as candidate a had changed his an-

nounced position, could explain why (i) incumbents were difficult to defeat and (ii)

the lack of political platform convergence to the median platform. They construct a

spatial model to explain political competition between two candidates where voters’

expectations are treated explicitly. They found that a candidate can win election de-

pending on (i) how well the incumbents past announcements reflect the electorates’

current position and (ii) how relatively risky voters perceive the challenger to be.

Their predictions, appeared to be consistent with the persistent findings in empirical

studies. More importantly, they move away from the median policy result and find

that, in equilibrium, candidates choose different platforms.

Contrary to the existence of equilibria in the one-dimensional policy space, an

important result of models with multidimensional issue spaces and party certainty

about voter behaviour is that equilibria, both in the Downs and Wittman
4
models,

typically fail to exist. Without failing to recognize the importance of this result, par-

ties seldom compete in an environment of complete certainty, hence, an alternative

4
Only trivial interior Wittman equilibria exist generically in the multidimensional case, whereas

an interior Downs equilibrium exists only nongenerically.
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by which researchers have gotten around the non-existence of Nash equilibria in

pure strategies in games of electoral competition under uncertainty when the policy

space is multidimensional
5
, has been to change the game played between parties

from a simultaneous one to a sequential game, in which case, the Stackelberg equi-

librium generally exists in the multidimensional, two-party game. But, who should

be the one to move first? The incumbent or the challenger? Moreover, to define

a natural order or an imperative argument by which one can label one of the two

parties a natural leader
6
has been open for debate.

Another important contribution in the multidimensional set-up has been when

answering the question as to why parties adopt progressive income tax rules, for

which it is necessary to augment the issue space to more than one dimension so

that, at least, progressive and regressive tax income policies be represented. Based

on the evidence of the twentieth-century European political history of inner-party

struggle over the policy space, Roemer (1999), introduced a new equilibrium concept

called, party unanimity Nash equilibrium (PUNE) to overcome the non-existence of

Nash equilibria. He assumed that there exist three types of politicians in each

party, and each party must reach inner-party unanimity before the platform is

announced, hence, before it is ready to be revealed in the electoral contest. He

used the criterion of Pareto efficiency from the point of view of each of the types

within the party, given the other party’s policy, to solve the problem of existence in a

multidimensional setting. Furthermore, despite introducing factional conflict within

5
See Coughlin (1992), Lindbeck and Weibull (1987)

6
See, Roemer (2001).
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parties,
7
Roemer’s framework does not explicitly model the strategic interactions

taking place within each party.

Along the same vein, we adopt Roemer’s institutional assumption that in reality,

parties seldom act as unitary actors; on the contrary, members have different and

somewhat conflicting preferences and each party consists of three types of politi-

cians. This paper presents a new equilibrium concept for games of political com-

petition where candidates, who belong to intra-party factions, must unanimously

agree on which platform to announce in the electoral contest. More importantly,

we investigate electoral competition within each party and their choice of political

platforms by using a specific bargaining protocol to model party members strategic

interactions and incentives. The heart of our equilibrium concept consists of in-

voking Baron and Ferejohn (1989) bargaining protocol (hereafter, B.F), to explicitly

model what happens within each party’s internal-decision process. Contrary to Roe-

mer’s formulation, where each faction member,
8
in an attempt to secure its best

outcome, evaluates whether to deviate, or not, from a tax policy to another, when

the other faction is playing a policy t, our solution concept entails an additional

7
In order to study why, typically, both the left and right parties propose progressive income

tax schemes in political competition. For related literature on political competition in non-unitary

parties, internal party organization and the effect of the interaction between parties and candidates

on platforms, see, Caulliad and Tirole (2002), Testa (2003), Castanheira et al. (2010) and Perisco

et al. (2007).
8

In Roemer (2001), one of the three factions called the reformists, play no active role in his

solution concept, therefore the political equilibrium arises from a inner-party struggle between the

remaining two factions
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source of uncertainty. Despite the similarities between Roemer’s setting and ours,

we model each members’ decision as if he were uncertain about, (i) the faction that

will eventually dominate the decision made by the other party and (ii) the faction

that will dominate in the party’s nomination. While Roemer models each party

members’ decision as if he were certain of the type of politician that represents the

opposing party.

From a theoretical standpoint, what if Pareto efficiency may not be sustainable.

Now, even though Roemer’s solution concept was meant to overcome the problem

of existence of Nash equilibria in a multidimensional setup, we will assume a uni-

dimensional policy space since our motivation is not to offer an alternative for

solving the problem of existence in a multidimensional framework, but, mainly to

model the strategic incentives of faction members in a party and their choice of a

political platform. Evidence shows that due to different and somewhat conflicting

preferences members face an inter-party struggle over the policy space and so by

modelling what goes on behind close doors within each we find that Roemer’s equi-

librium concept may result inadequate for political competition in certain settings,

for example, those where primary debates are held. Put differently, we show that

Roemer’s solution concept may not serve as an appropriate analytical description of

any political competition context.

This chapter proceeds as follows. In section 2.2, we present the fundamental

setting in which our results will be obtained, introduce some necessary assump-

tions and borrow Roemer’s definitions for each faction. In Section 2.3, we present

Roemer’s solution concept, introduce an alternative specification of intra-party bar-
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gaining that is consistent with Roemer’s results and present some additional new

assumptions and definitions we need for our solution concept. In section 2.4, we

present a complete characterization of our equilibrium concept, intra-party voting

Nash equilibrium. In Section 2.5, which is the main section of this chapter, we

report the basic Nash equilibria, party unanimity Nash equilibria, Nash bargaining

solution and our intra-party voting Nash equilibria for the game of electoral com-

petition and present part of our main results. In section 2.6, we claim the reason

intra-party unanimity Nash equilibria fails to exercise the efficiency property that

Roemer’s solution concept displays, lies on the fact that each party’s factions are

choosing uncertain about the policy that the other party will propose. In section

2.7, we conclude.

.. P E  B A

In this section we establish the setting in which all our results will be obtained,

and introduce some assumptions that will be maintained throughout the paper.

These assumptions are rather restrictive, but they suffice for us to make the main

observations of the paper in the simplest possible setting. Of course, the assumptions

are not needed for the definitions we use in the paper – neither for the ones we

borrow from the literature, nor for the one that we introduce here.

53



2.2.1. Fundamentals of the political contest

Suppose that two parties, denoted by L and R, are competing to gain the support

of some constituency in a given election. Let the policy space be the set A, and

suppose that each party, i ∈ {L,R}, has an ideology function vi : A → R, which

represents how much the party values different policies, according to its political

principles.

The population of voters is represented by the distribution of political preferences.

This distribution is summarized by the function π : A×A→ [0, 1], which measures

the popular support for party L: if (aL,aR) is the pair of policies chosen by the two

parties, then π(aL,aR) measures the proportion of the constituency that supports

party L. We will assume that there is no abstention in the constituency, so that

under the same pair of policies the support for party R is 1− π(aL,aR).

2.2.2. Basic assumptions

We assume that the policy space, A, is a subset of the one-dimensional Euclidean

space R, endowed with its natural pre-order and its natural topology, and that both

ideology functions, vL and vR, are continuous. Justifying our choice of jargon, so

that we can refer to party L as the left and to party R as the right, we will assume

that there exist policies a∗,a
∗ ∈ A such that (i) a∗ 6 a∗; (ii) function vL is decreasing

on [a∗,∞) ∩A; and (iii) function vR is increasing on (∞,a∗] ∩A.9

9
If both numbers exist, this assumption implies that argmaxavR(a) > argmaxavL(a).
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Also, we assume that function π is continuous at all (aL,aR) with aL 6= aR,

and impose that if aR > aL, then π is non-decreasing in both arguments; while if

aL > aR then π is non-increasing in both arguments. Finally, for all our results we

will assume that the voters have no party affiliation, in the sense that

π(a ′,a ′′) = 1− π(a ′′,a ′),

for any pair of policies a ′,a ′′ ∈ A.10

2.2.3. Types of Politicians

As in Roemer (1999), in each party there are three types of politicians: those who

only care about the ideological value of the policy chosen by their party, those who

only care about the popular support that their party obtains in the election, and those

who care about the ideological value of the policy that is actually implemented as

a result of the election.

Militant

The first type of politician, which will be referred to as militant, only cares about

the policy chosen by its party, measured according to the party’s ideology function:

if the pair of policies chosen is (aL,aR), then the values given by the militant

politicians of each party are vL(aL) and vR(aR).
11

10
This assumption implies that π(a,a) = 1/2 for any policy a.

11
Refer to Appendix B.1 for proof of the existence of a Nash equilibrium between militants.
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Opportunist

The second type of politician, which shall be called opportunist, values a pair of

policies (aL,aR) by the support that this pair entails to his own party: in the left, the

opportunists care about π(aL,aR), while in the right they care about 1− π(aL,aR).
12

Let F : A→ [0, 1] be an increasing and continuous function such that

lima→infAF(a) = 0

and

lima→supAF(a) = 1,

and suppose that

π(a ′,a ′′) =


F(a

′+a ′′

2
), if a ′′ > a ′;

1

2
, if a ′ = a ′′;

1− F(a
′+a ′′

2
), if a ′′ < a ′.

Pragmatist

Finally, a politician shall be called a pragmatist if he cares about the policy that will

be implemented as a result of the election, valued according to his party’s ideology.
13

12
See Appendix B.1 for the existence of a Nash equilibrium between opportunists.

13
In the original language of Roemer (1999), this type of politician is called a reformist. We are

not using this term, in order to preempt confusion between the “right” party and the “reformists” of

either party, in mnemonics that will be used later on in the paper. An alternative denomination for

this type of politician could be non-extremists, in the sense that they do not care simply about the

extremes of either pure ideology, or pure popular support, as the other two types of politicians do.
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Given the distribution of votes resulting from a pair (aL,aR) of policies, in the left

the pragmatist politicians care about

µL(aL,aR) := π(aL,aR)vL(aL) + [1− π(aL,aR)]vL(aR), (2.1)

while in the right they care about

µR(aL,aR) := π(aL,aR)vR(aL) + [1− π(aL,aR)]vR(aR). (2.2)

It will later be useful to observe that each function µi is continuous in ai at all

(aL,aR), in spite of the possible discontinuity of function π when aL = aR.

.. P-U N E

Roemer (1999) introduced a concept of equilibrium that presumes the fact that the

three types of politician are present in the membership of each party, and that a

consensus must be obtained from these three factions of the party before the party’s

policy can be adopted. In Roemer’s formulation, the intra-party decision process

is unmodeled. Meanwhile, he adopts the view that whatever internal process is

adopted by each party in order to choose its platform will lead to an efficient

choice, using the criterion of Pareto efficiency for the membership of the party.

2.3.1. The concept of equilibrium

A party-unanimity Nash equilibrium is a pair of policies (aL,aR) such that:

(i) @a ∈ A for which,

vL(a) > vL(aL),π(a,aR) > π(aL,aR) and µL(a,aR) > µL(aL,aR),
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with at least one of the three inequalities being strict;

(ii) @a ∈ A such that,

vR(a) > vR(aR),π(aL,a) 6 π(aL,aR) and µR(aL,a) > µR(aL,aR),

with, again, at least one of these inequalities being strict.

It is worthy of mentioning that at a party-unanimity Nash equilibrium, each

party takes as given the policy platform chosen by its opposition, and chooses for

itself a platform that is Pareto efficient platform from the point of view of its

membership. In this sense, all three factions of the left will consider deviating from

policy aL to a, when the right is playing aR, if all three factions from the left are

not worse off by playing a and at least one of them is strictly better off. Conversely,

the same may be said for the case of the right. In the remainder of the paper,

we shall also use the term Roemer equilibrium to refer to a Party Unanimity Nash

Equilibrium.

In order to simplify the application of Roemer’s concept, the following claim is

true: There does not exist a Roemer equilibrium (aL,aR) such that vL(aR) > vL(aL),

or that vR(aL) > vR(aR). As shown in Appendix B.2, we prove our claim.

An important property of Roemer’s equilibrium solution concept, which he makes

explicit in Roemer (2001), is that the pragmatists of each party are inconsequential

for the equilibrium choice of policies. To see that this is indeed the case, refer to

Appendix B.3.
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2.3.2. The Nash bargaining solution and Roemer equilibrium

Presumably, the outcome of an intra-party decision process is not independent of

the importance that each of the factions has in the party. Along this line, the fact

that pragmatist politicians play no role in the choice of their party’s policy under

a Roemer equilibrium may thus appear as a shortcoming of the concept. Like we

mentioned earlier, by offering a natural intra-party decision process under which

PUNE results inadequate as a solution concept for political competition, we provide

an alternative equilibrium concept for political games when Pareto efficiency is not

sustainable. What do we mean by offering a natural decision process? Although

in most presidential systems, the president is elected by popular vote, it isn’t a

surprise that party factions engage in negotiations, despite the common interest in

agreement, they still have conflicting preferences among each other. For instance,

United States use caucuses and nationwide state level primaries to elect a candidate

for office that will narrow the field of candidates before the general election. But,

what if Pareto efficiency isn’t not sustainable when party members decide over what

party platform to present. Furthermore, what if, instead, faction members negotiate

over the terms of the party platform to present, say, in the primaries. And as a

result, factions harm one another within the party as evidence suggests happens

during electoral races.

But before addressing our theoretical curiosity, we first introduce an alternative

specification of intra-party politics that is consistent with Roemer’s idea.

For each party, let αi,βi > 0 be two numbers such that αi + βi 6 1. Roemer
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(2001) defines a Nash bargaining solution with weights ((αL,βL), (αR,βR)) to be a

pair (aL,aR) such that policy aL solves program

max

a
{π(a,aR)

αL [vL(a) − vL(aR)]
βL}, (2.3)

while policy aR solves program

max

a
{[1− π(aL,a)]

αR [vR(a) − vR(aL)]
βR}. (2.4)

A pair (aL,aR) is said to be a Nash bargaining solution, if there exist numbers

((αL,βL), (αR,βR)) such that (aL,aR) is a Nash bargaining solution with the weights

((αL,βL), (αR,βR)).

This concept has a natural interpretation. Use αi to denote the proportion of

members of party i who are militant, and use βi for the proportion that are oppor-

tunistic; the remaining proportion, 1−αi−βi, are, implicitly, pragmatist politicians.

The definition corresponds to the assumption that, given the policy chosen by its

opposition, each party solves its decision process according to a weighted Nash

bargaining problem between the militant and opportunist factions, under the as-

sumption that both factions believe that if they break their discussion without some

agreed policy, then the other party will win the election for sure and will impose its

policy: for the opportunists, the “default” payoff implicit in these Nash problems is

0, as if the other party won the election for sure in the absence of an agreed policy

from their own party; and for the militants the default payoff is vi(a¬i), as if the

break-up of the party’s negotiations were tantamount to the adoption of the other

party’s policy.

60



It is straightforward that if a pair of policies (aL,aR) is a Nash bargaining

solution with implicit weights ((αL,βL), (αR,βR)) that are all strictly positive, then it

is also a Roemer equilibrium: otherwise, it would be possible to increase the payoff

of one of the factions in one of the parties without decreasing the payoff of the

other faction of the same party; as long as the first faction’s weight in that party is

strictly positive, this would imply that one can increase to maximand of that party’s

problem in one of the two expressions, (2.3) or (2.4), thus contradicting the premise

that the pair of policies was a Nash bargaining solution. Under some technical

requirements on the ideology functions and the support function (π), Roemer (2001)

further argues that any party-unanimity Nash equilibrium where no party wins the

election for sure is also a Nash bargaining solution.

2.3.3. The role of pragmatist politicians

We can use the characterization of Roemer equilibria via Nash bargaining solutions

to revisit the issue of the irrelevance of pragmatist politicians in Roemer’s analysis.

In principle, the definition of Nash bargaining solution has dismissed the existence

of the pragmatist faction of each party, and is such that the outcome of the political

competition only depends on the internal composition of the parties’ memberships

up to the ratio of the fractions of militants to opportunists. One attempt to bring

the pragmatist politicians back into the fray would be to include their values and

their weight into the Nash bargaining problem. That is, let us consider the problem
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of the left, modified to

max

a
{π(a,aR)

αL [vL(a) − vL(aR)]
βL [µL(a,aR) − µL]

1−αL−βL},

for some default value µL, which may depend on aR and represents the value

that a pragmatist politician from the left would attach to the failing of his own

party’s internal decision process. If one wants to be consistent with the idea that

all politicians render a failure in the internal negotiations of their parties as a

capitulation in the political competition, then the value that should be given to the

default µL should be precisely vL(aR), for in such case the practical politicians in

the left party believe that the right is going to implement policy aR for sure. Now,

in this case, using, namely Equation (2.1),

π(a,aR)
αL [vL(a) − vL(aR)]

βL [µL(a,aR) − µ]
1−αL−βL = π(a,aR)

1−βL [vL(a) − vL(aR)]
1−αL

,

so it follows, once again, that the practical politicians play no significant role: the

outcome of the left party’s decision process is going to depend on the distribution

of types only up to the ratio of 1− αL to 1− βL.

.. I-P V N E

The relationship between party-unanimity Nash equilibria and Nash bargaining so-

lutions is seen by Roemer as a micro-foundation for the premise that each party’s

platform should be efficient from the point of view of its membership, given the

other party’s policy.
14

In contexts in which such premise is acceptable, one can

14
Indeed, in Roemer’s applications of his equilibrium concept, he uses the observed policy propos-

als to back out, under the assumption that the pair of policies is a party-unanimity Nash equilibrium,
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take Roemer’s equilibrium concept as an appropriate analytical description of the

political context, and may use the Nash bargaining solution as its microfoundation

of what happens within each of the competing parties. We do not, however, be-

lieve that all political situations are amenable to the premise of inter-party Pareto

efficiency. Consider, for instance, the case of presidential systems in which pre-

candidates from each party first compete for their party’s nomination in a primary

vote. The political debate before the primaries is often heated, and the criticism

that the eventual winner receives from fellow pre-candidates is later on used by

the other party’s nominee in the presidential race. This cannot be Pareto efficient:

each party would prefer, given the eventual choice of a nominee, to have had a less

damaging debate in its primary.

Also, in the Roemer-Nash framework, each party is modeled as choosing a policy

platform given the platform of the other party. In the presence of different factions

in each party, we find this objectionable, for it is as if each party knew which of

the factions is eventually going to dominate the decision made by the other party.

In the language of the presidential primary elections, it is as if each of the pre-

candidates of a party knew who is going to be the eventual nominee of the other

party – indeed, an untenable assumption.

We now propose a concept of equilibrium that tries to overcome these two prob-

lems. We believe that this concept is appropriate for contests with significant pri-

the normalized weights of the militant and opportunist factions of each party. At a theoretical level,

Roemer argues that the set of party-unanimity Nash equilibria constitutes a manifold, and that the

profiles of weights ((αL,βL), (αR,βR)) are a parameterization of it.
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mary debates, under the premise that the discussion behind the intra-party decisions

is binding for the posterior inter-party competition. We maintain the assumption

that the proportion of militant politicians in party i is αi, the proportion of oppor-

tunists is βi, and the remaining members, 1−αi−βi, are pragmatist. For simplicity,

we will denote the type of politician by t ∈ {m,o,p}, with obvious mnemonics.

In each party, each type of politician will have a policy proposal, which we

denote by ai,t ∈ A. We distinguish a policy that party i may adopt, from the

triple of policies adopted by its factions, by using ai ∈ A for the former while

~ai = (ai,m,ai,o,ai,p) ∈ A3
denotes the latter. We will also denote the pair of policy

triples by ~a = (~aL, ~aR) ∈ A3 ×A3
.

2.4.1. Objective functions under uncertainty

Consider a politician from party L. From his point of view, the type of politician

of party R against whom he will compete for votes, should he win the nomination

from his party, is unknown: he believes that he will face a militant with probability

αR, an opportunist with probability βR and a pragmatist with probability 1−αR−βR.

Now, suppose that party L is considering the adoption of a policy a; if the policy of

party R is aR, then the expected value of this politician is vL(a), π(a,aR) or

µL(a,aR) := π(a,aR)vL(a) + [1− π(a,aR)]vL(aR),

depending on whether he is of type m, o or p. But, as we said before, this politician

does not know who is going to win party R’s nomination, so, given a triple ~aR, his

values are as follows, depending on his type: if he is a militant, it is VL(a, ~aR) :=
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vL(a), for he does not care about R’s policy; if he is an opportunist, his value is

ΠL(a, ~aR) := αRπ(a,aR,m) + βRπ(a,aR,o) + (1− αR − βR)π(a,aR,p);

and, similarly, if he is a pragmatist, his value is

ML(a, ~aR) := αRµL(a,aR,m) + βRµL(a,aR,o) + (1− αR − βR)µL(a,aR,p).

Of course, the definitions of objective functions for the factions of party R, which

we will denote by µR, ΠR andMR are similar, except for the fact that its opportunists

care about 1− π:

ΠR(~aL,a) := αL[1− π(aL,m,a)] + βL[1− π(aL,o,a)] + (1− αL − βL)[1− π(aL,p,a)]

The other details are omitted.

2.4.2. Objective functions over own party’s policy triple

In the expected value functions just defined, the only uncertainty is over the type

of politician that will represent the opposing party, but the policy considered by

the politician’s own party is given. For reasons that will be clear momentarily,

we will need to define the expected value of each type of politician, ex-ante to

the determination of his own party’s nominee. That is to say, fix a pair of policy

triples ~a, and consider again a politician from party L; if he believes that his party

is going to be represented by one of its militants with probability αL, by one of

its opportunists with probability βL, and by one of its pragmatists with probability

1− αL − βL, then his values are as follows: if he himself is a militant, it is

VeL(~a) = αLVL(aL,m, ~aR) + βLVL(aL,o, ~aR) + (1− αL − βL)VL(aL,p, ~aR);
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if he is an opportunist, his value is

ΠeL(~a) = αLΠL(aL,m, ~aR) + βLΠL(aL,o, ~aR) + (1− αL − βL)ΠL(aL,p, ~aR);

and, in the same vein, it is

Me
L(~a) = αLML(aL,m, ~aR) + βLML(aL,o, ~aR) + (1− αL − βL)ML(aL,p, ~aR)

if he is a pragmatist.

As before, the definitions of ex-ante objective functions for the politicians of

party R are identical.

2.4.3. A protocol for the intra-party contest

The key difference between Roemer’s equilibrium concept and ours is the adoption

of an explicit bargaining protocol to model what happens in each party’s internal

decision process: we assume that the policy triple of each party is adopted at a

subgame-perfect Nash equilibrium of the protocol introduced by Baron and Ferejohn

(89), given the triple of the other party. We next describe this protocol.

In each party, i, the internal discussion takes place by a series of rounds. In

each round, a politician is chosen at random and he makes a policy proposal; after

the proposal is made, the members of the party vote to accept or reject the proposal.

The internal statutes of the party specify a proportion γi > 1/2 of «accept» votes

that are needed for a policy to be adopted by the party. If the round’s proposal

passes this threshold, it becomes the party’s policy. Otherwise, a new round begins,

again by randomly selecting, with replacement.
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We assume that party i’s politicians (uniformly) discount the value of an agreed

policy by a discount factor of δi < 1, for each round of negotiation that has passed

before this agreement has been reached. This impatience may reflect, for instance,

the loss of reputation that the party may suffer when the constituency realizes its

internal disagreement.

We use Baron and Ferejohn (1989) to introduce our concept of equilibrium. For

the sake of simplicity and tractability, we assume that in each party, all politicians

of a given type follow the same strategy, and focus on stationary subgame-perfect

equilibria of the intra-party game, so that delay in reaching an agreement does not

occur at equilibrium. Also, we assume implicitly that each politician votes to accept

the policy that he would propose should he be elected to do so.

2.4.4. Passing proposals

As before, for the sake of a simpler presentation, we concentrate on the case of

party L, and take as given the policy triple of party R, namely ~aR. The analysis of

party R is of course the same, mutatis mutandis.

Given aL,m and aL,p, we shall say that L’s militants vote to accept the proposal of

the opportunists, aL,o, if

VL(aL,o, ~aR) > δLV
e
L(~aL, ~aR),

with ~aR = (aL,m,aL,o,aL,p). This means that the militants are no worse off under the

current proposal of the opportunists than if they voted to reject it, given what they

expect as value for a further round of negotiation, discounted. Similarly, given aL,m
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and aL,o, L’s militants vote to accept the proposal of the pragmatists, aL,p, if

VL(aL,p, ~aR) > δLV
e
L(~aL, ~aR).

For the other types of politicians of party L the definitions are analogous, but

we provide them explicitly, for the sake of completeness. Given aL,o and aL,p, we

shall say that L’s opportunists vote to accept the proposal of the militants, aL,m, if

ΠL(aL,m, ~aR) > δLΠ
e
L(~aL, ~aR),

and, given aL,m and aL,o, that L’s opportunists vote to accept the proposal of the

pragmatists, aL,p, if

ΠL(aL,p, ~aR) > δLΠ
e
L(~aL, ~aR).

Also, given aL,o and aL,p, we shall we say that L’s pragmatists vote to accept the

proposal of the militants, aL,m, if

ML(aL,m, ~aR) > δLM
e
L(~aL, ~aR),

and, given aL,m and aL,p, that L’s pragmatists vote to accept the proposal of the

opportunists, aL,o, if

ML(aL,o, ~aR) > δLM
e
L(~aL, ~aR).

Given these definitions, we can define the constraints that the politicians of

each faction face when choosing a policy proposal. Again, we maintain fixed a

given triple, ~aR, for party R. Given aL,o and aL,p, we say that the proposal of the

militants, aL,m, passes if one of the following four conditions holds:

(a) αL > γL; or
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(b) the opportunists vote to accept aL,m and αL + βL > γL; or

(c) the pragmatists vote to accept aL,m and 1− βL > γL; or

(d) both the opportunists and the pragmatists vote to accept aL,m.

In words, the proposal of the militants passes if the number of party members

who prefer to adopt it, in comparison with letting the negotiation proceed for one

further round, is above the threshold required by the party’s statutes. This can

occur when the militants are sufficiently many to impose their policies without the

support of any other faction of the party (case a), when they can convince the

opportunists and together they pass that threshold (case b), when they can convince

the pragmatists and together they pass the threshold (case c), or when there is

unanimous support for the proposal (case d).

This idea extends to the other two factions of the party, straightforwardly; we

give the formal definitions next. Given aL,m and aL,p, we say that the proposal of

the opportunists, aL,o, passes if one of the following conditions holds:

(a) βL > γL; or

(b) the militants vote to accept aL,m and αL + βL > γL; or

(c) the pragmatists vote to accept aL,m and 1− αL > γL; or

(d) both the militants and the pragmatists vote to accept aL,m.

Similarly, given aL,m and aL,o, we say that the proposal of the pragmatists, aL,p,

passes if one of the following conditions holds:

(a) 1− αL − βL > γL; or

(b) the militants vote to accept aL,p and 1− βL > γL; or
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(c) the opportunists vote to accept aL,p and 1− αL > γL; or

(d) both the militants and the opportunists vote to accept aL,p.

2.4.5. The concept of equilibrium

Under the definitions previously introduced, we can introduce our concept of equi-

librium. Intuitively, we exploit the idea of Baron and Ferejohn (89), under which

each party reaches an agreement without delay, at a stationary subgame-perfect

equilibrium of the intra-party negotiation game, while we model the situation as

a simultaneous-move inter-party game, where we are interested in straightforward

Nash equilibria.

We say that a pair of policy profiles ~a = (~aL, ~aR) is an intra-party voting Nash

equilibrium (with thresholds (γL,γR)), if the following six conditions hold:

- Militants in party L are rational: platform aL,m solves the following opti-

mization problem:

max {VL(a, ~aR) : a passes, given (aL,o,aL,p) and ~aR}. (2.5)

- Opportunists in party L are rational: platform aL,o solves the following

optimization problem:

max {ΠL(a, ~aR) : a passes, given (aL,m,aL,p) and ~aR}. (2.6)

- Pragmatists in party L are rational: platform aL,p solves the following

optimization problem:

max {ML(a, ~aR) : a passes, given (aL,m,aL,o) and ~aR}. (2.7)
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- Militants in party R are rational: platform aR,m solves the following opti-

mization problem:

max {VR(~aL,a) : a passes, given (aR,o,aR,p) and ~aL}. (2.8)

- Opportunists in party R are rational: platform aR,o solves the following

optimization problem:

max {ΠR(~aL,a) : a passes, given (aR,m,aR,p) and ~aL}. (2.9)

- Pragmatists in party R are rational: platform aR,p solves the following

optimization problem:

max {MR(~aL,a) : a passes, given (aR,m,aR,o) and ~aL}. (2.10)

Intuitively, at an intra-party voting Nash equilibrium, no faction of either party

would prefer to unilaterally deviate from the policy it is adopting, given the policies

of the other two factions of its own party and the three factions of the opposing

party. They would not find it beneficial to adopt a different policy, in the sense

that the policies that would be supported by sufficiently many fellow members of

the party, the chosen policy is the one that is best according to the objective of

that faction. Implicit in the definition are two more elements of the strategy of all

politicians which are related to how they vote if it happens to be another member

of their own party who is chosen to make a proposal: first, that they support the

proposal that they themselves would make; and, second, that for any other proposal,

they vote in its support if, and only if, that policy gives them at least as much payoff,
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according to their own interest, as the expected payoff they would get from rejecting

the policy and running a new round of negotiations (where they would all make the

same proposals as in the previous round). These properties are important, because

they rule out trivial equilibria of standard majority games, where negligible players

vote in favor (or against) a proposal just because they do not have the power to

change the outcome of the vote.

Importantly, in our concept of equilibrium all politicians are selfish, in the sense

that they want to impose the policy that is best according to their own interests,

while none tries to ensure that the resulting party profile is efficient from the point

of view of their parties, at least not by design of the game. It is precisely this lack

of concern for the party’s «optimality»that we want to emphasize, for this is the

feature of Roemer’s equilibrium concept that, we believe, can often be untenable. In

order to capture the ideas of Roemer, however, we first specify a class of games in

which our concept is particularly amenable to comparison to his definition.

2.4.6. Intra-party unanimous voting Nash equilibrium

We shall say that an intra-party voting Nash equilibrium ~a = (~aL, ~aR) requires

unanimity, if the thresholds of the game are such that no coalition of just two

factions of a party can pass a policy proposal: for both i = L,R, the following is

true:

αi + βi < γi, 1− βi < γi and 1− αi < γi.
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Under this condition, a faction’s proposal in either party can only pass if the other

two factions of that party vote to accept it.
15

.. I  I-P V E P

Our aim is to show that Roemer’s solution concept may fail to capture some aspects

of the political game, for instance, when intra-party competition is significant, for

instance, the case of presidential elections. The idea of Roemer is to capture the

property of unanimity through the application of intra-party efficiency of the cho-

sen platform, but without explicitly modeling the strategic interactions taking place

within each party. Conversely, we model the decision process of each party, with-

out the need for the unanimity property. However, in order to capture Roemer’s

premises, from now this point on we will restrict attention to intra-party voting

Nash equilibria that require unanimity.

Of course, between the two concepts there is a formal difference that we need to

address in order for the comparison to be meaningful: while a party unanimity Nash

equilibrium is a point in A×A, an intra-party voting Nash equilibrium is one in A3×

A3
. It would not make sense to say that an outcome of the game is an equilibrium

under both definitions. At the same time, party-unanimity Nash equilibria are

often in multiplicity, and, as mentioned before, under simple assumptions they

constitute a manifold of policy pairs, parameterized by the values of (αL,βL) and

15
That is, if the reason why the proposal passes is given by condition (d) in the definitions of

passing proposals.
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(αR,βR). Since in our concept of intra-party voting equilibrium we maintain the

latter parameters fixed, and in order to deal with the higher dimensionality of our

concept of equilibrium, we study whether the nine pairs of policies that constitute

the support of an intra-party voting Nash equilibrium, for given values of (αL,βL)

and (αR,βR), are necessarily party-unanimity Nash equilibria of the game with the

same fundamentals.
16

By means of an example, we show that this is not the case.

For the sake of completeness in our comparisons, we compute in Appendix B.4,

all the basic Nash equilibria, P.U.N.E and the Nash bargaining equilibria for the

particular game we consider. Next, we compute the intra-party unanimous voting

equilibria and prove the following proposition.

P 13. There exist games in which the support of intra-party unanimous

voting Nash equilibria is not a subset of the set of P.U.N.E.

2.5.1. Fundamentals

Suppose that the policy space is A = [0, 1]. The ideology functions of the two parties

are

vL(a) = 1− a and vR(a) = a.

The linearity of these functions will make our computations as simple as possible,

and for the same reason we consider the following piecewise linear function to

16
But where, again, (αL,βL) and (αR,βR) play no role.
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represent the support received by party L as a function of the two platforms chosen:

π(aL,aR) =


max {min {b(aL + aR) − C, 1}, 0}, if aL < aR;

1

2
, if aL = aR;

min {max {1− b(aL + aR) + C, 0}, 1}, if aL > aR.

Here, the parameter b > 0 and the constant C > 0 are fixed, and we do not try

to offer a micro-foundation for the function. It is important, however, to note that

function π satisfies all the assumptions imposed on it in §2.2.2. In particular, it obeys

that π(a ′,a ′′) = 1−π(a ′′,a ′), which gives us an easy formula for the computation of

the support for party R. This latter assumption, however, does not impose symmetry

for the inter-party game: it does not imply, for example, that π(0, 1) = 1/2.

In our computations, in Appendix B.4, we assume, furthermore, that 1/2 < b 6

3/2, C < 1 and 2b−2 6 C < 2b−1. Figure 2.1 shows the area of parameters allowed

by these conditions. These assumptions simply help us to solve some ambiguities in

our computations. The game is symmetric between parties when C = b − 1/2; later

on, the particular case when b = 1 and C = 1/2, will be considered. For arbitrary

values of b and C, we can illustrate the levels of the support function π as in Figure

2.2.

Since the values of (αL,βL), (αR,βR), δL and δR are not needed for all the

computations, we do not yet give values for these parameters.

In the next section, we compute intra-party unanimous voting Nash equilib-

rium for the simplified version of the game, and prove the Proposition 13.
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2.5.2. Intra-party voting Nash Equilibria

Since this task is mathematically much more complicated than the computation of

the equilibria we have found so far, we need to appeal to numerical methods and,
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thus, need to impose specific values to the parameters under consideration. For

similar reasons, we simplify the game further by imposing parametric values that

make it symmetric between the two parties.
17

Also, in order to make the require-

ments of our concept of equilibrium as close as possible as Roemer’s motivation for

the concept of party-unanimity Nash equilibrium, we will concentrate on intra-party

voting Nash equilibrium that require unanimity for both parties.

Specifically, the game that we are going to consider will have b = 1, C = 1/2,

δL = δR, 0 < αL = αR, 0 < βL = βR, 1 − αL − βL < 1 and γL = γR = 1. The first two

conditions suffice to make the sets of party-unanimity Nash equilibria and of Nash

bargaining solutions symmetric. Using our results from Appendix E, we present

the set of Roemer equilbria in Figure 2.3. The other assumptions, which are of no

relevance for Roemer equilibria, will allow us to search for symmetric intra-party

voting Nash equilibria, where aL,t = 1−aR,t for each of the three types, t ∈ {m,o,p}.

Consistency of Roemer equilibria and intra-party voting Nash equilibria

As mentioned earlier, a Roemer equilibrium is a pair of policies in (aL,aR) ∈ A×A,

while an intra-party voting Nash equilibrium is a pair of policy profiles (~aL, ~aR) ∈

A3 × A3
; therefore, we need to specify a sense in which these two objects can be

compared. At the same time, the fact that we have a whole set of Roemer equilibria,

which does not depend on the parameters of the intra-party voting problem (namely

δi, αi, βi and γi), allows us to establish the following criterion: given a pair

17
By this, we mean that the functions and optimization problems of the Right party are the

rotation of those of the Left party, in the sense that vR(a) = vL(1− a) and π(a,a ′) = 1− π(a ′,a).
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Figure 2.3: The set of Roemer equilibria of the simple game, with b = 1 and C = 1/2 is

the shaded area. It only includes its boundaries where these are drawn in a continuous

line, and it contains, in particular, the five dots (of these dots, (0, 1) is the Nash equilibrium

between militants, ( 1
4
,
3

4
) is the Nash equilibrium between pragmatists, and ( 1

2
,
1

2
) is the

Nash equilibrium between opportunists).

(~aL, ~aR) ∈ A3 ×A3
, define the support of this pair as the set

{aL,m,aL,o,aL,p}× {aR,m,aR,o,aR,p};

then, we would say that intra-party voting Nash equilibrium is consistent with

Roemer equilibrium if for any value of the parameters δi, αi, βi and γi, for

i = L,R, a pair of policy profiles (~aL, ~aR) is a intra-party voting Nash equilibrium

and pair (aL,aR) lies in the support of this equilibrium, then (aL,aR) is a Roemer

equilibrium.

Intuitively, consistency would require that at every intra-party voting Nash equi-

librium, in each party each faction proposes a policy that is Pareto efficient from the

point of view of its own party, given each of the three policies that are chosen by
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the factions of the other party. This definition is demanding, since in our definition

of equilibrium each faction chooses a policy under uncertainty about the policy

that the opposing party will play, for it does not know which one of that party’s

faction will win its intra-party game – this is an ex-ante choice, while, under this

uncertainty, the concept of consistency would require ex-post efficiency of all the

choices. Our main point in this paper is precisely that: we are going to argue that

intra-party voting Nash equilibrium is not consistent with Roemer equilibrium. This

means that in a situation in which the primary intra-party contests are important,

the concept of Roemer equilibrium is misleading, for it requires ex-post efficiency

of a series of choices that in reality are made ex-ante. We will later prove that,

indeed, this divergence of criteria is the reason for the inconsistency we claim.

Computation of intra-party voting Nash equilibrium

In order to compute intra-party voting Nash equilibria, we apply the following

numerical algorithm, given particular values of the parameters δL = δR, 0 < αL = αR,

0 < βL = βR, 1 − αL − βL < 1 and γL = γR = 1. In the algorithm G[0, 1] represents a

discretization of the interval [0, 1] containing 1,000 points.

1. Fix a strategy ~aR = (aR,m,aR,o,aR,p) for party R.

2. Define strategy ~aL = (1− aR,m, 1− aR,o, 1− aR,p) for party R.

3. For every a ∈ G[0, 1], compute the values of functions

vL(a),π(a,aR,m),π(a,aR,o),π(a,aR,p),µL(a,aR,m),µL(a,aR,o) and µL(a,aR,p).
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4. For every a ∈ G[0, 1], compute the expected value functions

VL(a),ΠL(a, ~aR) and ML(a, ~aR).

5. For every a ∈ G[0, 1], compute the discounted continuation values of the other

types:

(a) for militants

δLΠ
e
L[(a,aL,o,aL,p), ~aR] and δLM

e
L[(a,aL,o,aL,p), ~aR].

(b) for opportunists

δLV
e
L [(aL,m,a,aL,p)] and δLM

e
L[(aL,m,a,aL,p), ~aR].

(c) for pragmatists

δLV
e
L [(aL,m,aL,o,a)] and δLΠ

e
L[(aL,m,aL,o,a), ~aR].

6. For every a ∈ G[0, 1], determine if it passes:

(a) for militants, a passes if

ΠL(a, ~aR) > δLΠ
e
L[(a,aL,o,aL,p), ~aR] and ML(a, ~aR) > δLM

e
L[(a,aL,o,aL,p), ~aR].

(b) for opportunists, a passes if

VL(a) > δLV
e
L [(aL,m,a,aL,p)] and ML(a, ~aR) > δLM

e
L[(aL,m,a,aL,p), ~aR].

(c) for pragmatists, a passes if

VL(a) > δLV
e
L [(aL,m,aL,o,a)] and ΠL(a, ~aR) > δLΠ

e
L[(aL,m,aL,o,a), ~aR].
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7. Determine optimal policies for each faction:

(a) for militants, find âm that makes v(a) maximum amongst all those that

pass.

(b) for opportunists, find âo that makes ΠL(a, ~aR) maximum amongst all those

that pass.

(c) for pragmatists, find âp that makesML(a, ~aR) maximum amongst all those

that pass.

8. If

âm = aL,m, âo = aL,o and âp = aL,p,

stop. Else, perturb strategy ~aR = (aR,m,aR,o,aR,p) and iterate to 2.

From the output of the algorithm, we get a symmetric intra-party voting Nash

equilibrium (~aL, ~aR).

Inefficiency of intra-party voting Nash equilibrium

In addition to the values of b = 1 and C = 1/2, consider the game with the

following values for the exogenous parameters: δL = δR = 0.55, αL = αR = 0.01

and βL = βR = 0.98. After running the first seven steps of the algorithm above,

for ~aR = (aR,m,aR,o,aR,p) = (0.974, 0.412, 0.75), we construct the three figures in

Appendix C
18
.

18
Which correspond to the Graphs of Pragmatists, Militants and Opportunists, respcetively
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For militants: Consider the second figure in Appendix C. The straight, down-

ward sloping line is the objective function of the militants of the Left, VL(a) (which

is measured on the axis to the right). The other two functions are the difference

between the immediate expected payoff and the discounted continuation value for

the other two factions of the party: the smoother curve measures

ML(a, ~aR) − δLM
e
L[(a,aL,o,aL,p), ~aR],

while the more irregular, piecewise linear function represents

ΠL(a, ~aR) − δLΠ
e
L[(a,aL,o,aL,p), ~aR].

The former curve is above 0 for values of a between 0 and 0.727, but the latter is

below 0 for values of a below 0.026 and above 0.75, which means that, the Left’s

pragmatists would vote to support policies 0 6 a 6 0.727 proposed by the party’s

militants, while its opportunists would only support policies 0.026 6 a 6 0.75. Of

these «feasible» values, the one that maximizes VL is âm = 0.026.

For Opportunists: Consider now third figure in Appendix C. The straight line

measures

VL(a) − δLV
e
L [(aL,m,a,aL,p)],

while the smoother curve measures

ML(a, ~aR) − δLM
e
L[(aL,m,a,aL,p), ~aR].

The militants would vote to support any policy where the former line is above 0,

while the pragmatists would vote to support policies where the latter curve takes

positive values. Under unanimity, the only policies that pass are those where both
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of these conditions hold, which are any a 6 0.588. The Left’s opportunists will try

to maximize ΠL(a, ~aR), which is the piecewise linear function, subject to a 6 0.588.

Maximization, thus, occurs precisely at the corner âo 6 0.588.

For Pragmatists: Finally, consider the first figure in Appendix C. The straight

line measures

VL(a) − δLV
e
L [(aL,m,aL,o,a)],

while the piecewise linear function, which is measured in the right axis, depicts

ΠL(a, ~aR) − δLΠ
e
L[(aL,m,aL,o,a), ~aR].

Again, for the pragmatists to obtain the support of the other two factions, these

two functions must take non-negative values, which occurs for a 6 0.761. The

pragmatists seek to maximize ML(a, ~aR), namely the smooth function, over that

subset of policies, so their optimal policy is âp = 0.25.

Equilibrium: The computations above give us a profile of policies where each

faction in the Left party is maximizing its expected value, given the policies chosen

by the other two factions of the same party, and by the three factions of the Right.

That is, vector ~a = (0.026, 0.588, 0.25) gives an equilibrium of the intra-party game

for the Left. For us to obtain an intra-party voting Nash equilibrium, we would

need to further argue that the three factions of the Right are also maximizing their

expected values, given the policies chosen by the other factions of the Right, and

by the three factions of the Left. By symmetry, however, it suffices to observe that

~a = 1− ~aR, to conclude that this is indeed the case, and, hence that

(~aL, ~aR) = [(0.026, 0.588, 0.25), (0.974, 0.412, 0.75)]
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is an intra-party voting Nash equilibrium. This means that along the policy space

A = [0, 1] the left party will announce three different platforms, depending on which

faction wins the internal elections. If the militants, opportunist or pragmatist win

the internal elections, then they will place themselves in the position 0.026, 0.588

or 0.25 along the policy space. The same can be said for the right party.

Inefficiency of equilibrium policies: Now that we have computed the intra-

party unanimous Nash equilibria, what remains to prove proposition 13 is to show

that the support of the entire intra-party equilibria is not in the set of Roemer

equilibria. Figure 2.4 depicts the support of our equilibria and compares it with

the set of P.U.N.E. The main finding of this exercise is that there are points in

the support that do not constitute a party-unanimity Nash equilibrium. There are

three such pairs: (aL,m,aR,o), (aL,o,aR,m) and (aL,o,aR,o). The pairs (aL,m,aR,o) and

(aL,o,aR,m) fail to be Roemer equilibrium for the same reason: in both cases, the

militants of a party are picking a policy that is so «extreme» in terms of that party’s

ideology, that when such policy is confronted with the opposing party’s opportunists,

which are in turn taking a policy quite far from their ideological extremes, the first

party fails the intra-party efficiency condition required by Roemer. Indeed, in both

cases the party of the militants has zero probability of winning, yet it is not adopting

the ideal policy for its militants. The reason why the militants adopted this position

was that, ex-ante,
19

their parties’ opportunists would not have supported an even

more extreme platform.

The last pair of policies, (aL,o,aR,o), also fails to be a Roemer equilibrium, but

19
That is, before knowing which of the opposing party’s factions they were going to face.
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Figure 2.4: The nine thick dots constitute the support of the equilibrium pair of policies.

The shaded area is the set of party-unanimity Nash equilibria.

for a different, and perhaps more interesting reason. In this case, both parties’

opportunists would be competing in the election, and the Right party would have

adopted a more «leftist» platform than the Left party. This is not internally efficient

for any of the parties: given the policy chosen by the opposition, all the factions of

a given party would have been better off had they chosen a policy closer to the one

of the opposition. In this case, the militants and pragmatists of each party would

have supported one such change in policy if it had been proposed by their fellow

opportunists, but it was not in the latter’s interest to do so: given the probability

that the opposition would adopt the policy proposed by its pragmatists, ex-ante the

opportunists choose the most extreme policy that their fellow militants are willing

to support.

In the three points we have mentioned, the interpretation of an observed pair
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of policies as a Roemer equilibrium would be quite misleading. In the first two

pairs, the analyst would need to mis-specify the voters preferences to account for

them. In the latter, the analyst would have to mis-specify the parties’ ideology

functions. These errors would arise from the utilization of a concept in which

the intra-party contest plays little strategic role: by imposing intra-party efficiency,

Roemer’s concept is, a fortiori dismissing all the externalities that a party’s factions

impose on each other during primary elections. The point of our next section is to

argue that, indeed, the reason why intra-party voting Nash equilibria may fail to

display the properties required by Roemer’s party-unanimity Nash equilibrium lies

mainly on the fact that each party’s factions are choosing under uncertainty about

the policy that the other party will propose. This uncertainty is due to the lack

of knowledge of its party members about which of its factions will prevail in its

internal contest.

.. I-   -  N



In order to argue that it is due to the inherent uncertainty that each party faces

about the outcome in its opposition’s primary vote, we will now consider the ficti-

tious situation in which the three factions of a party (the Left) have to solve the

intra-party contest under the assumption that the opposing party’s policy is given.

P 14. Fix a policy aR ∈ [0, 1], and suppose that the three factions of the

Right are going to follow that policy: ~aR = (aR,aR,aR). Let ~aL be such that Conditions
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(2.5), (2.6) and (2.7) are satisfied, with γL = 1. Then, the three factions of the Left

choose policies to the left of aR:

aL,m 6 aR, aL,o 6 aR and aL,p 6 aR.

Proof: Each of the three inequalities can be argued separately. The most interesting

case, though, is the second inequality, for it is apparent that if the opportunists are

to the left of aR, then so will the other two factions of the Left.

To argue this inequality, suppose, by way of contradiction, that aL,o > aR. By

assumption, vL(aR) > vL(aL,o), which suffices to imply that VL(aR) > VL(aL,o), and

hence that

VL(aR) > δLV
e
L(aL,m,aR,aL,p).

For the same reason, µL(aR,aR) > µL(aL,o,aR), which implies that ML(aR, ~aR) >

ML(aL,o, ~aR), and therefore that

ML(aR, ~aR) > δLM
e
L[(aL,m,aR,aL,p), ~aR],

since δL < 1 and βL 6 1. The latter implies that both the militants and the prag-

matists of the Left would vote to support aR if it were proposed by their fellow

opportunists, so that such policy would pass, even when γL = 1. By continuity, if

the opportunists proposed a = aR + ε, for ε > 0 small enough, such policy would

also pass, but this is impossible because, in such case, ΠL(a, ~aR) > Π(aL,o, ~aR), which

contradicts Condition (2.6). Q.E.D.

This proposition addresses the point we posed at the end of the previous section,

that is, in the absence of uncertainty about the rival’s policy, the strong intra-party
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inefficiency displayed by the policy pair (aL,o,aR,o) in our previous example would not

occur. An analogous result holds for the type of intra-party inefficiency exhibited by

the other two pairs, but in a weaker sense: if the solution to an intra-party contest

displays such inefficiency in the absence of uncertainty about the policy proposed

by the opposing party, then there is a policy triple that also solves the intra-party

contest and is, at least, weakly Pareto superior.

P 15. Fix a policy aR ∈ [0, 1], and suppose that the three factions of the

Right are going to follow that policy: ~aR = (aR,aR,aR). Let ~aL be such that Conditions

(2.5), (2.6) and (2.7) are satisfied, with γL = 1. Then,

1. if π(aL,m,aR) = 0, then aL,m = 0;

2. if π(aL,o,aR) = 0, then a = 0 passes and ΠL(aL,o, ~aR) = ΠL(0, ~aR); and

3. if π(aL,p,aR) = 0, then a = 0 passes and ML(aL,o, ~aR) =ML(0, ~aR).

Proof: Again, the three results can be proved independently, but the most interesting

is the second one. To see that the second claim is true, suppose that π(aL,o,aR) = 0.

Since ~aL satisfies Condition (2.6), it must be true that the Left’s pragmatis vote to

accept aL,o. Since aL,o > 0, it must be true that

0 6 π(0,aR) 6 π(aL,o,aR) = 0,

which suffices to imply that ML(0, ~aR) = ML(aL,o, ~aR). The latter implies that the

pragmatists also vote to accept a = 0 when proposed by the opportunists. By

definition of function vL, so do the militants, which implies that a = 0 passes. To
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see that ΠL(aL,o, ~aR) = ΠL(0, ~aR), observe, again, that π(0,aR) = π(aL,o,aR), which

suffices for the result. Q.E.D.

.. C

We present a two-party model of electoral competition in which each party must

elect a type of politician that will subsequently compete with the elected member of

the opposing party.

We use Baron and Ferejohn’s bargaining protocol to explicitly model the decision

process by which each party elects a type of political actor, and offer an alterna-

tive solution concept, intra-party unanimity Nash equilibria for games of electoral

competition.

We design an example to show that not all the policy pairs in the support of an

intra-party Nash equilibrium are necessarily Roemer equilibria and prove the intra-

party inefficiency captured by a triplet of policy pairs occurs due to the uncertainty

each party has about the policy the contender will propose.
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.. I

A question in economics which, not seldom, has been investigated is how people

negotiate over how to divide a dollar and what will the agreed partition be. The

two fundamental approaches within the literature have been the axiomatic and the

strategic approach. While the former, associated with Nash (1950), attempts to

design a set of axioms that a "fair" and "reasonable" division should satisfy, and

identify the division with these properties; the latter, associated with Rubinstein

(1982), provides both an explicit description of an entire bargaining situation and a

precise notion of the players’ rationality which yield a solution concept. Although,

numerous studies within the latter approach embrace salient features such as, tim-

ing of the offers (i.e. how frequent offers may be)
1
and the institutional structure (i.e.

sequence of moves)
2
, not much has been explored for the case where agents’ pref-

erences, within a specific bargaining environment, are represented by heterogenous

utility functions.

Suppose individuals in a bargaining game negotiate over how to divide a fixed

amount of money, say a dollar. Their preferences are represented by different utility

functions, namely, they represent selfish and egalitarian individuals preferences.

The first type of player derives utility solely from the shares they can obtain for

themselves, whereas the second type derives utility, both from his individual shares

and those allocated to the remaining players. The objective of this paper is to

propose a model of endogenous formation of strategic generosity. Furthermore, in

1
See Sákovics (1993), Perry and Reny (1993) and Admati and Perry (1987)

2
See Baron and Ferejohn (1989) and Sutton (1986)
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absence of any bargaining protocol all two types will stay with the entire dollar for

themselves, regardless of the other regarding preferences of the egalitarian player.

Nonetheless, the presence of a negotiation protocol à la Rubinstein allows strategic

generosity to endogenously emerge. The basic setup analyzed in this paper explicitly

describes the procedure by which the proposer, when having to decide how much

of the dollar to offer the seconder in order for the latter to accept, strategically

considers (in accordance with his preferences) the consequences of changes in the

distribution of types on his payoffs. Similarly, we describe the procedure by which

the seconder, when deciding either to accept or reject an offer, strategically considers

the consequences of variations in the profile of types.

Essentially, we concentrate on the role played by the heterogeneity of players

preferences and changes in the profile of types on the endogenous formation of

strategic generosity. To keep the analysis tractable, we follow Rubinstein (1982) in

that we exogenously specify a fixed time between offers, one offer per time unit, but

rather than depending upon offers made sequentially, the order by which players

are selected to make a proposal is random. We allow for players preferences to be

represented by different utility functions and derive the set of subgame perfect equi-

librium for different arrangements of player types and show that strategic generosity

comes into scene endogenously under the chosen negotiation protocol.

Related Literature: We face a bargaining problem when multiple parties have

before them several possible contractual agreements that offer, if they coordinate

their actions, an opportunity to gain but their interests are not entirely identical.

Over a century ago, Edgeworth (1881) considered negotiation between individuals to
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be the most fundamental problem in economics. Since then, studying the problem

from a non-cooperative approach requires both an explicit description of the entire

bargaining situation, as well as a precise notion of the players’ rationality. This is

commonly known as the strategic approach to the bargaining problem. Assuming

parties behave rationally, the question this situation poses is what will the agreed

contract be?

Nash (1950 and 1953) was one of the first to study a class of two-person bar-

gaining situations. He offered two independent derivations of the solution to the

problem. The first is a set of several properties that determine the solution uniquely.

The second was an effort to complement the axiomatic approach where he reduced

the cooperative game to a non-cooperative game and proved that the solution is

the limit of a sequence of equilibria of smoothed games. It was Nash himself who

expressed that ...."the two approaches to the problem, via the negotiation model or

via the axioms, are complementary; each helps to justify and clarify".
3

Occasionally, the strategic approach has been criticized on the grounds that the

predictions of the model are highly dependent and sensitive to the exact description

of the extensive form. Aumann (1987) shared this same concern when expressing

the reasons why cooperative games came to be treated separately: ....."when one

3
He also claims that the situation to be treated is more general than that in the bargaining

problem mentioned above since the solution is characterized by the maximization of the Nash

product, that is the differences between the values of the game and their default utilities (i.e. utility

levels that players can obtain if they break up negotiations: if they don’t cooperate). As shown if

Nash (1953).
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does build negotiation and enforcement procedures explicitly into the model, then

the results of a non-cooperative analysis depend very strongly on the precise form

of the procedures, on the order of making offers and counter-offers, and so on. This

may be appropriate in voting situations in which precise rules of parliamentary

order prevail...... But problems of negotiation are usually more amorphous; it is

difficult to pin down just what the procedures are. More fundamentally, there is a

feeling that procedures are not really all that relevant; that it is the possibilities for

coalition forming, promising and threatening that are decisive, rather than whose

turn it is to speak. Another reason is that even when the procedures are specified,

non- cooperative analyses of a cooperative game often lead to highly non-unique

results, so that they are often quite inconclusive."
4

Although Rubinstein (1982) too recognized that the main difficulty with the

strategic approach has been the need to specify the moves of the game, specially

when not all bargaining situations have a unique procedure. Rubinstein’s (1982)

bargaining game is an example of the sensitivity to the exact description the exten-

sive forms, as it turn out it is the order and timing of the offers the main force

driving the predictions of the model. Nonetheless, he also expressed some reserva-

tions concerning the axiomatic approach stressing that.... (1) some of the axioms

are not easily defended in abstract and that ....(2) additional information, such as

the negotiation time preferences, seems to be relevant to the solution".
5
Our model

4
This chapter originally appeared in The New Palgrave: A Dictionary of Economics, Vol. 2,

edited by J.Eatwell, M. Miligate and P. Newman, pp. 460-482. Macmillan London (1987). Reprinted

with permission.

5
See Rubinstein (1985)
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is a strategic model, and as such it embodies a detailed description of a special

procedure which we will specify in detail further into the paper.

This paper is organized as follows. We develop the basic framework and define

the concept of sub-game perfect Nash equilibrium in the next section. In section 3.3

we solve the game, present and analyze our results. My concluding remarks and

some directions for further research appear in section 3.4.

.. T B M

3.2.1. The protocol

Let the set of players be N = {1, 2, 3}. At each stage of the game only one randomly

chosen player can make an offer. For the game to end, that is, for players to reach

an agreement, the offer must be accepted by the majority of players. There are no

bounds on the number of rounds of negotiation. In the event that an agreement

isn’t reached, places no restriction on the offers subsequently made, for example,

there are no rules binding players to any previous offers they have made. The

continuation game does not depend on the actions of the players in the current

period. Last, we don’t assume players are impatient about enjoying the fruits of an

agreement, in other words, they do not face costly time lapses between bargaining

rounds. So, three players have the opportunity to reach agreement on how to divide

a dollar and to do so a player is randomly selected, with probability 1/3, to propose

an allocation from the (compact and convex) set of all feasible divisions of a dollar,
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X = {(x1, x2, x3) ∈ R3

+ |

3∑
i=1

xi = 1}

Once a proposal has been made, the remaining two players vote whether to

accept or reject it. For an agreement to be reached we have determined the voting

rule to be that of the majority: understanding that the player who makes a proposal

supports it, if one of the remaining players votes to accept it, an agreement has

been reached.

If the players reach an agreement, they immediately receive the allocation and

the game ends. If they do not agree, a new player is randomly selected (with

replacement) to propose, and the game continues as before. In the case that players

never agree on an allocation of the dollar, the outcome is the disagreement event

and the payoff for each individual is zero.

3.2.2. Individual preferences

We allow for the players’ utility functions to depend, not solely, on their indi-

vidual payments, but we consider agents who also value the overall allocation of

the dollar. In this sense, players also take into account the social allocation of

the aggregate resource so that their utility functions mirror selfish and Rawlsian

principles. Hence, player i is selfish if her utility function is

ui(x) = xi;
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and she is Rawlsian if it is

ui(x) = xi + βmin

j,k 6=i
{xj, xk},

again for some β ∈ (0, 1). Across rounds of negotiation, individuals do not discount

their payoffs.

Rawlsian type players are “altruistic", in the sense that they derive utility from

the income that is allocated to others. We will assume that β < 1 and it this sense

ensure that, by itself, altruism does not induce “generosity". For instance, if a player

can simply impose the allocation of the dollar without negotiation then regardless

of their type, both will choose the “selfish" allocation; which means that each type

will choose to stay with the entire dollar for themselves. But once types abide to

a negotiation protocol we ask ourselves whether players respond strategically by

sharing less to generously sharing much more. Can "strategic generosity" emerge

as a result of the bargaining process?

We will solve the game considering different arrangements of types: (i) three

players of the same type, for each of the types; (ii) two selfish and one Rawlsian

player; and (iii) two Rawlsian and one selfish player.

3.2.3. Actions, pure strategies and pure-ish strategies

We refer to a player’s actions according to his standpoint. In other words, what

player i can offer, when he’s been randomly selected, is xi = (1 − xi,j − xi,k, xi,j, xi,k)

where xi,j and xi,k correspond to the shares players j and k receive from player i.
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In addition, when a player (different from i) has made an offer to i, the latter’s

response will be: di ∈ {A,R}, where A and R denote whether i accepts, or rejects the

offer, respectively.

In this order of ideas, a pure strategy for player i must specify the following: for

each period t, after each possible history of actions observed up to round t − 1, an

offer xit that she makes -if selected to propose-; and for each t, after each possible

history of actions observed up to round t− 1, and for each possible proposal xjt that

that player j can make with j 6= i„ a decision dit that i enunciates.

If we are to consider mixed strategies, then we must specify, under the same

contingencies, a probability distribution Pi,t over set X, and another over the set

{A,R}. The former would determine the proposal xi,t, the latter the decision di,t.

Since the game is stationary, we will concentrate our attention on equilibria

where strategies are stationary too. Therefore, the actions of each player at round

t will be independent of the history of actions up to round t− 1. So, at equilibrium

we can denote the strategies by dropping the subindex t.

Whenever possible, we will look for equilibrium in pure strategies, but this

type of equilibrium does not always exist. If the game has no equilibrium in pure

strategies, we will consider a simple case of mixed strategies, that we may call “pure-

ish": we will not allow players to randomize on their decisions whether to accept

or reject a proposal, and we will only allow the proposer to randomize between two

points in X. That is, in our equilibrium strategies:

1. When player i is chosen to propose, she chooses two points xi,j, xi,k ∈ X and
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two probabilities pi,j and pi,k such that pi,j + pi,k = 1 ∀j and k 6= i and j 6= k;

player i will propose xi,j with probability pi,j, and xi,k with probability pi,k.

2. When player i isn’t selected to propose, her decision to accept or reject is

determined by the following rule: for some number vi, player i will accept a

proposal xj,i if, and only if, ui(xj,i) > vi for j 6= i, regardless of who makes

the proposal. Moreover, the utility level v will have to be the utility level that

player i obtains in the game, at equilibrium.

The first condition simply seeks to keep the strategies as “pure” as possible,

while at the same time it gives the players space for randomization. The property

is appealing, under the following interpretation: when player i has been chosen to

propose, she only needs to get the approval of one of the other two players; she

will try to get the approval of player j with probability pi,j, and that of player k

with probability pi,k. The second property seeks to dismiss trivial majority equilibria

where the players that have not been chosen to propose, approve any proposal just

because that is what the other player is doing.

3.2.4. Subgame-perfect Nash equilibrium

Denote the one-dimensional unit simplex by ∆. Under the provisions above, a

stationary, pure-ish strategy for player i can be written as a pair (fi, vi), where

fi = ((pi,j,pi,k), xi,j, xi,k) ∈ ∆× X× X

and vi ∈ [0, 1].
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D 1. A stationary, subgame-perfect Nash equilibrium in pure-ish strategies

will be an array

((f1, v1), (f2, v2), (f3, v3))

such that, for each player i, the following conditions hold true:

pi,j > 0 implies that xi,j ∈ argmaxxi{ui(xi) : uj(xi) > vj}, (3.1)

pi,j > 0 implies that ui(xi,j) > max

xi
{ui(xi) : uk(xi) > vk}, (3.2)

∀j 6= i and

vi =
1

3

[

3∑
j=1

∑
k 6=j

pj,kui(xj,k)]. (3.3)

Eqs. (3.1) and (3.2) state that player i is rational at the time of making offers,

for it requires that: (i) when trying to get the support of player j, she does it by

choosing, among the proposals that j would accept, the one that is most convenient

for herself; and (ii) if she is going to try to convince player j, it must be that she

cannot be better off by convincing player k 6= j. Eq. (3.3) states that player i is

rational when deciding whether to accept or reject an offer.

Moreover, we will only look at symmetric equilibria, where two players of the

same type follow the same strategy.

.. B E

Let us first consider the case where all three players are selfish. An array ((f1, v1), (f2, v2), (f3, v3))

is subgame perfect if it satisfies Eqs. (3.1) to (3.3), that is,

x1
3
>

1

3

[x1
3
+ (1− x2

1
)],
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x2
1
>

1

3

[x2
1
+ (1− x3

2
)],

and

x3
2
>

1

3

[x3
2
+ (1− x1

3
)]

correspondingly. Since the game is stationary and symmetric: x2
1
= x3

2
= x1

3
. By

solving the system of inequalities we get that, at any stage of the game, when it’s

player 1
′s turn to propose she will offer player 2, x1,2 = ( 2

3
,
1

3
, 0) with probability

p1,2 = 1 and player 2 will accept. Under the conditions above Player 1
′s degenerate

pure-ish stationary strategy can be written as, (1, 0, ( 2
3
,
1

3
, 0), 1

3
)

Because the game is stationary and symmetric: without loss of generality, if

instead of player 1 being randomly selected to propose, it is player 2, who choses

player 3 to bargain with in order to reach an reach agreement, and if instead of

player 2 being the proposer, it is player 3 who chooses among the proposals player

1 will accept to reach agreement, the stationary subgame-perfect Nash equilibrium

in pure strategies will be,

For player 1.

((1, 0), (
2

3

,

1

3

, 0),
1

3

),

For player 2.

((1, 0), (0,
2

3

,

1

3

),
1

3

),

For player 3.

((1, 0), (
1

3

, 0,

2

3

),
1

3

).
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D 2. A selfish offer (I) from player i is an offer such that, xi,j = 1

3
, xi,k =

0 and (1− xi,j) =
2

3
.

P 16. Whenever all three players present in the game are selfish, regardless

of whose turn it is to make a proposal, all of them make selfish offers (I).

Proof:

Let’s consider the case where all three players are selfish. Say player 2 accepts

a proposal, from 1, x∗
1,2

= ( 2
3
+ ε, 1

3
− ε, 0). Accepting the offer, by Eqs. (3.3), implies

she is behaving rationally, but u2(x
∗
1
) < v2 which cannot be.

6
On the other hand,

because player 1 requires the support of only one player for the game to end, say she

tries to convince player 2 to accept a proposal for the game to reach agreement such

that x∗∗
1,2

= ( 2
3
− ε, 1

3
+ ε, 0). Player 1 must have have chosen, among the proposals

that 2 will accept, the one that maximizes her utility. So, by not choosing among the

proposals that player 3 would have accepted, implies player 1 cannot increase her

utility beyond the level she will achieve when proposing x∗∗
1,2
. However, by symmetry,

player 1 can convince player 3 of accepting proposal, x1,3 = ( 2
3
, 0,

1

3
). Therefore, by

choosing among the proposals player 2 accepts, player 1 isn’t maximizing her utility,

since, u1(x
∗∗
1,2
) < u1(x1,3). She could be better off if she gains support from 3 by

offering, x1,3.
7 Q.E.D.

6
Refer to Figure 4, (case 1) of Appendix C.2 where we have plotted a selfish players expected

utility, for different levels of β. In this case player 2
′s continuation payoff equals

1

3
which is below

her cut-off point, therefore she will not accept.

7
See Appendix C.2, Figure 4 (case 1) to see that player 3

′s continuation payoff equals her utility

payoff of player 1
′s proposal, therefore 3 will indeed accept 1

′s offer.
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Now, let’s consider the case where players 1 and 2, are selfish and 3 is Rawlsian.

Since this arrangement has no subgame perfect Nash equilibrium in pure strategies,

to look for the stationary equilibrium in mixed strategies
8
Eqs. (3.1) to (3.3) must

be satisfied. To find the stationary pure-ish strategy for player i, it must be that she

is indifferent between making a proposal to player j and k, for all i, jandk ∈ {1, 2, 3}

rand all i 6= j 6= k. In which case, u1(x1,2) = u1(x1,3), u2(x2,1) = u2(x2,3) and

u3(x3,1) = u3(x3,2) which implies, :x1
2
= x3

2
and x2

1
= x3

1
. Thus, by symmetry, x1

2
= x2

1
,

x3
1
= x3

2
, p1,2 = p2,1, consequently,

x1j >
2

7− 2p1,2
,

for j = (2, 3)

x2j >
2

7− 2p2,1

for j = (1, 3) and

x3i >
1

2+ 2pi,j − 2pi,jβ

for i and j = (1, 2).

By solving the system of inequalities: player 1 offers: x1,2 = (6−5β
9−7β

,
3−2β
9−7β

, 0) and

x1,3 = (6−5β
9−7β

, 0,
3−2β
9−7β

) with probability p1,2 = 3

6−4β
and p1,3 = 3−4β

6−4β
, respectively. By

symmetry, x2,1 = (3−2β
9−7β

,
6−5β
9−7β

, 0) with p2,1 =
3

6−4β
and (ii) x2,3 = (0, 6−5β

9−7β
,
3−2β
9−7β

) with

probability p2,3 =
3−4β
6−4β

.

8
To see why there exists no equilibrium in pure strategies, refer to Appendix C.2.
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Whenever it’s a selfish type’s turn to offer, if β > 3

4
he places a offer to her same

type only, hence, p1,2 = p2,1 = 1. By symmetry, same for player 2, thus among the

offers 1 accepts, the latter accepts the one that maximises her utility. To convince 1

of accepting, it must be that 2 cannot be better off by making an offer to player 3.

When β is high making a proposal to a Rawlsian type that the latter will accept is

too costly compared to what it costs to convince a player of his same type. Since

the Rawlsians’ continuation payoff is greater than the selfish type’s, the latter type

will solely propose to his same type.
9

Now, if β < 3

4
, by symmetry: p1,2 = p2,1 then

1

2
6 p1,2 6 1. In line with what

has been said above, as β increases the probability that a selfish player makes an

offer to his same type increases. In essence, a greater (lower) β translates into a

greater (lower) expected utility for the Rawlsian player, discouraging (encouraging),

say player 2 to make a proposal to player 3.

Last, when player 3 makes an offer, she flips a fair coin and offers: x3,1 =

(3−2β
9−7β

, 0,
6−5β
9−7β

) and x3,2 = (0, 3−2β
9−7β

,
6−5β
9−7β

). Furthermore, irrespective of the value of

β ∈ (0, 1) he turns out making the same offer the selfish type does.

The stationary subgame perfect Nash equilibrium in pure-ish strategies will be,

For player 1.

((
3

6− 4β
,

3− 4β

6− 4β
), (

6− 5β

9− 7β
,

3− 2β

9− 7β
, 0), (

6− 5β

9− 7β
, 0,

3− 2β

9− 7β
))
3− 2β

9− 7β
),

if β < 3

4
.

9
See Appendix C.2 and compare cases 4 and 1 of Figure 4 and 6.
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((1, 0), (
6− 5β

9− 7β
,

3− 2β

9− 7β
, 0), (

6− 5β

9− 7β
, 0,

3− 2β

9− 7β
))
3− 2β

9− 7β
),

if β > 3

4

For player 2.

((
3

6− 4β
,

3− 4β

6− 4β
), (

3− 2β

9− 7β
,

6− 5β

9− 7β
, 0), ((0,

6− 5β

9− 7β
,

3− 2β

9− 7β
),
3− 2β

9− 7β
),

if β < 3

4
.

((1, 0), (
3− 2β

9− 7β
,

6− 5β

9− 7β
, 0), ((0,

6− 5β

9− 7β
,

3− 2β

9− 7β
),
3− 2β

9− 7β
),

if β > 3

4
.

For player 3.

((
1

2

,

1

2

), (
3− 2β

9− 7β
, 0,

6− 5β

9− 7β
), (0,

3− 2β

9− 7β
,

6− 5β

9− 7β
),
3− 2β

9− 7β
)

D 3. A semi-selfish offer from player i is an offer such that xi,j = 3−2β
9−7β

, xi,k =

0 and (1− xi,j) =
6−5β
9−7β

.

P 17. When two out of three players present in the game are selfish,

irrespective of the value of β, all three players will make semi-selfish offers.

Proof: Provided β > 3

4
and since player 1 and 2 make proposals amongst each

other, if Player 2 proposes, x∗
2,1

= (3−2β
9−7β

−ε, 6−5β
9−7β

+ε, 0) player 1 ′s continuation payoff

is greater than the utility she will receive from x∗
2,1
, therefore, she will not accept.
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If she proposes x∗∗
2,1

= 3−2β
9−7β

+ε, 6−5β
9−7β

−ε, 0), for ε > 0 she isn’t choosing the proposal

that is most convenient for her since, u2(x2,1) > u2(x
∗∗
2,1
).

Player 2 makes a proposal, x∗∗
2,3

= (0, 6−5β
9−7β

−ε, 3−2β
9−7β

+ε) it must be that, u2(x
∗∗
2,3
) >

u(x2,3), but this cannot be since:
6−5β
9−7β

−ε < 6−5β
9−β

for ε > 0. Oppositely, when player

2 chooses to make a proposal to player 1 and offers, x∗∗
2,1

= (3−2β
9−7β

+ ε, 6−5β
9−7β

− ε, 0) she

is be better off, at any stage of the game, gaining support from player 3, in other

words, proposing, among the offers the latter accepts, x2,3 = (0, 6−5β
9−7β

,
3−2β
9−7β

) since

u2(x
∗∗
2,1
) < u2(x2,3).

If it’s player 3
′s turn to propose, as β increases, it’s too costly for a Rawlsian

type to convince the other type, the best the former can do is to propose what he

accepts when the other type makes an offer to him, that is, x3i = 3−2β
9−7β

∀i = (1, 2).

In this sense, the presence of a ”altruistic" type is of no importance for the social

allocation of the aggregate resource. Q.E.D.

Let’s invert the labelling of players so that players 1 and 2 are Rawlsian and 3 is

selfish. Particularly, the game has a subgame perfect Nash equilibrium in pure-ish

strategies if,

u1(x
1

3
) = u1(x

1

2
) =

1

3

[u1(x
1

2
) + u1(x

2

1
) +

1

2

(u1(x
1

3
) + u1(x

2

3
))]

and

u2(x
2

3
) = u2(x

2

1
) =

1

3

[u2(x
2

1
) + u2(x

1

2
) +

1

2

(u2(x
2

3
) + u2(x

1

3
))]

By symmetry, x2
1
= x1

2
, x3

2
= x3

1
and x1

3
= x2

3
and solving the system of inequalities

we get three general findings: (i) irrespective of the value of β ∈ (0, 1) a Rawlsian
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type always stays with the greatest amount of shares, (ii) for β < 1

2
the Rawlsian

only offer his type a positive amount of shares; conversely, if β > 1

2
he offers

positive amounts to both the remaining players and (iii) for β > 0.645 the selfish

player gives up the greatest amount of shares to give it to whomever she chooses

to negotiate with. Therefore, the stationary subgame perfect Nash equilibrium in

pure-ish strategies will be,

For player 1.

((1, 0), (
5− 2β− β2

7− β2

,

2+ 2β

7− β2

, 0),
2+ 2β

7− β2

),

for β 6 1

2
.

((1, 0), (
3− β2

7− β2

,

2

7− β2

,

2

7− β2

),
2+ 2β

7− β2

),

for
1

2
< β < 0.645.

((1, 0), (
3+ β2

7+ 2β+ β2

,

2+ β

7+ 2β+ β2

,

2+ β

7+ 2β+ β2

),
(2+ β)(1+ β)

7+ 2β+ β2

),

for 0.645 < β 6 1.

For player 2.

((1, 0), (
2+ 2β

7− β2

,

5− 2β− β2

7− β2

, 0),
2+ 2β

7− β2

),
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for β 6 1

2
.

((1, 0), (
2

7− β2

,

3− β2

7− β2

,

2

7− β2

),
2+ 2β

7− β2

),

for
1

2
< β < 0.645.

((1, 0), (
2+ β

7+ 2β+ β2

,

3+ β2

7+ 2β+ β2

,

2+ β

7+ 2β+ β2

),
(2+ β)(1+ β)

7+ 2β+ β2

),

for 0.645 < β 6 1.

For player 3.

((
1

2

,

1

2

), (
2+ 2β

7− β2

, 0,

5− 2β− β2

7− β2

), (0,
2+ 2β

7− β2

,

5− 2β− β2

7− β2

),
5− 2β− β2

7− β2

),

for β 6 0.645

((
1

2

,

1

2

), (
(2+ β)(1+ β)

7+ 2β+ β2

, 0,

5− β

7+ 2β+ β2

), (0,
(2+ β)(1+ β)

7+ 2β+ β2

,

5− β

7+ 2β+ β2

),
5− β

7+ 2β+ β2

),

for 0.645 < β 6 1

D 4. A greedy offer from players 1 or 2 is an offer where, x1,2 = x2,1 =

2+2β
7−β2

, x1,3 = x2,3 = 0 and (1− x1,2) = (1− x2,1) =
5−2β−β2

7−β2
when β < 1

2
.

D 5. A generous offer from players 1 or 2 is an offer such that, x1,2 = x1,3 =

x2,1 = x2,3 =
2

7−β2
and (1− 2x1,2) = (1− x2,1) =

3−β2

7−β2
for 1

2
6 β < 0.645
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D 6. An even more generous proposal from players 1 or 2 is an offer where,

x1,2 = x1,3 = x2,1 = x2,3 = 2+β
7+2β+β2

and (1 − 2x1,2) = (1 − 2x2,1) = 3+β2

7+2β+β2
when

0.645 6 β < 1.

D 7. A greedy proposal from the selfish type is an offer such that, x3,j =

2+2β
7−β2

and (1 − x3,j) = 5−2β−β2

7−β2
when β < 1

2
. And x3,j = 2+2β

7−β2
and (1 − x3,j) =

5−2β−β2

7−β2
when 1

2
6 β < 0.645 for j = 1 or 2.

D 8. A one-to-one self sacrifice offer from a selfish type is an offer where,

x3,j =
(2+β)(1+β)
7+2β+β2

and (1− x3,j) =
5−β

7+2β+β2
when 0.645 6 β < 1, for j = 1 or 2.

Definitions 4 and 7 imply that whoever the proposer is, he will only make an

offer to one of the other players, but never to both. For instance, in definition 4

players 1 and 2 only make offers among themselves, whereas in definition 7, player

3 tosses a coin to choose which of the two altruistic players he will make an offer to.

Additionally, definitions 5 and 6 imply that both altruistic players choose their same

type to bargain with by offering positive, and equal, amounts to both the remaining

players. Because β is still relatively small, trying to convince a altruistic player to

accept a proposal is relatively cheap. This is why a altruistic proposer makes a less

generous offer to the remaining players, i.e, definition 5. As β increases this makes

players 1 and 2 more difficult to convince. Therefore, bargaining with an altruistic

player is more costly, thus offers are more generous, i.e, definition 6. Along this

line of thought, whenever it’s a selfish types’ turn to make an offer, he knows that

in order to convince either one of the altruistic types he will have to offer the larger

share to whomever he chooses to bargain with and stays with the smaller share of
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the dollar, which leads us to definition 8.

P 18. Suppose there are two Rawlsian players in the game, if the following

conditions hold,

β <
1

2

, (3.4a)

1

2

6 β < 0.645, (3.4b)

0.645 6 β < 1 (3.4c)

then both of them make (i) a greedy offer, (ii) a generous offer and (iii) an even more

generous offer, respectively.

Proof: If β < 1

2
, we know that by solving the system of inequalities so that

x3i = 0 for i ∈ {1, 2}, player 1 will offer player 2, x1,2 = (5−2β−β2

7−β2
,
2+2β
7−β2

, 0) and player

2 accepts. Oppositely, player 1 will accept, player 2
′s offer, x2,1 = (2+2β

7−β2
,
5−2β−β2

7−β2
, 0).

If instead, player 1 proposes to player 2, x∗
1,2

= (5−2β−β2

7−β2
,

2

7−β2
,

2β
7−β2

), the former will

gain β( 2β
7−β2

) and loose (1 − β)( 2β
7−β2

). Nevertheless, if he sticks to, x1,2 player 1

will gain (1 − β)( 2β
7−β2

) and loose β( 2β
7−β2

). In addition, player 2
′s gains and losses

cancel out, therefore, since β < 1

2
player 1 will always propose x1,2 and player

2 will accept. Due to symmetry when it’s player 2
′s turn to propose, she will

also propose x2,1 and player 1 will always accept. On the other hand, if player 1

chooses to gain support from player 3 and proposes x∗
1,3

= (5−2β−β2

7−β
, 0,

2+2β
7−β

), because

the latter’s minimum willingness to accept a proposal is strictly greater than the

former’s maximum willingness to make one, x∗
1,3

is not among the proposals that

player 3 will accept in order for player 1 to gain support, therefore proposal, x∗
1,3

cannot be.
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When
1

2
6 β < 0.645, player 1 proposes, x1,2 = (3−β

2

7−β2
,

2

7−β2
,

2

7−β2
) and player

2 accepts. Similarly, if it’s player 2
′s turn to propose, he offers player 1 x2,1 =

( 2

7−β2
,
3−β2

7−β2
,

2

7−β2
) and player 1 accepts. The only reason why player 1 would deviate

so that x2
1
> x3

1
> 0, were if 1 − x2

1
− x3

1
+ βx3

1
> 3−β2

7−β2
and the same goes for player

2 in the sense that, x2
1
+ βx3

1
> 2+2β

7−β2
. However, if β > 1

2
the minimum player 2

is willing to receive from player 1 in order to reach an agreement conditional on

x3
1
= 0 is greater than the maximum player 1 is willing to offer.

10
. Player 1 will only

have an incentive to deviate so that x2
1
> x3

1
= 0 if β < 1

2
, which cannot be.

Last, when 0.645 6 β < 1, player 1 will will offer x1,2 = ( 3+β2

7+2β+β2
,

2+β
7+2β+β2

,
2+β

7+2β+β2
)

to player 2 and the latter accepts. When selected to propose, player 2, offers,

x2,1 = ( 3+β2

7+2β+β2
,

2+β
7+2β+β2

,
2+β

7+2β+β2
) and player 1 accepts. Again, if player 1 proposes,

x∗
1,2

= ( 3+β2

7+2β+β2
− ε, 2+β

7+2β+β2
+ ε, 0) to player 2, the latter will accept since his gains,

β( 2+β
7+2β+β2

), cancel out with his losses. However, player 1
′s losses, β( 2+β

7+2β+β2
) out-

weigh his gains, (1− β)( 2+β
7+2β+β2

), making it impossible for player 1 to propose x∗
1,2
.

Q.E.D.

P 19. Suppose there is only one selfish player, if,

β 6 0.645, (3.5a)

β > 0.645, (3.5b)

provided its the selfish players’ turn to propose, he will make (i) a greedy offer and (ii)

a one-to-one self sacrifice offer, respectively.
10

Look at Appendix C.3, graph 1 and we can see that there is no intersection point.
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Proof: If β 6 0.645, a selfish type will offer, with probability p3,1 = p3,2 = 1

2
,

x3,1 = (2+2β
7−β2

, 0,
5−2β−β2

7−β2
), x3,2 = (0, 2+2β

7−β2
,
5−2β−β2

7−β2
) and player 1 and 2 accept respec-

tively. The selfish type, behaving rationally, will never offer an altruistic player, say

1, x3,1 = (2+2β
7−β2

− ε, 0, 5−2β−β2

7−β
+ ε), since u1(x3,1) < v1, thus, 1 will reject the proposal.

But if 0.645 < β < 1, player 3 will offer with probability p3,1 = p3,2 = 1

2
,

x3,1 = ( (2+β)(1+β)
7+2β+β2

, 0,
5−β

7+2β+β2
) and x3,2 = (0, (2+β)(1+β)

7+2β+β2
,

5−β
7+2β+β2

). When the selfish type

makes the following proposal to player 1, x3,1 = ( (2+β)(1+β)
7+2β+β2

− ε, 0, 5−β
7+2β+β2

+ ε), since

u1(x3,1) < v1 the altruistic player will reject the proposal. When β > 1

2
the selfish’s

continuation payoff increases since it becomes cheaper for either one of the Rawl-

sian players to convince its same type. This is what is causing the non-monotonicity

of a selfish players expected utility.
11

Due to symmetry we can say the same for

player 2. Q.E.D.

In a bargain free environment, when β < 1 players choose to stay with the entire

dollar for themselves, regardless of their type. However, two salient aspects of this

specific profile of players is that, for high values of β, strategic generosity arises.
12
.

In other words, high values of β makes it costly to convince a altruistic player, thus

the selfish type will offer a large individual payment to whomever he decides to

convince.
13

Furthermore, since β is high, a Rawlsian will allocate the whole dollar

11
See Appendix C.2, Figure 3, Case 5.

12
See Appendix C.2, Figure 2, Case 2

13
In Appendix C.2, Figure 4, case 5 we see that the function is increasing in β meaning that for

high levels of β the selfish player has to sacrifice a larger share if his individual payment to give it

too any of the other two players if he wants to try and convince the other to accept his proposal.
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amongst all three, in other words, high values of β allows the altruistic proposer to

exploit his awareness towards the least advantaged. This is precisely what explains

the non-monotonicity of the offers at equilibrium for the Rawlsian type.
14

Last, irrespective of the value of β, both altruistic players never place an offer

to the selfish type since it will always be the case that the Rawlsian’s maximum

amount he is willing to offer is less than the minimum amount of shares the selfish

player is willing to receive. Hence, an altruist never chooses to bargain with the

selfish player.
15
. For instance, say it’s player 1

′s turn to propose and
1

2
6 β < 0.645.

The minimum amount player 3
′s is willing to receive is x3

1
> 5−2β−β2

7−β2
. Thus, player

1 will deviate and make an offer only to player 3 if 1 − x3
1
> 3−β2+2β

7−β2
. But since the

maximum amount player 1 is willing to offer is less than minimum 3
′s is willing to

receive, the former will not bargain with player 3. We can argue the same for the

two remaining two cases, that is, when β < 1

2
and 0.645 6 β < 1.

Let us finally consider our last case, that is, when all three players are altruistic.

In particular, this player profile has a subgame perfect Nash equilibrium in pure-ish

strategies if,

u1(xi,1) >
1

3

[u1(x2,1) + u1(x3,1) + u1(x1,i)],

for i = {2, 3}.

14
In Appendix C.2, Figure 2, Case 2.

15
Refer to Appendix G.
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u2(xi,2) >
1

3

[u2(x1,2) + u2(x3,1) + u2(x2,i)],

for i = {1, 3}.

u3(xi,3 >
1

3

[u3(x1,3) + u3(x2,3) + u3(x3,i)],

for i = {1, 2}.

By symmetry, x2
1
= x3

2
= x1

3
and x3

1
= x1

2
= x2

3
. Let, 1 − xji − x

k
i > xji > xki for

i, j,k = {1, 2, 3} for i 6= j 6= k, therefore,

xji >
1− βxki
3− β

and

xki >
1+ xji(β− 3)

β

By solving the system of inequalities: when β < 1

2
and, say it’s player 1

′s

turn to make a proposal, she chooses to gain support from player 2 and offers,

x1,2 = ( 2−β
3−β

,
1

3−β
, 0). In the case it’s player 2

′s turn she offers, x2,3 = (0, 2−β
3−β

,
1

3−β
to

player 3. Last, player 3 will propose, x3,1 = ( 1

3−β
, 0,

2−β
3−β

).

Conversely, if β > 1

2
, whoever it’s turn it is to make a proposal, she chooses to

offer the egalitarian allocation of the dollar, hence x1,2 = ( 1

3
,
1

3
,
1

3
), x2,3 = ( 1

3
,
1

3
,
1

3
),

x3,1 = ( 1

3
,
1

3
,
1

3
) and players 2, 3 and 1 accept, respectively.

So, the stationary subgame-perfect Nash equilibrium in pure strategies will be,
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For player 1.

((1, 0), (
2− β

3− β
,

1

3− β
, 0),

1

3

),

if β 6 1

2
and,

((1, 0), (
1

3

,

1

3

,

1

3

),
1

3

),

if
1

2
< β 6 1.

For player 2.

((1, 0), (0,
2− β

3− β
,

1

3− β
),

1

3

),

if β 6 1

2
and,

((1, 0), (
1

3

,

1

3

,

1

3

),
1

3

),

if
1

2
< β 6 1.

For player 3.

((1, 0), (
1

3− β
, 0,

2− β

3− β
),

1

3

),

if β 6 1

2
and,

((1, 0), (
1

3

,

1

3

,

1

3

),
1

3

),

if
1

2
< β 6 1.

D 9. An egalitarian proposal from player i is an offer such that, all three

players i, j, and k receive, from i, the same individual payment, that is, xi,j = xi,k =

(1− xi,j − xi,k) =
1

3
when 1

2
6 β < 1.

D 10. A selfish offer (II) from player i is an offer such that, xi,j = 1

3−β
, xi,k =

0 and (1− xi,j) =
2−β
3−β

.
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P 20. Suppose all three players are Rawlsian, if the following hold,

β <
1

2

(3.6a)

β >
1

2

(3.6b)

any one of the Rawlsian players make (i) a selfish offer (II) and (ii) an egalitarian

offer, respectively.

Proof: If player 1 proposes, x∗
1,2

= ( 2−β
3−β

− ε, 1

3−β
, ε) for ε > 0, player 2 will

accept since his gains, βε will cancel out with his losses. However, player 1
′s

losses, (1− β)ε, exceed his gains, βε, hence, u1(x
∗
1,2
) < u1(x1,2), which cannot be; by

symmetry, neither player 2 or 3 will deviate.

Why will the proposer, regardless of whose turn it is to propose, jump to the

egalitarian allocation when β > 1

2
? Say its player 1

′s turn to propose, and she offers

x∗
1,2

= ( 2−β
3−β

− ε, 1

3−β
, ε) as opposed to the egalitarian allocation. Her utility payoff is,

1− (x2
1
− βε) − ε+ βε = 2−β

3−β
+ (2β− 1)ε. Since β > 1

2
and players are not impatient

to close a deal whoever is chosen to reach agreement will reject any offer
1

3
− ε

therefore she’s better off proposing the egalitarian allocation. Q.E.D.

.. C

Why does strategic generosity emerge only for certain player profiles? Is strategic

generosity solely motivated by a players desire, regardless of their utility represen-

tation, to help others? Of course it isn’t the pursuit of other player’s well being and

117



happiness what the proposer is trying to achieve, but the satisfaction his own desire

for it.

Even though all types of players who make a proposal under the absence of

negotiations choose the selfish allocation, by considering different arrangements of

players we observe that, strategic generosity arises when each proposer, acting in

her own interest, makes a proposal so that her decision is in accordance with a

willingness to act in consideration of other players. For some composition of types,

it wasn’t obvious what was driving the proposers’ actions to be in consonance with

the interests of another.

We found the following preliminary results. First, when two Rawlsian players

and one selfish player face negotiations, if β < 1

2
a Rawlsian’s proposal is aligned

with that of a pure selfish player. Surely the proposer gains, if he were to offer sym-

metrical individual payments to the remaining players, isn’t enough to compensate

the costs he would have to pay for making such an offer, that is, (1−β)x2
1
> βx2

1
and

(1 − β)x1
2
> βx1

2
, respectively. Second, as β increases and surpasses the threshold

of
1

2
both altruistic players become more costly to convince. We can understand

this simply by flipping the previous argument. In which case, a Rawlsian pro-

poser offers symmetrical individual payments to both players which explains the

non-monotonicity present in Figure 3, Case 5. Moreover, for β > 0.645 the selfish

player expected utility increases making it too costly for the other type to make

him an offer. Therefore, provided it’s the selfish types turn to place an offer he can

no longer convince the the other type to accept, either a selfish (I) proposal, or a

greedy proposal. It is by acting in her own interests that he takes into consideration
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other the altruistic’s interests. Strangely enough, the selfish player turns out offer-

ing a greater amount of shares compared to what he stays for herself. In the first

case, Rawlsian players behave seemingly in a selfish way, whereas in the second,

selfish players do seemingly behave selflessly. The first finding explains the non-

monotonicity of Figure 2, Case 2 of Appendix C.2. The last explains the behaviour

of the offers at equilibrium of the selfish type in Figure 3, Case 5 of Appendix C.2.

Our model is a strategic model, and as such it embodies a detailed description of

a special procedure which we have already specified, but of course, such procedure

is only one of possibly many. Furthermore, we know our results may possibly

depend vert strongly on the specification of our bargaining protocol, therefore, in

an effort to overcome these potential weaknesses, a possible solution is to consider

different bargaining protocols, as a first attempt to investigate if the bargaining

procedure we have chosen is responsible of driving agents to behave generously.

This, unfortunately we will leave for further research. While we have preliminary

results for the the three player setup without discounting, further work is still to be

done. For instance, to (i) introduce discounting, (ii) apply other bargaining protocols

to the game in order identify if our results are strongly sensitive to the enforcement

procedures (iii) generalize the model for n players and (iv) characterize the set of

subgame perfect pure-ish Nash equilibrium.
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Appendix A

On Refutability of the Nash
Bargaining Solution

A.. A A: S C  D  P

The purpose of this appendix is to illustrate how the piecewise linear preferences that were

constructed in the results of the paper can be transformed into strictly concave C2
functions.

For the sake of simplicity in our presentation, we concentrate on the system of inequalities

obtained in the first section of the paper, but the reader can readily check that the analysis

extends to the rest of the cases considered. Also, since the construction is made individual

by individual, here we simplify our notation by ignoring the super-index that identifies the

agents that are considered in the paper.

That is, suppose that an analyst is given an array of numbers

{(xt, vt,µt, λt) : t = 1, . . . , T }

that satisfies the following system:

µt ′ 6 µt + λt(µt − vt)(xt ′ − xt), (A.1)

with strict inequality if xt ′ 6= xt, µt > vt,and λt > 0.

As in Theorem 2 in Matzkin and Richter (1991), take a strictly convex function h(x) > 0

such that h(x) = 0 only at x = 0, and whose derivative is always less than 1. Given Eq.

(1.30) and the fact that the number of observations is finite, one can construct functions

vt(x) = µt + λt(µt − vt)(x− xt) − εth(xt − x),

where εt is small enough that

µt ′ 6 µt + λt(µt − vt)(xt ′ − xt) − εth(xt − xt ′),

with strict inequality whenever xt 6= xt ′ .

Now, define

u0(x) = min {vt(x) : t = 1, . . . , T } .
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This function is continuous, strictly concave and strictly monotone. By construction, it also

satisfies that u0(xt) = µt and that

u0(x) − vt 6 µt + λt(µt − vt)(x− xt) − vt,

which is the inequality that is critical for the argument that the functions constructed in

Section 1.2.1 rationalize the observed data.

It only remains to to show that the function can be further perturbed to smooth out its

(finitely many) kinks. For this one can use a deformation like the one proposed by Chiappori

and Rochet (1987). By construction, one can fix ε > 0 such that, for all t, u(x) = vt(x)
whenever |x− xt| < ε. Then, define the function ρ : R→ R be defined as

ρ(ψ) =

{
exp

(
− 1

ψ2−1

) [∫
R exp

(
− 1

µ2−1

)
dµ
]−1

, if |ψ| 6 1;

0, otherwise.

Now, consider the following mapping, which takes the convolution of u0 and ρ:

u(x) =
1

ε2

∫
R
u0(x−ψ)ρ

(
ψ

ε

)
dψ.

Chiappori and Rochet show that this function is C∞
, strictly concave and strictly increasing,

and rationalizes the same maxima as u0.
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Appendix B

On Inter and Intra-Party Politics

B.. A B: B N E

Using the definitions of the different types of politicians in section 2, we will refer to a pair

(aL,aR) as a Nash equilibrium between militants if

aL ∈ argmaxavL(a) and aR ∈ argmaxavR(a).

The following result is an immediate implication of Weierstrass’s Theorem, given that both

ideology functions are continuous.

P. Suppose that the policy space, A, is compact. Then, a Nash equilibrium between
militants exists.

We say a Nash equilibrium between opportunists is a pair (aL,aR) of policies such that

aL ∈ argmaxaπ(a,aR) and aR ∈ argmaxa[1− π(aL,a)].

The following result casts the prominent result of Duncan (1948) in the language of our

paper. We state it without a proof.

P (The Median Voter Theorem). In this case, the (only) Nash equilibrium between
opportunists is the pair (aL,aR) = (a,a), for a := F−1(1/2).

A Nash equilibrium between pragmatist politicians is a pair (aL,aR) of policies such that

aR ∈ argmaxaµR(aL,a) and aL ∈ argmaxaµL(a,aR).

B.. A: N P.U.N.E  

L 2. There does not exist a party-unanimity Nash equilibrium (aL,aR) such that vL(aR) >
vL(aL), or that vR(aL) > vR(aR).
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Proof: Suppose, by way of contradiction to our claim, that vL(aR) > vL(aL). Consider first

the case when aL < aR. For a small enough ε > 0, let a = aR − ε. It follows from our

assumptions that

vL(a) > vL(aL),π(a,aR) > π(aL,aR) and µL(a,aR) > µL(aL,aR),

where the first inequality follows by continuity of vL, the second one from the fact that

a > aL, and the last one follows from the fact that

lim

ε↑0 µL(aR − ε,aR) = vL(aR) > µL(aL,aR),
given that function µL is continuous. These three inequalities contradict the fact that

(aL,aR) is a party-unanimity Nash equilibrium.

When, on the other hand, aL > aR, if we let a = aR + ε for a small enough ε > 0, it is

true that

vL(a) > vL(aL),π(a,aR) > π(aL,aR) and µL(a,aR) > µL(aL,aR),

where the latter inequality follows from the fact that

lim

ε↓0 µL(aR + ε,aR) = vL(aR) > µL(aL,aR).
Again, this is impossible.

The argument for the claim that vR(aL) > vR(aR) cannot occur at equilibrium is similar.

Q.E.D.

B.. A: T     I

Note that one can re-write the expected value function considered by this faction of the left

party, namely Equation (2.1), as

µL(aL,aR) ≡ π(aL,aR)[vL(aL) − vL(aR)] + vL(aR). (B.1)

By Lemma 2, for party-unanimity Nash equilibria we need only consider (aL,aR) such that

vL(aL) > vL(aR), and, then, for any policy a ∈ A such that

vL(a) > vL(aL) and π(a,aR) > π(aL,aR),

one immediately obtains that, in addition,

µL(a,aR) > µL(aL,aR).

A similar argument applies to party R, using Equation (2.2), which allows us to state the

following result.

P 21. A pair of policies (aL,aR) is a party-unanimity Nash equilibrium if, and only
if,
(i) there does not exist a policy a ∈ A such that

vL(a) > vL(aL) and π(a,aR) > π(aL,aR),
with at least one of the two inequalities being strict; and
(ii) there does not exist a policy a ∈ A for which

vR(a) > vR(aR) and π(aL,a) 6 π(aL,aR),
with at least one strict inequality.
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B.. A: N E, PUNE  N.B.S

Nash Equilibria

For the sake of completeness, here we report the Nash equilibria that the game would

have if each of the parties consisted of only one type of politicians (the same type in both

parties).

The only Nash equilibrium between Militants is straightforward: in each party, it is a

strictly dominant strategy to play its most extreme policy, so the possible Nash equilibrium

is the policy pair (aL,aR) = (0, 1).

Although the support function π that we are now using is not founded by an underlying

distribution of voters’ preferences, an analogous to the Median Voter Theorem nonetheless

holds. To see that this is the case, note first that there can be no Nash equilibrium between

opportunists’ where the two parties play different policies. If this were the case, namely

is aL 6= aR, one of the two parties (at least) would be making suboptimal decisions: if

π(aL,aR) = 1, then party R would prefer, for instance to play policy a = aL; if π(aL,aR) = 0,

analogously, party L would prefer a = aR; if 0 < π(aL,aR) < 1, since b > 0, both parties

would prefer to play policies that are closer to the one of the opposing party.

It follows that in order to find Nash equilibria between opportunists we only need to

consider policy pairs of the type (aL,aR) = (ã, ã). Now, notice that if 2bã − C < 1/2, we

have that each party would be better off by deviating to a different policy: for instance, if

aR = a, then, if party L deviates to a = ã+ ε, for small enough ε > 0,

π(a,aR) = 1− 2bã− bε+ C >
1

2

= π(aL,aR).

A similar argument allows the dismissal of pairs (aL,aR) = (ã, ã) such that 2bã− C > 1/2,

so the only possible equilibrium is at

(aL,aR) =

(
1+ 2C

4b
,

1+ 2C

4b

)
.

Now, that this is, indeed, a Nash equilibrium between opportunists is straightforward again:

function π(a, ã), which is continuous as a function of a, attains its global maximum at

a = ã.

The only Nash equilibrium between pragmatists is the policy pair

(aL,aR) =

(
C

2b
,

1+ C

2b

)
.

For the sake of presentation, we argue this statement as proof of the following proposition.

P 22. In the simplified version of the game we are now considering, the only Nash
equilibrium between Militants is the policy pair (aL,aR) = (0, 1), the only equilibrium between
opportunists is

(aL,aR) =

(
1+ 2C

4b
,

1+ 2C

4b

)
,

and the only equilibrium between pragmatists is

(aL,aR) =

(
C

2b
,

1+ C

2b

)
.
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Proof: It only remains to prove the third statement. Note first that there can be no

equilibrium (aL,aR) where π(aL,aR) > 0 and aL > aR, for, in such case, if the left played

a = aR

µL(a,aR) = 1− aR > π(aL,aR)(1− aL) + [1− π(aL,aR)](1− aR) = µL(aL,aR).

We can similarly rule out (aL,aR) where π(aL,aR) < 1 and aL > aR, using an argument for

the Right party.

Next, consider the case when (aL,aR) = (ã, ã). Suppose first that ã > C/2b. Then, by

using a = ã− ε, for ε > 0 small enough, the Left party would have π(a,aR) > 0 and

µL(a,aR) = π(a, ã)(1− a) + [1− π(a, ã)](1− ã) > 1− ã = π(aL,aR).

If, on the other hand, ã 6 C/2b, then, playing a = ã+ ε, for ε > 0 small enough, the Right

party would have

µR(aL,a) = π(ã,a)ã+ [1− π(ã,a)]a > ã = π(aL,aR).

Now, consider the case in which aL < aR and π(aL,aR) = 0. Suppose first that aR >

C/2b. In this case, for any

c

b
− aR < a < aR,

we would have that π(a,aR) > 0, and, hence, that

µL(a,aR) = π(a,aR)(1− a) + [1− π(a,aR)](1− aR) > 1− aR = µL(aL,aR),

so the Left party would not be best-responding. On the other hand, note that if aR 6 C/2b,
then aL < C/2b and then, letting a = C/b − aL we would have that a > aR > aL and

π(aL,a) = 0, so that

µR(aL,a) = a > aR = µR(aL,aR),

so the Right party would not be best-responding.

As before, a similar argument allows us to rule out the possibility that aL < aR and

π(aL,aR) = 1 at equilibrium.

The only policy profiles that can be Nash equilibrium between pragmatists, then, must

have 0 < π(aL,aR) < 1 and aL 6 aR. With 0 < π(a,aR) < 1 and considering a < aR only,

we can write

µL(a,aR) = [b(a+ aR) − C](aR − a) + (1− aR),

which is maximized at aL = C/2b. Similarly, if 0 < π(aL,a) < 1 and considering a > aL
only,

µR(aL,a) = [b(aL + a) − C](aL − a) + a,

which is maximized at aR = (1 + C)/2b. It follows that the only potential candidate for

Nash equilibrium is the pair

(aL,aR) =

(
C

2b
,

1+ C

2b

)
.

That these two policies constitute a pair of mutual local best responses is immediate

from their definitions. To see that these are actually global best responses, note first that if

π(a,aR) = 0, or when a = aR, then

µL(a,aR) =
2b− 1− C

2b
<

1

2

= µL(aL,aR),

125



where the inequality holds because, by assumption, C > 2b−2 > b−1. Obviously, if a > aR,

then µL(a,aR) < 1/2 = µL(aL,aR). For the Right, note that if π(aL,a) = 1, or when a = aL,
then

µR(aL,a) =
C

2b
<

1

2

= µR(aL,aR),

where the inequality comes from the fact that, by assumption, C < 2b− 1 and C < 1, which

suffices to imply that C < b. Again, if a < aL, then µR(aL,a) < 1/2 = µR(aL,aR). Q.E.D.

Figure B.1 illustrates the positions of the three basic equilibria in the space of policy

pairs. A particular feature of the functional forms we have chosen is that in both Nash

equilibria played between opportunists and between pragmatists the two parties obtain one

half of the popular support:

π

(
1+ 2C

4b
,

1+ 2C

4b

)
= b

(
1+ 2C

4b
+

1+ 2C

4b

)
− C =

1

2

,

while

π

(
C

2b
,

1+ C

2b

)
= b

(
C

2b
+

1+ C

2b

)
− C =

1

2

.

The same need not be true in the Nash equilibrium between militants, as π(0, 1) = b− C.

-

aL

6
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Figure B.1: The basic Nash equilibria of the simple game.

Party-unanimity Nash equilibria

We now compute the set of all Roemer equilibria for the simplified version of the

game. Some previous results allow us to simplify this task: by Lemma 2 (See Appendix

B.2), we know that we only need to consider policy pairs (aL,aR) where aL 6 aR; by

Proposition 21, given a policy pair (aL,aR) we only need to check that for no a it is

true that vL(a) > vL(aL) and π(a,aR) > π(aL,aR), with at least one strict inequality, nor

vR(a) > vR(aR) and π(aL,a) 6 π(aL,aR), with one strict inequality at least.
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L 3. The only party-unanimity Nash equilibrium at which π(aL,aR) = 0 is

(aL,aR) =

(
0,

C

b

)
.

Proof: We first argue that (aL,aR) = (0,C/b) is indeed an equilibrium. As 0 is the only

solution to program

max

a∈A
vL(a),

it follows that there can be no a 6= 0 for which vL(a) > vL(aL). As for the Right, any

a < C/b would imply vR(a) < vR(aR), while for any a > C/b one would have

π(aL,a) = π(0,a) = ba− C > b
C

b
− C = 0 = π(aL,aR).

Now, consider any pair (aL,aR) 6= (0,C/b) such that π(aL,aR) = 0. If aL > 0, letting

a = 0 we get vL(a) > vL(aL) and π(a,aR) > π(aL,aR), so if this policy pair is going to be

an equilibrium it must be that aL = 0. If aR < C/b, then, by playing a = C/b the Right

would have vR(a) > vR(aR) and π(aL,a) = 0 6 π(aL,aR). Alternatively, it must be true that

aR > C/b, but this is impossible, since in such case

π(aL,aR) = π(0,aR) = baR − C > b
C

b
− C = 0,

which is a contradiction. Q.E.D.

A similar argument, mutatis mutandis, gives us the following result.

L 4. The only party-unanimity Nash equilibrium at which π(aL,aR) = 1 is

(aL,aR) =

(
1+ C− b

b
, 1

)
.

Proof: In the same vein we argue that

(
1+C−b
b , 1

)
is an equilibrium. Since 1 is the only

solution to program

max

a∈A
vR(a)

there can be no a 6= 1 for which vR(a) > vR(aR). In the case of party L, any a > 1+C−b
b

would imply that vL(a) < vL(aL), and for a < 1+C−b
b we have,

π(a,aR) = π(a, 1) = b(1+ a) − C < 1 = π(aL,aR)

Now, let us consider any pair (aL,aR) 6= ( 1+C+bb , 1) such that π(aL,aR) = 1. If aR < 1,

letting a = 1, we get that vR(a) > vR(aR) and π(aL,a) 6 π(aL,aR), so, if the policy pair is an

equilibrium, it must be that aR = 1. If aL >
1+C−b
b , then by L playing a = 1+C−b

b , the party

would get vL(a) > vL(aL) and π(a,aR) > π(aL,aR). So, it must be true that aL <
1+C−b
b , but,

π(aL,aR) = π(aL, 1) = b(aL + 1) − C < b

(
1+

1+ C+ b

b

)
− C = 1

which is a contradiction. Q.E.D.
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L 5. The only party-unanimity Nash equilibrium at which aL = aR is

(aL,aR) =

(
1+ 2C

4b
,

1+ 2C

4b

)
.

Proof: Note first that (aL,aR) = (0, 0) cannot be an equilibrium: for ε > 0 small enough,

since C > 0, letting a = ε the Right

π(aL,a) = max{0,bε− C} = 0 <
1

2

= π(aL,aR),

while vR(a) > vR(aR). A similar argument allows us to rule out the possibility that (aL,aR) =
(1, 1) be an equilibrium.

Now, fix any 0 < a < 1 and consider the profile (aL,aR) = (a,a). If lima↑a π(a,a) > 1/2,

then, by playing a = a − ε, for ε > 0 small enough, the Left would have that π(a,aR) >
1/2 = π(aL,aR) while vL(a) > vL(aL), so the pair cannot be an equilibrium. Alternatively,

if lima↑a π(a,a) < 1/2, we must have, by construction, that lima↓a π(a,a) < 1/2, in which

case, by playing a = a + ε, for ε > 0 small enough, the Right would have that π(aL,a) <
1/2 = π(aL,aR) while vR(a) > vR(aR).

The only case left is when lima→a π(a, ã) = 1/2. The only point at which this occurs is

ã =
1+ 2C

4b
.

As in the case of the Nash equilibrium between Opportunists, if we observe that, as a

function of a, π(a, ã) attains its maximum precisely at ã, we conclude that (aL,aR) = (ã, ã)
is a Roemer equilibrium: any other a would cause π(a,aR) < 1/2 = π(aL,aR) and π(aL,a) >
1/2 = π(aL,aR). Q.E.D.

These three lemmas have considered «corner» policy pairs. We can rule out pairs

with aL > aR as equilibria, either by appealing to the general claim made in Lemma

2 (see Appendix C), or by the following straightforward observations: if aL > aR and

π(aL,aR) 6 1/2, then by playing a = aR, the Left would get vL(a) > vL(aL) and π(a,aR) =
1/2 > π(aL,aR); if, alternatively, aL > aR and π(aL,aR) > 1/2, then, by playing a = aL, the
Right would get vR(a) > vR(aR) and π(aL,a) = 1/2 < π(aL,aR).

The following lemma completes the analysis.

L 6. Any policy pair (aL,aR) such that aL < aR and 0 < π(aL,aR) < 1 is a party-
unanimity Nash equilibrium.

Proof: Consider any such policy pair (aL,aR), and take any a ∈ A. If a < aL, then

π(a,aR) < π(aL,aR), while if a > aL, vL(a) < vL(aL). Similarly, a > aR, then π(aL,a) >
π(aL,aR), while if a < aR, vR(a) < vR(aR). Q.E.D.

For the sake of clarity in our presentation, we summarize these results in the following

proposition, and illustrate the set of Roemer equilibria in Figure B.2.

P 23. In the simplified version of the game we are now considering, the only
party-unanimity Nash equilibria are the policy pairs(

0,

C

b

)
,

(
1+ C− b

b
, 1

)
and

(
1+ 2C

4b
,

1+ 2C

4b

)
,
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as well as any policy pair (aL,aR) such that

aL < aR and 0 < π(aL,aR) < 1.

-
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Figure B.2: The set of party-unanimity Nash equilibria of the simple game is the shaded

area. It only includes its boundaries where these are drawn in a continuous line, and it

contains, in particular, the three dots.

It is immediate, either from comparison of Propositions 22 and 23 or from comparison

of Figures B.1 and B.2, that each of the simple Nash equilibria of the game is also a Roemer

equilibrium.

Nash bargaining solutions

Using the observation of §2.3.3, we replace Eqs. (2.3) and (2.4) by the following definition:

we say that a policy pair (aL,aR) is a Nash bargaining solution if there exist nonnegative

numbers αL, βL, αR, βR such that αL + βL 6 1 and αR + βR 6 1, for which policy aL solves

program

max

a
[π(a,aR)

1−βL(aR − aL)
1−αL ],

while policy aR solves program

max

a
{[1− π(aL,a)]

1−βR(aR − aL)
1−αR}.

Focusing on policy pairs that satisfy aL 6 aR, we can rewrite these programs by requiring

that aL solve

max

a
[π(a,aR)

ρL(aR − aL)], (B.2)

and that aR solve

max

a
{[1− π(aL,a)]

ρR(aR − aL)}, (B.3)
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where

ρL :=
1− βL
1− αL

and ρR :=
1− βR
1− αR

.

In this simpler notation, the values of ρi that we can allow are any number in R+, as well

as ∞. If ρi = 0, the militants of party i have no say in the negotiations of their party.

When it is the opportunists that have no bargaining power, we use ρi = ∞ to denote that

the party’s program is, respectively,

max

a
π(a,aR) or max

a
[1− π(aL,a)]. (B.4)

Interior equilibria

Consider first the case in which 0 < ρi < ∞ for both parties. We want to find all the

equilibria for which aL < aR and 0 < π(aL,aR) < 1, to which we refer as «interior».

Ignore, for a moment, the constraints that aL > 0 and aR 6 1, which we shall impose

momentarily. If ρL > 1, the best-response function defined by Program (B.2) is, by direct

computation,

aL(aR) =
C

b(ρL + 1)
+
ρL − 1

ρL + 1

aR, (B.5)

for all 0 < aR 6 1. When ρL < 1, the constraint that aL < aR may bind, and the best-response

function is

aL(aR) =

{
0, if aR <

C
b(1−ρL)

;
C

b(ρL+1) +
ρL−1

ρL+1
aR, otherwise.

(B.6)

Similarly, the best-response function defined by Program (B.3), when ρR > 1 is

aR(aL) =
1+ C

b(ρR + 1)
+
ρR − 1

ρR + 1

aL,

for all 0 6 aL < 1. Or, if ρR < 1, it is

aR(aL) =

{
1, if aL >

1+C−b(ρR+1)
b(1−ρR)

;
1+C

b(ρR+1) +
ρR−1

ρR+1
aL, otherwise.

Consider first the case where ρL > 1 and ρR > 1. Using the two best-response functions

given above, we find that their intersection occurs when

aL =
C

2b
+

ρL − 1

2b(ρL + ρR)
and aR =

1+ C

2b
+

1− ρR
2b(ρL + ρR)

. (B.7)

Now, for this policy pair to be a bona fide equilibrium, it must satisfy the constraints that

aL > 0 and aR 6 1. By direct computation, these constraints are satisfied if the following

condition holds:

ρR > max

{
1

C
− ρL

1+ C

C
,

1

2b− C
+ ρL

(
1

2b− C
− 1

)}
. (B.8)

Figure B.3 illustrates the values of (ρL, ρR) for which Condition (B.8) is satisfied. It also

defines some areas and points in the space of (ρL, ρR) that will be useful to express all the

equilibria of the game.
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Figure B.3: Condition B.8 holds at any point in the area above both downward-sloping

lines (that is, at the union of areas I, X, Z, W and Y).

It is immediate from Eq. (B.7) that these interior Nash bargaining solutions amount to

perturbations

1

2b
(∆L,∆R)

to the Nash equilibrium between pragmatists, these perturbations being of the form

∆L =
ρL − 1

ρL + ρR
and ∆R =

1− ρR
ρL + ρR

.

In order to recover the set of all these solutions, we can then study the set of pairs (∆L,∆R)
that are induced by (ρL, ρR) in the union of areas I, Z and W in Figure B.3 – namely,

pairs (ρL, ρR) that satisfy Condition (B.8). This space of (∆L,∆R) is illustrated in Figure B.4,

where we also associate regions of the space with the areas of (ρL, ρR) that induce them.

In order to find the set of interior Nash bargaining solutions, now we simply need to

add these perturbations (rescaled by 1/2b) to the policy pair

(aL,aR) =

(
C

2b
,

1+ C

2b

)
.

This is done in Figure B.5.

By direct computation, if we consider pairs (ρL, ρR) that violate Condition B.8, then the

constraints that aL > 0 and aR 6 1 bind, and the associated Nash bargaining solutions lie in

the boundary of the space of interior solutions constructed before. These cases correspond

to the areas marked M, N and O in Figure B.3, and the set of solutions generated by them

is illustrated in Figure B.5, by marking the areas they induce.
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Figure B.4: The space of perturbations (∆L,∆R) induced by (ρL, ρR) in the union of areas

I, Z and W in Figure B.3 is the shaded area. The labels indicate the area of Figure B.3

that induces each region.

Importantly, comparison of Figures B.2 and B.5 shows that all the interior Nash bar-

gaining solutions are party-unanimity Nash equilibria, which verifies the observations of

§2.3.2.

Corner solutions

We now compute the Nash bargaining solutions for the cases when some ρi is 0 or ∞, as

well as for the case where aL = aR at the solution. We refer to these cases as «corner»

solutions. We treat all these cases independently.

Case 1: If ρL = ρR = 0. In this case, the Nash bargaining solution corresponds to the

unique Nash equilibrium between militants, namely (aL,aR) = (0, 1).

Case 2: If ρL = 0 and ρR ∈ R++. In this case, the only solution to Program (B.2) is

aL = 0. On the other hand, given aL = 0, the solution to Program (B.3) is

aR =

{
min

{
1+C

b(ρR+1) , 1

}
, if ρ < 1

C ;
C
b , otherwise.

The second condition in the expression above corresponds to point x and area X in Figure

B.3; all these points generate the policy pair (aL,aR) = (0,C/b) as Nash bargaining solution.

The first condition in the expression generates the set {0}×(C/b, 1] of policy pairs. Of course,

the case ρL ∈ R++ and ρR = 0 is analogous, and generates the set[
0,

1+ C− b

b

]
× {1}
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shaded area. It only includes its boundaries where these are drawn in a continuous line; it

does not contain the two dots. The labels indicate the area of Figure B.3 that induces each

region.

of policy pairs as Nash bargaining solutions.
1

Case 3: If ρL =∞ and ρR =∞. In this case, the only Nash bargaining solution is the

Nash equilibrium between opportunists,

(aL,aR) =

(
1+ 2C

4b
,

1+ 2C

4b

)
.

It follows also by construction that this policy pair is the only solution with aL = aR.

As in the case of interior solutions, the Nash bargaining solutions generated by pairs

(ρL, ρR) are all Roemer equilibria. If we add these solutions to the set of interior solutions

obtained before, we enrich Figure B.5 as in Figure B.6. Importantly, all these solutions are,

at the same time, party unanimity Nash equilibria. The same property will not hold for the

two remaining cases, which we consider next.

Case 4: If ρL = 0 and ρR =∞. In this case, for the Left the only solution to Program

(B.2) is to play policy aL = 0, whatever the Right does. Given this, the set of solutions to

Program (B.4) for the Right is any aR ∈ (0, c/b], so that the set {0}× (0, c/b] of policy pairs

1
Note that the correspondence defined by the Nash bargaining solution as one varies the value

of (ρL, ρR) is not upper hemi-continuous: the sequence of policy pairs generated by a sequence of

pairs (ρL, ρR) that converges to a point in area X of Figure B.3 would converge to some point in the

downward-sloping dashed line that starts at point (0,C/b) in Figure B.5; any point in area X, on
the other hand, would generate (0,C/b).
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to cases 1-3, adds the three dots to the shaded area. The boundaries at aL = 0 and aR = 1

are generated by further values of (ρL, ρR) (that is, in addition to those that gave these

boundaries as interior solutions).

also constitutes Nash bargaining solutions for the game. Similarly, the case when ρL = ∞
and ρR = 0 generates the set [

1

1+ C− 2b
, 1

)
× {1}

of policy pairs as Nash bargaining solutions. These sets, as well as those solutions generated

by the next case, are illustrated in Figure B.8.

Case 5: If ρL ∈ R++ and ρR = ∞. In this case, the Right is represented only by

opportunists, and the relevant maximization program is given by Eq. (B.4). By direct

computation, the correspondence defined by the solution to that program is

aR(aL) =



[
aL,

C
b − aL,

)
, if aL 6

C
2b ;

∅, if
C
2b < aL >

1+2C
4b ;{

1+2C
4b

}
, if aL =

1+2C
4b ;

∅, if
1+2C
4b < aL <

1+C
2b ;[

1+C
b − aL,aL

)
, if aL >

1+C
2b .

(B.9)

For the Left, the relevant program is given by Eq. (B.2), and its maximizer by Eqs. (B.5) or

(B.6), depending on the value of ρL. These correspondences are depicted in Figure B.7. It is

immediate from the Figure that the set

{(aL,aR) : 0 6 aL < aR 6
C

2b
}
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of policy pairs is the set of Nash bargaining solutions generated by this case. The analogous

case when ρL =∞ and ρR ∈ R++ generates the set

{(aL,aR) :
1+ C

2b
6 aL < aR 6 1}

as Nash bargaining solutions.
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Figure B.7: The maximizer correspondences (B.9) and (B.5) or (B.6). The intersection of

the two graphs gives the Nash bargaining solutions corresponding to Case 5.

Figure B.8 depicts the Nash bargaining solutions generated by Cases 4 and 5. Impor-

tantly, most of these policy pairs are not Roemer equilibrium. For case 4, one could refine

the Nash bargaining solutions, by requiring that each party’s policy satisfy the «efficiency»

conditions of Proposition 23, in which case the only surviving policy pairs would be(
0,

C

b

)
and

(
1+ C− b

b
, 1

)
,

which are, indeed, Roemer equilibria. But in Case 5, it follows that the same refinement

would fail to generate a solution, for the refinements of correspondences (B.9) and (B.5) or

(B.6) would not intersect.

We summarize all these findings in the following proposition.

P 24. In the simplified version of the game we are now considering,

1. the set of all the Roemer equilibria is the set of Nash bargaining solutions generated by
finite ρL and ρR;

2. when ρi =∞ for one of the parties, the induced Nash bargaining solutions need not be
Roemer equilibria;
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3. in any case, aL < aR holds at all Nash bargaining solutions, with the exception of policy
pair (

1+ 2C

4b
,

1+ 2C

4b

)
.
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Appendix C

A bargaining model with Strategic
Generosity

C.. A: P, M  O

	
  
Graph for Pragmatists

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

"#)%

!"#$%

"%

"#$%

"#&%

"#'%

"#(%

"#)%

"#*%

"% "#$% "#&% "#'% "#(% "#)% "#*% "#+% "#,% "#-% $%

./0% 1/0%!%234567%184/0% 29:/0%!%234567%29:84/0%

138



	
  

	
  

	
  	
  

	
  

Graph for Militants 

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

)!#%"

)!#*"

)!#$"

)!#("

!"

!#("

!#$"

!#*"

!#%"

!#+"

!" !#(" !#$" !#*" !#%" !#+" !#&" !#," !#'" !#-" ("

./012")".34567"./08412" 912")".34567"98412"

Graph for Opportunists

!"#$%

!"#&%

!"#'%

"%

"#'%

"#&%

"#$%

!"#&%

!"#'%

"%

"#'%

"#&%

"#$%

"#(%

)%

"% "#)% "#'% "#*% "#&% "#+% "#$% "#,% "#(% "#-% )%

./012% 312%!%.45678%39512% :12%!%.45678%:9512%

139



C.. A: O  
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C.. A: M       , 
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