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Abstract

The instrumental variable method relies on a strong �no-de�ers� condition, which

requires that the instrument a�ect every subject's treatment decision in the same

direction. This paper shows that �no-de�ers� can be replaced by a weaker �compliers-

de�ers� condition, which requires that a subgroup of compliers have the same size and

the same distribution of potential outcomes as de�ers. This condition is necessary and

su�cient for IV to capture causal e�ects for the remaining part of compliers. In many

applications, �compliers-de�ers� is a very weak condition. For instance, in Angrist &

Evans (1998), 94% of DGPs compatible with the data satisfy �compliers-de�ers�, while

0% satisfy �no-de�ers�.
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1 Introduction

Instrumental variable (IV) is a standard tool to measure the e�ect of a treatment. However,

IV relies on a strong �no-de�ers� (ND) condition which might not always be credible.

Barua & Lang (2010) highlight several empirical papers in which it is fairly clear that some

subjects are de�ers. This paper addresses this limitation. It shows that the aforementioned

ND assumption can be replaced by a substantially weaker condition, while leaving all the

standard theorems almost unchanged.

Imbens & Angrist (1994) and Angrist et al. (1996) show that IV captures a causal e�ect

under three assumptions: random assignment, exclusion restriction, and no-de�ers. The

parameter it identi�es is the e�ect of the treatment among subjects who are induced to

get treated because of the instrument, whom they call �compliers�. This is the so-called

local average treatment e�ect (LATE). ND means that the instrument will never induce

a subject not to get treated. If it is violated, the IV estimate may be misleading, as it

is equal to the average e�ect of the treatment for compliers minus the average e�ect for

de�ers; even in a world where all e�ects are positive, the IV estimand need not be positive.

Nevertheless, ND may be problematic in some applications. A �rst example consists in

papers using sibling-sex composition as an IV to study the e�ect of childbearing on labor

supply, as in Angrist & Evans (1998). When their �rst two children are of the same sex, the

amount of parents having a third child is 6 percentage points higher than when their �rst

two children are of a di�erent sex. This implies that some parents have a preference for

diversity. Those parents are compliers: the instrument induces them to have a third child.

But when their �rst two children are girls, the amount of parents having a third child is

1.5 percentage points higher than when their �rst two children are boys. This implies that

some parents are sex biased, either because they have a preference for boys, or because

they �nd it more tiring to raise boys than girls. Among sex-biased parents, some might

decide to have a third child if their �rst two children are a boy and a girl, while they would

have decided otherwise if their �rst two children had been boys. Such parents would be

de�ers, as the instrument would induce them not to have a third child.

A second example consists in papers using month of birth as an instrument for school entry

age, or for age when taking a test. As Barua & Lang (2010) argue, ND is problematic in
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those papers. A well-known example is Bedard & Dhuey (2006). This paper compares

test scores of children born before and after the cuto� date for school eligibility. In most

countries, this cut-o� date is January, 1. Children born in December should thus enter

school at a younger age than children born in January, and should subsequently take

national tests at a younger age as well. Nonetheless, as is well-known, parents are more

prone to delaying school entry of children born late in the year, so-called �redshirting�.

Children redshirted because they were born in December are de�ers, as they would have

taken national tests at a younger age had they been born in January.

A third example consists in randomized experiments relying on an encouragement design.

In such designs, the encouragement group typically receives a �nancial incentive to get

treated, or a �yer describing the treatment, or both. ND means that the incentive and the

�yer will positively impact every subject's treatment decision. In practice, those incentives

might have the expected positive e�ect on a majority of subjects, but might still discourage

some of them from getting treated. For instance, the �yer might lead some subjects to

think that the bene�t they can expect from treatment is lower than what they initially

thought.

A fourth example consists in papers using randomly assigned judges with di�erent sen-

tencing propensities as an instrument for incarceration length, as in Kling (2006). In those

papers, ND requires that, for every defendant, a judge with a high average of strictness will

hand down a sentence that is more severe than that of a judge who is on average more le-

nient. This might be violated. Assume judge A does not take into account the defendant's

socio-economic background, while judge B tends to be more lenient towards defendants

from disadvantaged environments, and more severe with defendants from well-o� back-

grounds. If the pool of defendants bears more poor than rich individuals, judge B will be

on average more lenient than judge A, but he will be more severe with socio-economically

privileged defendants.

This paper shows that instruments still identify causal e�ects if ND is replaced by a weaker

�compliers-de�ers� (CD) condition. Let Y0 and Y1 respectively denote a subject's potential

outcome without and with the treatment. The CD assumption requires that a subgroup of

compliers, which I call com�ers, have the same size and the same probability distribution of

Y0 and Y1 as de�ers. Then, treatment e�ects among com�ers and de�ers cancel one another
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out, and the IV estimate �nally identi�es the average treatment e�ect among the remaining

part of compliers. This second subgroup consists in compliers who �out-survive� de�ers,

and accordingly I call them comvivors. Comvivors have the same size as the population

of compliers under ND; substituting CD to ND does not lead to a loss in terms of the

external validity of the identi�ed parameter. Moreover, quantile treatment e�ects among

comvivors are also identi�ed under that condition. Finally, the distribution of any vector

of covariates among comvivors is identi�ed as well, under a mild strengthening of the CD

condition.

CD is therefore su�cient for IV to capture causal e�ect among a subpopulation of compli-

ers. It is also necessary: if IV captures treatment e�ects for a subgroup of compliers, then

CD must hold.

Albeit somewhat abstract, CD stands in between two easily interpretable conditions. For

CD to be true, it su�ces that there be more compliers than de�ers in each stratum of the

population with the same value of (Y0, Y1), and it is necessary that there be more compliers

than de�ers in each stratum with the same value of Y0 and in each stratum with the same

value of Y1. I call the former condition the �more compliers than de�ers� (MC) condition,

and I call the latter the �weak more compliers than de�ers� (WMC) condition.

The CD condition is close to being fully testable, at least when potential outcomes are

binary. WMC is testable from the data, for instance using the test developed in Kitagawa

(2008). CD implies WMC, but the converse is not true, as some DGPs satisfy WMC but

violate CD. Therefore, CD cannot be consistently tested. Notwithstanding, I conduct a

simulation exercise to show that when potential outcomes are binary, a very low fraction

of DGPs satisfying WMC violate CD. In Angrist & Evans (1998), Kitagawa's test is not

rejected. I put a uniform measure on the set of DGPs compatible with the data, and

�nd that 94% of them satisfy CD, while 32% satisfy MC, and 0% satisfy ND. As a result,

CD is very likely to hold in this application; even an �agnostic� decision maker with this

uninformative uniform prior over the set of DGPs would choose to believe in it.

The CD condition does not arise from a structural model in which subjects make treat-

ment decisions after solving a utility maximization problem. Embedding this condition in

such a model would be useful, to assess whether it is signi�cantly weaker than ND not
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only from the perspective of an agnostic decision maker, but also from the perspective of

economic theory. Nonetheless, giving a structural interpretation to the CD condition is

not easy. Instead, I derive a structural interpretation of the MC condition, and discuss

how it compares with the structural interpretation of ND derived in Vytlacil (2002).

Vytlacil (2002) shows that ND is observationally equivalent to a single index model for

potential treatments. In this model, the instrument a�ects the threshold above which

an observation gets treated, but it does not a�ect the unobserved heterogeneity index.

Therefore, one interpretation of ND is that the instrument a�ects the cost of treatment,

but not the bene�ts subjects expect from it. This might be violated in the encouragement

design example, as subjects' expectations of treatment bene�ts may be altered after reading

the �yer.

MC is observationally equivalent to an asymmetric index model. In this model, the instru-

ment can a�ect both the cost and the bene�t expected from treatment, provided that in

each (Y0, Y1) stratum there be more subjects whose expected bene�t is greater with than

without the instrument. In the encouragement design example, MC requires that the �yer

be su�ciently appealing to ensure that in each (Y0, Y1) cell, the number of subjects having

a worse opinion of the treatment is equal to or less than the number of subjects having a

better opinion of it after reading the �yer.

In Vytlacil's single index model, compliers are �marginal� subjects; their expected bene�t

from treatment is too low for them to get treated if they do not receive any incentive, but

high enough for them to do so if they do receive one. Comvivors can receive a similar inter-

pretation, under a symmetric index model which is more restrictive than the asymmetric

one.

In a related paper, Small & Tan (2007) demonstrate that under MC, the Wald ratio

captures a weighted average treatment e�ect. Nevertheless, their weights can lie outside

the unit interval. As a result, their weighting scheme does not capture causal e�ects for

a well-de�ned subpopulation of units. I show here that CD is necessary and su�cient to

capture causal e�ects for a subgroup of compliers of known size, that I also describe in the

context of speci�c assignment models.

Other related papers include DiNardo & Lee (2011), who derive a result very similar to
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Small & Tan (2007). Klein (2010) introduces �local� violations of ND, and shows that

the bias of the Wald parameter can be well approximated if said violations are small.

When Kitagawa's test is rejected, meaning that both ND and CD are violated, Huber &

Mellace (2012) identify average treatment e�ects on compliers and de�ers under a local

ND condition. Finally, Hoderlein & Gautier (2012) introduce a selection model with ran-

dom coe�cients where there can be both de�ers and compliers. But their instrument is

continuous, while mine is binary.

The remainder of the paper is organized as follows. Section 2 presents the model and

introduces the MC, CD, and WMC conditions. Section 3 presents the main identi�cation

result of the paper. Section 4 shows that the distribution of any vector of covariates among

comvivors is identi�ed under a weak strengthening of CD. Section 5 discusses the testability

of CD. Section 6 shows that even a bayesian decision maker with an uninformative prior

over the set of DGPs would choose to believe in CD in most applications in which it is

not rejected. Section 7 gives a structural interpretation to the MC condition and to the

comvivors population. Section 8 shows how the ideas presented in this paper extend to

other microeconometrics models relying on ND type of conditions. Section 9 concludes.

2 Framework and assumptions

For any random variable X, let S(X) denote the support of X. Let Z be a binary in-

strument. Let Dz ∈ {0; 1} denote a subject's potential treatment when Z = z.1 Let Ydz

denote her potential outcomes as functions of the treatment and of the instrument. Only

Z, D = DZ and Y = YDZ are observed. Following Imbens & Angrist (1994), never takers

(NT ) are subjects such that D0 = 0 and D1 = 0. Always takers (AT ) are such that

D0 = 1 and D1 = 1. Compliers (C) satisfy D0 = 0 and D1 = 1, while de�ers (F )2 satisfy

D0 = 1 and D1 = 0. Let T ∈ {NT ;AT ;C;F} be a random variable describing the type of

a subject.

1For now, I focus on binary instrument and treatment, but Section 8 extends some results of the paper

to multivariate instrument and treatment.
2In most of the treatment e�ect literature, treatment is denoted by D. To avoid confusion, de�ers are

denoted by the letter F throughout the paper.
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Angrist et al. (1996) assume �rst that P (D = 1|Z = 1) > P (D = 1|Z = 0), which

means that the instrument has an e�ect on the treatment rate. This is equivalent to the

rank condition in standard IV models. Under Assumption 2.1 (see below), this condition

implies that more subjects are compliers than de�ers: P (C) > P (F ).3 Then, they make

three assumptions. First, they assume that the instrument is independent of potential

treatments and outcomes.

Assumption 2.1 (Instrument independence)

(Y00, Y01, Y10, Y11, D0, D1) ⊥⊥ Z.

Second, they assume that the instrument has an impact on the outcome only through its

impact on treatment.

Assumption 2.2 (Exclusion restriction)

∀d ∈ {0, 1},

Yd0 = Yd1 = Yd.

Third, they assume that the instrument moves all subjects into the same direction.

Assumption 2.3 (No-de�ers: ND)

D1 ≥ D0.

This paper shows that Assumption 2.3 can be substantially weakened while keeping results

in Angrist et al. (1996) and Imbens & Rubin (1997) essentially unchanged. I consider a

�rst weakening of ND, which is a special case of the stochastic monotonicity assumption

in Small & Tan (2007).

Assumption 2.4 (More compliers than de�ers: MC, Small & Tan (2007))

Almost surely,

P (F |Y0, Y1) ≤ P (C|Y0, Y1). (2.1)

3If P (D = 1|Z = 1) < P (D = 1|Z = 0), one can switch the words �de�ers� and �compliers� in what

follows.
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MC requires that each subgroup of the population with the same value of (Y0, Y1) comprise

more compliers than de�ers. It is automatically satis�ed when P (F ) = 0.

Angrist et al. (1996) show that the Wald ratio identi�es a LATE if there are no de�ers,

or if de�ers and compliers have the same distribution of (Y0, Y1). Those two assumptions

are �polar cases� of MC. Assume to simplify that Y0 and Y1 are discrete. Then, MC is

equivalent to
P (Y0 = y0, Y1 = y1|F )
P (Y0 = y0, Y1 = y1|C)

≤ P (C)

P (F )
. (2.2)

Therefore, MC holds when de�ers and compliers have the same distribution of (Y0, Y1), as

the left hand side of Equation (2.2) is then equal to 1, while its right hand side is greater

than 1.4 And MC also holds when there are no de�ers, as P (F ) = 0 implies that the right

hand side of Equation (2.2) is equal to +∞.

In between those two polar cases, MC holds in many intermediate cases. Equation (2.2)

shows that under MC, the more de�ers there are, the less the distribution of (Y0, Y1) among

compliers and de�ers can di�er, and conversely. Indeed, when compliers and de�ers have

very di�erent distributions of (Y0, Y1), i.e. when the highest value of

P (Y0 = y0, Y1 = y1|F )
P (Y0 = y0, Y1 = y1|C)

is large, P (F ) should be close to 0 for Equation (2.2) to hold. On the contrary, when P (F )

is close to P (C), compliers and de�ers should have very similar distributions of potential

outcomes for Equation (2.2) to hold. Therefore, MC will hold if few subjects are de�ers,

or if de�ers and compliers have reasonably similar distributions of potential outcomes. On

the contrary, if many subjects are de�ers and de�ers and compliers have very di�erent

distributions of potential outcomes, then MC will be violated.

MC is weaker than ND, but identi�cation results derived in this paper are obtained under

an even weaker condition. Before stating it, I introduce a very mild technical condition

which will be maintained throughout the paper.

Assumption 2.5 (Absolute continuity)

The vector (Y0, Y1, T ) has a density with respect to some σ-�nite measure λ.

4I have assumed, as a mere normalization, that P (F ) is smaller than P (C).
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For any vector of random variables X absolutely continuous with respect to λ, let fX

denote the density of X. For any event A, let fX|A denote the density of X conditional on

A.

Assumption 2.6 (Compliers-de�ers: CD)5

There is a real-valued function g de�ned on S(Y0)× S(Y1) such that almost everywhere:

0 ≤ g(y0, y1) ≤ fY0,Y1,T (y0, y1, C) (2.3)∫
S(Y1)

g(y0, y1) dλ(y1) = fY0,T (y0, F ) (2.4)∫
S(Y0)

g(y0, y1) dλ(y0) = fY1,T (y1, F ). (2.5)

As I show in the proofs, CD ensures that a subgroup of compliers, hereafter referred to as

�compliers-de�ers�, or �com�ers�, has the same size and the same marginal distributions of

Y0 and Y1 as de�ers. Conversely, if a subpopulation of compliers has the same size and the

same marginal distributions of Y0 and Y1 as de�ers, then CD must hold.

CD is weaker than MC. Indeed, MC implies

0 ≤ fY0,Y1,T (y0, y1, F ) ≤ fY0,Y1,T (y0, y1, C)

almost everywhere.6 Then, fY0,Y1,T (y0, y1, F ) satis�es Equations (2.3), (2.4), and (2.5).

Albeit weaker than MC, CD is more di�cult to interpret. To ease its interpretation, I

consider a last assumption.

Assumption 2.7 (Weak more compliers than de�ers: WMC)

Almost surely,

P (F |Y0) ≤ P (C|Y0)

P (F |Y1) ≤ P (C|Y1). (2.6)

5With a slight abuse of notation, λ should be understood in Equation (2.4) as the �marginal� measure

de�ned on the σ-algebra associated to S(Y1). Similar abuses of notations appear at a few other places in

the paper, for instance in Equation (2.5).
6To see it, assume that fY0,Y1,T (y0, y1, F ) > fY0,Y1,T (y0, y1, C) over a set A with strictly positive prob-

ability. This implies P (F |(Y0, Y1) ∈ A) > P (C|(Y0, Y1) ∈ A) which violates MC.
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For WMC to hold, each subgroup of the population with the same value of Y0 should

comprise more compliers than de�ers, and each subgroup with the same value of Y1 should

also comprise more compliers than de�ers.

CD is stronger than WMC. Indeed, integrating

g(y0, y1) ≤ fY0,Y1,T (y0, y1, C)

over S(Y1) and dividing each side of the resulting inequality by fY0(y0) yields P (F |Y0 =

y0) ≤ P (C|Y0 = y0). Integrating the same inequality over S(Y0) and dividing each side by

fY1(y1) yields P (F |Y1 = y1) ≤ P (C|Y1 = y1).

As MC ⇒ CD ⇒ WMC, CD is stronger than having more compliers than de�ers in each

Y0 and each Y1 subgroup, but it is weaker than having more compliers than de�ers in each

(Y0, Y1) subgroup.

3 Identi�cation of local treatment e�ects under CD

Let

f0(y0) =
fY,D|Z=0(y0, 0)− fY,D|Z=1(y0, 0)

P (D = 0|Z = 0)− P (D = 0|Z = 1)

f1(y1) =
fY,D|Z=1(y1, 1)− fY,D|Z=0(y1, 1)

P (D = 1|Z = 1)− P (D = 1|Z = 0)

W =
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
.

W is the Wald ratio; f0 f1 are functions appearing in Imbens & Rubin (1997). All those

quantities are identi�ed from the data, as they only involve Y , D, and Z.

Imbens & Angrist (1994), Angrist et al. (1996), and Imbens & Rubin (1997) show the

following results.
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LATE Theorems

Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then,

P (C) = P (D = 1|Z = 1)− P (D = 1|Z = 0)

fY0|C(y0) = f0(y0)

fY1|C(y1) = f1(y1)

E [Y1 − Y0|C] = W.

Under the standard LATE assumptions, the size of compliers and their marginal distri-

butions of Y0 and Y1 are identi�ed from the data. As a result, the average e�ect of the

treatment as well as quantile treatment e�ects are identi�ed within that subpopulation.

Theorem 3.1 generalizes this result, by showing that when CD is substituted to ND, the

Wald ratio identi�es the average e�ect of the treatment for a subgroup of compliers of size

P (D = 1|Z = 1)− P (D = 1|Z = 0), while f0 and f1 identify the marginal distributions of

Y0 and Y1 for the same subpopulation.

Theorem 3.1 Suppose Assumptions 2.1 and 2.2 hold.

If Assumption 2.6 holds, then there is a subpopulation of compliers CV such that:

P (CV ) = P (D = 1|Z = 1)− P (D = 1|Z = 0) (3.1)

fY0|CV
(y0) = f0(y0) (3.2)

fY1|CV
(y1) = f1(y1) (3.3)

E [Y1 − Y0|CV ] = W. (3.4)

Conversely, if there is a subpopulation of compliers CV satisfying Equations (3.1), (3.2),

(3.3), and (3.4), then Assumption 2.6 must hold.

When there are de�ers, Angrist et al. (1996) show that the Wald ratio is equal to a weighted

di�erence between the average e�ect of the treatment among compliers and de�ers:

W =
P (C)E [Y1 − Y0|C]− P (F )E [Y1 − Y0|F ]

P (C)− P (F )
. (3.5)

The numerator of the Wald ratio is the di�erence between E(Y |Z = 1) and E(Y |Z = 0).

Always takers and never takers vanish away in this numerator, as the same potential
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outcome is observed for them irrespective of whether Z = 1 or Z = 0. Only compliers and

de�ers remain. Compliers go from treatment to non-treatment when the instrument moves

from 1 to 0, which is the reason why their average treatment e�ect appears. De�ers go

from non-treatment to treatment, so that the opposite of their treatment e�ect appears.

Therefore, Angrist et al. (1996) argue that the Wald ratio has no causal interpretation

when there are de�ers; it could for instance be positive while the average treatment e�ect

is negative both among compliers and de�ers.

But if a subpopulation of com�ers CF has the same size and the same marginal distributions

of potential outcomes as de�ers, then the Wald ratio captures the average e�ect of the

treatment among the remaining part of compliers, CV . In such instances, the average

e�ect of the treatment among compliers can be decomposed into

E [Y1 − Y0|C]

= P (CV |C)E [Y1 − Y0|CV ] + P (CF |C)E [Y1 − Y0|CF ]

=
P (C)− P (F )

P (C)
E [Y1 − Y0|CV ] +

P (F )

P (C)
E [Y1 − Y0|F ] . (3.6)

Plugging Equation (3.6) into (3.5), yields

W = E [Y1 − Y0|CV ] .

Intuitively, this is because the average treatment e�ect among com�ers and de�ers cancel

one another out in Equation (3.5). Therefore, CV are hereafter referred to as �compliers-

survivors�, or �comvivors�, as they are compliers who �out-survive� de�ers.

As a result, proving the �rst statement of Theorem 3.1 amounts to proving that if CD

holds, then a subpopulation of compliers CF has the same size and the same marginal

distributions of potential outcomes as de�ers. I use a constructive argument to prove this,

by showing that one can always construct such a subgroup CF when CD is satis�ed. To

convey the intuition, I consider �rst an example in which MC holds, as is the case in Figure

1. Y0 and Y1 are binary. The population bears 20 subjects. 13 of them are compliers, while

7 are de�ers. Those 20 subjects are scattered over the 4 (Y0, Y1) cells as shown in Figure

1. MC holds as there are more compliers than de�ers in each cell.
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C={c1 c2} C={c3 c4 c5}

F={f1} F={f2 f3}

C={c6 c7 c8 c9} C={c10 c11 c12 c13}

F={f4 f5} F={f6 f7}

 CV={c2} CV={c4}

CF={c1} CF={c3 c5} 

F={f1} F={f2 f3}

CV={c6 c7} CV={c11 c12 }

CF={c8 c9} CF={c10 c13}

F={f4 f5} F={f6 f7}

P: 0.30 P: 0.30

P(C): 0.20 P(C): 0.10

P(G): 0.30 P(G): 0.15

P: 0.20 P: 0.20

P(C): 0.10 P(C): 0.10
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P(Y(0)=0,Y(1)=0,C)=0.20 P(Y(0)=0,Y(1)=1,C)=0.10
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P(Y(0)=1,Y(1)=0,C)=0.10 P(Y(0)=1,Y(1)=1,C)=0.10
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Figure 1: An example in which MC is satis�ed.

To construct CF , it su�ces to choose at random

fY0,Y1,T (y0, y1, F )

fY0,Y1,T (y0, y1, C)
%

of compliers in each of the four (Y0, Y1) strata. This amounts to picking up 0.05
0.1

= 1
2
of

compliers in the (Y0, Y1) = (0, 0) stratum, 0.1
0.15

= 2
3
of them in the (Y0, Y1) = (0, 1) stratum,

and 0.1
0.2

= 1
2
of them in the (Y0, Y1) = (1, 0) and (Y0, Y1) = (1, 1) strata. The populations

CF and CV resulting from this construction are displayed in Figure 2. CF has both the

same size and the same joint distribution of (Y0, Y1) as de�ers, which ensures that it has

the same marginal distributions of Y0 and Y1.
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CF={c8 c9} CF={c10 c13}

F={f4 f5} F={f6 f7}
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P(C): 0.20 P(C): 0.10

P(G): 0.30 P(G): 0.15

P: 0.20 P: 0.20

P(C): 0.10 P(C): 0.10

P(G): 0.15 P(G): 0.15

P(Y(0)=0,Y(1)=0)=0.30 P(Y(0)=0,Y(1)=1)=0.30

P(Y(0)=0,Y(1)=0,C)=0.20 P(Y(0)=0,Y(1)=1,C)=0.10

P(Y(0)=1,Y(1)=0)=0.20 P(Y(0)=1,Y(1)=1)=0.20

P(Y(0)=1,Y(1)=0,C)=0.10 P(Y(0)=1,Y(1)=1,C)=0.10

P(Y(0)=0,Y(1)=0)=0.30 P(Y(0)=0,Y(1)=1)=0.30

P(Y(0)=0,Y(1)=0,C)=0.20 P(Y(0)=0,Y(1)=1,C)=0.10

P(Y(0)=0,Y(1)=0,G)=0.30 P(Y(0)=0,Y(1)=1,G)=0.15

P(Y(0)=1,Y(1)=0)=0.20 P(Y(0)=1,Y(1)=1)=0.20

P(Y(0)=1,Y(1)=0,C)=0.10 P(Y(0)=1,Y(1)=1,C)=0.10

P(Y(0)=1,Y(1)=0,G)=0.15 P(Y(0)=1,Y(1)=1,G)=0.15
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Figure 2: Constructing CF and CV in this �rst example.

But MC is not necessary for Theorem 3.1 to hold. To see it, consider Figure 3. In

this second example, MC is not satis�ed as there are more de�ers than compliers in the

(Y0, Y1) = (0, 1) cell. On the contrary, CD holds. One can for instance set g(0, 0) =

g(0, 1) = g(1, 1) = 3
25

and g(1, 0) = 1
25
.
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C={c1 c2} C={c3 c4 c5}
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C={c1 c2 c3 c4 c5} C={c6 c7 c8}
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F={f7 f8} F={f9 f10}
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F={f7 f8} F={f9 f10}

P: 0.30 P: 0.30

P(C): 0.20 P(C): 0.10

P(G): 0.30 P(G): 0.15

P: 0.20 P: 0.20

P(C): 0.10 P(C): 0.10

P(G): 0.15 P(G): 0.15

P(Y(0)=0,Y(1)=0)=0.30 P(Y(0)=0,Y(1)=1)=0.30

          Y(1)     

Y(0)
0 1

0

1

          Y(1)     

Y(0)
0 1

0

1

1

0

1

0

1

          Y(1)     

Y(0)
0 1

          Y(1)     

Y(0)
0 1

          Y(1)     

Y(0)
0 1

0

          Y(1)     

Y(0)
0 1

0

Figure 3: An example in which MC is not satis�ed.

Then, to construct CF , it su�ces to choose at random

g(y0, y1)

fY0,Y1,T (y0, y1, C)
%

of compliers in each of the four (Y0, Y1) strata. This amounts to picking up 3
5
of compliers

in the (Y0, Y1) = (0, 0) stratum, all of them in the (Y0, Y1) = (0, 1) stratum, 1
3
of them in

the (Y0, Y1) = (1, 0) stratum, and 3
4
of them in the (Y0, Y1) = (1, 1) stratum. One can check

from Figure 4 that CF has the same size and the same marginal distributions of Y0 and Y1

as de�ers.
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Figure 4: Constructing CF and CV in this second example.

4 Who belongs to CV ?

The LATE I exhibit applies to a di�erent population than the one identi�ed in Imbens &

Angrist (1994). This CV population is more abstract, and could potentially be even more

speci�c than the standard population of compliers. Hence the need to be able to describe

it, so as to assess whether this LATE is likely to apply to other populations or not. Under
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ND, the distribution of any vector of covariates X among compliers is identi�ed. This is a

consequence of the κ result in Abadie (2003). A weak strengthening of CD is su�cient for

the distribution of X and the e�ect of the treatment to be identi�ed within a subpopulation

a compliers.

Assumption 4.1 (CD-X)

There is a real-valued function g de�ned on S(Y0)×S(Y1)×S(X) such that almost every-

where:

0 ≤ g(y0, y1, x) ≤ fY0,Y1,X,T (y0, y1, x, C) (4.1)∫
S(Y1)×S(X)

g(y0, y1, x) dλ(y1, x) = fY0,T (y0, F ) (4.2)∫
S(Y0)×S(X)

g(y0, y1, x) dλ(y0, x) = fY1,T (y1, F ) (4.3)∫
S(Y0)×S(Y1)

g(y0, y1, x) dλ(y0, y1) = fX,T (x, F ). (4.4)

A su�cient condition for CD-X to hold is that there be more compliers than de�ers in each

subgroup of the population with the same value of (Y0, Y1, X).

CD-X is stronger than CD. If g(y0, y1, x) satis�es Equations (4.1), (4.2), and (4.3), then

h(y0, y1) =

∫
S(X)

g(y0, y1, x)dλ(x)

satis�es (2.3), (2.4), and (2.5).7

CD-X is su�cient to ensure that the distribution of X and the e�ect of the treatment are

identi�ed within a subpopulation a compliers. Let

l(x) =
fX,D|Z=0(x, 0)− fX,D|Z=1(x, 0)

P (D = 0|Z = 0)− P (D = 0|Z = 1)
.

Theorem 4.1 Suppose Assumptions 2.1, 2.2, and 4.1 hold. Then there is a subpopulation

7It is straightforward that h satis�es (2.3). To see that it satis�es for instance (2.4), it su�ces to

integrate h over S(Y1), use the Fubini-Tonelli theorem, and then use Equation (4.2).
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of compliers CV such that:

P (CV ) = P (D = 1|Z = 1)− P (D = 1|Z = 0) (4.5)

fY0|CV
(y0) = f0(y0) (4.6)

fY1|CV
(y1) = f1(y1) (4.7)

E [Y1 − Y0|CV ] = W (4.8)

fX|CV
(x) = l(x). (4.9)

This theorem shows that under CD-X, there is a population CV for which both treatment

e�ects and the distribution of X are identi�ed. Therefore, one can describe CV , to assess

whether it di�ers from the remaining part of the population. Under ND, l(.) captures the

distribution of X among the entire population of compliers. As a result, the distribution

of X for CV under the CD-X condition is the same as the distribution of X for compliers

under the ND condition. Here again, substituting CD-X to ND does not lead to a change

in the quantities to be estimated, but it changes their interpretation.

5 Testability

As pointed out in Imbens & Rubin (1997), the standard LATE assumptions - random

instrument, exclusion restriction, and ND - have testable implications. Kitagawa (2008)

develops the corresponding statistical test. As shown in the next lemma, the alternative

LATE assumptions - random instrument, exclusion restriction, and CD - have the same

testable implications. Moreover, if Assumptions 2.1 and 2.2 are maintained hypothesis,

performing Kitagawa's test amounts to testing WMC.

Lemma 5.1

1. Assumptions 2.1, 2.2, and 2.6 imply that the following inequalities must hold almost

everywhere:

fY,D|Z=1(y0, 0) ≤ fY,D|Z=0(y0, 0)

fY,D|Z=0(y1, 1) ≤ fY,D|Z=1(y1, 1). (5.1)
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2. Under Assumptions 2.1 and 2.2, Equation (5.1) is equivalent to WMC.

Kitagawa's test is not a consistent test of CD, as some DGPs satisfy WMC but violate CD.

To see this, consider the joint distribution of (Y0, Y1, D0, D1) presented in Figure 5. This

joint distribution satis�es WMC, as the sum of each line and each column is smaller for

de�ers than compliers. Still, it is impossible to construct a function g satisfying Equations

(2.3), (2.4), and (2.5). P (Y0 = 1, F ) = P (Y1 = 1, F ) = 0.2. To ensure that g satis�es

Equations (2.4) and (2.5), we must have

g(1, 1) + g(1, 0) = 0.2 (5.2)

and

g(1, 1) + g(0, 1) = 0.2. (5.3)

Since P (Y0 = 1, Y1 = 1, C) = 0.05, g(1, 1) must be smaller than 0.05 for Equation (2.3) to

hold. As a result, one must set

g(0, 1) = g(1, 0) ≥ 0.15.

Then,

P (Y0 = 0, F ) = P (Y1 = 0, F ) = 0.05.

Given g(0, 1) and g(1, 0), having

g(0, 0) + g(0, 1) = g(0, 0) + g(1, 0) = 0.05

would require setting

g(0, 0) ≤ −0.10,

which would violate Equation (2.3).
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1

          Y(1)     

Y(0)
0 1

0

1

0

0

1

          Y(1)     

Y(0)

0

1

          Y(1)     

Y(0)
0 1

1

0

Figure 5: WMC does not imply CD.
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As shown in Kitagawa (2008), Equation (5.1) is the strongest testable implication of ND:

if it is satis�ed in the data, it is possible to rationalize ND. As ND is stronger than MC

or CD, Equation (5.1) is also the strongest testable implication of those two assumptions.

Therefore, there is no consistent test of ND, MC, or CD.

6 Should we believe in CD? The perspective of an agnostic deci-

sion maker

Consider a bayesian decision maker who has to decide whether to believe or not in CD,

MC, and ND, in an application where potential outcomes are binary. Let J denote the

joint distribution of (Y0, Y1, D0, D1). As potential outcomes are binary,

J = (P (Y0 = y0, Y1 = y1, D0 = d0, D1 = d1))(y0,y1,d0,d1)∈{0;1}4

is merely a vector in [0, 1]16 whose coordinates sum up to 1. Let Jpr denote the set of all

such vectors. Before the data is revealed, J can be any element of that set.

The prior distribution of that decision maker for J is the same as the distribution of

U |U ∈ Jpr, where U denotes a vector of 16 independent random variables uniformly

distributed on [0, 1]. As it is symmetric, this prior is invariant to relabeling the parameters

of the DGP. It is therefore uninformative, both on the size of each type (always takers,

never takers, compliers, and de�ers), and on their distribution of potential outcomes. This

implies, for instance, that before the data reveals the distribution of (Y,D,Z), the decision

maker assigns the same weight to the two following statements: �the population comprises

30% of compliers, 20% of de�ers, 40% of never takers, and 10% of always takers�, and �the

population comprises 10% of compliers, 30% of de�ers, 20% of never takers, and 40% of

always takers.� À priori, she does not believe that some types are likely to outnumber the

others in the population.

Then, the data (asymptotically) reveals the distribution of (Y,D,Z). This imposes some
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equality and inequality constraints on the 16 coordinates of J . For instance, we must have

P (Y = 0, D = 0|Z = 0)− P (Y = 0, D = 0|Z = 1)

= P (Y0 = 0, Y1 = 0, D0 = 0, D1 = 1) + P (Y0 = 0, Y1 = 1, D0 = 0, D1 = 1)

− (P (Y0 = 0, Y1 = 0, D0 = 1, D1 = 0) + P (Y0 = 0, Y1 = 1, D0 = 1, D1 = 0)).

This reduces the set of potential DGPs to Jpo, the set of elements in [0, 1]16 compatible

with all those constraints. The posterior distribution of the decision maker for J is the

distribution of U |U ∈ Jpo.

Let ND,MC, and CD be the set of joint distributions of (Y0, Y1, D0, D1) satisfying respec-

tively ND, MC, and CD. If the decision maker's loss function is symmetric in Type 1 and

Type 2 error, she will choose to believe, for instance, in CD if and only if Ppo(J ∈ CD) ≥ 1
2
.

Ppo(J ∈ CD), Ppo(J ∈MC), and Ppo(J ∈ ND) can be approximated using a Monte-Carlo

method, by drawing realizations of vectors U belonging to Jpo and by computing the share

of them which respectively belong to CD,MC, and ND.8

With a �nite sample, the data does not reveal the joint distribution of (Y,D,Z). There-

fore, we can only estimate Ppo(J ∈ CD), Ppo(J ∈MC), and Ppo(J ∈ ND), by substituting

(P̂ (Y = y,D = d|Z = z))(y,d,z)∈{0;1}3 with (P (Y = y,D = d|Z = z))(y,d,z)∈{0;1}3 when

conducting the Monte-Carlo simulations described above. The resulting estimator is con-

sistent.9

In Angrist & Evans (1998), this agnostic decision maker with a symmetric loss function will

choose to believe in CD but not in MC or ND. Their main outcome Y is a binary variable

for female participation to the labor market. Treatment D is a dummy for having three

children or more. The instrument Z is a dummy equal to one when the �rst two children

in a family are of the same sex. Computations are based on the 1980 PUMS sample, which

bears 394 840 observations. As shown in Huber (2012), Kitagawa's test is not rejected in

this data. Monte-Carlo simulations yield P̂po(J ∈ CD) ≈ 94%, P̂po(J ∈ MC) ≈ 32%, and

8When potential outcomes are binary, it is easy to determine whether a joint distribution of

(Y0, Y1, D0, D1) satis�es CD or not.
9This follows from the continuous mapping theorem, once noted that Jpo is a continuous function of

(P (Y = y,D = d|Z = z))(y,d,z)∈{0;1}3 , and that P (U ∈ A|U ∈ B) is continuous in B by continuity of the

cumulative distribution function of U .
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P̂po(J ∈ ND) = 0%.10 As the sample size is large, those estimates can be regarded as

fairly precise approximations of the true underlying parameters.

Angrist & Evans (1998) is not an exception: for most distributions of observables

(P (Y = y,D = d|Z = z))(y,d,z)∈{0;1}3

satisfying WMC, a very large share of the corresponding set of admissible DGPs also sat-

is�es CD. To show this, I draw 200 distributions of observables from uniform distributions,

imposing that

P (Y = y,D = d|Z = d) ≥ P (Y = y,D = d|Z = 1− d),

for every (y, d) ∈ {0; 1} × {0; 1},11 and

P (Y = 0, D = 0|Z = z) + P (Y = 1, D = 0|Z = z)

+ P (Y = 0, D = 1|Z = z) + P (Y = 1, D = 1|Z = z)

be equal to 1 for every z ∈ {0; 1}. For each of those distributions of observables, the

corresponding value of Ppo(J ∈ CD) is approximated using a Monte-Carlo simulation. The

average value of Ppo(J ∈ CD) is 81%, while its median is 88%. Ppo(J ∈ CD) is greater than

50% in 90% of cases. It sometimes takes very low values (the lowest value of Ppo(J ∈ CD)

is 0%), but only when

P (Y = y,D = d|Z = d)− P (Y = y,D = d|Z = 1− d)

is very low for some value of (y, d), meaning that the WMC assumption is close to being

violated. Among vectors such that for every (y, d)

P (Y = y,D = d|Z = d)− P (Y = y,D = d|Z = 1− d) ≥ 0.02,

the lowest value of Ppo(J ∈ CD) is 41%.

When interested in a binary outcome, applied researchers can run simulations similar to

those I conducted to assess how credible CD is in the application they consider.12 This

10This is merely because ND constrains 4 coordinates of J to be equal to 0. As a result, ND is of a

strictly lower dimension than Jpo, which implies that the Lebesgue measure of ND relative to Jpo is 0.
11This ensures that WMC is satis�ed.
12The Stata code is available upon request.
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bayesian analysis could be extended to multivariate outcomes with �nite support, even

though the simulations will become more cumbersome as the support of the outcome

grows. It would be more challenging to extend this type of analysis to outcomes with

in�nite support.

As per this uniform prior, DGPs satisfying ND will always account for 0% of DGP com-

patible with the data. This does not mean ND is always an incredible assumption. In

some applications, economic theory gives strong arguments supporting ND. In such cases,

it might not be insightful to adopt the perspective of an agnostic decision maker with an

uninformative prior, as we have good reasons not to be agnostic. The following section

reviews the standard structural interpretation of ND, and derives structural interpreta-

tions of the MC and WMC conditions, to discuss how those assumptions compare from

the perspective of economic theory.

7 A structural interpretation of the MC and WMC conditions

The CD condition does not arise from a structural model in which subjects make treatment

decisions after solving a utility maximization problem. Embedding this condition in such a

model would be useful, to assess whether it is signi�cantly weaker than ND not only from

the perspective of an agnostic decision maker, but also from the perspective of economic

theory. Nonetheless, giving a structural interpretation to the CD condition is not easy.

Instead, I give structural interpretations of both the MC and WMC conditions. As CD

stands in between the two, its structural interpretation will also stand in between the

interpretation of MC and WMC.

Without any loss of generality, one can always write

Dz = 1{Vz ≥ vz}, (7.1)

with v0 ≥ v1. This can be interpreted as a rational choice model: when Z = z, a subject

gets treated if and only if the bene�t she expects from treatment (Vz) is greater than its

cost (vz).
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Then, let bene�t-compliers (BC) satisfy

{V0 < v1, V1 ≥ v0},

while cost-compliers (CC) satisfy

{(V0, V1) ∈ [v1, v0)
2}.

BC and CC de�ne a partition of compliers. Bene�t compliers would comply even if the

instrument had no impact on the cost of treatment, i.e. if v1 = v0. Cost compliers are the

remaining part of compliers.

As shown in Vytlacil (2002), the restriction ND imposes on the fully general model pre-

sented in Equation (7.1) is

Assumption 7.1 (Single Index)

V0 = V1 = V. (7.2)

Under this restriction, the fully general model becomes a single index model. Compliers

can only be cost compliers, and they satisfy V ∈ [v1, v0). They are �marginal� subjects:

their expected bene�t from treatment is too low for them to get treated if they do not

receive an incentive, but high enough for them to get treated if they do receive one.

Following the rational choice interpretation outlined above, single index amounts to as-

suming that the instrument has no e�ect on the expected bene�t from treatment. This

might not always be credible. For instance, in randomized controlled trials relying on an

encouragement design, the encouragement group typically receives a �yer describing the

treatment, and a �nancial incentive to get treated. As the �yer conveys information on

the treatment, it might change the bene�ts subjects expect from it.

MC imposes a weaker restriction than ND on the fully general model. Consider the fol-

lowing condition:

Assumption 7.2 (Asymmetric indexes: AI)

For every h ≥ l,

P (V0 < l, V1 ≥ h|Y0, Y1) ≥ P (V0 ≥ h, V1 < l|Y0, Y1) (7.3)

almost surely.
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In the encouragement design example, the AI condition means that even though the �yer

might decrease the bene�ts that some subjects expect from treatment, it is still appealing

enough to ensure that in each (Y0, Y1) subgroup there are at least as many subjects whose

expected bene�t from treatment increases from l to h after reading it, as there are subjects

whose expected bene�t decreases from h to l.

As shown in the next theorem, the AI condition is su�cient for MC to hold, but it does

not ensure that the CV population can receive a simple structural interpretation. This is

achieved under the following more restrictive condition:

Assumption 7.3 (Symmetric indexes: SI)

For every h ≥ l,

P (V0 < l, V1 ≥ h|Y0, Y1) = P (V0 ≥ h, V1 < l|Y0, Y1) (7.4)

almost surely.

In the encouragement design example, the SI condition requires that there be exactly as

many subjects whose expected bene�t from treatment increases from l to h after reading

the �yer, as there as subjects for whom it decreases from h to l.

Theorem 7.1 Suppose potential treatments are generated following Equation (7.1).

1. If Assumption 7.2 holds, then Assumption 2.4 is satis�ed.

2. If Assumption 7.3 holds, then CC satis�es Equations (3.1), (3.2), (3.3), and (3.4).

3. If Assumption 2.4 holds, one can construct

(V ∗0 , V
∗
1 , v

∗
0, v
∗
1)

such that Equation (7.1) holds and Assumption 7.2 is satis�ed.

The �rst point of the theorem shows that if the true DGP of potential treatments satis�es

the AI condition, then MC holds. The second part shows that if this DGP satis�es the more

restrictive SI condition, then the CV population for which treatment e�ects are identi�ed

corresponds to cost-compliers. Finally, the third part shows that if MC holds, one can
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construct a DGP satisfying the AI condition. Therefore, the AI, SI, and MC conditions

are observationally equivalent. This generalizes Vytlacil (2002).

Finally, I sketch a structural interpretation of the CD condition. As discussed above, CD

stands in between MC and WMC. One can show that WMC is observationally equivalent

to a weaker AI condition: for every h ≥ l,

P (V0 < l, V1 ≥ h|Y0) ≥ P (V0 ≥ h, V1 < l|Y0)

P (V0 < l, V1 ≥ h|Y1) ≥ P (V0 ≥ h, V1 < l|Y1), (7.5)

almost surely. As a result, CD is weaker than imposing Equation (7.3), but it is stronger

than imposing only Equation (7.5).

8 Extensions

8.1 Extension to IV with multivariate treatment and instrument

Results on average e�ects presented in this paper extend to applications where treatment

is multivariate. Assume that for every z ∈ {0; 1}, Dz ∈ {0, 1, 2, ..., J} for some integer

J . Let (Yj)j∈{0,1,2,...,J} denote the corresponding potential outcomes. Assume the following

MC type of condition is veri�ed: for every j ∈ {1, 2, ..., J},

P (D0 ≥ j > D1|Yj, Yj−1) ≤ P (D1 ≥ j > D0|Yj, Yj−1).

This condition means that in each (Yj, Yj−1) subgroup, there are less subjects who are

induced to go from a treatment greater than j to a treatment strictly lower than j because

of the instrument, than subjects who are induced to go from strictly below to above j.

Then, the Wald ratio captures the following average causal response:

J∑
j=1

wjE(Yj − Yj−1|Cj
V ).

Cj
V is a subset of the population satisfying {D1 ≥ j > D0} of size P (D1 ≥ j > D0) −

P (D0 ≥ j > D1), and

wj =
P (D1 ≥ j > D0)− P (D0 ≥ j > D1)
J∑

j=1

P (D1 ≥ j > D0)− P (D0 ≥ j > D1)
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are positive weights summing up to 1. This generalizes Theorem 1 in Angrist & Imbens

(1995).

Their Theorem 2 states that with a multivariate instrument Z ∈ {0, 1, 2, ..., K}, if Dz′ ≥

Dz for every z′ ≥ z, then the Wald ratio captures a weighted average of average causal

responses. This result can also be generalized under the following MC condition:13 for

every 0 ≤ z < z′ ≤ K and for every j ∈ {0, 1, 2, ..., J},

P (Dz ≥ j > Dz′|Yj, Yj−1) ≤ P (Dz′ ≥ j > Dz|Yj, Yj−1).

8.2 Extension to other microeconometrics models

My results also extend to many treatment e�ect models relying on ND type of conditions.

An important example is the fuzzy regression discontinuity (RD) model studied in Hahn

et al. (2001). Their Theorem 3 still holds if their Assumption A.3, a �ND at the threshold�

assumption, is replaced for instance by a weaker �MC at the threshold� condition: almost

surely

P (F |Y0, Y1, S = s) ≤ P (C|Y0, Y1, S = s),

where S denotes the forcing variable, and s is the cut-o�.

Finally, ND type of conditions have also been used in the sample selection and survey

non-response literatures, for instance in Lee (2009) or Behaghel et al. (2012). Let R0 and

R1 denote a subject's potential responses to a survey without and with the treatment.

Under the assumption that there are no �response-de�ers� (R1 ≥ R0), Lee (2009) derives

sharp bounds for E(Y1 − Y0|R0 = 1, R1 = 1), the average e�ect of the treatment among

always-respondents (AR).

Let RC and RF respectively denote �reponse-compliers� (subjects who satisfy R0 = 0

and R1 = 1) and �response-de�ers� (subjects who satisfy R0 = 1 and R1 = 0). Under

the assumption that there are more response-compliers than response-de�ers conditional

on (Y0, Y1), or under a weaker CD type of assumption, one can show that the bounds

derived in Lee (2009) are valid bounds for E(Y1 − Y0|AR ∪ RCF ), where RCF denotes a

13Theorem 1 and 2 in Angrist & Imbens (1995) could actually be generalized under even weaker CD

type of conditions.
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subpopulation of response compliers with the same marginal distributions of Y0 and Y1 as

response-de�ers.

9 Concluding comments

In the IV model with heterogeneous e�ects, the �no-de�ers� condition can be replaced by a

weaker �compliers-de�ers� condition, while maintaining the interpretation of IV estimates

as local e�ects. Like �no-de�ers�, �compliers-de�ers� can be partly tested, through a proce-

dure developed in Kitagawa (2008). Few DGPs violate �compliers-de�ers� and satisfy the

null hypothesis in Kitagawa's test. As a result, applied researchers should conduct this test

whenever they suspect there could be de�ers in their application. If this test is not rejected

and the outcome they consider is binary, they can also conduct Monte-Carlo simulations

to assess which share of DGPs compatible with their data satisfy the CD assumption. This

will enable them to assess whether �compliers-de�ers� is a strong or a weak assumption

in their application, and whether they can be highly con�dent or not in interpreting their

results as local e�ects.
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A Proofs

Throughout the proofs, it is assumed that (Y0, Y1) takes values in an arbitrary measurable

space S(Y0)× S(Y1).

The proof of Theorem 3.1 relies on the following lemma:

Lemma A.1 There is a subpopulation of compliers CF such that:

P (CF ) = P (F ) (A.1)

fY0|CF
(y0) = fY0|F (y0) (A.2)

fY1|CF
(y1) = fY1|F (y1) (A.3)

if and only if Assumption 2.6 holds.

Proof of Lemma A.1:

Assume that Assumption 2.6 holds. Consider a function g which satis�es Equations (2.3),

(2.4), and (2.5). Densities being uniquely de�ned up to 0 probability sets, I can assume

without loss of generality that those three equations hold everywhere. Then, let

p(y0, y1) =
g(y0, y1)

fY0,Y1,T (y0, y1, C)
1{fY0,Y1,T (y0, y1, C) > 0}.

Equation (2.3) ensures that this ratio is always included between 0 and 1. Then, let B be

a Bernoulli random variable such that P (B = 1|Y0 = y0, Y1 = y1, C) = p(y0, y1). Finally,

let CF = {C,B = 1}.

For every (y0, y1) ∈ S(Y0)× S(Y1),

fY0,Y1,1CF
(y0, y1, 1)

= fY0,Y1,T,B(y0, y1, C, 1)

= fY0,Y1,T (y0, y1, C)P (B = 1|Y0 = y0, Y1 = y1, C)

= fY0,Y1,T (y0, y1, C)
g(y0, y1)

fY0,Y1,T (y0, y1, C)
1{fY0,Y1,T (y0, y1, C) > 0}

= g(y0, y1). (A.4)

The �rst equality arises from the de�nition of CF . The second follows from Bayes rule.

The third follows from the de�nition of B. The fourth holds because under Equation (2.3),

fY0,Y1,T (y0, y1, C) = 0⇒ g(y0, y1) = 0.
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Therefore,

fY0,1CF
(y0, 1) =

∫
S(Y1)

fY0,Y1,1CF
(y0, y1, 1)dλ(y1)

=

∫
S(Y1)

g(y0, y1)dλ(y1)

= fY0,T (y0, F ). (A.5)

One can similarly show that

fY1,1CF
(y1, 1) = fY1,T (y1, F ). (A.6)

Integrating (A.5) over S(Y0) yields (A.1). Dividing (A.5) and (A.6) by P (CF ) = P (F )

yields (A.2) and (A.3).

To prove the converse statement, it su�ces to notice that if a subpopulation of compliers

CF satis�es Equations (A.1), (A.2), and (A.3), then fY0,Y1,1CF
must satisfy Equations (2.3),

(2.4), and (2.5).

QED.

Proof of Theorem 3.1:

First, notice that a subgroup of compliers CV satis�es Equations (3.1), (3.2) , (3.3), and

(3.4) if and only if it satis�es

fY0,1CV
(y0, 1) = fY,D|Z=0(y0, 0)− fY,D|Z=1(y0, 0) (A.7)

fY1,1CV
(y1, 1) = fY,D|Z=1(y1, 1)− fY,D|Z=0(y1, 1). (A.8)

Similarly, as shown in the proof of Lemma A.1, a subgroup of compliers CF satis�es

Equations (A.1), (A.2) , and (A.3) if and only if it satis�es (A.5) and (A.6).

Combining those two remarks with Lemma A.1 shows that to prove Theorem 3.1, it su�ces

to prove that there is a subgroup of compliers CV satisfying Equations (A.7) and (A.8) if

and only if there is a subgroup of compliers CF satisfying Equations (A.5) and (A.6).
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Then, notice also that

fY,D|Z=0(y0, 0)− fY,D|Z=1(y0, 0)

= fY0,D0(y0, 0)− fY0,D1(y0, 0)

= fY0,D0,D1(y0, 0, 0) + fY0,D0,D1(y0, 0, 1)

− fY0,D0,D1(y0, 0, 0)− fY0,D0,D1(y0, 1, 0)

= fY0,T (y0, C)− fY0,T (y0, F ). (A.9)

The �rst equality follows from Assumptions 2.1 and 2.2, the second one follows from the

law of total probabilities. Similarly one can show that

fY,D|Z=1(y1, 1)− fY,D|Z=0(y1, 1) = fY1,T (y1, C)− fY1,T (y1, F ). (A.10)

Now, assume that a subgroup of compliers CF satis�es Equations (A.5) and (A.6). Let

CV = C \ CF .

fY0,1CV
(y0, 1) = fY0,T (y0, C)− fY0,1CF

(y0, 1)

= fY0,T (y0, C)− fY0,T (y0, F )

= fY,D|Z=0(y0, 0)− fY,D|Z=1(y0, 0).

The �rst equality follows from the law of total probabilities, the second one follows from

CF satisfying Equation (A.5), the last one follows from Equation (A.9). Similarly, one can

show that

fY1,1CV
(y1, 1) = fY,D|Z=1(y1, 1)− fY,D|Z=0(y1, 1).

This proves that CV satis�es Equations (A.7) and (A.8).

Conversely, assume that a subgroup of compliers CV satis�es Equations (A.7) and (A.8).

Let CF = C \ CV .

fY0,1CF
(y0, 1) = fY0,T (y0, C)− fY0,1CV

(y0, 1)

= fY0,T (y0, C)−
(
fY,D|Z=0(y0, 0)− fY,D|Z=1(y0, 0)

)
= fY0,T (y0, F ).

The �rst equality follows from the law of total probabilities, the second one follows from

CV satisfying Equation (A.7), the last one follows from Equation (A.9). Similarly, one can
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show that

fY1,1CF
(y1, 1) = fY1,T (y1, F ).

This proves that CF satis�es Equations (A.5) and (A.6).

QED.

Proof of Theorem 4.1:

I sktech this proof only, as it is very similar to the proof of Theorem 3.1. Consider a

function g satisying Equations (4.1), (4.2), (4.3), and (4.4). Let

q(y0, y1, x) =
g(y0, y1, x)

fY0,Y1,X,T (y0, y1, x, C)
1{fY0,Y1,X,T (y0, y1, x, C) > 0}.

Equation (4.1) ensures that this ratio is always included between 0 and 1. Then, let B

denote a Bernoulli variable such that P (B = 1|Y0 = y0, Y1 = y1, X = x,C) = q(y0, y1, x).

Finally, let CF = {C,B = 1}.

Following the same steps as for the proof of Lemma A.1, one can show that

P (CF ) = P (F )

fY0|CF
(y0) = fY0|F (y0)

fY1|CF
(y1) = fY1|F (y1)

fX|CF
(x) = fX|F (x).

Following the same steps as for the proof of Theorem 3.1, one can then show that CV =

C \ CF satis�es Equations (4.5), (4.6), (4.7), (4.8), and (4.9).

QED.

Proof of Lemma 5.1

The �rst point of the Lemma has already been proven elsewhere (see for instance Propo-

sition 1 in Kitagawa (2008)). I prove only the second point. Under Assumptions 2.1 and

2.2,

fY,D|Z=0(y0, 0)− fY,D|Z=1(y0, 0) = fY0,T (y0, C)− fY0,T (y0, F )

fY,D|Z=1(y1, 1)− fY,D|Z=0(y1, 1) = fY1,T (y1, C)− fY1,T (y1, F )

as shown above. Therefore, under those two assumptions (5.1) is equivalent to

fY0,T (y0, F ) ≤ fY0,T (y0, C)

fY1,T (y1, F ) ≤ fY1,T (y1, C).
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It su�ces to divide the �rst inequality by fY0(y0) and the second one by fY1(y1) to see that

they are equivalent to

P (F |Y0 = y0) ≤ P (C|Y0 = y0)

P (F |Y1 = y1) ≤ P (C|Y1 = y1).

QED.

Proof of Theorem 7.1

Proof of 1

Suppose Assumption 7.2 holds. For every (y0, y1) ∈ S(Y0)× S(Y1),

P (F |Y0 = y0, Y1 = y1) = P (V0 ≥ v0, V1 < v1|Y0 = y0, Y1 = y1)

≤ P (V0 < v1, V1 ≥ v0|Y0 = y0, Y1 = y1)

≤ P (V0 < v0, V1 ≥ v1|Y0 = y0, Y1 = y1)

= P (C|Y0 = y0, Y1 = y1).

The �rst and last equality follow from Equation (7.1). The �rst inequality follows from the

AI condition, as v0 ≥ v1. The second one follows from the fact that {V0 < v1, V1 ≥ v0} ⊆

{V0 < v0, V1 ≥ v1}, once again because v0 ≥ v1.

Proof of 2

Suppose Assumption 7.3 holds. For every (y0, y1) ∈ S(Y0)× S(Y1),

P (BC|Y0 = y0, Y1 = y1) = P (V0 < v1, V1 ≥ v0|Y0 = y0, Y1 = y1)

= P (V0 ≥ v0, V1 < v0|Y0 = y0, Y1 = y1)

= P (F |Y0 = y0, Y1 = y1).

The �rst equality follows from the de�nition of bene�t-compliers. The second one follows

from the SI condition. The last one follows from Equation (7.1).

Multiplying both sides of the last equality by fY0,Y1(y0, y1) and integrating it over S(Y1)

implies that BC satis�es Equation (A.5). One can similarly show that BC satis�es Equa-

tion (A.6). Therefore, BC satis�es Equations (A.1), (A.2), and (A.3). Using the same

steps as for the proof of Theorem 3.1, one can then show that CC satis�es Equations (3.1),

(3.2), (3.3), and (3.4).
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Proof of 3

The proof is a generalization of the proof of the �rst point of Proposition 2.1 in Chaise-

martin & D'Haultf÷uille (2012). Assume that Assumption 2.4 holds. Let

r(y0, y1) =
P (F |Y0 = y0, Y1 = y1)

P (C|Y0 = y0, Y1 = y1)
1{P (C|Y0 = y0, Y1 = y1) > 0}.

r(y0, y1) is smaller than 1 under MC. Let B denote a Bernoulli random variable such that

P (B = 1|Y0 = y0, Y1 = y1, C) = r(y0, y1).

Let vz = P (Dz = 0). Let t0 = 0, t1 = P (D0 = 0, D1 = 0), t2 = P (D1 = 0), t3 = P (D0 = 0),

t4 = 1 − P (D0 = 1, D1 = 1), and t5 = 1. One can check that t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5.

Then, consider (W0, ...,W4), mutually independent random variables, also independent of

(Y0, Y1, D0, D1, B). Take Wi uniform on [ti, ti+1]. Finally, let

V0 = (1−D0)(1−D1)W0 + (1−D0)D1(BW1 + (1−B)W2)

+ D0(1−D1)W3 +D0D1W4

V1 = (1−D0)(1−D1)W0 + (1−D0)D1(BW3 + (1−B)W2)

+ D0(1−D1)W1 +D0D1W4.

By construction, Dz = 1{Vz ≤ vz} almost surely. Now, I am going to prove that (V0, V1)

are exchangeable conditional on (Y0, Y1), which will ensure that both SI and AI are veri�ed.

This amounts to checking that for every v ≤ v′,

fV0,V1|Y0,Y1(v, v
′|y0, y1) = fV0,V1|Y0,Y1(v

′, v|y0, y1).

This equality is obviously true when v = v′. When v < v′,

fV0,V1|Y0,Y1(v, v
′|y0, y1) = fV0,V1|Y0,Y1(v

′, v|y0, y1) = 0,

except when (v, v′) ∈ [t1, t2]× [t3, t4]. Let (v, v
′) ∈ [t1, t2]× [t3, t4].

fV0,V1|Y0,Y1(v, v
′|y0, y1)

= P (C|Y0 = y0, Y1 = y1)P (B = 1|Y0 = y0, Y1 = y1, C)fW1(v)fW3(v
′)

= P (F |Y0 = y0, Y1 = y1)fW1(v)fW3(v
′)

= fV0,V1|Y0,Y1(v
′, v|y0, y1).

33



The �rst equality follows from the de�nition of V0 and V1 and from Bayes rule. Indeed,

one can check that observations verifying (V0, V1) ∈ [t1, t2]× [t3, t4] must be compliers such

that B = 1. The last equality also follows from the de�nition of V0 and V1: observations

verifying (V1, V0) ∈ [t1, t2]× [t3, t4] must be de�ers. This proves the result.

QED.
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