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A self-adaptive differential evolution algorithm applied to water 
distribution system optimization 

Feifei Zheng1, Aaron C. Zecchin2 and Angus R. Simpson3  

Abstract: Differential evolution (DE) is a relatively new technique that has recently been 

used to optimize the design for water distribution systems (WDSs). Several parameters 

need to be determined in the use of DE, including: population size, N; mutation weighting 

factor, F; crossover rate, CR and a particular mutation strategy. It has been demonstrated 

that the search behavior of DE is especially sensitive to the F and CR values. These 

parameters need to be fine-tuned for different optimization problems as they are generally 

problem-dependent. A self-adaptive differential evolution (SADE) algorithm is proposed 

to optimize the design of WDSs. Three new contributions are included in the proposed 

SADE algorithm: (i) instead of pre-specification, the control parameters of F and CR are 

encoded into the chromosome of the SADE algorithm and hence are adapted by means of 

evolution; (ii) F and CR values of the SADE algorithm apply at the individual level rather 

than the generational level normally used by the traditional DE algorithm; and (iii) a new 

convergence criterion is proposed for the SADE algorithm as the termination condition, 

thereby avoiding pre-specifying a fixed number of generations or computational budget 

to terminate the evolution. Four WDS case studies have been used to demonstrate the 

effectiveness of the proposed SADE algorithm. The results obtained show that the 

proposed algorithm exhibits good performance in terms of solution quality and efficiency. 
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The advantage of the proposed SADE algorithm is that it reduces the effort required to 

fine-tune algorithm parameter values.  

CE Database subject headings: optimization; water distribution systems; differential 

evolution. 

Author Keywords: optimization; differential evolution; water distribution systems. 

INTRODUCTION 

Water distribution systems (WDSs) are one of the most expensive public infrastructure 

works as they require a high level of capital investment for construction and a continuing 

investment for maintenance. Research into the optimal design of WDSs is motivated, 

therefore, by the possibility of substantial cost savings. The optimal design of a WDS 

involves indentifying the lowest cost pipe network that is able to provide the required 

demand and head pressure for each individual supply node. The design of WDSs poses 

challenges for optimization tools for two main reasons: (i) the nonlinear relationships 

between pipe discharges and head losses introduce complex nonlinear constraints into the 

optimization problem, and (ii) the discrete pipe diameters lead to a combinatorial 

optimization problem. 

Historically, a number of traditional optimization techniques have been applied to 

water network optimal design, such as linear programming (Alperovits and Shamir 1977; 

Quindry et al. 1981; Fujiwara et al. 1987) and non-linear programming (Lansey and Mays 

1989; Fujiwara and Khang 1990). However, due to the multi-modal nature of the fitness 

landscape for the optimization of water distribution system problem, these methods are 

more likely to converge on local optimal solutions, where the final solutions are highly 
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sensitive to the initial starting point (Eiger et al. 1994). In addition, the final solutions 

may include continuous pipe sizes or split pipes, which is a significant practical limitation.  

Evolutionary algorithms (EAs) have been popular alternatives for optimizing WDS 

designs as they are able to handle a discrete search space directly, and are less likely to be 

trapped by local optimal solutions. The search strategy of EAs differs from the traditional 

optimization techniques, such as linear programming or non-linear programming, in that 

they explore broadly across the search space using a population-based stochastic 

evolution algorithm, where no gradient information is required.  

Over the last two decades, a number of EAs have been employed to optimize the 

design of WDSs, such as genetic algorithms (Murphy and Simpson 1992; Simpson et al. 

1994; Dandy et al. 1996; Savic and Walters 1997); simulated annealing (Cunha and 

Sousa 2001); harmony search (Geem et al. 2002); shuffled frog leaping algorithm (Eusuff 

and Lansey 2003); Ant Colony Optimization (Maier et al. 2003); particle swarm 

optimization (Suribabu and Neelakantan 2006); cross entropy (Perelman and Ostfeld, 

2007); and scatter search (Lin et al. 2007). These techniques have been successfully 

applied to a number of WDS optimization problems and have been demonstrated to be 

more effective in finding optimal solutions compared to traditional optimization 

techniques. It has been noticed that the performance of all these EAs, in terms of 

robustness and efficiency, are significantly affected by the algorithm parameter settings, 

which need to be adjusted for different optimization problems. It has been reported by 

Tolson et al. (2009) that the number of parameters that need to be fine-tuned for different 

optimization problems for these EAs varies from 3 to 8. These do not include a 

termination criterion parameter that also needs to be pre-specified to end the EA run (i.e. 
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normally the maximum number of allowable evaluations or generations). The appropriate 

parameters of EAs are varied for different optimization problems and normally are 

adjusted by trial and error. Thus, it is extremely computationally expensive to determine 

the proper parameter values for a newly given WDS case study.  

Differential evolution (DE), proposed by Storn and Price (1995), has recently been 

used to optimize WDSs (Suribabu 2010; Dandy et al. 2010). There are three important 

operators involved in the application of the DE algorithm: a mutation operator, a 

crossover operator and a selection operator. These operators are similar to a genetic 

algorithm (GA), but DE algorithms differ significantly from a GA in the mutation process, 

in that the mutant solution is generated by adding the weighted difference between two 

random population members to a third member.  

A total of four parameters need to be pre-determined in the use of DE, including: 

population size, N; mutation weighting factor, F; crossover rate, CR; and a particular 

mutation strategy. It has been demonstrated that the performance of DE is governed by 

these parameters (especially the F and CR) based on a number of numerical optimization 

case studies (Storn and Price 1995; Vesterstrom and Thomsen 2004). In terms of 

optimizing WDSs, Suribabu (2010) and Vasan and Simonovic (2010) concluded that the 

performance of DE algorithms was at least as good as, if not better, than other EAs such 

as GAs and Ant Colony Optimization. While Dandy et al. (2010) has stated that GAs give 

better results overall than DE algorithms in terms of solution quality and efficiency. The 

contradiction of results reported by Suribabu (2010) and Dandy et al. (2010) can be 

explained by the fact that the different parameter values including N, F and CR are used 

in these DE applications. In addition, Suribabu (2010) investigated the effectiveness of 
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the DE using a number of different F and CR combinations (N is constant) applied to 

WDS optimization problems. His results show that the performance of the DE algorithm 

applied to the WDS optimization is highly dependent on the parameter values selected. 

As these control parameters are problem dependent, using the DE algorithm effectively is 

time consuming since appropriate parameter values have to be established for each new 

WDS case study.  

Investigations have been undertaken to avoid pre-specifying parameter values in EAs. 

Bäck et al. (1991) initially introduced a self-adaptive algorithm to dynamically adjust the 

mutation probability in the evolution strategy. Eiben et al. (1999) gave a systematic 

analysis of a self-adaptation strategy for the parameters of EAs. Wu and Simpson (2002) 

and Wu and Walski (2005) proposed a self-adaptive penalty approach GA for pipeline 

optimization. The penalty multiplier was encoded onto each member of the population, 

thereby allowing the penalty multiplier to evolve over the course of the GA optimization. 

Thus, there was no need to pre-specify a penalty multiplier before performing the GA run. 

Gibbs et al. (2010) provided an estimate of population size for GA applications based on 

the genetic drift. Tolson et al (2009) developed a hybrid discrete dynamically 

dimensioned search (HD-DDS) algorithm for WDS optimization and proposed the HD-

DDS as a parameter-setting-free algorithm. Geem and Sim (2010) proposed a parameter-

setting-free harmony search algorithm to optimize the design of WDSs. 

Brest at al. (2006) proposed a self-adaptive strategy to evolve the F and CR values of 

the DE algorithm, which is called jDE. In the jDE algorithm, the F and CR values were 

adjusted by introducing two new parameters 1  and 2 . They concluded that the self-

adaptive DE algorithm performed better than the traditional DE algorithm in terms of 
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convergence speed and final solution quality based on testing a number of numerical 

benchmark optimization problems. 

In this paper, a new self-adaptive differential evolution (SADE) algorithm is proposed. 

A total of thee novel aspects are involved in the proposed SADE algorithm, which are (i) 

control parameters of F and CR are encoded into the chromosome of the SADE algorithm 

rather than pre-specification and hence are adapted by means of evolution; (ii) F and CR 

values of the SADE algorithm apply at the individual level, which differs to the 

traditional DE algorithm that F and CR values applied at the generational level; and (iii) a 

new convergence criterion is proposed for the SADE algorithm as the termination 

condition in order to avoid pre-specifying a fixed number of generations or evaluations to 

terminate the evolution. 

The F and CR are encoded into the solution string and hence are subject to evolution in 

the proposed SADE algorithm. Each individual in the initial population is assigned with 

randomly generated F and CR values within a given range. The better values of F and CR 

that produce fitter offspring are directly passed onto the next generation. If the F and CR 

values are unable to yield better offspring, these two values are randomly regenerated 

within the given range for the next generation. This newly proposed SADE differs with 

the jDE algorithm (Brest et al. 2006). For the jDE algorithm used in Brest et al. (2006), 

the F and CR values survive to the next generation with a particular probability 1  and 2  

(0 < 1 , 2  <1) respectively. With a probability of 1- 1  and 1- 2 , the F and CR values are 

randomly re-initialized to new values within the given range for the next generation 

respectively. The 1  and 2 values need to be pre-specified and tuned for different 

optimization problems and hence two new parameters were introduced in the jDE 
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algorithm proposed by Brest at al. (2006). The self-adaptive strategy proposed in this 

paper allows the F and CR values that are able to yield fitter offspring are more likely to 

survive longer over generations during the running of the algorithm, which in turn, 

generates further better offspring. The details of the proposed SADE algorithm are 

presented in this paper.  

The F and CR values in traditional DE algorithms (Storn and Price 1995) and the DE 

algorithms applied to the WDS optimization (Suribabu 2010; Dandy et al. 2010; Zheng et 

al. 2011) are typically applied at the generation level during optimization. This implies all 

the individuals are therefore subject to identical mutation weighting and crossover 

strength. As with Brest et al. (2006), the F and CR values in the proposed SADE 

algorithm are applied at the individual level and hence different individuals within a 

population may have different mutation weightings and crossover rates applied. This 

approach was motivated by the fact that different individuals in a generation will be at 

varying distances from the optimal solutions and therefore require different mutation and 

crossover strength. For the individuals at greater distances from the optimal solutions, a 

relatively large F and CR is probably appropriate, while in contrast, for the individuals at 

relatively short distances from the optimal solutions, a relatively smaller F and CR may 

be suitable. Thus, the search performance of the proposed SADE algorithm is expected to 

improve as different individuals are associated with different F and CR values by means 

of evolution.  

For EAs, the convergence condition is usually a fixed number of generations reached 

(limit of computational budget) or a predefined small value reached between two 

consecutive generations in terms of objective function values (Deb 2001). In the case of 
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WDS optimization problems, the maximum number of allowable evaluations or 

generations is normally used as the termination condition (Savic and Walters 1997; 

Tolson et al. 2009; Suribabu 2010; Dandy et al. 2010). However, the appropriate number 

of allowable evaluations or generations is optimization problem-dependent and hence 

generally determined by trial and error. Moreover, the evolution time to reach the same 

final solutions of EAs applied to the same optimization problem with different starting 

points is also different. This unavoidably results in computational waste when the budget 

is greater than required or computational insufficiency when the budget is smaller than 

required. In addition to the self-adaptive strategy, a new convergence criterion is 

proposed in this paper for the SADE algorithm to eliminate the need to preset the 

computational budget and thereby avoid computational excess or insufficiency. The 

details of the proposed convergence criterion are given in the next section. 

SELF-ADAPTIVE DIFFERENTIAL EVOLUTION 

Figure 1 illustrates the flowchart of the proposed SADE algorithm to be discussed in 

the following sections. 

Initialization 

The SADE algorithm is a population based stochastic search technique. Thus, an initial 

population is required to start the DE algorithm search. Normally, each initial population 

0,iX ={ 1
0,ix , 2

0,ix ,……… D
ix 0, } is generated by uniformly randomizing individuals within 

the search space. In addition, initial values of the mutation factor F and crossover rate CR 

are randomly generated within a given range for each initial individual real-valued string. 

The initialization rule is given by: 
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)( minmax1min0,
jjjj

i xxRandxx  i=1, 2,….N, j=1, 2, ….D 

)(20, luli FFRandFF  

)(30, luli CRCRRandCRCR  

(1) 

where j
ix 0, represents the initial value of the jth parameter in the ith individual at the initial 

population; jxmin and jxmax  are the minimum and maximum bounds of the jth parameter; 0,iF  

and 0,iCR are the initial values for the ith individual; lF  and uF  are the minimum and 

maximum lower and upper bounds of the mutation weighting factor; lCR  and uCR  are 

the minimum and maximum lower and upper bounds of the crossover rate; 1Rand , 

2Rand  and 3Rand  represent three independently uniformly distributed random variables 

in the range [0, 1]; N and D are population size and dimension of the vector (number of 

decision variables) respectively. The population size N is not changed during the SADE 

evolution process.  

In the proposed SADE algorithm, the F and CR values are appended to the actual 

solution strings as shown in Figure 2. G is the generation number and G=0 is the initial 

generation. These F and CR values will evolve along with their corresponding actual 

solutions.  

Mutation 

Before the mutation operator is applied, each vector GiX ,  in the current population is 

treated as the target vector. Corresponding to each target vector, a mutant vector Vi,G = 

{ 1
,Giv , 2

,Giv ,……… D
Giv , } is generated by adding the weighted difference between two 
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random vectors to a third vector (the base vector) from the current population (D is the 

number of decision variables). The GiF ,  value of each target vector GiX ,  is used to 

generate the mutant vector, which is given by:  

)( ,,,,, GcGbGiGaGi XXFXV  (2) 

where GaX , , GbX , , GcX ,  are three vectors randomly selected from the current population 

( cba ). These three indices are randomly generated for each mutant vector Vi,G. A 

total of N mutant vectors, one for each target vector in the population, are produced using 

Equation (2).  

Crossover 

A trial vector Ui,G ={ 1
,Giu , 2

,Giu ,……… D
Giu , } is produced by selecting solution 

component values from either mutant vector (Vi,G) or its corresponding target vector (Xi,G) 

using a crossover process that is similar to uniform crossover. Thus, each component 

within the trial vector Ui,G becomes: 

otherwise  ,

 if  ,

,

,2,

, j
Gi

Gi
j
Gij

Gi
x

CRRandv
u  (3) 

where j
Giu , , j

Giv , , j
Gix ,  are the jth parameters in the ith trial vector, mutant vector and target 

vector respectively. If 2Rand  is smaller than GiCR ,  (0≤ GiCR , ≤1), the value j
Giv ,  in the 

mutant vector is copied to the trial vector. Otherwise, the value j
Gix ,  in the target vector is 

copied to the trial vector. A total of N mutant vectors Vi,G and their corresponding target 

vectors Xi,G are crossed over to generate N trial vectors using Equation (3). 

Selection  
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After crossover, the objective function f(Ui,G) for each trial vector is evaluated. Then 

each trial vector Ui,G is compared with the corresponding target vector Xi,G in terms of 

objective function values. The vector with a smaller objective function value (given that a 

minimization problem is being considered) survives into the next generation ( 1,GiX ). 

That is 

otherwise  ,

)()( if  ,
 

,

,,,

1,
Gi

GiGiGi
Gi X

XfUfU
X  (4) 

Thus, N solutions are selected utilizing Equation (4) to form the next generation.  

The F and CR values in this proposed SADE algorithm are subject to the selection 

operator. If a combination of GiF ,  and GiCR ,  is able to generate a better solution GiU ,  

compared to GiX , , these two values are given to 1,GiX  and survive to the next generation; 

in contrast, if GiF ,  and GiCR ,  generate a worse solution GiU ,  than GiX , , then new 

randomly generated F and CR values are given to 1,GiX . The F and CR selections for the 

next generation are given by: 

  )()( if ,)(

)()( if  ,
 

,,3

,,,

1,
GiGilul

GiGiGi
Gi XfUfFFRandF

XfUfF
F  

       
 )()( if ,)(

)()( if  ,
 

,,4

,,,

1,
GiGilul

GiGiGi
Gi XfUfCRCRRandCR

XfUfCR
CR  

(5) 

where 3Rand  and 4Rand  are independently generated random numbers in the range of [0, 

1].  
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As can be seen from Equation (1) to (5), the F and CR values are applied at the 

individual level and adjusted by means of evolution in the proposed SADE algorithm. It 

should be noted that neither the population size (N) nor mutation strategy have been 

included in the self-adaptation of the proposed SADE algorithm. For the population size 

(N), a sensitivity study has been undertaken to investigate its impact on the proposed 

SADE’s performance in terms of WDS optimization. For the mutation strategy, it has 

been demonstrated that the mutation strategy given in Equation (2) is most effective 

among a number of various mutation strategies introduced by Storn and Price (1995) 

(Zheng et al. 2011). Thus, the mutation strategy given in Equation (2) is used for the 

proposed SADE algorithm. 

Convergence criterion 

In the proposed SADE algorithm, the coefficient of variation ( GvC , ) of the objective 

function values for the current DE population of solutions is used as the convergence 

criterion. The coefficient of variation is a concept commonly used in hydrology (Haan 

1977) and is defined as  

N

i G

G

N

i
Gi

G

G
Gv

OBJ

OBJOBJ
N

OBJ

s
C

1

2

1
,

, )
)(

1
1

(  (6) 

where GvC ,  is the coefficient of variation of the objective function value based on all 

individuals at generation G; Gs  is the standard deviation for the N (population size) 

objective function values at population G. GOBJ  is the average objective function value 
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at generation of G; The GvC ,  value reflects the convergence property of the SADE 

algorithm that has been run as when Gs  approaches zero then all individuals of the 

population are similar in objective function values. The coefficient of variation is used to 

effectively non-dimensionalize the standard deviation with respect to the mean so that 

values are comparable across different case studies. This is an important advantage of the 

proposed new convergence criterion.  

If GvC , <Tol (where Tol is an appropriately small value, say 10-6), it indicates that all 

the individuals in the current population at generation G have already located final 

solutions (usually they will all be identical) and no further improvement can be made. If 

GvC , >Tol, it is likely that not all individuals have converged on the same final solution 

and that better solutions may be able to be found as the SADE algorithm continues to 

explore the search space.  

This proposed convergence criterion is new and motivated by the fact that all 

individuals in the DE tend to converge at the same final solution (Price et al. 2005). This 

convergence criterion significantly differs to the method of using the objective function 

values between two consecutive generations to terminate the EA evolution (Deb 2001). In 

the proposed convergence criterion approach, the search of SADE is terminated when all 

the individuals in the DE locate the same or extremely close final solutions, rather than 

using the differences of objective function values between two consecutive generations.  

Self-adaptive differential evolution applied to the WDS optimization 
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The basic SADE algorithm is a continuous global optimization search algorithm. 

Therefore, the algorithm must be modified to solve the discrete WDS optimization 

problem. In this study, the decision variables included in the proposed SADE are the 

integers that represent the set of discrete pipe diameters. However, real continuous values 

are created in the mutation process in the proposed SADE algorithm. In the proposed 

method, these real values are truncated to the nearest integer number and hence mapped 

to the corresponding pipe diameters for the hydraulic analysis. 

A network solver is used to compute the hydraulic balance in the proposed SADE 

method. For each individual, the network solver is called to perform the hydraulic 

simulation based on the pipe diameters decoded from integer string of this individual. As 

such, the head at each node of the WDS that is being optimized is obtained for each 

individual of the SADE, which, in turn, is used to assess the feasibility of each individual 

solution (a minimum allowable head requirement at each node usually needs to be 

satisfied when designing a WDS). 

Constraint tournament selection is used in the proposed SADE to handle the 

constraints and determine the individuals that survive into the next generation (Deb 2000). 

The constraint tournament algorithm when comparing two solutions (one is the trial 

vector solution and the other is the target vector solution in the proposed SADE) is given 

as follows: 

1 The feasible solution is selected when compared with an infeasible solution; 

2 The solution with a smaller value of objective function value (if cost is being 

minimized) is preferred between two feasible solutions; 
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3 The solution with less constraint violation is preferred between two infeasible 

solutions. 

With this method, the comparison between the solutions in a tournament never happens 

in terms of both objective function and penalty function. In the first case, the solution 

with no head violation is preferred to the one with a head violation and does not take the 

value of objective function into account. In the second case, the two solutions are 

compared based on the objective values and the one with a smaller value is selected as 

both solutions satisfy the constraints. In the last case, the solution with less head violation 

is selected and the value of the objective function is not considered. Thus, unlike 

traditional tournament selection, there is no need to specify a penalty multiplier in this 

proposed method. 

CASE STUDIES 

The SADE algorithm was developed in C++ and combined with the EPANET2 network 

solver (Rossman 2000). Four WDS case studies have been used to investigate the 

effectiveness of the proposed algorithm. These include the New York Tunnels Problem 

(NYTP) (Dandy et al. 1996), the Hanoi Problem (HP) (Fujiwara and Khang 1990), the 

Double New York Tunnels Problem (NYTP2) (Zecchin et al. 2005) and the Balerma 

network (BN) (Reca and Martínez 2006). The number of decision variables and the 

search space size for each case study is given in Table 1. 

The ranges for the F and CR are generally between 0 and 1 (Storn and Price 1995). 

The recommended range for F is [0.5, 1.0] and for CR is [0.8, 1.0] (Price et al. 2005; Liu 

and Lampinen 2005) based on testing on numerical optimization problems. In order to 
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demonstrate the effectiveness of the self-adaptive algorithm, relatively larger ranges for 

the F and CR values were used in the proposed SADE algorithm. Both F and CR values 

in the range of [0.1, 0.9] were utilized for each case study. For the SADE algorithm 

applied to the WDS optimization, convergence is taken to have occurred when GvC , <Tol. 

For the computer runs presented in this research the Tol value was set to be 10-6. 

CONVERGENCE CRITERION ANALYSIS 

The GvC ,  values at each generation for three SADE algorithm runs with different 

starting random number seeds applied to the NYTP case study is illustrated in Figure 3. 

When the SADE algorithm is run, as can be seen from Figure 3, the value of GvC ,  

overall reduces as the number of generations increases. This shows that individuals in the 

SADE algorithm tend to be converging by means of evolution. The current best solution 

for the NYTP case study was first reported by Maier et al. (2003) with a cost of $38.64 

million. This best solution was initially found by SADE-2 run when GvC , =0.023 at 

generation 152 (at 4,557 evaluations). Then all the individuals converged at this current 

best solution at generation 179 ( GvC , <Tol). The SADE-1 run first arrived at the current 

best solution when GvC , =0.004 at generation 216 (at 6,478 evaluations) and finally 

converged at GvC , <Tol at generation 244. The SADE-3 run initially reached an optimal 

solution with a cost of $39.06 million when GvC , =0.034 at generation 154 (at 4,618 

evaluations) and finally converged at this solution at generation 196. The SADE-3 was 

unable to reach the current best solution by the time the search was terminated at 

GvC , <Tol.  
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From Figure 3, it can be seen that the SADE algorithm runs with different starting 

random number seeds consistently converged at GvC , <Tol, although they require a 

different computational overhead. The search process varies for SADE runs starting with 

different random number seeds and hence each run may require different computational 

overheads to reach the same final solution. This is reflected by the fact that SADE-1 

required 244 generations for all individuals converge to the solution with a cost of $38.64 

million, while SADE-2 required 152 generations for all individuals to finally locate this 

solution. In this case, if a fixed computational budget is used to terminate the evolutions 

of EA runs, it is impossible to avoid the computational excess or insufficiency since each 

EA run with different starting random number seed requires different computational 

overhead. The proposed convergence criterion is able to overcome this disadvantage as 

convergence occurs based on the evolution feedback for each SADE run rather than 

specifying a fixed computational budget in advance. This allows SADE runs starting with 

different random number seeds to terminate their exploration at different numbers of 

generations purely based on the convergence criterion being satisfied.  

It is also difficult to guarantee that each EA run with various starting random number 

seeds will find the same final solution. For the three different SADE runs given in Figure 

3, SADE-1 and SADE-2 found the current best known solution ($38.64 million) for the 

NYTP case study, while the best solution found by SADE-3 was $39.06 million. The 

proposed convergence approach is able to indicate that no further improvement on the 

solution quality can be expected for the SADE-3 run although it has not arrived the 

current best known solution. This is because that all the individuals for the SADE-3 have 

converged at the identical final solution with a cost of $39.06 million for GvC , < Tol. Thus, 
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providing a larger computational budget for the SADE-3 run for this particular random 

number seed would make no difference. Starting another SADE run with other starting 

random number seeds should be carried out if better solutions are required. 

The convergence properties of the SADE algorithm in terms of GvC ,  applied to the 

other three case studies produced results similar to those exhibited by the NYTP case 

study and are therefore not given. From this study, it can be concluded that the proposed 

termination criterion with GvC , <Tol (see Equation (6)) for WDS optimization 

successfully avoids computation excess and insufficiency. 

POPULATUION SIZE STUDY 

Table 2 gives the results of the proposed SADE applied to the four case studies with 

different population sizes. Multiple SADE runs with different random number seeds were 

performed for each case study in order to enable a reliable comparison. 

The current best known solutions for the NYTP, HP and NYTP2 case studies were first 

reported by Maier et al. (2003), Reca and Martínez (2006) and Zecchin et al. (2005) with 

costs of $38.64 million, $6.081 million and $77.28 million respectively. These current 

best known solutions were also found by the proposed SADE with different population 

sizes. The best solution found by the proposed SADE for BN case study was €1.983 

million.  

As shown in Table 2, in terms of percent with the best solution found and the average 

cost solution based on R runs with different starting random number seeds, the SADE 

algorithm with a larger population size performed better for each case study. However, 
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the evaluations required to find optimal solutions and to converge using the proposed 

criterion ( GvC , <Tol: see Equation (6)) for the SADE with a larger population size are 

increased significantly as can be seen from Table 2. In considering both the solution 

quality and efficiency, population sizes of 50, 200, 100 and 500 were selected for the 

NYTP, HP, NYTP2 and BN case studies respectively. Note that for these population 

sizes selected: (i) the SADE algorithms exhibited good performance in solution quality 

and required a reasonably small computational overhead; and (ii) a further increase in 

population size for each case study only slightly improved the solution quality at the 

expense of a significantly increased computational overhead.  

By comparing the number of decision variables (given in Table 1) and the selected 

population sizes for each case study (50 for the NYTP, 200 for the HP, 100 for the 

NYTP2 and 500 for the BN), an approximate heuristic guideline for the population size 

of the SADE algorithm applied to a WDS case study is within [1D 6D], where D is the 

number of decision variables for the WDS. This differs with the rule of thumb for the 

GAs in that the population size should be within [5D 10D].  

The results of the SADE algorithm with population sizes of 50, 200, 100 and 500 for 

the NYTP, HP, NYTP2 and BN respectively are now used to compare results with other 

optimization techniques that have been previously applied to these four case studies.  

SADE ALGORITHM PERFORMANCE COMPARISON AND DISCUSSION 

Case study 1: New York Tunnels Problem (NYTP: 21 decision variables)  
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Table 3 gives the results of the proposed SADE and other previously published results 

for the NYTP case study. The results including the best solution found, the percentage of 

different runs with the best known solution found, the average cost solution and the 

average number of evaluations. The results in Table 3 are ranked based on the percent of 

trials with best solution found (the column 4). 

As can be seen from Table 3, the proposed SADE algorithm was able to locate the 

current best solution with a frequency of 92%, which is the same or higher than other 

EAs reported in Table 3. It should be highlighted that the proposed SADE algorithm is 

significantly more efficient than the majority of other EAs to find the optimal solutions in 

terms of average number of evaluations. As clearly shown in Table 3, the average number 

of evaluations required to find the first occurrence of optimal solutions based on 50 

different SADE algorithm runs was 6,598, which is less than those required by the 

majority of other EAs given in Table 3. More importantly, the average number of 

evaluations required for final convergence of the SADE algorithm (when GvC , <Tol) was 

9,227, which is significantly less than the maximum number of allowable evaluations 

used for other EAs given in the last column of Table 3. 

Case study 2: Hanoi Problem (HP: 34 decision variables) 

Table 4 gives a performance summary of the proposed SADE algorithm and other 

optimization techniques applied to the HP case study. As can be seen in Table 4, the 

proposed SADE algorithm found the current best solution for the HP case study with a 

success rate of 84%, which is an improvement compared to other EAs given in Table 4. 

The SADE algorithm also produced the lowest average cost solution over the 50 different 
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runs as shown in Table 4 with a cost of $6.090 million, which deviates only 0.15% from 

the known best solution.  

In terms of efficiency, the proposed SADE algorithm with an average number of 

evaluations of 60,532 did not perform as well as the DE (Suribabu 2010), Scatter Search 

algorithm (Lin et al. 2007) and GHEST (Bolognesi 2010). However, in terms of 

comparing the total computational overhead for each run, the average number of 

evaluations required for convergence (when GvC , <Tol) of the proposed SADE algorithm 

was 74,876, which is less than the maximum number of evaluations used of the other EAs.  

It should be highlighted that the results of other EAs in Table 4 were based on fine-

tuning parameter values and only the final results with the calibrated parameter values are 

reported. In reality, adjusting the parameter values for these EAs by a trial-and-error 

method requires additional computational overhead. In contrast, for the proposed SADE, 

ranges of the F [0.1, 0.9] and CR [0.1, 0.9] were used for the HP case study and no tuning 

was conducted for these parameters. 

Case study 3: Double New York Tunnels Problem (NYTP2: 42 decision variables) 

In order to enable a comparison with the proposed SADE, the traditional DE algorithm 

was also applied to the NYTP2 case study. The population size of 100 was also used in 

the traditional DE algorithm. Values of F=0.5 and CR=0.6 were found to be appropriate 

for the NYTP2 case study based on trials of different parameter values. The newly 

proposed convergence criteria was also used for the traditional DE. The results of the 

proposed SADE algorithm, the traditional DE algorithm and other optimization 

techniques that have been previously applied to the NYTP2 are given in Table 5.  
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As shown in Table 5, the proposed SADE algorithm outperformed the traditional DE 

algorithm, the HD-DDS (Tolson et al. 2009) and MMAS (Zecchin et al. 2007) in terms of 

the percentage of trials with the best solution found. This is reflected from Table 5 that 

the proposed SADE found the current best solution for the NYTP2 case study with a 

frequency of 90%, which is higher than all the other EAs given in Table 5.  

For the NYTP2 case study, the proposed SADE exhibited a notably better 

performance in terms of efficiency than other EAs presented in Table 5, as it required a 

significantly lesser average number of evaluations (33,810) to find the first occurrence of 

optimal solutions. The average evaluations required for convergence of 50 different 

SADE runs applied to the NYTP case study was 40,812. This shows the computational 

overhead for each proposed SADE run was significantly reduced compared with other 

EAs that terminated the run using a maximum number of allowable evaluations. A 

convergence comparison between the proposed SADE algorithm run and a traditional DE 

algorithm run with the same starting number seeds is illustrated in Figure 4.  

As can be seen from Figure 4, at evaluation numbers smaller than 30,000, the 

traditional DE algorithm found the best solution slightly faster than the proposed SADE 

algorithm when starting with the same random number seeds. In terms of comparing the 

average cost solution obtained at each generation, the traditional DE algorithm performed 

better than the proposed SADE algorithm at evaluation numbers smaller than 30,000 as it 

generated a lower average cost solution than the SADE algorithm. This is due to the fact 

that the F and CR values for the traditional DE algorithm have been fine-tuned, while the 

F and CR values in the SADE algorithm are initially randomly generated and in the early 

stages of generation have not yet self-adapted.  
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As clearly shown in Figure 4, the SADE algorithm was able to converge faster than 

the traditional DE algorithm in later generations (that is after 35,000 evaluations) in terms 

of finding the best solution as well as the best average cost solution. This is because the F 

and CR parameter values have maturely evolved. Thus, the proposed SADE algorithm 

exhibits an improved performance for later generations. The proposed SADE algorithm 

found the current best solution at evaluation number 46,131 and converged at 54,100 

evaluations based on the convergence criterion in Equation 6 ( GvC , <Tol), while the 

traditional DE algorithm found the current best solution for the NYTP2 case study with 

81,525 evaluations and finally converged at 94,382 evaluations. 

Case study 4: Balerma Network (BN: 454 decision variables) 

In comparison, a traditional DE algorithm with a population size of 500, F=0.3 and 

CR=0.5 (these two values were selected after a number of fine-tuning trials) was 

performed for the BN case study. The newly proposed convergence criteria was used for 

the traditional DE applied to the BN case study. Table 6 outlines the performance 

comparison of the SADE algorithm with different CR ranges, the traditional DE 

algorithm with tuned parameter values and other optimization techniques that have been 

previously applied to the BN case study.  

As shown in Table 6, the best solution found by the proposed SADE algorithm for the 

BN case study was €1.983 million, which is higher than the best known solution (€1.940 

million) reported by Tolson et al. (2009) using HD-DDS method, but lower than solutions 

reported by other EAs given in Table 6. However, the HD-DDS (Tolson et al. 2009) 
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yielded the best solution of €1.940 million requiring 30 million evaluations, while the 

SADE algorithm used only 1.3 million average evaluations to finally converge.  

The average number of evaluations required for the SADE algorithm to first reach the 

optimal solutions was 1.2 million, which is less than those required by most of the EAs 

given in Table 6. While GHEST (Bolognesi et al. 2009) converged more quickly, the 

quality of the final solution was worse than that produced by the proposed SADE.  

Table 7 gives an analysis of the computational effort required to find the best solutions 

and the computational effort used to terminate the SADE run (when GvC , <Tol) based on 

the proposed convergence criterion (see Equation (6)). It was found that the average 

number of evaluations required to find the first occurrence of the best solution was 

around 80% of that required for final convergence ( GvC , <Tol ) of the SADE runs.  

CONCLUSION 

The performance of all EAs is sensitive to the parameters used. Determining effective 

parameter values for each WDS optimization problem, therefore, requires a number of 

trials with different parameter values. This calibration phase results in a significant 

increase in computational overhead and hence reduces the attractiveness of EAs being 

used in engineering practice.  

The proposed self-adaptive DE algorithm (SADE) method overcomes the challenge 

mentioned above. A total of five contributions are presented in this paper in terms of 

novelty and the computational advantage of the proposed SADE algorithm, which are 

given as follows: 
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(1) The proposed SADE encodes the parameters (F and CR) into the strings to be 

automatically adjusted by means of evolution. Consequently, it reduces the effort 

required for the trial-and–error process normally used to determine the effective 

parameters for use in the DE algorithm.  

(2) The F and CR values of the proposed SADE algorithm are applied at the individual 

level rather than the generation level, which differs with the traditional DE algorithm 

applied to WDS optimization design.  

(3) A new convergence criterion has been proposed in the SADE algorithm to avoid 

pre-specifying convergence conditions. This convergence criterion is based on the 

coefficient of variation such that GvC , <Tol. It has been successfully implemented as the 

termination condition for the SADE algorithm applied to the WDS optimization. This 

represents a significant advantage compared to other EAs, where the maximum number 

of allowable evaluations is required to be pre-specified.  

(4) The only parameter value that needs to be provided for the proposed SADE is the 

population size. The population size is a relatively easy parameter to adjust since a slight 

variation of its value does not significantly impact the performance of the SADE. In 

addition, it has been derived in this study that a population size within [1D, 6D] is an 

approximate heuristic for the proposed SADE applied to WDS case studies, which differs 

to the rule of thumb for the GAs in that the population size should be within [5D, 10D] 

(Deb 2001), where D is the number of decision variables for the WDS that is being 

optimized.  

Journal of Computing in Civil Engineering. Submitted August 17, 2011; accepted March 15, 2012; 
          posted ahead of print March 17, 2012. doi:10.1061/(ASCE)CP.1943-5487.0000208

Copyright 2012 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

(5) A total of four WDS case studies with the number of decision variable ranging from 

21 to 454 have been used to verify the effectiveness of the proposed SADE algorithm. 

For the NYTP, HP and NYTP2 case studies, the SADE performed the best in terms of the 

percent of the best solution found and exhibited improved performance in convergence 

speed compared to the majority of other reported EAs. For the large BN case study, the 

proposed SADE also exhibited a comparable performance to other EAs. It should be 

highlighted that the results of other EAs (excluding the new SADE algorithm as proposed 

in this paper and the HD-DDS) in Table 3 to 6 were based on fine-tuning parameter 

values and only the final results with the calibrated parameter values are reported. In 

reality, adjusting the parameter values for these EAs by trial-and-error requires additional 

computational overhead. In contrast, for the proposed SADE, ranges of the F [0.1, 0.9] 

and CR [0.1, 0.9] were used for each case study and no tuning was needed to be 

conducted for these two parameters. Given this fact, it is fair to draw a conclusion that the 

proposed SADE was able to yield optimal solutions with greater efficiency than other 

EAs.  

The proposed SADE provides a robust optimization tool for the optimization of the 

design of WDSs (or rehabilitation of an existing WDS). This is because (i) the proposed 

SADE algorithm does not require as much fine-tuning of parameter values nor pre-

specification of a computational budget; and (2) the proposed SADE algorithm is able to 

find optimal solutions with good quality and great efficiency. In addition, the proposed 

SADE algorithm can also be used to tackle other water network management problems 

such as leakage hotpot detection (Wu and Sage 2006), optimal valve operation (Kang and 

Lansey 2010) and contaminant detection (Weickgenannt et al. 2010). The potential 
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benefit of the proposed SADE algorithm compared to other EAs that have been used to 

deal with these water network management optimization problems is that it would need 

significantly less effort to adjust the parameter values. This is a huge advantage 

especially dealing with the real-time optimization problems for WDSs (Kang and Lansey 

2010), in which decisions have to be made with extremely limited time.  

The utility of the proposed SADE algorithm has been demonstrated using the least-

cost single objective WDS optimization problems in this paper. A natural extension of 

this proposed self-adaptation algorithm is to extend it to deal with multi-objective WDS 

optimization problems, for which in addition to the cost, other objectives such as the 

reliability or greenhouse gases are considered in order to provide more practical solutions 

for WDS design. This extension is the focus of future work.  
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Figure Captions list 

Figure 1 Flowchart of the proposed SADE algorithm 

Figure 2 Encoding for the proposed SADE algorithm 

Figure 3 The GvC ,  values in each generation for three different SADE algorithm runs 

applied to the NYTP case study. Points A, B, and C reflect the points at which the best 

solution was found within each run. 

Figure 4 Convergence properties of the SADE and the traditional DE for the NYTP2 

case study with the same random number seed of 100. 
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Table 1 Summary of case study characteristics 

WDS case 
study 

Number of 
decision 
variables 

Number of total 
available tunnel or 
pipe diameters that 

can be used 

Search space 
size 

NYTP 21 16 1.934 1025 
HP 34 6 2.865 1026 
NYTP2 42 16 3.741 1050 
BN 454 10 10454 
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Table 2 Results of the SADE with different population sizes  

Case 
study 

Population 
size (N) 

Best 
solution 
founda 

Percent with the 
best solution 
found (%) 

Average 
cost 

solutiona 

Average number of 
evaluations to find 
the final solutions 

Average number of 
evaluations to 

converge ( GvC , <Tol) 

NYTP 
(R=50) 

30 38.64 64 38.94 4,069 5,375 
50 38.64 92 38.64 6,584 9,227 
100 38.64 98 38.64 12,874 19,270 

HP 
(R=50) 

100 6.081 56 6.145 38,210 45,848 
200 6.081 84 6.090 60,532 74,876 
300 6.081 84 6.090 125,454 170,724 

NYTP2 
(R=50) 

100 77.28 90 77.28 33,810 40,812 
200 77.28 98 77.28 70,196 87,592 
300 77.28 100 77.28 109,446 167,472 

BN 
(R=10) 

500 1.983 10 1.995 1.2×106 1.3×106 
1000 1.983 10 1.986 4.1×106 4.2×106 
2000 1.983 10 1.985 8.5×106 8.7×106 

Note:R=number of runs using different starting random number seeds. aThe cost unit for the NYTP and 
HP case studies is $ million and the cost unit for the BN case study is € million. 
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Table 3 Summary of SADE and other EAs applied to the NYTP case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm9 
 

No. 
of 

runs  

Best 
solution 

($M)  

Percent of 
trials with 

best 
solution 
found  

Average 
cost 
($M)  

Average 
evaluations to 

find first 
occurrence of the 

best solution  

Maximum 
allowable 

evaluations or 
evaluations for 
convergence  

SADE1 50 38.64 92% 38.64 6,598 9,227a 
GHEST2 60 38.64 92% 38.64 11,464 - 

HD-DDS3 50 38.64 86% 38.64 47,000 50,000 
Suribabu DE4 300 38.64 71% NA 5,492 10,000 

Scatter Search5 100 38.64 65% NA 57,583 - 
MMAS6 20 38.64 60% 38.84 30,700 50,000 

PSO variant7 2000 38.64 30% NA NA 80,000 
1Results from this study. 2Bolognesi et al. (2010). 3Tolson et al. (2009). 4Suribabu (2010). 5Lin et al. 

(2007). 6Zecchin et al. (2007). 7Montalvo et al. (2008). 8Average evaluations to final convergence. 9Results 
are ranked based on column (4). 
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Table 4 Summary of SADE and other EAs applied to the HP case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm10 
 

No. of 
runs  

Best 
solution 

($M) 

Percent 
of trials 

with best 
solution 
found 

Average 
cost 
($M) 

Average 
evaluations to 

find first 
occurrence of the 

best solution 

Maximum 
allowable 

evaluations or 
evaluations for 
convergence 

SADE1 50 6.081 84% 6.090 60,532 74,8769 
Suribabu DE2 300 6.081 80% NA 48,724 100,000 

Scatter Search3 100 6.081 64% NA 43,149 - 
GHEST4 60 6.081 38% 6.175 50,134 - 

GENOME5 10 6.081 10% 6.248 NA 150,000 
HD-DDS6 50 6.081 8% 6.252 100,000 100,000 

PSO variant7 2000 6.081 5% 6.310 NA 500,000 
MMAS8 20 6.134 0% 6.386 85,600 100,000 

1Results from this study. 2Suribabu (2010). 3Lin et al. (2007). 4Bolognesi et al. (2010). 5Reca and Martínez 
(2006). 6Tolson et al. (2009). 7Montalvo et al. (2008). 8Zecchin et al. (2007). 9Average evaluations to final 
convergence. 10Results are ranked based on column (4). 
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Table 5 Summary of SADE and other EAs applied to the NYTP2 case study 

(1) (2) (3) (4) (5) (6) (7) 

Algorithm5 
 

No. 
of 

runs  

Best 
solution 

($M)  

Percent of 
trials with 

best solution 
found  

Average 
cost 
($M)  

Average evaluations 
to find first 

occurrence of the 
best solution  

Maximum allowable 
evaluations or 
evaluations for 
convergence  

SADE1 50 77.28 90% 77.28 33,810 40,8124 
Traditional DE1 
(F=0.5, CR=0.6) 50 77.28 86% 77.28 70,104 87,4574 

HD-DDS2 20 77.28 85% 77.28 310,000 300,000 
MMAS3 20 77.28 5% 78.20 238,300 300,000 

1Results from this study. 2Tolson et al. 2009. 3Zecchin et al. 2007. 4Average evaluations to final 
convergence. 5Results are ranked based on column (4) 
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Table 6 Summary of SADE and other EAs applied to the BN case study 

(1) (2) (3) (4) (4) (5) (6) 

Algorithm6 
 

No. 
of 

runs 

Best 
solution 

( M) 

Percent with 
the best 
solution 

found (%) 

Average 
cost 

( M) 

Average 
evaluations to find 
first occurrence of 
the best solution 

Maximum allowable 
evaluations or 
evaluations for 
convergence 

HD-DDS2 1 1.940 - NA NA 30×106 
SADE1 10 1.983 10 1.995 1.2×106 1.3×106 

Traditional 
DE(F=0.3,CR=0.5)1 10 1.998 10 2.031 2.3×106 2.4×106 a 

GHEST3 10 2.002 10 2.055 2.5×105 NA 
HS4 NA 2.018 NA NA 107 10×106 

GENOME5 10 2.302 10 2.334 NA 10×106 
1Results from this study. 2Tolson et al. 2009. 3Bolognesi et al. (2010). 4Geem (2009). 5Reca and Martínez 
(2006). 6Results are ranked based on column (3). NA means not available. aAverage evaluations to final 
convergence.  
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Table 7 Summary of computational effort of SADE for each case study 

WDS 
case 
study 

Number 
of 

different 
runs 

Average number 
of evaluations 

required to find 
the best solution 

(AE1) 

Average number of 
evaluations required to 

terminate the SADE runs 
based on the proposed 

convergence criterion (AE2) 

Percent 
(AE1/AE2) 

NYTP 50 6,584 9,227 71.4% 
HP 50 60,532 74,876 80.8% 
NYTP2 50 33,810 40,812 82.8% 
BN 10 1.2×106 1.3×106 92.3% 
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