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Abstract 

The paper proposes a new methodology for assessing the effectiveness of GA parameters in 
consistently finding similar low cost solutions over a broad range of different starting random 
number seeds. The method involves testing the parameters of probabilities of crossover (for 
various crossover types) and probabilities of bitwise mutation with 1000 different random 
number seeds. In addition, this methodology allows different varieties of GA to be compared so 
that the methodology with the best performance can be determined. The proposed methodology 
has been verified for its effectiveness on the previously published benchmark network New York 
Tunnels Problem. 

Keywords 
Genetic algorithm, water distribution systems, crossover scheme, probability of crossover, 
probability of mutation 

1. INTRODUCTION 

The cost of construction and operation for a water distribution system (WDS) is a significant part of a 
municipal budget. As a result, the optimization of WDSs has attracted the interest of many researchers 
and has frequently been considered in the literature over the years. The usual objective of optimization for 
WDSs is to minimize the capital cost (including construction costs) plus the operating costs subject to a 
set of constraints which are mathematically nonconvex and nonlinear. Traditional techniques, such as 
linear programming and nonlinear programming, have been used previously to optimize the design of 
WDSs (Alperovits and Shamir 1977; Quindry et al. 1981; Murtagh and Saunders 1987). However, it is 
problematic to find optimal designs with these methods. 

Evolutionary algorithms have been introduced over the last 15 years to determine the least-cost design of 
water distribution systems. Among them, genetic algorithm (GA) optimization has gained popularity in 
terms of optimal design of the water distribution systems because of its robustness and search ability 
(Simpson et al. 1994; Savic and Walters 1997). Genetic algorithms mimic evolutionary principles to 
create an optimisation search (Holland 1975). In terms of optimal design of WDSs, GA optimization has 
an advantage over traditional optimization techniques in that it deals more easily with discrete 
commercially available pipe sizes and the GA search has been proven to perform efficiently compared 
with traditional optimisation techniques (Simpson et. al 1994). Based on the standard genetic algorithm 
(SGA), a number of improved GA optimisation techniques have been proposed by researchers. A GA 
incorporating a creeping mutation operator has been shown to more efficient (Dandy et al. 1996). Wu et. 
al (2001) introduced a fast messy genetic algorithm to deal with the optimization of the water network. 
Vairavamoorthy and Ali (2005) used a pipe index method to modify the GA-based pipe optimization. 

The objective of this paper is to present a new methodology for assessing the impacts of different GA 
parameters on the performance of GAs for the optimisation of water distribution systems. The method 
involves testing the parameters of probabilities of crossover for various crossover types and probabilities 



of bitwise mutation with 1000 different random number seeds. One pipe network design case study is 
presented in the paper in order to demonstrate the new methodology. The obtained data is plotted and 
tabulated to enable the assessments of the effectiveness of the GA parameters combinations. 

2. GENETIC ALGORITHM REPRESENTATION AND OPERATORS 

2.1 Coding 

The decision variables describing trial solutions of a pipe network design are represented by a uniquely 
coded string in GA optimisation of water distribution system design. Coding schemes include binary 
coding, Gray coding and integer coding. Binary coding has been extensively used. A typical binary 
coding mapping is shown in the second column of Table 1. Pipe sizes are coded by different substrings, 
such as substring 000 representing pipe diameter size of 12 inches. A Hamming cliff effect is produced 
when the binary coding of two adjacent values differs in each of their bits, such as substrings 011 and 100 
in the second column of Table 1. The Hamming cliff may lead the GA to a non-global optima (Goldberg 
1991). A Gray coding scheme was introduced by Dandy et al. (1996) to avoid the Hamming cliff. The 
Gray codings for the decision variables are given in the third column of Table 1. It is noticed that the Gray 
coding representation is such that adjacent decision variables differ only 1 bit in their corresponding 
coded substrings. Another issue that needs to be addressed is the possible redundant states of binary 
coding and Gray coding. For example, there is no corresponding pipe size for the substring of 111 in 
binary coding and Grady coding in Table 1. However, the substring of 111 will be inevitably generated 
while applying the crossover and mutation operators. Vairavamoorthy and Ali (2000) applied an integer 
coding method in genetic algorithms to avoid the problem of redundant states often found when using 
binary coding or Gray coding. A typical example of integer coding is given in the fourth column of Table 
1. The integer values from 1 to 6 are used to represent the 6 diameters. 

Table 1. A typical example of different coding schemes 
Corresponding Coded substrings 

Diameters (inches) 
Binary             Gray              Integer 

12 000 000 1 
16 001 001 2 
20 010 011 3 
24 011 010 4 
30 100 110 5 
40 101 100 6 

2.2 Selection 

The primary objective of the selection operator is to replicate the good solutions and eliminate bad 
solutions in a population while keeping the population size constant. The selection operator makes more 
copies of the good solutions at the expense of bad solutions, but no new solutions are created. A number 
of selection methods may be used in a GA including tournament selection, proportionate selection and 
ranking selection. It has been demonstrated that the tournament selection has better or equivalent 
convergence and computational overhead when compared to proportionate selection and ranking selection 
(Goldberg and Deb 1991). 

2.3 Crossover 

In the crossover operator, two strings are randomly chosen to exchange some portion of their strings in 
order to create two new strings. There exists a number of crossover schemes including one point 



crossover, two point crossover and uniform crossover (Deb 2001). Two integer coded strings are used to 
illustrate the different crossover schemes as shown in Figure. 1. 

1 2 4 1 3 1 5 3 6 1 2 4 1 1 6 4 5 2
3 5 1 3 1 6 4 5 2 3 5 1 3 3 1 5 3 6

Parents Offspring

 

(a) One-point crossover 

1 2 4 1 3 1 5 3 6 1 2 1 3 1 6 4 3 6
3 5 1 3 1 6 4 5 2 3 5 4 1 3 1 5 5 2

Parents Offspring

 

(b) Two-point crossover 

1 2 4 1 3 1 5 3 6 1 5 4 1 1 6 5 3 2
3 5 1 3 1 6 4 5 2 3 2 1 3 3 1 4 5 6

Parents Offspring

 

(c) Uniform crossover (Each pair of bits is considered for crossover) 

Figure 1. An example of different crossover schemes 

In one-point crossover, two strings are picked from the population and denoted as parents. A site along 
the length of the string is chosen randomly and all the bits on the right side of cross site are exchanged 
between the two strings. Two new strings are then created called offspring. As shown in Figure 1(a), the 
fifth bit is chosen to be the crossover site and all bits on the right side of the cross site (given in light gray) 
are exchanged. If two sites are randomly selected along the string and all the bits between the two sites 
are exchanged, this method is called two-point crossover. From the Fig. 1(b), the bits between the third 
and the seventh (given in light gray) are exchanged to create two new solutions. In uniform crossover, 
each pair of bits is considered in turn in the parent strings. Exchange between the strings occurs with a 
probability, which is usually 0.5. As shown in Fig. 1(c), the second, fifth, sixth and ninth bits (given in 
light gray) are exchanged between the parent strings. In addition to the crossover schemes, the probability 
of crossover (Pc) has a significant effect on the performance of GAs and a relatively high probability of 
crossover (Pc=0.6 to 1.0) has been recommended (Goldberg 1989). 

2.4 Mutation 

Mutation is needed to maintain the diversity in the population and alters a string locally to hopefully 
create a better string. Bitwise mutation has been extensively used in a GA, where each bit has a specified 
probability of mutation (Pm). The mutation may result in a pipe size that considerably different compared 
to the original one. A relatively low probability of bitwise mutation (Pm=0.01) is employed for most GA 
runs. Dandy et. al (1996) implemented a GA with probability of mutation being 0.01 to optimize the New 
York Tunnels Problem (NYTP). Vairavamoorthy and Ali (2000) used a GA with probability of mutation 
being 0.01 to optimize the New York Tunnels Problem (NYTP) and the Hanoi Problem (HP). Goldberg 
and Koza (1990) proposed a probability of mutation Pm could be defined as pm=1/str where pm is the 
mutation parameter and str is the length of the string. 

3. CASE STUDY 

The various types of GA implementation considered in this paper have been coded in C++ combined with 
the EPANET2 network solver to computer the hydraulic balance. The New York Tunnels Problem 
(NYTP) is used to test the effectiveness of the new methodology. 

A schematic of the NYTP system is given in Fig. 2. The network is composed of 21 existing tunnels and 
20 nodes fed by the fixed-head reservoir. All the details of this network including the head constraints, 



pipe costs, and water demands can be found in the literature (Dandy et al.1996). The objective is to 
determine which pipes in parallel with the existing system give the least-cost solution while satisfying the 
minimum head requirement at all nodes. There are 15 pipe diameters that can be selected for NYTP and 
these are {36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204} inches. In addition, a zero 
pipe size provides a total of 16 options (15 actual pipe diameters plus a zero pipe size) for each link. 
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Figure 2. Layout of the NYTP network 

3.1 Test 1: crossover schemes 

The NYTP case study has been used to test the impacts of three different crossover schemes on the 
performance of the GAs. The three schemes included one-point crossover, two-point crossover and 
uniform crossover. As can be seen from Table 2, for the case study, two groups have been designed to test 
the performance of GAs with three different crossover schemes. The first group consisting of GA1, GA2 
and GA3 was used to test the performance of non-mutation GAs (Pm=0.0) with different crossover 
schemes. The second group consisting of GA4, GA5 and GA6 was designed to test the performance of 
GAs with three different crossover schemes, but with mutation (Pm=0.03). 

Table 2. GA Parameters 
GA parameters applied to the NYTP 

Group 1 Group 2 GA Parameters 
GA1 GA2 GA3 GA4 GA5 GA6 

Crossover scheme One-point Two-point Uniform One-point Two-point Uniform 

Probability of crossover (Pc) 0.9 0.9 0.9 0.5 0.5 0.5 

Probability of mutation (Pm) 0 0 0 0.03 0.03 0.03 



In order to compare the performance of GAs with different crossover schemes in each group, all the 
parameters of GAs in the same group were set the same except the crossover scheme. For example, all 6 
GAs used the integer coding and tournament selection. The population size and maximum number of 
evaluations for each GA were identical, with values of 100 and 100,000, respectively. For each GA 
application, 1000 runs with different random number seeds were implemented. The results of different 
GAs runs applied to the NYTP are shown in Fig. 3. 
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(a) Results of GA1 runs applied to the NYTP (b) Results of GA2 runs applied to the NYTP 
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(c) Results of GA3 runs applied to the NYTP (d) Results of GA4 runs applied to the NYTP 
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(e) Results of GA5 runs applied to the NYTP (f) Results of GA6 runs applied to the NYTP 

Figure 3. Results of different GAs applied to the NYTP 

N=100  
Pc=0.9 
Pm=0.0 
One-point 
crossover 

N=100  
Pc=0.9 
Pm=0.0 
Two-point 
crossover 

N=100  
Pc=0.9 
Pm=0.0 
Uniform 
crossover 

N=100  
Pc=0.5 
Pm=0.03 
One-point 
crossover 

N=100  
Pc=0.5 
Pm=0.03 
Two-point 
crossover 

N=100  
Pc=0.5 
Pm=0.03 
Uniform 
crossover 

$38.64 M $38.64 M 

$38.64 M 
$38.64M (332 times out of 1000) 

$38.64M (454 times out of 1000) $38.64M (326 times out of 1000) 



As can be seen from Table 3, the known-least-cost solution for NYTP is $38.64 million found first by 
Maier et al. (2003) using Ant Colony Optimization technique, compared with $38.80 million found by 
Dandy et al. (1996) and Cunha and Sousa (2001), and $39.20 million found by Morgan and Goulter 
(1985). The solution found by Savic and Walter (1997) with a value of $37.13 is infeasible when 
determined by EPANET2. The current best solution has also been obtained in this study. 

Table 3 Solutions of the NYTP 
Network design (diameters in inches) 

Links/ 
Nodes Savic and 

Walters(1997) 
Morgan and 

Goulter(1985) 
Dandy et al.(1996) and  

Cunha and Sousa (2001) 
Maier et al. (2003) 
and Present work 

1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 0 0 0 0 
5 0 0 0 0 
6 0 0 0 0 
7 108 144 0 144 
8 0 0 0 0 
9 0 0 0 0 
10 0 0 0 0 
11 0 0 0 0 
12 0 0 0 0 
13 0 0 0 0 
14 0 0 0 0 
15 0 0 120 0 
16 96 96 96 96 
17 96 96 96 96 
18 84 84 84 84 
19 72 60 72 72 
20 0 0 0 0 
21 72 84 72 72 

Total Cost ($M) 37.13* 39.2 38.80 38.64 
*=an infeasible solution determined by EPANET2. 
Note: The hydraulic head is calculated by EPANET2 with an accuracy of 0.000001. 

Fig. 3(a), Fig. 3(b) and Fig. 3(c) show scatter plots of solutions of 1000 different starting random number 
seeds including GA1 (N=100, Pc=0.9, Pm=0.0, one-point crossover), GA2 (N=100, Pc=0.9, Pm=0.0, two-
point crossover) and GA3 (N=100, Pc=0.9, Pm=0.0, uniform crossover) runs for the NYTP, respectively. It 
can be seen from the three figures, that the solutions have converged on a high cost value and there were 
no improvements on the solutions after relatively few evaluations. It has been demonstrated that the GA 
with a mutation rate of zero easily gets stuck at a local solution. The solutions of GA3 are closer to 
known-least-cost solution value of $38.64 million compared to that of GA1 and GA2.  

Table 4 shows a comparison of the performance of different GAs applied to the NYTP. The GA 
parameters are outlined in the first column. The total number of solutions in different cost ranges is given 
in the second to the ninth columns, respectively. For example, the number in the second column 
represents the number of times out of 1000 runs the solution with a cost of $38.64 million was found. The 
average cost and mean number of evaluations for 1000 GA runs are given tenth and eleventh columns of 
Table 4, respectively. 

As indicated in Table 4, the average cost of the 1000 GA3 runs was $45.952 million compared with 
$55.573 million of the 1000 GA1 runs and $48.471 million of the 1000 GA2 runs. The GA3 (with 



uniform crossover) was able to find lower cost solutions than GA1 and GA2. For example, solutions 
between $40.00 and $42.00 million were found 72 times out of 1000 runs for GA3, compared with zero 
for GA1 and 19 for GA2. Thus, for a mutation rate of zero, the GA with uniform crossover (GA3) 
performed the best and the GA with one-point crossover (GA1) performed the worst in terms of being 
able to find lower cost solutions for the NYTP. The mean number of evaluations for 1000 GA1, GA2 and 
GA3 runs were similar with a value of 3914, 4360 and 4228 evaluations respectively. 

Table 4. Results of different GAs (N=100) for optimizing the NYTP 

Total number of solutions in different cost ranges ($M) 
GAs 

38.64 38.80 38.80-
39.50 

39.50-
40.00 

40.00-
42.00 

42.00-
44.00 >44.00 

Average 
cost for 
1000 

runs($M) 

Average 
No. of 

evaluations 
for 1000 

runs 
GA1(Pc=0.9, Pm=0.0, 
One-point crossover) 

0 0 0 0 0 4 996 55.573 3914 

GA2(Pc=0.9, Pm=0.0, 
Two-point crossover) 

0 0 0 0 19 67 914 48.471 4360 

GA3(Pc=0.9, Pm=0.0, 
Uniform crossover) 

0 0 1 5 72 214 708 45.925 4228 

GA4(Pc=0.5, Pm=0.03, 
One-point crossover) 

332 63 285 85 171 48 16 39.534 60039 

GA5(Pc=0.5, Pm=0.03, 
Two-point crossover) 

454 103 332 61 49 1 0 38.998 49950 

GA6(Pc=0.5, Pm=0.03, 
Uniform crossover) 

326 110 344 83 126 10 1 39.234 40467 

Fig. 3(d), Fig. 3(e) and Fig. 3(f) show scatter plots of solutions of 1000 starting random number seeds 
including GA4 (N=100, Pc=0.5, Pm=0.03, one-point crossover), GA5 (N=100, Pc=0.5, Pm=0.03, two-point 
crossover) and GA6 (N=100, Pc=0.5, Pm=0.03, uniform crossover) runs for the NYTP, respectively. The 
solutions of these three GAs are horizontally distributed when compared with that of GA1, GA2 and GA3. 
As can be seen from Table 4, 332 times out of 1000 GA4 runs, 454 times out of 1000 GA5 runs and 326 
times out of 1000 GA6 runs were able to find known-least-cost solution with a cost of $38.64 million. 
The GA4 performed the worst as its average cost and evaluations for 1000 runs were both larger than the 
GA5 and GA6. The average cost of 1000 GA5 was $38.998 million which was slightly less than $39.234 
million obtained by 1000 GA6 runs. However, The GA6 was able to converge more quickly with average 
evaluations of 1000 runs being 40,467 compared with 49,950 of 1000 GA5 runs. 

3.2 Conclusion of Test 1 

The impact of different crossover schemes on the performance of GAs has been assessed by a new 
methodology with a broad range of different random number seeds. The results of the case study have 
shown that, with a zero mutation rate (Pm=0.0), the GA with uniform crossover performed the best and the 
GA with one-point crossover performed the worst.  

With a mutation operator (Pm>0.0), the results have also shown that the GA with one-point crossover 
performed the worst. The GA with two-point crossover GA slightly outperformed the GA with uniform 
crossover in terms of being able to find the known-least-cost solutions. However, the GA the uniform 
crossover had the advantage in efficiency, as shown in Table 3. 

In a conclusion, the GA with one-point crossover has been demonstrated, in this study, to perform the 
worst and the GA with uniform crossover is preferable in terms of optimal design of water distribution 
systems. 

 

 



3.3 Test 2: probability of crossover 

Commonly, a relatively high probability of crossover (Pc=0.6 to 1.0) has previously been recommended 
for use in a GA (Goldberg 1989). In this study, the new methodology has been used to analyse the 
impacts of different probabilities of crossover on the performance of GAs. The proposed methodology has 
been performed on the NYTP case study. All the GAs in this test used the integer coding, tournament 
selection, two-point crossover and worked with a population size of 100. The maximum allowable 
number of evaluations for all the GA applications in this study was 100,000. The other parameters for the 
NYTP case study are given in Table 5. 

As seen in Table 5, the GA7 to 11 have been used to test performance of zero mutation rate (Pm=0) GAs 
applied to the NYTP with probability of crossovers of 0.2, 0.4, 0.6, 0.8 and 1.0 respectively. The GA12 to 
16 have been used to test the performance of GAs applied to the NYTP with probability of crossover 
being 0.2, 0.4, 0.6, 0.8 and 1.0, and with the same probability of mutation being 0.03. The results of 
different GA applications for the NYTP are shown in Fig. 4. 

Table 5 GA parameters applied to the NYTP 
GA Parameters GA7 GA8 GA9 GA10 GA11 GA12 GA13 GA14 GA15 GA16 
Probability of 
crossover (pc) 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 

Probability of 
mutation (pm) 

0.0 0.0 0.0 0.0 0.0 0.03 0.03 0.03 0.03 0.03 
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(a) Results of GA7 runs applied to the NYTP (b) Results of GA8 runs applied to the NYTP 
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(c) Results of GA9 runs applied to the NYTP (d) Results of GA10 runs applied to the NYTP 

N=100  
Pc=0.2 
Pm=0.0 

N=100  
Pc=0.4 
Pm=0.0 

N=100  
Pc=0.6 
Pm=0.0 

N=100  
Pc=0.8 
Pm=0.0 

$38.64M $38.64M 

$38.64M $38.64M 
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(e) Results of GA11 runs applied to the NYTP (f) Results of GA12 runs applied to the NYTP 
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(g) Results of GA13 runs applied to the NYTP (h) Results of GA14 runs applied to the NYTP 
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(i) Results of GA15 runs applied to the NYTP (j) Results of GA16 runs applied to the NYTP 

Figure 4. Results of GAs with different probabilities of crossover for optimizing the NYTP 

The results of scatter plots for 1000 different starting random number seeds including GA7 (N=100, 
Pc=0.2, Pm=0.0), GA8 (N=100, Pc=0.4, Pm=0.0), GA9 (N=100, Pc=0.6, Pm=0.0), GA10 (N=100, Pc=0.8, 
Pm=0.0) and GA11 (N=100, Pc=1.0, Pm=0.0) runs applied to the NYTP are shown in Fig. 4(a) to (e), 
respectively. As can be seen from these figures, the solutions of GA7, GA8, GA9, GA10 and GA11 were 
clustered and the solutions of 1000 GA runs as the probability of crossover increased from rate 0.2 to 1.0 
moved towards lower cost and higher evaluations. As shown in Table 9, with a zero mutation rate 

N=100 
Pc=1.0 
Pm=0.0 

N=100  
Pc=0.2 
Pm=0.03 

N=100 
Pc=0.4 
Pm=0.03 

N=100  
Pc=0.8 
Pm=0.03 

N=100  
Pc=0.6 
Pm=0.03 

N=100  
Pc=1.0 
Pm=0.03 

$38.64M 
$38.64M (235 times out of 1000) 

$38.64M (450 times out of 1000) $38.64M (378 times out of 1000) 

$38.64M (273 times out of 1000) $38.64M (239 times out of 1000) 



(Pm=0.0), the GA with higher probability of crossover outperformed the GA with lower probability of 
crossover in terms of being able to find lower cost solutions for the NYTP. For example, solutions below 
$44.00 million were found 110 times out of 1000 runs for GA11, compared with zero for GA7, twice for 
GA8, 23 times for GA9 and 64 times for GA10. It is observed from Table 6, for a mutation rate of zero 
(pm=0.0), the average cost of 1000 GA runs was reduced as the probability of crossover increased from 
0.2 to 1.0. This demonstrated that, with a mutation rate of zero (Pm=0.0), the GA with a higher crossover 
probability such as Pc=1.0 outperformed the GA with a lower crossover probability. As can be seen from 
the last column of Table 6, the GA with a lower crossover probability converged with fewer evaluations. 
As an example, for GA7 the number of average evaluations required by the 1000 runs was only 1426, 
indicating its premature convergence. 

Table 6. Results of different GAs (N=100) applied to the NYTP 

Total number of solutions in different cost ranges ($M) 
GAs 

38.64 38.80 38.80-
39.50 

39.50-
40.00 

40.00-
42.00 

42.00-
44.00 >44.00 

Average 
cost for 
1000 

runs($M) 

Average No. 
of 

evaluations 
for 1000 

runs 
GA7(Pc=0.2, Pm=0.0) 0 0 0 0 0 0 1000 59.245 1426 

GA8(Pc=0.4, Pm=0.0) 0 0 0 0 0 2 998 53.961 2356 

GA9(Pc=0.6, Pm=0.0) 0 0 0 0 3 20 977 50.810 3203 

GA10(Pc=0.8, Pm=0.0) 0 0 0 0 10 54 936 49.180 4006 

GA11(Pc=1.0, Pm=0.0) 0 0 0 0 24 86 890 47.970 4739 

GA12(Pc=0.2, Pm=0.03) 235 141 459 144 1 0 0 39.095 63006 

GA13(Pc=0.4, Pm=0.03) 450 150 343 36 21 0 0 38.916 51925 

GA14(Pc=0.6, Pm=0.03) 378 119 353 77 69 4 0 39.064 49601 

GA15(Pc=0.8, Pm=0.03) 273 99 364 120 135 6 3 39.272 48277 

GA16(Pc=1.0, Pm=0.03) 239 69 364 162 129 36 1 39.368 47762 

Fig. 4(f) to (j) show the scatter plots of solutions of 1000 different starting random number seeds 
including GA12 (N=100, Pc=0.2, Pm=0.03), GA13 (N=100, Pc=0.4, Pm=0.03), GA14 (N=100, Pc=0.6, 
Pm=0.03), GA15 (N=100, Pc=0.8, Pm=0.03) and GA16 (N=100, Pc=1.0, Pm=0.03) runs for the NYTP, 
respectively. The solutions tend to be horizontally distributed in these figures. It is seen from Table 6, 
comparing the average cost for 1000 runs, the GA13 run was the lowest. In addition, GA13 was able to 
find the known-least-cost solution 450 times out of 1000 runs, which was a higher number of times than 
GA12, GA14, GA15 and GA16. The average evaluations of 1000 runs for GA 12 to GA22 were similar 
as shown in Table 9. Thus, this experimentation indicated that with a mutation rate such as Pm=0.03, the 
GA with a crossover probability of 0.4 performed the best when applied to the NYTP. 

3.4 Conclusion of Test 2 

The impact of different probabilities of crossover on the performance of GAs has been assessed based on 
a new methodology using a broad range of different random number seeds. From the results of the case 
study, it has revealed that, for a zero mutation rate (Pm=0.0), a GA with a relatively high probability of 
crossover was preferable. However, with mutation, the GA with a relatively lower crossover probability 
performed better than the GA with a higher probability of crossover. In this study, among the GA with 
crossover probabilities of 0.2, 0.4, 0.6, 0.8, 1.0, the GA with a crossover probability of 0.4 performed the 
best when applied to the NYTP. 

3.5 Test 3: Probability of bitwise mutation 

The proposed methodology has also been used to test the impacts of different probabilities of mutation on 
the performance of GAs applied to the NYTP case study. All the GAs in this test used the integer coding, 



tournament selection and two-point crossover (Pc=0.9). The population size was 100 and the maximum 
number of evaluations was 100,000 for each GA application in this study. Mutation probabilities of 0.00, 
0.01, 0.02, 0.03, 0.04 and 0.05 employed in GA17, GA18, GA19, GA20, GA21 and GA 22 respectively 
have been used to test the impacts of different bitwise mutation probabilities on the performance of GAs 
applied to the NYTP. The results of GAs applied to the NYTP case study are presented in Fig. 5. 
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(a) Results of GA17 runs applied to the NYTP (b) Results of GA18 runs applied to the NYTP 
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(c) Results of GA19 runs applied to the NYTP (d) Results of GA20 runs applied to the NYTP 

35.0

38.6

42.2

45.8

49.4

53.0

56.6

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Evaluations

L
ea

st
-c

o
st

 in
 a

 G
A

 r
u

n
 ($

M
)

 

35.0

38.6

42.2

45.8

49.4

53.0

56.6

0 20000 40000 60000 80000 100000

Evaluations

L
ea

st
-c

o
st

 in
 a

 G
A

 r
u

n
 ($

M
)

 
(e) Results of GA21 runs applied to the NYTP (f) Results of GA22 runs applied to the NYTP 

Figure 5. Results of GAs with different probabilities of mutation for the NYTP  
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N=100  
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Pm=0.03 

N=100  
Pc=0.9 
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N=100  
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$38.64M $38.64M (16 times out of 1000) 
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$38.64M (170 times out of 1000) $38.64M (once out of 1000) 



Table 7. Results of different GAs (N=100, Pc=0.9) for optimizing the NYTP 

Total number of solutions in different cost ranges ($M) 
GAs 

38.64 38.80 38.80-
39.50 

39.50-
40.00 

40.00-
42.00 

42.00-
44.00 >44.00 

Average 
cost for 
1000 

runs($M) 

Average No. 
of 

evaluations 
for the 1000 

runs 
GA17(Pm=0.0) 0 0 0 0 19 67 914 48.470 4360 

GA18(Pm=0.01) 16 22 70 93 473 224 102 41.155 32904 

GA19(Pm=0.02) 72 53 181 185 413 78 18 40.220 44697 

GA20(Pm=0.03) 248 75 349 152 169 5 2 39.362 48560 

GA21(Pm=0.04) 170 100 453 195 81 1 0 39.256 64904 

GA22(Pm=0.05) 1 1 9 26 623 339 1 41.656 59620 

Fig. 5(a) to (f) show the scatter plots of solutions of 1000 different starting random number seeds 
including GA17 (N=100, Pc=0.9, Pm=0.0), GA18 (N=100, Pc=0.9, Pm=0.01), GA19 (N=100, Pc=0.9, 
Pm=0.02), GA20 (N=100, Pc=0.9, Pm=0.03), GA21 (N=100, Pc=0.9, Pm=0.04) and GA22 (N=100, Pc=0.9, 
Pm=0.05) runs for the NYTP, respectively. As can be seen from these figures, the solutions of GA17 were 
well above the known-least-cost solution with a value of $38.64 million, compared with other GAs. From 
Fig. 5 (b) and (c), it is observed that a cluster of solutions converged with few evaluations, indicating the 
premature convergence of GA 18 and GA19. The solutions of 1000 GA22 run were much further away 
from the known-least-cost solution as can be seen from Fig. 5(f). 

As shown in Table 7, run GA17 (Pm=0.0) performed the worst with its average cost of 1000 runs being 
$48.470 million. The performance of the GA improved significantly as the mutation rate was increased 
from 0.01 to 0.05. For run GA17 (Pm=0.0), it was noted that the number of average evaluations of 1000 
runs was only 4360 which was considerately less than other GAs. This demonstrates that a GA with a 
mutation rate of zero is highly likely to converge on a local optimal solution. On average, the cost of 1000 
runs found by GA20 with a value of $39.362 million was slightly higher than GA21 with a value of 
$39.256 million, but significantly lower than other GAs. It is found that in Table 7, GA20 was able to 
converge faster than GA21 when comparing the average evaluations for 1000 GA runs. Run GA20 was 
able to find the known-least-cost solution 248 times out of 1000 runs, compared with 16 times out of 1000 
GA18 runs, 72 times out of 1000 GA19 runs, 170 times out of 1000 GA21 runs and only once out of 1000 
GA22 (Pm=0.05) runs. Thus, the GA with a mutation probability of 0.03 (GA20) applied to the NYTP 
performed the best in this study. 

3.6 Conclusion of Test 3 

The impact of different probabilities of mutation on the performance of GAs has been assessed by the 
new methodology for a broad range of different random number seeds. From the results of the case study, 
it has been shown that a GA with probability of mutation being 0.03 (Pm=0.03) was preferable for the 
NYTP case study. A GA with a relatively high probability of mutation such as a GA with a mutation rate 
of 0.05 for the NYTP was not effective. While a GA with too low probability of mutation such as a GA 
with a mutation rate of 0.01 for the NYTP has exhibited premature convergence. A GA with an 
appropriately selected mutation probability improved the performance considerably when compared with 
a GA using a mutation rate of zero, showing the importance of the mutation operator. 

4. SUMMARY AND CONCLUSIONS 

A proposed new methodology has been used to assess the performance of genetic algorithm optimisation 
for water distributions systems with 1000 different random number seeds. All the results have been 
plotted and tabulated to enable the comparison. The new method has involved testing the parameters of 
crossover schemes, probability of crossover and probability of bitwise mutation on performance of GAs 



for optimizing a case study, the New York Tunnels Problem. The conclusions of this study are given as 
following: 

1. The test on the performance of different crossover schemes has been implemented on the GAs with 
a mutation of zero and also for GAs with a mutation rate of 0.03. Both results have indicated that a 
GA with one-point crossover was least effective and uniform crossover was preferable compared 
with one-point crossover or two-point crossover. 

2. Experimentation on the performance of various probabilities of crossover involved in GAs has 
revealed that a relatively high probability of crossover (Pc=0.8 to 1.0) was effective in a GA with a 
mutation rate of zero. However, a relatively low probability of crossover (Pc=0.4 to 0.5) has been 
demonstrated to be more effective in a GA with mutation. For example, with the same mutation 
probability of 0.03, a GA with crossover probability of 0.4 has been shown to be more effective 
than GAs with other crossover probabilities such as Pc=0.8 or 1.0 in terms of optimizing the NYTP. 
This result differs with that found by Goldberg (1989), in which a relatively high crossover rate 
(Pc=0.6 to 1.0) was recommended 

3. The performance of different bitwise mutation probabilities employed in GAs has been investigated 
in this paper. It was found from results that a GA with a mutation rate of zero performed the worst, 
as its solutions were all well higher in cost than the known-least-cost solution of the NYTP case 
study. The performance of GAs with mutation probabilities of 0.01, 0.02, 0.03, 0.04 and 0.05 
improved significantly compared with a GA with a mutation rate of zero. This demonstrated that 
the GA search was dominated by the mutation operator. A GA with a mutation rate of 0.03 has been 
demonstrated to be preferable as it was able to find the known-least-cost solution for the NYTP 
case study more frequently. A GA with a too low a probability of mutation such as Pm=0.01 or with 
a too high probability of mutation such as Pm=0.05 have been both shown to be less effective. In 
terms of determining an appropriate mutation rate for the NYTP case study, the mutation rate of 
approximately 0.05 (1/21) was suggested by Goldberg and Koza (1990) as the length of string was 
21 for the case study, and a mutation rate of 0.01 was used in most GA-based optimisation model 
(Dandy et. al 1996; Vairavamoorthy and Ali 2000). However, in this study a moderate probability 
of mutation with value of 0.03 has been clearly demonstrated to be more effective for the NYTP 
case study. 

Further work is required to determine if the results presented in this study extend to general case of WDS 
optimisation. 
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