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Abstract

The paper proposes a new methodology for assessing the effectiveness of GA parameters in
consistently finding similar low cost solutions over a broad range of different starting random
number seeds. The method involves testing the parameters of probabilities of crossover (for
various crossover types) and probabilities of bitwise mutation with 1000 different random
number seeds. In addition, this methodology allows different varieties of GA to be compared so
that the methodology with the best performance can be determined. The proposed methodol ogy
has been verified for its effectiveness on the previously published benchmark network New York
Tunnels Problem.
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Genetic algorithm, water distribution systems, crossoveerseh probability of crossover,
probability of mutation

1. INTRODUCTION

The cost of construction and operation for a wdistribution system (WDS) is a significant partaf
municipal budget. As a result, the optimizationVdDSs has attracted the interest of many researchers
and has frequently been considered in the litegatuer the years. The usual objective of optimirator
WDSs is to minimize the capital cost (including swaction costs) plus the operating costs subgeet t
set of constraints which are mathematically noneanand nonlinear. Traditional techniques, such as
linear programming and nonlinear programming, hbgen used previously to optimize the design of
WDSs (Alperovits and Shamir 1977; Quindry et al819Murtagh and Saunders 1987). However, it is
problematic to find optimal designs with these roeth

Evolutionary algorithms have been introduced oberlast 15 years to determine the least-cost design
water distribution systems. Among them, genetiomtigm (GA) optimization has gained popularity in
terms of optimal design of the water distributiorstems because of its robustness and search ability
(Simpson et al. 1994Savic and Walters 1997). Genetic algorithms mimiolionary principles to
create an optimisation search (Holland 1975). tmseof optimal design of WDSs, GA optimization has
an advantage over traditional optimization techegun that it deals more easily with discrete
commercially available pipe sizes and the GA sed&iah been proven to perform efficiently compared
with traditional optimisation techniques (Simpsdna 1994). Based on the standard genetic algorith
(SGA), a number of improved GA optimisation techugg have been proposed by researchers. A GA
incorporating a creeping mutation operator has lsemn to more efficient (Dandy et al. 1996). Wu et
al (2001) introduced a fast messy genetic algoritbrdeal with the optimization of the water network
Vairavamoorthy and Ali (2005) used a pipe indexhodtto modify the GA-based pipe optimization.

The objective of this paper is to present a newhoulogy for assessing the impacts of different GA
parameters on the performance of GAs for the opation of water distribution systems. The method
involves testing the parameters of probabilitiesrmissover for various crossover types and proitiabil



of bitwise mutation with 1000 different random nueniseeds. One pipe network design case study is
presented in the paper in order to demonstraten¢ime methodology. The obtained data is plotted and
tabulated to enable the assessments of the efeetss of the GA parameters combinations.

2. GENETIC ALGORITHM REPRESENTATION AND OPERATORS

2.1 Coding

The decision variables describing trial solutiofie @ipe network design are represented by a uhique
coded string in GA optimisation of water distritmti system design. Coding schemes include binary
coding, Gray coding and integer coding. Binary agdhas been extensively used. A typical binary
coding mapping is shown in the second column ofl@ab Pipe sizes are coded by different substrings,
such as substring 000 representing pipe diameterddil2 inches. A Hamming cliff effect is produced
when the binary coding of two adjacent values diffa each of their bits, such as substrings 0180

in the second column of Table 1. The Hamming diffy lead the GA to a non-global optima (Goldberg
1991). A Gray coding scheme was introduced by Dagtdgl. (1996) to avoid the Hamming cliff. The
Gray codings for the decision variables are givethe third column of Table 1. It is noticed thae (Gray
coding representation is such that adjacent decigariables differ only 1 bit in their corresponglin
coded substrings. Another issue that needs to Heesgkd is the possible redundant states of binary
coding and Gray coding. For example, there is noesponding pipe size for the substring of 111 in
binary coding and Grady coding in Table 1. Howevlee, substring of 111 will be inevitably generated
while applying the crossover and mutation operatgesravamoorthy and Ali (2000) applied an integer
coding method in genetic algorithms to avoid thebfem of redundant states often found when using
binary coding or Gray coding. A typical exampldmifger coding is given in the fourth column of Teab

1. The integer values from 1 to 6 are used to sgpriethe 6 diameters.

Table 1. A typical example of different coding sotes
Corresponding Coded substrings

Diameters (inches)

Binary Gray Integer
12 000 000 1
16 001 001 2
20 010 011 3
24 011 010 4
30 100 110 5
40 101 100 6

2.2 Sdlection

The primary objective of the selection operatortdsreplicate the good solutions and eliminate bad
solutions in a population while keeping the popalaisize constant. The selection operator make® mor
copies of the good solutions at the expense ofsbadtions, but no new solutions are created. A rermb
of selection methods may be used in a GA includmgnament selection, proportionate selection and
ranking selection. It has been demonstrated thattturnament selection has better or equivalent
convergence and computational overhead when comhpangoportionate selection and ranking selection
(Goldberg and Deb 1991).

2.3 Crossover

In the crossover operator, two strings are randarhlysen to exchange some portion of their strings i
order to create two new strings. There exists abmunof crossover schemes including one point



crossover, two point crossover and uniform cross@eb 2001). Two integer coded strings are used to
illustrate the different crossover schemes as shinvagure. 1.

Parents Offspring
1 2 4 1 3 1 5 3 6 1 2 4 1 1 6 4 5 2
3 51 3 1 6 4 5 2 '3 5 1 3 3 1 5 3 6
(a) One-point crossover
Parents Offspring
1 2 4 1 3 1 5 3 6 1 21 3 1 6 4 3 6
3 5.1 3 1 6 4 5 2 3 5/ 4 1 3 1 5 5 2
(b) Two-point crossover
Parents Offspring
1 2 4 1 3 1 5 3 6 15 4 1 1 6 5 3 2

3.5 1 3 1 6 4 5 2 3.2 1 3 3 1 4 5

(o))

(c) Uniform crossover (Each pair of bits is consadiefor crossover)

Figure 1. An example of different crossover schemes

In one-point crossover, two strings are picked friv@ population and denoted as parents. A sitegalon
the length of the string is chosen randomly andtedlbits on the right side of cross site are emghd
between the two strings. Two new strings are thieated called offspring. As shown in Figure 1(b§ t
fifth bit is chosen to be the crossover site ahditd on the right side of the cross site (givetight gray)
are exchanged. If two sites are randomly seledimugahe string and all the bits between the twessi
are exchanged, this method is called two-pointsmesr. From the Fig. 1(b), the bits between thedthi
and the seventh (given in light gray) are exchartgecreate two new solutions. In uniform crossover,
each pair of bits is considered in turn in the pasgrings. Exchange between the strings occuis avit
probability, which is usually 0.5. As shown in FiIfc), the second, fifth, sixth and ninth bits @givin
light gray) are exchanged between the parent stringaddition to the crossover schemes, the pilityab
of crossover R.) has a significant effect on the performance ofs@#d a relatively high probability of
crossover®.=0.6 to 1.0) has been recommended (Goldberg 1989).

2.4 Mutation

Mutation is needed to maintain the diversity in fhapulation and alters a string locally to hopefull
create a better string. Bitwise mutation has begensively used in a GA, where each bit has a &pdci
probability of mutationR,)). The mutation may result in a pipe size that @erably different compared
to the original one. A relatively low probability bitwise mutation P,=0.01) is employed for most GA
runs. Dandy et. al (1996) implemented a GA withbaitmlity of mutation being 0.01 to optimize the New
York Tunnels Problem (NYTP). Vairavamoorthy and &D00) used a GA with probability of mutation
being 0.01 to optimize the New York Tunnels ProblgiyTP) and the Hanoi Problem (HP). Goldberg
and Koza (1990) proposed a probability of mutatiyncould be defined ap.=1/str wherep,, is the
mutation parameter arstt is the length of the string.

3. CASE STUDY

The various types of GA implementation considerethis paper have been coded in C++ combined with
the EPANET2 network solver to computer the hydaddalance. The New York Tunnels Problem
(NYTP) is used to test the effectiveness of the methodology.

A schematic of the NYTP system is given in FigTBe network is composed of 21 existing tunnels and
20 nodes fed by the fixed-head reservoir. All tle¢ads of this network including the head constsin



pipe costs, and water demands can be found initdrature (Dandy et al.1996). The objective is to
determine which pipes in parallel with the existBygtem give the least-cost solution while satigfythe
minimum head requirement at all nodes. There arpid® diameters that can be selected for NYTP and
these are {36, 48, 60, 72, 84, 96, 108, 120, 132, 156, 168, 180, 192, 204} inches. In additiorgeo
pipe size provides a total of 16 options (15 agpip¢ diameters plus a zero pipe size) for eadh lin

[18]

Figure 2. Layout of the NYTP network
3.1 Test 1: crossover schemes

The NYTP case study has been used to test the impédhree different crossover schemes on the
performance of the GAs. The three schemes inclumleslpoint crossover, two-point crossover and
uniform crossover. As can be seen from Table 2thercase study, two groups have been designegtto t
the performance of GAs with three different crogsoschemes. The first group consisting of GA1, GA2
and GA3 was used to test the performance of nomtioaut GAs P,=0.0) with different crossover
schemes. The second group consisting of GA4, GAb@G#A6 was designed to test the performance of
GAs with three different crossover schemes, but wititation P,=0.03).

Table 2. GA Parameters
GA parameters applied to the NYTP

GA Parameters Group 1 Group 2

GAl GA2 GA3 GA4 GA5 GA6
Crossover scheme One-point  Two-point  Uniform  Oni¥po Two-point  Uniform
Probability of crossoverR) 0.9 0.9 0.9 0.5 0.5 0.5

Probability of mutationR,,) 0 0 0 0.03 0.03 0.03




In order to compare the performance of GAs witHedént crossover schemes in each group, all the
parameters of GAs in the same group were set the sxcept the crossover scheme. For example, all 6
GAs used the integer coding and tournament seteclibe population size and maximum number of
evaluations for each GA were identical, with valuwés100 and 100,000, respectively. For each GA
application, 1000 runs with different random numbeeds were implemented. The results of different

GAs runs applied to the NYTP are shown in Fig. 3.

N=100 N=100
w7 P.=0.9 _ P.=0.9
el — = —
=65 P,=0.0 b 65 - P,.=0.0
E . c s .
= One-point 2 ol . Two-point
=2 <
< Crossove Q N Crossove
O 55 © 55
© £
£ 5 2 50
v o
o = .
hAPERE ¢ @ 45
%] K3 [}
@ )
S 40

$38.64 M $38.64 M
35 : : : : : : : : : . 35 : : : : : : : : : .
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Evaluations Evaluations

75 4

(a) Results of GAL runs applied to the NYTP

(b) Results of GA2 runs applied to the NYTP

75 49.8
N=100 N=10C
7 P=0.9 w2y : P=0.5
o —_ > . —_
=65 Pm—0.0 &b 466 - . . . Pm—0.03
B - c . .
= w0 Uniform 2 ol . One-point
=] < N
= “: Crossove ] Crossove
O 55 * © 434 . -
< £ . : . . - R
s = e S ....'.0"‘. . e s,
= 50 8 418 Te e s LI e
3 he * LI .’ IR
k1 .. . 0 ‘ P S
3 - m u&.k&,bwh@ -m\- ..ma«...m4
— 40 $38 64 M 38.6 1 ceso oe EADAAY pone oo Eemet Bt Bt e e I o B B e e SRS
® ' 410 | = $38.64M (332 times out of 1000)
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Evaluations Evaluations

(c) Results of GA3 runs applied to the NYTP

(d) Results of GA4 runs applied to the NYTP

195 N=100 87 N=100

829 P.=0.5 B2 P=0.5

% 46.6 Pm:0.0S 5 46.6 Pm:0.0S

5 Two-point E Uniform

< 45.0 < 45.0 - .

U] Crossove a . Crossove

g 434 2 43.4 4

g 41.8 4 . . . g 41.8 o’ . S e

2 40.2 . . o e ) : ‘é 40.2 Vg oot ¥ % .'\: .°. ’

g :04. et ."f.-".'.. . .t*.t t’% :. 3 °. 0 g aref, vy ':::..0" °°’°‘2‘
e pia e e el A S wo! p o ety e T
50 $38 64M (454 tlmes out of 1000) a0 $38.64M (326 times out of 1000)

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Evaluations

10000 20000 30000 40000 50000 60000 7oooo 80000 90000 1ooooo
Evaluations

(e) Results of GAS runs applied to the NYTP

(f) Results of GA6 runs applied to the NYTP

Figure 3 Results of different GAs applied to the NYTP



As can be seen from Table 3, the known-least-aastisn for NYTP is $38.64 million found first by
Maier et al. (2003) using Ant Colony Optimizaticechnique, compared with $38.80 million found by
Dandy et al. (1996) and Cunha and Sousa (2001),$88d20 million found by Morgan and Goulter
(1985). The solution found by Savic and Walter [@©Q%ith a value of $37.13 is infeasible when
determined by EPANET2. The current best solutiandiao been obtained in this study.

Table 3 Solutions of the NYTP
Network design (diameters in inches)

Hgl(;z/s Savic and Morgan and Dandy et al.(1996) and Maier et al. (2003)
Walters(1997) Goulter(1985) Cunha and Sousa (2001) andPresent work
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 108 144 0 144
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 120 0
16 96 96 96 96
17 96 96 96 96
18 84 84 84 84
19 72 60 72 72
20 0 0 0 0
21 72 84 72 72
Total Cost ($M) 37.13* 39.2 38.80 38.64

*=an infeasible solution determined by EPANET?2.
Note: The hydraulic head is calculated by EPANET®&an accuracy of 0.000001.

Fig. 3(a), Fig. 3(b) and Fig. 3(c) show scatteitplaf solutions of 1000 different starting randoomtber
seeds including GAIN=100, P.=0.9, P,.=0.0, one-point crossover), GAR£100,P.=0.9, P,=0.0, two-
point crossover) and GABEL00,P.=0.9,P,=0.0, uniform crossover) runs for the NYTP, respety. It
can be seen from the three figures, that the solsithave converged on a high cost value and there w
no improvements on the solutions after relatively fevaluations. It has been demonstrated that the G
with a mutation rate of zero easily gets stuck dbcal solution. The solutions of GA3 are closer to
known-least-cost solution value of $38.64 milli@ngared to that of GA1 and GA2.

Table 4 shows a comparison of the performance tiérdnt GAs applied to the NYTP. The GA
parameters are outlined in the first column. Thaltoumber of solutions in different cost rangegiien

in the second to the ninth columns, respectivelyr Example, the number in the second column
represents the number of times out of 1000 runsaheion with a cost of $38.64 million was fouridhe
average cost and mean number of evaluations fdd BXruns are given tenth and eleventh columns of
Table 4, respectively.

As indicated in Table 4, the average cost of the01GA3 runs was $45.952 million compared with
$55.573 million of the 1000 GA1 runs and $48.471liom of the 1000 GA2 runs. The GA3 (with



uniform crossover) was able to find lower cost sohs than GA1 and GA2. For example, solutions
between $40.00 and $42.00 million were found 72s$raut of 1000 runs for GA3, compared with zero
for GA1l and 19 for GA2. Thus, for a mutation ratezero, the GA with uniform crossover (GA3)
performed the best and the GA with one-point cress§GA1l) performed the worst in terms of being
able to find lower cost solutions for the NYTP. Tinean number of evaluations for 1000 GA1, GA2 and
GA3 runs were similar with a value of 3914, 4360 4828 evaluations respectively.

Table 4. Results of different GABI£100) for optimizing the NYTP

Total number of solutions in different cost ran¢&idl) Average  Average
GAs ngtofgr evgllﬂ'a(t)ions
38.80- 39.50- 40.00- 42.00-
38.64 38.80 >44.00 runs($M) for 1000
3950 40.00 42.00 44.00 (BM) - for =%
GA1(P=0.9,Py=0.0, 0 0 0 0 4 996  55.573 3914
One-point crossover)
GA2(P=0.9,Pr=0.0, 0 0 0 19 67 914  48.471 4360
Two-point crossover)
GA3(P=0.9,Pr=0.0, 0 1 5 72 214 708 45925 4228
Uniform crossover)
%A“(Pc:.o-5'Pm:0'°3' 332 63 285 85 171 48 16 39534 60039
ne-point crossover)
GAS(P=0.5,Pn=0.03,  \o/) 153 337 61 49 1 0 38.998 49950
Two-point crossover)
GA6(P=05P,=0.03, 500 175 344 83 126 10 1 39.234 40467

Uniform crossover)

Fig. 3(d), Fig. 3(e) and Fig. 3(f) show scattertplof solutions of 1000 starting random number seed
including GA4 (N=100,P.=0.5,P,=0.03, one-point crossover), GAE£100,P.=0.5,P,=0.03, two-point
crossover) and GABN=100, P.=0.5, P,,=0.03, uniform crossover) runs for the NYTP, respety. The
solutions of these three GAs are horizontally tisted when compared with that of GA1, GA2 and GAS.
As can be seen from Table 4, 332 times out of X68@ runs, 454 times out of 1000 GA5 runs and 326
times out of 1000 GA6 runs were able to find kndeast-cost solution with a cost of $38.64 million.
The GA4 performed the worst as its average costeantliations for 1000 runs were both larger than th
GAS5 and GA6. The average cost of 1000 GA5 was $8illion which was slightly less than $39.234
million obtained by 1000 GA6 runs. However, The GA&s able to converge more quickly with average
evaluations of 1000 runs being 40,467 compared 48tB50 of 1000 GA5 runs.

3.2 Conclusion of Test 1

The impact of different crossover schemes on théopeance of GAs has been assessed by a new
methodology with a broad range of different randoamber seeds. The results of the case study have
shown that, with a zero mutation raR#£0.0), the GA with uniform crossover performed best and the

GA with one-point crossover performed the worst.

With a mutation operatoP(>0.0), the results have also shown that the GA witk-point crossover
performed the worst. The GA with two-point crosso@A slightly outperformed the GA with uniform
crossover in terms of being able to find the kndeawst-cost solutions. However, the GA the uniform
crossover had the advantage in efficiency, as showable 3.

In a conclusion, the GA with one-point crossoves baen demonstrated, in this study, to perform the
worst and the GA with uniform crossover is prefégailn terms of optimal design of water distribution
systems.



3.3 Test 2: probability of crossover

Commonly,a relatively high probability of crossoveP.£0.6 to 1.0) has previously been recommended
for use in a GA (Goldberg 1989). In this study, thew methodology has been used to analyse the
impacts of different probabilities of crossovertbe performance of GAs. The proposed methodology ha
been performed on the NYTP case study. All the @Athis test used the integer coding, tournament
selection, two-point crossover and worked with guation size of 100. The maximum allowable
number of evaluations for all the GA applicationghis study was 100,000. The other parameterthéor
NYTP case study are given in Table 5.

As seen in Table 5, the GA7 to 11 have been us&sbtgperformance of zero mutation ragH0) GAs
applied to the NYTP with probability of crossoverfs.2, 0.4, 0.6, 0.8 and 1.0 respectively. The G#d
16 have been used to test the performance of GpBedpto the NYTP with probability of crossover
being 0.2, 0.4, 0.6, 0.8 and 1.0, and with the sprobability of mutation being 0.03. The results of
different GA applications for the NYTP are showrFig. 4.

Table 5 GA parameters applied to the NYTP
GA Parameters GA7 GA8 GA9 GA10 GAll GA12 GA13 GAl4Al5 GA16

Probability of o5 04 06 08 10 02 04 06 08 10
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Figure 4. Results of GAs with different probabdgiof crossover for optimizing the NYTP

The results of scatter plots for 1000 differentrtgig random number seeds including GAY={00,
P.=0.2, P,=0.0), GA8 =100, P.=0.4, P,=0.0), GA9 (=100, P.=0.6, P,=0.0), GA10 N=100, P.=0.8,
P»=0.0) and GA11 =100, P=1.0, P,=0.0) runs applied to the NYTP are shown in Figa)46 (e),
respectively. As can be seen from these figuressthfutions of GA7, GA8, GA9, GA10 and GA11l were
clustered and the solutions of 1000 GA runs agthbability of crossover increased from rate 0.2.®
moved towards lower cost and higher evaluations.shswn in Table 9, with a zero mutation rate



(P,=0.0), the GA with higher probability of crossovautperformed the GA with lower probability of
crossover in terms of being able to find lower gmttions for the NYTP. For example, solutionsolel
$44.00 million were found 110 times out of 1000gtdior GA11, compared with zero for GA7, twice for
GAS8, 23 times for GA9 and 64 times for GA10. lisserved from Table 6, for a mutation rate of zero
(pr=0.0), the average cost of 1000 GA runs was redaseithe probability of crossover increased from
0.2 to 1.0. This demonstrated that, with a mutataie of zeroR,=0.0), the GA with a higher crossover
probability such a®.=1.0 outperformed the GA with a lower crossovetbpiility. As can be seen from
the last column of Table 6, the GA with a lowerssover probability converged with fewer evaluations
As an example, for GA7 the number of average evials required by the 1000 runs was only 1426,
indicating its premature convergence.

Table 6. Results of different GABI£100) applied to the NYTP

on Total number of solutions in different cost ran¢fis) égg{aflgf Aver%?e No.
S evaluations
sor om0 B 5% D% [0y 00 wnse iordoos
GA7(P.=0.2,P,=0.0) 0 0 0 0 0 0 1000 59.245 1426
GA8(P.=0.4,P,=0.0) 0 0 0 0 0 2 998 53.961 2356
GA9(P=0.6,P,=0.0) 0 0 0 0 3 20 977 50.810 3203
GA10(P=0.8,P,=0.0) 0 0 0 0 10 54 936 49.180 4006
GAl11(Ps~1.0,P,=0.0) 0 0 0 0 24 86 890 47.970 4739
GA12(P.=0.2,P,=0.03) 235 141 459 144 1 0 0 39.095 63006
GA13(P.=0.4,P,=0.03) 450 150 343 36 21 0 0 38.916 51925
GA14(P.=0.6,P,=0.03) 378 119 353 77 69 4 0 39.064 49601
GA15(P.=0.8,P,=0.03) 273 99 364 120 135 6 3 39.272 48277
GA16(P.=1.0,P,=0.03) 239 69 364 162 129 36 1 39.368 47762

Fig. 4(f) to (j) show the scatter plots of solusonf 1000 different starting random number seeds
including GA12 =100, P.=0.2, P,=0.03), GA13 N=100, P.=0.4, P,=0.03), GA14 K=100, P.=0.6,
P,=0.03), GA15 KN=100, P:=0.8, P,;=0.03) and GA16 N=100, P.=1.0, P,=0.03) runs for the NYTP,
respectively. The solutions tend to be horizontditributed in these figures. It is seen from Eab)
comparing the average cost for 1000 runs, the GAh3vas the lowest. In addition, GA13 was able to
find the known-least-cost solution 450 times oufl®00 runs, which was a higher number of times than
GA12, GA14, GA15 and GA16. The average evaluatmn&000 runs for GA 12 to GA22 were similar
as shown in Table 9. Thus, this experimentationcaidd that with a mutation rate suchRas0.03, the
GA with a crossover probability of 0.4 performee thest when applied to the NYTP.

3.4 Conclusion of Test 2

The impact of different probabilities of crossower the performance of GAs has been assessed based o
a new methodology using a broad range of differandom number seeds. From the results of the case
study, it has revealed that, for a zero mutatida (@,=0.0), a GA with a relatively high probability of
crossover was preferable. However, with mutatibe, A with a relatively lower crossover probability
performed better than the GA with a higher probgbof crossover. In this study, among the GA with
crossover probabilities of 0.2, 0.4, 0.6, 0.8, 1h@, GA with a crossover probability of 0.4 perfeadrthe

best when applied to the NYTP.

3.5 Test 3: Probability of bitwise mutation

The proposed methodology has also been used tthéeshpacts of different probabilities of mutation
the performance of GAs applied to the NYTP casdystAll the GAs in this test used the integer cgdin



tournament selection and two-point crossoWwrQ.9). The population size was 100 and the maximum

number of evaluations was 100,000 for each GA aafitin in this study. Mutation probabilities of 0,0
0.01, 0.02, 0.03, 0.04 and 0.05 employed in GAIX1& GA19, GA20, GA21 and GA 22 respectively
have been used to test the impacts of differemtiddt mutation probabilities on the performance &G
applied to the NYTP. The results of GAs applieth®® NYTP case study are presented in Fig. 5.
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Table 7. Results of different GABI£100,P.=0.9) for optimizing the NYTP

Total number of solutions in different cost ran¢isl) f:\\c/g{«’:]}gr? Averg?e No.

GAs evaluations
a4 awe0 B 3950 4000 4200 L4400 runs(em) for the 1000

GA17(P,=0.0) 0 0 0 0 19 67 914 48.470 4360
GA18(P,=0.01) 16 22 70 93 473 224 102 41.155 32904
GA19(P,=0.02) 72 53 181 185 413 78 18 40.220 44697
GA20(P,=0.03) 248 75 349 152 169 5 2 39.362 48560
GA21(P,=0.04) 170 100 453 195 81 1 0 39.256 64904
GA22(P,=0.05) 1 1 9 26 623 339 1 41.656 59620

Fig. 5(a) to (f) show the scatter plots of solutoof 1000 different starting random number seeds
including GA17 (=100, P.=0.9, P,=0.0), GA18 N=100, P.=0.9, P,~=0.01), GA19 KN=100, P.=0.9,
P=0.02), GA20 N=100,P~=0.9,P,~=0.03), GA21 N=100,P.=0.9,P,=0.04) and GA22N=100,P.=0.9,
P=0.05) runs for the NYTP, respectively. As can ersfrom these figures, the solutions of GA17 were
well above the known-least-cost solution with areabf $38.64 million, compared with other GAs. From
Fig. 5 (b) and (c), it is observed that a clusfesautions converged with few evaluations, indicgithe
premature convergence of GA 18 and GA19. The swiatof 1000 GA22 run were much further away
from the known-least-cost solution as can be semn Fig. 5(f).

As shown in Table 7, run GA1P{=0.0) performed the worst with its average cost@d0 runs being
$48.470 million. The performance of the GA improv&gdnificantly as the mutation rate was increased
from 0.01 to 0.05. For run GA1P{=0.0), it was noted that the number of averageuatimins of 1000
runs was only 4360 which was considerately lesa tither GAs. This demonstrates that a GA with a
mutation rate of zero is highly likely to converge a local optimal solution. On average, the c64000
runs found by GA20 with a value of $39.362 milliaras slightly higher than GA21 with a value of
$39.256 million, but significantly lower than oth@As. It is found that in Table 7, GA20 was able to
converge faster than GA21 when comparing the aeeeagluations for 1000 GA runs. Run GA20 was
able to find the known-least-cost solution 248 smat of 1000 runs, compared with 16 times outQffL
GA18 runs, 72 times out of 1000 GA19 runs, 170 simet of 1000 GA21 runs and only once out of 1000
GA22 (P,=0.05) runs. Thus, the GA with a mutation prob#&pitf 0.03 (GA20) applied to the NYTP
performed the best in this study.

3.6 Conclusion of Test 3

The impact of different probabilities of mutation the performance of GAs has been assessed by the
new methodology for a broad range of different mandcumber seeds. From the results of the case,study
it has been shown that a GA with probability of atign being 0.03K;=0.03) was preferable for the
NYTP case study. A GA with a relatively high probigyp of mutation such as a GA with a mutation rate
of 0.05 for the NYTP was not effective. While a ®@4th too low probability of mutation such as a GA
with a mutation rate of 0.01 for the NYTP has exeidh premature convergence. A GA with an
appropriately selected mutation probability imprbibe performance considerably when compared with
a GA using a mutation rate of zero, showing thedrtgmce of the mutation operator.

4. SUMMARY AND CONCLUSIONS

A proposed new methodology has been used to agweperformance of genetic algorithm optimisation
for water distributions systems with 1000 differeahdom number seeds. All the results have been
plotted and tabulated to enable the comparison.riBre method has involved testing the parameters of
crossover schemes, probability of crossover antgtitity of bitwise mutation on performance of GAs



for optimizing a case study, the New York Tunnelsbtiem. The conclusions of this study are given as
following:

1. The test on the performance of different crossgehemes has been implemented on the GAs with
a mutation of zero and also for GAs with a mutatiate of 0.03. Both results have indicated that a
GA with one-point crossover was least effective andform crossover was preferable compared
with one-point crossover or two-point crossover.

2. Experimentation on the performance of variousbpbilities of crossover involved in GAs has
revealed that a relatively high probability of goser P.=0.8 to 1.0) was effective in a GA with a
mutation rate of zero. However, a relatively lovelpability of crossoverR.=0.4 to 0.5) has been
demonstrated to be more effective in a GA with rmata For example, with the same mutation
probability of 0.03, a GA with crossover probalyildf 0.4 has been shown to be more effective
than GAs with other crossover probabilities sucRP&€.8 or 1.0 in terms of optimizing the NYTP.
This result differs with that found by Goldberg 889, in which a relatively high crossover rate
(P.=0.6 to 1.0) was recommended

3. The performance of different bitwise mutationlgabilities employed in GAs has been investigated
in this paper. It was found from results that a @ith a mutation rate of zero performed the worst,
as its solutions were all well higher in cost tliaa known-least-cost solution of the NYTP case
study. The performance of GAs with mutation prob@ds of 0.01, 0.02, 0.03, 0.04 and 0.05
improved significantly compared with a GA with a tation rate of zero. This demonstrated that
the GA search was dominated by the mutation operat@A with a mutation rate of 0.03 has been
demonstrated to be preferable as it was able tbtfie known-least-cost solution for the NYTP
case study more frequently. A GA with a too lowralyability of mutation such &%,=0.01 or with
a too high probability of mutation such Bg=0.05 have been both shown to be less effective. In
terms of determining an appropriate mutation ratetlie NYTP case study, the mutation rate of
approximately 0.05 (1/21) was suggested by GoldbargKoza (1990) as the length of string was
21 for the case study, and a mutation rate of w&4 used in most GA-based optimisation model
(Dandy et. al 1996; Vairavamoorthy and Ali 2000hwver, in this study a moderate probability
of mutation with value of 0.03 has been clearly dastrated to be more effective for the NYTP
case study.

Further work is required to determine if the respitesented in this study extend to general ca¥elh
optimisation.
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