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We demonstrate actuation of a silicon photonic crystal membrane with a re-

pulsive optical gradient force. The extent of the static actuation is extracted

by examining the optical bistability as a combination of the optomechanical,

thermo-optic and photo-thermo-mechanical effects using coupled-mode the-

ory. Device behavior is dominated by a repulsive optical force which results

in displacements of ≈ 1 nm/mW. By employing an extended guided reso-

nance which effectively eliminates multi-photon thermal and electronic non-

linearities, our silicon-based device provides a simple, non-intrusive solution

to extending the actuation range of MEMS devices.
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Rapid developments in the field of optomechanics have opened up avenues for

fundamental research on quantum state manipulation with macroscopic structures1

and show promise for novel optomechanical sensors2 and technologies for both radio-

frequency3 and telecom applications.4 While most attention has been devoted to com-

pact structures featuring low (picogram) mass and ultrahigh-frequency (gigahertz)

mechanical modes,5,6 the technological implications of static deformation due to op-

tical forces have been less explored.7 In coupled photonic waveguide geometries,8,9

bonding and anti-bonding optical modes are supported and the corresponding at-

tractive and repulsive optical forces exerted on a pliant structure (low mechanical

frequency) could serve to broaden the range of motion of integrated microelectrome-

chanical devices. This translates to improvement in the detection range of pressure

and displacement sensors and the actuation range of electrostatic actuators. In par-

ticular, the pull-in limit of electrostatic actuators could be extended by increasing the

plate separation with a repulsive optical force. Additionally, novel schemes for pre-

venting stiction, which occurs when attractive forces like the Casimir force and elec-

trostatic force become overwhelmingly large compared to the mechanical restoring

force, have been proposed10 using a real-time monitoring of the structure’s displace-

ment and a counteracting feedback repulsive force (of the order of nano-Newtons and

linear with excitation power). In this paper, we demonstrate nanometer-pulling of a

thin silicon photonic crystal (PhC) membrane under low vacuum with a repulsive op-

tical gradient force and an attractive photo-thermo-mechanical force. Furthermore,

optical bistability induced by optical forces and thermo-optic effect is observed with

large excitation powers while minimizing multi-photon nonlinearities.

Our devices – one of which is described in Fig. 1(a) and pictured in Fig. 1(c)

– consist of a square silicon PhC slab suspended by four support arms ≈ 250 nm

above a Silicon-on-Insulator (SOI) substrate. They are fabricated from a double-

SOI platform, formed by oxide-oxide bonding of two thermally oxidized SOI wafers.
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A sacrificial silicon dioxide layer between the two silicon layers is s0 = 265 nm

thick. Electron-beam lithography is performed on a layer of resist (ZEP-520A) to

define the pattern. To combat the strong buckling of the silicon device layer by

the compressive stress and upward turning moments of the oxide layer underneath,

novel stress management techniques11,12 were incorporated to obtain structures with

lithographically determined membrane-substrate gaps. After developing, a fluorine-

based reactive-ion etch is employed to transfer the patterns to the top silicon layer.

The device is then released by undercutting the patterned silicon layer with the vapor-

phase hydrofluoric acid etch. Finally, an annealing step was performed at 500◦C for

1 hour in a nitrogen environment to limit surface losses and maximize optical and

mechanical quality factors. The height profiles of the released membranes from the

substrate are characterized by a confocal microscope (Olympus LEXT OLS-4000).

The structure was designed to support an optical antibonding mode in the wave-

length range of 1480-1680nm that results from the hybridization of waveguide modes

in the membrane and substrate12,13. The precise spectral location of the resonance

is determined by the optomechanical coupling between the two modes, the strength

of which is defined as gOM ≡ dω/ds. The distribution of the x-component of the

electric field in the top membrane is out-of-phase from that in the bottom mem-

brane, as depicted in the simulation results of the whole structure in Fig. 1(b),

which corresponds to the generation of a repulsive gradient force. Additionally, the

field symmetries along the x-z and y-z planes indicate that we are operating with

a “dark” mode14,15, which theoretically does not couple to normally incident light

because of mismatch in field symmetry. However, by breaking the periodicity of the

full structure, we can couple to the dark mode and achieve high Qopt. Such devices

have been the subject of numerous theoretical and experimental investigations on

subjects ranging from the lowering of the laser thresholds16 to increasing the sensi-

tivity of photonic-crystal-based sensors17. Here, the dark mode is made accessible
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FIG. 1. (a) Schematic of membrane geometry consisting of a suspended silicon membrane

above a silicon-on-insulator substrate. The top membrane is perforated by a 30×30 array of

holes with diameter d = 0.414µm and period p= 0.92µm. Both silicon layers have thickness

h = 185 nm. The width of the membrane is 27.6 µm on each side. (b) Top diagram shows

the FDTD simulated Ex field profile for the antibonding mode at λ0 = 1584.85 nm in the

vertical cross-section of the full structure. Bottom left diagram shows the zoomed-in view

of Ex field profile in the vertical cross-section of a unit cell. Bottom right diagram shows

the Ex field profile in the horizontal cross-section of a unit cell, revealing the mode to be

a dark mode. (c) An electron micrograph of a device. (d) Free-space coupling setup. A

white-light source and output from a near-IR laser are combined and sent through a 50-50

beam splitter, sending half of the signal to an IR power meter and half through a 20x

objective placed above a vacuum chamber. The reflected signal is sent back through the

beam splitter and can be directed onto a CCD camera allowing us to carefully align the

laser spot to the membrane and to a photodetector (PD) to collect optical spectra via the

DAq board and mechanical spectra via the real-time spectrum analyzer (RSA).

due to the finite size of the membrane and slight fabrication imperfection. The high

Qopt of the dark mode, together with the mode’s large optomechanical coupling co-

efficient gOM = −2π × 23 GHz/nm (at s0 = 220.6nm), boosts the strength of the

optical force and hence the range of actuation.

As previously described10, the potential of a mechanical harmonic oscillator with

5



equilibrium position s0, when perturbed by the potential of an optical “spring”18 cen-

tered at sl for a laser wavelength λl can create a multi-well potential with two stable

mechanical equilibria. The transition between these mechanical equilibria is reflected

by the occurrence of optical bistability, due to the the dependence of the resonance

frequency on s. Yet, the direct observation of the optomechanically-induced optical

bistability can easily be obscured in actual systems by other competing mechanisms

including thermo-optic effect due to two-photon absorption, free-carrier dispersion

and the Kerr nonlinearity which otherwise have been actively pursued for realizing

ultrafast, low-power optical switches and memory19. We designed our geometry to

minimize these effects by exciting a guided resonance which is delocalized through-

out the PhC membrane. We estimate the total mode volume to be ≈ 260(λ/ng)
3

from simulation. Due to its large modal volume, the thermal and electronic non-

linearities (which scale inversely with the modal volume) are dramatically reduced.

This is in contrast with many of the optomechanical structures being studied, which

have modal volumes ≈ (λ/ng)
3 and where thermal nonlinearities could be readily

observed at even modest input powers. With the current membrane separation of

the coupled PhC membrane, optomechanical detuning is larger than thermo-optic

detuning that originates from linear absorption due to defects introduced during

the fabrication processes, which is two orders of magnitude larger than the intrinsic

material absorption of bulk silicon.

We solve for the the optical and mechanical equilibria in the presence of the

thermo-optic effect within the coupled-mode theory framework20. In particular, the

stored optical energy in the system |a|2 is given by

|a|2 =
κe

(κ/2)2 + ∆2
Pin (1)

where κ is the full-width half-max linewidth of the optical resonance, κe is the ex-
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ternal coupling rate such that κe/κ represents the fraction of incident power coupled

into the cavity, and Pin is the power incident on the structure. Here the detuning

∆ of the laser excitation frequency ωl from the perturbed optical resonant frequency

can be written as

∆ = ωl − ω0 − (dω/dT )∆T − gOM∆x. (2)

The third term in Eq. 2 is the thermo-optic detuning, with dω/dT = (dω/dn)(dn/dT ),

n is the refractive index of silicon, dω/dn is obtained from simulations and approxi-

mately −2π × 1014 Hz and dn/dT is the thermo-optic coefficient of silicon equal to

2 × 10−4K−1.21 The absorbed optical power and hence the temperature change of

the system is given by

∆T =
Γabs|a|2

Cthκt
(3)

where Γabs is the absorption coefficient of the system, Cth is the heat capacity, κt is

the thermal diffusion rate. The fourth term in Eq. 2 is the optomechanical detuning.

In particular, the displacement of the membrane due to the respective photo-thermo-

mechanical force and the repulsive gradient force is given by

∆x =
D∆T

K
+
|a|2gOM
ωlK

(4)

where K is the spring constant of the mechanical resonator and D is the thermal-

mechanical force coefficient in units of Newtons per Kelvin.22 The above equations

can be solved self-consistently to yield ∆ and hence the perturbed optical resonant

frequency ω′0 = ω0 + (dω/dT )∆T + gOM∆x at a given ωl and Pin.

The values of λ′0 = 2πc/ω′0 at which solutions of Eq. 2 exist are plotted in Fig.

2(b), as a function of laser wavelength λl = 2πc/ωl for incident powers of 0.275 (green
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line), 0.775 (blue line), 1.275 (red line), 1.525 (purple line), 1.775 (orange line) and

2.275 mW (black line). The unperturbed optical resonance occurs at λ0 = 1581.55

nm. The dashed portions of the curves correspond to unstable equilibria. At high

powers, a clear bistable region exists in which there are two stable configurations

of the membrane for fixed power and laser wavelength, due to both optomechanical

and thermo-optic detunings whose magnitudes are comparable. The boundaries of

the bistable region are denoted by λf and λb, representing the hysteretic transition

wavelengths for a laser swept forward (left to right) and backward (right to left)

across the resonance.

To investigate the hysteresis and bistability in our devices, we employ a free-

space coupling setup in a low vacuum condition described in Fig. 1(d). A low power

(25 µW) wavelength sweep is shown in Fig. 2(a) (red curve), revealing a cavity

resonance centered at λ0 = 1581.55 nm. To account for interference fringes from

parasitic reflections, we carefully fit both the optical resonance and the oscillating

background (black line) to an expression which has the form

R = |r|2 =

∣∣∣∣rd(λ)e−iφ +
κe

−i∆′0 + κ/2

∣∣∣∣2 (5)

where rd(λ) is the background reflectivity, and φ is the relative phase between the un-

derlying background reflection and the optical cavity. Fitting parameters correspond

to an optical cavity with κe = 0.3κ and Qtot
opt = ω0/κ = 3400.

Using these parameters, we can model the reflectance of the system as a function

of laser wavelength at multiple powers (P = 0.275 to 2.275 mW), shown in Fig.

3(a) and offset for clarity, and compare the results to our experimental observations,

shown in Fig. 3(b). The experimental data were collected by sweeping the tunable

laser output from short to long wavelength (red curve) and then back (blue curve)
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FIG. 2. (a) Reflection spectra of the device around the resonance centered at λ0 = 1581.55

nm. (b) Calculated stable locations of the optical resonance as a function of laser wave-

length, for six optical powers: 0.275 (green line), 0.775 (blue line), 1.275 (red line), 1.525

(purple line), 1.775 (orange line) and 2.275 mW (black line). At P ≥ 1.275 mW, the sys-

tem has three solutions (two stable – solid line, one unstable – dashed line) for a certain

range of wavelengths. Due to the intracavity-power dependence of optical detunings from

optomechanical and thermo-optic effects, the system is bistable in this wavelength range,

and displays hysteresis when the laser is swept continuously from short to long wavelengths

(forward sweep) or vice versa (backward sweep). Two hysteretic transition points occur at

λf for the forward sweep and λb for the backward sweep.

at a fixed tuning speed of 1 nm/s. We find excellent agreement between experiment

and theory, which display an overall redshift of the mode and increasing hysteresis

at higher powers. In particular, we directly compare the locations of the forward and

backward bistable jumps, λf and λb respectively, in Fig. 3(c). The locations of these

transitions were extracted from the data shown in Fig. 3(b) by finding the minima

of the reflectivities of forward and backward wavelength sweeps at each power. We

see strong agreement between experiment (red/ blue circles) and theory (red/ blue

line) on the locations of λf and λb.
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FIG. 3. Theoretical (a) and experimental (b) reflection spectra for forward (red lines) and

backward (blue lines) swept lasers from P =0.275 mW to 2.275 mW at low vacuum. Hys-

teresis is predicted to onset around 1.525 mW. (c) Locations of bistable transitions during

forward and backward wavelength sweeps. The transition wavelength during the forward

sweep λf (red circles) is linear, and matches well to theory (red line). The backward tran-

sition wavelength λb (blue circles) also show good agreement in the transition wavelength

locations and the onset power for hysteresis. (d) Experimental reflection spectra for for-

ward (red lines) and backward (blue lines) swept lasers from P = 8 µW to 1.2 mW at high

vacuum. Self-sustained oscillations occur on the red-detuned side of the resonances.

Alternately, we can investigate the range of actuation of the optical force by

sweeping the laser power up and down at fixed wavelengths slightly red-detuned

from the unperturbed cavity resonance. Theoretical predictions and experimental

results are plotted in Fig. 4(a) and (b), respectively, showing the reflected power

plotted against the incident laser power at nine red-detuned wavelengths: 1581.65

nm (black line), 1581.7 nm (grey line), 1581.75 nm (blue line), 1581.8 nm (cyan

line), 1581.85 nm (green line), 1581.9 nm (magenta line), 1581.95 nm (violet line),
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1582 nm (brown line), and 1582.05 nm (red line). The curves for the eight longer

wavelengths are each vertically offset from the λl = 1581.65 nm curves for clarity.

Again, we see good agreement between the calculated and experimental results: For

small detunings (λl = 1581.65 to 1581.9 nm), the path traversed during an increase

in input power from 0-2.25 mW (solid line) and a decrease in power (dashed line)

coincide. At larger detunings, Pout experiences hysteresis. As the power is increased,

the membrane enters the bistable region in the lower mechanical state and remains

there until λb has redshifted such that λb = λl, at which point the membrane jumps

to the lower curve, signifying an abrupt increase in the membrane separation. When

decreasing the power, the membrane remains in the up-state until λf blue-shifts back

to λl, forcing the membrane to jump to the upper curve which indicates an abrupt

hop back to the pulled initial equlibrium position.

When we decompose the perturbation to the optical resonance into its constituent

parts, we find optomechanically induced bistability to be the dominant effect. For

example, at Pin = 2.275 mW, optomechanical effects correspond to a peak resonance

shift ∆λOM = 0.44 nm, while thermo-optic contributions lead to ∆λPT = 0.23 nm

and photo-thermal-mechanical contributions lead to ∆λPTM = −0.01 nm. This

corresponds to a membrane which is mechanically pushed upward 2.3 nm by the

optical gradient force and 0.1 nm downward by the photo-thermal-mechanical force,

resulting in a net maximum displacement of 2.2 nm. These results hold promise for

large actuation range with repulsive optical forces by designing membranes which

are less mechanically stiff and generate larger repulsive forces by increasing Qopt.

For instance, Qopt is currently limited by fabrication imperfections and the finite size

effect of the PhC and could be boosted by simply increasing the number of unit cells

in the membrane16. To maintain the same compactness of the structure which is

related to its dynamic range, the optical design could be modified with a smaller

lattice constant and/ or graded hole modulation23.
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FIG. 4. Predicted (a) and experimental (b) Pin-Pout curves of the device. Curves (with

equal offsets for illustration) are plotted for five red-detuned wavelengths: λ = 1581.65 nm

(black line), 1581.7 nm (grey line), 1581.75 nm (blue line), 1581.8 nm (cyan line), 1581.85

nm (green line), 1581.9 nm (magenta line), 1581.95 nm (violet line), 1582 nm (brown line),

and 1582.05 nm (red line). Solid lines represent the power output as a function of increasing

laser power, while dashed lines represent power output as a function of decreasing input

power. Modeling predicts hysteresis will occur at all wavelengths longer than 1581.95 nm.

Motivated by high-vacuum applications of on-chip manipulation of microscopic

objects, we repeated the experiments above from P = 8 µW to 1.2 mW at vac-

uum levels below 1 mTorr where self-sustained oscillations occur readily with a red-

detuned excitation of moderate optical power. We examined the occurrence of opti-

cal bistability by sweeping the tunable laser output from short to long wavelengths

and then back at the slowest tuning speed of 1nm/s. At 20 µW and higher, the

PhC experiences self-sustained oscillations when the laser wavelength is red-detuned
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(ωl < ω′0) from the optical resonance due to positive feedback between Brownian

motion of the membrane at its fundamental mechanical resonant frequency Ωm =

180 kHz and the thermomechanical force with a thermal diffusion rate κt ≈ 487

kHz, taken from simulations and careful fitting to optical and mechanical spectra12.

This can be seen in Fig. 3(d) as the thick red and blue sections of the curves, cor-

responding to periodic oscillations of the reflectance at harmonics of Ωm. Negative

feedback between the membrane’s motion and the photo-thermal-mechanical force

occurs on the blue-detuned side of the resonance and works to damp the membrane

oscillations20, allowing us to adequately treat the system as static at these detun-

ings. While the optical spring effect and dynamic back-action have been thoroughly

investigated in our system12, this paper focuses on evaluating the static effect of the

repulsive optical and photo-thermo-mechanical forces. Qualitatively, we observe an

overall redshift of the mode and increasing hysteresis at higher powers in Fig. 3(d).

When we compare the bistable jump locations in both the forward and backward

sweeps to the values calculated in the same coupled-mode model, the forward sweep

data display good agreement while the backward sweep data show discrepancy in

the transition wavelengths. We attribute this discrepancy to the fact that our static

model does not include the dynamic back-action20, which requires modeling over a

wide range of time-scales spanning from the fundamental mechanical resonance fre-

quency Ωm = 180 kHz to the optical frequency ω0 = 189 THz and is beyond the scope

of this paper. Nevertheless, we can heuristically understand the effects of dynamic

back-action as the cause of the discrepancy between our model and our experimental

data due to detuning-dependent competition between mechanical amplification and

cooling. The amplified mechanical oscillation corresponds to an oscillation of the

optical resonance with an amplitude ωosc = gOMxosc (xosc ≈ 3.3 nm; λosc ≈ 0.55 nm)

which is greater than κ. Thus, when ωl is less than ω′0, the optical resonance oscil-

lates such that it spends time on both sides of ωl. In particular, when the resonance
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experiences maximum red-shift, λl is greater than λ′0, leading to motion damping at

this point in the oscillation. Thus, during a single oscillation cycle, the competing

processes of cooling and amplification are occurring at different points in time. Dur-

ing the backward wavelength sweep, we argue that the system will transition from

the amplified state into the cooled state (λb) before predicted by our static model,

corresponding to the point at which cooling begins to dominate amplification over

a single oscillatory cycle. Another caveat is that as the laser excitation is swept

backward at the lowest sweeping speed such that the membrane transitions from an

amplified state to a cooled state, the laser dwell time is shorter than the the time

needed for the membrane to equilibrate. Hence the backward bistable transition is

obscured by the residual ringing in the optical spectra. As we relate this observation

to our goal of optical actuation of mechanical resonators, it is sensible to traverse

from the cooled state to an amplified state (which is the forward-sweep case here),

whereas the reverse direction presents difficulties in evaluating the actuation range.

Finally, we neglect the Duffing nonlinearity in our mechanical model as the oscilla-

tion amplitude is still well within the linear regime for our structures: The amplitude

is much less than the membrane thickness (185nm) and the compressive stress in the

silicon device layer is alleviated by thin accordion structures as shown in Fig. 1(c).

In conclusion, we demonstrated actuation of a micron-scale membrane with a re-

pulsive optical force using an extended guided resonance in a coupled silicon PhC

membrane. The net red-shift displayed in the optical resonance of our doubly-bonded

SOI platform is a result of an optomechanically induced red-shift, a thermo-optic

red-shift, and a photo-thermo-mechanically induced blue-shift. Furthermore, simu-

lations indicate that absorption in our system is dominated by surface defects and

adsorbents, resulting in a linear absorption coefficient two orders of magnitude larger

than that expected from bulk silicon. By minimizing these effects through fabrica-

tion process and design modifications, we can further isolate and exploit the unique
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optomechanical properties of this platform. Since multi-photon nonlinearities do not

occur until the excitation power exceeds ≈ 1 W with the use of a delocalized optical

mode, the extent of pulling of the PhC membrane can be many tens of nanometers.

Our silicon-based device provides a simple, non-intrusive solution to extending the

actuation range of MEMS devices.
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