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Abstract

Monotonicity is a key qualitative prediction of a wide array of economic models de-
rived via robust comparative statics. It is therefore important to design effective
and practical econometric methods for testing this prediction in empirical analysis.
Chapter 1 develops a general nonparametric framework for testing monotonicity of a
regression function. Using this framework, a broad class of new tests is introduced,
which gives an empirical researcher a lot of flexibility to incorporate ex ante infor-
mation she might have. Chapter 1 also develops new methods for simulating critical
values, which are based on the combination of a bootstrap procedure and new se-
lection algorithms. These methods yield tests that have correct asymptotic size and
are asymptotically nonconservative. It is also shown how to obtain an adaptive rate
optimal test that has the best attainable rate of uniform consistency against models
whose regression function has Lipschitz-continuous first-order derivatives and that
automatically adapts to the unknown smoothness of the regression function. Simu-
lations show that the power of the new tests in many cases significantly exceeds that
of some prior tests, e.g. that of Ghosal, Sen, and Van der Vaart (2000). An applica-
tion of the developed procedures to the dataset of Ellison and Ellison (2011) shows
that there is some evidence of strategic entry deterrence in pharmaceutical industry
where incumbents may use strategic investment to prevent generic entries when their
patents expire.

Many economic models yield conditional moment inequalities that can be used
for inference on parameters of these models. In chapter 2, I construct a new test
of conditional moment inequalities based on studentized kernel estimates of moment
functions. The test automatically adapts to the unknown smoothness of the moment
functions, has uniformly correct asymptotic size, and is rate optimal against certain
classes of alternatives. Some existing tests have nontrivial power against n-'/2 -local
alternatives of a certain type whereas my method only allows for nontrivial test-
ing against (n/ log n)- 1/2-local alternatives of this type. There exist, however, large
classes of sequences of well-behaved alternatives against which the test developed in
this paper is consistent and those tests are not.

In chapter 3 (coauthored with Victor Chernozhukov and Kengo Kato), we derive a
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central limit theorem for the maximum of a sum of high dimensional random vectors.
Specifically, we establish conditions under which the distribution of the maximum is
approximated by that of the maximum of a sum of the Gaussian random vectors with
the same covariance matrices as the original vectors. The key innovation of this result
is that it applies even when the dimension of random vectors (p) is large compared
to the sample size (n); in fact, p can be much larger than n. We also show that the
distribution of the maximum of a sum of the random vectors with unknown covari-
ance matrices can be consistently estimated by the distribution of the maximum of a
sum of the conditional Gaussian random vectors obtained by multiplying the original
vectors with i.i.d. Gaussian multipliers. This is the multiplier bootstrap procedure.
Here too, p can be large or even much larger than n. These distributional approxima-
tions, either Gaussian or conditional Gaussian, yield a high-quality approximation to
the distribution of the original maximum, often with approximation error decreasing
polynomially in the sample size, and hence are of interest in many applications. We
demonstrate how our central limit theorem and the multiplier bootstrap can be used
for high dimensional estimation, multiple hypothesis testing, and adaptive specifi-
cation testing. All these results contain non-asymptotic bounds on approximation
errors.

Thesis Supervisor: Victor Chernozhukov
Title: Professor

Thesis Supervisor: Anna Mikusheva
Title: Castle-Krob Career Development Associate Professor
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Chapter 1

Testing Regression Monotonicity in

Econometric Models

1.1 Introduction

The concept of monotonicity often appears in economics research. For example,

monotone comparative statics has been a popular research topic in economic theory

for many years. See, in particular, the seminal work on this topic by [82] and [13].

Given the great deal of effort put into deriving conditions that are necessary and

sufficient for monotonicity in theoretical models, the natural question is whether

we observe monotonicity in the data. This paper provides a general nonparametric

framework for testing monotonicity of a regression function. Tests of monotonicity

developed in this paper can be used to evaluate assumptions and implications of

economic theory concerning monotonicity. In addition, as was recently noticed by

[44], these tests can also be used to provide evidence of existence of certain phenomena

related to strategic behavior of economic agents that are difficult to detect otherwise.

Several motivating examples are presented in the next section.

I start with the model

Y = f (Xi) + ei,7 i = 1, 2, 3, ... (1)
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where Y is a scalar random variable, {Xj} C R is a sequence of nonstochastic design

points, f is an unknown function, and {e;} is a sequence of independent zero-mean

unobserved scalar random variables. Later on in the paper, I extend the analysis to

cover models with multivariate Xi's. I am interested in testing the null hypothesis,

7 to, that f(x) is nondecreasing against the alternative, W- a, that there are x1 and x2

such that x1 < x 2 but f(x1) > f(x 2 ). The decision is to be made based on the sample

of size n, {Xi, Y} 1<ign. I assume that f is smooth but do not impose any parametric

structure on it. I derive a theory that yields tests with the correct asymptotic size. I

also show how to obtain consistent tests and how to obtain a test with the optimal

rate of uniform consistency against classes of functions with Lipschitz first order

derivatives. Moreover, the rate optimal test constructed in this paper is adaptive in

the sense that it automatically adapts to the unknown smoothness of f.

This paper makes several contributions. First, I introduce a general framework for

testing monotonicity. This framework allows me to develop a broad class of new tests,

which also includes some existing tests as special cases. This gives a researcher a lot of

flexibility to incorporate ex ante information she might have. Second, I develop new

methods to simulate the critical values for these tests that in many cases yield higher

power than that of existing methods. Third, I consider the problem of testing for

monotonicity in models with multiple covariates for the first time in the literature.

As will be explained in the paper, these models are more difficult to analyze and

require rather different treatment in comparison with the case of univariate Xi's.

Constructing a critical value is an important and difficult problem in nonparamet-

ric testing. The problem arises because most test statistics studied in the literature

have some asymptotic distribution when f is constant but diverge if f is strictly in-

creasing. This discontinuity implies that for some sequences of models f = fn, the

limit distribution depends on the local slope function, which is an unknown infinite-

dimensional nuisance parameter that can not be estimated consistently from the data.

A common approach in the literature to solve this problem is to calibrate the critical

value using the case when the type I error is maximized (the least favorable model),

16



i.e. the model with constant f.' In contrast, I develop two selection procedures that

estimate the set where f is not strictly increasing, and then adjust the critical value

to account for this set. The estimation is conducted so that no violation of the asymp-

totic size occurs. The critical values obtained using these selection procedures yield

valuable power improvements in comparison with other tests if f is strictly increasing

over some subsets of its domain. The first selection procedure, which is based on the

one-step approach, is related to those developed in [36], [5], and [37], all of which deal

with the problem of testing conditional moment inequalities. The second selection

procedure is based on the stepdown approach. It is related to methods developed in

[103] and [102]. The details, however, are rather different.

Another important issue in nonparametric testing is how to choose a smoothing

parameter. In theory, the optimal smoothing parameter can be derived for many

smoothness classes of functions f. In practice, however, the smoothness class that f
belongs to is usually unknown. I deal with this problem by employing the adaptive

testing approach. This allows me to obtain tests with good power properties when the

information about smoothness of the function f possessed by the researcher is absent

or limited. More precisely, I construct a test statistic using many different weighting

functions that correspond to many different values of the smoothing parameter so that

the distribution of the test statistic is mainly determined by the optimal weighting

function. I provide a basic set of weighting functions that yields a rate optimal test

and show how the researcher can change this set in order to incorporate ex ante

information.

The literature on testing monotonicity of a nonparametric regression function is

quite large. The tests of [50] and [49] (from now on, GHJK and GSV, respectively)

are based on the signs of (Yi+k - Yi) (Xi+k - Xi). [57] (from now on, HH) developed a

test based on the slopes of local linear estimates of f. The list of other papers includes

[105], [21], [42], [43], [18], and [112]. In a contemporaneous work, [73] derive another

approach to testing monotonicity based on Lp-functionals. An advantage of their

'The exception is [112] who use the model with an isotone estimate of f to simulate the critical
value. They do not prove whether their test maintains the required size, however.
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method is that the asymptotic distribution of their test statistic in the least favorable

model under 'Wo turns out to be N(0, 1). A disadvantage of their method, however, is

that their test is not adaptive. [72] and [40] derived tests of stochastic monotonicity,

which means that the conditional cdf of Y given X, Fyix(y, x), is (weakly) decreasing

in x for any fixed y.

As an empirical application of the results developed in this paper, I consider the

problem of detecting strategic entry deterrence in the pharmaceutical industry. In

that industry, incumbents whose drug patents are about to expire can change their

investment behavior in order to prevent generic entries after the expiration of the

patent. Although there are many theoretically compelling arguments as to how and

why incumbents should change their investment behavior (see, for example, [109]),

the empirical evidence is rather limited. [44] showed that, under certain conditions,

the dependence of investment on market size should be monotone if no strategic entry

deterrence is present. In addition, they noted that the entry deterrence motive should

be important in intermediate-sized markets and less important in small and large

markets. Therefore, strategic entry deterrence might result in the nonmonotonicity of

the relation between market size and investment. Hence, rejecting the null hypothesis

of monotonicity provides the evidence in favor of the existence of strategic entry

deterrence. I apply the tests developed in this paper to Ellison and Ellison's dataset

and show that there is some evidence of nonmonotonicity in the data. The evidence

is rather weak, though.

The rest of the paper is organized as follows. Section 1.2 provides motivating

examples. Section 1.3 describes the general test statistic and gives several methods

to simulate the critical value. Section 1.4 contains the main results under high-

level conditions. Section 1.5 is devoted to the verification of high-level conditions

under primitive assumptions. Since in most practically relevant cases, the model

also contains some additional covariates, Section 1.6 studies the cases of partially

linear and fully nonparametric models with multiple covariates. Section 1.7 presents

a small Monte Carlo simulation study. Section 1.8 describes the empirical application.

Section 1.9 concludes. All proofs are contained in the Appendix.
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Notation. Throughout this paper, let {c} denote a sequence of independent

N(O, 1) random variables that are independent of the data. The sequence {q} will

be used in bootstraping critical values. The notation i = 1, n is shorthand for

i E {1, ... ,n}. For any set S, I denote the number of elements in this set by |S.

The notation an 5 bn means that there exists a constant C independent of n such

that an Cbs. I use symbol C to denote a generic constant the value of which may

vary from line to line, and I use symbol C for an integer j to denote a constant the

value of which is fixed throughout the paper.

1.2 Motivating Examples

There are many interesting examples where testing for monotonicity can be fruitfully

used in economics. Several examples are provided in this section.

1. Testing implications of economic theory. Many testable implications of

economic theory are concerned with comparative statics analysis. These implications

most often take the form of qualitative statements like "Increasing factor X will pos-

itively (negatively) affect response variable Y". The common approach to test such

results on the data is to look at the corresponding coefficient in the linear (or other

parametric) regression. It is said that the theory is confirmed if the coefficient is sig-

nificant and has the expected sign. More precisely, one should say that the theory is

"confirmed on average" because the linear regression gives average coefficients. This

approach can be complemented by testing monotonicity. If the hypothesis of mono-

tonicity is rejected, it means that the theory is lacking some empirically important

features.

For example, a classical paper [61] on the theory of the firm is built around the

observation that in multitask problems different incentive instruments are expected

to be complementary to each other. Indeed, increasing an incentive for one task may

lead the agent to spend too much time on that task ignoring other responsibilities.

This can be avoided if incentives on different tasks are balanced with each other. To

derive testable implications of the theory, Holmstrom and Milgrom study a model of
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industrial selling introduced in [2] where a firm chooses between an in-house agent and

an independent representative who divide their time into four tasks: (i) direct sales,

(ii) investing in future sales to customers, (iii) nonsale activities, such as helping

other agents, and (iv) selling the products of other manufacturers. Proposition 4

in their paper states that under certain conditions, the conditional probability of

having an in-house agent is a (weakly) increasing function of the marginal cost of

evaluating performance and is a (weakly) increasing function of the importance of

nonselling activities. These are hypotheses that can be directly tested on the data by

procedures developed in this paper. This would be an important extension of linear

regression analysis performed, for example, in [2] and [95].

2. Testing assumptions of economic theory. Monotonicity is also a key

assumption in many economic models, especially in those concerning equilibrium

analysis. For example, in the theory of global games it is often assumed that the profit

function of an individual given that she chooses a particular action is nondecreasing in

the proportion of her opponents who also choose this action, or/and that this function

is nondecreasing in an exogenous parameter. See, for example, [84], [85], and [7].

3. Detecting strategic effects. Certain strategic effects, the existence of which

is difficult to prove otherwise, can be detected by testing for monotonicity. An ex-

ample on strategic entry deterrence in the pharmaceutical industry is described in

the Introduction and is analyzed in Section 1.8. Below I provide another example

concerned with the problem of debt pricing. This example is based on [85]. Con-

sider a model where investors hold a collateralized debt. The debt will yield a fixed

payment (1) in the future if it is rolled over and an underlying project is successful.

Otherwise the debt will yield nothing (0). Alternatively, all investors have an option

of not rolling over and getting the value of the collateral, K E (0, 1), immediately.

The probability that the project turns out to be successful depends on the fundamen-

tals, 0, and on how many investors roll over. Specifically, assume that the project is

successful if 0 exceeds the proportion of investors who roll over. Under global game

reasoning, if private information possessed by investors is sufficiently accurate, the

project will succeed if and only if 9 ;) K; see [85] for details. Then ex ante value of
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the debt is given by

and the derivative of the ex ante debt value with respect to the collateral value is

dV(') = P(O ) - (1- dP(O < n)

The first and second terms on the right hand side of the equation above represent

direct and strategic effects correspondingly. The strategic effect represents coordi-

nation failure among investors. It arises because high value of the collateral leads

investors to believe that many other investors will not roll over, and the project will

not be successful even though the project is profitable. [86] argue that this effect is

important for understanding anomalies in empirical implementation of the standard

debt pricing theory of [81]. A natural question is how to prove existence of this effect

in the data. Note that in the absense of strategic effect, the relation between value

of the debt and value of the collateral will be monotonically increasing. If strategic

effect is sufficiently strong, however, it can cause non-monotonicity in this relation.

Therefore, one can detect the existence of the strategic effect and coordination failure

by testing whether conditional mean of the price of the debt given the value of the

collateral is a monotonically increasing function. Rejecting the null hypothesis of

monotonicity provides evidence in favor of the existence of the strategic effect and

coordination failure.

4. Testing assumptions of econometric models. Monotonicity is often

assumed in the econometrics literature on estimating treatment effects. A widely

used econometric model in this literature is as follows. Suppose that we observe a

sample of individuals, i = 1, n. Each individual has a random response function yi(t)

that gives her response for each level of treatment t E T. Let zi and y = yj(zi)

denote the realized level of the treatment and the realized response correspondingly

(both of them are observable). The problem is how to derive inference on E[yi(t)].

[79] introduced assumptions of monotone treatment response, which imposes that

yi(t 2 ) > yi(ti) whenever t 2 > t1 , and monotone treatment selection, which imposes
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that E[yi(t)zj = v] is increasing in v for all t E T. The combination of these

assumptions yields a testable prediction. Indeed, for all v2 >, Vi,

E[yIzj = v 2] = E[y (v2 )Izi = v 2]

; E[yj(vi)jzj = v2]

; E[yi(v1)|zi = vil

= E[yIzj = v1 ].

Since all variables on both the left and right hand sides of this chain of inequalities are

observable, this prediction can be tested by the procedures developed in this paper.

5. Classification problems. Some concepts in economics are defined using

monotonicity. For example, a good is called normal (inferior) if demand for this good

is an increasing (decreasing) function of income. A good is called luxury (necessity)

if the share of income spent on this good is an increasing (decreasing) function of

income. Monotonicity testing can be fruitfully used to classify different goods using

this standard terminology. A related problem arises in the Ramsey-Cass-Koopman

growth model where one of the most important questions is whether current savings

is a nondecreasing function of current level of capital. See, for example, [82].

1.3 The Test

1.3.1 The General Test Statistic

Recall that I consider a model given in equation (1.1), and the test should be based on

the sample {XI, Y};_1 of n observations where Xi and Y are a nonstochastic design

point and a scalar dependent random variable, respectively. In this section and in

Sections 1.4 and 1.5, I assume that Xi E R. The case where Xi E Rd for d > 1 is

considered in Section 1.6.

Let Q(-, -) : R x R -+ R be some weighting function satisfying Q(X1, x 2) = Q(x 2 , Xi)
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and Q(Xi, X2) > 0 for all1, X 2 E R, and let

b = b({Xj, Yi}) = (1/2) ( (Y - Y)sign(Xj - Xi)Q(Xi, Xj)
1 i,jn

be a test function. Since Q(Xi, Xy) > 0 and E[Y] = f (Xi), it is easy to see that under

NO, that is, when the function f is non-decreasing, E[b] ( 0. On the other hand, if

No is violated and there exist a pair (i, j) such that Xi < Xj and f(Xi) > f(Xj),

then there exists a function Q(., -) such that E[b] > 0. Therefore, b can be used to

form a test statistic if I can find an appropriate function Q(-, .). For this purpose, I

will use the adaptive testing approach developed in statistics literature. Even though

this approach has attractive features, it is almost never used in econometrics. An

exception is [63], who used it for specification testing.

The idea behind the adaptive testing approach is to choose Q(-, -) from a large

set of potentially useful weighting functions that maximizes the studentized version

of b. Formally, let Sn be some general set that depends on n, and for s E Sn, let

Q(-, -,s) : R x R -+ R be some function satisfying Q(Xi,X 2, s) = Q(x 2 ,X1,s) and

Q(X 1 , X 2 , s) > 0 for all X1 , X2 E R. In addition, let

b(s) = b({Xj,Y},s) = (1/2) E (Y - Yj)sign(Xj - Xj)Q(X 1,Xjs)
1 i,j<n

be a test function. Since Xi are nonstochastic, the variance of b(s) is given by

V(s) = V({Xi}, {oi}, s) = [ o (Zsin(Xi -Xi)Q(XiXys)
1 (g 1 jgn )2 i A7X

where oi = (E[e?]) 1/ 2 . In general, o-j's are unknown, and should be estimated from

the data. Let &2 denote some (not necessarily consistent) estimator of o-. Available

estimators are discussed later in this section. Then the estimated variance of b(s) is

2

V(S) = V({Xi}, {f}, s) = inXa-X)(fXs
1 (g \1 sgn A -X)Q(i7X'S
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The general form of the test statistic that I consider in this paper is

T = T({Xi, Y}, {&i}, Sn) = max b({X ', Yj}, s)
sES" V({X}, {&},s)

Large values of T indicate that the null hypothesis is violated. Later on in this section,

I will provide methods for estirmating quantiles of T under WO and for choosing a

critical value for the test based on the statistic T.

The set Sn determines adaptivity properties of the test, that is the ability of the

test to detect many different types of deviations from Wo. Indeed, each weighting

function Q(., -, s) is useful for detecting a particular type of deviations, and so the

larger the set of weighting functions S, is, the more types of deviations can be de-

tected, and the higher is adaptivity of the test. In this paper, I allow for exponentially

large (in the sample size n) sets S,,. This implies that the researcher can choose a

huge set of weighting functions, which allows her to detect large set of different de-

viations from to. The downside of the adaptivity, however, is that expanding the

set S, increases the critical value, and thus decreases the power of the test against

those alternatives that can be detected by weighting functions already included in

Sn. Fortunately, in many cases the loss of power is relatively small; see, in particular,

discussion after Theorem 2 on the dependence of critical values on the size of the set

Sn.

1.3.2 Typical Weighting Functions

Let me now describe typical weighting functions. Consider some positive compactly

supported kernel function K : R -+ R.2 For convenience, I will assume that the

support of K is [-1, 1]. In addition, let s = (x, h) where x is a location point and h

is a bandwidth value. Finally, define

Q(X1, X2, (x, h)) = |x1 - x 2|kK (x1 h x) K (X 2 h X) (1.2)

2The kernel function is called positive if it is positive on its support.
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for some k ; 0. 1 refer to this Q as a kernel weighting function.

Assume that a test is based on kernel weighting functions and S, consists of pairs

s = (x, h) with many different values of x and h. To explain why this test has good

adaptivity properties, consider figure 1 that plots two regression functions. Both fi

and f2 violate Wo but locations where WO is violated are different. In particular, fi

violates Ho on the interval [Xi, x2] while the corresponding interval for f2 is [X3 , X4]. In

addition, fi is relatively less smooth than f2, and [Xi, X 2] is shorter than [X3 , X4 ]. To

have good power against fi, S, should contain a pair (x, h) such that [x - h, x + h] C

[1 , X2 ]. Indeed, if [x - h, x + h] is not contained in [X1, X 2], then positive and negative

values of the summand of b will cancel out yielding a low value of b. In particular,

it should be the case that x E [x1, X2). Similarly, to have good power against f2, S,

should contain a pair (x, h) such that x E [X3 , x4]. Therefore, using many different

values of x yields a test that adapts to the location of the deviation from Wo. This

is spatial adaptivity. Further, note that larger values of h yield higher signal-to-noise

ratio. So, given that [x3 , x4] is longer than [Xi, X2], the optimal pair (x, h) to test

against f2 has larger value of h than that to test against fi. Therefore, using many

different values of h results in adaptivity with respect to smoothness of the function,

which, in turn, determines how fast its first derivative is varying and how long the

interval of nonmonotonicity is.

The general framework considered here gives the researcher a lot of flexibility in

determining what weighting functions to use. In particular, if the researcher expects

that any deviations from Wo, if present, are concentrated around some particular

point Xj, then she can restrict the set S, and consider only pairs with x = X. Note

that this will increase the power of the test because smaller sets S, yield lower critical

values. In addition, if it is expected that the function f is rather smooth, then the

researcher can restrict the set S,, by considering only pairs (x, h) with large values of

h since in this case deviations from Wo, if present, are more likely to happen on long

intervals.
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Figure 1-1: Regression Functions Illustrating Different Deviations from 7No
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Another interesting choice of the weighting functions is

Q(Xi,x 2 ,s)= E IXi-X2KhK )K (2

1<,r<m

where s = (x 1, ... , ' h). These weighting functions are useful if the researcher ex-

pects multiple deviations from 7Wo.

If no ex ante information is available, I recommend using kernel weighting func-

tions with S, = {(x, h) :XE {X 1 , ... , Xn}, h E H,} where H, = {h = hmaxU : h ;)

hmin, 1 = 0,1,2, ...} and hmax = maxi <i,j<n Xi - Xjl/2. I also recommend setting

U = 0.5, hmin = 0.4hmx.(logn/n)'/3 , and k = 0 or 1. I refer to this Sn as a basic set

of weighting functions. This choice of parameters is consistent with the theory pre-

sented in sections 1.4 and 1.5 and has worked well in simulations. The value of hmin is

selected so that the test function b(s) for any given s uses no less than approximately

15 observations when n = 100 and the sequence {X} is distributed uniformly.

1.3.3 Comparison with Other Known Tests

I will now show that the general framework described above includes the HH test

statistic and a slightly modified version of the GSV test statistic as special cases that

correspond to different values of k in the definition of kernel weighting functions.

GSV use the following test function:

b(s) = (1/2) E sign(Y - Y)sign(Xj - X 2)K 'h K ( h '
1<i,j<n

whereas setting k = 0 in equation (1.2) yields

b(s) = (1/2) E (Y - Y)sign(Xj - Xi) (Xih X) K ( h '
1 i,j<n

and so the only difference is that I include the term (Y - Y) whereas they use

sign(Y - Y). It will be shown in the next section that my test is consistent. On the

other hand, I claim that GSV test is not consistent under the presence of conditional
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heteroscedasticity. Indeed, assume that f (Xi) = -X, and that ei is -2Xi or 2Xi with

equal probabilities. Then (Y - Y)(Xj - Xi) > 0 if and only if (ei - ej)(Xj - Xi) > 0,

and so the probability of rejecting 7Wo for the GSV test is numerically equal to that in

the model with f(Xi) = 0 for i = 1, n. But the latter probability does not exceed the

size of the test. This implies that the GSV test is not consistent since it maintains the

required size asymptotically. Moreover, they consider a unique nonstochastic value

of h, which means that the GSV test is nonadaptive with respect to the smoothness

of the function f.

Let me now consider the HH test. The idea of this test is to make use of local

linear estimates of the slope of the function f. Using well-known formulas for the

OLS regression, it is easy to show that the slope estimate of the function f given the

data (Xi, Yi) with si < s2 where {Xi}?_1 is an increasing sequence is given by

b(s)= (s" 1<<S2 X4 - (Z8 - X) (1.3)
(S2 - S1) Egsgi,, X2 - (ES<S X,)2'

where s = (s 1 , s 2 ). Note that the denominator of (1.3) is nonstochastic, and so it

disappears after studentization. In addition, simple rearrangements show that the

numerator in (1.3) is up to the sign is equal to

(1/2) (Y - Y)(Xj - Xi)1{x - h < Xi , x + h}1{x - h Xy < x + h} (1.4)
1(i,j(n

for some x and h. On the other hand, setting k = 1 in equation (1.2) yields

b(s) = (1/2) ( (Y - Y)(X - Xi)K ( h ) K (ih ). (1.5)
1 i,j<n

Noting that expression in (1.4) is proportional to that on the right hand side in (1.5)

with K(.) = 1{[-1, +1]}(.) implies that the HH test statistic is a special case of those

studied in this paper.
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1.3.4 Estimating oi

In practice, o- is usually unknown, and, hence, should be estimated from the data.

Let &i denote some estimator of o-. I provide results for two types of estimators.

The first type of estimators is easier to implement but the second worked better in

simulations.

First, oj can be estimated by the residual E. More precisely, let f be some

uniformly consistent estimator of f with at least a polynomial rate of consistency in

probability, i.e. f^(Xi) - f(Xi) = op(n-"1) uniformly over i = T for some r.i > 0,

and let 'i = E where ^; = Yi - f^(Xi). Note that 6 can be negative. Clearly,

ci is not a consistent estimator of o-. Nevertheless, as I will show in Section 1.4,

this estimator leads to valid inference. Intuitively, it works because the test statistic

contains the weighted average sum of of, i = Tn, and the estimation error averages

out. To obtain a uniformly consistent estimator f of f, one can use a series method

(see [90], theorem 1) or local polynomial regression (see [110], theorem 1.8). If one

prefers kernel methods, it is important to use generalized kernels in order to deal

with boundary effects when higher order kernels are used; see, for example, [87].

Alternatively, one can choose S, so that boundary points are excluded from the test

statistic. In addition, if the researcher decides to impose some parametric structure

on the set of potentially possible functions, then parametric methods like OLS will

typically give uniform consistency with '1 arbitrarily close to 1/2.

The second way of estimating o-i is to use a parametric or nonparametric estimator

oi satisfying oZ - a- = oP(n-n2) uniformly over i = 17 for some K2 > 0. Many

estimators of oi satisfy this condition. Assume that the data {Xj, Yjti are arranged

so that Xi < X, whenever i < j. Then the estimator of [97], given by

- (i1 ))n-1 1/2

2n = . Y+ -Y) (1.6)
i=1

is fri-consistent if o-i = - for all i = 1, n and f is piecewise Lipschitz-continuous.

The Rice estimator can be easily modified to allow for conditional heteroscedastic-
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ity. Choose a bandwidth value b, > 0. For i = 1 n, let J(i) = {j = ~1, : |Xj - Xi I

bn}. Let I J(i) I denote the number of elements in J(i). Then o-i can be estimated by

1/2

.21J(i)I ( - (1.7)
jEJ():j+1EJ(i)

I refer to (1.7) as a local version of Rice's estimator. An advantage of this estimator

is that it is adaptive with respect to the smoothness of the function f. Lemma 2

in Section 1.5 provides conditions that are sufficient for uniform consistency of this

estimator with at least a polynomial rate. The key condition there is that I o-j+1o - I
CIXj+1 - Xj for some C > 0 and all j = 1, n - 1. The intuition for consistency is as

follows. Note that X+1 is close to Xj. So, if the function f is continuous, then

Y+1 - Yj = f (X+ 1 ) - f (Xj) + ej+1 - Ej ~ Ej+1 - Li,

so that

E[(Y+1- Y) 2] ~-0 ± +2o

since Ej+1 is independent of ej. Further, if bn is sufficiently small, then o ± 2co2

since IXj+1 - Xil ( bn and 1Xj - Xil < b, and so &i is close to oi. Other available

estimators are presented, for example, in [88], [461, [631, [59], and [25].

1.3.5 Simulating the Critical Value

In this subsection, I provide three different methods for estimating quantiles of the

null distribution of the test statistic T. These are plug-in, one-step, and stepdown

methods. All of these methods are based on the procedure known as the Wild boot-

strap. The Wild bootstrap was introduced in [113] and used, among many others, by

[77], [78], [58], [63], and [37]. See also [33]. The three methods are arranged in terms

of increasing power and computational complexity. The validity of all three meth-

ods is established in theorem 8. Recall that {ei} denotes a sequence of independent

N(0, 1) random variables that are independent of the data.
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Plug-in Approach

Suppose that we want to obtain a test of level a. The plug-in approach is based on

two observations. First, under 7 o,

b(s) = (1/2) E (f(Xi) - f(Xj) + ei - ej)sign(Xy - Xi)Q(Xi, Xj, s) (1.8)
1 i,j<n

<; (1/2) (ei - ej)sign(Xj - Xj)Q(Xj, Xj, s) (1.9)
1<,i,j<n

since Q(Xi, Xj) > 0 and f(Xi) > f(Xj) whenever Xi ) Xj under -o, and so the

(1 - a) quantile of T is bounded from above by the (1 - a) quantile of T in the model

with f(x) = 0 for all x E R, which is the least favorable model under Wo. Second, it

will be shown that the distribution of T asymptotically depends on the distribution

of noise {Ei} only through {fi}. These two observations suggest that the critical

value for the test can be obtained by simulating the conditional (1 - a) quantile of

T* = T({Xi, Y*}, {&}, Sn) given {&} where Y* = & Ei for i = n. This is called the

plug-in critical value cp, . See section 1.10 of the Appendix for detailed step-by-step

instructions.

One-Step Approach

The test with the plug-in critical value is computationally rather simple. It has,

however, poor power properties. Indeed, the distribution of T in general depends on

f but the plug-in approach is based on the least favorable regression function f = 0,

and so it is too conservative when f is strictly increasing. More formally, suppose

for example that a kernel weighting function is used, and that f is strictly increasing

in h-neighborhood of Xi but is constant in h-neighborhood of Xj. Let si = s(Xi, h)

and s2 = s(Xy, h). Then b(si)/(V(s1 )) 1/ 2 is no greater than b(s 2 )/(V(S 2 )) 1/ 2 with

probability approaching one. On the other hand, b(s1)/(V(s 1 )) 1/ 2 is greater than

b(s 2 )/(V(s 2 ))1 /2 with nontrivial probability in the model with f(x) = 0 for all x E R,

which is used to obtain cp, . Therefore, cP1 overestimates the corresponding quantile

of T. The natural idea to overcome the conservativeness of the plug-in approach is to
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simulate a critical value using not all elements of S,, but only those that are relevant

for the given sample. In this paper, I develop two selection procedures that are used

to decide what elements of Sa, should be used in the simulation. The main difficulty

here is to make sure that the selection procedures do not distort the size of the test.

The simpler of these two procedures is the one-step approach.

Let {-} be a sequence of positive numbers converging to zero, and let c_ be

the (1 - yn) plug-in critical value. In addition, denote

SOS S0S({X, Y7}, {&i}, Sn) = {s E Sn : b(s)/(? (s)) 1 2 > 2c_}

Then the one-step critical value cs is the conditional (1 - a) quantile of the simu-

lated statistic T* = T({X, Yi*}, {&}, Sos) given {6} and Snos where Y* = &ce for

i = T~1n.3 Intuitively, the one-step critical value works because the weighting func-

tions corresponding to elements of the set Sn\S S have an asymptotically negligible

influence on the distribution of T under 'Ho. Indeed, the probability that at least one

element s of Sn such that

(1/2) E (f(Xi) - f(Xj))sign(Xj - Xi)Q(Xi, X, s)/(V(s))1 /2 > - (1.10)
1 i,jn

belongs to the set Sn\Sos is at most 7,y + o(1). On the other hand, the probability

that at least one element s of Sn such that inequality (1.10) does not hold for this

element gives b(s)/(V(s)) 1 /2 > 0 is again at most 7yn + o(1). Since 7,Y converges to

zero, this suggests that the critical value can be simulated using only elements of S 0.

In practice, one can set 7y as a small fraction of a. For example, the Monte Carlo

simulations presented in this paper use -yr = 0.01 with a = 0.1.

Stepdown Approach

The one-step approach, as the name suggests, uses only one step to cut out those

elements of Sn that have negligible influence on the distribution of T. It turns out

3 f Sos turns out to be empty, assume that S3 s consists of one randomly chosen element of Sn.
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that this step can be iterated using the stepdown procedure and yielding second-

order improvements in the power. The stepdown procedures were developed in the

literature on multiple hypothesis testing; see, in particular, [60], [100], [103], and

[102], and [75] for a textbook introduction. The use of stepdown method in this

paper, however, is rather different.

To explain the stepdown approach, let me define the sequences (c_) 1 = and

(Si) 1. Set c_ =c and Sn' = S3S. Then for 1 > 1, let c'_ be the conditional

(1 - -y) quantile of T* = T({Xi, Y*}, {&}, Sn) given {&} and Sn where Y* = cTE

for i = 1, n and

S, = S({Xj, YJ, {Ui}, Sn) = {s E Sn : b(s)/(V(s)) 2 > - - ci-}.

It is easy to see that (ci_,)'1 is a decreasing sequence, and so S;_ SD+1 for all

1 ) 1. Since Sn is a finite set, S" = Sn()+1 for some 1(0) > 1 and S' - Sn+1 for all

1 1 (0). Let SZD = SIn). Then the stepdown critical value CIa is the conditional

(1 - a) quantile of T* = T({Xj, Y*17}, {&},SD) given {&I} and S D where Y* =

for i = 1,n.

Note that S!D c Sos c Sn, and so cSD < COS < CPI for any q E (0, 1). This

explains that the three methods for simulating the critical values are arranged in

terms of increasing power.

1.4 Theory under High-Level Conditions

This section describes the high-level assumptions used in the paper and presents the

main results under these assumptions.

Let C1, C2, 4, i1, N 2 , and r3 be some strictly positive constants. The size prop-

erties of the test will be obtained under the following assumptions.

Al. E[|e;|4+0] (; C1 and oi > C2 for all i = 1 .

This is a mild assumption on the moments of disturbances. The condition o-i > C2

for all i = 1, n precludes the existence of super-efficient estimators.
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Recall that the results in this paper are obtained for two types of estimators of

o-. When Yi = = - f^(Xi) for some estimator f of f, I will assume

A2. (i) = - f (Xi) for all i =1, n and (ii) f (Xi) - f(Xi) = op(n ") uniformly

over i = 1, n.

This assumption is satisfied for many parametric and nonparametric estimators of f;

see, in particular, subsection 1.3.4. When 'i is some consistent estimator of oi, I will

assume

A3. &i - = o,(n-2) uniformly over i = 1, n.

See subsection 1.3.4 for different available estimators. See also Lemma 2 in Section

1.5 where Assumption A3 is proven for the local version of Rice's estimator.

A4. (V(s)/V(s))i/2 -1 = o(n-3) and (V(s)/V(s))'! 2 -1 = op(n-3) uniformly over

s E Sn.

This is a high-level assumption that will be verified for particular choices of the

weighting functions under primitive conditions in the next section (Lemma 3).

Let

An = max max sign(Xj - Xi)Q(Xi, X, (V(s))i/2
BESn Ki i jn

I refer to An as a sensitivity parameter. It provides an upper bound on how much

any test function depends on a particular observation. Intuitively, approximation of

the distribution of the test statistic is possible only if An is sufficiently small.

A5. nA4(logp)7 = o(1) where p = ISJ, the number of elements in the set Sn.

In addition, if A2 holds, then log p/n(1/ 4)^1A3 = o(1), and if A3 is satisfied, then

logp/n K2A-3 - o(1).

This is a key growth assumption that restricts the choice of the weighting functions

and, hence, the set Sn. Note that this condition includes p only through log p, and so

it allows an exponentially large (in the sample size n) number of weighting functions.

Lemma 3 in the next section provides an upper bound on An for some choices of

weighting functions, allowing me to verify this assumption.
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Let M be a class of models given by equation (1.1), regression function f, design

points {Xi}, distribution of {ei}, weighting functions Q(., -, s) for s E Sa, and esti-

mators {&i} such that uniformly over this class, (i) Assumptions Al, A4, and A5 are

satisfied, and (ii) either Assumption A2 or A3 holds.4 For M E M, let PM(-) denote

the probability under the distributions in the model M. Then

Theorem 1. Let P = PI, OS, or SD. Let M 0 denote the set of all models M E M

satisfying 'H0. Then

inf PM(T < c_); 1 - a + o(l) as n -+ oo.
MEMO

In addition, let M 0 0 denote the set of all models M E Mo such that f = C for some

constant C. Then

sup P(T < c',,) = 1 - a + o(l) as n -+ oo.
MEMoo

Comment 1. (i) This theorem states that the Wild Bootstrap combined with the

selection procedures developed in this paper yields valid critical values. Moreover,

critical values are valid uniformly over the class of models Mo. The second part of

the theorem states that the test is nonconservative in the sense that its level converges

to the nominal level a.

(ii) The proof technique used in this theorem is based on finite sample approximations

that are built on the results of /33] and [34]. In particular, the validity of the bootstrap

is established without refering to the asymptotic distribution of the test statistic.

(iii) Note that T has a form of U-statistic. The analysis of such statistics typically re-

quires a preliminary Hoeffding projection. An advantage of the approximation method

developed in this paper is that it applies directly to the test statistic with no need for

the Hoeffding projection, which simplifies the analysis a lot.

4Assumptions A2, A3, and A4 contain statements of the form Z = op(n-") for some random
variable Z and n. > 0. I say that these assumptions hold uniformly over a class of models if for
any C > 0, P(IZ > Cn-) = o(1) uniformly over this class. Note that this notion of uniformity is
weaker than uniform convergence in probability. In addition, it applies to random variables defined
on different probability spaces.

35



(iv) To obtain a particular application of the general result presented in this theorem,

consider the basic set of weighting functions introduced in subsection 1.3.2. Then the

number of weighting functions in the set Sn is bounded from above by some polynomial

in n, and so log p < C log n. Lemma 3 in the next section then implies that A ssump-

tions A4 and A5 hold (under mild conditions on K(-) stated in Lemma 3), and so the

result of Theorem 8 applies for this Sn. Therefore, the basic set of weighting func-

tions yields a test with the correct asymptotic size, and so it can be used for testing

monotonicity. An advantage of this set is that, as will follow from Theorems 4 and

5, it gives a test with the best attainable rate of uniform consistency in the minimax

sense against alternatives with regression functions that have Lipschitz-continuous

first order derivatives.

Let s, = infigi Xi and s, = supi<0 Xi. To prove consistency of the test

and to derive the rate of consistency against one-dimensional alternatives, I will also

incorporate the following assumptions.

A6. For any interval [x, x + A,] C [sI, Sr] there exists an integer N and a constant

C > 0 such that for any n > N, {{i = 1,n : Xi E [x,x + Ax|}I > Cn.

This Assumption often appears in the literature. Lemma 1 in the next section

shows that it holds almost surely if {Xj} is an i.i.d. sequence from some distribution

satisfying mild regularity conditions.

A7. For any interval [x, x + AxI] C [sI, Sr] there exists an integer N and a constant

C > 0 such that for any n > N, there exists s E Sn satisfying (i) the support of

Q(., -, s) is contained in [x, x+Axl] 2 , (ii) Q(-, -, s) is bounded from above uniformly over

n = 1, oo, (iii) there exist nonintersecting subintervals [xi, x, + AX, 1| and [Xr, Xr + Ax,,|

of [x,x + A.,] such that Q(x 1 ,x 2,s) > C whenever x1 E [xi,x 1 + A6, 1] and x 2 E

[Xr,1Xi. ± Ax,r] .

Let Mi be a subset of M consisting of all models satisfying Assumptions A6 and

A7. Then
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Theorem 2. Let P = PI, OS, or SD. Then for any model M from the class M 1

such that f is continuously differentiable and there exist x 1 , x 2 E [s1, Sr| such that

x 1 < x 2 and f (xi) > f (x 2) (Wo is false),

PM(T ( cf_) -+ 0 as n -+ oo.

Comment 2. (i) This theorem shows that the test is consistent against any fixed

continuously differentiable alternative.

(ii) To compare the critical values based on the selection procedures developed in this

paper with the plug-in approach (no selection procedure), assume that f is continuously

differentiable and strictly increasing (-o holds). Then an argument like that used in

the proof of Theorem 2 shows that SoS and SnD will be singleton w.p.a.1, which

means that P{c?_, < C} -+ 1 and P{cfDa < C1 - 1 for some C > 0. On the other

hand, P(cP_! > C) -+ 1 for the same C since each test statistic contains at least one

weighting function. Moreover, under Assumption A7, it follows from the Sudakov-

Chevet Theorem (see, for example, Theorem 2.3.5 in [41]) that P(cL0, > C) -* 1 for

all C > 0. Finally, under Assumption A9, which is stated below, it follows from the

proof of lemma 2.3.15 in [41] that P{c_ > C/Iog7n} -+ 1 for some C > 0. This

explains the power improvements of one-step and stepdown approaches in comparison

with the plug-in critical value.

Theorem 3. Let P = PI, OS, or SD. Consider any model M from the class M 1

such that f is continuously differentiable and there exist x 1 , x 2 E IsI, Sr| such that

X1 < x 2 and f (xi) > f(x 2) (o is false). Assume that for every sample size n, the

true model Mn coincides with M except that the regression function has the form

fn(-) = lnf (-) for some sequence {l} of positive numbers converging to zero. Then

PM.(T < c_,,) -+ 0 as n -+ oo

as long as log p = o(ln).

Comment 3. (i) This theorem establishes the consistency of the test against one-
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dimensional local alternatives, which are often used in the literature to investigate the

power of the test; see, for example, [5], [74], and the discussion in [63].

(ii) Suppose that Sn consists of the basic set of weighting functions. Then logp <

C log n, and so the test is consistent against one-dimensional local alternatives if

(log n/n)'/2 = o(ln).

(iii) Now suppose that S,, is a maximal subset of the basic set such that for any

X1,x 2 ,h satisfying (xi, h) E Sn and (x 2 , h) E Sn, |x2 - x1I > 2h. In addition, assume

that haun -+ 0 arbitrarily slowly. Then the test is consistent against one-dimensional

local alternatives if n-1/2 = o(ln). In words, this test is V/u-consistent against such

alternatives. I note however, that the practical value of this v/fl-consistency is limited

because there is no guarantee that for any given sample size n and given deviation

from 7Wo, weighting functions suitable for detecting this deviation are already included

in the test statistic. In contrast, it will follow from Theorem 4 that the test based on

the basic set of weighting functions does provide this guarantee.

Let {Cj : j = 3,..., 8} be a set of strictly positive constants such that C3 < C4,

C5 < C6, and C7 < C8. Let L > 0, # E (0, 1], k > 0, and hn = (log p/n)1/(20+ 3 ). To

derive the uniform consistency rate against the classes of alternatives with Lipschitz

derivatives, conditions A6 and A7 will be replaced by the following assumptions.

A8. There exists an integer N such that for any n > N and any interval [x1, x 2 ] C

1i, Sr] satisfying |x 2 - X1I > C 3n-1/3, C 5nIx 2 - xiI < I{i = 1,n : Xi E [x1, x2]}I <

C6nIX 2 - x1|-

This assumption is stronger than A6 but is still often imposed in the literature;

see Lemma 1 for sufficient primitive conditions.

A9. There exists an integer N such that for any n > N and any x E [s1, Sr - C4hn],

there exists s E Sn satisfying (i) the support of Q(., ., s) is contained in [x, x + C 4 hn]2 ,

(ii) Q(-,-, s) is bounded from above by C8h', (iii) there exist x1, xr E [x, x + C4 hn]

such that |xr - XiI > 2 C3hn and Q(x1,x 2,s) > C7h' whenever x 1 E [xj,xi + C3h,]

and x 2 E [xr,xr + C3hn].
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This assumption is satisfied for the basic set of weighting functions. Let f()(-)

denote the first derivative of f(-).

A10. For any X1,X 2 E [sj, Sr], if( )(XI) - f M(X2)| < Ljxi - X2 | -

This is a smoothness condition that requires that the regression function is suffi-

ciently well-behaved.

Let M 2 be the subset of M consisting of all models satisfying Assumptions A8,

A9, and A10. The following theorem gives the uniform rate of consistency.

Theorem 4. Let P = PI, OS, or SD. Consider any sequence of positive numbers

{Q such that In -+ oo, and let M 2n denote the subset of M 2 consisting of all models

such that the regression function f satisfies infXE[8s,Sr f(W)(x) < -1n(log p/n)/( 2 +3 ).

Then

sup PM(T ct) -+ 0 as n -+ 00.
MEM 2 n

Comment 4. (i) Theorem 4 gives the rate of uniform consistency of the test against

Holder smoothness classes with parameters (0 + 1, L). Importance of uniform con-

sistency against sufficiently large classes of alternatives such as Holder smoothness

classes was previously emphasized in /631. Intuitively, it guarantees that there are

no reasonable alternatives against which the test has low power if the sample size is

sufficiently large.

(ii) Suppose that Sn consists of the basic set of weighting functions. Then Assumption

A9 holds. In addition, Lemma 1 gives conditions that suffice for Assumption A8, and

Lemma 3 shows that Assumptions A4 and A5 are satisfied under mild conditions

on K(.). So, Theorem 4 implies that the test with this Sn is consistent whenever

infXE[t 1,,,] f (x) < -ln(logn/n)p(2 +3) for some in -+ oo. On the other hand, it

will be shown in Theorem 5 that no test can be uniformly consistent against models

with infxe[s,,,r fn (x) > -C(log n/n)/(2 +3 ) for some sufficiently small C > 0 if it

controls size. Therefore, the test based on the basic set of weighting functions is rate

optimal in the minimax sense.

To conclude this section, I present a theorem that gives a lower bound on the pos-

sible rate of uniform consistency against the class M 2 so that no test that maintains
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asymptotic size can have a higher rate of uniform consistency. Let = $(Y, ... , Yn)

be a generic test. In other words, V; (Y 1 , ..., Y) is the probability that the test rejects

upon observing the data Y, i =1~in. Note that for any deterministic test V) = 0 or 1.

Theorem 5. For any test $ satisfying EM[$|b < a + o(1) as n -> oo for all models

M E M such that 7HO holds, there exists a sequence of models M = Mn belonging to

the class M 2 such that f = fn satisfies infE[S1,Sr] f.' (x) < -C(log n/n)'/( 2 +3) for

some sufficiently small constant C > 0 and EMn[?kI < a + o(1) as n -+ oo. Here

Em, [-| denotes the expectation under the distributions of the model Mn.

Comment 5. Combining the result of this theorem with Comment 4-ii shows that

the test based on the basic set of weighting functions is rate optimal. In other words,

no test that maintains asymptotic size can have a higher uniform consistency rate

against the models with the regression function possessing the Lipschitz-continuous

first order derivative.

1.5 Verification of High-Level Conditions

This section provides conditions that are sufficient for the assumptions used in Section

1.4. First, I discuss Assumptions A6 and A8 concerning the configuration of design

points {Xi}. Then I consider Assumption A3, which concerns the uniform consistency

of the estimator - of o- over i = 1, n. Finally, I give an upper bound on the sensitivity

parameter An and prove Assumption A4 for the case when Sn consists of kernel

weighting functions.

Recall that the analysis in Section 1.4 is for nonstochastic {Xi}. Alternatively, it

can be viewed as conditional on {Xi}. Suppose that {Xi} is an i.i.d. sample from some

distribution. The lemma below provides sufficient conditions so that Assumptions A6

and A8 hold for almost all realizations {Xi}.

Lemma 1. Suppose that {Xi1}14<'i is an i.i.d. sample from the distribution P,

on R with the bounded support [sesr. Then Assumption A6 holds for almost all

realizations {Xi}1<i. In addition, if P, is absolutely continuous with respect to
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Lebesgue measure, and its density is bounded from above and away from zero on the

support, then Assumption A8 holds for almost all realizations {Xi}1<i<,. 5

Note that sufficient conditions provided by Lemma 1 for Assumption A6 allow for

point masses, whereas conditions for Assumption A8 do not.

From now on, I will again assume that {X} is nonstochastic. The next Lemma

shows uniform consistency of the local version of Rice's estimator '3 with an explicit

rate of convergence in probability.

Lemma 2. Suppose that 'i is the local version of Rice's estimator of oi given in equa-

tion (1.7). Suppose also that (i) Assumption Al holds, (ii) log n = o(n--+O/(4++)bn)

for some sequence {bn} of positive numbers converging to zero, (iii) IJ(i)| > Cnbn

for some C > 0 and all i = T,H, (iv) If (Xi) - f(Xj)| < C|Xi - X| uniformly

over i,j = Ti, and (v) |o - o | < C|Xi - XI uniformly over i, j = 1, . Then

maxigis |0i - ol = 0,(bn ± (nb) 1/2 + n-'2).

Note Assumption (iii) of this lemma follows from A8 whenever bn > Cn-1/3 for

sufficiently large constant C > 0, and Assumption (iv) follows from A10 as long

as {X} is contained in the bounded set. Lemma 2 implies that Assumption A3

holds for the local version of Rice's estimator whenever bn + (nbn)- 1/ 2 < Cn-c and

log n < Cn*/(4 +)-cbn for some constants c, C > 0 .

Next, I consider restrictions on the weighting functions to ensure that Assumption

A4 holds and give an upper bound on the sensitivity parameter An.

Lemma 3. Suppose that Sn consists of kernel weighting functions. In addition, sup-

pose that (i) Assumptions Al and A8 hold, (ii) K has the support [-1, +1|, is con-

tinuous, and strictly positive on the interior of its support, (iii) x E [si, s,| for all

(x, h) E Sn, (iv) nh 3. - oo where hmin = min(,h)Es, h, and (v) hmax ( (sr -sl)/2

where hmax = max(x,h)ES, h. Then (a) An < C/(nhjn)1/2 where C depends only on

the kernel K and constants C 1 ,..., C8 ; (b) if Assumption A3 is satisfied, then Assump-

,Recall that in section 1.4, si and s, were defined by s1 = infi 1 ig< Xi and Sr = SUpi<ig< Xi.
It is easy to show that the definition given in this lemma coincides with that definition for almost
all realizations {Xi} 1i<O.
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tion A4 holds with K3 = - 2 ; (c) if Assumption A2 is satisfied, then Assumption A4

holds with any K 3 < r1 as long as log p = o(hminni-2-3) and logp = o(hminni/2-s).

Restrictions on the kernel K imposed in this lemma are satisfied for most com-

monly used kernel functions including uniform, triangular, Epanechnikov, biweight,

triweight, and tricube kernels. Note, however, that these restrictions exclude higher

order kernels since those are necessarily negative at some points on their supports.

1.6 Models with Multivariate Covariates

Most empirical studies contain additional covariates that should be controlled for. In

this section, I extend the results presented in Section 1.4 to allow for this possibility.

I consider cases of both partially linear and nonparametric models. For brevity, I will

only consider the results concerning size properties of the test. The power properties

of the test can be obtained using the arguments closely related to those used in

Theorems 2, 3, and 4.

1.6.1 Partially Linear Model

In this model, additional covariates enter the regression function as additively sepa-

rable linear form. In other words, the model is given by

Y = f(Xj)+Z# +es, i= 1,2,3, ...

where {Yi, X;, ei} are defined as in the Introduction, {Z} c Rd is a sequence of

nonstochastic additional covariates, and # E Rd is a vector of coefficients. As above,

the problem is to test the null hypothesis, ?14, that f(x) is nondecreasing against the

alternative, W,,a, that there are x1 and X2 such that x1 < X2 but f (xi) > f(X 2)-

An advantage of the partially linear model outlined above over the fully non-

parametric model is that it does not suffer from the curse of dimensionality, which

decreases the power of the test and may be a severe problem if the researcher has

many additional covariates to control for. On the other hand, the partially linear
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model does not allow for heterogeneous effects of the factor X, which might be re-

strictive in some applications. It should be taken into account that the test obtained

for the partially linear model will be inconsistent if this model is misspecified.

Let me now describe the test. The idea behind the test is to estimate # by 3

and to apply the methods described in section 1.3 for the dataset {XI, Y - ZT0}.

More precisely, let j be a y/T-consistent estimator of #. For example, one can take

an estimator of [99], which is

= ( 

where Z. = Zz - E[ZIX = Xz], Y = Y - E[YIX = X,], and E[ZIX = X] and

E[Y|X = Xi| are nonparametric estimators of E[ZIX = X] and E[YIX = Xi]

respectively; see discussion in [62] for a set of regularity conditions underlying v/-

consistency of this estimator. Define fY = Y - Z[/, and let the test statistic be

T = T({Xi, fi}, {&i}, Sn) where estimators i of o- = (E[e?]) 1 / 2 satisfy either &' =

^1 = Y - f^(Xi) - Zj (here f^(Xi) is some estimator of f(Xi), which is uniformly

consistent over i = T,n) or 6 is some uniformly consistent estimator of o-i. The

critical value for the test is simulated by one of the methods (plug-in, one-step, or

stepdown) described in Section 1.3 using the data {XI, f}}, estimators {i}, and the

set of weighting functions Sn. As in Section 1.3, let cf,!, c Os, and cfD denote the

plug-in, one-step, and stepdown critical values correspondingly.

Let C9 > 0 be some constant. To obtain results for partially linear models, I will

impose the following condition.

All. (i) IZi|| ; C9 for all i = 1,m, (ii) ||/ - #j = Op(n-1/2), and (iii) uniformly

over all s E Sn, Zi ,n Q(Xi,Xj,s)/V(s) 1/2 
- o(Xn/Iog p).

Let MPL denote any set of models in M such that All is satisfied uniformly over

MPL. It follows from the proof of Lemma 3 that Assumption All-iii is satisfied if

Sn consists of kernel weighting functions as long as hmax satisfies hmax = o(l/log P)

The size properties of the test are given in the following theorem.
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Theorem 6. Let P = PI, OS, or SD. Let MPL,O denote the set of all models

M E MPL,O satisfying W0. Then

inf PM(T ( cla) >1 - a + o(1) as n -+ oo.
MEMPL,O

In addition, let MPL,oo denote the set of all models M E MPL,O such that f = C for

some constant C. Then

sup PM(T c-a) = 1 - o + O(1) as n -+ oo.
MEMPL,O

1.6.2 Nonparametric Model

In this subsection, I do not assume that the regression function is separably additive

in additional covariates. Instead, I assume that the regression function has a general

nonparametric form, and so the model is given by

Y = f (Xj, Zj) + ej, i = 1, 2, 3, ...

where {XI, Zi} is a sequence of 1 + d vectors of nonstochastic covariates, {Y} is a

sequence of scalar dependent random variables, and {e} is a sequence of unobservable

scalar random variables satisfying E[ei] = 0 for all i = 1, .

Let Sz be some subset of Rd. The null hypothesis, Wo, to be tested is that for any

X1, x 2 E R and z E Sz, f(Xi, z) < f(X2, z) whenever x1 < x2 . The alternative, WHa, is

that there are X1, X2 E R and z E Sz such that x1 < X2 but f (xi, z) > f(X 2 , z).

The choice of the set Sz is up to the researcher and has to be made depending on

theoretical considerations. For example, if Sz = Rd, then 'o means that the function

f is increasing in the first argument for any given value of the second argument. If

the researcher is interested in one particular value, say, zo, then she can set Sz' = zo,

which will mean that under 'o, the function f is increasing in the first argument

when the second argument equals zo.

The advantage of the nonparametric model studied in this subsection is that it is
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fully flexible and, in particular, allows for heterogeneous effects of X on Y. On the

other hand, the nonparametric model suffers from the curse of dimensionality and

may result in tests with low power if the researcher has many additional covariates.

In this case, it might be better to consider the partially linear model studied above.

To define the test statistic, let S,, and Q(., -, s) be the same as in Section 1.3.

Then define

S= {(s, z) : s E Sn, z = Zi for some i = 1, n such that Zi E Sz},

and for . = (s, z) E Sn, let

b(g) = (1/2) E (Y - Y)sign(Xj - Xi)Q(Xi, Zj, X3 , Zj, 9)
1 i,j<n

be a test function where

Q (Xi, Zi, XjZj 7 )=Q (Xi,7X , s)K

R Rd -+ R is some positive compactly supported auxiliary kernel function, and h(g),

E S, are auxiliary bandwidth values. Intuitively, Q is a local-in-z version of the

weighting function Q. It is important here that the auxiliary bandwidth value h(g)

depends on 9. For example, if kernel weighting functions are used, so that 9 = (x, h, z),

then one has to choose h = h(§) so that nhhd -+ oo and nhhd+2 - 0 polynomially

fast uniformly over 9 E Sn; see discussion after the statement of Assumption A12.

The variance of b(,§) is given by

V () = ( i2- ( sign(Xj - X3  Q(Xi, Zi, X;, Zj ,)) ,

and the estimated variance is

Y ) = ;( 2 sign(X - X)Q2(X , Zi, Xj, Z,)
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Then the test statistic is

T=max
§ESn I7 9

Large values of T indicate that 7tO is violated. The critical value for the test can be

calculated using any of the methods described in Section 1.3 with the only difference

being that now Q, § and S,, should be used instead of Q, s and Sn, and the selection

procedures choose subsets of S instead of Sn. Let cfL!, c? Q, and cf_' denote the

plug-in, one-step, and stepdown critical values correspondingly. In addition, let

Zn = max max sign(Xj - X,)Q(Xi, Zi, Xj, Z, s)/(V(g))1/2
NEn li,<n E44

be a sensitivity parameter. Finally, let p = ISI, the number of elements in the set

5n. Clearly, p < pn where p = ISI.

Let C10 be some positive constant. To prove results concerning multivariate non-

parametric model, I will impose the following condition.

A 12. (i) P(IeiI > u) exp(-u/C10) for all u > 0 and o- >, C2 for all i =

1 n, (ii) An(log(pn))7/2 = o(1), (iii) h(g) EZljln Q(Xi, ZX, X Z, 5)/(V(.))i/ 2 =

o(1/lVogp) uniformly over 9 E Sn, and (iv) the regression function f has uniformly

bounded first order partial derivatives.

Condition (i) of this assumption imposes that ei's have sub-exponential tails, which

is stronger than Assumption Al. It holds, for example, if Ei's have normal distri-

bution. Condition (iv) is a smoothness assumption. Conditions (ii) and (iii) are

of high level. To give more primitive conditions, assume that Sn consists of ker-

nel weighting functions so that 9 = (s, z) = (x, h, z) and log p < C log n. Let

Sn,h = {(h, h) : h = h(x, h, z) for some x and z such that (x, h, z) E 53}. Then typ-

ically An C max (h)E4h 1/(nhd)1/2 and Elgj4n Q(Xi, Z, Xj, Z,, .)/(V(g))i/ 2

C(nhhd)1/ 2 . Therefore, conditions (ii) and (iii) hold if nhh d+ 00 and nhhd+2 _+ 0

polynomially fast uniformly over (h, h) E 5nh.
The key difference between the multivariate case studied in this section and uni-

variate case studied in Section 1.4 is that now it is not necessarily the case that
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E[b(g)) < 0 under 7 0 . The reason is that the values f(xi, zi) and f(x 2, z2) are non-

comparable unless zi = z2. This yields a bias term in the test statistic. Conditions

(iii) and (iv) of Assumption A12 ensure that this bias is asymptotically negligible

relative to the concentration rate of the test statistic. The difficulty, however, is

that condition (iii) is inconsistent with nA(logp) 7 -+ 0 imposed in Assumption A5

(where I replaced An and p by their multivariate analogs A and p). Indeed, condi-

tion nA4(logp) 7 -+ 0 requires nhh 2 -+ oo, and so it contradicts to nhhd+2 -+ 0 (if

d > 2), which follows from condition (iii) of A12. To deal with this problem, I im-

pose more stringent moment condition A12-i than that used in Section 1.4, Al. This

allows me to apply a powerful method developed in [33] and replace nA4(log p)7 -+ 0

by An(log p)7/2 = o(l); see Assumption A12-ii.

Let MNP denote any set of models such that uniformly over MNP the following

assumptions hold: A4 with s and Sn replaced by § and 5n, A12, either (A2 with

f^(Xi) and f(Xi) replaced by f^(Xi, Z) and f(Xi, Z) and log p = o(n1A3)) or (A3

and log p = o(n2As)). The following theorem shows that the test in a multivariate

nonparametric model controls asymptotic size.

Theorem 7. Let P = PI, OS, or SD. Let MNP,O denote the set of all models

M E MNP satisfying WO. Then

inf PM(T < cf..) > 1 - a + o(1) as n -+ oo.
MEMNP,O

In addition, let MNp,00 denote the set of all models M E MNPO such that f C for

some constant C. Then

sup PM(T < cp-a) = 1 - a + o(1) as n - oo.
MEMNP,00

1.7 Monte Carlo Simulations

In this section, I provide results of a small simulation study. The aim of the simulation

study is to shed some light on the size properties of the test in finite samples and to
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compare its power with that of other tests developed in the literature. In particular,

I consider the tests of [50] (GHJK), [49] (GSV), and [57] (HH).

I consider samples of size n = 100, 200, and 500 with equidistant nonstochastic

Xi's on the [-1,1] interval, and regression functions of the form f = c1x - c2 4(c3X)

where c1 , c2 , c3 ;; 0 and 4(-) is the pdf of the standard normal distribution. I assume

that {ei} is a sequence of i.i.d. zero-mean random variables with standard deviation o.

Depending on the experiment, ei has either normal or continuous uniform distribution.

Four combinations of parameters are studied: (1) c1 = C2 = C3 = 0 and 0 = 0.05; (2)

C1 = C3 = 1, c2 = 4, and a = 0.05; (3) c1 = 1, c2 = 1.2, c3 = 5, and 7= 0.05; (4)

C1 = 1, c2 = 1.5, c3 = 4, and a = 0.1. Cases 1 and 2 satisfy Wo whereas cases 3 and 4

do not. In case 1, the regression function is flat corresponding to the maximum of the

type I error. In case 2, the regression function is strictly increasing. Cases 3 and 4

give examples of the regression functions that are mostly increasing but violate WO in

the small neighborhood near 0. All functions are plotted in figure 2. The parameters

were chosen so that to have nontrivial rejection probability in most cases (that is,

bounded from zero and from one).

Let me describe the tuning parameters for all tests that are used in the simulations.

For the tests of GSV, GHJK, and HH, I tried to follow their instructions as closely as

possible. For the test developed in this paper, I use kernel weighting functions with

k = 0, S, = {(x, h) : x E {X 1, ..., X,}, h E H}, and the kernel K(x) = 0.75(1 - x 2)

for x E (-1; +1) and 0 otherwise. I use the set of bandwidth values H, = {hmaxu :

h ;, hmin,l = 0,1,2,...}, u = 0.5, hmax = 1, hmin = 0.4hmax(logn/n)1/3 , and the

truncation parameter -y = 0.01. For the test of GSV, I use the same kernel K with

the bandwidth value h,, = n-1/5, which was suggested in their paper, and I consider

their sup-statistic. For the test of GHJK, I use their run statistic maximized over

k E {10(j - 1) + 1 : j = 1, 2, ...0.2n} (see the original paper for the explanation

of the notation). For the test of HH, local polynomial estimates are calculated over

r E nHa at every design point Xi. The set nH, is chosen so that to make the results

comparable with those for the test developed in this paper. Finally, I consider two

versions of the test developed in this paper depending on how or is estimated. More
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Figure 1-2: Regression Functions Used in Simulations
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precisely, I consider the test with o-i estimated by the Rice's method (see equation

(1.6)), which I refer to in the table below as CS (consistent sigma), and the test with

9i = E' where ^' is obtained as the residual from estimating f using the series method

with polynomials of order 5, 6 and 8 whenever the sample size n, is 100, 200, and 500

respectively, which I refer to in the table below as IS (inconsistent sigma).

The rejection probabilities corresponding to nominal size a = 0.1 for all tests are

presented in table 1. The results are based on 1000 simulations with 500 bootstrap

repetitions in all cases excluding the test of GSV where the asymptotic critical value

is used.

The results of the simulations can be summarized as follows. First, the results

for normal and uniform disturbances are rather similar. The test developed in this

paper with o-i estimated using the Rice's method maintains the required size quite

well (given the nonparametric structure of the problem) and yields size comparable

with that of the GSV, GHJK, and HH tests. On the other hand, the test with

= e; does pretty well in terms of size only when the sample size is as large as

500. When the null hypothesis does not hold, the CS test with the stepdown critical

value yields the highest proportion of rejections in all cases. Moreover, in case 3 with

the sample size n = 200, this test has much higher power than that of GSV, GHJK,

and HH. The CS test also has higher power than that of the IS test. Finally, the

table shows that the one-step critical value gives a notable improvement in terms

of power in comparison with plug-in critical value. For example, in case 3 with

the sample size n = 200, the one-step critical value gives additional 190 rejections

out 1000 simulations in comparison with the plug-in critical value for the CS test

and additional 325 rejections for the IS test. On the other hand, the stepdown

approach gives only minor improvements over the one-step approach. Overall, the

results of the simulations are consistent with the theoretical findings in this paper. In

particular, selection procedures yielding one-step and stepdown critical values improve

power with no size distortions. Additional simulation results are presented in the

supplementary Appendix.
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Table 1.1: Results of Monte Carlo Experiments

N C Sample Proportion of Rejections for
GSV GHJK HH CS-PI CS-OS CS-SD IS-PI IS-OS IS-SD

100 .118 .078 .123 .128 .128 .128 .164 .164 .164
n 1 200 .091 .051 .108 .114 .114 .114 .149 .149 .149

500 .086 .078 .105 .114 .114 .114 .133 .133 .133
100 0 .001 0 .001 .008 .008 .008 .024 .024

n 2 200 0 .002 0 .001 .010 .010 .007 .017 .017
500 0 .001 0 .002 .007 .007 .005 .016 .016
100 0 .148 .033 .259 .436 .433 0 0 0

n 3 200 .010 .284 .169 .665 .855 .861 .308 .633 .650
500 .841 .654 .947 .982 .995 .997 .975 .995 .995
100 .037 .084 .135 .163 .220 .223 .023 .042 .043

n 4 200 .254 .133 .347 .373 .499 .506 .362 .499 .500
500 .810 .290 .789 .776 .825 .826 .771 .822 .822
100 .109 .079 .121 .122 .122 .122 .201 .201 .201

u 1 200 .097 .063 .109 .121 .121 .121 .160 .160 .160
500 .077 .084 .107 .092 .092 .092 .117 .117 .117
100 .001 .001 0 0 .006 .007 .017 .032 .033

u 2 200 0 0 0 .001 .010 .010 .012 .022 .024
500 0 .003 0 .003 .011 .011 .011 .021 .021
100 0 .151 .038 .244 .438 .449 0 0 0

u 3 200 .009 .233 .140 .637 .822 .839 .290 .607 .617
500 .811 .582 .947 .978 .994 .994 .975 .990 .990
100 .034 .084 .137 .155 .215 .217 .024 .045 .046

u 4 200 .197 .116 .326 .357 .473 .478 .323 .452 .456
500 .803 .265 .789 .785 .844 .846 .782 .847 .848

Nominal Size is 0.1. N and C in the heading refer to "Noise" and "Case", respectively.
GSV, GHJK, and HH stand for the tests
and CS-SD refer to the test developed in

of [49], [50], and [57] respectively. CS-PI, CS-OS,
this paper with oi estimated using Rice's formula

and plug-in, one-step, and stepdown critical values respectively. Finally, IS-PI, IS-OS, and
IS-SD refer to the test developed in this paper with a- estimated by Ui = ' and plug-in,
one-step, and stepdown critical values respectively.
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1.8 Empirical Application

In this section, I review the arguments of [44] on how strategic entry deterrence might

yield a nonmonotone relation between market size and investment in the pharmaceu-

tical industry and then apply the testing procedures developed in this paper to their

dataset. I start with describing their theory. Then I provide the details of the dataset.

Finally, I present the results.

In the pharmaceutical industry, incumbents whose patents are about to expire

can use investments strategically to prevent generic entries after the expiration of

the patent. In order to understand how this strategic entry deterrence influences the

relation between market size and investment levels, [44] developed two models for

an incumbent's investment. In the first model, potential entrants do not observe the

incumbent's investment but they do in the second one. So, a strategic entry deterrence

motive is absent in the former model but is present in the latter one. Therefore, the

difference in incumbent's investment between two models is explained by the strategic

entry deterrence. Ellison and Ellison showed that in the former model, the investment-

market size relation is determined by a combination of direct and competition effects.

The direct effect is positive if increasing the market size (holding entry probabilities

fixed) raises the marginal benefit from the investment more than it raises the marginal

cost of the investment. The competition effect is positive if the marginal benefit of

the investment is larger when the incumbent is engaged in duopoly competition than

it is when the incument is a monopolist. The equilibrium investment is increasing in

market size if and only if the sum of two effects is positive. Therefore, a sufficient

condition for the monotonicity of investment-market size relation is that both effects

are of the same sign.6 In the latter model, there is also a strategic entry deterrence

effect. The authors noted that this effect should be relatively less important in small

and large markets than it is in markets of intermediate size. In small markets, there

are not enough profits for potential entrants, and there is no need to prevent entry. In

large markets, profits are so large that no reasonable investment levels will be enough

'An interested reader can find a more detailed discussion in the original paper.
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to prevent entries. As a result, strategic entry deterrence might yield a nonmonotonic

relation between market size and investment no matter whether the relation in the

model with no strategic entry deterrence is increasing or decreasing.

Ellison and Ellison studied three types of investment: detail advertising, jour-

nal advertising, and presentation proliferation. Detail advertising, measured as per-

consumer expenditures, refers to sending representatives to doctors' offices. Since

both revenues and cost of detail advertising are likely to be linear in the market size,

it can be shown that the direct effect for detail advertising is zero. The competition

effect is likely to be negative because detail advertising will benefit competitors as

well. Therefore, it is expected that detail advertising is a decreasing function of the

market size in the absence of strategic distortions. Stategic entry deterrence should

decrease detail advertising for markets of intermediate size. Journal advertising is

the placement of advertisements in medical journals. Journal advertising is also mea-

sured as per-consumer expenditures. The competition effect for journal advertising

is expected to be negative for the same reason as for detail advertising. The direct

effect, however, may be positive because the cost per potential patient is probably

a decreasing function of the market size. Opposite directions of these effects make

journal advertising less attractive for detecting strategic entry deterrence in compari-

son with detail advertising. Nevertheless, following the original paper, I assume that

journal advertising is a decreasing function of the market size in the absence of strate-

gic distortions. Presentation proliferation is selling a drug in many different forms.

Since the benefits of introducing a new form is approximately proportional to the

market size while the costs can be regarded as fixed, the direct effect for presentation

proliferation should be positive. In addition, the competition effect is also likely to

be positive because it creates a monopolistic niche for the incumbent. - Therefore,

presentation proliferation should be positively related to market size in the absence

of strategic distortions.

The dataset consists of 63 chemical compounds, sold under 71 different brand

names. All of these drugs lost their patent exclusivity between 1986 and 1992. There

are four variables in the dataset: average revenue for each drug over three years before
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the patent expiration (this measure should be regarded as a proxy for market size),

average costs of detail and journal advertising over the same time span as revenues,

and a Herfindahl-style measure of the degree to which revenues are concentrated in

a small number of presentations (this measure should be regarded as the inverse of

presentation proliferation meaning that higher values of the measure indicate lower

presentation proliferation).

Clearly, the results will depend on how I define both dependent and independent

variables for the test. Following the strategy adopted in the original paper, I use log

of revenues as the independent variable in all cases, and the ratio of advertising costs

to revenues for detail and journal advertising and the Herfindahl-style measure for

presentation proliferation as the dependent variable. The null hypothesis is that the

corresponding conditional mean function is decreasing. 7

I consider the test with kernel weighting functions with k = 0 or 1 and the kernel

K(x) = 0.75(1- x2 ) for x E (-1, 1) and 0 otherwise. I use the set of bandwidth values

H, = {0.5; 1} and the set of weighting functions S, = {(x, h) : x E {X 1 , ..., X.}, h E

H,}. Implementing the test requires estimating o-? for all i = 1, ..., n. Since the

test based on Rice's method outperformed that with &i = E' in the Monte Carlo

simulations, I use this method in the benchmark procedure. I also check robustness

of the results using the following two-step procedure. First, I obtain residuals of

the OLS regression of Y on a set of transformations of X. In particular, I use

polynomials in X up to the third degree (cubic polynomial). Second, squared residuals

are projected onto the same polynomial in X using the OLS regression again. The

resulting projections are estimators &a of o-i, i = 1, ... , n.

The results of the test are presented in table 2. The table shows the p-value of

the test for each type of investment and each method of estimating o-l. In the table,

method 1 corresponds to estimating of2 using Rice's formula, and methods 2, 3, and 4

'In the original paper, [44] test the null hypothesis consisting of the union of monotonically
increasing and monotonically decreasing regression functions. The motivation for this modification
is that increasing regression functions contradict the theory developed in the paper and, hence,
should not be considered as evidence of the existence of strategic entry deterrence. On the other
hand, increasing regression functions might arise if the strategic entry deterrence effect overweighs
direct and competition effects even in small and large markets, which could be considered as extreme
evidence of the existence of strategic entry deterrence.
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Table 1.2: Incumbent Behavior versus Market Size: Monotonicity Test p-value
Investment Type

Method Detail Advertising Journal Advertising Presentation Proliferation

k=0 k=1 k=0 k=1 k=0 k=1
1 .120 .111 .056 .120 .557 .661
2 .246 .242 .088 .168 .665 .753
3 .239 .191 .099 .195 .610 .689
4 .301 .238 .098 .194 .596 .695

are based on polynomials of first, second, and third degrees respectively. Note that all

methods yield similar numbers, which reassures the robustness of the results. All the

methods with k = 0 reject the null hypothesis that journal advertising is decreasing

in market size with 10% confidence level. This may be regarded as evidence that

pharmaceutical companies use strategic investment in the form of journal advertising

to deter generic entries. On the other hand, recall that direct and competition effects

probably have different signs for journal advertising, and so rejecting the null may

also be due to the fact that the direct effect dominates for some values of market

size. In addition, the test with k = 1 does not reject the null hypothesis that journal

advertising is decreasing in market size at the 10% confidence level, no matter how o-

are estimated. No method rejects the null hypothesis in the case of detail advertising

and presentation proliferation. This may be (1) because firms do not use these types

of investment for strategic entry deterrence, (2) because the strategic effect is too

weak to yield nonmonotonicity, or (3) because the sample size is not large enough.

Overall, the results are consistent with those presented in [44].

1.9 Conclusion

In this paper, I have developed a general framework for testing monotonicity of a non-

parametric regression function, and have given a broad class of new tests. A general

test statistic uses many different weighting functions so that an approximately opti-

mal weighting function is determined automatically. In this sense, the test adapts to

the properties of the model. I have also obtained new methods to simulate the critical
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values for these tests. These are based on selection procedures. The procedures are

used to estimate what counterparts of the test statistic should be used in simulating

the critical value. They are constructed so that no violation of the asymptotic size

occurs. Finally, I have given tests suitable for models with multiple covariates for the

first time in the literature.

The new methods have numerous applications in economics. In particular, they

can be applied to test qualitative predictions of comparative statics analysis including

those derived via robust comparative statics. In addition, they are useful for evaluat-

ing monotonicity assumptions, which are often imposed in economic and econometric

models, and for classifying economic objects in those cases where classification in-

cludes the concept of monotonicity (for example, normal/inferior and luxury/necessity

goods). Finally, these methods can be used to detect strategic behavior of economic

agents that might cause nonmonotonicity in otherwise monotone relations.

The attractive properties of the new tests are demonstrated via Monte Carlo sim-

ulations. In particular, it is shown that the rejection probability of the new tests

greatly exceeds that of other tests for sorne simulation designs. In addition, I applied

the tests developed in this paper to study entry deterrence effects in the pharmaceu-

tical industry using the dataset of [44]. I showed that the investment in the form of

journal advertising seems to be used by incumbents in order to prevent generic entries

after the expiration of patents. The evidence is rather weak, though.

1.10 Appendix A. Implementation Details

In this section, I provide detailed step-by-step instructions for implementing plug-in,

one-step, and stepdown critical values. The instructions are given for constructing a

test of level a. In all cases, let B be a large integer denoting the number of bootstrap

repetitions, and let {Ei,b} iBb be a set of independent N(O, 1) random variables. For

one-step and stepdown critical values, let -y denote the truncation probability, which

should be small relative to a.
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1.10.1 Plug-in Approach

1. For each b = 1, B and i = 1, n, calculate Y* =

2. For each b = 1, B, calculate the value T* of the test statistic using the sample

{ Xi,7 Yi*b} L 1.

3. Define the plug-in critical value, cP,, as the (1- a) sample quantile of {T*} 1.

1.10.2 One-Step Approach

1. For each b = 1, B and i = 1, n, calculate Yi* = oieb.

2. Using the plug-in approach, simulate cQ,.

3. Define S7oS as the set of values s E S such that b(s)/(V(s))1/2 > -2cP,.

4. For each b = 1, B, calculate the value T* of the test statistic using the sample

{Xi, Y*,}&1' and taking maximum only over S3s instead of Sn.

5. Define the one-step critical value, cf~8 as the (1-a) sample quantile of {T*}* .

1.10.3 Stepdown Approach

1. For each b = 1, B and i = 1, n, calculate Yi* = i, .

2. Using the plug-in and one-step approaches, simulate cj, and cs,, respectively.

3. Denote SO = SS,O = c~s , and set 1 = 0.

4. For given value of 1 ) 0, define Sg+1 as the set of values s E S" such that

b(s)/(V(s))1'/2 > -cU_7 - C'.

5. For each b = 1, B, calculate the value T* of the test statistic using the sample

{XI, Y*,}bLi and taking the maximum only over S,+1 instead of S..

6. Define c1+1, as the (1 - -y) sample quantile of {T*}b* .

7. If S'+1 = Sn, then go to step (8). Otherwise, set 1 = + ± 1 and go to step (4).
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8. For each b = 1, B, calculate the value T* of the test statistic using the sample

{Xj, Y*s}t1 and taking the maximum only over S,' instead of S.

9. Define cS, as the (1 - a) sample quantile of {T*}b_ 1 .

1.11 Appendix B. Additional Notation

I will use the following additional notation in Appendices C and D. Recall that {ec}

is a sequence of independent N(O, 1) random variables that are independent of the

data. Denote ej = o-sc and e = ioi for i = 1, n. Let

wi (s) = E sign (Xj - Xj) Q(Xi, Xj, s),

ai(s) = w;(s)/(V(s))1 /2 and ' (s) =V

e(s) = ai(s)ei, and F(s) = E3 (s)ei,
1,<ign 1<ig<n

e(s) = ai(s)ej and F(s) = E ;(s)ei,
1 i<n 1 ign

f(s) = a (s)f(Xj) and f(s) = (
1<,i<n 1,i<,n

Note that T = maxES Es1<4<n d(s)Y = maxsEs(f^(s) + F(s)). In addition, for

any S c Sn, which may depend on the data, and all q E (0, 1), let cS denote the

conditional i quantile of T* = T({X, Yi*}, {i}, S) given {'} and S where Y* = '

for i = 1 n, and let cs-G denote the conditional q quantile of T* = T({X, Y*}, {o-}, S)

given S where Y* = o-;e for i = I n. Further, for i (0, define c; and c '0 as -oo,

and for 7 ;> 1, define c- and cS', as +oo.11

Moreover, denote V = maxEsn (V(s)/V(s)) 1/ 2. Let {Pn} be a sequence of positive

numbers converging to zero sufficiently slowly so that (i) log p/n13 = o(4n) (recall that

by Assumption A5, logp/n'3 = o(l), and so such a sequence exists), (ii) uniformly

over S C Sn and 77 E (0, 1), P(cS' < c) = o(1) and P(cs < cS-0 ) = o(l) (Lemma

8 establishes existence of such a sequence under Assumptions Al, A3, A4, and A5
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and Lemma 12 establishes existence under Assumptions Al, A2, A4, and A5). Let

= {s ES: f(s) > -" _V }

For D = PI, OS, SD, R, let c. = C. and cDO cD where S= Sn. Note that

cj'' 0 and c-'0 are nonstochastic.

Finally, I denote the space of k-times continuously differentiable functions on R

by Ck (R, R). For g E Ck (R, R), the symbol g(') for r ; k denotes the rth derivative

of g, and ||g(r)1|0 = suptER g(r)(01-

1.12 Appendix C. Proofs for section 1.4

In this Appendix, I first prove a sequence of auxiliary lemmas (subsection 3.5). Then

I present the proofs of the theorems stated in section 1.4 (subsection 1.12.2).

1.12.1 Auxiliary Lemmas

Lemma 4. E[maxEs. le(s)I] 6 (logp)1 /2

Proof. Note that by construction, e(s) is distributed as a N(O, 1) random variable,

and jSnl = p. So, the result follows from lemma 2.2.2 in [1111. 5

Lemma 5. Uniformly over S C Sn and A > 0, supte nP(maxsEs e(s) E (t, t ±

A)) < A(logp)1 /2 . In particular, for any (rq, 6) E (0, 1)2 and S C Sn, cS% - cS'0 >

C6/(log p) 1/ 2 for some constant C > 0.

Proof. The first claim follows by combining Lemma 4 in this paper and Theorem 3

in [34]. The second claim follows from the result in the first claim. O

Lemma 6. There exists a constant C > 0 such that for all S c Sn, r7 E (0, 1), and

t E R,

c ' < c5 '0 (1 + t) '; c o' /
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Proof. Recall that c,'0 is the 7 quantile of max,1ES e(s), and so combining Lemma 4

and Markov inequality shows that c,' 0 ,< (log p)i/2/(1 - r/). Therefore, Lemma 32

gives

c cSiO / - c S ;> C p)/ 2/(1 -q) > ItIcS'"
?77+11±I 10gP/(1-77) -n n ~t(o

if C > 0 is sufficiently large. The lower bound follows similarly. O

Lemma 7. Under Assumptions Al and A5, uniformly over S C Sn and q E (0,1),

P(maxe(s) < ci'0) = q + o(1) and P(max(-e(s)) < c'' 0) = 77 + o(1).
sES sES

Proof. Note that Z1 ,<(ai(s)o-)
2 = 1. In addition, it follows from Assumption Al

that og < C uniformly over all i = 1, n. Therefore, under Assumption A5, the claim

of the lemma follows by applying Corollary 2.3, case E.5 in [33]. L

Lemma 8. Under Assumptions Al, A3, A4, and A5, there exists a sequence {$n} of

positive numbers converging to zero such that uniformly over S C Sn and rE e (0,1),

P(c < cs) = o(1) and P(c 4  < c' 0 ) = o(1).

Proof. Denote

TS = max F(s) = max 'd a(s)&ic and TS, = max e(s) = max E ai(s)o- ei.
sES sES sES sES

1 <i<n 1<,in

Note that cS is the conditional r quantile of Ts given {&i} and cS'0 is the unconditional

rq quantile of T,0. In addition, denote

pi = max le(s)Imax|1 - (V(s)/V(s))1
BES sES

P2 = max E ai(s)('i - o-i)c max(V(s)/V(s)) 1/2.
SE S sES

Then ITS - TS'| < pi + P2. Combining Lemma 4 and Assumption A4 gives

pi = op((logp)i/ 2 nK3).
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Consider P2. Conditional on {&i}, (i -o-i)e; is distributed as a N(0, (i -o-a)2) random

variable, and so applying the argument like that in Lemma 4 conditional on {6} and

using Assumptions Al and A3 gives

max Eay (s)(-i - o-i)E; = o,((log p)'1/2-n2).
1 ign

Since maxsES(V(s)/V(s))i/ 2 -+, 1 by assumption A4, this implies that

P2 = op((log p)1/2n-K2).

Therefore, TS - Ts,o = oP((logP)1/ 2n-K2A3), and so there exists a sequence {nb} of

positive numbers converging to zero such that

P(ITs - TS'"| > (log p)1/ 2 -nK2A3)

Hence,

P(P(ITS - TS'" > (log p)1/2 n2A si{&j}) > bn) -+ 0.

Let An denote the event that

P(ITS - TS'" > (log p)i/2 n 2^ )

I will take @n = n + C(logp)n -2A^3 for a constant C that is larger than that in the

statement of Lemma 32. By assumption A5, gn -+ 0. Then note that

P(TS'0 < cS'0|{i}) > 7 and P(TI (fci{&i}) >

for any 77 E (0, 1). So, on An,

77 + Vn P(TS'0 ( c {&i})

P P(TS < csQ + (log p) 1/2 -n-2^r37+nns R' + N

( P(TS 7c|+ } + n<( P( s' nc~ I{~} 'i
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where the last line uses Lemma 32. Therefore, on A,, ci < c O, i.e. P(c 4 ', <

cs) = o(1). The second claim follows similarly. E

Lemma 9. Let ci' denote the conditional r7 quantile of TS'1 = maxSES E 1<in a (s)eici

given {ej}. Let Assumptions Al, A2, and A5 hold. Then there exists a sequence

{iPn} of positive numbers converging to zero such that P(c < cs'1) = o(l) and

P(cl < c' 0 ) = o(l) uniformly over S C Sn and 77 E (0,1).

Proof. I will invoke the following result recently obtained by [34].

Lemma 10. Let Z' and Z 2 be zero-mean Gaussian p-vectors with covariances El

and 2 correspondingly. Then for any g E C2 (R, R),

|E[g(max Z!) - g(max Z?)]fI < ||g(||Ar/2 + 2||g(l)jo oy2Ar logp
1 j<p 1-j1p

where AE = maxl<3 j,k p I ,4 - E,.7 k

Proof. See Theorem 1 and following comments in [34]. E

Let Z' = {_' 1<i< a (s)eiC}sEs and Z 2 = { E1 a(s)o-iei},Es. Conditional on

{e}, these are zero-mean Gaussian p-vectors with covariances El and E2 given by

E 1 2 E 1 a i(s)a(s2)e6 and 2 = (sja(s2)o-
1 i<n 1(ign

Let a = maX, 2 Es - 1. The following Lemma will be helpful.

Lemma 11. (log p) 2Ar = op(1).

Proof. Let u = u_ = n 1/4 . Let Ei = e61{|eil < u}, and let &2 = E[Ei]. It follows from

assumption Al that P(max1 in 1i - Ei|= 0) -+ 1. In addition,

0 < o-Q - &2 = E[e1{Ielil > u}] < E[eil4++1{IEI > u}/u2++ < 2+
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uniformly over i = 1 n, and so

(log p)2 E a(si)aj(s2)(of - &2)5 (log p)2 E Iai(si)ai(s 2)| /U 2+
1<,in 1,i<gn

<(1 (log p)2 1 ai(si)ai(s2)9o- |/U2++
1 ign

-(2) (log p)2  /Ua(si)2of [ a(s 2 )2o/ 2++5
1 ign 1(ign

=(3) (log p)2/U2++ = (4) 0(l)

where (1) is by Assumption Al, (2) is by Holder inequality, (3) follows from the fact

that Eli-n ai(s)2o = 1 by construction, and (4) is by Assumption A5. Therefore,

(logp)2A = (ogp)2 a(si)a(s 2)( - &) o(l).
1(ign

Note that Iai(si)aj(s2)(Oj - &2)1 < 2A2 U2 . In addition,

E L a(s)2a s2)2(i - &2)2 ] A2

uniformly over si, S2 E S since E[(Ef - &i)2] ( E[4i] < E[Ef] < 1 by Assumption Al.

Hence, applying Bernstein inequality (see, for example, Lemma 2.2.9 in [111]) gives

for some C > 0,

p ((log p) 2 [ ai(si)aj(s 2)(zi - &2) > t

(2 exp C(logp) 4A2 + C(log p)2tA2u2

for any t > 0, and so by the union bound,

P (max (log P)2 E ai(si)aj(s 2 )(e2 - &2) > t
1 ,8 2 ES 1 i<n

2 exp 2 log p -C(logp) 4A2 + C(logp)2tAlu 2 -
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The result follows because Assumption A5 implies that logp = o(l/((logp)4 A'))

(to verify it, note that nA4(logp)7 = o(1) implies that ni1/ 2 A2(log p) 3 = o(1) and

logp/n1/4 = o(1) implies that (logp)2 /nl1 2 = o(1); multiplying these equations gives

A2(log p)5 
- o(1)) and log p = o(1/((log p)2 A U2 )), which follows from nA4 (log p)7 =

o(1). 0

It follows from Lemma 11 that there exists a sequence {?n} of positive numbers

converging to zero such that

(logp) 2AF = op('$)(

Let g E C2 (R, R) be a function satisfying g(t) = 1 for t < 0, g(t) = 0 for t > 1, and

g(t) E [0, 1] for t E [0, 1], and let gn(t) = g((t - c 1 )/(c - c,)). Then

||gi)||OO < 1/(c , -C- c ) < (log p)i/2

||9 _|| _/( - c r )2< lg/

Applying Lemma 10 gives

= |E[g.(max Zi)-g.(max ZZ)| {en}] < (log p)Ar /2+(log p)(A)/2
SES SES

(1.12)

by equation (1.11). Note that maxES Z = TS'" and, using the notation of the proof

of Lemma 8, maxsES Z = TS'0 . Then

P(T" ( cS, 1{e<}) ) E[gn(T5')I{e;}] >(2) E[gn(Ts'0 )I{eJ}] - Dn

>(3) P(TS' c<, |I{e}) -Dn (1.13)

(4) P(T 5 '0 ( c ) - Dn > ± +2/2 - Dn (1.14)

where (1) and (3) are by construction of the function gn, (2) is by equation (1.12),

and (4) is because TS'0 and c 0 are jointly independent of {ei}. Finally, note that

the right hand side of line (1.14) is bounded from below by 77 w.p.a.1. This implies
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that P(c5 '0  < cJ 1) = o(1), which is the first asserted claim. The second claim of

the lemma follows similarly. 0

Lemma 12. Under Assumptions Al, A2, A4, and A5, there exists exists a sequence

{'kn} of positive numbers converging to zero such that uniformly over S c Sn and

7 E (0, 1), P(c % < cs) = o(1) and P(c, < c 0) = o(1).8

Proof. Lemma 9 established that

P(cS < c ) = o(1) and P(cs < c,') = o(1).

Therefore, it suffices to show that

P(cS < cs,') = o(1) and P(c < cS) o(1).

for some sequence {iSn} of positive numbers converging to zero. Denote

pi = max| ai(s)E eimax|1 -(V(s)/ (s))1/2
S ES SES

P2 = maxf ai (s)(&i - ei) I max(V(s)/V(s))/2.
SES SES

Note that ITS-TS' I< p1+p2 and that by Lemmas 4 and 9, maxES I Z gn ai(s)eiel =

0,((log p)1/2). Therefore, the result follows by the argument similar to that used in

the proof of Lemma 8 since 6i - Ej = o,(n ") by assumption A2. U

Lemma 13. Let Assumptions Al, A4, and A5 hold. In addition, let either Assump-

tion A2 or A3 hold. Then P(Sn c StD) ) 1 - n ± o(l) and P(S c SS)

1 - Y + o(1).

Proof. Suppose that SR\SSD 5 0. Then there exists the smallest integer 1 such that

S \Si 5 0 and Sn C Sn-1 (if 1 = 1, let S = Sn). Therefore, c_ < c1- . It

SNote that Lemmas 8 and 12 provide the same results under two different methods for estimating
0-i.
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follows that there exists an element s of Sn such that

f'(s) + ^(s) ( -c_L, - cj (-cf_., -c

and so

P(S\SSD _o) P(min (f(s) + (s)) ( -c -
sES

((1) P((rin(f(s)+e(s))V ( -cf_), - c

((2) P((min (f(s) + e(s))V ( -cf'0_ - c'_) +±o(1)

((3) P((min (e(s) - cf' _)V < -l' - c _ ±

=g) P((max(-e(s)) > cf' ,0 (1/V - 1) + ci. /V) ± o(1)

((5) P((max(-e(s)) _ c - C(log p)1/2n-13/(7t +,On)) + o(1)
(6) P((ma(-S)I>CYnO/

<,6 ((aSES ) >1 C ±, o+(1)(7) P((max(-e(so)) n-K/ , C(logp)n-''3/(Y++.)) + ()

((7) 7yn + On + C (log p) n-"3/(7n + On) + 0(1) =(8) 7Y4 + 0(1

where (1) follows from the definitions of f^(s) and F(s), (2) is by the definition of 0',

(3) is by the definition of S , (4) is rearrangement, (5) is by Lemma 4 and Assumption

A4, (6) is by Lemma 32, (7) is by Lemma 7, and (8) follows from the definition of V/4

again. The first asserted claim follows. The second claim follows from the fact that

SSD c s s.

Lemma 14. Let Assumptions Al, A4, and A5 hold. In addition, let either Assump-

tion A2 or A3 hold. Then P(maxESn\SR(f (s) + F(S)) ( 0) > 1 - 7, + 0(1).

Proof. The result follows from

P( max (f^(s) + F(s)) ( 0) = P( max (f(s) + e(s)) (0)
sESn\S$ sESn\SN

>(1) P( max e(s) ( c PI' _)
sESn\Sy

> P (max E (s) < c PI'0 _ () Y n -'On + o(1) =(3) 1 - 7N + 0(1
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where (1) follows from the definition of S , (2) is by Lemma 7, and (3) is by the

definition of On.

1.12.2 Proofs of Theorems

Proof of Theorem 8. Note that

P(T ( cf_,) = P(max(f^(s) + ^(s)) ( cf)
sESn

(1) P(max(f^(s) + e(s)) (c',) - 7 + o(1)
sES,

>(2) P(max(f^(s) + F(s)) cf_) - 2yn + o(1)
sESQ

>(3) P(max F(s) < cl_,) - 27- + o(1)
sES

>(4) P(maxe(s)V c2',_) - 27 + o(1)
sESO

=(5) P(maxe(s) cR,'_ /V) - 27 + o(1)
sSS

>(6) P(maxe(s) (c R,_ (1 - n-" 3)) - 2 yn + o(1)
s ES1

>(7) P(maxe(s) c c G(n-)3/(+6)) - 2 yn + o(1)

=(8) 1 - a -n - C(logp)n~C3/(a + 0") - 2 yn + o(1) =(9) 1 - a + o(1)

where (1) follows from Lemma 14, (2) is by Lemma 13, (3) is because under 7o

f^(s) < 0, (4) follows from the definitions of F(s) and On, (5) is rearrangement, (6) is

by Assumption A4, (7) is by Lemma 6, (8) is by Lemma 7, and (9) is by the definitions

of on and 7n. The first asserted claim follows.

In addition, when f is identically constant,

P(T ( cfa) =(1) P(max F(s) ( cf_,) ((2) P(max F(s) < cf') + o(1)
8ESn sES

((3) P(max F(s) ( cI'; )+ o(1) ((4) P(maxe(s) ( cf_;+ (1 + n-s)) + o(1)BESn 1sal~ ES, a+

((S) P(mae(s) (c ++c(10)n-3/(a-)) + 0(1) ((6) 1 - a + o(1)

where (1) follows from the fact that f^(s) = 0 whenever f is identically constant, (2)

follows from S7 C Sn, (3) is by the definition of On, (4) is by Assumption A4, (5) is
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by Lemma 6, and (6) is from Lemma 7 and the definition of On. The second asserted

claim follows.

Proof of Theorem 2. Suppose that f(X 2 ) < f(xi) for some X1 , X 2 E [st, sri satisfying

X2 > xi. By the mean value theorem, there exists xO E (X1, x 2) satisfying

f'(Xo)(X2 - Xi) = f (X2) - f (Xi) < 0.

Therefore, f'(xo) < 0. Since f'(.) is continuous, f'(x) < f'(xo)/2 for any x E [xO -

AX, xO + Ax] for some Ax > 0. Take s = sn E S, as in Assumption A7 applied to

the interval [xo - Ax, xo + Ax]. By Assumptions Al and A7-(ii), V(s) < Cn 3 . In

addition, combining Assumptions A6, A7-(i) and A7-(iii) gives

(1.15)(f(Xi) - f(Xj))sign(Xj - Xj)Q(Xi, Xj, s) > Cn2
1(i,jn

for some C > 0. Further, since 1 ai(s) 2cr = 1, Assumption Al implies An >

C/ni/2 for some C > 0, and so Assumption A5 gives log p = o(n). Therefore,

P(T < cf_,) <(1) P(T < c _LP) ((2) P(T <cf.I;" ) ± o(1)

((3) P(T < C(logp)/ 2 ) + o(1) ((4) P(f(s) ± ^(s) < C(log p)1/ 2 ) + o(1)

((5) P(f(s) + e(s) < C(logp) 112 (1 + n-'")) + o(1)

((6) P(f (s) + e(s) <2C(logp)1/2 ) + o(1)

<(7) P(E(s) < 2C (log p)1/ 2 - Cn1/2) + o(1) (8) P(e(s) < -Cn1/2) ± o()

<(9) P(max(-e(s)) > Cn1/ 2) + o(1)
SES 

C

<(10) P aEs) 1 > c_(Ogp/n)1/2) + o(1)

((11) C(logp p1/ 2 + o(1) = o(1)

where (1) follows from S C SC , (2) is by the definition of O,, (3) is by Lemma 4,

(4) is since T = maxEs,(f^(s) +F(s)), (5) is by Assumption A4, (6) is obvious, (7) is

by equation (1.15) and that V(s) < Cn3 , (8) follows from log p = o(n), (9) is obvious,
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(10) is by Lemma 4 and Markov inequality, and (11) follows by Lemma 7. The result

follows. 0

Proof of Theorem 3. The proof follows from an argument similar to that used in the

proof of Theorem 2 with equation (1.15) replaced by

E (f (Xi) - f (Xj))sign(Xj - Xj)Q(Xi, Xj, s) > Clnn 2
1<i,j<n

and condition logp = o(n) replaced by logp = o(li).

Proof of Theorem 4. Since infE,,[,,r f(1)(x) < -ln(logp/n)#( 2 p+3 ), for sufficiently

large n, there exists an interval [Xn,1, xn,2] c [si, sri such that IXn,2 - Xn,1 I = C 4 hn and

for all x E [x,1, xn,2 ], f(')(x) < -ln(logp/n)#/(20+3)/2. Take s = sn E Sn as in As-

sumption A9 applied to the interval [xn,1, X,, 2] By Assumptions Al, A8, and A9-(ii),

V(s) < C(nh)3 h2k. In addition, combining Assumptions A8, A9-(i), and A9-(iii),

(f (Xi) - f (Xj))sign(Xj - Xi)Q(Xi, X,, s) > lnChl+)i+k(nh)2

1 i,j<n

for some C > 0, and so f(s) > Clnhl+,(nh)i/2 . From this point, since logp =

o(lnhnf+3n), the argument like that used in the proof of Theorem 2 yields the result.

Proof of Theorem 5. Consider any sequence {XJ satisfying Assumption A8. Let

h = hn = Co(log n/n)1/( 2,+ 3) for sufficiently small Co > 0. Let L = [(s,. - si)/(4h)]

where [x] is the largest integer smaller or equal than x. For 1 = 1, L, let x, = 4h(l - 1)

and define f, : [si, s,] -+ R by fj(s) = 0, f1 (x) = 0 if x (x 1 , f 1 ) (x) = -L(x - xj)

if x E (xi,x + h], f/1 )(x) = -L(xj + 2h - x)6 if x E (xi + h,xj + 2h], fl)(x) =

L(x-x-2h)O if x E (xz+2h,xl+3h], f/')(x) = L(xl+4h-x)# if x E (xz+3h,xi+4h]

and fl/)(x) = 0 otherwise. In addition, let fo(x) = 0 for all x E [si, Sr]. Finally, let

{ei} be a sequence of independent N(0, 1) random variables.

For I = 0, L, consider a model M, = Mnj with the sequence of design points

{X2 }, the regression function fi, and the noise {ej}. Note that MO belongs to M
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and satisfies 7 o. In addition, for 1 ;; 1, M, belongs to M 2 , does not satisfy 'WO, and,

moreover, has infxE[,,Sj. f/i) (z) < -C(log n/n)P/(23 +3).

Consider any test 0 = V(Yi, .. , Y,) such that EMO [4] (; a + o(1). Then following

the argument from [42] gives

inf Em[V)] - a ( min EM,[#] - EMo[V/] + o(1)
MEM2 1 <_1<,L

; Em,[V]/L - Em[V] + o(1)
1 l L

= S EM[Op]/L - Emo[)] +o(1) = EmO[#(p - 1)]/L + o(1)
1 l L 1 l L

s;;~~ EI E pj/L - 1 +o1 ; up/ 1 + (1)

where p, is the likelihood ratio of observing {Y} 1j < under the models M, and Mo.

Further,

p, = exp Yf1(X,) - fi(X,)2/2 = exp(wn,l,,j - w, 1/2)
\1<,isn 1<;i,

where wn, = (Z 1<i<n f1 (X,) 2)1/ 2 and (2,j = E1<i Yif 1(Xi)/Wo, 1 . Note that under

the model Mo, {n,l}1 1 <L is a sequence of independent N(O, 1) random variables.

In addition, by the construction of the functions fj and since Assumption A8 holds,

wn,l <; Cn/ 2 h+ 3 / 2 = C(log n)1/ 2 where C in the last expression can be made arbi-

trarily small by selecting sufficiently small Co. Therefore,

[m pjL-1 E2o-- 1 2 1/2

2-/2

E;; Eg[p2 IL2]

141/ )1/2
<; EmO[exp(2w,,ig, - ( exp(w,2)/L 2

(exp(C 2 log n - log L)) 1 2 = exp ((C 2 log n - log L)/2) = o(1)
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because C is arbitrarily small and logn ,< log L. Therefore, infMEM 2 EM[V] ( a +

o(1), and so the result follows. 0

1.13 Appendix D. Proofs for Section 1.5

Proof of Lemma 1. Let X be a random variable distributed according to the law P2.

Then {Xj} is an i.i.d. sample from the distribution of X. Let Ii = 1{X E [X1, X2]}

for [Xi, x 2] C [st, s,]. Then E[Ij] = p = P2([Xi, X2 ) > 0. By Hoeffding inequality (see,

for example, Appendix B in [93]),

P( E Ii < pn/2) = P( E (Ii-E[I]) < -pn/2) ( exp(-p 2 n 2/(8n)) = exp(-p 2 n/8).
1 ign 1 ign

Since Zl~nIo exp(-p 2n/8) < oo, the first asserted claim follows by the Borel-Cantelli

Lemma.

To prove the second claim, let U = [1/(2C3n'1/ 3 )] + 1 where [-] denotes the

largest integer that is smaller or equal than the quantity inside the brackets. Let

S1 = Xn,O < Xn, < ... < zngU = Sr where Xn,u - Xn,u_1 = (Sr - sl)/Un = hnO. It clearly

suffices to show that for almost all realizations {X} there exists an integer N such

that for any n > N,

C5 nhno < j{i = 1 n : Xi E [znu_1, zu ] C6 nhno

for all u = 1, Un. Let pn,u = P2([za,u-1, Xn,]). Then by assumptions, there exist

constants C and C such that Cho < Pn,u < Chno for all u E 1, Un. Let I-,n,u =

1{X E [Xn,u.1, Xu]}. Then E[I,,,,u] = E[1I2n,u] = pn,u, and so Bernstein inequality

(see, for example, Lemma 2.2.9 in [111]) gives

P( E In, > 2Cnhno) < P( 1 (.In,, - E[I;,n,I) > nkno)
1<ign 1 ign
exp(_-2 2h2 < exp(-Cnhno)exp-C n hn0/(2Cflhn0 ± 4Cflhno/3)) , x(Cho
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for some C > 0. Then by the union bound,

P( max Ii,, - 2Cnhno ; 0) <; P( I i,,, ;;a 2nhno)
1(in 1,<uUn 1i4n

(; exp(C(log(l/hno) - nhno)) (exp(-Cn 1 /2).

Since EZ<noo exp(-Cn1/2) < oo, Borel-Cantelli Lemma implies that for almost

all realizations {X} there exists N such that for any n > N, I{i = In : Xi E

[ x,-17,u,]}| <; C6 nhnO for all u = 1, Un as long as C6 > 2C. The lower bound

follows similarly. Combining these bounds gives the second asserted claim. 0

Proof of Lemma 2. For B > 0, let Un,B = Bn/ . In addition, define An,B as the

event that {max1(i, feil (; U.,B}. Note that P(An,B) -* 1 as B -+ oo uniformly over

n = 1, oo by Assumption Al. Further,

E[I&2 - o2IIAn,B] (;(1) E[Iaf - oI]/P(An,B) ((2) (E[(&f - of)2 )1/2/P(AnB)
1/2

((3) E[( (Y+ 1 - j) 2 /(21J(i)1) - or)2] /P(An,B)
jEJ(i):+1EJ(i)

,(4) )12 ± bf)/P(A,,) ,(5) (1/(nbn)1 /2 + bn)/P(An,B)

where (1) follows from the definition of conditional expectation, (2) is by Jensen

inequality, (3) is by the definition of the local version of Rice's estimator, (4) is

by Assumptions (iv) and (v), and (5) follows from Assumption (iii). In addition,

exponential concentration inequality for functions with bounded differences (see, for

example, Theorem 12 in [20]) gives for any t > 0,

P (I|f - ofI - E[la& - oI|A,] > t|A,B) (; 2 exp(-CiJ(i)|t2/U4

for some C > 0, and so using the fact that IJ(i)| > Cnbn, the union bound with

t = n-"2 yields

P(max |af-of| > C(bn+(nb)~ 2 +nr4 )IA,B) < exp(logn-n- + )bn) = o(l)
1,<ign
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for any given B > 0 where the last equality follows by Assumption (ii). Therefore,

maxis; n |af-of| = O(bn+(nbn)-1 / 2+n-K'). Finally, since oi is bounded from above

and away from zero uniformly over i by Assumption Al, it follows that max1i(;n I|i -
ail = O(bn + (nbn) 1 / 2 + n- 4 ), which is the asserted claim.

Proof of Lemma 3. Let s = (x, h) E Sn. Since h < (s,-si)/2, I have either s+h ( x

or x + h < s,. I will consider the former case. The result for the latter case follows

from the same argument. Let 01 E (0, 1). Since the kernel K is continuous and

strictly positive on its support, minE[o, 1] K(t) > 0. In addition, since K is bounded,

I can find a constant C2 E (0,1) such that

2C6(1 - C)k+1 max K(t) < C5C2C 1 min K(t)
tE[-1,-C2] te[O,C 1 ]

(1.16)

where the constant k appears in the definition of kernel weighting functions.

Then for Xi E [x - (1 + O2)h/2, x - O2 ),

E sign(Xj - Xi)Xj - Xi|" K((Xj - x)/h)

(1) (O2h)kK((Xj - x)/h) - ((1 - C2 )h)kK((Xj - x)/h)
1(j n:Xj> 1<j n:X , x-C 2 h

(2) (O2 h)kC5O1nh min K(t) - ((1 - C2)h)kC 6 (1 - C2)nh max K(t)
tE[O,C 1 ] te[-1,-0 2]

>(3) (C2 h)kC5C1nh min K(t)/2 (4) Cnhk+1
tE[O,C1 ]

for some C > 0 that depends only on {C: j = 5 5}, C1 , C2 , and the kernel K

where (1) follows from the fact that Xi ( x - C 2 h, (2) is by Assumption A8, (3)

is by equation (1.16), and (4) is because minte[O,Cl] K(t) > 0. Therefore, denoting

Mn(x, h) = {i = 1,n: Xi E [x-(1+C2)h/2, x-C 2h]}, the fact that V(s) > C(nh)3h2k
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follows from Assumptions Al and A8 and the following calculations:

V(s) = (: a? ( sign(Xj -
1<i<n \ 1 jn

= c o K((Xj - x)/h)2 (sin(X
1(ign \1gnA

> o K((X - x)/h) 2 ( sign(
iEM,(x,h) 1:j<n

- Xi)|X; - Xilk K((Xj -x)h
32

X,) -Xj)X XIk K((X - x)h) )2

where C > 0 does not depend on (x, h). Therefore, claim (a) follows since

E sign(X
1 jn

- Xi)Q(Xi, Xj, s) ( Cnhk+1l

Further, under Assumption A3,

IV(s) - V(s)I

( sign(Xj
1 j<n

- X)IXj - Xik K((Xj - x)/h))

max &a - oui1 ,in

x (sign(Xj
(1 E n

Z K((Xi - x)/h)2
1 i<n

- X)|Xj - Xi k K((Xj

and so IV(s) - V(s)| < C(nh)3 h2ko,(n-2). Combining this bound with the lower

bound for V(s) established above shows that under Assumption A3, IV(s)/V(s)-lI =

op(n-r2), and so

(V(s)/V(s)) 11 2 _

(V(s)/V(s)) 11 2 __

= o (n-2),

=o(n-12)

uniformly over Sn, which is the asserted claim (b).
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To prove the last claim, note that

IV(s) - V(s)I Ii(s) + 12(S)

(E6- 0-.,)
(1j n

sign(Xj

(2 - 2)Ei (E sign(X
1:!j<n

- Xi)Q(XiX, s))

)2

Consider Ii(s). As in the proof of Lemma 11, let u = un = n1 /4 Let i = eil{|e| I u}

and 0f = E[ji]. It follows from Assumption Al that P(maxiin| fEi - Eil= 0) -1,

and 0 < o--&i < 1/u2 ++ uniformly over i = 1 i. Then Ii(s) < Iu(s)+(nh)3h2kU 2++

w.p.a.1 where

I11(s) = E (ei
1 ign

X5, s)).)2

Applying Bernstein inequality and using the union bound yields

P(max Iu(s)/V(s) > t) < 2exp(logp - C(nhmin)t2 /(l + u2 )),
SESn

and so

P(max In(s)/V(s) > Cn~-3) -+ 0
SESn

for any C > 0 as long as conditions of the lemma hold.

Consider I 2(s). Clearly,

Xy, s)))2I2() ((i - Ei)2 + 2|El - l)
1,<i<n

E sign(Xj
1,<j<n

o,(n-4) E (op(n-") + e1il)
1 i<n

( sign(Xj - X1)Q(Xi, Xj, s))
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Ii(S)

I2(s)

=
1 i n

=
1 i n

- Ef sign(Xj - Xi)Q(Xi,
1(j<n

- Xi)Q(Xil

,



and so 12(s)/V(s) = o,(n-KI) uniformly over s E Sn. Combining presented results

gives the asserted claim (c). E

1.14 Appendix E. Proofs for Section 1.6

Proof of Theorem 6. Denote Y0 = f (Xi) + e . Then Y = YIo + Z# and Y =

Yi - Z"(#^ - #). Therefore, I - YjI ||Z |#^ - #|| = 0p(1/Vn) uniformly over

i = 1, ... , n and all models in MPL. So,

T = max E (s)fY = max E (s) Y + op(1/ /log p)
SES 1i<n SESn1in

since

max >j (s)(f; - YU) = max ai (s)(kj - Y0) O (1)
sESn sESn

max lai(s)IOp(1/.f)Op(1) = o(/n/log p)O,(1/vI)Op(1) = op(1/Vlog p).

The result follows by the argument similar to that used in the proof of Theorem 8. O

Proof of Theorem 7. The proof relies on the same notation as introduced in Section

1.11 of the Appendix with f (x, z), Q(xi , z2, 2 , Z2 , ), , Sn, and p substituting f (x),

Q(xi,x 2, s), s, Sn, and p, respectively.

With this new notation, Lemmas 4, 32, 6, 8, 12, 13, and 14 follow without any

further changes. Further, Lemma 7 now follows by applying Corollary 2.3, case E.4 in

[33]. The proof of Lemma 9 is the same as before (in particular, inner lemma 10 does

not require any changes), with the exception that now in the proof of inner lemma

11, I set u = Un = Clog(pn) for sufficiently large C and < = 1; then conclusion

of Lemma 11, which requires (logp)2/U2++ = o(i), log p o(1/((logp) 4A2)) and

logp = o(1/((logp) 2A2u 2)), follows from imposed condition that A2(log(pn)) 7 = o(1).

Now, the first claim of Theorem 7 follows from an argument similar to that used

in the proof of Theorem 8 by noting that under ?Wo, max§Egn f^(9) ( o,(1/Vlogp) 9 ,
9Specifically, the only required change in the proof of the first claim of Theorem 8 is that starting
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which holds by conditions (iii) and (iv) of Assumption A12.. The second claim of the

theorem again follows from an argument similar to that used in the proof of Theorem

8 by noting that when f is identically constant, maxEg If^(9) 1; o,(1/logp), which

holds by conditions (iii) and (iv) of Assumption A12.

Supplementary Appendix

This supplementary Appendix contains additional simulation results. In particular, I

consider the test developed in this paper with weighting functions of the form given

in equation (1.2) with k = 1. The simulation design is the same as in Section 1.7.

The results are presented in table 2. For ease of comparison, I also repeat the results

for the tests of GSV, GHJK, and HH in this table. Overall, the simulation results in

table 2 are similar to those in table 1, which confirms the robustness of the findings

in this paper.

from inequality (3) a should be replaced by a - o(1).
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Table 1.3: Results of Monte Carlo Experiments

N C Sample Proportion of Rejections for
GSV GHJK HH CS-PI CS-OS CS-SD IS-PI IS-OS IS-SD

100 .118 .078 .123 .129 .129 .129 .166 .166 .166
n 1 200 .091 .051 .108 .120 .120 .120 .144 .144 .144

500 .086 .078 .105 .121 .121 .121 .134 .134 .134

100 0 .001 0 .002 .009 .009 .006 .024 .024

n 2 200 0 .002 0 .001 .012 .012 .007 .016 .016
500 0 .001 0 .002 .005 .005 .005 .016 .016
100 0 .148 .033 .238 .423 .432 0 0 0

n 3 200 .010 .284 .169 .639 .846 .851 .274 .615 .626
500 .841 .654 .947 .977 .995 .996 .966 .994 .994

100 .037 .084 .135 .159 .228 .231 .020 .040 .040

n 4 200 .254 .133 .347 .384 .513 .515 .372 .507 .514
500 .810 .290 .789 .785 .833 .833 .782 .835 .836
100 .109 .079 .121 .120 .120 .120 .200 .200 .200

u 1 200 .097 .063 .109 .111 .111 .111 .154 .154 .154

500 .077 .084 .107 .102 .102 .102 .125 .125 .125
100 .001 .001 0 0 .006 .006 .015 .031 .031

u 2 200 0 0 0 .001 .009 .009 .013 .021 .024
500 0 .003 0 .003 .012 .012 .011 .021 .021

100 0 .151 .038 .225 .423 .433 0 0 0
u 3 200 .009 .233 .140 .606 .802 .823 .261 .575 .590

500 .811 .582 .947 .976 .993 .994 .971 .990 .991
100 .034 .084 .137 .150 .216 .219 .020 .046 .046

u 4 200 .197 .116 .326 .355 .483 .488 .328 .466 .472
500 .803 .265 .789 .803 .852 .855 .796 .859 .861

Nominal Size is 0.1. N and C in the heading refer to "Noise" and "Case", respectively.
GSV, GHJK, and HH stand for the tests of [49], [50], and [57] respectively. CS-PI, CS-OS,
and CS-SD refer to the test developed in this paper with -i estimated using Rice's formula
and plug-in, one-step, and stepdown critical values respectively. Finally, IS-PI, IS-OS, and
IS-SD refer to the test developed in this paper with ai estimated by 'i = ' and plug-in,
one-step, and stepdown critical values respectively.
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Chapter 2

Adaptive Test of Conditional

Moment Inequalities

2.1 Introduction

Conditional moment inequalities (CMI) are important both in economics and in

econometrics. In economics, they arise naturally in many models that include be-

havioral choice, see [911 for a survey. In econometrics, they appear in estimation

problems with interval data and problems with censoring; see, for example, [80]. In

addition, CMI offer a convenient way to study treatment effects in randomized ex-

periments as described in [74]. In the next section, I provide three detailed examples

of models with CMI.

To describe CMI model, let m : Rd x R' x E -+ RP be a vector-valued known

function. Let (X, W) be a pair of Rd and Rk-valued random vectors, and 0 E E a

parameter. Then CMI are given by the following equation:

E[m(X, W, 0)|X] < 0 a.s. (2.1)

Note that (2.1) also covers conditional moment equalities (CME) because CME can

be represented as pairs of CMI. In this paper, I am interested in testing the null

hypothesis, HO, that 0 = 0 o against the alternative, Ha, that 0 # 00 based on a

79



random sample {(Xi, W)}U 1 from the distribution of (X, W).

Using CMI for inference is difficult because often CMI do not identify the param-

eter. Let

91 = {0E e : E[mr(X, W, 0)IX] (; 0 a.s.}

denote the identified set. CMI are said to identify 9 if and only if E1 is a singleton.

Otherwise, CMI do not identify the parameter 9. For example, non-identification may

happen when the CMI arise from a game-theoretic model with multiple equilibria.

Moreover, the parameter may be weakly identified, which means that E1 is a singleton

but information on e contained in the data is limited even in large samples. My

approach leads to a robust test with the correct asymptotic size no matter whether

the parameter 0 is identified, weakly identified, or not identified. Here "robust" means

that the test controls asymptotic size uniformly over a large class of models.

Testing CMI has been a popular research topic in econometrics recently. As a

result, two approaches to robust CMI testing have been developed. One approach

([5]), is based on converting CMI into an infinite number of unconditional moment

inequalities using nonnegative weighting functions. The other approach ([36]), is

based on estimating moment functions nonparametrically.

To motivate the test developed in this paper, consider two (highly stylized) ex-

amples of CMI models. Even though these models are very simple, they convey the

main ideas. In the first model, m is multiplicatively separable in 9, i.e.

m(X, W, 0) = ofh(X, W)

for some ?T : Rd x Rk -+ R and 0 E R with E[fn(X, W)IX] > 0 a.s. In the second

model, m is additively separable in 0, i.e.

m( X,W,0) = fn(X,W) + 0.
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The identified sets, E1, in these models are

{0 E R : 0 < O} and {0 E R : 0 ( -ess sup E[fit(X, W)IX]}
x

correspondingly 1. [5] developed a test that has nontrivial power against alternatives

of the form 0o = 0o,n = C/v/ for any C > 0 in the first model, and so their test has

extremely high power in this model. It follows from [10], however, that (in comparison

with the test of [36]), the test of [5] often has low power in the second model2. The

purpose of this paper is to construct a test that has high power in a large class of

CMI models including models like that in the second example, and at the same time,

that has nearly the same power as that of [5] in models like that described in the

first example. The key difference of my approach is that my test statistic is based

on the studentized estimates of moments whereas theirs is not. More precisely, [5]

consider studentized statistics but modify the variance term so that asymptotic power

properties of their test are similar to those of the test with no studentization.

The test of [36] also has high power in a large class of CMI models but imple-

menting their test requires knowledge of certain smoothness properties of moment

functions whereas the test developed in this paper does not require this information.

Moreover, my test automatically adapts to these smoothness properties selecting the

most appropriate weighting function. For this reason, I call my test adaptive. This

feature of the test is important because smoothness properties of moment functions

are rarely known in practice. On the other hand, an advantage of the test of [36] is

that it becomes very efficient if moment functions are sufficiently smooth (for example,

if moment functions are at least twice continuously differentiable).?

'By definition, ess supx f(X) = inf{M E R : f(X) ; M a.s.} (essential supremum). If
E[rin(X, W) JX] is continuous, then essential supremum equals usual supremum.

2[5] developed tests based on both Cramer-von Mises and Kolmogorov-Smirnov test statistics.
In this paper, I refer to their test with the Kolmogorov-Smirnov test statistic. Most statements are
also applicable for Cramer-von Mises test statistic as well, however.

3Efficiency of the test of [36] is achieved by using higher order kernel or series methods for
estimating moment functions; both the test of [5] and the test developed in this paper work with
positive kernels, which exclude higher order kernels, and do not have this feature of the test of [36].

'In the statistics literature, there recently have been developed techniques for adaptively selecting
the appropriate smoothing parameter for tests like that in [36]. An example is Lepski's method
combined with the sample splitting where a part of the sample is used to select the smoothing
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The test statistic in this paper is based on kernel estimates of conditional moment

functions E[mj (X, W, Go) IX] with many different bandwidth values. Here mj (X, W, 0)

denotes the j-th component of m(X, W, 0). I assume that the set of bandwidth

values expands as the sample size n increases so that the minimal bandwidth value

converges to zero at an appropriate rate while the maximal one is bounded away from

zero. Since the variance of the kernel estimators varies greatly with the bandwidth

value, each estimate is studentized. In other words, each estimate is divided by its

estimated standard deviation. The test statistic, T, is formed as the maximum of

these studentized estimates, and large values of T suggest that the null hypothesis is

violated.

I develop a bootstrap method to simulate a critical value for the test. The method

is based on the observation that the distribution of the test statistic in large samples

depends on the distribution of the noise {m(Xi, W, Oo) - E[m(Xi, Wi, Go)|Xi]}&1 only

via second moments of the noise. For reasons similar to those discussed in [35] and [6],

the distribution of the test statistic in large samples depends heavily on the extent to

which the CMI are binding. Moreover, the parameters that measure to what extent

the CMI are binding cannot be estimated consistently. Therefore, I develop a new

approach to deal with this problem, which I refer to as the refined moment selection

(RMS) procedure. The approach is based on a pretest which is used to decide what

counterparts of the test statistic should be used in simulating the critical value for

the test. Unlike [5], I use a model-specific, data-driven, critical value for the pretest,

which is taken to be a large quantile of the appropriate distribution, whereas they

use a deterministic threshold with no reference to the model. I also provide a plug-in

critical value for the test. My proof of the bootstrap validity is nonstandard because

it uses only finite sample arguments. My proof is also different from those used in [5]

and [36].

None of the tests in the literature including mine have power against alternatives

parameter according to the Lepski's algorithm and the other part is used for testing; see, for example,
[51]. Deriving formal results on how the test of [36] works in combination with these adaptive
smoothing parameter selection techniques would be an important direction for future research.
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in the set 01. Therefore, I consider the alternatives of the form

P(E[mj (X, W, 0o)|X] > 0) > 0 for some j = 1, ..., p. (2.2)

To show that my test has good power properties in a large class of CMI models, I de-

rive its power against alternatives of the form (2.2) assuming that E[m(X, W, Go)|X]

is some vector of unrestricted nonparametric functions. In other words, I consider

nonparametric classes of alternatives. Once m(X, W, 0) is specified, it is straightfor-

ward to translate my results to the parametric setting. The test developed in this

paper is consistent against any fixed alternative outside of the set 01. I also show that

my method allows for nontrivial testing against (n/log n)-/-local one-dimensional

alternatives.' Finally, I prove that the test is minimax rate optimal against certain

classes of smooth alternatives consisting of moment functions E[m(X, W, Go) JX] that

are sufficiently flat at the points of maxima. Minimax rate optimality means that the

test is uniformly consistent against alternatives in the mentioned class whose distance

from the set of models satisfying (2.1) converges to zero at the fastest possible rate.

The requirement that functions should be sufficiently flat cannot be dropped because

of the restrictions on kernels used for estimating moment functions.

One of the advantages of the proof technique used in this paper is that it gives

an explicit error bound on the bootstrap approximation error of the distribution of

the test statistic. In particular, it allows me to show that for the test developed in

this paper, the probability of rejecting the null under the null can exceed nominal

level only by a polynomially (in n) small term. In contrast, all other papers on

CMI only show that this probability is asymptotically not larger than the nominal

level. I believe that this contribution is important in light of the fact that asymptotic

approximations of suprema of processes typically provide only logarithmically (in n)

small approximation error (see, for example, [56]).

The literature concerned with unconditional and conditional moment inequalities

5In this paper, the term 'local one-dimensional alternative' is used to refer to a sequence of models
m = mn(X, W, 00) such that E[mn(X, W, 0)X] = anf(X) for some sequence of positive numbers

{an}n1 converging to zero where f : Rd -+ RP satisfies P(f 3 (X) > 0) > 0 for some j = 1, ..., p.
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is expanding quickly. Published papers on unconditional moment inequalities include

[35], [101], [104], [3], [4], [6], [23], [26], [91], and [102]. There is also a large literature on

partial identification which is closely related to that on moment inequalities. Methods

specific for conditional moment inequalities were developed in [65], [66], [36], [5], [74],

[10], [11], and [12]. The case of CMI that point identify 9 is treated in [65]. The test

of [66] is closely related to that of [5]. [74] developed a test based on the minimum

distance statistic in the one-sided L,-norm and kernel estimates of moment functions.

The advantage of their approach comes from simplicity of their critical value for the

test, which is an appropriate quantile of the standard Gaussian distribution. Their

test is not adaptive, however, since only one bandwidth value is used. [10] developed

a new method for computing the critical value for the test statistic of [5] that leads to

a more powerful test than theirs but the resulting test is not robust. In particular, his

method cannot be used in CMI models like that described in the first example above.

[11], which was written independently and at the same time as this paper, considered

a test statistic similar to that used in this paper and derived a critical value such

that the whole identified set is contained in the confidence region with probability

approaching one. In other words, he focused on estimation rather than inference. In

addition, the critical value in that paper is infeasible since it has the form an flog n/n

where an is some sequence of unknown positive numbers that is bounded away from

zero. After this paper had been made publicly available, [12] constructed a test based

on a test statistic that is closely related to that used in this paper with the critical

value derived from the limit distribution.6

Finally, an important related paper in the statistical literature is [42]. They

consider testing qualitative hypotheses in the ideal Gaussian white noise model where

a researcher observes a stochastic process that can be represented as a sum of the

mean function and a Brownian motion. In particular, they developed a test of the

61t should be noted, however, that [12] imposed rather strong assumptions. Specifically, they
assumed existence of finite moment generating function of the noise. In contrast, I only assume
4 finite moments, which is much more plaussible in applications. In addition, they assumed that
moment functions are not too closely related with each other. Finally, they only provided a plug-
in critical value, and it is not obvious how to extend their methods to derive a moment selection
procedure.
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hypothesis that the mean function is (weakly) negative almost everywhere. Though

their test statistic is somewhat related to that used in this paper, the technical details

of their analysis are quite different.

The rest of the paper is organized as follows. The next section discusses some

examples of CMI models. Section 2.3 formally introduces the test. The main results

of the paper are presented in Section 2.4. Extensions to the cases of infinitely many

CMI and local CMI are provided in Section 2.5. A Monte Carlo simulation study

is described in Section 2.6. There I provide an example of an alternative with a

well-behaved moment function such that the test developed in this paper rejects the

null hypothesis with probability higher than 80% while the rejection probability of

all previous tests does not exceed 20%. Brief conclusions are drawn in Section 2.7.

Finally, all proofs are contained in the Appendix.

2.2 Examples

In this section, I provide three examples of CMI models.

Incomplete Models of English Auctions. My first example follows [55] treat-

ment of English auctions under weak conditions. The popular model of English auc-

tions suggested by [83] assumes that each bidder is holding down the button while

the price for the object is going up continuously until she wants to drop out. The

price at the moment of dropping out is her bid. It is well-known that the dominant

strategy in this model is to make a bid equal to her valuation of the object. In prac-

tice, participants usually call out bids, however. Hence, the price rises in jumps, and

the bid may not be equal to person's valuation of the object. In this situation, the

relation between bids and valuations of the object depends crucially on the modeling

assumptions. [55] derived certain bounds on the distribution function of valuations

based on minimal assumptions of rationality.

Suppose that we have an auction with m bidders whose valuations of the object

are drawn independently from the distrubution F(., X) where X denotes observable

characterics of the object. Let bi,..., bm denote highest bids of each bidder. Let
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bi-m - ... < bm:m denote the ordered sequence of bids bi, ... , bin. Assuming that bids

do not exceed bidders' valuations, [55] derived the following upper bound on F(-, X):

E[#-' 1(F(v, X)) - I{bi:m v}X] ( 0 a.s. (2.3)

for all v E R and i = 1, ... , m where 0(.) is a certain (known) increasing function, see

equation (3) in [55]. A similar lower bound follows from the assumption that bidders

do not allow opponents to win at a price they would like to beat. Parameterizing

the function F(-, -) and considering (2.3) for a finite set V = {vi, ..., v,} of values of v

gives inequalities of the form (2.1).

Interval Data. In some cases, especially when data involve personal information

like individual income or wealth, one has to deal with interval data. Suppose we have

a mean regression model

Y =f(XV) +e

where E[eIX, V] = 0 a.s. and V is a scalar random variable. Suppose that we observe

X and Y but do not observe V. Instead, we observe V and V1 , called brackets, such

that V E [Vo, V1] a.s. In empirical analysis, brackets may arise because a respondent

refuses to provide information on V but provides an interval to which V belongs.

Following [80], assume that f(X, V) is weakly increasing in V and E[YIX, V] =

E[YIX, V, V, V]. Then it is easy to see that

E[I{V1 ( v}(Y - f(X, v))X, Vo, V] ( 0 (2.4)

and

E[I{V v}(Y - f(X, v))X, Vo, V > 0 (2.5)

for all v E R. Again, parameterizing the function f(-,-) and selecting a finite set

V = {vi, ... , v,} gives inequalities of the form (2.1).

Treatment Effects. Suppose that we have a randomized experiment where one

group of people gets a new treatment while the control group gets a placebo. Let D =

1 if the person gets the treatment and 0 otherwise. Let p denote the probability that
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D = 1. Let X denote person's observable characteristics and Y denote the realized

outcome. Finally, let Y and Y denote the counterfactual outcomes had the person

received a placebo or the new medicine respectively. Then Y = DY + (1 - D)Yo.

The question of interest is whether the new medicine has a positive expected impact

uniformly over all possible charactersics X. In other words, the null hypothesis, HO,

is that

E[Y - YoIX] ;> 0 a.s. (2.6)

Since in randomized experiments D is independent of X, [74] showed that

E[Y1 - YoX] = E[DY/p - (1 - D)Y/(1 - p)IX]. (2.7)

Combining (2.6) and (2.7) gives CMI of the form (2.1).

2.3 Test

In this section, I present the test statistic and give two bootstrap methods to sim-

ulate critical values. The analysis in this paper is conducted conditional on the set

of values {X}. 1 , so all probabilistic statements excluding those in Lemmas 17 and

18 in the Appendix should be understood conditional on {X} 1 for almost all se-

quences {X1 }' 1 . Lemmas 17 and 18 provide certain conditions that ensure that the

assumptions used in this paper hold for almost all sequences {X 1 }%1 .

For fixed 00, let f (X) = E[m(X, W, Oo)IX]. Then under the null hypothesis,

f (X) ; 0 a.s.

In addition, let Y = m(Xj, Wi, 0o) and ej = Y - f(Xi) so that E[e;IXj] = 0 a.s.

(i = 1, ... , n). Finally, let fi, ..., f, denote components of f.

Section 2.3.1 defines the test statistic assuming that Ej = E[EieTlXj] is known

for each i = 1, ..., n. Section 2.3.2 gives two bootstrap methods to simulate critical

values. The first one is based on plug-in asymptotics, while the second one uses the
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refined moment selection (RMS) procedure. Section 2.3.2 also provides some intuition

of why these procedures lead to the correct asymptotic size of the test. When EA is

unknown, it should be estimated from the data. Section 2.3.3 shows how to construct

an appropriate estimator Zi of E;. The feasible version of the test will be based on

substituting Zi for Ej both in the test statistic and in the critical value.

2.3.1 The Test Statistic

The test statistic in this paper is based on a kernel estimator of the vector-valued

function f. Let K : Rd -+ R+ be some kernel. For bandwidth value h E R+, let

Kh(x) = K(x/h)/hd. For each pair of observations i, j = 1, ..., n, denote the weight

function

Kh (Xi - Xj)
Wh (Xi, Xj) = n .Zk 1 Kh(Xi - Xk)

Then the kernel estimator of fm (Xi) is

n

f(i,m,h) = h(Xi, X)Y,m
j=1

where Yj,m denotes m-th component of Y'. Conditional on {X}_ 1 , the variance of

the kernel estimator fAi,m,h) is

n

Ir2~h = 2 W (Xi, 7Xj) j,mm
j=1

where Ej,mim2 denotes the (Mim i 2 ) component of Ej.

Next, consider a finite set of bandwidth values H = {h = hmaxak : h ; hmin, k =

0, 1, 2, ...} for some hmax > hmin and a E (0,1). For simplicity, I assume that hmin =

hmaxak for some k E N so that hmin is included in H. I assume that as the sample size n

increases, hmin converges to zero while hmax is bounded away from zero. For practical

purposes, I recommend setting K(x) = 0.75(1 - ||x112) for ixil (; 1 and 0 otherwise,

7The estimator of fm(Xi) is usually denoted by f-m(Xi). I use nonstandard notation fi,m,h)
because it will be more convenient later in the paper.
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hmax = maxi,5=1,...,nj|Xi - Xj||/2, hmin = 0.2hmax(logn/n)'/(M), and a = 0.5.8 This

choice of parameters is consistent with the theory presented in the paper and also

worked well in my simulations. Note that hmin is chosen so that the kernel estimator

uses on average roughly 15 data points when n = 250.

Denote S = {(i, m, h) : i = 1, ..., n, m = 1, ... , p, h E H}. Based on this notation,

the test statistic is

Tfs.T = max-E.
sES V

Thus, the test statistic is based on the studentized kernel estimates of the function f
at points {Xi : i = 1, ..., n}.9

Let me now explain why the optimal bandwidth value depends on the smoothness

properties of the components fi, ..., f, of f. Without loss of generality, consider fi.

Suppose that fi (X) is nearly flat in the neighborhood of its maximum. Then fi (X) is

positive on a large subset of its domain whenever its maximal value is positive. Hence,

the maximum of T will correspond to a large bandwidth value because the variance of

the kernel estimator, which enters the denominator of the test statistic, decreases with

the bandwidth value. On the other hand, if fi (X) is allowed to have peaks, then there

may not exist a large subset where it is positive. Hence, large bandwidth values may

not yield large values of T, and small bandwidth values should be used. I circumvent

the problem of bandwidth selection by considering many different bandwidth values

jointly, and let the data determine the best bandwidth value. In this sense, my test

adapts to the smoothness properties of f(X). This allows me to construct a test with

good uniform power properties over many possible degrees of smoothness for f(X).

When E is unknown, which is usually the case in practice, one should define

V(,m,h) = Z7 =1w/i, Xj)Zj,mm and use

fs
T = max -

seS V

8 The size of the test is controlled well for many different values of parameter a.
91n principle, to form a test statistic, one could specify another grid of points at which the

function f would be estimated instead of {Xi : i = 1,...,n}. I find it convenient, however, to use
{Xi : i = 1,..., n} because this set naturally covers the support of X.
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instead of T, where Zj is some estimator of E. Some possible estimators are discussed

in Section 2.3.3.

2.3.2 Critical Values

Suppose we want to construct a test of size a. This subsection explains how to

simulate a critical value ci-, for the test statistic T based on two bootstrap methods.

One method is based on plug-in asymptotics while the other one uses the refined

moment selection (RMS) procedure. The resulting test will reject the null hypothesis

if and only if T> ci-.

The first method relies on three observations. First, one can approximate T by

T. Second, it is easy to see that, for a fixed distribution of disturbances {ei}U 1 ,

the maximum of (1 - a) quantile of the test statistic T over all possible functions

f satisfying f ; 0, a.s. corresponds to f = 0,. Third, Lemma 25 in the Appendix

shows that the distribution of T is asymptotically independent of the distrubution of

disturbances {ei : i = 1, ..., n} apart from their second moments {Ei : i = 1, ..., n}.

These observations suggest that one can simulate ci- (denoted by cPIA) by the

following procedure:

1. For each i = 1, ..., n, simulate ? ~ N(0,, $') independently across i.

2. Calculate TPI^= max(,m,h)ES Z,- 1 Wh(Xi, Xj)Yj,m(/V,m,h).

3. Repeat steps 1 and 2 independently B times for some large B to obtain {TIA-

b = 1, ...,7 B}.

4. Let c'l, be (1 - a) empirical quantile of {Tb I}i.

The second method is based on the refined moment selection (RMS) procedure. It

gives a more powerful test and still controls the required size. The method relies

on the observation that |TI = O,(v/logn) if f = 0, (see Lemmas 22, 23, and 25 in

the Appendix) while fAm,h/V(,m,h) -+ -oo at a polynomial rate if fm(X) < 0 for

X satisfying ||X - Xi|| < h. Such terms will have asymptotically negligible effect

on the distribution of T, so we can ignore corresponding terms in the simulated
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statistic. Therefore, one can simulate c1_, (denoted by c_"S) as follows. First, let

7 < a/2 be some small positive number (truncation parameter). Second, use the

plug-in bootstrap to find cIA . Denote

SRMS = {s E S: h/V >

Third, run the following procedure:

1. For each i = 1, ... , n, simulate Y ~ N(0,, S ) independently across i.

2. Calculate TRMS = maX(i,m,h)ESRMS 3=1 wh(X , XE)nY,m/V(i,m,h).

3. Repeat steps 1 and 2 independently B times for some large B to obtain {TbMS.

b = 1,7... B}.

4. Let c Rms be (1 - a) empirical quantile of {TMS b

In the next section, it will be assumed that -y = -yn -+ 0 as n -* oo. So, I recommend

setting -y as a small fraction of a, for example -y = 0.01 for a = 0.05. Alternatively,

one can set -y = 0.1/log(n), similar to [36]. 10

2.3.3 Estimating Ei

Let me now explain how one can estimate Ei. The literature on estimating Ei is huge.

Among other papers, it includes [97], [88], [59], and [46]. For scalar-valued Y, available

estimators are described in [63]. All those estimators can be immediately generalized

to vector-valued Y's. For concreteness, I describe one estimator here. Choose a

bandwidth value bn > 0. For i = 1, ..., n, let J(i) = {j = 1, ... , n : ||Xy - Xi|| <; bn}.

If J(i) has an odd number of elements, drop one arbitrarily selected observation.

Partition J(i) into pairs using a map k : J(i) -+ J(i) satisfying k(j) # j and

1 0Note also that if -y is comparable with a, one can do a finite sample adjustment of the critical
value by taking (1 - a + 2y) quantile of {TbMs b=1 at step 4 of the procedure above. Also, the
theory in the next section requires that -y ( Cn-c for some constants c and C. Nevertheless, in my
Monte Carlo simulations I use the rule y = 0.1/ log(n) to make meaningful comparisons with [36].
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k(k(j)) = j for all j E J(i). Let |J(i)I denote the number of elements in J(i). Then

Ei can be estimated by

i= (Ykts) - Y)(Yk(j) - Y) T(2|J(i)I).
jEJ(i)

Lemma 15 in the Appendix gives certain conditions that ensure that this estimator

will be uniformly consistent for Ei over i = 1, ..., n with a polynomial rate, i.e.

max |1 - Eii = op(n-")
i=1,...,n

for some n > 0 where ||| denotes the spectral norm on the space of p x p-dimensional

symmetric matrices corresponding to the Eucledian norm on RP. To choose the band-

width value bn in practice, one can use some version of cross validation. An advantage

of this estimator is that it is fully adaptive with respect to the smoothness proper-

ties of f. Note that the estimator Zi is based on the sample-splitting method. To

improve efficiency of the estimator, one can avoid sample-splitting by using concen-

tration inequalities as in [38]. For brevity, however, I do not consider that option

here.

The intuition behind this estimator is based on the following argument. Note that

k(j) is chosen so that Xk(j) is close to Xi. If the function f is continuous,

Yk(j) - j = f (Xk(3 )) - f(Xi) + Ek(j) - 6i £k(j) - E-

so that

E[(Yc3 ) - Y)(Yk(,) - Y) Wig=1] r E}k() + Ej

since Ek(j) is independent of 63. If bn is small enough and E(X) is continuous, Ek(j) ±

Ej ~ 2Ei since ||Xkcj) - Xi|| < bn and ||Xj - Xi|| < bn.
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2.4 Main Results

This section presents main results. Section 2.4.1 gives regularity conditions. Section

2.4.2 describes size properties of the test. Section 2.4.3 explains the behavior of

the test under a fixed alternative. Section 2.4.4 derives the rate of consistency of

the test against local one-dimensional alternatives mentioned in the Introduction.

Section 2.4.5 shows the rate of uniform consistency against certain classes of smooth

alternatives. Section 2.4.6 presents the minimax rate-optimality result.

2.4.1 Assumptions

Let c3 and C, for j = 1,...,5 be strictly positive and finite constants independent of

the sample size n. Let Mh (Xi) be the number of elements in the set {X, : IIX -XiII <

h, j = 1, ... , n}. Results in this paper will be proven under the following assumptions.

A13. (i) Design points {X} _1 are nonstochastic. (ii) cinhd Mh(X) < Cinhd for

all i =1.,n and h E H = Hn.

The design points are nonstochastic because the analysis is conducted conditional

on Xi's. In addition, A13 states that the number of design points in certain neigh-

borhoods of each design point is proportional to the volume of the neighborhood

with the coefficient of proportionality bounded from above and away from zero. It

is stated in [63] that A13 holds in an iid setting with probability approaching one

as the sample size increases if the distribution of Xi is absolutely continuous with

respect to Lebegue measure, has bounded support, and has density bounded away

from zero on the support. This statement is not precise unless one makes some extra

assumptions. Lemma 17 in the Appendix gives a counter-example. Instead, Lemma

18 shows that A13 holds for large n a.s. if, in addition, it is assumed that the density

of Xi is bounded from above, and that the support of Xi is a convex set. Necessity

of the density boundedness is obvious. Convexity of the support is not necessary for

A13 but it strikes a good balance between generality and simplicity. In general, one

must deal with some smoothness properties of the boundary of the support. Note
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that the statement "for large n a.s." is stronger than "with probability approaching

)7one

A14. (i) Disturbances {e} _1 are independent RP-valued random vectors with E[es] =

0 for all i = 1, ... , n. (ii) E[maxm=1,...,p IEi,m11 C 2 for all i = 1, ... , n. (iii) Ei,mm )

C2 for alli= 1, ... ,n and m 1, p.

Finite fourth moment of disturbances is used to show that the distribution of the

test statistic T in large samples does not depend on the form of the distribution of

ei's. I assume that the variance of each component of disturbances is bounded away

from zero for simplicity of the presentation. Since I use studentized kernel estimates,

without this assumption, it would be necessary to truncate the variance of the kernel

estimators from below with truncation level slowly converging to zero. That would

complicate the derivation of the main results without changing the main ideas.

Let r, L > 0 be arbitrary positive numbers. In addition let C E {1, ... , [r]}. Here

[r] denotes the largest integer strictly smaller than T. Before stating A15, let me give

formal definitions of Holder smoothness classes .F(r, L) and their subsets F (T, L).

For d-tuple of nonnegative integers a = (a 1, ... , ad) with Ia = ai + ... + ad, function

g: Rd -+ R, and x = (xi, ... , Xd) E Rd, denote

D'g(x) = -Xag (x)

whenever it exists. It is said that the function g : Rd -+ R belongs to the class F(r, L)

if (i) g has continuous partial derivatives up to order [r], (ii) for any a = (ai, ... , ad)

such that jai = [r] and x,y E Rd,

|D'g(x) - Dg(y)| I LI|x - y1|'-1

and (iii) for any a = (a 1 , ... , ad) such that lal [r] and any x E Rd,

| Dg (x)| s L.

Let Sd-1 = {1 E Rd : ||11| = 1} denote the space of directions in Rd. For any
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g E .F(r, L), x = (x 1, ... , Xz) E Rd, and 1 E Sdl, let g(')(x) denote k-th derivative

of function g in direction 1 at point x whenever it exists"1 . For c = 1, ..., [r], let

_F;(r, L) denote the class of all elements of .F(r, L) such that for any g E _F(r, L)

and 1 E Sd-1, g(k,l)(x) = 0 for all k = 1, ..., c whenever g(1,) (x) = 0, and there exist

x = (x 1 , ... , Xz) E Rd and 1 E Sd~1 such that gq')(x) # 0 and g("')(x) = 0. If r 1,

I set c; = 0 and T,(r, L) = F(r, L).

A15. Components fm 's of the regression function f satisfy fm E F(r, L) for all

m = 1, ... , p.

For simplicity of notation, I assume that all components of f have the same smooth-

ness properties. This assumption is used in the derivation of the power properties of

the test.

A16. (i) The set of bandwidth values has the following form: H = H = {h = hmaxak-

h > hmin, k = 0, 1, 2,...} where a E (0, 1), hmax = m .,n|Xj - X 11/2 and

hminj = C3 (log n/n)1/3a. (ii) S = Sn = {(i, m, h) : i =1, ... , n, M = 1, ... , p, h E Hn}.

According to this assumption, the maximal bandwidth value, hma, is chosen to match

the radius of the support of design points. It is intended to detect deviations from the

null hypothesis in the form of flat alternatives. The minimal bandwidth value, hmin,

converges to zero as the sample size increases at an appropriate rate. The minimal

bandwidth value is intended to detect alternatives with narrow peaks. A16(ii) is a key

condition used to establish an invariance principle that shows that the distribution of

T asymptotically depends on the distribution of disturbances ei's only through their

covariances Ei's.

A 17. (i) The kernel K is positive and supported on {x E Rd : ||x|| < 1}. (ii)

K(x) < 1 for all x E Rd and K(x) > c3 for all ||x|| < 1/2.

I assume that the kernel function is positive on its support. Many kernels satisfy this

assumption. For example, one can use rectangular, triangular, parabolic, or biweight

kernels. See [110] for the definitions. On the other hand, the requirement that the

"Let w : R -+ R be given by w(t) = g(x + t1). By definition, g(k,l)(W - W(k)(o).
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kernel is positive on its support excludes higher-order kernels, which are necessary to

achieve the minimax optimal testing rate over large classes of smooth alternatives. I

require positive kernels because of their negativity-invariance property, which means

that any kernel smoother with a positive kernel maps the space of negative functions

into itself. This property is essential for obtaining a test with the correct asymptotic

size when smoothness properties of moment functions are unknown. With higher-

order kernels, one has to assume undersmoothing so that the bias of the estimator is

asymptotically negligible in comparison with its standard deviation. Otherwise, large

values of T might be caused by large values of the bias term relative to the standard

deviation of the estimator even though all components of f (X) are negative. However,

for undersmoothing, one has to know the smoothness properties of f(X). In contrast,

with positive kernels, the set of bandwidth values can be chosen without reference

to these smoothness properties. In particular, the largest bandwidth value can be

chosen to be bounded away from zero. Nevertheless, the test developed in this paper

will be rate optimal in the minimax sense against classes F[, (r, L) when r > d.

A18. Estimators Si of E satisfy P(maxj-1,...,,||Zi - Eil| > C 4n-4) < C 4n-4 where

| -| | denotes the spectral norm on the space of p x p-dimensional symmetric matrices

corresponding to the Euclidean norm on RP.

A18 is satisfied for ZA described in Section 2.3.3. In practice, due to the curse of

dimensionality, it might be useful to use some parametric or semi-parametric estima-

tors of Ei's instead of the estimator described in Section 2.3.3. For example, if we

assume that Ei = Ej for all i, j = 1, ... , n, then the estimator of [97] (or its multivari-

ate generalization) is 1/Vri-consistent in L1-norm. In this case, A18 will be satisfied

with r, = 1/4 - 4 for arbitrarily small # > 0.

A19. The truncation parameter -y satisfies -y = -yn < Con~4.

This assumption is used in the proof that the test is asymptotically not conservative.

A13-A15 concern the data-generating process while A16-A19 deal with the test.

Taken all together, they define the model." The asymptotic results in this paper will

1
2 The model in this paper is understood as infinite sequences of nonstochastic design points

96



be shown to hold uniformly over all models satisfying A13-A19. For that purpose,

the following notation will be useful. Let g denote the set of all models satisfying

A13-A19 for all n, and let w E g denote a generic model in g. In addition, let E,[-]

denote the expectation calculated assuming the model w. Finally, let f(w) denote

the regression function f corresponding to the model w.

2.4.2 Size Properties of the Test

Analysis of size properties of the test is complicated because it is unknown whether

the test statistic has a limiting distribution. Instead, I use a finite sample method

developed in [33]. For each sample size n, this method gives an upper error bound on

the uniform distance between the cdf of the test statistic and the cdf the test statistic

would have in the model with Gaussian noise {eJ}," .

Let go and goo denote the set of all elements w of g satisfying f(w) ( 0 a.s.

and f(w) = 0 a.s. correspondingly. The first theorem states that the test has correct

asymptotic size uniformly over the class of models go both for plug-in and RMS critical

values. In addition, the test is nonconservative as the size of the test converges to the

required level a uniformly over the class of models goo.

Theorem 8. Let P = PIA or RMS. Then for some constants c and C depending

only on cy and Cj for j = 1,..., 5,

sup P (T > cf_) a + Cn-c for all n. (2.8)

In addition,

inf P, T > cf_) ;a - Cn-c for all n. (2.9)
wEgoo

Comment 6. (i) Proofs of all results are presented in the Appendix.

(ii) An advantage of this theorem is that it shows that the probability of rejecting the

null under the null can exceed the nominal level of the test only by a polynomially

{Xi}72i and random disturbances {ei}', a vector-valued regression function f, sequence of esti-

mators {Ei}, 1 for each n, a kernel K, a sequence of sets of bandwidth values {H,},|_ 1 , a sequence
of sets {Sn}* 1 , and a sequence of truncation parameters {'y}".
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small (in n) number. This implies that the bootstrap procedures developed in this paper

provide high quality inference in finite samples. All other papers on CMI only provide

results that the probability of rejecting the null under the null is asymptotically not

larger than the nominal level, without providing a bound on the difference between two

quantities.

(iii) The theorem provides a bound on the difference probability of rejecting the null

and the nominal level that holds uniformly over a large class of models. This also

serves as a guarantee that the test controls size well in finite samples.

(iv) Combining (2.8) and (2.9) shows that uniformly over w E goo, |PI(> cP -(T -

al < Cn-e.

2.4.3 Consistency Against a Fixed Alternative

Consider any model w E g. Let f = f(w). I will consider the following distance

between the model w and the null hypothesis:

p(w, Ho) = sup [fm(Xi)]+ (2.10)
i=1,...,oo; m=1,...,p

For any alternative outside of the set E1 , p(w, Ho) > 0. The following theorem shows

that the test is consistent against any fixed alternative w E g with p(w, Ho) > 0.

Moreover, the theorem shows that the test is consistent uniformly against alternatives

whose distance from the null hypothesis is bounded away from zero. For p > 0, let

9, denote the subset of all elements w of g such that p(w, Ho) > p.

Theorem 9. Let P = PIA or RMS. Then for some constants c and C depending

only on cj and C for j = 1, ..., 5,

inf P,1, ( > cf_, >1- Cn-c for all n. (2.11)
wEQp
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2.4.4 Consistency Against Local One-Dimensional Alterna-

tives

This section derives the rate of consistency of the test against one-dimensional alter-

natives. Consider any model wo E g such that p(wo, HO) > 0. For some sequence

{an}*_1 of positive numbers converging to zero, consider the sequence of models

{wn}n such that for all n, wn coincides with wo except that f (wn) = anf (wo). I refer

to such sequences as local one-dimensional alternatives. The following theorem estab-

lishes the consistency of the test against such alternatives whenever an n/log n -+

00.

Theorem 10. Let P = PIA or RMS. Assume that an Vn/log n -+ oc. Then

P (T > c) -+ 1 as n -+ oo. (2.12)

Comment 7. Recall the CMI model from the first example mentioned in the Intro-

duction where m(X, W,0) = 9rin(X, W) and E[fn(X, W)IX] > 0 a.s. The theorem

above shows that the test developed in this paper is consistent against sequences of al-

ternatives 0 = 0,n whenever 0,n -n/ log n -+ oo in this model whereas the test of [5]

is consistent whenever 0 ,ng/ -* oo. Hence, my test is consistent against nearly the

same sequence of alternatives in this model as the test of /5]. The additional /logn

factor is the cost for having higher power in other classes of models.

2.4.5 Uniform Consistency Against Holder Smoothness Classes

In this section, I present the rate of uniform consistency of the test against the

class F (r, L) under certain additional constraints. These additional constraints are

needed to deal with boundary effects. Let S = cl{Xj : i E N} denote the closure of

the infinite set of design points. For any V > 0, let S, be the subset of S such that

for any x E So, the ball with center at x and radius '9, B,,(x), is contained in S, i.e.

Bo(x) C S. Denote ( = min(4 + 1, r). When ( ; d, set 9 = 19n = 2Vd"hmin. When

C > d, set t9 = dn = 24d(log n/n)/(2+d). Let No = {i E N : Xi E S,}. For any
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w E g and corresponding f = f(w), let

p (w, Ho)= sup [fm(Xi)]+
iENom=1,...,p

denote the distance between w and HO over the set S,,. For the next theorem, I

will use p0-metric (instead of p-metric) to measure the distance between alternatives

and the null hypothesis. Such restrictions are quite common in the literature. See,

for example, [42] and [74]. Let g0 be the subset of all elements of g such that

infwEg, po(w, HO)/h -+ oo if < < d and infWEg, po(w, Ho)(n/log n)C/(2c+d) _ o if

C > d. Then

Theorem 11. Let P = PIA or RMS. Then

inf Pw T > Cla) -+ 1 as n -+ oo. (2.13)

Comment 8. Recall the CMI model from the second example mentioned in the Intro-

duction where m(X,W,0) = ffi(X,W)+0. Assume that X E R and E[fh(X, W) |X] =

-IXIv with v > 1. In this model, the identified set is E1 = {0 E R : 0 < 0}. The the-

orem above shows that the test developed in this paper is consistent against sequences

of alternatives 00 = 0 0,n whenever 00,n(n/ log n) v/(2v+1) -+ oo. At the same time, it

follows from [10] that the test of [5] is consistent only if Gn,onv/( 2v+ 2) _+ oo, so their

test has a slower rate of consistency than that developed in this paper by a polynomial

order.

2.4.6 Lower Bound on the Minimax Rate of Testing

In this section, I give a lower bound on the minimax rate of testing. For any X =

{X} 1 satisfying A13, let gx denote the set of all models w in g with the sequence

of design points X. For given X and S,, defined in the previous section, let N(h, S)

be the largest m such that there exists {i 1, ... , Xm} c S, with I|x - xj | ;: h for all

i,j = 1, ..., m if i $ j. I will assume that N(h, S) > Ch-d for all h E (0, 1) and

sufficiently large n for some constant C > 0. In an iid setting, this condition holds
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a.s. under the conditions of Lemma 18. Let p5(Yi, ... , Yn), n > 1, denote a sequence

of tests. In other words, $n (Y1 , ..., Y) denotes the probability of rejecting the null

hypothesis upon observing sample Y = (Y 1, ..., Y).

Theorem 12. Assume that (i) N(h, S,) > Ch-d for all h E (0, 1), sufficiently large

n, and some C > 0, (ii) s = [T|, and (iii) rn(n/ log n)/( 2 r+d) -+ 0 as n -+ oo for

some sequence of positive numbers rn. Then for any sequence of tests $n(Y 1 ,...,Y)

with sup-Egeng, E.[n(Y,..., Yn)| < a,

inf Ew[#n(Yi, ..., Yn)| ( a + o(1) as n -+ oo. (2.14)
wEgx ,po(w,Ho)>Crn

Comment 9. Since F (r, L) c F(r, L), the same lower bound applies for the class

.F(r, L) as well. The same lower bound also applies with g instead of 9x. Com-

paring this result with that in Theorem 4 shows that the test presented in this pa-

per is minimax rate optimal (for almost all sequences {Xi}') if C = r > d. The

lower bound is not achieved when C < r or T < d. Two possibilities arise in these

cases: the lower bound is not tight or the test is not minimax rate optimal. When

( < T, it is easy to see that the lower bound is achieved by the test with a higher

order kernel and an appropriate (smoothness dependent) bandwidth value. Hence, the

lower bound in this case is tight, and the test is not minimax rate optimal. When

( = r < d, the test does not achieve the lower bound because of the constraint on

hmin imposed in A16. It is unknown whether this constraint can be relaxed without

imposing existence of higher moments of e 's beyond those imposed in A14(ii). /12]

show, however, that if one assumes existence of finite moment generating function

of ei's, then one can construct a test that will achieve the rate in the lower bound

derived in Theorem 12. Actually, under the assumption of finite moment generating

function, the same rate can be obtained by the test considered in this paper. Specifi-

cally, assume in A14 that E [exp(jei,,|/C 2)] < C2 for all i = 1,..., n and m = 1, ... , p

instead of E[maxm,,..., |e,,|| < C 2 for all i = 1,...,n and assume in A16 that

hmin = C 3 (log n)/nd instead of hmin = C3 (log n/n)/(3 d. Then Theorem 8 continues

to hold (with the only difference in the proof that now one applies Corollary 2.3, case
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E.4 in [33] instead of case E.5 in Lemma 25) and the argument like that in the proof

of Theorem 11 shows that the test is uniformly consistent against the set of models GO

if infWEg, p(w, HO) (n/ log n)C/( 2C+d) -+ oo. This implies that the test is rate optimal

when =-r < d.

2.5 Extentions

In this section, I briefly outline two extentions of the test developed in this paper.

One of them concerns with the case of infinitely many CMI. The other one deals with

local CMI. For brevity, I only discuss basic results. In both cases, I am interested in

testing the null hypothesis, H0 , that 9 = 0o against the alternative, Ha, that 0 $ 00.

Infinitely Many CMI. In many cases the parameter 0 is restricted by a count-

ably infinite number of CMI, i.e. p = 00. For example, recall the English auction

model and the model with interval data from Section 2.2. In those models, inequal-

ities (2.3) and (2.4)-(2.5) hold for all v E R. Taking rational values of v leads to a

countably infinite number of CMI. Note that the last step does not change the iden-

tified set if left-hand sides of these inequalities are continuous in v or, at least, right

or left continuous.

Let in : Rd x Rk x E -+ RN be some known function where N denotes the set of

natural numbers. Suppose that 0 E E satisfies

E[ff(X, W0)|JX] < 0 a.s.

Given 0o, define 1(X) = E[fn (X, W, 0o)IX]. In addition, denote Ej = i(Xi, Wi, 00) -

f(Xi), and Ej = E[ZfIslXi]. Let {p,}, 1 be a sequence of natural numbers converging

to infinity. Consider the test based on the first p = Pn inequalities. More precisely, let

m : Rd x Rk x e -+ RP be the vector-valued function whose j-th component coincides

with j-th component of fz for all j = 1, ..., p, and consider the test described in

Section 2.3 based on inequalities E[m(X, W, 0) X] < 0 a.s. Denote its critical value

by c_,U with P = PIA or RMS. In addition, let me use all the notation defined in
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Sections 2.3 and 2.4 and corresponding to the test based on the function m.

Let g denote the set of all models satisfying A13-A19 for all n where p = pn is

now understood to be a function of n and where ej, Ei, f, and p in A14 and A15

are replaced by Ej, i, f, and oo, respectively. Let go denote the set of models in g

satisfying f ( 0 a.s., goo denote the set of models in go satisfying f= 0 a.s., and 9,

denote the set of models in g satisfying p(w, HO) > p where p(w, HO) is defined as

in (2.10) with i and oo instead of f and p, respectively. An advantage of the finite

sample approach used in this paper is that it immediately gives certain conditions

that ensure that such a test maintains the required size as n - 00.

Corollary 1. Let P = PIA or RMS. Assume that pn log n ( C6 ncrC for some suffi-

ciently small and large constants c6 and C 6 , respectively.'3 . Then for some constants

c and C depending only on c4 and C, for j = 6,

sup P (T > c_ ) ( a + Cn-c for all n. (2.15)
wEgo

In addition,

inf P, ( > cl_) > a - Cn-c for all n. (2.16)

Finally,

inf P1 (T> ) >1- Cn-c for all n. (2.17)

Comment 10. This corollary shows that the test has the correct asymptotic size, is

asymptotically not conservative, and is consistent against fixed alternatives outside of

the set E1 .

Local CMI. Suppose that the parameter 0 is restricted by the following inequal-

ities:

E[m(X, W, 0)IX1, X 2 = Xo] < 0 a.s. (2.18)

where m(-, -, -), X = (X1, X 2 ), and W are as above, and xO is some fixed point of

interest. Assume that X1 and X 2 are di- and d2-dimensional random vectors (the

13Inspection of the proof shows that it suffices to choose c6 < c4/8 and some C > 0.
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dimension of X is d = di + d2). CMI of the form (2.18) arise in nonparametric

and semiparametric inference. For example, recall the English auction model from

Section 2.2. In that model, suppose that the set of covariates is X = (X 1 , X 2) so

that F = F(v, X', X 2). Suppose that the point X 2 = xO is of interest. Denote

F(v, X') = F(v, X1, xo). Then inequality (2.3) leads to

E[-1 , I{bim v}X 1 , X2 = x] < 0 a.s.

Parameterizing the function F(-, -) gives inequalities of the form (2.18). Note that

parameterizing P(-, -) instead of F(-, -, -) reduces the risk of misspecification, which

makes this approach attractive when the only interesting value of X 2 is Xo.

As above, given 0, define f(X) = E[m(X, W, 00)|X]. In addition, denote ej =

m(Xi, Wi, 0) - f(Xi), and Ei = E[ei(ei)TIXj]. Let $i be an estimator of Ej (i =

1, ... , n) as described in Section 2.3.3. Let N be a subset of all observations i = 1, ..., n

such that ||Xi - oII < a for all i E N. It will be assumed that a = an -+ 0 as n -* oo.

Denote the number of elements in N by na. Without loss of generality, I assume that

observations in N are those corresponding to i = 1, ... , n.. In order to test inequalities

(2.18), consider the test described in Section 2.3 based on the data {(Xi, Wi)}iEN-

Denote its test statistic by T and its critical value by cfl_ with P = PIA or RMS.

Let g denote the set of models satisfying A13-A19 for all n with n replaced

by na, with d replaced by di in A13 and A16, and such that for all these models,

Jfm(X)| < C6 an for all i E N and m = 1,...,p, and anv/nahax logn < C 6n-4 for

sufficiently small and large constants c6 and C6, respectively. Let go denote the set of

all models in g satisfying f(X) < 0 a.s., goo denote the set of models in go satisfying

f(X) = 0 a.s. Denote NA = {(i, m) : i = 1, ... , oo, m = 1, ..., p, ||Xi - xoI| < a}.

Define the distance between the model w e g and the null hypothesis by

p(w,Ho) = inf sup [fm(Xi)]+
aE(Ooo) (i,m)ENa

Let g, denote the set of all models w in g satisfying p(w, Ho) ) p > 0.
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Corollary 2. Let P = PIA or RMS. Then for some constants c and C depending

only on c5 and C for j = 1, ..., 6,

sup P" (T > c_) a + Cn-c for all n. (2.19)

In addition,

inf P, T > cl_) a - Cn-c for all n. (2.20)
wegoo

Finally,

inf P, T > cl_) > 1 - Cn~* for all n. (2.21)

Comment 11. (i) Note that in an iid setting, if f (x1 , xo) > 0 for some xi such that

(x1, xO) is inside of the support of X, then it follows as in the proof of Lemma 18 that

p(w, HO) > 0 a.s. So, the corollary above shows that the test has correct asymptotic

size, is asymptotically not conservative, and is consistent against any fixed alternative

outside of the set E1 .

(ii) Note that the corollary remains valid if hmax -+ 0 as n -> 0.

(iii) Condition an nahAanx log n < C 6n-* in this corollary is required to ensure that

the bias due to using data with X2 # xO is asymptotically negligible. Given that small

values of an lead to small effective sample size na while small values of hma, lead to

large variance of the kernel estimator, it is useful to set hnax -+ 0 as n -+ oo to

balance these effects.

2.6 Monte Carlo Results

In this section, I present results of two Monte Carlo simulation studies. The aim of

these simulations is twofold. First, I demonstrate that my test accurately maintains

size in finite samples. Second, I compare relative advantages and disadvantages of

my test and the tests of [5], [36], and [74]. The methods of [5] and [74] are most

appropriate for detecting flat alternatives, which represent one-dimensional local al-

ternatives. These methods have low power against alternatives with peaks, however.

The test of [36] has higher power against latter alternatives, but it requires knowing
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smoothness properties of the moment functions. The authors suggest certain rule-of-

thumb techniques to choose a bandwidth value. Finally, the main advantage of my

test is its adaptiveness. In comparison with [5] and [74], my test has higher power

against alternatives with peaks. In comparison with [36], my test has higher power

when their rule-of-thumb techniques lead to an inappropriate bandwidth value.' 4 For

example, this happens when the underlying moment function is mostly flat but varies

significantly in the region where the null hypothesis is violated (the case of spatially

inhomogeneous alternatives, see [76]).

First simulation study. The data generating process is

Yi = L(M -|Xi|)+ - m+e1

where Xi's are equidistant on the [-2,+2] interval", Y's and ei's are scalar random

variables, and L, M, and m are some constants. Depending on the experiment,

ei's have either normal or (continuous) uniform distribution with mean zero. In both

cases, the variance of ei's is 0.01. I consider the following specifications for parameters.

Case 1: L = M = m = 0. Case 2: L = 0.1, M = 0.2, m = 0.02. Case 3: L = M = 0,

m = -0.02. Case 4: L = 2, M = 0.2, m = 0.2. Note that E[YIX] < 0 a.s. in cases

1 and 2 while P(E[YX] > 0) > 0 in cases 3 and 4. In case 3, the alternative is

flat. In case 4, the alternative has a peak in the region where the null hypothesis is

violated. I have chosen parameters so that rejection probabilities are strictly greater

than 0 and strictly smaller than 1 in most cases so that meaningful comparisons are

possible. I generate samples (Xi, Yi)'.i1 of size n = 250 and 500. In all cases, I consider

tests with the nominal size 10%. The results are based on 1000 simulations for each

specification.

For the test of [5], I consider their Kolmogorov-Smirnov test statistic with boxes

and truncation parameter 0.05. I simulate both plugin (AS, plugin) and GMS (AS,

GMS) critical values based on the asymptotic approximation suggested in their paper.

14When their rule-of-thumb works well and moment functions are sufficiently smooth, the test of
[36] often yielded the best results in my simulations.

15 Results where Xi's are distributed uniformly on the [-2,+2] interval are very similar.
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All other tuning parameters are set as prescribed in their paper.

Implementing all other tests requires selecting a kernel function. In all cases, I

use16

K(x) = 1.5(1 - 4x 2 )+-

For the test of [36], I use their kernel type test statistic with critical values based on the

multiplier bootstrap both with (CLR, V) and without (CLR, V) the set estimation.

Both [36] and [74] (LSW) circumvent edge effects of kernel estimators by restricting

their test statistics to the proper subsets of the support of X. To accomodate this, I

select the 10%th and 90%th percentiles of the empirical distribution of X as bounds

for the set over which the test statistics are calculated. Both tests are nonadaptive. In

particular, there is no formal theory on how to choose bandwidth values in their tests,

so I follow their informal suggestions. For the test of [74], I use their test statistic

based on one-sided L-norm.

Parameters for the test developed in this paper are chosen according to recom-

mendations in Section 2.3.1. Specifically, the largest bandwidth value, hmax, is set to

be equal to the length of the support of the empirical distribution.1 7 The smallest

bandwidth value, hmin, is set as hmin = 0.2hmax(log n/n)1/3 . The scaling parameter,

a, equals 0.5 so that the set of bandwidth values is

Hn = {h = hax0.5k : h > hmin, k = 0, 1, 2,...}.

I estimate E using the method of [97]. Specifically, I rearrange the data so that

X1  ... ( X and set Zi = = 2 (Yi - i1) 2 /(2n). Finally, for the RMS critical

value, I set - = 0.1/ log(n) to make meaningful comparisons with the test of [36]. In

16This kernel function does not coincide with recommendations in Section 2.3.1 (where I recom-
mended the kernel K(x) = 0.75(1 - x 2)+). I use this kernel function because it was used in other
simulation studies; see, in particular [74]. Note, however, that for the test statistic in this paper,
multiplicative constant in the kernel function has no effect (it cancells out because of studentiza-
tion), and so using kernels K(x) = 1.5(1 - 4x 2 )+ and K(x) = 0.75(1 - x 2)+ gives numerically the
same values of the test statistic if all bandwidth values for the former kernel are twice as large as
bandwidth values for the latter kernel.

7 1n Section 2.3.1, 1 recommend setting the largest bandwidth value as one half of the length of the
support of the empirical distribution. The difference is explained by different scaling of the kernel
function.
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Table 2.1: Results of Monte Carlo Experiments, n = 250
Probability of Rejecting Null Hypothesis

Distribution e Case AS, plugin AS, GMS LSW CLR, V CLR, V Adaptive Adaptive

test, plugin test, RMS

1 0.096 0.908 0.108 0.144 0.144 0.100 0.100

2 0.002 0.005 0.000 0.010 0.010 0.005 0.005
Normal

3 0.880 0.880 0.922 0.803 0.803 0.756 0.756

4 0.000 0.023 0.000 0.053 0.138 0.803 0.882

1 0.102 0.103 0.112 0.142 0.142 0.105 0.124

2 0.004 0.007 0.001 0.013 0.013 0.003 0.003
Uniform

3 0.893 0.893 0.924 0.780 0.780 0.771 0.771

4 0.000 0.023 0.000 0.038 0.115 0.797 0.867

all bootstrap procedures, for all tests, I use 500 repetitions.

The results of the first simulation study are presented in table 1 for n = 250 and in

table 2 for n = 500. In both tables, my test is denoted as Adaptive test with plug-in

and RMS critical values. Consider first results for n = 250. In case 1, where the

null hypothesis holds, all tests have rejection probabilities close to the nominal size

10% both for normal and uniform disturbances. In case 2, where the null hypothesis

holds but the underlying regression function is mainly strictly below the borderline,

all tests are conservative. When the null hypothesis is violated with a flat alternative

(case 3), the tests of [5] and [74] have highest rejection probabilities as expected from

the theory. In this case, my test is less powerful in comparison with these tests and

somewhat similar to the method of [36]. This is compensated in case 4 where the null

hypothesis is violated with the peak-shaped alternative. In this case, the power of

my test is much higher than that of competing tests. This is especially true for my

test with RMS critical values whose rejection probability exceeds 80% while rejection

probabilities of competing tests do not exceed 20%. Note that all results are stable

across distributions of disturbances. Also note that my test with RMS critical values

has higher power than the test with plugin critical values in case 4. So, among these

two tests, I recommend the test with RMS critical values. Results for n = 500 indicate

a similar pattern.

Second simulation study. In the second simulation study, I compare the power

function of the test developed in this paper with that of the Andrews and Shi's (2013)
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Table 2.2: Results of Monte Carlo Experiments, n = 500
Probability of Rejecting Null Hypothesis

Distribution e Case AS, plugin AS, GMS LSW CLR, V CLR, V Adaptive Adaptive

test, plugin test, RMS

1 0.089 0.091 0.134 0.146 0.146 0.108 0.108

2 0.001 0.002 0.000 0.000 0.000 0.006 0.006
Normal

3 0.990 0.990 0.996 0.940 0.940 .955 0.955

4 0.002 0.809 0.000 0.500 0.754 0.994 0.999

1 0.083 0.089 0.103 0.116 0.116 0.106 0.106

2 0.000 0.004 0.000 0.002 0.002 0.003 0.003
Uniform

3 0.992 0.992 0.995 0.919 0.919 0.958 0.958

4 0.003 0.818 0.000 0.474 0.750 0.991 1.000

test, which is most closely related to my method. For my test, I use the RMS critical

value. For the test of [5], I use their GMS critical value. The data generating process

is

Y = m + v 4(rXi) + i

where Xi's are again equidistant on the [-2, +2] interval, Yi's and ei's are scalar

random variables, m and r are some constants, and #(.) is the pdf of the standard

Gaussian distribution. In this experiment, ei's have N(0, 1) distrubution. I use sam-

ples (Xi, Yi)t 1 of size n = 250. Both tests are based on the same specifications as

in the first simulation study except that now I use 100 repetitions for all simula-

tion procedures in order to conserve computing time. At each point, the rejection

probabilities are estimated using 500 simulations.

Note that r is naturally bounded from below because r and -r yield the same

results. So, I set r > 0. In addition, E[YIX] < 0 a.s. if m ( -1. Therefore, I

set m > -1. Figure 1 shows the difference between the rejection probabilities of my

test and of the test of [5]. This figure shows that the rejection probability of the

test developed in this paper is higher than that of the test of [5] in most cases and

is strictly higher over a wide region of parameter values. The exception is a narrow

region where r is close to 0 (flat alternatives) and m is close to -1. Concluding this

section, I note that all simulation results are consistent with the presented theory.
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Figure 2-1: The difference between the rejection probabilities of the test developed in this paper
and of the test of Andrews and Shi (2013) (with RMS and GMS critical values correspondingly).
The nominal size is 10%. Results are based on 500 simulations. The figure shows that the rejection
probability of the test developed in this paper is higher than that of the test of Andrews and Shi
(2013) in most cases and is strictly higher over a wide region of parameter values.

2.7 Conclusions

In this paper, I develop a new test of conditional moment inequalities. In contrast to

some other tests in the literature, my test is directed against general nonparametric

alternatives yielding high power in a large class of CMI models. Considering kernel

estimates of moment functions with many different values of the bandwidth parameter

allows me to construct a test that automatically adapts to the unknown smoothness

of moment functions and selects the most appropriate testing bandwidth value. The

test developed in this paper has uniformly correct asymptotic size, no matter whether

the model is identified, weakly identified, or not identified, is consistent against any

fixed alternative outside of the set Or, and is uniformly consistent against certain, but

not all, large classes of smooth alternatives whose distance from the null hypothesis

converges to zero at a fastest possible rate. The tests of [5] and [741 have nontrivial

power against n- 1 /2 -local one-dimensional alternatives whereas my method only al-

lows for nontrivial testing against (n/ log n) 1 / 2 -local alternatives of this type. The

additional (log n)'/ 2 factor should be regarded as the price for having fast rate of

uniform consistency. There exist sequences of local alternatives against which their

tests are not consistent whereas mine is. Monte Carlo experiments give an example of
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a CMI model where finite sample power of my test greatly exceeds that of competing

tests.

2.8 Appendix. Proofs

This Appendix contains proofs of all results stated in the main part of the paper.

Section 2.8.1 gives a proof of the uniform consistency of the estimator Zj of Ei de-

scribed in Section 2.3.3. I provide the proof because I was not able to find it in the

literature. Section 2.8.2 derives a bound on the modulus of continuity in the spectral

norm of the square root operator on the space of symmetric positive semidefinite ma-

trices. Section 2.8.3 gives sufficient conditions for A13 in the main part of the paper.

Section 2.8.4 explains an anticoncentration inequality for the maximum of Gaussian

random variables with unit variance. Section 2.8.5 describes a result on Gaussian

random variables that is used in the proof of the lower bound on the minimax rate.

Section 2.8.6 develops some preliminary technical results necessary for the proofs of

the main theorems. Finally, Section 2.8.7 presents the proofs of the theorems stated

in the main part of the paper.

In this Appendix, c and C are used as generic strictly positive constants that are

independent of n. Their values can change from line to line.

2.8.1 Lemma on the Estimator of Ej

Lemma 15. Let Ej be an estimator of EX described in Section 2.3.3. Let A13-A15

hold. In addition, assume that (i) E[|Ei,,|4+6 ] < C for all i = 1,...,n and m = 1,..., p,

(ii) b < Cn , (iii) minj=1 ,...,nIJ(i)|/n/"(2 + > cnc, (iv) ||Ei - E|| < C|jX - XI||.

Then A18 holds.

Comment 12. Note that under assumptions of Lemma 18, which is described be-

low, condition (iii) above follows from n(1+6 /(2 +)bd ; cnC, which is an elementary

condition.
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Proof. By definition,

Ej= ( - Y)(Yk(j) - Y /(2|J(i3 0.
jEJ(i)

Since all norms on the finite-dimensional linear space are equivalent (Theorem 1.6 in

[70]), it is enough to prove that

P(.max ih,mim2 - Ei,mIm2I > Cn-) ( Cn~
i=1,...,n

for all Mi1 , M 2 = 1, ...,p. The proof will be given for mi = M2 = 1. The result for all

other Mi1 , M 2 follows from the same argument. To simplify notation, I will write Ei,

$i, f(Xi), and ej instead of Ei,Z, i fi(Xi), and ei,1 correspondingly as if it were

a one-dimensional case.

Let M = ni/(4 +/ 2). Consider a truncated version of ei's: Ei = esI{e < M}.

Since E[eg|4+6] ( C, it follows that E[maxi=1,...,n lej|] ( Cn1/(4+,) (see Lemma 2.2.2

in [111]). Then Markov inequality gives

P( max lei| > M) < Cn1/(4+1)/M < Cn-c.

So,

Pi = P(.max lIE - eil > 0) < Cn~c.
2=1,...,n

Denote ti = E[?J (i = 1, ... ,n). Then 5i = Ej - E[eI{ej > M}]. Combining

Fubini theorem and Markov inequality yields

E[eI{ej > M}] = P(eI{e > M} > t)dt

< MP(ej > M) + E[ef|/t 2dt < E[el](1|M3 + 1|M) < 2E[e]/M.

In addition, for i = 1, ..., n, denote fi = f(Xi) + E; and

= (Y(j) - Yj)(Yk() - Yj f (2|J(ij.

jEJ(i)
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Then

P( max lii - Zil > 0) = P1 < Cn-'.
i=1, ...,In

Therefore, for sufficiently small c and sufficiently large C,

P( max |jS - Ei| > Cn-c) P( max |5i - Sil > Cn-c/2) + Cn-c
i=1, ...,In = ,.,

for all n. By the union bound,

n
P( max |2i - Eil > Cn-") (Z P(li - fiI > Cn-c).

Further,

P(|ti - 54| > Cn-c) Pi + P2 + P3

where

Pi = P( E (f (Xk(j)) - f (Xj))2/(2|J(i)1) > Cn-),
jEJ(i)

P2 = P(I [ (f (Xkj))-
jEJ(i)

P3 = P(I Z (k(j) -2j) 2

jEJ(i)

f (Xi) (zks) -- ?E))|/ J(i)| > Cn~c),

/(21J(i)|) - til > Cn-c).

By A15, If(Xk(j)) - f(X)I < LI|Xk(j) - Xjy| 1 2Lb. Since b converges to zero at

a polynomial rate, P1 = 0 if c and C in the definition of P1 are sufficiently small and

large, respectively. Consider P3. Note that P3 ( P3 1 + P32 where

P31 = (I E /S J(i)| - Nil > Cn-c)
jEJ(i)

and P32 = (I E k(j)9y l/J(i)| > Cn-c).
jE J(i)

Since |Ei - E| I< CI|Xi - Xj|| and b is polynomially small, it follows that

P31 = P(| ('q
jEJ(i)

- 2j)|/|J(i)I > Cn-c).
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Then Hoeffding inequality gives (see proposition 1.3.5 in [41])

P3 1 < 2exp{-Cn-IJ(i)I/M 2}.

Therefore, nP31 < Cn- if min= 1 ,...,, IJ(i)I/M 2 > cnC, which holds by assumption

(iii).

Now consider P32. Denote U(i) = {j E J(i) : j < k(j)}. Apply Hoeffding

inequality conditional on {}jEU(i). Since |Ej| < M for all j = 1, ..., n, nP32 < Cn-c

like nP31 < Cn-c. Similar argument shows that nP2 ( Cn-c as well. The result

follows. 0

2.8.2 Continuity of the Square Root Operator on the Set of

Positive Semidefinite Matrices

Lemma 16. Let A and B be p x p-dimensional symmetric positive semidefinite ma-

trices. Then ||A 1/ 2 - B 1/2 '< p1/2 IA - B111/ 2_

Proof. Let a1 , ..., a, and bi, ..., b,, be orthogonal eigenvectors of matrices A and B

correspondingly. Without loss of generality, I can and will assume that ||aill = Ibi|| =

1 for all i = 1, ..., p where ||-|| denotes the Euclidean norm on RP. Let A1(A), ... , A,(A)

and A1 (B), ..., A,(B) be corresponding eigenvalues. Let fi1 ... , fi, be coordinates of ai

in the basis (bi, ... , b,) for all i = 1, ...,p. Then E_1 fl4 = 1 for all i = 1, ... , p.

For any i = 1, ... , p

p p

(i(A) - Aj (B)) 2 f, = || (A(A) - A3(B))fib||2

j=1 j=1

= Ai(A)ai - zA,(B)fjb||2 = ||(A - B)ai| 2 ( |A - B||2
j=1

since l| (A - B)ai|| < ||A - B|I|Iai|| = ||A - B||.

For P = A, B, P 1/ 2 has the same eigenvectors as P with corresponding eigenvalues
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equal to A ... , A/ 2(P). Therefore, for any i = 1, ...,p,

p p

(A1/ 2 - 112 1/2=(A) - Aj/ 2 (B))2 f2 ( A(A) - Aj(B)|fi2
j=1 j=1(p 1/2

(A) - Aj (B))2 2 < ||A - B1|
(j=1

where the last line used the inequality derived above. For any c E RP with ||ci| = 1,

let di,..., dp be coordinates of c in the basis (a1, ..., ap). Then

|| (A1 /2 - B1/ 2)c||=|II A 1/2 - B 1/2) Pdai|

p p

( Idi|||j(A12 - B12 )ai|| <, |dI||A - B11/ 2  p p 1/ 2 ||A - B||1/2
i=1i=

since E 1 d? 1. Thus, ||A 1/ 2 - B 1/ 2  1 / 2||A - BI|1 2.

2.8.3 Primitive Conditions for Al

In this section, I give a counter-example for the statement that for A13 to hold, it

suffices to assume that Xi's are sampled from a distribution that is absolutely contin-

uous with respect to Lebesgue measure, has bounded support, and whose density is

bounded from above and away from zero on the support. I also prove that A13 holds

if, in addition to above conditions, one assumes that the support is a convex set.

Lemma 17. There exists a probability distribution on R 2 with bounded support such

that this distribution is uniform on its support and if Xi's are sampled from this

distribution, then A13 fails.

Proof. As an example of such a probability distribution, consider the uniform distri-

bution on

S = {(Xi,X 2 ) E [0, 11 x[-(1+a)/2, (1+a)/2] : x1 ;) 0; -(1+a)x/2 x 2 < (1+a)xa/2}

for some a > 0. For fixed i, the probability that X, 1 ( h is p = h+", and the
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probability that X, 1 > h is p =1- Let An be an event that Xj,1 < L for

exactly one i = 1, ... , n whereas Xj,1 > h for all other i = 17 ... , n with h < h. The

probability of this event is

P(An) = npp-"- 1 = nhln"(1 - -)"1.

Set h = (c/n)'/('+) and h = (C/n)1 /'+a) with 0 < c < C < 1. Then I can find the

limit of P(An) as n -+ oo:

lim P(An) = lim c(1 - C/n)"- 1 = ce-C > 0.
n-+oo n-+oo

Note that on An, there is an observation Xi such that there is no other observations

in the ball with center at Xi and radius (C1/(+a) - cl/(l+a))/nl/(l+a). The result now

follows by choosing a sufficiently large such that n-1/(+O) converges to zero slower

then hmin.

Now I give a sufficient primitive condition for A13.

Lemma 18. Suppose that A16 holds. If Xi's are sampled from a distribution that

is absolutely continuous with respect to Lebesgue measure, has bounded and convex

support S c Rd, and whose density is bounded from above and away from zero on the

support, then A13 holds for sufficiently large n a.s.

Proof. Consider sets of the following form: I(a1, ..., ad, c) = Snf{x : aix1+...+adXd =

c} with al + ... +a 2 = 1. These are convex sets. It follows from the fact that the density

is bounded from above that infaI,...,aI supe D(I(ai, ..., ad, c)) > 0 where D(-) denotes

the diameter of the set. So, there exists some constant 0 < C < 1 such that for all

r < 1 and all x E S, each ball B(x, r) with center at x and radius r has at least fraction

C of its Lebesgue measure inside of the support S: A(B(x, r) n S)/A(B(x, r)) > C.

Note that 6-covering numbers of the set S satisfy N(6) < C/6d. Consider the

lower bound in A13(ii). For each h E Hn, consider the set of covering balls with

centers Gh,1,...,Gh,N(h) and radii Jh = h/2. Then for each Xi and h E H, there

exists some j E {1, ..., N(h)} such that B(Xi, h) D B(Ghj, 6 h). Thus, it is enough to
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prove the lower bound for the number of observations dropping into these covering

balls. Since the density is bounded away from zero and from above, there exist some

constants c,C > 0 such that for each h E H, and j = 1,...,N(h), chd < P(Xi E

B(Gh,j,6h)) < Chd. Denote Ih,j(Xi) = I{X E B(Gh, 6 h)}. Bernstein inequality

(see proposition 1.3.2 in [411) gives

n n

P( Ihj (Xi)/n < chd/2) < P(> Ihj(Xi)/n - E[Ih,d(Xi)] < -chd/2)
i~1 i=1

< Cexp(-cnhd).

Then by union bound and A16,

n

P(UhEHnj=1,...,N(h){ Ihj(Xi)/n < Cihd/2}) < Ch-, lognexp(-cnh di.)

By A16, nhani > Cnc. So, summing the probabilities above over n, I conclude, by

the Borel-Cantelli lemma, that the lower bound in A13(ii) holds for sufficiently large

n a.s. A similar argument gives the upper bound. So, A13 holds. 5

2.8.4 Anticoncentration Inequality for the Maximum of Gaus-

sian Random Variables

In this section, I describe an upper bound on the pdf of the maximum of correlated

Gaussian random variables derived in [341. Let {Zj : i = 1, ..., S} be a set of standard

Gaussian (possibly correlated) random variables. Define W = maxi=1 ,...,s Zi and let

fw(-) denote its pdf. Then

Lemma 19. supWER fw(w) < CVlog 3 for some universal constant C.

Proof. Theorem 3 in [34] proves that supaER fw(w) < CE[W]. In addition, it follows

from the same argument as in Lemma 22 that E[W] < CVlo'g . Combining these

bounds gives the result. O
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2.8.5 Result on Gaussian Random Variables

In this section, I state a result on Gaussian random variables which will be used in

the derivation of the lower bound on the rate of uniform consistency.

Lemma 20. Let (n, n = 1,..., oo, be a sequence of independent standard Gaussian

random variables and Wi,n, i = 1, ..., n, n = 1, ..., oo, be a triangular array of positive

numbers. If Win < CV/log n with C E (0, 1) for all i = 1, ..., n, n = 1, ..., oo, then

n

lim E[In~1  exp(Wi, - Wz,/2) - 1|] = 0.
i=1

Proof. The proof is closely related to that in Lemma 6.2 in [42]. Denote Zi, =

exp(wi,c( - Wi/2) and in = (E[( 1 Zi,n/n - 1)2)1/2. Note that E[Zi,n] = 1 and

E[Z]= exp(w? ). Thus,

n n

t2 = (E[Zz?] - (E[Zi,n])2 )/n 2  
- 0

i=1 i=1

if max,=1 ,...,, exp(w n)/n -+ 0. The last condition holds by assumption. So, by

Jensen's inequality,

n n

E[In~ exp(wi,nci - w ?/2) - I1| = E[I Zi,n/n - 11] ( tn -+ 0.
i=1 i=1

The result follows. 5

2.8.6 Preliminary Technical Results

In this section, I derive some necessary preliminary results that are used in the proofs

of the theorems stated in the main part of the paper. It is assumed throughout that

conditions A13-A19 hold. I will use the following additional notation. Let {n} 1

be a sequence of positive real numbers such that on ;> Cp(plogn)1/2/n0 for some

sufficiently large C > 0 and sufficiently small cp > 0 and , < Cn-c for all n.

PIAF1 ItFor any A E (0,71) , define cl -' E R by analogy with c'l -,\ with EA used instead
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of Zi for all i = 1,...,n. Denote Sn = {s E Sn: f8/V, > -cfQ_}. For any

A E (0, 1), define c E R by analogy with carus with Sn used instead of SMs.

Let {ei : i = 1, ..., n} be an iid sequence of p-dimensional standard Gaussian random

vectors that are independent of the data. Denote e = E1/2cj and ey= E 1/ 2 . Note

that 2e is equal in distribution to Y. Finally, denote

n

E(i,m,h) = E Wh(Xi, Xj)Ej,m
j=1

n

e(i,m,h) = E Wh(Xi, Xj)ej,m
j=1

T PIA = max(,/Y)e
sES /

n

and f(i,m,h) = 3W(Xi 7 Xj)fm(Xj),
j=1

n

and e(i,m,h) = Wh (Xi, Xj) j,m,
j=1

and TPIA,o = max(e,/V).
sESn

Note that TPIA is equal in distribution to the simulated statistic for the plug-in

critical value.

I start with a result on bounds for weights and variances of the kernel estimator.

The same result can be found in [63].

Lemma 21. There exist constants c, C > 0 such that for any i, j = 1, ... , n, m =

1, ..., p, and h E Hn,

Wh (Xi, X5) < C/(nh')

and

uniformly over the set of models g.

Proof. By A13 and A17, for any i= 1,...,n and h E Hn,

n
cnhd ( cM</2(Xi) < K(X 2 - Xk) < CMh(Xi) < Cnhd

k=1

and
n

cnhd ( K 2 (Xi - Xk) .Cnhd.
k=1
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In addition, K(Xi - Xj) < 1 for any j = 1, ..., n, and so

n

Wh(Xi, Xj) = K(Xi - X)/ K(X - Xk) < C/(nhd).
k=1

By A14, since E,"1 Wh(Xi, X3 ) = 1,

n 1/2

V(i,m,h) = w(Xi, Xj) Ejmm

j=1
( C (wl(XiX;) C .mx w 2(Xi, X;) ( C/vinFh

and

n 2 X j 1/2 d) ( n 2 X ') 1/2

V(i,mh) C C ( w!(Xi, X) (C/nha) ( K2(Xi - X3 )) C/vQF.
j=1 j=1

The claim of the lemma follows. 5

Lemma 22. E[maxsES| 1e./Vs|| 1 C(log n)1/ 2 uniformly over the set of models Q. In

particular, cl, 0 ( CA/log n/A for all A E (0,1) uniformly over the set of models g.

In addition, P(maxsesn|es/V| > C/lIogn) ( Cn-* for sufficiently small and large

constants c and C, respectively, uniformly over the set of models g.

Proof. For any s E Sa, e,/V, is a standard Gaussian random variable. Denote # =

exp(x 2) - 1. Let || - |1, denote O-Orlicz norm. It is easy to check that ||e,/Vs||k <

C < oo. So, by Lemma 2.2.2 in [111],

E[max le/V,1I] C11|max le,/V||0 < C(logn)1/ 2

sESn sESn

since |S7l CnO for some # > 0, which gives the first result. To obtain the second

result, note that Markov inequality gives

A P(max le,/V, I > cf_"') < E[max les/V,I]/cfI' Cv/log/c _I'
sESI ses.
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for any A E (0, 1). So, cY" 0 < CV/log n/A. The third result follows from Borell

inequality (see, for example, Proposition A.2.1 in [111]).

Lemma 23. P(maxEs IV,/V - 11 > Cn-) < Cn-c and P(maxES. IV/V, - 11 >

Cn-c) < Cn-c uniformly over the set of models g.

Proof. By A14, for any (i, m, h) E Sn,

n n

V,m,) Wh(Xi, Xj)Ej,mm > C w (X, Xj).
j=1 j=1

In addition,
n

(i,m,h) - (,m,h) I <Z W2 (Xi, Xj) 12j,mm - Ej,mm
j=1

So,

maxIV. /V,2-1I C max max I j,mm - Ej,mml
,ESn m=1.pj=1.

SC max I||j - Ej||.
...=1,... ... ,n

So,

P(max |VV -/1| > Cn-c) < Cn-c
,ESn

by A18. Combining this result with inequality fx - 1 < 2 - 11, which holds for any

X > 0, yields the first result of the lemma. The second result follows from the first

one and the inequality I1/x - 11 < 2|x - 11, which holds for any Ix - 11 < 1/2. 0

Lemma 24. P(c > c(1A) < Cn-e and P(c <cIA) <Cnc uniformly

over all A E (0, 1)18 and over the set of models g where ip is defined in the beginning

of this section ($Pn > CO,(p log n)1/ 2 /ncP and pi/ < Cn-c).

Proof. Denote
e. V

Pi = max - max -1
SES1 V ,esn y,

'1 'O 0 rA+in> ,stPAO +oo I, = -00 correspondingly.
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and

m_ 1 wh(Xi, X (/ 2 
- /2 9

P2 =max
(i,m,h)Es V(i,m,h)

where (m denotes m-th component of the vector (.). Then

ITPIA - TPIAo I P1 P2.

Let A denote the event {max=1,...,n||SE - Ej1| < C4n-4}. By A18, P(A) > 1 - Cn-c

as n -+ oo. Thus, it is enough to show that cIA,' < cIA and c_ > c _IA on A.

As in the proof of Lemma 23, maxsS I V/V, - 11 < Cn-c on A. Lemma 22 shows

that E[maxSEs le/VI] ( CVlogn. So, Markov inequality gives for any B > 0, on

A,

P(pi > CV/log nn-cBIYi") -<, 1/B

for sufficiently large C where Y" is a shorthand for {Y} ' 1. Consider P2. For any

j =1, ... ,n and m =1, ... , p,

-E[(($/2 2 2Yi] ( E[I|($ /2 -
2 )2 yn1

( E[||$ /2 
- 2 2I 2 y1  

2  2 )112

where the last line follows from Lemma 16. So, conditional on YJ", on A,

n

ZWh(Xi, X)( - ' 2 )Ej)m/V(i,m,h)
j=1

is a mean-zero Gaussian random variable with variance bounded by Cp 2n-c for any

(i, m, h) E Sn. In addition, on A, maxs, V/V, < 2 for sufficiently large n. Thus,

Markov inequality and the argument like that used in Lemma 22 yield

P(p 2 > C y/log npn-*B|Y1n) < 1/B

on A. Let B = Cnc/(p log n) 1/2. Recall that on > Cp (p log n)1/ 2 /nc+. Since c1, and

C0 are assumed to be sufficiently small and large correspondingly, I can and will
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assume that i/, > 4/B. I will also assume that 0,, C(p log n)n-cB (recall that c

and C can change at each appearance).

Note that TPIAO is the maximum over |S 1l standard Gaussian random vari-

ables. Since |Sl ( Cnk for some 4 > 0, Lemma 19 gives cPIA'O - cPIA'O

cV~n/(log n)1 /2 , so that

PIAO PIAO CVjgpnB
cIf /2-A- _' >C log npn-"B.

N e t o e at f from

Now the first part of the lemma follows from

P(T PIA < c_'_ " ' ) < P(T ' P' - P1 P2 < ck'.. f I1O )

< P(T' - C/log npnB < cf IY1 ) + 2/B

< P(TC''' < c |' 2 IY1 ) + 2/B

< 1 - A - P/2 + 2/B

<,1 -A

on A. The second part of the lemma follows from a similar argument. O

Lemma 25. |P(maxsES(E,/V) < cf_' 0 )-(1-A)j Cn- andIP(- maxSesn(eS/V)

- (1 - A)I < Cn-c uniformly over all A E (0,1) and over the set of models g.

Proof. By Lemma 21 and A14, for any (i, m, h) E Sn and j = 1, ... ,

EMWhAX, Xj) /V(,m,h) <, C/Vfh '< C/}n hMin.

Therefore, both claims of the lemma follows by combining A16 and Corollary 2.3,

case E.5 in [33]. 0

Lemma 26. For sufficiently small and large constants c and C, respectively,

P(max le,/V, I
SESn

P(max le,/V, I
sESn

> C logn) Cn-c,

> C /log n) Cn-c,7
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uniformly over the set of models g.

Proof. The result for maxEs| e,/V, follows from combining Lemmas 22 and 25. The

second result follows by noting that

max le,/V, I max le,/VImax(V,/V,)
SESn ,ES" SES"

and that P(maxEs I|V,/X., (1 + Cn-c) > 1 - Cn- by Lemma 23. 0

Lemma 27. P(maxEs.\sD f/V, > 0) < Cn-c uniformly over the set of models g.

Proof. By Lemma 25,

IP(rix(e,/V,) c cf_, ) - (1 - -Y - On) I < Cn-c.

Since for any s E S,\S', f,/V, -c PIA

P( max (f^/V) > 0)
SESn\S;?

= P( max (f/V) > 0)
seSn\Sg

= P( max (f/V, + e,/V) > 0)
,ESn\S ?

( P( max (-ce' 8  + E,/V) > 0)
,S .\Sj -f 1P

SP(max(E,/V) > c_-Y-_ )SESn

< 1- (1 - yn - On) + Cn-"

= 7yn + ?pn + Cn-c.

Noting that Y + O (Cn-c, which holds by the definition of On and A19, yields the

result.

Lemma 28. P(S' c SnMs) 1 - Crc uniformly over the set of models g.

Proof. By Lemma 24, P(cIA'0  > cPA ) ( Cn-. In addition, for any x E (-1,1),

2/(1 + x) - 1 > 2(1 - x) - 1 >1 - 2x > 1 - 21x.
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So,

P(S C S Ms) _ P(min(/Q > -2cfL,)
SESD 8 -f

> P(min (f^/V) max(V/V,) > -2cpI,SESD SESD

P(min(-c ? E8/V 8)max(V/V,)> -2cI)
SESD sESjj'

- P(min(e,/V) > cf'fnO - 2cf lA/ max(V/V,))
SES~n asl

PIAO0 PIAO> P(max(-e8 /V,) -cf_'~ + 2cL_' /max(V/Vs)) - Cn-
SESn -n Vn 1 1/- n E

> P(max(-e8 /V,) < cfI% (1 - 2|max(V/V.) - 1|)) - Cn-.
SESn -fnO sEs ?.1s 1) n

By Lemma 22, cPIAO < C(logn)1/2 /((n+@0n). By Lemma 23, P(I max8 asD (V/V)-

11 < Cn-') > 1 - Cn-c. So, with probability at least 1 - Cn-,

c (1 - 21 max(V/V,) - 11) > cpIA-_ - C(log n)i/2 n-cQy + 4)*
1--Yn-VlnsES ?-I O

Take Xn = C(log n)n-c/(y + @n). Then Xn < Cn-c by the choice of on (recall that

the constant c, in the definition of 4n is sufficiently small). By Lemma 19,

c _PIAO - C(log n)/ 2n-c/(y + On) > C _"_A , .

Therefore,

P(S C Snus) P(max(-e./V) < cPIA"_ - Cn-
SESn Clyn-~nXn

> 1 - 7 - #n - xn - Cn-'.

The result follows since Yn + On + xn < Cn-c by the definitions of i/n and xn and

A19. E

Lemma 29. P(SRMS S 1 - Cn- uniformly over the set of models 900.

Proof. By Lemma 24, P(cfI_ > cfI; ) < Cn-c. It follows from Lemma 23 that

(max8ESn(V/V.) <1 + Cn-c) > 1 - Cn-c. If f = 0,, then for any s E Sn, f, = e,.
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So,

P(SnMS = Sn) = P(min(e,,/V) > -2c
sES1

> P(min(e,/V,) > - 2cfIAU_ ) - Cn-c
8ESn y~~

> P(min(e,/V,) max(V,/V,) > - 2 cIA _ ) -Cn
SESn SESn

> P(min(e8 /V)(1 + Cn-c) > -2cfI' 0 ) - Cn-'
SESn -fnn

> P(min(e.,/V,) > -2cf_ 0 , (1 - Cn-c)) - Cn-

> P(min(e./V,) > -cfIA"_ ) - Cn-c
SESn -fnO

= P(max(-,/V,) < cf_1 ) - Cn-'.
SESn -n-O

Combining these results with Lemma 25 yields

P(SnRuS = Sn) > 1 -1 -f -On - Cn-c.

The result follows by noting that y + ?P, < Cn-'. 5

Lemma 30. P(cPIA > C0Igo n) ( Cn-" and P(cRMS > C/ ) c

sufficiently small and large c and C, respectively, uniformly over the set of models g.

Proof. Since SRMS C Sn, it follows that cMS < cP!A. Therefore, the second claim

follows from the first one. To prove the first claim, note that by Lemma 24, P(cfPIA <

cI) ( Cn-c. In addition cf_ < Cv/log n by Lemma 22. Combining these results

yields the asserted claim.

Lemma 31. Let r > 1, L > 0, x = (X1,..., Xd) E Rd, h = (h, ... , hd) E Rd, and

g E F(r, L) for some C = 1,...,[T]. Then Og(x1, ... , Xd)/Oxm > 0 for all m = 1, ... , d

implies that for any y = (y1, ... , yd) E Rd satisfying 0 ( y h,

g(x + y) - g(x) > - max(L , L)||h

for (=min( + 1, -).

Proof. For any y = (y1,...,yd) E Rd satisfying 0 y < h, let 1 = y/|y|. Then
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gGl'1 )() > 0. If g('")(x + t1) > 0 for all t E (0, I|y||), the result is obvious. If

g(1'")(x + tol) = 0 for some to E (0, I|y||), then g(k'l)(x + tol) = 0 for all k = 1, ... , s. If

= [r], then by Holder smoothness, g([rT]l) (x + t1) > -(L(t - to))T-[]. Integrating it

[T] times gives

g(x + y) - gx)- L||yl (2.22)
] r(... T ( - [I ± j)

since ( = r in this case. If ; < [r], then g(z'O(x + t1) > -L(t - to). Integrating it ;

times gives the inequality similar to (2.22) with g + 1, 4, and L instead of C, [T], and

LT-[T] correspondingly. The result follows by noting that Iy|| < ||h||. 5

2.8.7 Proofs of Theorems

Proof of Theorem 1. Consider any w E go. For any s E Sn, f, ( 0 since the kernel

K is positive by A17. By Lemma 24, P(cfI2' > cfLA) ( Cn-c. By Lemma 23,

P(maxSEsn(V/V,) < 1 + Cn-c) > 1 - Cn-c. So,

P(T cfL) = P(max(f^/V.) cfl_.)

> P(max(e,/V,) c _IA)

> P(max(e8 /V.) c_"P %) - c

> P(max(e,/V,) max(V/V,) c_" ) - Cn-c
SESn sES 9

) P(max(e./V)(1 + Cn-) c_"P2,) - Cn-c.
SESn - -

Let Xn = C(log n)n-. Since P(maxBEsn le,/Vl > C/logn) < Cn-c for sufficiently

small and large c and C, respectively, by Lemma 26, an application of Lemma 19

shows that the last expression is bounded from below by

P(max(e,/V) c 0_f O)Cnc
SES.

Then P(T ( cff) > 1 - a - Cn-c follows from this bound and Lemma 25 since

On + Xn < Cn-c.
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Now consider the RMS critical value. By Lemma 28, P(c _D > c _Ms) < Cn-'.

By Lemma 27, P(maxEsxsD // 8, > 0) Cn-. So,

P(T caf,) = P(max(fs/V,) . cRS)
sESn

P(max(fs/V) (c) - Cn-.
sESn

Since S is nonstochastic, from this point, the argument similar to that used in the

proof for the plug-in test function with S instead of Sn yields the result for the

RMS critical value. Note that all asymptotic results in this part of the proof hold

uniformly over go.

Next consider any w E goo so that f = 0,. By Lemma 24, P(cPI'0 < c _IA) <

Cn-'. By Lemma 23, P(minEsn(V/V,) 1 - Cn-c) > 1 - Cn-c. So,

P(T <c4_Lf) = P(max(f^/V,)cPI.A)
SESn

= P(max(e8,/V,) cfL)
SESn

P(max(e.,/V,) c +± Cn-'
SESn

< P(max(e,/V,) min(V,/V,) (c_'IAO + Cn-c
SESn SESn

P(max(e,/V,)(1 - Cn-c) < c PIA, ) + Cn-c
sESn

An argument like that used above shows that the last expression is bounded from

above by 1 - a + Cn-c.

For the RMS critical value, note that by Lemma 29, P(SMs = Sn) > I - Cn-c

whenever f = 0,. So,

P( RMS PIA-) _-
P(T 1RMS) = P(T 1_.~ +±Cn-c < 1 - a±+Cn-c.

Note that all asymptotic results in this part of the proof hold uniformly over goo. O

Proof of Theorem 2. For any w E 9p, there exist i E N and m = 1,...,p such that

f,m(Xi) > 3p/4. By A15, there exists a ball B6 (X) with center at Xi and radius 6
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such that fm(Xj) > p/2 for all Xj E B6 (Xi). Note that 6 can be chosen independently

of w. So, for some N E N and any n > N, there exists a triple sn = (in,m, hn) E Sn

with hn bounded away from zero such that fm(Xj) > p/2 for all Xj E Bh,(Xi.).

Hence, f,, > p/2. Lemma 21 gives V, Cn-4 for some 4 > 0, so f.,8 /V,. > cne.

By Lemma 23, P(IVBn/Vs, - 11 > Cn-c) ( Cn-r. So, P{f.,n/V, > cn*} > 1 - Cn-c

for sufficiently small c > 0. Thus,

P(T ( cf_,~) 8 P(f.,/V., ( cf_ ± max 1e,/.,1)
,ESn

< P(c_, + max le,/V,| > cnO) + Cn-c.
,esn

The result follows by noting that from Lemmas 26 and 30, P(cfa+maxaES.| e8/1/, >

CVlog n) < Cn-c.

Proof of Theorem 3. Let fO = f(wo) and for all n > 1, fn = f(Wn). As in the proof

of Theorem 2, since p(wo, HO) > 0, there exists i E N such that f O(Xi) > 3p/4 for

some m = 1, ... , p and p > 0. In addition, by A15, there exists a ball B5(Xi) such that

f 0(Xj) > p/2 for all Xj E B 5 (Xi). So, for some N E N and any n > N, there exists a

triple s, = (in, m, hn) E Sn with hn bounded away from zero such that fmo(Xj) > p/ 2

for all Xj E Bhn(Xin). Hence, f," > anp/2. By Lemma 21, Vn < C//fn. Then

Lemma 23 gives P(f,"/V,. > can//i) - 1. The same argument as in the proof of

Theorem 2 yields

P(T ( c4l_) (P(cp + max > canvi) + 0(1).
1- ESn EI81> n/

Combining c_ + maxEsle,/V1 = O,(/log n) and an/logn -* oo gives the

result.

Proof of Theorem 4. First, consider -r 1 case. In this case, = r. Since d> 1, I

have ( d. Consider any w E go. Since infWVgg, p,(w, Ho)/h c -+ oo, there exists

a sequence an of positive numbers such that an -+ oc and p(w, HO) > anhCja, and

so there exist i E N0 and m = 1, ... , p such that fm(Xi) > anh in. Let Sn(w) =

(i, m, hmin) E Sn. By A15, fm(Xi) > canh in for all = 1, ...,n such that X E
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Bhmin(Xi). So, f..(,) > canhi.. By A16, nh34/log n > c. By Lemma 21, V8n(e)

C/v/nh .n. So,

fs.(w)/(Vn() \/iogn) > ca,Vnhd / log n > can nhmi/logn -+ 00

uniformly over w E g0. The result follows from the same argument as in the proof of

Theorem 2.

Consider r > 1 case. Suppose ( ( d. For any w E g,, there exist i E N0 and

m = 1, ... ,p such that fm(Xi) > anh(. where an is as defined above. For m = 1, ... , d,

set em = 2hmin if Ofm(Xi)/9Xzm ) 0 and -2hmin otherwise. Consider the cube C

whose edges are parallel to axes and that contains vertices (Xi,1 , ... i,) and (Xi,1 +

2ei, .. ,Xi,d + 2ed). By Lemma 31, for all x E C, fm(x) > cash( i 1 . By the definition

of NO and A13, there exists 1 = 1, ... , n such that X E Bhmin(Xi,1 + ei, ... , Xi,d + ed).

Let sn(w) = (1, m, hin) E Sn. Then f,,,m > canh( -. The rest of the proof follows

from the same argument as in the case T ( 1.

Suppose ( > d. The only difference between this case and the previous one

is that now optimal testing bandwidth value is greater than hmin. Let h, be the

largest bandwidth value in the set Sn that is smaller than C(log n/)1/(2c+d). For

any w E 0 , the same construction as above gives sn(w) = (1, m, h,) E Sn such

that fm(Xj) > p0 (w, Ho) - Ch, for all j = 1, ... ,n such that Xj E Bh0 (XL). Since

po(w, Ho) > an(log n/n)C/(2c+d) for some sequence of real numbers an such that an -

oo as n -* oo, fn () > (an - C)(log n/n)C/(2C+d). By Lemma 21, V,.(,) C/ 1 /Fz.

Then

f,) ()) c(an - C) - oo.

The result follows as above. 0

Proof of Theorem 5. First, define functions bi, ..., bK on (0, 1] for K = [r] by the

following induction. Set bi(x) = +1 for x E (0, 1/2] and -1 for x E (1/2, 1]. Given

bl,..., bk-1, for i = 1 , 3 ,..., 2k - 1 and x E ((i - 1)2 -k7i 2 -k], set bk(x) = +1 if bk_1(y) =

+1 for y E ((i - 1)2-k(i + -)2 k] and -1 otherwise. For i = 2 , 4 , ... 2k and x E
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((i - 1) 2 -k, i 2 -k], set bk(x) = -1 if bk-l(y) = +1 for y E ((i - 2 )2 -k, 2 -k] and +1

otherwise.

Now let us define v : R x R+ -+ R+. Set v(x, h) = 0 if x < 0 or x > 2 for all

h E R+. For x E [0, 2], v will be defined through its derivatives. Set akv(0, h)/&Xk = 0

for all k = 0, ... ,K. For i = 1, ..., 2K, once function OKV(x, h)/aXK is defined for

x E [0, (i - 1)2 -K] set

oKV(x h)/9XK = OKV((i 1 )2 -K h)/19XK + bK(x)hKL(x - (i - 1) 2 -K)r-K

for x E ((i - 1) 2 -K, 2 -K]. These conditions define function v(x, h) for x E [0, 1] and

h E R+. For x E (1, 2] and h E R+, set v(x, h) = v(2 - x, h) so that v is symmetric

in x around x = 1. It is easy to see that for fixed h E R+, v(-/h, h) E F[](-r, L) and

supXER v(x/h, h) E (CihT, C 2h7) for some positive constants C1 and C 2 independent

of h.

Let q : Rd x R+ - R+ be given by q(x,h) = v(|x|ll/h + 1,h) for all (x,h) E

Rd x R+. Note that for fixed h E R+, q(-, h) E F[r](r, L), q(x, h) = 0 if ||x|| > h, and

q(Od, h) = sup.,Rdq(x, h) E (Cihr, C2 hr).

Since r,(n/ log n)r/(2r+d) -* 0, there exists a sequence of positive numbers {0"}.

such that rn = $" (log n/n)r/(2r+d) and 7p' -+ 0. Set hn = On(log n/n)1/(2r+d). By the

assumption on packing numbers N(h, S 0 ), there exists a set {j(l) E No : 1 = 1, ... , Nn}

such that IIXjii) - Xj(12)|| > 2h, for 11,12 = 1,...,Nn if 11 5 12 and Nn > Ch-d

for some constant C. For l=1,...,N, define function f1 : Rd -+ RP given by

fI(x) = q(x - Xj(), hn) and f,(x) = 0 for all m = 2,..., p for all x E Rd. Note

that functions {f'}fj, have disjoint supports. Moreover, for every 1 = 1, ..., Nn and

m = 1, ... ,'p, pf E F1,](T, L). Let {e}%1 be a sequence of independent standard

Gaussian random vectors N(0, I,). For 1 = 1, ... , Nn, define an alternative w, as a

model with the regression function f', disturbances {E} 1 and design points {X}Li.

Note that p0 (w, HO) > Cr, for all 1 = 1, ... , Nn for some constant C. In addition, let

wo be a model with zero regression function, disturbances {ej}gi and design points

{xi}01 .
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As in the proof of Lemma 6.2 in [42], for any sequence #$ = #5(Y, ..., Y) of tests

with suPmegfng, Ew[#,|j < a,

N.

inf E[]-< min E,,,[$n,]-E, Emm E ] - Ewa [E] (wo[#n]
wEgx,p6(w,Ho)>Crn =1,...,Nn

Nn Nn

< ( Ewo (dP/dPwO|)/Nn - ) On] K Ewo [ (dP 1/dPwO)/Nn - 1

where dPW,/dPw, denotes a Radon-Nykodim derivative. Let w, = (Z" (fl(X,))2)i/ 2

and ; = j" fj(Xj)ei,1/ow. Then

dPwj|dPwO = exp(w 1 - w12|2).

Note that w < Cn1h2h +d/2 . In addition, under the model wo, (; are independent

standard Gaussian random variables. So, an application of Lemma 20 gives

- Nn

Ewo [ (dP 1/dPO)/Nn - 1 -+0

. i=1 II

if Cni/2h +d/2 < C(log Nn) 1/2 for some constant C E (0, 1) for all large enough n.

The result follows by noting that n1/2h+d/ 2 = o(i/logn) and log Nn > Clog n for

some constant C. U

Proof of Corollary 1. The proof follows from the same arguments, line by line, as

those used in the proof of Theorem 1. Condition pn log n < C 6nc6 for some sufficiently

small and large c6 and C is required to make sure that one can define a sequence @n

such that #kn > CV,(pn log n)1/ 2 /c+ for some sufficiently small and large cp and C-0,

respectively, and on < Cn-c. 0

Proof of Corollary 2. To prove the first result, note that fm(Xi, Z) < Can for all

i E N and m = 1, ... , p. So, f, Ca. for any s E Sn. Therefore, combining Lemmas
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21 and 23 gives

P(max(f./V,) < Ca nahdiax) > 1 - Cn-c.
SESn

Since an fnahmax log n ( Cn-c, the bias is asymptotically negligible in comparison

with the concentration rate of the test statistic. Therefore, the argument like that

used in the proof of Theorem 8 leads to

P(T < c_,,) > P(max(e,/V) <ca_) - Cn-" = 1 - a + Cn-c
SESn

for P = PIA or RMS.

The second result follows from the same argument as in the proof of Theorem 8

since -Can , f., Can ensures that the bias is again asymptotically negligible in

the comparison with the concentration rate of the test statistic.

Finally, consider the third part of the corollary. If pz(w, HO) > p, then for suffi-

ciently large n, there exists a triple s, = (in, m, hn) E Sn with hn bounded away from

zero such that fm(Xj) > p/2 for all Xj E Bhn(Xin) and ||X2 - xoll ( an. The rest

of the proof follows from the argument similar to that used in the proof of Theorem

9. 0
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Chapter 3

Central Limit Theorems and

Multiplier Bootstrap when p is

much larger than n

3.1 Introduction

Let xi, ... , x,, be independent random vectors in RP, with each xi having coordinates

denoted by xij, i.e., xi = (xz1,..., Xi,)'. Suppose that each x is centered, namely

E[xz] = 0, and has a finite covariance matrix E[Xix']. Consider the rescaled average:

X := (X1,. X,)' := i. (3.1

Our goal is to obtain a distributional approximation for the statistic To defined as

the maximum coordinate of vector X:

To:= max Xj,
1 j<p

The distribution of To is of interest in many applications. When p is fixed, this

distribution can be approximated by the classical Central Limit Theorem (CLT)

applied to X. However, in modern applications, cf. [24], p is often comparable or
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even larger than n, and the classical CLT does not apply in such cases. This paper

provides a tractable approximation to the distribution of To when p is large and

possibly much larger than n.

The first main result of the paper is the Gaussian approximation theorem, which

bounds the Kolmogorov distance between the distributions of To and its Gaussian ana-

log Zo. Specifically, let yi,... , yn be independent centered Gaussian random vectors in

RP such that each y2 has the same covariance matrix as xi, namely yi ~ N(O, E[xix']).

Consider the rescaled average of these vectors,

1 (3.2)Y := (Y,.. Y)' := y (.2

Vector Y is the Gaussian analog of X in the sense of sharing the same mean and co-

variance matrix, namely E[X] = E[Yj = 0 and E[XX'] = E[YY'] = n- 1 Xjn 1 E[xizx'.

We then define the Gaussian analog Zo of To as the maximum coordinate of vector

Y:

Zo := max Y. (3.3)

Our main result shows that, under suitable moment assumptions, as n -+ oo and

possibly p = pn -+ oo,

p:= sup |P(To < t) - P(Zo < t)| < Cn-c -+ 0, (3.4)
tER

where constants c > 0 and C > 0 are independent of n.

Importantly, in (3.4), p can be large in comparison to n and be nearly as large

as e*("7. For example, if xig are uniformly bounded (namely, Ix|iI < C1 for some

constant C1 > 0 for all i and j) the Kolmogorov distance p converges to zero at a

polynomial rate whenever (log p) 7 /n -+ 0 at a polynomial rate. We obtain similar

results when xij are sub-exponential and even non-sub-exponential under suitable

moment assumptions. Figure 3.1 illustrates the result (3.4) in a non-subexponential

example, which is motivated by the analysis of the Dantzig Selector of [27] in non-

Gaussian settings (see Section 3.4).
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n=400;p=5000
1

0 0.5 1 ~0 0.5 1

Figure 3-1: P-P plots comparing distributions of To and Zo in the example motivated by the
problem of seleting the penalty level of the Dantzig selector. Here xij are generated as zij -

zijej with ej ~ t(4), (a t-distribution with four degrees of freedom), and zij are non-stochastic
(simulated once using U[0, 1] distribution independently across i and j). The dashed line is 450.
The distributions of To and Zo are close, as (qualitatively) predicted by the CLT derived in the
paper: see Corollaries 3 or 4. The quality of the Gaussian approximation is particularly good for
the tail probabilities, which is most relevant for practical applications.

The proof of the Gaussian approximation result (3.4) builds on a number of tech-

nical tools such as Slepian's smart path interpolation (which is related to the solu-

tion of Stein's partial differential equation; cf. Appendix E), Stein's leave-one-out

method, approximation of maxima by the smooth functions (related to "free energy"

in spin glasses), and exponential inequalities for self-normalized sums. See, e.g.,

[106, 107, 41, 31, 108, 28, 39, 92] for introduction and discussion of some of these

tools. It also critically relies on the anti-concentration and comparison bounds of

maxima of Gaussian vectors derived in [34] and restated in this paper as Lemmas 32

and 34.

Our new Gaussian approximation theorem has the following innovative features.

To the best of our knowledge, this is the first general result that establishes that

maxima of sums of random vectors can be approximated in distribution by the max-

ima of sums of Gaussian random vectors when p > n and especially when p is of

order e'c for some c > 0. The existing techniques can also lead to results of the form

(3.4) when p = p,, -+ oo, but under much stronger conditions on p. For example,
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Yurinskii's coupling implies (3.4) but requires p5 /n -+ 0; see Example 17 (Section 10)

in [94]. Second, our Gaussian approximation theorem covers cases where To does not

have a limit distribution as n -+ oo and p = pn -+ O. In some cases, after a suitable

normalization, To could have an extreme value distribution as a limit distribution,

but the approximation to an extreme value distribution requires some restrictions on

the dependency structure among the coordinates in xi. Our result does not require

such restrictions on the dependency structure. Third, the quality of approximation

in (3.4) is of polynomial order in n, which is better than the logarithmic in n quality

that we could obtain in some (though not all) applications using the approximation

of the distribution of To by an extreme value distribution (see [71]).

Our result also contributes to the literature on multivariate central limit theorems,

which are concerned with conditions under which

IP (X E A) - P (Y E A)| - 0, (3.5)

uniformly in a collection of sets A, typically all convex sets. Such results were devel-

oped among others, by [89, 96, 53, 17, 30], under conditions of type pc/n -+ 0 (also

see [29]). These results rely on the anti-concentration results for Gaussian random

vectors on the 6-expansions of boundaries of arbitrary convex sets A (see [14]). Note

that our result also establishes (3.5), but uniformly for all convex sets of the form

Amax = {a E RP : maxij<, a< ( t} for t E R. These sets have a rather special struc-

ture that allows us to deal with p > n: in particular, concentration of measure on

the 6-expansion of boundary of Am,, is at most of order V'ogp for Gaussian random

vectors with unit variance, as shown in [34] (see also Lemma 32). (The relation (3.5)

with A = Am. explains the sense in which we have a CLT, as appearing in the title

of the paper.)

Note that the result (3.4) is immediately useful for inference with statistic To, even

though P(Zo < t) needs not converge itself to a well behaved distribution function.

Indeed, if the covariance matrix n- 1 E' E[xxf] is known, then czo(1 - o) := (1- a)-
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quantile of Zo, can be computed numerically, and we have

IP(To < czo (1 - af)) - (1 - a)I Cn-* -+ 0. (3.6)

A chief application of this kind arises in determination of the penalty level for the

Dantzig selector of [27] in the high-dimensional regression with non-Gaussian errors,

which we examine in Section 5. There, under the canonical (homoscedastic) noise, the

covariance matrix is known, and so quantiles of Zo can be easily computed numerically

and used for choosing the penalty level. However, if the noise is heteroscedastic, the

covariance matrix is no longer known, and this approach is no longer feasible. This

motivates our second main result.

The second main result of the paper establishes validity of the multiplier boot-

strap for estimating quantiles of Zo when the covariance matrix n- E D 1 E[xix'] is

unknown. More precisely, we define the Gaussian-symmetrized version WO of To by

multiplying xi with i.i.d. standard Gaussian random variables e1,..., en:

Wo:= max 1 xijej. (3.7)

We show that the conditional quantiles of W given data (xi)!'i are able to con-

sistently estimate the quantiles of Zo and hence those of To (where the notion of

consistency used is the one that guarantees asymptotically valid inference). Here

the primary factor driving the bootstrap estimation error is the maximum difference

between the empirical and population covariance matrices:

A := max E (Xijzik - E[Xijxik])
1( j, k< p n =

which can converge to zero even when p is much larger than n. For example,

when xi5 are uniformly bounded, the multiplier bootstrap is valid for inference if

(log p) 7/n -+ 0. Earlier related results on bootstrap in the "p -+ oo but p/n -+ 0"

regime were obtained in [78]; interesting results for the case p > n based on con-
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centration inequalities and symmetrization are studied in [8, 9], albeit the approach

and results are quite different from those given here. In particular, in [8], either

Gaussianity or symmetry in distribution is imposed on the data.

The key motivating example of our analysis is the high-dimensional sparse re-

gression model. In this model, [27] and [19] assume Gaussian errors to analyze the

Dantzig selector and Lasso. Our results show that Gaussianity is not necessary and

the Gaussian-like conclusions hold approximately, with just the fourth moment of the

regression errors being bounded. Moreover, our approximation allows to take into ac-

count correlations among the regressors. This leads to a better choice of the penalty

level and tighter bounds on performance than those that had been available previ-

ously. For example, some of the same goals had been accomplished using moderate

deviations for self-normalized sums, combined with the union bound [16]. However,

the union bound does not take into account correlations among the regressors, and

so it may be overly conservative in some applications.

Our results have a broad range of other applications. In addition to the high-

dimensional estimation example, we show in the Supplemental Material how to apply

our results in the multiple hypothesis testing via the step-down method of [103] and

to specification testing. In either case number of hypotheses to be tested or the

number of moment restrictions to be tested can be much larger than the sample size.

Lastly, in a companion work ([32]), we are exploring the strong coupling for suprema

of general empirical processes based on the methods developed here and maximal

inequalities. These results represent a useful complement to the results based on

the Hungarian coupling developed by [69, 22, 67, 98] for the entire empirical process

and have applications to inference in nonparametric problems such as construction of

uniform confidence bands (see, e.g., [51]).

3.1.1 Organization of the paper

In Section 3.2, we give the results on Gaussian approximation, and in Section 3.3 on

the multiplier bootstrap. In Section 3.4, we present an application to the Dantzig

selector. Appendices 3.5-3.8 contain proofs for each of these sections, with Appendix
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3.5 stating auxiliary tools and lemmas. Due to the space limitation, we put additional

results and proofs into Supplemental Material, Appendices 3.11-3.10. In particular,

Appendices 3.11 and 3.12 provide additional applications to multiple hypothesis and

adaptive specification testing.

3.1.2 Notation

In what follows, unless otherwise stated, we will assume that p ; 3. In making

asymptotic statements we assume that n -+ oo with understanding that p depends

on n and possibly p -+ oo as n -+ 00. Constants c, C, ci, C 1 , c2 , C2, ... are understood

to be independent of n. Throughout the paper, En[-] denotes the average over index

1 ; i ; n, i.e., it simply abbreviates the notation n-1 "[- E.g., En[?] =

n i- x?. In addition, @[] = En[E[-]]. For example, E[x?] = n-1 Z 1 E[].

For a function f : R -+ R, we write Bkf(x) = ef(x)/19x for nonnegative integer

k; for a function f : RP -+ R, we write Oyf(x) = af(x)/8xj for j = 1,... ,p, where

X = (X1,..., xp)'. Denote by Ck(R) the class of k times continuously differentiable

functions from R to itself, and denote by Cbk(R) the class of all functions f E Ck(R)

such that supzER lDif(z)| < 00 for j = 0, ... , k. We write a < b if a is smaller than or

equal to b up to a universal positive constant. For a, b E R, we write aVb = max{a, b}.

3.2 Central Limit Theorems for Maxima of Non-

Gaussian Sums

3.2.1 Comparison Theorems and Non-Asymptotic Gaussian

Approximations

The purpose of this section is to compare and bound the difference between the

expectations and distribution functions of the non-Gaussian to Gaussian maxima:

To:= max Xi and Zo := max Y,
1*jAp lij<p
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where vector X is defined in equation (3.1) and Y in equation (3.2). Here and in

what follows, without loss of generality, we will assume that (xz) 1 and (yj)' _1 are

independent. The following envelopes and bounds on moments will be used in stating

the bounds in Gaussian approximations:

Si := max(lxijl + y;5|), Mk := max (E[A])l/k. (3.8)
1 j p 1(jsp

The problem of comparing distributions of maxima is of intrinsic difficulty since

the maximum function z = (zi,..., z,)' '-+ max 1j,, zj is non-differentiable. To

circumvent the problem, we use a smooth approximation of the maximum function.

For z = (zi, ... ,z,)' E RP, consider the function:

Ffi(z) := #-'log exp(#z)),

which approximates the maximum function, where # > 0 is the smoothing parameter

that controls the level of approximation (we call this function the "smooth max

function"). Indeed, an elementary calculation shows that for all z E RP,

0 FyO(z) - max zj < #-1 logp. (3.9)

This smooth max function arises in the definition of "free energy" in spin glasses; see,

e.g., [108].

We start with the following "warm-up" theorem that conveys the main qualitative

feature of the problem. Here and in what follows, for a smooth function g : R -* R,

write

Gk := sup Okg(z)|, k ; 0.
zER

Theorem 13 (Comparison of Gaussian to Non-Gaussian Maxima, I). For every

g E C(R) and # > 0,

|E[g(Fp(X)) - g(Fp6(Y))]| ,< n-1/2 (G3 + G2 # + G1 #2 )5[Sf],
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and hence

JE[g(To) - g(Zo)]| ;< n- 1 '2 (G3 ± G2f + G1 # 2 )N[Si] + #-'G 1 log p.

Comment 13 (Optimizing the bound). The theorem bounds the difference between

the expectations of smooth functions of maxima. The optimal value of the last bound

is given by

min n- 1 2 (G 3 + G20 + G,1
2 [Sil ± -1G 1 log p.

/>0

We postpone choices of 3 to the proofs of subsequent corollaries, leaving ourselves

more flexibility in optimizing bounds in those corollaries. G

Deriving a bound on the Kolmogorov distance between distributions of To and

Zo from Theorem 13 is not a trivial issue and this step relies on the following anti-

concentration inequality for maxima of Gaussian random variables, which is derived

in [34].

Lemma 32 (Anti-Concentration). Let (1, ... , , be (not necessarily independent) cen-

tered Gaussian random variables with o- := E[ ?] > 0 for all 1 < j < p. Let

_ = minij, p o-j and & = maxi,<, o-j. Then for every C > 0,

sup P | max ( - zj CC 1 V log(p/c),
zER 14jlp

where C > 0 is a constant depending only on a and &. When o- are all equal, log(p/c)

on the right side can be replaced by log p.

By Theorem 13 and Lemma 32, we can now derive a bound on the Kolmogorov

distance between distributions of To and Zo.

Corollary 3 (Central Limit Theorem, I). Suppose that there are some constants

c 1 > 0 and C1 > 0 such that c1 < E[x?.] < C1 for all 1 j < p. Then there exists a

constant C > 0 depending only on c1 and C 1 such that

p:= sup IP(To < t) - P(Zo < t)| < C(n- 1(log(pn))7)1 /8 ([Si]) 1/ 4.
tER
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Comment 14 (Main qualitative feature: logarithmic dependence on p). Theorem 13

and Corollary 3 imply that the error of approximating the maximum coordinate in the

sum of independent random vectors by its Gaussian analogue depends on p (possibly)

only through log p. This is the main qualitative feature of all the results in this paper.

Note also that the term E[Si ] implicitly encodes the complexity of the vectors, in

particular it will reflect the correlation structure of vectors X and Y. However, both

Theorem 13 and Corollary 3 and all subsequent results given below do not limit the

dependence among the coordinates in xi. 0

Comment 15 (Motivation for the next result). While Theorem 13 and Corollary 3

convey an important qualitative aspect of the problem and admit easy-to-grasp proofs,

an important disadvantage of these results is that the bounds depend on P[Si3]. If

IE[Si] < C, Corollary 3 leads to p = O((n-'(log(pn) )7 )1 /8 ) and p -+ 0 as long as

logp = o(n 1 / 7 ). This is the case when, for example, as in caption to Figure 1,

xij = zijej, zij are non-stochastic with IzijI < C, E[|EsI 3] , C.

When E[Si3] increases with n, however, the bounds need not be as good, and can

be improved considerably by using a truncation method. Using such a method in

conjunction with the proof strategy of Theorem 13, we derive in Theorem 14 below a

bound that can be much better in the latter scenario. The improvement here comes at

a cost of a more involved statement, involving truncation parameters. G

To derive our next main result, we employ a truncation method. Given a threshold

level u > 0, define a truncated version of xij by

ig = xig1 {Ixij | u(B4xy])12} - E [xij1 {Ixij| u(I[x?.])11 2 }] . (3.10)

Let <p2(u) be the infimum, which is attained, over all numbers <p ; 0 such that

E [xi. {| XjI > u(2[x2 ])1/ 2 1] <W 2 N[x?_]. (3.11)

Note that the function <p, (u) is right-continuous; it measures the impact of truncation

144



on second moments. Define u.,(-y) as the infimum u > 0 such that

p (IX~il <U(E[4j])'/ 2,1 <_j <n,1 <j p) 1- Y.

Also define p. (u) and u(-y) by the corresponding quantities for the analogue Gaussian

case, namely with (xj)ti1 replaced by (yi)12.i in the above definitions. Throughout

the paper we use the following quantities:

<p(u) := pX(u) V <py(u), u(b) := ux(Y) V uy(Y).

Here is the main theorem of this section. Recall the definition of Mk in (3.8).

Theorem 14 (Comparison of Gaussian to Non-Gaussian Maxima, II). Let # > 0, u >

0 and y E (0, 1) be such that 2v ZuM 2 /vrn < 1 and u > u(y). Then for every

g E C(R),

JE[g(F#(X)) - g(F3(Y))]| < Dn(g, #, u,7),

and hence

E[g(To) - g(Zo)] I Dn(g, #, U, 7) ± #~ 1Gi logp,

where

Dn(g, #, u, -Y) := n-1 2 (G3 + G G1 #32 )M3 ± (G2 + PG1)M 2
2 ,,(u)

+ G1M 2<p(u) Vlog(p/7) + Goy.

By Theorem 14 and Lemma 32, we can obtain a bound on the Kolmogorov distance

between the distribution functions of To and Zo.

Corollary 4 (Central Limit Theorem, II). Suppose that there are some constants
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0<ci < C1 such that ci < 2[x] < C1 for 1 < j < p. Then for everyyE (0, 1),

p < C n-1/8(M 33/4 V M41 2)(log(pn/sy))7/8 + n-1 2 (log(pn/2))3 7uY) + ,

where C > 0 is a constant that depends on c1 and C1 only.

In applications it is useful to bound the upper function u(y). Here is a simple

and effective way of doing this. Let h : [0, oo) -+ [0, oo) be a Young-Orlicz modulus,

i.e., a convex and strictly increasing function with h(0) = 0. Denote by h- 1 the

inverse function of h. Standard examples include the power function h(v) = v4 with

inverse h- 1 (-) = _9 /q and the exponential function h(v) = exp(v) - 1 with inverse

h-'(y) = log(-y + 1). These functions describe how many moments the random

variables have, for example, a random variable ( has finite q-th moment if E[(|4] < oo,

and is sub-exponential if E[exp(||/C)] < oo for some C > 0. We refer to [111],

Chapter 2.2, for further details on Young-Orlicz moduli.

Lemma 33 (Bounds on the upper function u(-y)). Let h : [0, oo) -+ [0, oo) be a Young-

Orlicz modulus, and let B > 0 and D > 0 be constants such that (E[x ])1/ 2 < B for

all 1 < i < n,1 j < p, and E[h(max~ Jx1, |I|D)] < 1. Then under the condition

of Corollary 4,
u(y) < Cmax{Dh-1(n/-),BV/log(pn/y)},

where C > 0 is a constant that depends on c1 and C1 only.

In applications, parameters B and D (with M3 and M 4 as well) are allowed to

increase with n. The size of these parameters and the choice of the Young-Orlicz

modulus are case-specific.

3.2.2 Examples of Applications

The purpose of this subsection is to obtain bounds on p for various leading examples

frequently encountered in applications. We are concerned with simple conditions

under which p decays polynomially in n.
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Let ci > 0, c2 > 0, C 1 > 0 be some constants, and let B, > 1 be a sequence of

constants. We allow for the case where B,, -+ oo as n -+ oo. We shall first consider

applications where one of the following conditions is satisfied uniformly in 1 ( i ( n

and 1 (j p:

(E.1) E[4] > ci and E[Sf] < C1 ;

(E.2) E[4] > cl and E[exp(|xijl/C 1 )] < 2;

(E.3) c1 < E[xf] < C1 and IxjIy < Bn.

Comment 16. Condition (E.1) is perhaps the simplest example in this paper; under

this condition application of Corollary 3 is effective. A concrete example with condi-

tion (E.1) satisfied is the case where xij = zijej, zij are non-stochastic with Izij < C,

and E[|ej|3] < C. Conditions (E.2)-(E.5) are more elaborate, intended to cover cases

where moments of the envelopes Si and higher order moments M 3 and M 4 increase

with n. In these cases the use of Corollary 3 is not effective, and we shall use Corollary

4 instead. Condition (E.2) covers vectors xi made up from sub-exponential random

variables, including sub-Gaussian as a special case; this example is quite often used

in high-dimensional statistics. Condition (E.3) covers variables that are bounded by

Bn, which may increase with n; many applications, after a suitable truncation, can

be covered by it. l

We shall also consider regression applications where one of the following conditions

is satisfied uniformly in 1 < i ( n and 1 ( j < p:

(E.4) xig = zigEij, where zi are non-stochastic with Iziil < Bn, En[z?] = 1, and

E[Eij] = 0, E[e?] > ci, and E[exp(|eij|/C1)] ( 2; or

(E.5) xij = zijEij, where zi are non-stochastic with |z.iI < Bn, E [z?] = 1, and

E[Eij] = 0, E[e[] > ci, and E[maxigs<,p e] ( C 1 .

Comment 17. The last two cases cover examples that arise in high-dimensional

regression, e.g., [27], which we shall revisit later in the paper. Typically, eij are inde-

pendent of j (i.e., eij = ej) and hence E [max1,<,e ] ( C1 in condition (E.5) reduces
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to E[ef| < C1 (we allow Eij dependent on j so that Corollary 5 covers the multiple

hypothesis testing example in Appendix 3.11). Interestingly, these examples are also

connected to spin glasses, see e.g., /108] and [92] (zij can be interpreted as generalized

products of "spins" and ej as their random "interactions"). E

Corollary 5 (Central Limit Theorem in Leading Examples). Suppose that

one of the following conditions is satisfied: (i) condition (E.1) and (log(pn)) 7 /n <

C1 n-c2; (ii) condition (E.2) and (log(pn)) 7/n < Cin-c2; (iii) condition (E.3) and

Bn(log(pn))7 /n < Cin-c2 ; (vi) condition (E.4) and B2(log(pn)) 7/n < C1n-2; or (v)

condition (E.5) and Bn(log(pn))7 /n < C 1n-c2. Then there exist constants c > 0 and

C > 0 depending only on c1 , c2 and C1 such that

p < Cnc.

Comment 18. Cases (ii)- (v) indeed follow relatively directly from Corollary 4 with

help of Lemma 33. Moreover, from Lemma 33, it is routine to find other conditions

that lead to the conclusion of Corollary 5.

3.3 Multiplier Bootstrap

3.3.1 A Gaussian-to-Gaussian Comparison Theorem

The proofs of the main results in this section rely on the following lemma. Let

V and Y be centered Gaussian random vectors in RP with covariance matrices Ev

and E', respectively. The following lemma compares the distribution functions of

maxi y , Vand maxig,, Y in terms of p and

Ao : max |Egg - EY 1.
1, j, k:,sp k j

Lemma 34 (Comparison of Distributions of Gaussian Maxima). Suppose that there

are some constants 0 < c1 < C1 such that c1 < EK( < C1 for all 1 < j < p. Then
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there exists a constant C > 0 depending only on c1 and C1 such that

sup P (max Vy < t) - P (max Y (t ( CA / 3 (1 V log(p/AO)) 2 /3 .

Comment 19. The result is derived in [341, and extends that of [28] who gave an

explicit error in Sudakov-Fernique comparison of expecations of maxima of Gaussian

vectors. E

3.3.2 Multiplier Bootstrap Theorems

Suppose that we have a dataset (xj)t 1 consisting of n independent centered random

vectors xi in RP. In this section we are interested in approximating quantiles of

TO = max 1 E xi (3.12)

using the multiplier bootstrap method. Specifically, let (e) i be a sequence of i.i.d.

N(0, 1) variables independent of (xj)'i, and let

on= max x zixe 2. (3.13)

Then we define the multiplier bootstrap estimator of the a-quantile of To as the

conditional a-quantile of Wo given (xj)' 1 , i.e.,

cwo(a) := inf{t E R : Pe(Wo ( t) > a},

where Pe is the probability measure induced by the multiplier variables (ej) 1 holding

(xj)?=1 fixed (i.e., Pe(Wo < t) = P(Wo t | (xj) 1)). The multiplier bootstrap

theorem below provides a non-asymptotic bound on the bootstrap estimation error:

IP(To - cwo(a)) - al .

Before presenting the theorem, we first give a simple useful lemma that is helpful
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in the proof of the theorem and in power analysis in applications. Define

cZo(a) := inf{t E R: P(Zo < t) >

where Zo = max1 3 , Z: 1 yij/v/ and (yi)Ui is a sequence of independent N(0, E[xix'])

vectors. Recall that

A = max IE,[xijXik] - E[XijXik]|.
1 j,k*p

Lemma 35 (Comparison of Quantiles, I). Suppose that there are some constants

0 c < C1 such that c1 < E[xA] < C1 for all 1 <j < p. Then for everyaE (0,1),

P(cwo(a) < CZo (a + IF())) > 1 - P(A > 19 ),

P(czo(a) cWo (a + 7r (t9))) >1 - P(A > V),

where, for C 2 > 0 denoting a constant depending only on c1 and C 1 ,

(,) := C2,01/3(1 V log(p/t,)) 2/3 .

Recall that p := SUPtER IP(To < t) - P(Zo < t)|. We are now in position to state

the main theorem of this section.

Theorem 15 (Validity of Multiplier Bootstrap, I). Suppose that for some con-

stants 0 < c1 < C 1 , we have c1 < E[x] < C1 for all 1 < j < p. Then for any

' > 0,

sup IP(To < cwo(a)) - al p+ (d)+ P(A > d).
aE(0,1)

Theorem 15 provides a useful result for the case where the statistics are maxima

of exact averages. There are many applications, however, where the relevant statis-

tics arise as maxima of approximate averages. The following result shows that the

theorem continues to apply if the approximation error of the relevant statistic by a

maximum of an exact average can be suitably controlled. Specifically, suppose that

a statistic of interest, say T = T(x 1 ... ,x,) which may not be of the form (3.12),

can be approximated by To of the form (3.12), and that the multiplier bootstrap is
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performed on a statistic W = W(i,. . ., x,, ei,... , en), which may be different from

(3.13) but still can be approximated by WO of the form (3.13).

We require the approximation to hold in the following sense: there exist (1 > 0

and (2 > 0, depending on n (and typically (1 -+ 0, (2 -+ 0 as n -+ oo), such that

P(IT - Tol > (1) < (2,

P(Pe(IW - Woj > (1) > (2) < (2.

(3.14)

(3.15)

We use the a-quantile of W = W(i,... , x, e1,... , en), computed conditional on

(xi)!.i:

cw(a) := inf{t E R: Pe(W < t) > a},

as an estimate of the a-quantile of T.

Lemma 36 (Comparison of Quantiles, II). Suppose

Then for every a E (0,1),

P(cw(a) < cwo(a + (2) + (1)

P(cw0(a) < cw(a + (2) + (1)

that condition (3.15) is satisfied.

> (2,

> (2-

The next result provides a bound on the bootstrap estimation error.

Theorem 16 (Validity of Multiplier Bootstrap, II). Suppose that, for some

constants 0 < c1 < C1, we have c1 < R[A] < C1 for all 1 < j < p. Moreover,

suppose that conditions (3.14) and (3.15) are satisfied. Then for any t9 > 0,

sup P(T <cw(a))-al < p + r( ) + P(A > 9) + C3(1V 1 V log(p/(1) + (2,
aE(0,1)

where 7r(.) is defined in Lemma 35, and C3 > 0 depends only on c1 and C1.
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3.3.3 Examples of Applications: Revisited

Here we revisit the examples in Section 3.2.2 and see how the multiplier bootstrap

works for these leading examples. Let, as before, ci > 0, c2 > 0 and C1 > 0 be some

constants, and let B,, > 1 be a sequence of constants. Recall conditions (E.2)-(E.5)

in Section 3.2.2.

Corollary 6 (Multiplier Bootstrap in Leading Examples). Suppose that con-

ditions (3.14) and (3.15) hold with (1V10gp + C2 < Cin-2. Moreover, suppose that

one of the following conditions is satisfied: (i) condition (E.2) and (log(pn))7 /n <

C1 n- 2 ; (ii) condition (E.3), and Bn(log(pn))7 /n < Cin-C ; (iii) condition (E.4) and

Bn(log(pn))7/n < C 1n-2; or (iv) condition (E.5) and Bn(log(pn))7/n < Cin-C.

Then there exist constants c > 0 and C > 0 depending only on c1 , c2 and C 1 such that

sup IP(T cw(a)) - al < Cn-c.
ae(0,1)

Comment 20. This corollary shows that the multiplier bootstrap is valid with a poly-

nomial rate of accuracy for the significance level under weak conditions. This is in

contrast with the extremal theory of Gaussian processes that provides only a logarith-

mic rate of approximation (see, e.g., [71] and [56]). E

3.4 Application: Dantzig Selector in the Non-Gaussian

Model

The purpose of this section is to demonstrate the case with which the CLT and the

multiplier bootstrap theorem given in Corollaries 5 and 6 can be applied in important

problems, dealing with a high-dimensional inference and estimation. We consider the

Dantzig selector previously studied in the path-breaking works of [271, [19], [114] in

the Gaussian setting and of [68] in a sub-exponential setting. Here we consider the

non-Gaussian case, where the errors have only four bounded moments, and derive the

performance bounds that are approximately as sharp as in the Gaussian model. We
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consider both homoscedastic and heteroscedastic models.

3.4.1 Homoscedastic case

Let (zi, yi) 1 be a sample of independent observations where zi E RP is a non-

stochastic vector of regressors. We consider the model

yi = zi'#+ 6i, E[Ei] =0, i =1,..n E,[z2] = 1, j = 1,...,7p,

where yi is a random scalar dependent variable, and the regressors are normalized in

such a way that E,[z?.] = 1. Here we consider the homoscedastic case:

E[6?] = o.2, i=1, n

where o.2 is assumed to be known (for simplicity). We allow p to be substantially

larger than n. It is well known that a condition that gives a good performance for the

Dantzig selector is that # is sparse, namely 111 (s < n (although this assumption

will not be invoked below explicitly).

The aim is to estimate the vector # in some semi-norms of interest: || For

example, given an estimator / the prediction semi-norm for 6 = - # is

II6pr = vEn[(zJ)2),

or the j-th component seminorm for J is

||6||jc = lo41

and so on. The label I designates the name of a norm of interest.

The Dantzig selector is the estimator defined by

#^ E arg min ||bI|, subject to V/H max IE,[z% (yi - z'b)]| I A, (3.16)
bERP 11j<p
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where ||,|e, = gE1 [,8j# is the el-norm. An ideal choice of the penalty level A is

meant to ensure that

To := /i max |En[zijei]| 4 A

with a prescribed probability 1 - a. Hence we would like to set penalty level A equal

to

cTO(l - a) := (1 - a)-quantile of To,

(note that zi are treated as fixed). Indeed, this penalty would take into account the

correlation amongst the regressors, thereby adapting the performance of the estimator

to the design condition. We can approximate this quantity using the central limit

theorems derived in Section 2. Specifically, let

Zo ovri max |E,[zi ei]|,
1(jAp

where ej are i.i.d. N(O, 1) random variables independent of the data. We then estimate

cTO(1 - a) by

czo(1 - a) := (1 - a)-quantile of Zo.

Note that we can calculate czo(1 - a) numerically with any specified precision by

the simulation. (In a Gaussian model, design-adaptive penalty level czo(1 - a) was

proposed in [15], but its extension to non-Gaussian cases was not available up to

now).

An alternative choice of the penalty level is given by

co(1 - a) := o-<D~1(1 - a/(2p)),

which is the canonical choice; see [271 and [19]. Note that canonical choice co(1 - a)

disregards the correlation amongst the regressors, and is therefore more conservative

than czO (1 - a). Indeed, by the union bound, we see that

Czo(1 - a) < co(1 - a).
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Our first result below shows that the either of the two penalty choices, A =

czo(1 - a) or A = co(1 - a), are approximately valid under non-Gaussian noise-

under the mild moment assumption E[Ef] < const. replacing the canonical Gaus-

sian noise assumption. To derive this result we apply our CLT to To to establish

that the difference between distribution functions of To and Zo approaches zero

at polynomial speed. Indeed To can be represented as a maximum of averages,

T = maxik 2P n- 1/2 n. zikEi, for ij = (zj, -z)', and therefore our CLT applies.

To derive the bound on estimation error 116I1 in a seminorm of interest, we employ

the following identifiability factor:

rz(#) := inf max lEn[zij(zz) : 6 E R(8), 1111 #0
1ERP I111p I

where R(#3) := {6 E RP : ||# + 6||e < ||,|1} is the restricted set; rq(#) is defined

as oo if R(#) = {O} (this happens if # = 0). The factors summarize the impact

of sparsity of true parameter value # and the design on the identifiability of #3 with

respect to the norm || -|I.

Comment 21 (A comment on the identifiability factor Kr(#)). The identifiability

factors x1(#) depend on the true parameter value #. This is not the main focus

of this section, but we note that these factors represent a modest generalization of

the cone invertibility factors and sensitivity characteristics defined in [1141 and [48],

which are known to be quite general. The main difference perhaps is the use of a norm

of interest || -|1, instead of the eq norms and the use of smaller (non-conic) restricted

set 1() in the definition. It is useful to note for later comparisons that in the case

of prediction norm || -I| = || - ||pr and under the exact sparsity assumption |3||o ( s,

we have

spr(#) ;) 2-1s-1/2.(s, 1), (3.17)

where ri(s, 1) is the restricted eigenvalue defined in /19]. U

Next we state bounds on the estimation error for the Dantzig selector ^(0) with

canonical penalty level A = A 0) := co(1 - a) and the Dantzig selector #^() with
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design-adaptive penalty level A = A) := czo(l - a).

Theorem 17 (Performance of Dantzig Selector in Non-Gaussian Model). Suppose

that there are some constants c1 > 0, C1 > 0 and u.
2 > 0, and a sequence Bn ;) 1 of

constants such that for all 1 < i < n and 1 < j < p: (i) |zij| Bn; (ii) En[zi] = 1;

(iii) E[e] = o2 ; (iv) E[e] < C1; and (v) Bn(log(pn))7 /n < C 1n-i. Then there exist

constants c > 0 and C > 0 depending only on c1 , C1 and o,2 such that, with probability

at least 1 - a - Cn-c, for either k = 0 or 1,

-k 111, < 2A(k)
, OT .1 (0)

The most important feature of this result is that it provides Gaussian-like con-

clusions (as explained below) in a model with non-Gaussian noise, having only four

bounded moments. However, the probabilistic guarantee is not 1 - a as, e.g., in [19],

but rather 1 - a - Cn-c, which reflects the cost of non-Gaussianity (along with more

stringent side conditions). In what follows we discuss details of this result. Note that

the bound above holds for any semi-norm of interest || -|I.

Comment 22 (Improved Performance from Design-Adaptive Penalty Level). The

use of the design-adaptive penalty level implies a better performance guarantee for

OM over a(0). Indeed, we have

2czO(1 - a) 2co(1 - a)

VOn-1i(0) <1 K1r-(p)

E.g., in some designs, we can have v/iimaxi-3 ,| En[zie] | = Op(1), so that czo(1 -

a) = 0(1), whereas co(1 - a) oc y/log1p. Thus, the performance guarantee provided

by ,6(') can be much better than that of (0). l

Comment 23 (Relation to the previous results under Gaussianity). To compare to

the previous results obtained for the Gaussian settings, let us focus on the prediction

norm and on estimator 1(1) with penalty level A = czO(1 - a). Suppose that the true
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value # is sparse, namely ||#||o ( s. In this case, with probability at least 1-a-Cn-c,

S<2cz (1 - a) 4Vfco(1 - a) 4,/2 log(a/(2p))
Vrx-pr (#) sr-r(s, 1) Vn (s,1 1) '

where the last bound is the same as in /19], Theorem 7.1, obtained for the Gaussian

case. We recover the same (or tighter) upper bound without making the Gaussianity

assumption on the errors. However, the probabilistic guarantee is not 1 - a as in

[19], but rather 1 - a - Cn-c, which together with side conditions is the cost of non-

Gaussianity. 1

Comment 24 (Other refinements). Unrelated to the main theme of this paper, we

can see from (3.18) that there is some tightening of the performance bound due to the

use of the identifiability factor npr(#) in place of the restricted eigenvalue in(s, 1); for

example, if p = 2 and s = 1 and the two regressors are identical, then rp(#6) > 0,

whereas n,(1, 1) = 0. There is also some tightening due to the use of czo(1 -a) instead

of co(1 - a) as penalty level, as mentioned above. E

3.4.2 Heteroscedastic case.

We consider the same model as above, except now the assumption on the error be-

comes

o2 =E[el] 2  i 1 .n

i.e., a2 is the upper bound on the conditional variance, and we assume that this bound

is known (for simplicity). As before, ideally we would like to set penalty level A equal

to

cT(1 - a) := (1 - a)-quantile of To,

(where To is defined above, and we note that zi are treated as fixed). The CLT applies

as before, namely the difference of the distribution functions of To and its Gaussian

analogue Zo converges to zero. In this case, the Gaussian analogue can be represented

as

Zo := rn max |En [zio-rei]| f.
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Unlike in the homoscedastic case, the covariance structure is no longer known, since

o-1 are unknown and we can no longer calculate the quantiles of Zo. However, we can

estimate them using the following multiplier bootstrap procedure.

First, we estimate the residuals s' = yi - zj#^( 0) obtained from a preliminary

Dantzig selector 6(0) with the conservative penalty level A = A 0 := co(1 - 1/n)

- 1/(2pn)), where a2 is the upper bound on the error variance assumed to be

known. Let (ej)?_1 be a sequence of i.i.d. standard Gaussian random variables, and

let

W := V max IEn[zs'iej|].

Then we estimate czo (1 - a) by

cw(1 - a) := (1 - a)-quantile of W,

defined conditional on data (zi, yi)!_ 1 . Note that cw(l - a) can be calculated numer-

ically with any specified precision by the simulation. Then we apply program (3.16)

with A = A( 1 ) = cw(l - a) to obtain #^(1).

Theorem 18 (Performance of Dantzig in Non-Gaussian Model with Bootstrap Penalty

Level). Suppose that there are some constants c1 > 0, C1 > 0, !2 > 0 and a2 > 0,

and a sequence Bn > 1 of constants such that for all 1 < i < n and 1 j < p:

(i) |zij| < Bn; (ii) En[zI = 1; (iii) z 2 < E[e?] 0 .2; (iv) E[61] < C1 ; (v)

Bn(log(pn))7/n < Cin-e'; and (vi) (log p)Bnco(1 - 1/n)/( nipr(#)) < Cn-I. Then

there exist constants c > 0 and C > 0 depending only on c1 , C 1 , 1 2 and o.2 such that,

with probability at least 1 - a - vn where vn = Cn-, we have

< 2A(1).19
|#(1) - #||1 r. (319

Moreover, with probability at least 1 - un,

A1) = cw(1 - a) < czO(1 - a + vn),
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where cz,(1 - a) := (1 - a)-quantile of Zo; in particular czo(1 - a) < co(1 - a).

3.4.3 Some Extensions

Here we comment on some additional potential applications.

Comment 25 (Confidence Sets). Note that bounds given in the preceding theorems

can be used for inference on 3 or components of 1, given the assumption Kj13) > K,

where , is a known constant. For example, consider inference on the j-th component

pj of 3. In this case, we take the norm of interest ||6||1 to be I 6 jejc = |6j| on RP,

and consider the corresponding identifiability factor njc(1). Suppose it is known that

rijc() > r. Then a (1 - a - Cn-c)-confidence interval for /3 is given by

{b E R : |#(' - b| < 2A( /(vfn)}.

This confidence set is of interest, but it does require the investigator to make a stance

on what a plausible r should be. We refer to [48] for a justification of confidence sets

of this type and possible ways of computing lower bounds on r; there is also a work

by [64], which provides computable lower bounds on related quantities. El

Comment 26 (Generalization of Dantzig Selector). There are many interesting ap-

plications where the results given above apply. There are, for example, interesting

works by /1] and [47] that consider related estimators that minimize a convex penalty

subject to the multiresolution screening constraints. In the context of the regression

problem studied above, such estimators may be defined as:

p^ E argmin J(b) subject to v5i max |En[zig(yi - z b)]| < A,
bERP 1*j<p

where J is a convex penalty, and the constraint is used for multiresolution screening.

For example, the Lasso estimator is nested by the above formulation by using J(b) =

|b|Ipr, and the previous Dantzig selector by using J(b) = ||b|| 11; the estimators can

be interpreted as a point in confidence set for 3, which lies closest to zero under J-

discrepancy (see references above for both of these points). Our results on choosing A
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apply to this class of estimators, and the previous analysis also applies by redefining

the identifiability factor rn1(#) relative to the new restricted set R(#) :={6 E RP :

J(# + 6) ( J(#)}; where nz (#) is defined as o if R(#) = {0}. El

3.5 Appendix A. Preliminaries

3.5.1 A Useful Maximal Inequality

The following lemma, which is derived in [34], is a useful variation of standard maxi-

mal inequalities.

Lemma 37 (Maximal Inequality). Leta, ... ,x, be independent random vectors in

RP with p > 2. Let M = maxlin maxi<, | xij and o.2 = maxi 3 p E[zx,]. Then

E max IEn[Xi] - E[Xi] ,< o- V(log p)/n + N/E[M2)(logp)/n.

Proof. See [34], Lemma 8. E

3.5.2 Properties of the Smooth Max Function

We will use the following properties of the smooth max function.

Lemma 38 (Properties of Fi). For every 1 j, k, 1 p,

OjFp(z) = 7rj(z), ogonF( z = #wik(z), ajEakoFp(Z) = #2qjkl (z).

where, for 6jk := 1{j = k},

ry (z) ez miez', e k(z) :=(r(Z -),

qjkl(z) := (1 6 ; 6Jk -- rjl6jk - ?rjrk(6 l + Jk1) + 2wjwkx7r)(z).

Moreover,

7ry(z) > 0, Zp-1 rw(z) = 1, |k~llwk(z)I 2, EZk,,1 Ilqjkl(z)| < 6.
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Proof of Lemma 38. The first property was noted in [28]. The other properties follow

from repeated application of the chain rule. L

Lemma 39 (Lipschitz Property of F3). For every x E RP and z E RP, we have

IFf6(x) - Fy (z)I max1(,,p Ixj - zj I.

Proof of Lemma 39. For some t E [0, 1],

|Fp(x) - Fp(z)| = IEZ _1&Fp(x + t(z - x))(zj - xj}|

SE _1i7rjy (+ t(z - x)) rnax |zj - xj| < max |zj - xj|,
1(!j<,p 1:EjPp

where the property E mi r(x + t(z - x)) = 1 was used. 0

We will also use the following properties of m = go F3. Here we assume g E Cl(R)

in Lemmas 40-42 below.

Lemma 40 (Three derivatives of m = g o F#). For every 1 < j, k, 1 < p,

ojm(z) = (ag(Fp)7rg)(z),

okm(z) = (&g(Fp)7rjgk + ag(Ffl)/wjk)(z),

aO1m(z) = (83g(F,9)1rwrkw + 92 g( Fi)/(wjklrl +

+ Og(Fp)f32qjk)(z),

and qijk are defined in Lemma 38, and (z)

luation of F8 at z.

wjlIrk + Wk1rWj)

denotes evaluation at z,

Proof of lemma 40. The proof follows from repeated application of the chain rule and

by the properties noted in Lemma 38.

Lemma 41 (Bounds on derivatives of m = g o F). For every 1 (j, k, 1 (p,

Ij1km(z)I < Ujk(z), |89 8oi9km(z)I - Ujka(z),
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where

Ujk(Z) (G2wrXk + Gp3Wjk)(z), Wjk(z) :=(J 6 -jk ± 1riWk)(z),

Ujkl (z) (G3 riwkw + G2 0(Wiknri + Wjl7k + WklW7) + G13 2 Qjkl)(z),

Qkl(z) ('rj6Jzl6k + 7ri7rlS6k - 7rj7rkQY(6 ± 6k1) + 27rj1rkw)(z).

Moreover,

3,k lUjk(z) < (G2 + 2G1#), EIkji =lkl(z) ( (G3 + 6G 2,3± 6G 1#)

Proof of Lemma 41. The lemma follows from a direct calculation. O

Lemma 42 (Stability). For every z E RP, w E RP such that maxi,5 |w;I# ( 1,

T E [0,1], and every 1 < j,k,l < p, we have

Ujk(z) _ Ujk(z+Tw) e Ujk (z), Ukl z) $ Ujk(z +rW) < Uki(z).

Proof of Lemma 42. Observe that

(z +rw) - ezp+rwj# ezi e r maxjpIwI|#

7es z + w =- P _ ezyn O+rWm# P = ezmfl e-' max,1,\wj|# 7( z .

Similarly, irj(z + rw) > e-2 rj(z). Since Uik and Ujk are finite sums of products of

terms such as 7rs, 7rk, 71, 6Jk, the claim of the lemma follows.

3.5.3 Lemma on Truncation

The proof of Theorem 14 uses the following properties of the truncation operation.

Recall that zi' = (zg) 1 and Z = n-1/2 E_ i, where "tilde" denotes the truncation

operation defined in Section 2. The following lemma also covers the special case where

(x)?=1 = (y2)?=1. The property (d) is a consequence of sub-Gaussian inequality of

[39], Theorem 2.16. for self-normalized sums.

Lemma 43 (Truncation Impact). For every 1 < j, k < p and q 1, (a) (5[lz.1q])1/q <
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2(E[|xij lq]31q; (b) E[iz 3izik - XijXik|l (3/2)(E[xA] + E[x',])(p(u); (c) En[(E [xij -

])2 N[(xij - z)2] [xp 2 (u). Moreover, for a given 7 E (0,1), let u > u(7)

where u(-y) is defined in Section 3.2.

all 1 < j < p,

IXj - 15j I 5

Then: (d) with probability at least 1 - 57, for

[?]<(u) V2 log(p/-y).

Proof. See Appendix 3.10.

3.6 Appendix B. Proofs for Section 2

3.6.1 Proof of Theorem 13

Recall that we are assuming that sequences (xj)',i and (yj),_ 1 are independent. For

t E [0, 1], we consider the Slepian interpolation between Y and X:

Z(t) v:= x + V1 - Y =Zi (t), Zi(t) := (Vzi + V1 - tyi)

We shall also employ Stein's leave-one-out expansions:

Z)f (t) := (g ( 0 1 := Z(t) - Zi(t).

Let T (t) = E [m(Z (t))] for m : = g o Fg6. Then by Taylor's theorem,

E[m(X) - m(Y)] = T(1) - T(0) = I 1
p n 1

2 ~ E[ajm(Z(t))Zij(t)]dt = 2(I + II + III),
j=1 i=1
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where

Zigt) = w~t) = Wi- _ yig, and

P n

I =( ( E [Ojm(Z(0)(t))Zig(t)]dt,
j=1 i=1

1= 1 Z/ E[Oj8km(Z()(t))Zi(t)Zi(t)]dt,
j,k=1 i=1

P n

III = E E (1 - r)E[8O4ka8m(Z(')(t) +rZi(t))Zi3 (t)Zik(t)Zil(t)]drdt.
j,k,l=1 i=1

Note that random variable Z(')(t) and random vector (Zi(t), Z2 (t)) are indepen-

dent, and E[Zi(t)] = 0. Hence we have I = 0; moreover, since E[Zi(t)Zik(t)] =

n-'E[ijXik - YijYik] = 0 by construction of (yi)! 1 , we also have II = 0. Consider

the third term III. We have that

|I111 |(1) (G3 + G2 3 + G 2 )n I E [1max |Zi(t )Zik(t)Zi)| dt,

,(2) n-2(G 3 + G2 + G1#) m jijl+±yii|)3

where (1) follows from I|j85akm(Z() (t) + rZ (t))j I; Ujk1 (Z(i)(t) + rZi(t)) < (G 3 +

G2# + G1,#2 ) holding by Lemma 41, and (2) is shown below. The first claim of the

theorem now follows. The second claim follows directly from property (3.9) of the

smooth max function.

It remains to show (2). Define w(t) = I/(Vi A v/I ) and note,

1 n1k Max |Zij(t)Zik(t)Zia(t)| dt

= w(t)nE | Zii(t)/w(t))Zik(t)Zi(t)] dt

i 1/3

n w(t) R[ iax |ZE(t)/W(t)|3]R[ ax [Zi((t)|3][ +a I|Zj(t) |3] dJ

(n-1/2 1w(t)dt E [ax (|xij|+|jyjl) 31
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where the first inequality follows from Hlder's inequality, and the second from the

fact that |Zi(t)/w(t) (IXijI+Iyis|)/v/ni, I Zig (t) I < (Ixikl -I-Iyik 1)/Vi. Finally we note

that fo w(t)dt < 1, so inequality (2) follows. This completes the overall proof. O

3.6.2 Proof of Corollary 3

In this proof, let C > 0 denote a generic constant depending only on ci and C1, and

its value may change from place to place. For # > 0, define eg := #-1 log p. Recall

that Si := maxi,<jp(Ixijl + yj I). Consider and fix a C 3-function go : R -+ [0,1]

such that go(s) = 1 for s ( 0 and go(s) = 0 for s ;> 1. Fix any t E R, and define

g(s) = go(V)(s - t - eg)). For this function g, Go = 1, G1 < 0, G 2 < # 2 and G 3 $ 3

Observe now that

P(To ( t) ( P(Fp(X) < t + ep) < E[g(Fp(X))]

( E[g(Fp(Y))] + C($b3 ± 0p 2 ±)62V)) 1/2

( P(Fp(Y) < t + ep + 0-) + C(,03 + #2 +3 (-1/2

(P(Zo (t + e p + V) ) +C( 3  & 2  -1/2

where the first inequality follows from (3.9), the second from construction of g, the

third from Theorem 13, and the fourth from construction of g, and the last from

(3.9). The remaining step is to compare P(Z 0 < t + ep + #- 1) with P(Zo < t) and

this is where Lemma 32 plays its role. By Lemma 32,

P(Zo t + ep6 + @ 1) - P(Zo < t) ( C(e8 + V1)v 1 V log(pib).

by which we have

P(To (t) - P(Zo -t) C{(#3 + #@2 + # 2 i)(t- 1/2E[Si3]) + (ep + #- 1)V 1 V log(p@)].

We have to minimize the right side with respect to 8 and 4. It is reasonable to

choose 3 in such a way that e3 and 0-1 are balanced, i.e., # = 4log p. With this #,
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the bracket on the right side is

< # 3 (logp)2 (n 1 2 E[Sl]) + V~-y 1 V log(po),

which is approximately minimized by / = (log p)-3 / 8 -(/2E[Sl])- 1 /4 . With this V,

V) < (n- 2E[S43 1/ 4  Cn1/8 (recall that p > 3), and hence log(pO) < C log(pn).

Therefore,

P(To < t) - P(Zo ( t) ( C(n1/2E [S])1/4 (log /))1 8 .

This gives one half of the claim. The other half follows similarly. 5

3.6.3 Proof of Theorem 14

The second claim of the theorem follows from property (3.9) of the smooth max

function. Hence we shall prove the first claim. The proof strategy is similar to

the proof of Theorem 13. However, to control effectively the third order terms in

the leave-one-out expansions we shall use truncation and replace X and Y by their

truncated versions X and f, defined as follows: let z~i = (z) where zij was

defined before the statement of the theorem, and define the truncated version of X

as X = n iz. Also let

Qi := (Qi)p 1 , jij := yijl {y | u(E[y2])i/21

Note that by the symmetry of the distribution of yij, E[Qij] = 0. Recall that we are

assuming that sequences (xi)'L, and (yi)!1 are independent.

The proof consists of four steps. Step 1 will show that we can replace X by X

and Y by Y. Step 2 will bound the difference of the expectations of the relevant

functions of X and f. This is the main step of the proof. Steps 3 and 4 will carry

out supporting calculations. The steps of the proof will also call on various technical

lemmas collected in Appendix 3.5.

166



Step 1. Let m:= g o F#. The main goal is to bound E[m(X) - m(Y)]. Define

I=1ma IX -Zj(l A(-y,u) and max lYj-
1 <,j 'P 1:!0<P

where A(-y,u) := 5M 2 p(u)/2log(p/-). By Lemma 43 we have E[1] > 1 - 107.

Observe that by Lemma 39,

Im(x) - m(y)I GlF,8(x) - Fa(y)I < G1 max Ij - ygl,

so that

E[m(X) - m(X)]I < E[(m(X) - m(X))1| + IE[(m(X) - m(X))(1 - 1)]1

< G1 A(y, u) + Go-y,

E[m(Y) - m(?)]I E[(m(Y) - m(?))I]I+ E[(m(Y) - m(Y))(1 - I)]

< GiA(7,u) + Go-Y,

and hence

IE[m(X) - m(Y)]j I |E[m(Z) - m(f)] + GiA(y, u) + Go-y.

Step 2. (Main Step) The purpose of this step is to establish the bound:

IE[m(Z) - m(f)]I n-1 /2 (G3 + G2# + G1 #32 )M ± (G 2 + #G1)M 2
2p(u).

Define, as in the proof of Theorem 13,

Z(t) := rZ X i1- ti =Zi(t),

ZW (t) := Z(t) - Zi(t), Zi(t) =

1
Z'(t) := (Vti

z( 1 1 I-

+ V1- t&9), and

)
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Arguing as in the proof of Theorem 13, we have

E[m(X) - m(Y)] = 2 1 E[9jm(Z(t))Zg (t)]dt = ( + II + III),
j=1 i=1

where

P n 1
= 1 E 10 E[8jm(Z(2)(t))Zij(t)]dt,

j=1 i=1

P n 1

II =: E [Oj0km(Z() (t ))Zi( WZik(t||dt,
jk=1 i=1 f

P nf ~
III = Jz >1 1 - r)E[Ofikg8m(Z()(t) + 'rZi(t))Zij(t)Zik(t)Zi(t)]drdt.

j,k,i=1 i=1

By independence of Z(')(t) and Zij(t) together with the fact that E[Zy(t)| = 0, we

have I = 0. Moreover, in steps 3 and 4 below, we will show that

IIII < (G2 +# G1)M 2
2 (u), 11/2 ( ± +12/ ± G1 #32 )M3.

The claim of this step now follows.

Step 3. (Bound on II) By independence of Z()(t) and Zi(t)Zik(t),

P n 1

|II = E E[8Ojkm(Z(')(t))|E[Zij(t)Zik(t)|dt
j,k=1l i=1 0o

P n 1

E[|j8akm(Z()(
jk=1 i=1

E E 10 Ei[U=k(Z1(t)
i,k=1 i=10

t))|] -| E[Zij(t)Zik(t )]|dt

-| E[Z2 (t)Zik(t)] Idt,

where the last step follows from Lemma 41. Since I /izij+#1 Vft 4I 2v/ZuM 2, so

that |#(vi 1 (which is satisfied by the assumption #2v/ZuM 2/,
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1), by Lemmas 42 and 41, the last expression is bounded by

E E {foE[Ujk(Z(t))] - E[Zj(t)Zik(t)ZIdt
j,k=1 i=10

E[Ujk(Z(t))| |E[Zij(t) Zik (t)||Idt

< (G2 + G1#) j E[Zij(t)Zik(t)IIdt.

Observe that since E[xijxik|= E[yijyik], we have that E[Zij(t)Zik(t)] = n-E[ziii -

Yijbikl = n-1E~ziik - XijXik] + n- 1 E[yijyik - Bijgij, so that by Lemma 43 (b),

Z"_ |E[Z, (t)Zik(t)| < [|ziz XijXikI] E[Iylyi4-ijpik| lI (E[xi]|+[x~|)(p(u) $
M2

2<p(u). Therefore, we conclude that IIII < (G2 + G1#)M22o(u).

Step 4. (Bound on III) Observe that

p n ~1 (1
| |1 ( 1 / E[Ujkl(Z(i)(t) + TZi(t))|Z1 i(t)Zi(t)Zil(t)]dTdt

j,k,l=1 i=1 0
p n

,(2) Ji10 E[Ujk1(Z0i (t)) 12ij (t)Zik(t)Z0i (t)lIdt

p n 1

=(3) E E 1 E[Ujkl (Z(i)(t))| - E[|Zii (t) Zik (t) Zil (t)||dt, (3.20)
j,k,l=1 i=1

where (1) follows from |i&kDim(z)| , Ujka(z) (see Lemma 41), (2) from Lemma 42,

(3) from independence of Z(W(t) and Zig(t)Zik(t)Zi1 (t). Moreover, the last expression
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is bounded as follows:

P n 1

right side of (3.20) <(4) f E[Ujkl(Z(t))] - E[lZij(t)Zik(t)Zil(t) Idt
j,k,i=1 i=1

P1

=(5)E J E [Ujkl(Z(t))] - nE[|Zi (t) Zik(t) Zit)|J]dt
j,k,l=

((6) ( E[Ugkl(Z(t))] max nE[|Zij W)Zik (t) Zit)||~dt

j,k,l=1

$(7) (G3 + G23 + G1
2) j a nE[lZij(t)Zik(t)Zi(t)|]dt,

where (4) follows from Lemma 42, (5) from definition of E, (6) from a trivial inequality,

(7) from Lemma 41. We have to bound the integral on the last line. Let w(t) =

1/(V/l A V1 -f t), and observe that

= Jw(t) max nE[I(Zij(t)/w(t))Zik(t)Zil(t)||dt
0 1/3,k, l~p

Sn w (t) max E [lj2g(t)/o(t)|3]E[l Zik(t) 13]E[lZI (t)|3 3 dt

where the last inequality is by H6lder. The last term is further bounded as

(n -1/2 w(t)dt a 2[(IzIg +945|)3

(2) n- 1 / 2 maX[(3[ j 3)1/3 + (E[l# 31)1/313

< -1/2 maX[(E[IXil 3])1/ 3 + (E[lyj 31)1/313

(4) n 1/2 max 3

where (1) follows from the fact that: IZig(t)/w(t)I < (IiI +|9|)/v/i, Zim(t)

(Iim| + |I m )/Vnr7 and the product of terms E[(i45|+ fi 1)311/3, E[(iik|+ 9ik1)3]1/3

and E[(IziI l + II) 3 1/3 is trivially bounded by maxiggs, E[(ijl + |Ij) 3 ]; (2) follows

from f1' w(t)dt < 1, (3) from Lemma 43 (a), and (4) from the normality of yij with
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E[yi9j] = E[,?], so that E[Iyi I3] < (E[y,?j]) 3 / 2 = (E[Iz?1]) 3/2 < E[zij |3]. This completes

the overall proof. 0

3.6.4 Proof of Corollary 4

See Supplemental Appendix 3.10.2. U

3.6.5 Proof of Lemma 33

Since E[?] ci by assumption, we have 1{jxij > u(E[?])1/ 2 } ( 1{|zijg > c1/2u1.

By Markov's inequality and the condition of the lemma, we have

P (Ixijl > u(E[z?)"12 , for some (i, j)) ( E=1P naIzi > ci/u

En l=P h(max lxij|/D) > h(cl/2U/D) n/h(c /2/D).( '!j<p

This implies u(-y) < cl-1/ 2 Dh-1(n/y). For u(-), by yij - N(O, E[x?]) with E[,?] s

B 2 , we have E[exp(y?/(4B 2 ))] < 1. Hence

P (Iyj3 | > u(E[y?_])i/ 2, for some (i, j)) < E" iP(jyij| > c1/ 2 u)

i= =1=1(luij|/(2B) > cl/2u/(2B)) < np exp(-ciu2/(4B27

Therefore, u,('y) ( CB log(pn7y) where C > 0 depends only on c1. U

3.6.6 Proof of Corollary 5

Case (i) follows directly from Corollary 3. Hence we only consider cases (ii)-(v).

Step 1. In this step, in each case of conditions (E.2)-(E.5), we shall compute

the following bounds on moments M 3 and M 4 and parameters B and D in Lemma

33 with specific choice of h:

(E.2) B V M33 V M4 < C, D < C log p, h(v) = e' - 1;

(E.3) B = B, D< CB., M33 V M4 ( CB., h(v) = ev - 1;
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(E.4) B V M3 V M4 < CB., D < CB, log p, h(v) = ev - 1;

(E.5) B V D V M3 V M4 < CBn, h(v) = v4.

Here C > 0 is a (sufficiently large) constant that depends only on ci and C1. The

bounds on B, M 3 and M 4 follow from elementary computations using H6lder's in-

equality. The bounds on D follow from an elementary application of Lemma 2.2.2 in

[111]. For brevity, we omit the detail.

Step 2. In either case of (ii)-(v), there are sufficiently small constants c3 > 0

and c4 > 0, and a sufficiently large constant C2 > 0, depending only on c1 , c2, C1 such

that, withfn := log(pn1+c3),

n- 1/2es/ 2 max{BIM/ 2, Dh-1 (n+C3)} < C2n 4,

1/8(3/4 V Ml/ 2 )e7/s C2 n 4 .

Hence taking -y = n-, we conclude from Corollary 4 and Lemma 33 that p (

Cn-inIC3,41 where C > 0 depends only on ci, c2 , C1. 13

3.7 Appendix C. Proofs for Section 3.3

3.7.1 Proof of Lemma 35

Recall that A = maxi!!y,k:, lEn[xijxik] - E[xijxik]I. By Lemma 34, on the event

{(xi)!=1 : A ,d}, we have IP(Zo < t) - Pe(Wo ( t)| < ir( 9 ) for all t E R, and so on

this event

Pe(Wo < czo(a + 7r(t9))) > P(Zo czo(a + ir( 9))) - r(O) > a + ir(9) - 7r(79) = a,

implying the first claim. The second claim follows similarly. 0
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3.7.2 Proof of Lemma 36

By equation (3.15), the probability of the event {(xi)!_1 : Pe(IW - WoI > (1) ( (2}

is at least 1 - (2. On this event,

Pe(W ( cwo(a+C2)+C1) > Pe(WO co(a +2)) -C2a+C2-C2=a,

implying that P(cw(a) ( cwo (a +(2) + (1) > 1 - (2. The second claim of the lemma

0follows similarly.

3.7.3 Proof of Theorem 15

For V > 0, let 7r(t) := C201/3(1 V log(p/9)) 2/3 as defined in Lemma 35. Then

P(To ( cw.(a)) ((1) P(To ( czo (a + 7r(,d))) + P(A > V)

-(2) a + wr(') + P(A > ) + p,

where (1) follows from Lemma 35 and (2) follows from definition of p and the fact

that Zo has no point masses. The upper bound is proven. The lower bound follows

similarly.

3.7.4 Proof of Theorem 16

For ' > 0, let r(9) := C 2'1/3(1 V log(p/,)) 2/3 with C 2 > 0 as in Lemma 35. Then

P(T < cw(a)) (() P(To < cw(a) + (1) + (2

<(2) P(To < cw0(a + (2) + 2(1) + 2(2

<(3) P(TO < czo(a + (2 + 7r(t)) + 2() + 2(2 + P(A >,O)

(( 4) P(ZO czo(a + (2 + 7r(d)) + 2(1) + p + 2(2 + P(A > 9)

<(5) P(Zo czo(c + (2 + 7r(t0))) + C3 (1 vF1 V log(p/(1) + p + 2(2 + P(A > t)

<(6) a + (2 + 7r(O) + C3(1v/1 V log(p/(1) + 2(2 + P(A > 9) + p
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where C3 > 0 depends on ci and C1 only and where (1) follows from equation (3.14),

(2) from Lemma 36, (3) from Lemma 35, (4) from the definition of p, and (5) follows

from Lemma 32 on anti-concentration, and (6) by the fact that Zo has no point

masses. This gives the upper bound. The lower bound follows similarly. 0

3.7.5 Proof of Corollary 6

The proof of this corollary relies on:

Lemma 44. Recall conditions (E.2)-(E.5) in Section 3.2.2. Then

logp V (1og(pn)) 2 (logp) udr(.)
x , under (E.2),

,Bn og p VBn (log p) ,under (E.3),
B2 log p B (log(pn)) 2 (Ogp) under (E.4),

\under (E.5),

where C > 0 depends only on c1 and C1 that appear in (E.2)-(E.5).

Proof. By Lemma 37 and Hdlder's inequality, we have

E[] < M42 (logp)/n + (E[mrx |xijfj)1/ 2(logp)/n.
2,_?

The conclusion of the lemma follows from elementary calculations with help of Lemma

2.2.2 in [111]. 0

Proof of Corollary 6. We make use of Theorem 16. Let c > 0 and C > 0 denote

generic constants depending only on c1, c2, C1 , and their values may change from place

to place. By Corollary 5, in either case of (i)-(iv), p < Cn-c. Moreover, (C\igogp (

Cin-2 implies that (1 < Cin- 2 (recall p ; 3), and hence (i log(p/( 1 ) ( Cn-'.

Also, (2 ( Cn-c by assumption.

Let 9 = tn := (E[A])1/ 2 / logp. By Lemma 44, E[A](logp) 2  Cn-c. Therefore,

7r(,O) Cn-' (with possibly different c, C > 0). In addition, by Markov's inequality,
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P(A > d) < E[A]/d < Cn-'. Hence, by Theorem 16, we have supEe(O,1) IP(T (

cw(a)) - al Cn-c.

3.8 Appendix D. Proofs for Section 3.4

3.8.1 . Proof of Theorem 17

The proof proceeds in three steps. In the proof (#, A) denotes ( A (),(k)) with k either

0 or 1.

Step 1. Here we show that there exist some constants c > 0 and C > 0 (depending

only ci, C1 and o2) such that for either k E {0, 1},

P(To < A ,)) > 1 - a Vn, (3.21)

with vn = Cn-'. We first note that To = Vf maxik2, E[ziksi], where zi = (z, -zj)'.

Application of Corollary 5-(v) gives

IP(To < A) - P(Zo ( A) Cn-c,

where c > 0 and C > 0 are constants depending only on ci, C1 and o2. Since

A > czo(1 - a), the claim follows. Indeed, AM1  = czo(1 - a), and A(1) < A( 0) =

co(1 - a) := oa-1(1 - a/( 2p)), since by the union bound P(Zo > co(1 - a))

2pP(o-N(0, 1) > co(1 - a)) = a.

Step 2. We claim that with probability > 1 - a - vn, 6= - # obeys:

n max IEn[zi (zj)] 2A.
1jsp

Indeed, by definition of #, V/iimax,<pEn [zig(yi - zi)] 1 A, which by the triangle

inequality implies v/nmaxijgE[ J()] To+ A. The claim follows from Step 1.

Step 3. By Step 1, with probability > 1 - a - vn, the true value # obeys the

constraint in optimization problem (3.16), in which case by definition of 6, |||| I1 1
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|||11el. Therefore, with the same probability, 6 E R(f) = ( E Rd : 11+61ei 1111e}.
By definition of nj() we have that

x1(0)||6||1 <_ ma |En [zi j ( zio)]|.

Combining this inequality with Step 2 gives the claim of the theorem. O

3.8.2 Proof of Theorem 18

The proof has four steps. In the proof, we let on = Cn- for sufficiently small c > 0

and sufficiently large C > 0 depending only on ci, C1, _2, a.2, where c and C (and

hence On) may change from place to place.

Step 0. The same argument as in the previous proof applies to #^(O) with A =

AM) := co(1 - 1/n), where now o.2 is the upper bound on E[e,]. Thus, we conclude

that with probability at least 1 - gn,

I(o) - #|| pr < 2co(1 - 1/n)
Vrnxpr(0)

Step 1. We claim that with probability at least 1 - en,

max (E,[z (^ - e)21)1/2 ( B2co(1 - 1/n)

Application of H6lder's inequality and identity ej - F = z'(#(0 ) - ,3) gives

max (E[?(^ - _i)2) 1 ' B,(E,[zj(#(o) - #)]2)1/2 ( Bnl||# 0) - #||pr.

The claim follows from Step 0.

Step 2. In this step, we apply Corollary 6-(iv) to

T = To = V/ max E[ziei], W = f max En[zigE;ej], and
1 j 2p 1(j 2p

Wo = v/h max E,[.igee],
1 j<2p
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where zj = (zj, -z )', to conclude that uniformly in a E (0, 1)

P(TO -< cw(1 - a)) > 1 - a - On. (3.22)

To show applicability of Corollary 6-(iv), we note that for any (1 > 0,

Pe(IW - Wo1 > (1) < Ee[IW - Wol/(1 < vC Ee nmax |En[zij( - ei)ei]] /(1

v/og-p max (E [i_( -__i)2]1/2

where the third inequality is due to Pisier's inequality. The last quantity is bounded

by (t2 log p) 1/ 2/(1 with probability > 1 - On by Step 1.

Since tn logp ( Cin-c by assumption (vi) of the theorem, we can take (1 in such

a way that (1(logp) 1/ 2 < pn and (t2 logp)1/ 2 /1 ( gn. Then all the conditions of

Corollary 6-(iv) with so defined (1 and (2 = On V ((tn log p)1/2 /(1) are satisfied, and

hence application of the corollary gives that uniformly in a E (0, 1),

IP(To ( cw(l - a)) - 1 - al < gn, (3.23)

which implies the claim of this step.

Step 3. In this step we claim that with probability at least 1 - Ln,

cw(1 - a) < czo(1 - a + 20).

Combining Step 2 and Lemma 36 gives that with probability at least 1 - (2, cw(1 -

a) < cwo(1 - a + (2) + (1, where (1 and (2 are chosen as in Step 2. In addition,

Lemma 35 shows that cwO(1 - a + (2) < czO(1 - a + Lon). Finally, Lemma 32 yields

czo(1 - a + en) + (1 < czo(1 - a + 2 Lpn). Combining these bounds gives the claim of

this step.

Step 4. Given (3.22), the rest of the proof is identical to Steps 2-3 in the proof

of Theorem 17 with A = cw(l - a). The result follows for vn = 2 gn. 0
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3.9 Appendix E. A note on relation between Slepian

and Stein type methods for normal approxima-

tions

To keep the notation simple, consider a random vector X in RP and a standard normal

vector Z in RP. We are interested in bounding

E[g(X)] - E[g(Z)],

over some collection of test functions g E g. Without loss of generality, suppose that

Z and X are independent.

Consider Stein's partial differential equation:

g(x) - E[g(Z)] = Ah(x) - x'Vh(x).

It is well known, e.g. [52] and [29], that an explicit solution for h in this equation is

given by

so that

h(x) := - [E[g(ftx + v1 -t Z)] - E[g(Z)] dt,

E[g(X)] - E[g(Z)] = E[Ah(X) - X'Vh(X)].

The Stein type method for normal approximation bounds the right side for g E g.

Next, let us consider the Slepian smart path interpolation:

Z(t) = Vix + 1- VitZ.

Then we have

E[g(X)] - E[g(Z)] = E
-Vg(Z(t))' (X - z dt.2 Vr V1 -t

The Slepian type method, as used in our paper, bounds the right side for g E g.
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Elementary calculations and integration by parts yield the following observation.

Lemma 45. Suppose that g : RP -+ R is a C 2-function with uniformly bounded

derivatives up to order two. Then

I:= E [j -Vg(Z(t))' -) = -E[X'Vh(X)]
02

and

II := E -Vg(Z(t))' (j )] = -E[Ah(X)].

Hence the Slepian and Stein methods both show that difference between I and II

is small or approaches zero under suitable conditions on X; therefore, they are very

similar in spirit, if not identical. The details of treating terms may be different from

application to application.

Proof of Lemma 45. By definition of h, we have

-E[X'Vh(X)] = E X Vg(Z(t)) dt = E [j Vg(Z(t))' Wdt].

On the other hand, by definition of h and Stein's identity (Lemma 46),

-E[Ah(X)] = E [-' j Ag(Z(t))dt] = E [1 j Vg(Z(t))' 1 Z- t].

This completes the proof. O

Lemma 46 (Stein's identity). Let W = (W 1,... , W)T be a centered Gaussian ran-

dom vector in RP. Let f : RP -+ R be a C 1-function such that E[|d;f(W)|] < o for

all 1 < j < p. Then for every 1 < j < p,

p

E[Wjf (W)] = E [WWk]E[akf (W)].
k=1

Proof of Lemma 46. See Section A.6 of [108], and also [107]. El
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3.10 Appendix F. Additional proofs

3.10.1 Proof of Lemma 43

Claim (a). Define Iij = 1{|xij 4 u(E[xy]) 1 /2 }, and observe that

(2[jlziq])1/4< (E[jxijIis|] )l/4 + (En[JE[xjjIjy] ])1/q

( (E[IXjjIgj|])1/q + (E[Xjlzijjq])1 ( 2([lz y 4])l/4,

Claim (b). Observe that

P-[ l ijzik - XijXikl|| EI(i - Xii)-ifkI] + EI[IXij (-ik - Xik)I1]

<_V7(i - xjj)2]VE[i kI+ ± V [(E Xik )2] En[X~i]

< 2pV(u) j[] VE[Xi]±~u E[Xi] j4]

< (3/2)W~(u) (E[X24 ± + [X2k)

where the first inequality follows from the triangle inequality, the second from the

Cauchy-Schwarz inequality, the third from the definition of W(u) together with claim

(a), and the last from inequality labi (a 2 + b2 )/2.

Claim (c). This follows from the Cauchy-Schwarz inequality.

Claim (d). We shall use the following lemma.

Lemma 47 (Tail Bounds for Self-Normalized Sums). Let (1,... , be independent

real-valued random variables such that E[jI) = 0 and E[ jfl < oo for all 1 < i ( n.

Let Sn = En I&. Then for every x > 0,

P(ISnl > x(4Bn + V)) ( 4exp(-x 2 /2),

where B3 = 2 = 1 E[t|| and Vn2 = Z 2.

Proof of Lemma 47. See [39], Theorem 2.16. 5
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Define

Aj := 4 E[(xij - jj) 2] + En[(xij - 2

Then by Lemma 47 and the union bound, with probability at least 1 - 4-,

|Xj - X sI< A/ 2log(p/y), for all 1 <,j < p.

By claim (c), for u > u(-y), with probability at least 1 - -y, for all 1 < j < p,

Aj = 4 E[(xi - zigj) 2]+ [E.[(E[xij - zi])2] 5 [Xi]|<(u).

The last two assertions imply claim (d). 0

3.10.2 Proof of Corollary 4

Since M 2 is bounded from below and above by positive constants, we may normalize

M2= 1, without loss of generality. In this proof, let C > 0 denote a generic constant

depending only on ci and C1, and its value may change from place to place.

For given -y E (0, 1), denote f, := log(pn/y) > 1 and let

u1 := n3/8j-5/8M 3/ 4 and u2 := n3/8f-5/8M 1 / 2

Define u := u(-Y) V u1 V U2 and #i := #/i/(2Vf/u). Then u > u(-y) and the choice of #

trivially obeys 2Vzup < \/-i. So, by Theorem 14 and using the argument as that in

the proof of Corollary 3, for every / > 0, we have for any o(u) > <(u),

p ( C[n- 1/ 2 (7p3 + #2 ± Op 2)M33 + (02 + )(u)

+?P(u) log(p/7y) + (#~1 log p + 0-') 1 V log(pf)]. (3.24)

Step 1. We claim that we can take O(u) := CM42/u for all u > 0. Since
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2[A] > ci, we have 1{|xjj| > u(E[xz ])'/ 2} < 1f{|xij > cl 2 u}. Hence

N[zij1{IXij| > U(5[zly])1/2}] < 2[X3.j1{|zij| > c1/2Uj

<' N[zij1{lzig| > c'/n](i2 , E[Xly(cin2) < M44/(cin2)

This implies <p,(u) < CM4/u. For <py,(u), note that

E[yfy] = En[E[yi4]] = 3En[(E[ylj]) 2] = 3En[(E[43.]) 2] < 3En[E[z]] = 2[A]

and hence <p(u) < CM4/u as well. This implies the claim of this step.

Step 2. We shall bound the right side of (3.24) by suitably choosing V# depending

on the range of u. In order to set up this choice we define u* by the following equation:

S(u*) n 3/8/(M33f/613/4

We then take

n = (u) := 38 3/ 4  if U ' U * (3.25)
1/ 6 (M(u))-1/3 if

We note that for u < u*,

4(u) <4'(u*) - n1/8e-3/8M 3 /4

That is, when u < u* the smoothing parameter V) is smaller than when u > u*.

Using these choices of parameters # and V; and elementary calculations (which will

be done in Step 3 below), we conclude from (3.24) that whether u < u* or u > u*,

p < C(n~1/2ue?1 2 +7).

The bound in the corollary follows from this inequality.

Step 3. (Computation of the bound on p). Note that since p < 1, we only had
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to consider the case where n-1/2ueY 2 < 1 since otherwise the inequality is trivial by

taking, say, C = 1. Since ui = n3/8M3/ 4 f5/s and u2 = n3/8M4/ 2 /8, we have

(U*))4/3 = -1/2f5/6M3,

p(u1) <, Cn-3/8fs/8M2 /4,

-(U2)< Cn-38fIe/8M3/
2

Also note that # < n1/8, and so 1 V log(pp) < log(pn) < En. Therefore,

#-' log p 1 V log(pO) < #-le 3 / 2 < n -1/2f3/ 2

In addition, note that # < v/is/u < V/n/ui = n 1/8enYSM3 3/4 = and 0 < under

either case. This implies that (7p3 + 2# + ##02) < 2 and (V2 + ##) < .

Using these inequalities, we can compute the bounds claimed above.

(a). Bounding p when u > u*. Then

n - 1/ 2 (73 + ,2 + # 2)M , 1/22 <-1/8f7/8l3/4 < n-1/2 f/ 2;

(7p2 + ##)cp(u)< <0#O-(u) n1/8M 3/ 4 < n-1/2u/2;

#O'p(u)V log(p/-y) < ##p(u)/ /Vi < ##3(u*) < n-1/2ug3'/2; and

0-1N//- < n- 1/8j7/8M3/4 < n~1/2&g3/2.n 3 --- n 7

where we have used Step 1 and the fact that

-/ = 1 /2 4- 1 < n-1/8f-1/8M 
3 / 4 < -1/2u,/2

The claimed bound on p now follows.

(b). Bounding p when u < u*. Since 7P is smaller than in case (a), by the

calculations in Step (a)

n~1/2()3 + V)2# + 2)M3/V/fH,< n- 1/2Ut32
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Moreover, using definition of @, U > u 2 , definition of u 2 , we have

V)3 0-() '00-U2/3f-1/6 )2/3f-1/6 - 10 5/3-1/6 -1/2 j3/2.

02 -U< 0()13-13 -< 4 (U2) 1/3e-1/3 <_ n-1/2 U2v /,/

Analogously and using n-1/2U/ 2 ( 1, we have

(uv/ogp/)(U()2/3f1/3 <- (U 2)2/3j1/3 <,n~ 2 <,-1/2&3/2.

- j~ v' -(u)1/
3 2/ 3 < n-1/2Ug 2.

This completes the proof.

3.11 Appendix G. Application: Multiple Hypoth-

esis Testing via the Stepdown Method

In this section, we study the problem of multiple hypothesis testing in the framework

of multiple linear regressions. (Note that the problem of testing multiple means

is a special case of testing multiple regressions.) We combine a general stepdown

procedure described in [103] with the multiplier bootstrap developed in this paper.

In contrast with [103], our results do not require weak convergence arguments, and,

thus, can be applied to models with increasing numbers of both parameters and

regressions. Notably, the number of regressions can be large in comparison with the

sample size.

Let (zi, yi)!i be a sample of independent observations where zi E RP is a vector

of non-stochastic covariates and y E RK is a vector of dependent random variables.

For each k = 1,... ,K, let Ik c {1, ... p} be a subset of covariates used in the k-th

regression. Denote by |Ik = Pk the number of covariates in the k-th regression, and

let P = max1 k<,K Pk- Let vik be a subvector of zi consisting of those elements of zi

whose indices appear in I: Vik = (zij)jEzk. We denote components of Vik by Vikj,

j = 1,. .. ,Pk Without loss of generality, we assume that Ik n Ik, = 0 for all k # k'
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and Z1,k K Pk p.

For each k = 1, ... ,K, consider the linear regression model

Yik =- ViAe + Eik, i = 1, .. . ,n,

where #k E RPk is an unknown parameter of interest, and (Eik)!= 1 is a sequence of

independent zero-mean unobservable scalar random variables. We allow for triangular

array asymptotics so that everything in the model, and, in particular, the number of

regressions K and the dimensions of the parameters #A and Pk, may depend on n.

For brevity, however, we omit index n. We are interested in simultaneously testing

the set of null hypotheses Hkj : #kj = 0 against the alternatives H' : #k$ 0 0,

(k, j) E Wo for some set of pairs Wo where #kj denotes the jth component of $k, with

the strong control of the family-wise error rate. In other words, we seek a procedure

that would reject at least one true null hypothesis with probability not greater than

a + o(1) uniformly over the set of true null hypotheses. More formally, let 0 be a set

of all data generating processes, and w be the true process. Each null hypothesis Hk

is equivalent to w E Qkj for some subset Qki of Q. Let W denote the set of all pairs

(k,j) with k =1,...,K and j=1,...,pk:

W = {(k~j) : k = 1,. .. ,K; j= 1, ... ,7Pk}.

For a subset w C W let Q" = (n(kjn)E kj) fn(,)lWG'k) where Q'= Q\Qy. The

strong control of the family-wise error rate means

sup sup P{reject at least one hypothesis among Hkj, (k,j) E w} ;a + o(1).
wCW wECw

(3.26)

This setting is clearly of interest in many empirical studies.

Our approach is based on the simultaneous analysis of t-statistics for each com-

ponent #kg. Let Xik = (En[vikvik)'Vik. Then the OLS estimator 3 k of 3 k is given

by #^k = En[xiyik]. The corresponding residuals are ik = Yik - Vik#^, i = 1,n...,.

Since (xik)=1 is non-stochastic, the covariance matrix of f^k is given by V(#k) =
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E, [Xik'ikou] /n where -ik = E[sfk], i = 1,..., n. The t-statistic for testing Hkj

against H' is tkj -= kiI| Vf,); where PCOk) = En [xikxkk'i/|n. Also define

n
0 ._ I '=1 Xik j~ik/V

tn

Note that tkj = tO under the hypothesis Hky.

The stepdown procedure of [103] is described as follows. For a subset w c W,

let ci, be some estimator of the (1 - a)-quantile of max(kJ)EW 1t%. On the first

step, let w(1) = Wo. Reject all hypotheses Hkj satisfying tkj > c1-a,w(1). If no null

hypothesis is rejected, then stop. If some Hkj are rejected, then let w(2) be the set

of all null hypotheses that were not rejected on the first step. On step 1 > 2, let

w(l) C W be the subset of null hypotheses that were not rejected up to step 1. Reject

all hypotheses Hkj, (k, j) E w(l), satisfying tkj > c1_a,w(l). If no null hypothesis is

rejected, then stop. If some Hky are rejected, then let w(l + 1) be the subset of all

null hypotheses among (k, j) E w(l) that were not rejected. Proceed in this way until

the algorithm stops.

[103] proved the following result. Suppose that c1_,. satisfies

c1-a,, < c1-,,' whenever w' c w", (3.27)

sup sup P max to > ci/a, a + o(1), (3.28)
WCW wEQ- (k~J)EW k

then inequality (3.26) holds. Indeed, let w be the set of true null hypotheses. Suppose

that the procedure rejects at least one of these hypotheses. Let I be the step when

the procedure rejected a true null hypothesis for the first time, and let Hkojo be this

hypothesis. Clearly, we have w(l) -> w. So,

max t ko > t1
(k,j)Ew kj kojo = oko > Cl.sw(1) > C1.aw.

Combining this chain of inequalities with (3.28) yields (3.26).

To obtain suitable c1_,, that satisfies inequalities (3.27) and (3.28) above, we
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can use the multiplier bootstrap method. Let (ei)'Li be an i.i.d. sequence of N(O, 1)

random variables that are independent of the data. Let c1 _-,. be the conditional

(1 - a)-quantile of

max I i==l ikjdikei// ~ (.9
(k,j)E" ,xign

given (z;, yi)!i. To prove that so defined critical values c1j_,, satisfy inequalities

(3.27) and (3.28), we will assume the following regularity condition,

(M) There are some constants ci > 0, d2 > 0,!z 2 > 0 and a sequence Bn > 1 of

constants such that for 1 < i ( n, 1 ( j ( p, 1 ( k ( K, 1 ( 1 ( pk: (i)

fzig| Bn; (ii) En[zy] = 1; (iii) Z2 ( E[e] (&2; (iv) the minimum eigenvalue

of En[vikv}kI is bounded from below by c 1; and (v) En[xik1] > c1 .

Theorem 19 (Strong Control of Family-Wise Error Rate). Let C1 > 0 be some

constant and suppose that assumption M is satisfied. Moreover, suppose either

(a) E[maxl<k<K 4,j C1 for all 1 i ( n, p3Bn(logp)4 /n = o(1) and in addition

p2B (log(pn))7/n = o(1); or

(b) E[exp(e-ik/C1)] ( 2 for all 1 < i < n, 1 k (K, p3B(logp)3/n = o(1) and

PBn(log(pn))/n = o(1).

Then the stepdown procedure with the multiplier bootstrap critical values c given

above satisfies (3.26).

Comment 27 (Relation to prior results). There is a vast literature on multiple

hypothesis testing. Let us consider the simple case where K = p, Pk = 1 for all

k = 1,... , K and Vik = 1, so that the k-th regression reduces to Yik = A + Eik (here

/3k is scalar). The problem then reduces to testing multiple means (without stepdown).

It is instructive to see the implication of Theorem 19 in this simple setting. Denote

by tk the t-statistic for testing Hk : 8k = 0 against Hk : 6k # 0, and let c1- be the

conditional (1 - a)-quantile of

1Eimax '1:= ki~-
k=1,...,p A E.[2ik]
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where eik = Yik - Yk, Yk = En[yik], and (eig)=1 is a sequence of i.i.d. N(O, 1) random

variables independent of the data. Theorem 19 implies that, when Hk are true for all

k, P(max1_k<p tk > c1-a) < a+o(1) (indeed, the inequality "G" can be replaced by the

equality "=") uniformly in the underlying distribution provided that _2 < E [eik < &

log p = o(n 1/ 7 ) and either (a) E[maxl<k.p E4] < C1 or (b) E[exp(|eik|/C1)| < 2.

Hence the multiplier bootstrap as described above leads to an asymptotically exact

testing procedure for the multiple hypothesis testing problem of which the logarithm

of the number of hypotheses is nearly of order n1 /7 (subject to the prescribed assump-

tions). Note here that no assumption on the dependency structure between Yi,... , yip

is made.

The question on how large p can be was studied in [45] but from a conservative

perspective. The motivation there is to know how fast p can grow to maintain the size

of the simultaneous test when we calculate critical values (conservatively) ignoring the

dependency among tk and assuming that tk were distributed as, say, N(O, 1). This

framework is conservative in that correlation amongst statistics is dealt away with

union bounds, namely by Bonferroni-Holm procedures. In contrast, our approach takes

into account the correlation amongst statistics and hence is asymptotically exact, that

is, asymptotically non-conservative. 0

3.12 Appendix H. Application: Adaptive Specifi-

cation Testing

In this section, we study the problem of adaptive specification testing. Let (vi, yI)Li

be a sample of independent random pairs where yi is a scalar dependent random

variable, and vi E Rd is a vector of non-stochastic covariates. The null hypothesis,

HO, is that there exists # E Rd such that

E[yi] = vo#; i = 1, ... , n. (3.30)
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The alternative hypothesis, Ha, is that there is no 6 satisfying (3.30). We allow for

triangular array asymptotics so that everything in the model may depend on n. For

brevity, however, we omit index n.

Let ei = yi - E[yi], i = 1, . .. In. Then E[ei] = 0, and under H0 , yi = vo# + Ei.

To test H0 , consider a set of test functions P(vi), j = 1,... ,p. Let z j = P(vi). We

choose test functions so that E,[zijv] = 0 and E,[z ] = 1 for all j = 1, .. ., p. In our

analysis, p may be higher or even much higher than n. Let #^ = ((En[Viyi])

be an OLS estimator of #, and let 2 = - z#; i = 1,...,n be corresponding

residuals. Our test statistic is

T:= max .
' [Z2

The test rejects Ho if T is significantly large.

Note that since En[zijvi] = 0, we have

n n n

z '/ = zij(ei + v'(# - #^))/H = zigEi/ .
i=1 = 1

Therefore, under H0 ,

T = max .zi/V/ I
1<' Ezi2]

This suggests that we can use the multiplier bootstrap to obtain a critical value for

the test. More precisely, let (ei),! 1 be a sequence of independent N(0, 1) random

variables that are independent of the data, and let

W:= max .zjei/~/

The multiplier bootstrap critical value cw(1 - a) is the conditional (1 - a)-quantile

of W given the data. To prove the validity of multiplier bootstrap, we will impose

the following condition:

(S) There are some constants ci > 0, C1 > 0, &2 > 0 ,2 > 0, and a sequence Bn ; 1
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of constants such that for all 1 i < n, 1 < j < p, 1 k < d: (i) IziI B,;

(ii) En[zfy] = 1; (iii) c_2 E[el] < &2; (iv) IVikI < C; (v) d ( C1 ; and (vi) the

minimum eigenvalue of E, [viv] is bounded from below by c1 .

Theorem 20 (Size Control of Adaptive Specification Test). Let c2 > 0 be some

constant. Suppose that assumption S is satisfied. Moreover, suppose that either

(a) E[et ] < C1 for all 1 ( i ( n and Bn(log(pn))7/n ( C 1n-c2; or

(b) E[exp(jeil/C 1 )] < 2 for all 1 ( i ( n and B2(log(pn))7/n < Cin-c2.

Then there exist constants c > 0 and C > 0, depending only on c 1, c2 , C 1 , Or2 and &2,

such that under Ho, |P(T < cw(l - a)) - (1 - a)| ( Cn-c.

Comment 28. The literature on specification testing is large. In particular, [63] and

[54] developed adaptive tests that are suitable for inference in L 2 -norm. In contrast,

our test is most suitable for inference in sup-norm. An advantage of our procedure is

that selecting a wide class of test functions leads to a test that can effectively adapt

to a wide range of alternatives, including those that can not be well-approximated by

Hilder-continuous functions. 0

3.13 Appendix I. Proofs for Section 3.11

3.13.1 Proof of Theorem 19

The multiplier bootstrap critical value ci-,, clearly satisfies cla,,w ( c-,,, when-

ever w c w', so inequality (3.27) is satisfied. Therefore, it suffices to prove (3.28). For

the notational convenience, we will only consider the w = W case and suppress the

uniformity in the underlying distribution. The general case follows from inspection

of the proof.

Let us define

I Z~i-1 XikjEik/fiulI w E._ Z 1 Xikjkej/N/~i
T:= max -W := max

k,j En ]kj En[x |
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We shall prove that P(T > cw(1 - a)) = a + o(1), where recall that cw(1 - a) is the

conditional (1 - a)-quantile of W given (eik). Here we will only consider case (a) of

the theorem. The proof for case (b) is similar and hence omitted.

We make use of Corollary 6-(iv) to prove the desired claim. Define

I Z~iXikj~ik/Vi : 1 xij~kTo:= max E Xkj , Wo :=max E. [4kjuik]
kj VEn[x ok j] ~ k' VEn [xk k]

We first verify conditions (3.14) and (3.15) in Section 3.3. We will use the following

facts directly deduced from assumption M:

maXI xikjI MaX I XIXikII (1) C~1 MaX IVikI
2,k,j z,k i,k

c1 /max lvikil ((2) cil1VBn, (3.31)
i,k,j

maxEn[xikj ] maxE[I|xik 121
k~j k

(3) c-2 maxEn[|viak1 2] <(4) C2 (3.32)

where (1) and (3) follow from assumption M-(iv) and definition of Xik, (2) is from

M-(i) since Vik is a subvector of zi, and (4) is due to M-(ii). We shall first prove some

lemmas. In these lemmas, we will assume all the conditions in Theorem 19 case (a)

without mentioning so.

Lemma 48. E"_1 Xkiji = Op(rni) uniformly over k = 1,..., K and j =

1,.. . ,Pk where rn1 = V7 log .

Proof. By Lemma 37 combined with inequalities (3.31) and (3.32), we have

E[max IZ 1xi1jek/'] = O(V/pBn(logp)/n/ 4 ± /lop) =
k~j

where the second step follows because Bnx/Iogp/n1 / 4 = o(1). The claim follows from

Markov's inequality.

Lemma 49. En[xij(gk - ofk)] = Op(rn2) uniformly over k = 1,...,K and j =

1,...,Pk where rn2 = pB2(lngp)/V .
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Proof. We have

En[X2ck (e& - oik)] = En [x2 (e2k - oik)] En [x2 (v'k ( --- 1k))2

- 2En [xikjeikvik(/k - 00k)]

Ijk + IIgk + IIIjk.

We will show in steps 1-3 below that Igk = Op iB (logp)/Vin), Igk = Opr(p 2Bn(logp)/n),

and IIIjk = Op(p 2Bn(log p)/n) uniformly over k = 1, ... , K and j = 1, ... ,pk. The

claim of the lemma follows since p/S/ -* 0.

Step 1. We prove that Ig. = En[X,?ig - o,?k)] = Or(pB (log p)/y) uniformly

over k 1,...,K and j=1,...,pk.

By Lemma 37 combined with inequalities (3.31) and (3.32), we have

E[max IEn[xikj(ei - ok)]|] = O(pBn(log p)/Vn + pB ,/(iogp)/n)

- O(pB (logp)/Vfi),

where the second step follows because Bn > 1. The claim of this step follows from

Markov's inequality.

Step 2. We prove that

Ijg = En[x2 (vpk(k -- pk))2 = Op(2B(log p)/n)

uniformly over k = 1, ... ,K and j = 1,... ,Pk We have

rn axEE[xin (v~k(3k -3k))2 1 cispB max2E][(vk( -- -2 ))]

Cj2 pB max En[eikVoik|En[vikVik| En[vikeik]

(2) c7 'pBn max IEn [Vikik] 112

< c13iP2Bn rnax |En[vikei] 2

=(3) OPr@2Bn2(log p)/n),
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where (1) follows from inequality (3.31), (2) from assumption M-(iv), and (3) from

application of Lemma 37. The claim of this step follows.

Step 3. We prove that

II = En[x ei(vkik(k - /3 k))] = OP(2Bl(logp)/n)

uniformly over k = 1,..., K and j = 1,...,Pk. We have

max IEf[xikjeik(vik(k - 1k))]I I mx| IEn[xjikViII]f1k -Al
k~j k,3

m yaxv|Efl[x eivik]|ikj - /Pk||.

Then

Max ||1A - k| = max JIEn[vikvkl-1'En[vikeik] I <1 c- 1 max II Evike ik]Ikk k

ScEj~max|IEn[vikjeik]| =(2) Op( P(log p)/n)

where (1) follows from assumption M-(iv) and (2) is as in step 2. In addition, by

Lemma 37 combined with inequalities (3.31) and (3.32), we have

E[max |Efn[xijeikviikI|| = O( pBi(logp)/n1 4 ± B (log p)/n)
k,j,l

= O(pB if (logp)/),

where the last step is because Bv/liog p/nl/4 = o(1). Combining these bounds yields

the claim of this step. 0

In Lemmas 50 and 51, Ee[-] denotes the expectation with respect to (ei)U i condi-

tional on (eik).

Lemma 50. E=1 xikjeike/Vn = Op(r i) uniformly over k = 1,... , K and j =

1,..., Pk. Recall that rn1 = v/P log p.
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Proof. We have

Ee[max|IZ~ xkeikkej/\ j] <(1) Vig opmax(En[xike jk])1/2
k,j k,j

=(2) \/logp max(En[xkjoik] + Op(rn2))i/2

(3) N/lg max-(1E 9[xPkk,]) ± Op (rn2 V/g P)

(4) o-v/log p max(En xXI)1/2 + Op(rn2VFlo P)
k~j

=(5) Or(/p logp),

where (1) follows from Pisier's inequality, (2) from lemma 49, (3) follows from ap-

plication of Taylor's theorem together with the fact that rn2 = o(1) and En[xikjk]

is bounded away from zero (which is guaranteed by assumptions M-(iii) and M-(v))

(4) follows from assumption M-(iii), and (5) is due to equation (3.32) and rn2 = 0(1)-

The claim of the lemma follows.

Lemma 51. n Xik3 (eik -- esk)e3/ = Op(rn3) uniformly over k = 1, ... , K and

J= , ... ,Pk where rn 3 = fBn(logp)//i.

Proof. We have

Ee[jZi=1Xikj(Zik - sik)ej/Vj] ( \l X2max(E[x](1/ - 2
k,j

=(2) v/log p'max(En[xiJ(vkfk -- / ))2])1/2
k,j

=(3) OP (PBn(1og p)/ v/n)

where (1) follows from Pisier's inequality, (2) is by definition of eik, and (3) is by step

2 in the proof of lemma 49. The claim follows. 0

Going back to the proof of Theorem 19, by Lemmas 48 and 49 and the fact that
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n[xiok] is bounded away from zero, we have

T = max Ei= 1 XikjEik/fTl

k,j En [xikgol] ± Or (rn2 )

= To + Op(rnirn2 ) = TO + oP(1/V/log P),

where the last step uses the fact that pi3Bn(logp)4/n = o(1). Similarly, by Lemmas

49-51, we have

W = max IEn>-1 Xikej6kej/l] ± Op(rnlirn2)
k Ei=[x o |k]

= Wo + Op(rnirn2 + ras) = Wo + OP(1// P)

where the last step uses the fact that pBn(log p)3 / 2 /y'ni = o(1). Hence it is verified

that conditions (3.14) and (3.15) in Section 3.3 are satisfied with some sequences

(1 = (In -+ 0 and (2 = (2n -+ 0 such that (1i/1og p+(2 = o(1). Therefore, the desired

claim follows from Corollary 6-(iv). 0

3.14 Appendix J. Proofs for Section 3.12

3.14.1 Proof of Theorem 20

We only consider case (a). The proof for case (b) is similar and hence omitted.

In this proof, let c, c', C, C' denote generic positive constants depending only on

c1, c2, C 1 , E2, &2 and their values may change from place to place. Let

To := max Z= 1 zige;/i/El and Wo:= max Ei=1 z ev
En[z joj] "<" En[zi]

We make use of Corollary 6-(iv). To this end, we shall verify conditions (3.14) and

(3.15) in Section 3.3, which will be separately done in Steps 1 and 2, respectively.

Step 1. We show that P(|T - Tol > (1) < (2 for some (1 and (2 satisfying
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By Corollary 5-(v), we have

P max |E'jzigEj/v > t

(P (max |EnIzjo-ei/ fVl > t) + Cn-c,

uniformly in t E R. By the Gaussian Concentration Inequality, for every t > 0, we

have

P ( ax |E izijoiej/V'I > E[nax |E iziioaei/VfrI] + Ct (e- .

Since E[max1 5 p --Izes/v/I] ( Cy/-ogj, we conclude that

P max |E'jzigEj/(j:!p v/ I > CVlog(pn) ( C'n-c (3.33)

Moreover,

E [zi2(Ei2- o =)] = [zly (sZ - e,)2] + E [zly (Et - of)] + 2En[zje'i(' - ei)]

=:Ij + IIj + IIIj.

Consider Ij. We have

I ((1) MaX(' - ei)2 ((2) CI|0- #112 ((3) C'IIEn[Vii] 112,

where (1) follows from assumption S-(ii), (2) from S-(iv) and S-(v), and (3) from

S-(vi). Since E[|En[viei] 112] ( C/n, by Markov's inequality, for every t > 0,

P max En[zi
1Kjp 2

- ei)2] > t) ( C/(nt). (3.34)
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Consider I13. By Lemma 37 and Markov's inequality, we have

P (max IEn[Zfj(Ez - or2)]I > t) CBn(logp)/

Consider III3. We have IIIIj| ( 2|E,[zAvo(# - #^)e]i <

Hence

P mn x|En [ziEi Ei) > t)

P (ma IEn[Izieivi]|| > t + P(I|# - #|| > 1)

< C[Bn(logp)/(Vi/t) + 1/n].

By (3.34)-(3.36), we have

(3.37)P max IEn[z 2(-

In particular,

Since En[z?-Uo2] > 12 > 0 (which is guaranteed by S-(iii) and S-(ii)), on the event

max1,,,p IEn[zy,(i - o?)]| < ! 2/2, we have

nii~ Enzi!] > nmi E [r }1 - a2/2 > 12/2,min Elz i min n1[3 07

and hence

]En[ zjol
IT - To| = max

1< P

- En[ z] xT]
[Zfx To

[z sF]

ma En[zfjo1] - Ezgi}

C |Enma [z o} - En[zgs!I X TO,1:!JAp
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(vnt). (3.35)

2||En[zAg-iVi]I|||#^ - #||.

(3.36)

x To

/

of2)]| > t <, C[B 2(log p) /(vn-t) + 1/(nt) + 1/n].

P (ax lEn [zigj(92 - of2)]| > _o2 /2 <1 Cn-c.



where the last step uses the simple fact that

_a - b

By (3.33) and (3.37), for every t > 0,

P (IT - Tol > Ctv/Iog(pn)) < C'[n-c + Bn(logp)/(vi/t) + 1/(nt)].

By choosing t = (log(pn))-n~"' with sufficiently small c' > 0, we obtain the claim of

this step.

Step 2. We show that P(Pe(IW - W > (1) > (2) < (2 for some (1 and (2

satisfying (19/Iog p + (2 < Cn-c.

For 0 < t < 22/2, consider the event

E = (Ei)z_1 miaxIjEn[24(Ei -Ori)]l < t, Max( -)2 <
':! j<iPi'p

2 }

By calculations in Step 1, P(S) ; 1 - C[B2(logp)/(viit) + 1/(nt2) + 1/n]. We shall

show that, on this event,

Pe (Ma |D jz 52;iej/v/nl >

Pe ax izi (si - ei)ei/

(3.38)

(3.39)

C/og(pn) ( n~1,

v ,il- > Ct V/l-og(pn)) <. n-1.

For (3.38), by the Gaussian concentration inequality, for every s > 0,

Pe max I z- 'e1/vI > Ee[max |Z~Lzis'i/v'Il] ± Cs) 2 e.

where we have used the fact En[zigs?] = En[z- +En[z?-(si-o2)] &2+t ( &2+22/2

on the event E. Here Ee[-] means the expectation with respect to (ej) 1 conditional

on (ei)!' 1 . Moreover, on the event E,

Ee[niX |Dn zigsiej/v~nI] -< Cy/Iog.
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Hence by choosing s = v/ogn, we obtain (3.38). Inequality (3.39) follows similarly,

by noting that (En[z%3(2' - ei) 2])1/ 2 ; maxl,i< JE' - e;i ; t on the event E.

Define

W1:= max| E=1 zijgsej/V/nl
1:!j~p Ezigo

Note that En[z?.of] ; u 2 . Since on the event E, maxi<j 2 2[ ( );

in view of Step 1, on this event, we have

|W - W| IW - WI| + IW1 - Wo|

; CtW1 +|IW1 - WO|

;Ct max |Elzjjsiej/v/ | + C max | i (i - Ej)ej/vrn-
1<,j<p 1<j<p

Therefore, by (3.38) and (3.39), on the event E, we have

Pe (|W - WMl > Ct v/lIog(pn)) <; 2n-1.

By choosing t = (log(pn))-ln-c with sufficiently small c > 0, we obtain the claim of

this step.

Step 3. Steps 1 and 2 verified conditions (3.14) and (3.15) in Section 3.3. Theorem

20 case (a) follows from Corollary 6-(iv). 5
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