
Quality Assurance in
Distributed Software Development Collaboration

by

Saeyoon Kim -

B.S. Civil and Environmental Engineering

Brigham Young University, 1999

Submitted to the Department of Civil and Environmental Engineering in partial
fulfillment of the requirements for the Degree of

MASTER OF ENGINEERING IN
CIVIL AND ENVIRONMENTAL ENGINEERING MASSACH SETTS INSTITUTE

OF TECHNOLOGY

AT THE 3 0 2000

MASSACHUSETTS INSTITUTE OF TECHNOLOG4 LIBRARIES

MAY 2000

© 2000 Massachusetts Institute of Technology
All rights reserved

A uthor......................... -
Department #1 Civil and Environmental Engineering

- May, 2000

C ertified b y
Feniosky Pefia-Mora

Associate Professor of Civil and Environmental Engineering
Thesis Supervisor

A ccepted by
Daniele Veneziano

Chairman, Departmental Committee in Graduate Studies

Quality Assurance in
Distributed Software Development Collaboration

by

Saeyoon Kim

Submitted to the Department of Civil and Environmental Engineering
On May 5, 2000 in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering in
Civil and Environmental Engineering

ABSTRACT

As the world moves into the age of globalization and many software development
projects become larger in their scales and complexity, it has become unavoidable and
sometimes expedient to utilize the human resources that are scattered all over the world.
As more projects and more people requires collaboration in a geographically distributed
environment, it has become extremely important to check and watch for the level of
quality in the process of collaboration. Nowadays, it is not enough to have the technical
capability to be able to collaborate in a distributed environment. It is also necessary to be
able to achieve and maintain the high satisfying level of quality in each and every aspect
of the project and the product.

However, trying to achieve and maintain the high satisfying level of quality in any
software development project is a challenging task. There are many methods and
approaches that can be used to evaluate the project and its processes to check, achieve,
and maintain the highest quality possible. Depending on the type and the characteristics
of the project, what kind of quality assurance approach and method will be taken should
be decided. There are no one right way to successfully check and maintain the quality.
Therefore, it is important to select the right approach for the individual project.
Especially in distributed software development collaborations, with very few information
or knowledge about managing quality in such an environment and project available, it is
extremely challenging for the Quality Assurance Managers to try to uphold quality.

Thesis Supervisor: Feniosky Pefia-Mora
Title: Associate Professor

Acknowledgements

First of all, I would like to thank God for giving me the opportunity to experience this,

the strength to endure this, and the hope to go on from this.

To my parents, for giving me, even from afar, their love, support, trust, and guidance. I

would like to thank them for being the role models and examples for me to follow in my

life.

I would like to thank my brothers, Saeheon and Saejoon, for their love and friendship,

and for being the best brothers in the world.

I would like to thank my friends, Hyungseok Yoo and Ju Hyun Kim, for their many wise

words and friendships in times of my hardships and trial.

To friends I've gotten to know here at MIT:

I would like to thank all the M.Eng IT group people, Ivan Limansky, Erik Abbott, Teresa

Liu, Kaissar Gemayel, Alan Ng, Steven Kyauk, Wassim El-Solh, Kenward Ma, Paul

Wong, Hermawan Kamili, and Nhi Tan, for their hard work, support, motivation, and

friendship. I would also like to thank Keng Yong Chan, Junko Sagara, Kim Luu, Janice

Yang, Heidi Li, and Shelly Bramer, who have helped me survive this experience and also

made this experience a lot more fun.

I would also like to thank Moon Seo Park, Seong-Cheol Kang, Joonsang Park, Sung-June

Kim, and Yun Sung Kim, for their support, for treating me like a family, and for giving

me numerous advice and assistance to make this MIT experience a memorable one.

I would also like to thank Professor Feniosky Pefia-Mora, for his guidance in writing this

thesis, for his encouragement to constantly improve myself, for his time giving advice

concerning my future job, and for providing this opportunity to participate in this

challenging and worthwhile project.

Lastly, to my mother, who has been and still is the person influencing and shaping my

life. I would like to thank her for constantly watching over me from above and

motivating me to become a better person everyday.

Table of Contents

TABLE OF CONTENTS... 4

LIST OF FIGURES 6

LIST OF TABLES .. .7

CHAPTER ONE.. 8

INTRODUCTION...------.. ----....... 8
1.1 M OTIVATION..----.-------.--........... 9
1.2 THESIS ORGANIZATION .. 10

CHAPTER TW O..13

SOFTWARE DEVELOPMENT AND QUALITY.. 13

2.1 NEED FOR QUALITY..- 15

2.2 SOFTWARE DEVELOPMENT LIFE CYCLE .. 16
2.3 SOFTWARE QUALITY ... 19
2.4 QUALITY FACTORS AND CRITERIA ... 22

2.4.1 Factor Definitions ... 26
2.4.2 Factor Tradeoffs... 30

2.5 ANALYTICAL QUALITY EVALUATION..32
2.5.1 Peer Reviews ... 33
2.5.2 Walkthroughs ... 34
2.5.3 Audits.. 36
2.5.4 Inspections.. 38
2.5.5 Verification and Validation...40

2.6 QUALITY ASSURANCE IN DISTRIBUTED SOFrWARE DEVELOPMENT COLLABORATION 40
2.6.1 Technology .. . 41
2.6.2 Distributed Code Inspection Process M odel..42
2.6.3 Summary of Distributed Code Inspection M odel 43

2.7 CAPABILITY M ATURITY M ODEL.. 44
2.8 CONCLUSION -----........ 47

CHAPTER THREE .. 49

INTELLIGENT ELECTRONIC COLLABORATION PROJECT .. 49

3.1 THE IECOLLAB TEAM 50
3.2 THE IECOLLAB PROJECT OBJECTIVE ... 54
3.3 THE PROCESS M ODEL... 57
3.4 THE CHALLENGES AND THE BENEFITS ... 61
3.5 CONCLUSION ..- .---...-.-- 63

CHAPTER FOUR ... 65

ROLE OF QUALITY ASSURANCE IN IECOLLAB ... 65
4.1 THE CHALLENGES .. 66

4

4.2 QUALITY A SSURANCE PLAN FOR IECOLLAB.. 67
4.2.1 The Purpose.. 67
4.2.2 The M anagem ent ... 69

4.2.2.1 Tasks.. 70
4.2.3 Software D ocum entation... 72
4.2.4 Software Engineering Standards.. 74
4.2.5 Analytical Q uality Evaluations .. 75
4.2.6 Quality Factors and Criteria for ieCollab Project 76

4.3 QUALITY ASSURANCE ACTIONS ON IECOLLAB PROJECT ... 77
4.4 AN EXAMPLE OF ANALYTICAL QUALITY EVALUATIONS IN IECOLLAB......................80

4.5 THE BENEFITS FROM W ORKING AS THE QA M .. 83
4.6 CONCLUSION .. 84

CH A PTER FIV E ... 86

RECOMMENDATIONS FOR QUALITY ASSURANCE IN DISTRIBUTED SOFTWARE

D EVELOPMENT COLLABORATION... 86
5.1 SOFTWARE DEVELOPMENT KNOWLEDGE AND TRAINING... 86
5.2 QUALITY ASSURANCE IN A DISTRIBUTED COLLABORATION 88
5.3 THE QUALITY ASSURANCE ENFORCEMENT POWER... 89
5.4 THE Q UALITY M OTIVATION ... 90
5.5 THE FUTURE OF QUALITY A SSURANCE ... 92
5.6 CONCLUSION ..------...... 94

CH A PTER SIX .. 96

CONCLUSION ...--------... 96

REFERE N CES...---99

A PPEN D ICES ... 101

A PPEN D IX 1...102

A PPEN D IX 2 ... 103

A PPEN D IX 3 ... 104

A PPEN D IX 4 ... 105

A PPEN D IX 5 ... 106

A PPEN D IX 6107

A PPEN D IX 7 108

A PPEN D IX 8 ... 111

5

List of Figures

FIGURE 2.1 SOFTWARE ENGINEERING DEVELOPMENT LIFE CYCLE PHASES 17

FIGURE 2.2 ACCUMULATIVE EFFECT OF ERRORS AND FAULTS 20

FIGURE 2.3 ERROR CORRECTION COST AT DIFFERENT PHASES... 21

FIGURE 2.4 DISTRIBUTED CODE INSPECTION PROCESS MODEL..................................... 42

FIGURE 3.1 IECOLLAB TEAM .. 54

FIGURE 3.2 W ATERFALL MODEL FOR IECOLLAB.. 57

FIGURE 3.3 INCREMENTAL MODEL FOR IECOLLAB..59

FIGURE 4.1 QUALITY MONITORING ORGANIZATIONAL STRUCTURE 70

FIGURE 4.2 QUALITY SUPPORT AND ENFORCEMENT ORGANIZATIONAL STRUCTURE.........70

6

List of Tables

TABLE 2.1 SOFTWARE QUALITY FACTORS... 23

TABLE 2.2 LIFECYCLE QUALITY MEASURES ... 24

TABLE 2.3(A) TYPICAL FACTOR TRADEOFFS .. 31

TABLE 2.3(B) TYPICAL FACTOR TRADEOFFS... 32

TABLE 4.1(A) TASKS OF THE QAM DURING THE SOFTWARE DEVELOPMENT PROCESS......68

TABLE 4.1(B) TASKS OF THE QAM DURING THE SOFTWARE DEVELOPMENT PROCESS......69

TABLE 4.2(A) INTERACTION BY QUALITY ASSURANCE MANAGERS AND PRIMARY ROLES 71

TABLE 4.2(B) INTERACTION BY QUALITY ASSURANCE MANAGERS AND PRIMARY ROLES 72

7

Chapter One

Introduction

This thesis examines the role of quality assurance in the development of software

in a distributed collaborative team project. The thesis is based on the information and

knowledge obtained through the research and experiences of managing the quality

assurance team of ieCollab, the Intelligent Electronic Collaboration. ieCollab was a

software development collaboration project that took place between diverse group of

students from the Massachusetts Institute of Technology (MIT) in Cambridge,

Massachusetts, USA, the Centro de Investigaci6n Cientffica y Estudios Superiores de

Ensenada (CICESE) in Ensenada, Mexico, and the Pontificia Universidad Catolica de

Chile (PUC) in Santiago, Chile, between September 1999 and April 2000.

This thesis will also focus on the problems faced by the Quality Assurance Team

in the development cycle of ieCollab Project. It will also focus on the benefits obtained

and lessons learned from working as the Quality Assurance Team. It will be shown that

in order to maintain the acceptable quality in each step of the software development

cycle, the quality assurance team has to take the initiative in every step and not take a

reactive role. This study will also show the factors that must be present in a distributed

8

collaborative software development project in order for the Quality Assurance Managers

to effectively check, achieve, and maintain the quality of the project successfully in every

phase.

1.1 Motivation

As the world moves into the age of globalization and the scale of many projects

increases in its size, it has become unavoidable to involve people who are in remote

locations to work in the same project. Many projects including software projects had to

overcome working in a distributed collaboration to attain a successful outcome. This

means that team members of a project frequently have to work with their peers without

ever meeting the other person face to face. The technologies have much evolved to

provide us with better media of communication that lessens the limitation of this kind of

distributed collaboration through teleconferencing, emails, Internet chatting among other

technology. However, even this great development of technologies will not solve every

limitation and frustration of collaborating in distributed environment.

Given the fact that there will be limitations and frustrations and the fact that there

will be a lot of tasks carried out among people who are from different corners of the

world, it is extremely important to check for and maintain the highest quality in the

process of each and every development stage of projects. The role of quality assurance

managers becomes very important in the distributed collaborative environment. The

quality assurance managers have to make sure that the quality of the entire project is not

9

sacrificed due to the disadvantages and difficulties that the distributed teams bring into

the project.

1.2 Thesis Organization

This thesis is divided into six chapters. The first chapter, which is the current

chapter, is the Introduction Chapter. This chapter explains briefly what this thesis is

going to be about. It also talks about the motivation behind writing the thesis.

The second chapter will show the overview of quality assurance in a software

development project. It will discuss the need of quality, especially in a distributed

project, in order for the project to be truly successful. It will show different phases of

software development life cycle and the reason why the quality needs to be present and

emphasized at each phase. It will also introduce some of the quality factors and criteria

and their definitions to which the quality should be measured against. This chapter then

will go on to talk about some of the analytical quality evaluations like peer reviews,

walkthroughs, audits, and inspections. It will describe planning and preparation that need

to be done in order to conduct each of these evaluations. The following section will

discuss how the quality assurance team carries out its duties in a distributed collaboration.

It will introduce the Distributed Inspection Process Model and describe in detail how an

inspection can be executed in a distributed environment. Lastly, this chapter will show

the Capability Maturity Model (CMM) and its five distinct levels. It will show how the

role of quality assurance comes into play in each level. It will also show that if a project

was one of the distributed nature, then the original CMM, which is designed to meet the

needs of certain organizations and has a particular order for improvement actions, may be

10

inappropriate for a distributed collaborative software project and some modifications are

necessary.

The third chapter will introduce the Intelligent Electronic Collaboration (ieCollab)

Project, which is a distributed collaborative software development project held from

September 1999 to May 2000 between students from three universities that are

geographically scattered in the western hemisphere. It will discuss the organization and

the team. It will discuss how each and every team was formed with at least one of the

team members from a different university in order to promote and encourage working in

distributed collaboration. The chapter then will focus on the objective of the project, the

process model of the project, the challenges that the team faced, and the benefits that the

team got over the course of the project. It will discuss how the objective was not just to

obtain an end product but to experience and learn from working in a distributed

collaboration, to feel and live the difficulties and challenges of having a team member in

a remote location in achieving a common task, and to study and research to suggest and

recommend ways to improve the collaboration between the distributed teams in a given

project.

The fourth chapter will discuss applying quality assurance to ieCollab Project. It

will discuss some of the challenges of applying quality assurance to ieCollab since the

project was not a collocated software development project but one that was of a

distributed collaboration. It will introduce the Quality Assurance Plan (QAP) that the

Quality Assurance Managers (QAM) of ieCollab submitted to the team. The QAP

became the source of guidelines for the QAM in their effort to check, achieve, enforce,

11

and maintain the highest quality possible in ieCollab Project. It will show what the role

of the QAM was in every phase of the project and what their relationship to the rest of the

team was. It will show what kind of activities that the QAM carried out with the guide of

the QAP and the examples of analytical quality evaluations that was conducted for

ieCollab Project. It will conclude the chapter by discussing the benefit and the lessons

learned from working as the QAM in ieCollab Project.

The fifth chapter will outline the recommendations for applying quality assurance

in distributed software development collaboration. The recommendations were acquired

from the experience of working as the QAM for ieCollab Project and the research that the

QAM did in their operation. One of the key recommendations was to keep reminding the

entire project members of the importance of maintaining the quality performance and

ultimately make them be quality conscious in any type of situations. Because it doesn't

matter how effective or efficient the methods of checking and maintaining the quality is,

if the project members personally do not care about the quality in their work, the quality

will never be achieved.

12

Chapter Two

Software Development and Quality

There are many software projects that use the same tools, techniques, and

methodologies and even similar software attributes. However, even with those

similarities, there are numerous cases where one succeeds and another fails. Therefore,

there has to be other factors that play in the success or failure of a software project. As

defined by Evans (1986), the successful development of a software system requires the

presence of five factors:

1. A preplanned project environment tailored to the needs, characteristics,
and development requirements of the application.

2. A smooth blending of technology, project discipline, and development
control based on firm requirements and an integrated set of project plans
tailored to the characteristics of the project.

3. Application of tools, techniques, and project methodologies covering each
phase of development linked together through project controls and data
products. They are tailored to technical characteristics, personnel
experience, and technical, administrative, and management constraints of
the project.

4. A smooth, controlled transition of data consistent with technical and
development standards of the project; a predefined, effective flow of
responsibility as the implementation proceeds from phase to phase and as
responsibility shifts from organization to organization; and a set of quality
gates which monitor and evaluate the quality of the data before the

13

impacts associated with poor quality affect the quality of the end products
of the development.

5. A staff that is technically competent to produce the software, motivated to
meet schedule and cost commitments, coordinated to ensure that the
activities of one organizational element mesh properly with other
segments of the project and that the activities of all segments of the project
are focused and directed towards a common set of goals and objectives,
and that the staff is committed to produce a quality product consistent with
project standards, operational and performance requirements, and the
developments of the project.

These factors from Evans (1986) that are listed above do not talk about what kind

of tools or techniques are being used but they, if read carefully, all deal with the process

of a project. The above factors show how important the process of a project is. Whether

a project utilizes high-tech million-dollar tools or highly competent, skilled staffs does

not decide the fate of a software project. Rather, the success of a software project is

closely related to how the entire project will be processed and how each phase of the

project will be carried out. Then how can one make sure that each phase or step of a

project is executed in such a manner that it will lead to the success of the project?

There have always been problems in three main areas of the development that have

become crucial to the success of a project. The three areas as defined by Wallmuler

(1994) are as follows:

Time factors

* Only 5 percent of all projects are completed on time.
" More than 60 percent of all projects have at least a 20 percent time overrun.
" Many projects are terminated altogether because of delays.

Cost factors

e Development cost increases exponentially with the complexity of software.

14

* The higher degree of integration of modem software systems, complex interfaces
between components, and the demand for adequate user friendliness and reliability
(particularly in interactive systems) also cause higher development costs.

* In many instances, 60 percent more of the entire software cost of a product is spent on
maintenance.

* Delays can reduce market opportunities for a product and render investment
unprofitable.

Product quality factors

* Errors are often found too late, frequently not until the customer tries to put the
system into operation.

* The software product documentation is missing, incomplete or not up to date.

* Because of product faults more than 50 percent of development time and effort is
spent on error detection and correction.

e Quality as a development aim can often not be proved because of lack of quality
planning.

In every software development project, project managers try their best to avoid

these problems or at least try to diminish their impact as much as possible. However,

most of the times, it is difficult to avoid all three problems. Since in many projects,

bigger pressure lies with meeting the time of the product delivery and the proposed

budget, usually the product quality is the one that gets sacrificed or overlooked most of

the time.

2.1 Need for Quality

Time and money surely are very important factors that might decide how the

project would be carried out. However, the quality of the product is an important factor

just as the other two. During the development of a project, people might tend to consume

themselves heavily on meeting the deadlines or working under a specific budget. But at

the end, after they met all the deadlines and worked under all the budgets, if their product

has a fatal mistake or quality lacking features, this would not be described as a successful

15

project. Especially in present days, when the types of software that are being developed

and produced take up more responsibility and expectations than before, the quality of

those products must be uphold to satisfy the demands.

As computers pervade more areas of our lives and control more of our
environment, the potential effects of unacceptable software quality
become increasingly disturbing. In many cases our ability to specify
requirements; to design, develop, and test systems; and to maintain the
software systems once deployed has been outstripped by the complexity
and characteristics of the systems themselves. When assessing the effects
of this short fall, consider the potential effects of a banking system of
questionable accuracy, of an unreliable software system supporting a
manned space mission, or a military system which reports incorrect data or
data in the wrong format. The need for absolute, predictable software
quality becomes evident [Evans, 1986].

In the discussion of quality, one can not just assume that it only has a relationship

to the end product that the project creates. The need for focusing on the quality in each

stage of the software development arises because it has a correlation to the other factors,

the time and the cost. Having errors and faults not only in the product but also in the

stages of the project results in the delay of time and the increase in extra cost. There has

to be quality checks in every project stages to eliminate these errors and faults. In this

way, the time, the cost, and the quality of the project can be positively affected.

2.2 Software Development Life Cycle

The software development cycle is composed of several phases, each of which

ends with the occurrence of a milestone event, and each of which produces an identifiable

16

combination of documents or software items and results in a formal review or set of

reviews [Wallmuler, 1994]. In different kinds of projects, each phase might be referred

to as different names but in its essence, they all have the same general significance.

These general phases are project definition, requirement analysis, design, coding, testing

and operation and maintenance.

Figure 2.1 Software Engineering Development Life Cycle Phases [Wallmuler, 1994]

Project Definition

This phase is the earliest part of the software development cycle in which the basic plan

of the development is proposed and set. This phase defines the scope, the purpose, and

17

the goals of the project: what the project is trying to achieve, what it is going to build, and

why. It also outlines the target market, the competitive advantage, and the finance of the

project: how and where this product will be utilized, in which area this project has the

edge over the competition, and where the project will find funds.

Requirement Analysis

The requirement analysis phase is usually the most complex and important phase of

software development. It is here that initial requirements are set down defining the

system that is to be built. How this phase works out is extremely crucial to the software

development. From the project definition declared by the business managers and the

marketing managers, requirement analysis team will collect, analyze, and define the

requirements of the software system. These requirements will then be reviewed

thoroughly to make sure the right system is being proposed and to secure a good-quality

product.

Design

The design is the bridge between requirements and the programming. From the

requirements that are set and defined, the detailed design has to be produced. This design

must be complete and accurate according to the proposed requirements in preparation for

the implementation. Through creativity and discipline, a good design can be achieved. A

good design will make testing of quality and maintenance of software easier.

18

Coding

Coding phase is when the detailed design that was created from the defined requirements

is actually being implemented. People responsible for this phase of the project should be

familiar with the project's requirements and the design to be able to write the code that is

logical and uniform to the proposed product. Coding can be a very complicated process

in which it requires a great amount of collaboration and understanding to achieve the

final desired product.

Testing

This is the phase in which the code that was written in the previous phase is being tested

to see if it complies with the requirements that were defined earlier. This stage should

also check whether the product is reliable enough for installation and user operation.

Operation and Maintenance

This is the final stage of the software development life cycle. One of the earliest

activities in this phase is the introductory training of the user. The user's manual would

be created for this phase. The maintenance part of this phase should run as long as the

product is being utilized.

2.3 Software Quality

Quality must be built into the software development cycle from the very

beginning. People involved with software development project nowadays must realize

how closely related the problems of time, cost, and quality are. Quality assurance has to

be playing in each and every phase of the project in order to meet the time and the cost

19

requirements. It is pretty obvious that a delay in the first phase of the project will affect

all the other phases and the project will have a good chance of not meeting the deadline.

This is the same case with the errors and faults occurring in the beginning stages of the

project. Errors and faults have a tendency to be accumulated and this can be shown in

Figure 2.2:

Ideas, wishes and requirements

Requirements
Definition

System
Specifications

Design

Implementation

Testing and
Integration

Correct
Requirements

Correct Sys.
Specifications

Correct
Design

Correct
Implementation

Correct Test Corrected
And Integration Errors

Software with known and unknown errors and faults

Figure 2.2 Accumulative Effect of Errors and Faults [Wallmuler, 1994]

20

In Figure 2.2 above, it could be seen that errors that have been generated in the

first stage contribute to the next part and so on. The errors that did not get corrected in

the first stage results in more errors being created in the latter phases. The error and

faults must be found and eliminated in the beginning to reduce the unnecessary amount of

time and money wasted in the project. The correction of quality errors and faults can be

very expensive, since the cost of correcting the errors increases exponentially with the

time that an error remains in the project cycle as shown in Figure 2.3 [Wallmuler, 1994]:

1200

01000
0

800-

o 400..
0 10 2

0

Software Life Cycles

Figure 2.3 Error Correction Cost at Different Phases [Cruz, 1999]

As it can be seen from Figure 2.3, as the development cycle approaches the latter

part, the error-correction cost increases tremendously. Errors that are found and

corrected in the early stages of the project can save much more money that may

unavoidably have been spent later, had those errors been not discovered. It is shown in

Figure 2.3 that correcting errors in the later phases can cost 100 times more than at earlier

21

stages of the development. Finding and correcting the errors in the early stages of the

cycle may also save a lot more time for the project. It would be much easier to find and

correct errors that occur in a specific stage. Once the error gets passed over to the next

phase of the project, it would be difficult and confusing to locate and identify the errors

and correct them. This is why it is very important for the quality assurance managers to

check and review every phase in the software development life cycle.

2.4 Quality Factors and Criteria

The quality of a given project should be measured in various areas and also

against various factors to make sure the high standards of quality. Not only the quality

during a certain project development phase but also the quality during each and every

development phase should be emphasized. Evans (1986) defined in his book that there

are three categories relating to specific areas of the software life cycle in which the

quality should be concerned:

Performance: The requirements that must be stated and agreed to by the
user. That stated and agreed requirements will specify how the software
will operate.

Design: The integrity of the design process to implement the
software requirements of the user.

Adaptation: A life cycle concern that affects the user and the maintainer
- how easy will the software be to reuse and to evolve to meet new
requirements.

22

Each of the three categories has concerns of its own and quality factors relating to

it. The performance category is concerned with such areas as how well the software

product functions and how easy it is to use. The design category deals with topics like

how easy it is to verify the performance of the software and how easy it is to repair. The

adaptation category answers questions like how easy it is to make changes to the software

and how easy it is to interface with another application. The following table depicts these

concerns and the commensurate quality factors.

Table 2.1 Software Quality Factors [Evans, 1986]

Performance
How well does it function?

How well does it utilize a resource? Efficiency

How secure is it? Integrity

What confidence can be placed in what it does? Reliability

How easy is it to use? Usability

How well does it conform to the requirements? Correctness

Design How easy is it to repair? Maintainability
How valid is the design?

How easy is it to verify its performance? Verifiability

How easy is it to expand or upgrade its Expandability
capability or performance?

How easy is it to change? Flexibility

Adaptation How easy is it to interface with another system? Interoperability
How adaptable is it?

How easy is it to transport? Portability

How easy is it to convert for use in another Reusability
application?

From Table 2.1, it could be seen that the performance category deals with such

quality factors as efficiency, integrity, reliability, and usability which all deal with the

23

The design category contains correctness,

maintainability, and verifiability, which are about how valid the design is. The

adaptation category checks for expandability, flexibility, interoperability, portability, and

reusability. Table 2.2 provides brief definitions for these factors. The factors and their

definitions will be discussed in extensive detail in Section 2.4.1.

Table 2.2 Lifecycle Quality Measures [Evans, 1986]

Performance

Efficiency Relative extent to which a resource is utilized (i.e.,
storage space, processing time, communication
time).

Integrity Extent to which the software will perform without
failures due to unauthorized access to the code or
data within a specified time period.

Reliability Extent to which the software will perform without
any failures within a specified time period.

Usability Relative effort for training or software operation
(e.g., familiarization, input preparation, execution,
output interpretation).

Correctness Extent to which the software conforms to its
specifications and standards

Design Maintainability Ease of effort for locating and fixing a software
failure within a specified time period.

Verifiability Relative effort to verify the specified software
operation and performance.

Expandability Relative effort to increase the software capability or
performance by enhancing current functions or by
adding new functions or data.

Flexibility Ease of effort for changing the software missions,
functions, or data to satisfy other requirements.

Interoperability Relative effort to couple the software of one system
Adaptation to the software of another system.

Portability Relative effort to transport the software for use in
another environment (hardware configuration
and/or software system environment).

Reusability Relative effort to convert a software component for
use in another application

24

question how well it functions.

It should be noted that these factors should be used as a management tool to

improve the software development process, specify the quality attributes of a software

system by providing an example for specifying reliability, and determine what

information managers and software engineers need in order to help them do their jobs

better and how to get that information [Kelly, 1993]. It should also be emphasized that

there is no universal set of factors that are applicable to all projects and all project

environments. Every project must experiment to see what works for them and their

environment.

The quality factors and criteria system that is presented above was put together by

Evans (1986). The quality assurance team of a given project should know that there are

other systems that have been proposed out there. One example of the other systems is the

one proposed by Buckley and Poston that consists of twenty criteria. The criteria are

economy, integrity, documentation, understandability, flexibility, interoperability,

modularity, correctness, reliability, modifiability, validity, generality, testability,

reusability, resilience, usability, clarity, maintainability, portability, and efficiency

[Vincent, 1988]. However, as it was mentioned above and also stated by Vincent (1988),

it is not important which system of quality factors and criteria that the project decides to

use. The important thing here is to "ensure that the system is discussed, understood,

agreed to, and documented" among every team and people involved in the project, so that

they take this system of quality factors and criteria seriously as they use them. It will be

discussed in the later chapter (Chapter Four) but it should be noted that ieCollab Project

used yet another system of quality factors and criteria from the ones that are mentioned

above.

25

2.4.1 Factor Definitions

One of the major obstacles that the quality assurance managers face as they go

about making the list of quality factors is not knowing what each quality factor means.

Some of the factors seem to be meaning the same thing yet they are listed as different

factors. Table 2.2 discussed briefly what the definitions of each factor are. This section

will discuss in detail how each quality factor is measured and what they deal with as they

are defined by Evans (1986), Schulmeyer (1999) and Sanders (1994).

Efficiency: Efficiency is made up of attributes that have impact on the relationship

between the level of performance of the software and the amount of resources used under

specific conditions [Sanders, 1994]. The attributes are time behavior and resource

behavior. Time behavior measures the response and processing times and on throughput

rates in performing its function. Resource behavior measures the amount of resources

used and the duration of such use in performing its function.

Integrity: Integrity deals with the security and the auditability of the product. Security is

an operationally oriented attribute and auditability is an attribute that helps determine

security [Evans, 1986]. It assesses the instrumentation of the product answering question

such as how well the software instruments itself, how well execution errors are

recognized, and how well special conditions are identified.

Reliability: Reliability is a set of criteria that affect the capability of software to maintain

its level of performance under certain conditions for a certain period of time [Sanders,

26

1994]. There are three methods of checking software reliability. First is on the basis of

its failure history. Second is its behavior for a random sample of points taken from its

input domain. Third is the number of seeded and actual faults detected by the test team.

Seeded faults are those faults that are intentionally put into the program at the beginning

of the debugging phase without informing the testing team about it [Schulmeyer, 1999].

Usability: Usability is a set of characteristics that bear on the effort needed for use and on

the individual assessment of such use [Sanders, 1994]. It checks for the user-friendliness

of the system. It also test to see if the system is extremely difficult to use or requires an

excessive amount of continuing education for the skill level of the expected users. It

measures understandability, learnability, and Operability. Understandability checks for

the user's effort in recognizing the logical concept that is being used in the system and its

applicability. Learnability measures the user's effort in learning the system's application.

Operability measures the degree of difficulty of operation and operation control.

Maintainability: Maintainability is a set of characteristics that bear on the effort needed

to make specified modifications [Sanders, 1994]. A sound development process, resulting

in a quality product, is the best insurance for maintainable software. This measures such

attributes as analyzability, changeability, stability, and testability. Analyzability is the

difficulty associated with diagnosing deficiencies or failures, or identification of parts in

need of modification. Changeability measures the degree of need for modification, fault

removal, and environmental change. Stability measures the risk of unexpected effect of

27

modifications and testability measures the degree of difficulty in validating the modified

software.

Verifiability: Verifiability deals with the capability to verify that the software design and

implementation is in accordance with program specifications [Evans, 1986]. Verifiability

is somewhat analogous to the testability of the code. The key criteria are simplicity,

modularity, test, document accessibility, and self-descriptiveness. Metrics that are

applicable are design structure, complexity, coding simplicity, test checklists, quantity

and effectiveness of comments, and descriptiveness of implementation programming

language.

Expandability: Expandability deals with the amount of effort involved in increasing the

capability of the software [Evans, 1986]. It could take the form of increased or new

performance requirements, or enhanced operation to achieve ease of use or efficiency.

The attributes of significance are extensibility, generality, modularity, self-

descriptiveness, and simplicity.

Flexibility: Flexibility is extremely important to the life of the software product. It

measures attributes like modularity, generality, self-descriptiveness, and simplicity.

Applicable metrics are interfaces, generality of structure and data, extensibility, quantity

and effectiveness of comments, and description of implementation programming

language [Evans, 1986].

28

Functionality: Functionality is a set of attributes that influence the existence of a set of

functions and their specified properties [Sanders, 1994]. The applicable attributes

include suitability, correctness, and interoperability. Suitability evaluates the presence

and appropriateness of a set of functions for specified tasks. Correctness evaluates the

provision of right or agreed results or effects. This might include the needed degree of

precision of calculated values. Interoperability is the attribute that bears on its ability to

interact with specified systems. It is used instead if compatibility in order to avoid

ambiguity with replaceability.

Portability: Portability is a set of characteristics that have effect on the ability of software

to be transferred from one environment to another [Sanders, 1994]. It touches upon such

characteristics as adaptability, installability, conformance, and replaceability.

Adaptability bears on the opportunity for its adaptation to different specified

environments without applying other actions or means than those provided for this

purpose. Installability measures the degree of difficulty in installing the software in a

specified environment. Conformance is the measure of adherence of the software to

standards or conventions relating to portability. Replaceability bears on the opportunity

and effort of using the software in place of specified other software in the environment of

that software.

Reusability: Reusability is similar to portability. The distinction is that portability

measures the ability to transfer modules of code from one machine to another while

reusability measures the ability to move modules or code to other applications within the

29

same operating environment [Evans, 1986]. It is, therefore, a lesser requirement than

portability. The attributes are application independence, independence, document

accessibility, generality, modularity, self-descriptiveness, simplicity, and system clarity.

Some of the key metrics are modular interface complexity, quantity and effectiveness of

implementation programming language, software system independence, and machine

independence.

2.4.2 Factor Tradeoffs

After an appropriate set of quality factors are selected and produced for the

project, the interrelationships among the selected factors must be considered. It is usually

extremely difficult to have high degree of all factors present in the project. If it is

unavoidable to have a high degree of some factors, then it might be inevitable to have a

low degree of some other factors. Table 2.3 (a) and (b) will show the typical factor

tradeoffs. It maybe used as a guide to determine the relationship between the quality

factors.

Even if there are tradeoffs, and some factors and criteria might be expected to

score low evaluation, the project reviews and audits must still be conducted with all the

factors and criteria being considered. However, it should be mentioned in the evaluations

and reviews that which quality factors and criteria are in tradeoffs and this will help the

users to see which factors and criteria was sacrificed to enhance others in the tradeoffs

[Vincent, 1988].

30

Table 2.3(a) Typical Factor Tradeoffs [Schmulmeyer, 1999]

Integrity The additional code and processing required to control the access of the
vs. Efficiency software or data usually lengthen run time and require additional storage.

The additional code and processing required to ease an operator's tasks or
Usability provide more usable output usually lengthen run time and require
vs. Efficiency additional storage.

Optimized code, incorporating intricate coding techniques and direct

Maintainability code, always provides problems to the maintainer. Using modularity,
Ma.iainabily instrumentation, and well-commented high-level code to increase the

vs. Efficiency maintainability of a system usually increases the overhead, resulting in
less efficient operation.

Testability The above discussion applies to testing.
vs. Efficiency

Portability The use of direct code or optimized system software or utilities decreased
vs. Efficiency the portability of the system.

Flexibility The generality required for a flexible system increases overhead and
vs. Efficiency decreases the efficiency of the system.

Reusailit
Reusability The above discussion applies to reusability.
vs. Efficiency

Interoperability Again, the added overhead for conversation from standard data
IntEropaiiy representation and the use of interface routines decreases the operating
vs. Efficiency efficiency of the system.

Flexibility Flexibility requires very general and flexible data structures. This
vs. Integrity increases the data security problem.

Reusability vs. As in the above discussion, the generality required by reusable software
Integrity provides severe protection problems.

31

Table 2.3(b) Typical Factor Tradeoffs [Schmulmeyer, 1999]

Coupled systems allow for more avenues of access and for different users

Interoperability who can access the system. The potential for accidental access of
v.Inter ity sensitive data increases as the opportunities for deliberate access increase.
vs. Integrity Often, coupled systems share data or software, which further compounds

the security problems.

Reusability vs. The generality required by reusable software makes providing error
Reliability tolerance and accuracy for all cases more difficult.

2.5 Analytical Quality Evaluation

Quality evaluations of a given project can be accomplished through various types

of technical reviews. These evaluations can lead to the improvement of the project

development process and the product. As stated by Wallmuller (1994), there are several

reasons for such evaluations:

" The buyer or contractor wants to know whether a software product meets
his or her requirements.

e The project leader is interested in the quality of intermediate and end
deliverables of a phase.

e The developer wants to know whether his or her work has reached a high
level of quality.

Reviews are also conducted to assess project status, determine software quality,

and decide on the acceptability of the product. It is important to use this ongoing and

pervasive process to support the quality management program. It is the responsibility of

the program and development organizations to provide the necessary management

mechanisms to process, and in the final analysis, provide an accurate overall assessment

32

of the product [Evans, 1986]. In this section, four major technical reviews of analytical

quality evaluation will be discussed. They are peer reviews, walkthroughs, audits, and

inspections. In addition to these four major technical reviews, verification and validation

will be discussed as well.

2.5.1 Peer Reviews

A peer review is an informal review that is a structured presentation of technical

and process data. It is an evaluation of elements that make up software development to

find conflicting areas and recommend improvements [Sanders, 1994]. The review

process starts with a definition of the specific goals of the review. The review

chairperson and the leader of the group for whom the review is to be conducted decide on

the agenda and what they are looking to accomplish from the meeting.

Some of the goals of peer reviews should include a statement of review

requirements and needs, a detail plan of how the meeting will be conducted, and an

agenda of the meeting. The goals are set to provide some expectations of the meeting, so

the people, who will participate, know what they need to do to prepare for the meeting

and be ready to discuss the necessary topics. After the goals of the peer review are set,

the planning must take place. During the planning, the numbers and types of people who

will attend the meeting should be specified and notified. The technical information that

is to be presented and the criteria that will be used to evaluate content of the review

should be determined. Peer reviews should be conducted following exactly the agenda

and the schedule that was planned beforehand. It should also follow the technical

requirements that they agreed upon in the planning stage. During the review, the

33

participants should know what their responsibilities are and how to apply the scoring

system to the evaluation. After the review, both the reviewer and reviewee should sum

up the data that they obtained from the meeting and write a report. This report should be

a resolution of differences that may have been brought up in the meeting and also the list

of the action items from the meeting. In case there are issues that are not resolvable then

the issue should be included in the report as well [Evans, 1986].

2.5.2 Walkthroughs

As outlined by Evans (1986), a walkthrough is an informal review whose primary

function is to assess the progress. It is conducted at various points within the

development by project proposal. The reviewer in a walkthrough interacts with the

review audience rather than conducting a one sided evaluation of a single data item. The

objective of walkthroughs is to evaluate application requirements, developing design,

code, and levels two to five test data products. Specific walkthrough goals are

determined before conducting the walkthrough. In preparation of a walkthrough, the

emphasis is put on reviewing the process, and providing constructive criticism.

Secondary objectives may include the identification of style errors, improvement in the

quality of the material, and the transfer of ideas and understanding between team

members. All data products reviewed and approved at walkthroughs are put together by

the appropriate development group, entered into the program support library, and

released for use in the next phase of development. Some of the planning for

walkthroughs are [Evans, 1986]:

34

1. A walkthrough should be held for any software development material used
by more than one organization. The degree of formality is a function of
the approval level of data.

2. Walkthroughs shall be scheduled well in advance. The reviewee shall
send out a notice, with the review materials attached, to each reviewer.

3. The reviewee should check with all attendees before setting the time and
date of the walkthrough to affix a mutually convenient time.

4. The following people shall attend a walkthrough: the reviewee, the
appropriate design leader, a peer of the reviewee, and an independent
reviewer from outside the development organization (someone from
program test, quality assurance, technical support, etc.).

5. Supervisors or managers are invited to walkthroughs when their particular
skills or knowledge are required. A supervisor may also attend a
walkthrough if interest is expressed, but the supervisor does not attend in a
supervisory role, rather as one member of a team reviewing another
member's work.

After the planning is done and the date is set, the walkthrough announcement

should be distributed to every team involved with the project. Walkthrough should have

a moderator to conduct the meeting, a recorder to take notes of the walkthrough, the

reviewee, and the representatives from each team to make comments. From the

walkthrough, action items that require correction, clarification, or further work will be

established. The reviewee will be required to respond to all the action items and make

changes after the walkthrough.

During the actual walkthrough, the moderator should be responsible mostly for

creating an agenda for the meeting, assigning who will make comments from each team,

and monitoring a relevant and useful discussion among other things. The recorder should

be taking minutes of the meeting and the action items and issues that come up. The

reviewee should present to the entire team the document that is the subject of the

35

walkthrough. After the presentation is over, the pre-assigned representatives from each

team should make comments and raise relevant issues under the direction of the

moderator. At the end of the walkthrough, the action items should be handed over to the

reviewee to make changes and corrections. If the document is approved at the end of the

walkthrough, it will be frozen. The Quality Assurance Managers should follow up with

the reviewee to check if the necessary changes and corrections are made and to decide

with the Project Managers if another walkthrough should be necessary.

2.5.3 Audits

As stated by Summers (1987), "Auditing is a very powerful quality assurance

tool, which can be employed at any time during the project." An audit is a formal review

that acts as checkpoints, which are in-process evaluations of developing data or process

oriented activities. Audits differ from walkthroughs in that they are not participatory in

nature. They are more of one-sided evaluations. Throughout the development period

regular audits of the development process, management and control procedures being

applied to the project, project performance and productivity, and technical compliance of

the system to standards should be conducted [Evans, 1986].

In order for audits to be effective, they must follow some guidelines. First of all,

the specific goal of the audit must be decided. These goals will differ according to the

phase of the project, the experience of the team members, the purpose of the audit, and

the use of the audit results. The set goals should be able to define areas like the specific

audit assignment, the desired end products, the reason for the audit, and the audit

audience.

36

After the goals have been set, the scope of the audit should be set next. In setting

the audit scope, the goals of the audit as well as the schedule and the experience of the

audit team members should be considered. Related audit reports or previous working

papers should be obtained for references. The scope of audits should be wide as possible.

It should not be limited to just being a test of software development activities. The scope

should be wide enough so that depending on the outcome of the audit, some events like

the rescheduling of tasks or even the removal of code inspections can be decided in order

to make sure that the project is on the right track and the productivity is satisfactory

[Summers, 1987].

From the goals and the scopes set, the audit team members should develop an

audit plan highlighting the audit goals and objectives, the way it will be conducted, the

major areas of evaluation, and the expected outputs. When this is all done, then the audit

can be initiated. During the initiation, the audit team must prepare a survey guide that

will serve as a road map for the auditors to follow [Evans, 1986]. This road map should

be based on the preliminary data that was collected. In the actual audit, the audit team

must be prepared to carefully look at and evaluate at the current progress of the project

with the proposed plan of the project. They must ensure the products are consistent with

the project standard and the predefined quality attributes. After an audit is finished, the

audit team must analyze the results that they obtained from the audit and report the

clearly documented results to the project management.

37

2.5.4 Inspections

The inspections are a formal review that usually take data products or

development process characteristics and evaluate them against a predefined set of criteria

for compliance. They are much narrower in focus and much more rigorously structured.

As stated by Jones (1991), inspections are very different from peer reviews and

walkthroughs primarily in its preparation, the roles assigned, and its follow-up. In order

to be called an inspection, it must have the following characteristics [Jones, 1991]:

1. The participant must receive training before participating in their first
inspection.

2. There needs to be enough preparation time before the actual inspection
takes place.

3. There requires attendance at least of:
" A moderator (to keep the discussion within bounds)
* A reader (to paraphrase the work being inspected)
* A recorder (to keep records of all defects)
e An inspector (to identify any problems)
e An author (whose work is being inspected)

However, people can take dual roles if the project is really small.

4. The inspection will follow general standards in terms of timing, recording
defects, and polling participants.

5. There should be follow-up meeting to check for actual repairs of the
identified defects.

The major purpose of the inspection is to find problems that may cause troubles

later and eliminate them in the early stage of the project. Like the audit, the first thing

that needs to be done in inspection is the setting of goals. The goals need to define area

like the project needs that should be addressed by the inspection. After the goal has been

set, the specific standards for the product or the development procedures that are to be

38

evaluated must be defined. It is recommended that these standards be a relative weight of

acceptability than just pass/fail. After these phases are finished, an inspector using the

standards defined should conduct the inspection and give evaluation.

Within the inspection meeting, the moderator is the one who is conducting the

meeting from the beginning to the end. At the start of the inspection, the moderator

should introduce all the participants, "briefly describing their roles, and restating the

purpose of the inspection and product." [NASA, 1993] Then, the moderator should

introduce the reader who will be presenting the document relating to the product that is

the subject of the inspection.

The reader is the one who "provides a logical reading and interpretation of the

product." [NASA, 1993] In order to be objective, the reader should be someone who is

not deeply related to the product that is being inspected. The inspector is allowed to stop

the reader, if allowed by the moderator, while the reader is reading the documents to

make comments about unclear matters. The recorder has to be constantly taking down

minutes of the meeting and action items that came up. The recorder has to read over the

action items and issues that came up during the inspection at the end of the inspection and

give a copy of the action items to the reviewee.

A day or two after the inspection, a third-hour can be scheduled to discuss all the

open issues that arose during the inspection. This time can be also used if there was not

enough time during the original inspection. After the rework has been done by the

reviewee to correct all the faults that were found and the issues that were brought up

during the inspection, there should be a follow up to make sure the everyone is in

39

agreement with the changes made and to check to see it any additional reviews are

necessary.

2.5.5 Verification and Validation

Verification and validation is the systematic process of analyzing, evaluating, and

testing system and software documentation and code to ensure the highest possible

quality, reliability, and satisfaction of system needs and objectives. They are the process

of determining whether the requirements for a system or component are complete and

correct, the products of each development phase fulfill the requirements or conditions

imposed by the previous phase, and the final system or component complies with

specified requirements [Schulmeyer, 1999].

The difference between verification and validation is simply this:

* Verification is the process of evaluating a system to determine whether the
products of a given development phase satisfy the conditions imposed at
the start of that phase.

e Validation is the process of evaluating a system or component during or at
the end of the development process to determine whether it satisfies
specified requirements.

2.6 Quality Assurance in Distributed Software Development
Collaboration

So far, this chapter gave an overview of the quality assurance in a general

software development project setting. However, as it was mentioned in the first chapter,

in more complex and larger scale projects, many people collaborate over a period of time

40

and over different geographical locations to create a product. This section will introduce

an example of applying quality assurance in a distributed project. Specifically, it will

take a look at one method of analytical quality evaluations in a distributed collaborative

software development project: the distributed code inspection.

2.6.1 Technology

In order to sustain an effective work of the quality assurance in a distributed

collaborative software development project, the project must support the necessary

technologies of computer networking and associated hardware, software, services and

techniques. The technologies must also be able to understand different ways people work

in distributed projects. Here is a list of four different setting that people can work in a

distributed collaborative project as defined by Doherty (1997):

" Face to face interaction at the same place and at the same time, e.g.,
meeting room technology.

e The asynchronous interaction at the same place but at different times, e.g.,
physical bulletin board.

" Synchronous distributed interaction at different places but at the same
time, e.g., real-time document editor.

" Asynchronous distributed interaction at different places and at different
times, e.g., electronic mail system.

Without the technologies that can enable successful collaborations in the above

settings, it would be extremely difficult to do the job of quality assurance effectively. By

having technologies that will enable an effective collaboration in these situations, the

decision making process as well as the quality of the result will significantly improve.

41

2.6.2 Distributed Code Inspection Process Model

The major goal of the distributed code inspection is to provide a method that is

more flexible than software inspections but more structured than walkthroughs. The

model should be flexible enough to allow the code inspection in either the synchronous

collaboration or asynchronous collaboration. Figure 2.4 shows the distributed code

inspection process model.

Entry

Kick-off/Briefing

Help
Individual Inspection Clarification Specification

E-mail

|Chat
Group Inspection Communication E-mail

Remote viewer

Consolidate/EFollow-up Log

Exit

Figure 2.4 Distributed Code Inspection Process Model [Doherty, 1997]

According to Doherty (1997), Figure 2.4 shows how the distributed code

inspection model runs for both the asynchronous and the synchronous collaborations.

42

The only difference between the asynchronous and the synchronous collaborations can be

found at the earlier stage of the model.

In the case of asynchronous collaboration, the process will start with the briefing

document being distributed via e-mail. This document will brief the inspectors about the

source code and also the length of the process. After familiarizing themselves with the

materials, the inspectors can proceed with individual inspections. However, in the case of

synchronous collaboration, the process will start with a kick-off meeting, which will brief

the inspector about the source code and other objectives of the process. Then, the

inspector can proceed with individual inspections [Doherty, 1997].

After this stage, the inspector can log any recommendations or error findings into

the log book. At this point, any clarification can be sought from the moderator or the

author using the facilities provided. The process then continues with group inspection

where every member of the team will login at the same time and discuss the issues using

the facilities provided. Further recommendations and error findings can be logged at this

stage. During the last stage, the moderator will consolidate the log book and make sure

that the objective set in the plan is achieved. The recommendation is forwarded to the

author or the editor and the process exits [Doherty, 1997].

2.6.3 Summary of Distributed Code Inspection Model

This model of distributed code inspection provides an alternative method to the

code inspection process in a distributed software development project. This model

compensates for the fact that team members of the project are in geographically

43

distributed locations and might not be on-line at the same time. This model allows for

the continued maintenance of quality in distributed software development collaboration.

This kind of model can be used not only for the inspection method, but also the other

quality measures as well to check, achieve and maintain quality in their software

development project.

2.7 Capability Maturity Model

The Software Engineering Institute of the Carnegie-Mellon University (SEI)

developed the Capability Maturity Model (CMM) based on the work on software process

improvement by Watts Humphrey. It was developed in order for assessing the capability

of possible future contractors for the US Department of Defense [Sanz, 1994].

Organization can use the CMM to evaluate the maturity of their current process. They

could also use the model to set a goal for their development process improvement. The

CMM divides organization software process maturity into five levels. Greater the

maturity level, the project will have higher productivity and quality, and have lower

development risk. The levels are defined by Sanders (1994) as follows:

e Level 1 - Initial: The software process is characterized as ad hoc, which
means the changes are occurring as they go along. Few processes are
defined and success depends on individual effort.

" Level 2 - Repeatable: Basic project management processes are established
to track cost, schedule and functionality. The necessary process discipline
is in place to repeat earlier successes on projects with similar applications.

" Level 3 - Defined: The software process for both management and
engineering activities is documented, standardized and integrated into an
organization-wide software process. All projects use a documented and

44

approved version of the organization's process for developing and
maintaining software.

* Level 4 - Managed: Detailed measures of the software process and
product quality are collected. Both the software process and products are
quantitatively understood and controlled using these measures.

* Level 5 - Optimizing: Continuous process improvement is enabled by
quantitative feedback from the process and from testing innovative ideas
and technologies.

The role of quality assurance comes into play in pretty much every level. In level

one, which is the initial stage, there are constant crises and things are changing as they go

along. The role of quality assurance managers (QAM) in this level would be to be very

flexible in checking and maintaining quality assurance. Instead of trying to plan out

things in concrete ways, the QAM should try to meet and match whatever situations or

events that occur as they go along. In level two, which is the repeatable stage, the QAM

should try to set a few standards and rules of software quality assurance. They should try

to explain the conformity with standards, procedures, and requirements. In level three,

which is the defined stage, there are definite forms of the management of process

improvement. The process no longer depends on the individual since they are clearly

specified. The project can be carried out in the planned phases. The QAM should also

define the necessary elements of quality assurance like the analytical quality evaluations

such as review processes.

In level four, which is the managed stage, there are quantitative basis for planning

and decision making. The QAM needs to develop the software quality management,

which is an analysis of the managerial structure that influences and controls the quality of

the software in a software quality assurance activity. They should have the definite

45

structure in which clearly defined tasks and responsibilities can be found. They should

also develop quantitative process management by incorporating quality measuring

process like inspections. In level five, which is the optimizing stage, there are not only

management of process, but also optimization of the process itself. The QAM should

develop ways to check and maintain the quality of the project through preventing defects.

They should find methods and strategies to predict possible faults that might occur and

resolve them before they really occur.

The CMM reflects the business needs of large organizations working in the US

defense software sector and it specifically designed within itself a particular order for

improvement actions. The CMM model may not reflect the business needs of a

distributed collaborative software development project and the model's order for

improvement actions might not be appropriate for the distributed project. According to

the CMM, a process cannot be implemented before the preceding process has been

implemented successfully. There are also many elements within the process that needs to

happen before it can move unto the next process. However, in a distributed collaborative

project it is common for individual elements in a process to be delayed significantly due

to difficulties arising in distributed collaboration. It will be inefficient to wait for every

element in one process to be completed before moving to the next process. It would be

more productive and efficient for the project to just define some of the key elements in

the process and as long as those are completed, even if other minor elements are not, then

the project should be able to move into the next process.

46

2.8 Conclusion

This chapter gave a general overview of quality assurance in the software

development project. It discussed why it is so important to check for and maintain

quality from the very beginning of the software development project and continue to do

so through out the process. It also touched upon the software development cycle, the role

and the description of each phase, and their integration.

Software quality section discussed how costly and fatal it would be not to find and

fix errors and faults in the project in the early phases of the project compared the latter

phase. It simply stated that the cost of correcting the errors increases exponentially with

the time that an error remains in the project cycle. It is extremely important, therefore, to

find and fix the errors and faults when they come up to ensure the best result for the

product and the project.

It then went on to discuss the quality factors and criteria which one should

establish to measure quality in a given project. With quality factors and criteria, a

number of technical reviews should take place to carry out analytical quality evaluation

of various points in the project. Verification and validation should also be done

constantly to make sure the maintenance of the quality in the project is done.

Quality Assurance in Distributed Software Development Collaboration section

talked about applying quality assurance to distributed software development

collaboration. It gave an example of an analytical quality evaluation that can be applied

to a distributed collaborative environment, particularly the inspection. It stressed the fact

47

that it would be extremely difficult to carry out the task of the quality assurance managers

of a given distributed collaborative software development project if right technologies are

not available. It also introduced the distributed code inspection process model, which

provides flexibility and extendibility to enhance the software quality in distributed

software development collaboration.

The last section (2.7) discussed the Capability Maturity Model (CMM). It

discussed what the model represents and the different levels that the model consists of. It

also discussed how the role of quality assurance comes into play in each level of the

model. It also argued how the distributed collaborative software development project

will affect the CMM. It stated that the CMM is designed for a specific type of

organizations and that it may not be suitable to use it in the case of a distributed project

and some modifications should be made in order to implement it.

48

Chapter Three

Intelligent Electronic Collaboration Project

Intelligent Electronic Collaboration (ieCollab) consisted of 34 graduate students

from the Massachusetts Institute of Technology (MIT), the Centro de Investigacion

Cientifica y Estudios Superiores de Ensenada (CICESE) , and the Pontificia Universidad

Catolica de Chile (PUC). Diverse group of students from these three universities came

together in a single collaboration to participate in the distributed software development

project.

This project, ieCollab, was to bulid an internet-based collaborative application

service provider for communicating information and sharing software application in a

protocol-rich Java meeting environment. By creating and managing virtual team,

ieCollab's collaborative solution will offer organizations new ways to leverage off-site

expertise, improve communications, and reduce project costs and duration. Some of the

users of iecollab may be virtual teams in automotive, aerospace, construction, defense,

and software industries. ieCollab's internet based meeting tools solve the problem of

personnel relocations with reliable forums for communication among distributed teams.

49

3.1 The ieCollab Team

The team, ieCollab, consisted of 23 students from MIT, six students from

CICESE, and five students from PUC. Each of these students has pursued degrees in

information technology and computer science with undergraduate and professional

backgrounds ranging from engineering to business. Each student also brought with him

or her diverse ethnic backgrounds into the project. In the team there were several

represented nationalities ranging from India, China, Hong Kong, Indonesia, Korea,

Mexico, Chile, to USA. Students were allowed to choose their roles among the following

ten roles:

* Business Mangers
e Marketing Managers
e Project Managers
e Requirement Analysts
e Designers
e Programmers
* Testers
* Configuration Managers
e Quality assurance Managers
e Knowledge Management Managers

Each team tried to consist of at least one student from each university to

encourage working with remote partners in a distributed environment and acquire

experience from it. Every student was assigned two roles in the project. Usually, the

second role was a programmer. Every student worked mainly as his or her primary roles

required. However, during the programming phase of the project, everyone whose

second role was a programmer worked exclusively in programming.

50

Since majority of students had no prior experience working in their assigned roles

or in the software development project, it was very important for them to acquire

knowledge about what their tasks and responsibilities are in the role. The definitions of

each of the roles are as follows:

Business Managers and Marketing Managers - The major duty of business managers

and marketing managers was to define the scope of the project, the buyers and users, and

ultimately the purpose of the project. They had to define such things as the

market/customers, business concept, competitive advantage, and finances of the project.

They were responsible for developing the business plan for the project.

Project Managers - The major responsibilities of project managers were to plan,

monitor, and control the project, to coordinate all activities, and to sustain

communication and provide support. They were responsible for scheduling meetings,

coming up with agendas for the meetings, setting up due dates for deliverables, and

keeping the team members aware of where they are supposed to stand in the project.

They were also responsible to develop the project manager plan and to allocate resources.

The major role of project managers was to be "Responsible for providing overall

leadership to the team," [Yang, 1998] and to create project updates through the project

cycles.

Requirement Analysts - The major responsibilities of requirement analysts were to

translate the business and marketing managers' desires into specifications, to represent

51

software behavior, to define the software's main functions, and to create requirement

analyst plan.

Designers - The major responsibilities of designers were to communicate the

requirements of the software, as defined by the analyst team, to the programming team,

and to create a plan containing all software information that was pertinent to the

programmers and testers.

Programmers - The major responsibilities of programming leaders were to define the

two programming groups in the project, to create a high-quality, well-documented,

concise software code that adheres to the design plan, to assign individual and group task

relevant to the programming, and to provide necessary knowledge and information.

Testers - The major responsibilities of testers were to check correctness and consistency

between object-oriented analysis and object-oriented design, to develop test cases, to

perform unit test (functions of each class), to perform integration test, and to perform

validation test by verifying the output of the system.

Configuration Management Managers - The major responsibilities of configuration

managers were to help programmers to organize, control, and keep track of their work by

coordinating software generated from different programming teams, promptly informing

software status, and being the safety net. They were also responsible for preventing

simultaneous updates.

52

Quality Assurance Managers - The responsibilities of quality assurance managers were

to coordinate audits and walkthroughs, to participate in reviews and inspections, and to

review all plans submitted by each team. They were responsible for monitoring software

quality by alerting project management team of inadequacies and making sure the teams

follow their responsibilities. They also monitored the development process by checking

if each activity was completed adequately before moving to the next activity.

Knowledge Management Managers - The major responsibilities of knowledge

management managers were to maintain the project web-site and check it weekly, to

compile all project documents, to make documents from previous projects available to

all, and to create user's guide and technical guide.

The major difference between this year's team and the last year's team was the

addition of new Business/Marketing managers. By adding Business/Marketing managers

to the team, the project was able to incorporate a sense of real business operation. This

addition also introduced the concept of entrepreneurship, that software needs buyers and

users and that ignoring these consumers in the software development process in to ignore

the major purpose of the endeavor. ieCollab students were able to learn to determine an

appropriate market for their product and present their business idea to venture capitalists

in order to learn to design, develop, and sell in nine months time. Figure 3.1 shows the

project organization of the ieCollab.

53

REQUIREMENT
ANALYSTS

Polo - CICESE
Rosa - PUC

Bharath - MIT
Li-Wei - MIT
Maria - PUC
Alan - MIT

DESIGNERS

Hao - MIT
Wassim - MIT
Rafael - PUC

Roberto - CICESE
Alberto - PUC

BUSINESS
MANAGERS

Jaime - PUC
Justin - MIT
Eswar - MIT

I
KNOWLEDGE
MANAGERS

Paul - MIT

I
QUALITY

ASSURANCE

Nhi - MIT
Kaissar - MIT

Blanca - CICESE
Saeyoon - MIT

Figure 3.1 ieCollab Team

3.2 The ieCollab Project Objective

The main aim of the ieCollab Project was to provide the environment in which

students in geographically distributed teams can work together to achieve a common goal

and try to learn every aspect and process of realizing a single project. The teams of

students were given the responsibility of improving distributed collaborative software

54

PROGRAMMERS

Gynesh - MIT
Sugata - MIT

PROJECT
MANAGERS

Erik - MIT
Octavio - CICESE

Ivan - MIT
Joao - MIT

I
CONFIGURATION

MANAGERS

Teresa - MIT
Manuel - CICESE

TESTERS

Chang - MIT
Kenward - MIT
Cesar - CICESE

Hermawan - MIT

I

MARKETING
MANAGERS

Steven - MIT
Pubudu - MIT

tools that allow synchronous and asynchronous collaboration. In order to accomplish this

goal, every student had to learn about topics ranging from software development,

collaboration and organizational strategies, entrepreneurship, collective memory, and

technology. These topics were mainly discussed and defined in class by the Professors

(Pefia-Mora, Favela, and Fuller).

In the software development part, the students learned about both the design and

implementation of team-based large-scale software development project. The students

worked on a software development plan, which covered project management,

requirement analysis, system architecture and design, quality control, programming,

configuration management, and testing. The students also learned about the object-

oriented methodology and object-oriented programming that was used during the

implementation phase [1.120, 1999].

In the collaboration and organizational strategies, the students obtained insights

into virtual corporations, distributed operations, organizational culture, and

communication. The focal point of the collaboration and organizational strategies was to

provide such an environment so that it would be unavoidable for students to experience

distributed collaboration and learn about the effective ways of communicating with your

team members in remote locations in order to accomplish the team's goals and tasks

[1.120, 1999].

55

In the entrepreneurship aspect, the students had to learn about how the software

needs buyers and users, and ignoring these consumers in the software development

process is to ignore the major purpose of the endeavor. The students also had to learn to

research, analyze, and determine an appropriate market for the product and present their

ideas according to what they found [1.120, 1999].

With the collective memory part, the students were able to realize that when

producing software, it is important to store all the information regarding the software

development process. The reason for this is that other people who might not have any

relations to the project may look at the experience and have the background on which to

build upon it if they have the desire to in the future. They can learn from the past

experience and try to be more efficient in their projects [1.120, 1999].

On the subject of technology, the students learned that the technology is only one

part of the entire software development process. It does not matter how much technology

you have or how advanced your technology is. Without other factors that constitute the

project such as collaboration and design, the project will not succeed. However, it is also

very important to keep up with the evolving technology and think about what new

opportunities that the new technology can bring that could not have been possible before

[1.120, 1999].

This was the main objective of the project. Of course, one of the main goals was

to successfully finish the product. However, the goal that had even greater significance

and relevance to this project was to learn about all the factors and components that make

56

up the process of the software development. Learning about how things are done, carried

out, and executed was a greatest objective.

3.3 The Process Model

The process model used in ieCollab started out as a waterfall model, which is a

model in which a project progresses through an orderly sequence of steps from the initial

software concept through system testing. The project in a waterfall model holds a review

at the end of each phase to determine whether it is ready to advance to the next phase

[McConnell, 1996].

Knowledge Management Configuration Management

Requirement Design Programming Testing
Analysis -

Project Management Quality Assurance

Figure 3.2 Waterfall Model for ieCollab

The original intent of the ieCollab was to follow the waterfall model: when the

requirement analysis phase is completely done then it would move on to the next phase of

57

design and so on. Additionally, as it can be seen in the figure 3.2, the business and

marketing management team would have guided requirement analysis and design phases

to ensure that everything was going smoothly and the teams met the set definition and

market demand.

The major advantage of using the waterfall model was the ability to check and

make sure that one phase is done before moving to the next phase. It is an orderly, step

by step process. For a project like ieCollab that contains many students who have no

experience in software development before, it seemed like a good idea to have review of

at the end of every phase. Also the fact that ieCollab was a distributed project was a

good reason to follow the waterfall model. Since it would be difficult to efficiently keep

track of the tasks that need to be done over the geographically distributed environment, it

would be beneficial to have a check point at the end of each phase to make sure that the

project is moving along the right direction. It also would have been easier for the Quality

Assurance Team to keep track of the quality of the work that was being done by each

team in each phase. By waiting for one phase to be completely finished before moving

into the next one, the Quality Assurance Managers (QAM) can concentrate on checking,

achieving, enforcing, and maintaining the quality in that specific phase.

However, as the project progressed and problems started to arise, there had to be a

change in the process model that the project followed. This was also the drawback of

using the waterfall model. Since, in the waterfall model, the succeeding phase has to wait

till the current phase is completely finished; sometimes the succeeding phase has to wait

a really long time if the current phase falls behind the schedule. As problems with delay

58

and revisions continued, it was inevitable to move on to the next phase of the project

even if the current phase was not completely finished. Therefore, the design team began

its operation as requirement analysis team went back to make more changes to their

documents. At this point, the project was following the incremental model, which is a

model in which each linear sequence produces a deliverable increment of software

[Pressman, 1997].

Knowledge Management Configuration Management

Project Management Quality Assurance

Figure 3.3 Incremental Model for ieCollab

As it can be seen in the figure 3.3, the project now was proposing to operate in

several different increments. Even though the entire requirements were not completed,

for some parts of it that were finished, the design team took them and went ahead and

started to develop models. For the parts that were not finished, the requirement analysis

59

team would finish and give them to design team to develop as the second increment.

This change in process model was needed since the project was taking far too much time

in the beginning phase of the development and falling behind in the schedule.

The advantage of using the incremental model was the ability to be more efficient

with the schedule and be less risky by breaking the project into smaller sub-projects. It

was a good option for ieCollab to employ since the project was divided into smaller parts

like meeting management and transaction management, and the project falling behind the

proposed schedule. The team members learned that the incremental model could be a

good model for a distributed software development project since it is extremely hard to

coordinate things in a distributed collaboration and have every task of a certain stage be

finished by certain time. Even in an undistributed project, meeting the schedule is the

most difficult aspect. If the teams in the distributed project are evenly divided across the

geography, then using the incremental model, the project may be divided into sub-

projects and have each region responsible for one sub-project to increase productivity and

efficiency.

Following the incremental model laid a bit of challenges on the QAM's part. In

the waterfall model, the QAM was able to focus and give priority to the current activities

that were going on in the project. However, with this incremental model, the QAM had

to be concentrating on many different activities at once, checking qualities in the

requirement analysis phase at the same time it was enforcing qualities in the design

phase. This was the main drawback of the incremental model. Not only for the QAM

but for the other teams as well, having many different activities going around at the same

60

time was a complicated process that required a great deal attention and well coordinated

management in the activities and operations.

3.4 The Challenges and the Benefits

One of the major challenges that ieCollab team faced in its operations was the

inexperience of the students. It was mentioned before that most of students were

graduate students majoring in information technology. However, the backgrounds of

great number of students were in civil and environmental engineering. They came into

the project with very little knowledge and experience in software engineering. Most of

the students were not familiar with the software development process, and their

programming skills were inadequate. This project required the software development in

JAVA programming language, but most students had no experience with JAVA. In order

to overcome this obstacle, lectures were given every week on Tuesdays and Thursdays by

professors from three universities to train and familiarize students with the concept and

process of software development. The inexperience in JAVA programming required

more of personal effort. The students had to train themselves by taking the class,

'Foundation of Software Engineering', in the fall semester.

Another major challenge was the distributed collaboration. It was mentioned

before that every team consisted of students from at least two different universities to

encourage working in distributed environment. This was one of the main objectives of

the project, yet at the same time one of the greatest challenges of the project. When there

were lectures, videos and audio were used to enhance a better learning environment.

However, when the time came for the students to collaborate about their own team tasks,

61

there was a heavier use of emails and chat tool. There soon existed frustration,

impatience, and hopelessness. Everyone realized how hard, difficult, and cumbersome it

was to work with partners they can only see in writings and voices. Many students

assumed that the reason for the frustration and ineffectiveness was due to the being too

far away from the partners in Mexico and Chile. However, a strange phenomenon was

that there seemed to exist almost the same amount of frustration and difficulties

collaborating with students at a same location. So, the challenge was not with remote

partners but with collaboration itself. It is expedient for any type of projects to succeed,

team members must learn to work together, be patient, and be cooperative.

The challenges, that ieCollab Project faced, which mentioned above were also the

benefits that came out of it. One of those benefits obtained was learning how to work in

teams of people who have different backgrounds and different experiences. As it was

stated before, many students were coming from a diverse academic and ethnic

background with varied length of work experiences. The students were able to learn the

amount of effort and work it takes to make a team out of those people and collaborate to

achieve success. Especially in this day and age of working world, where everything has

been globalizing, it is unthinkable that people will only work with a very small pool of

people with just the similar backgrounds. The working world requires people to work in

any kind of environment with any type of people and expect success from them. ieCollab

Project has provided the students with the chance to experience the real working world

before the students actually entered it.

62

Another benefit that came out of this project was the first hand experiences of

how the technology has developed and is capable of doing. The students in the project

have heard about the technology that enables the distributed collaboration but have never

really taken part in experiencing it or applying it to a given task. Through this project,

the students were able to learn how to apply the developing technologies to enable a

challenging task, in this case, the distributed collaboration.

3.5 Conclusion

This chapter introduced the ieCollab Project. It gave an overview of the project

and discussed what the project was basically about and what the project was proposed to

do. It also talked about the project participants and how they are divided into different

teams. The Team Section also discussed what the role and responsibilities of different

teams were.

The Project Objective Section discussed that the main objective of the project was

designed more to learn about the other factors involved in software development process

such as collaboration and organizational strategies, and entrepreneurship, than the actual

software development itself. The most important thing that was stressed throughout the

project was to learn and experience the process of the distributed software development

collaboration.

The Process Model Section described two types of process model that was used in

the project. It was interesting to note that depending on the circumstance that the project

63

was in and the problems it was facing, sometimes it was effective and efficient to change

the process model of the project to achieve success.

Finally, the last section discussed the challenges faced by the project and the

benefits gotten from the project. Mostly, the problems focused on the lack of experience

and knowledge on the students and also the problems rising due to working in an

unfamiliar environment such as a distributed collaboration environment. However, when

the challenges are great, so are the lessons learned from them. From working in ieCollab

Project, the students were able to learn to work together with very diverse group of

people in a very different environment than usual. The experience that they have

obtained from the project in distributed collaboration and applying technologies to make

the collaboration more effective will be beneficial as they go about working in the real

working world.

64

Chapter Four

Role of Quality Assurance in ieCollab

Applying quality assurance to Intelligent Electronic Collaboration (ieCollab)

Project was very different and unique from other projects. First of all, ieCollab Project

was a distributed software development collaboration project. There have been many

cases of applying quality assurance to software development projects but very few cases

of applying quality assurance to software development projects in a distributed

collaboration. The second thing was that the Quality Assurance Managers (QAM) of

ieCollab had no prior experience of working as a quality assurance manager. The

knowledge acquired was from the lecture about quality assurance given by a professor

during class. The lecture outlined some of the responsibilities of the QAM of ieCollab

Project as follows [1.120, 1999]:

e Monitor both product process and compliance to good practice
" Highlight problems in the early phases
e Produce statistical results of problems and provide guidance for

solutions
* Develop a good plan for resolving problems, identifying by when and

whom a problem should be resolved
e Assure that the software is compliant to user requirements.

65

Besides the knowledge acquired from the lecture, the QAM also found, gathered,

and distributed all the IEEE Software Engineering Standards for each team in the project

that each team should comply with. However, during the research, it was difficult to find

other materials that showed directly and clearly how to manage quality assurance in a

distributed environment.

4.1 The Challenges

Applying Quality Assurance to ieCollab Project presented a big challenge to the

Quality Assurance Mangers (QAM). As mentioned above, no one on the Quality

Assurance Team had any experience ever working as a Quality Assurance Manager. Not

only that but also no one has ever seen how the quality assurance work in a software

development project. There were many books and references about quality assurance in

software development projects. However, there was hardly any information on managing

quality assurance in distributed software development projects.

Another challenge on top of the inexperience was the working in a distributed

environment. The Quality Assurance Team was made up of three students from

Massachusetts Institute of Technology (MIT) and one student from Centro de

Investigacion Cientffica y Estudios Superiores de Ensenada (CICESE). The Quality

Assurance Managers were not sure not only how to manage quality in a distributed

software development collaboration project, but also how to collaborate amongst

themselves in the distributed quality assurance team collaboration.

66

With the presence of these challenges, the QAM decided to concentrate on the

development of the Quality Assurance Plan (QAP), which would become the source of

guide for Quality Assurance team to plan, prepare, and execute the necessary steps to

achieve quality in ieCollab Project. The QAM also decided to monitor each and every

activity during every phase of the project by having Analytical Quality Evaluations, such

as Walkthroughs, in order to maintain quality throughout the project.

4.2 Quality Assurance Plan for ieCollab

The quality assurance plan is the central aid for planning and checking Quality

Assurance of a given project. It contains all deliberately chosen quality assurance

measures for a software project, and consequently it is the written proof of quality

control. [Wallmuler, 1994] The plan will serve as the specific guidelines for all the line

operations, as well as providing a base line against which performance can be measured.

Therefore, the quality assurance plan must cover the total life of the product or service for

its conception until the end of its life [Mills, 1981].

4.2.1 The Purpose

The purpose of the Quality Assurance Plan is to describe a methodology for

quality assurance and quality control during the software development cycle of ieCollab.

A clearly defined procedure ensures pre-defined quality standards that are met in the final

product. In addition, constant central checking during development ensures a smoother

67

transition from one design phase of product version to another. Finally, this document

will serve as a foundation for next year's quality assurance team in developing

methodology for next year's product.

This Quality Assurance Plan (QAP) presents the quality assurance methods used

in the development of ieCollab during the 1999-2000 product development cycle.

Specifically, quality control is applied to Transaction Management (Version 1) and

Meeting Management (Version 2) of ieCollab. Collaboration Server (Version 3) and

Application Server (Version 4) will be developed in the next product cycle.

The software development cycle is composed of five phases. Each phase is

inspected by Quality Assurance Managers (QAM) for deliberately chosen quality

measures. These measures are found in the QAP. The five phases and QAM's

involvement in each cycle are described in Table 4.1 (a) and (b) below.

Table 4.1(a) Tasks of the QAM during the Software Development Process [Cruz, 1999]

PHASE FUNCTIONS

" Define the QAM's responsibilities and the QAP.
" Review the software development plan and audit

Concept procedures done by the Project Manager.
Exploration e Participate in the meeting with the client to obtain the

software requirements.
" Implement the QAP
e Review the Project Manager's plan and develop audit

Requirement procedures.

Analysis Participate in the requirement specification review.
* Review tools, techniques and methodologies used in the

software development process.

68

Table 4.1(b) Tasks of the QAM during the Software Development Process [Cruz, 1999]

Design

0

e

.

eS

0

e

Participate in all the design reviews.
Monitor the procedure for correcting design errors.
Review the final design document.
Review the final operator manual.
Review the use of methodologies in design.
Review preliminary test plans.

* Participate in some code inspections.
" Monitor use of defined tools, technologies and

methodologies.
.i e Review final test plans.

Programming * Witness of all the tests done.
* Audit code errors for correction.
* Audit change request record tracked by the

Configuration Manager.

" Review the changes proposed by the user/customer.
" Audit the change record.

Operation / * Audit for correction of customer problems.
Maintenance * Inspect updated documents: Requirements

Specification, Preliminary and Detailed Design,
Operator Manual, Error and Changes record

4.2.2 The Management

This section presents the organization structure that influences and controls the

quality of the software. The QAM work directly with other quality monitoring teams,

including Configuration Management, Project Management, Testing, and Knowledge

Management (Figure 4.1). The QAM collaborate with team members in Requirements

Analysis, Design, and Programming in supporting and enforcing quality standards

(Figure 4.2).

69

Figure 4.1 Quality Monitoring Organizational Structure

K: QA 4) QA QA

Figure 4.2 Quality Support and Enforcement Organizational Structure

4.2.2.1 Tasks

Throughout each task, QAM assumes a lead role in ensuring that the task is

complete and enforces the resolution or effect of each task. Table 4.2 (a) and (b) describe

the collaboration of QAM with the teams involved in software development. In each

interaction, QAM assumes an active role in facilitation interaction.

70

Table 4.2(a) Interaction by Quality Assurance Managers and Primary Roles
[Cruz, 1999]

Knowledge
Management

* The QAM will work closely with the Knowledge
Management Managers to make sure that the
documentation created during the project meets the
software standards for documentation.

* The QAM will verify that the Knowledge Management
Managers have created a repository for all the
documents produced throughout the project for easy
access.

e The QAM will make sure that the Testers' Plan is
adequate to the project and is being performed through
all the development phases.

* The QAM will work closely with the Testers to make
Testing sure that the software product is free of errors.

e The Testers will test the code developed by the
programmers and will trace back to the requirement
documents to make sure that the deliverables accord
with the client's requirements.

e The QAM will make sure that the Configuration
Management Manager's Plan is adequate to the project
and is being performed through all the development
phases.

Configuration * The QAM will review the changes, errors and
Management configuration record, to ensure that an appropriate error

log is kept through every phase of the development
process, that the changes are properly implemented,
and that the baselines are saved and products are not
lost.

Project 9 The QAM reviews the development plan to ensure that

Management it is created and followed.

e The QAM reviews the requirements to ensure that

Requirements accurately and completely represents the expectations
Requ i.s of the customer. The requirements must also be clear
Analysis enough to everybody in the developer's group,

especially to the designer.
e The QAM reviews the design document to ensure that

.g the designer has selected the appropriate methodology
Design and that the final product of design document meets the

performance, design and verification requirements.

71

Table 4.2(b) Interaction by Quality Assurance Managers and Primary Roles
[Cruz, 1999]

e The QAM reviews the programming and
implementation of the system to ensure that the code

Programming produced meets the stated requirements specification,
and is reliable, efficient, easy to understand by human
users, easy to be verified by execution, and easy to be
read and modified by a software mainatainer.

4.2.3 Software Documentation

A major portion of quality assurance is the revision of all the documents that are

being produced in order to make sure that they are clear, and understandable, that they

follow the standards, and are inline with what the customer asked to be developed. The

QAM have conducted analytical quality evaluations to the documents that are stated

below:

Requirement Specifications

A document containing a collection of requirements/specifications gathered from

interviewing the client. These requirements must be defined clearly so that the people

involved in the remaining stages of the development software life cycle can implement.

A walkthrough will be conducted to verify the correctness of the Software Requirements

Specifications.

Design Specifications

This document serves as the bridge between requirements and the actual implementation

by the programmers. The designers must make a good design of data structures, the

72

architecture of the software to be built and interface modules. This document is very

important because the better the design documents is made, the easier it will be for the

Test Engineers to come up with test cases. Audits throughout the development of the

Design/Software Specifications will be conducted by the QAM. At the final stage of the

Design Document, a walkthrough of inspection will also be conducted by the QAM for

verification purposes.

Project Manager Plan

The plan must have a vision and mission of the project. It must also have a work plan

that contains a schedule of events to accomplish both of them. A walkthrough will be

conducted by the QAM to check compliance with the standards in writing the Project

Manager's plan.

Configuration Management Plan

The plan must state how the Configuration Management Manager will account for

version control, and change control of documents and code produced by the team

members. A walkthrough will be conducted by the QAM to check compliance with the

standard in writing the Configuration Management Plan.

Test Plan

This document contains the methods and means by which it is proven that the design

conforms to the requirements and the source code conforms to the design and the

73

requirements. A walkthrough will be conducted by the QAM to verify compliance with

the standards in writing the Test Plan.

Testing Report

The testers will create reports with the result from executing the test plan (revising

documents and code). Audits will be conducted by the QAM after every revision to

verify the process the Testers are implementing while revising the code.

Knowledge Management Plan

The plan must state the standards that the team must follow to create HTML, Word and

PowerPoint documents. The Knowledge Management Managers must also state how

they will be managing ieCollab's web page. A walkthrough will be conducted by the

QAM to verify the standards.

4.2.4 Software Engineering Standards

The standards that were used in the project documentation are the IEEE Standards

for Software Engineering. These standards are stated below.

730-1998
828-1998

829-1983(R1991)

830-1998

1008-1987(R1993)

1016.1-1993

1042-1987(R1993)

IEEE Standard for Software Quality Assurance Plans
IEEE Standard for Software Configuration Management
Plans
IEEE Standard for Software Test Documentation (ANSI)

IEEE Recommended Practice for Software Requirements
Specifications
IEEE Standard for Software Unit Testing (ANSI)

IEEE Guide to Software Design Descriptions (ANSI)

IEEE Guide to Software Configuration Management
(ANSI)

74

1058.1-1987(R1993) IEEE Standard for Software Project Management Plans
(ANSI)

1063-1987(R1993) IEEE Standard for Software User Documentation (ANSI)

4.2.5 Analytical Quality Evaluations

There are many ways to perform Analytical Quality Evaluations in a given

project. Most of these approaches involve a group meeting to evaluate a product.

However, some reviews do not require a review meeting by the group. ieCollab Project

will incorporate the following four types of evaluations:

" Peer Reviews
" Walkthroughs
e Audits
e Inspections

Peer Reviews

Peer reviews are the most informal of all technical reviews. Peer reviews are mainly used

for checking the source code to detect errors before execution or compilation. Issues that

should be revised while doing peer reviews are correctness, misuse of variables, omitted

functions, poor programming practices and redundancy.

Walkthroughs

A walkthrough is an informal review that evaluates the Requirement Analysis, Design,

Code, Testing and Integration of a software project. The goals of this informal review

should be determined prior to conducting the walkthrough and are identified in the notice

announcement of a walkthrough. The main emphasis of the walkthrough is to review the

75

process of the different phases of the software life cycle. In a walkthrough, the primary

participants are the moderator, recorder, reviewee, and two to three reviewers.

Audits

Audits serve to insure that the software is properly validated and that the process is

producing its intended results. In an audit, the review leader is responsible for validating

changes in the report. The Quality Assurance Managers will perform audits and they will

be responsible for sending an Audit Notification to all the participants in the audit.

Inspections

Inspections should be presented as a more formal approach that can be viewed more as

work product reviews. Inspections require a high degree of preparation of the review

participants, but the benefits include a more systematic review of the software and more

controlled and less stressed meeting. Software formal inspections are in-process

technical reviews of a product of the software life cycle conducted for the purpose of

finding and eliminating defects. The major difference between walkthroughs and

inspections is that an inspection process involves the collection of data that can be used to

feedback on the quality of the development and review process.

4.2.6 Quality Factors and Criteria for ieCollab Project

As it was briefly mentioned in Chapter two, ieCollab did not use the quality

factors and criteria system that was suggested by either Evans or Bucley and Poston.

Instead, it used the system based on the study of McCall, Richards, and Walters. The

76

reason why the QAM of ieCollab decided to use this system instead of the other two was

that this system had the reputation of being the best documented system, "both in terms

of the definitions, trade-offs, and enhancement between Factors and Criteria and in

suggesting the impacts on life-cycle development." [Vincent, 1988] The fact that the last

year's project team also used a quality factor and criteria system based on this one was an

added incentive. The table of explanation of the trade-offs between software quality

factors was already introduced in Chapter in Table 2.3. The table that lists the definitions

of the quality factors from the system proposed by McCall, Richards, and Walters that

were used in ieCollab can be found in the appendix (Appendix 8).

4.3 Quality Assurance Actions on ieCollab Project

With limited knowledge, experience, and numerous challenges, the Quality

Assurance Managers of ieCollab had a difficult time organizing and carrying out their

responsibilities. With the frequent advice from the professor, the QAM started to check

and maintain the quality of the ieCollab Project from the early stage of the project. The

QAM first created a template of how each and every document, which is going to be

posted or submitted, should look like based on IEEE standards and asked every team to

follow that template.

The QAM asked every team except for the team that has submitted a document to

read and go over the new document, and make comments about the document. The

QAM also asked for the team that has submitted a document to send out a message to

every team notifying that a new document has been posted. This was done not only to

ensure that any document that gets posted go unread or unnoticed by the teams, but also

77

to check for the quality of document by every member of the project. If something that is

inconsistent or incorrect is found then it can be noted back to the team that has submitted

that document to go back, check, and fix or give reasons for not fixing. While the QAM

was asking for the rest of the team to make comments on the submitted documents, the

QAM also was checking the documents to see if they comply with the IEEE standards

and give notification if they didn't comply. The Comments were made through emails or

posting them on the ieCollab Project Web Repository in the beginning. In the latter

stage, the comments were made and submitted using the Comment Report form. (See

Appendix 1)

The QAM conducted a number of walkthroughs over the course of the project.

Walkthroughs were usually conducted for a specific team during a specific phase for a

specific document. The Project Managers set and announced the date of walkthroughs.

When the Project Managers notified the teams of the walkthrough of a specific document

by a specific team, the QAM started making agendas for the meeting. The QAM started

assigning one person from each team to make comments at the walkthrough. The QAM

also appointed who would be the moderator and the recorder. The form for the

walkthrough action item list can be found in the appendix.

The QAM also conducted audits to validate documents and any changes that were

made to the documents. The QAM performed audits in the project to check that the work

being done by each team was of the high quality. The QAM conducted the audit of the

two requirement specification documents and the two design documents for meeting

management and transaction management. The audit was held to check for

78

inconsistencies between the document, make them consistent, and validate them. The

form for the audit checklist can be found in the appendix.

The QAM also came up with Quality Control in Software Development:

Programming Standards (See Appendix 2), for inspection purposes, to check and

maintain quality in programming that was done in the project. This was basically the

methods used to inspect the codes that was written during the programming stage and

check if they maintain high quality complying to the standard, the requirements, and the

design of the project. The form for the general inspection checklist can be found in the

appendix.

The QAM also submitted the validation plan for the client interface and

requirements for ieCollab. (See Appendix 3) This validation plan was submitted to

validate and verify the requirements of ieCollab and check if they meet the Requirement

Analysis Specification that was submitted at the earlier stage of the project. This

document tested the Client Interface for requirements outlined in Requirement

Specification for ieCollab V2, Meeting Management. Subsequent validation documents

of Transaction Management and Meeting Management for the Requirements

Specification were decided to be created as those layers are completed. In addition,

validation of Transaction Management, Meeting Management, and Client Interface for

Design Specifications were set to be presented in separate documents.

79

4.4 An Example of Analytical Quality Evaluations in ieCollab

This section will show an example of an audit that was performed by the QAM in

the ieCollab Project. The audit was performed on March 10, 2000 with the help of the

Project Management team to validate two requirement specification documents and two

design specifications documents. The audit found faults and inconsistencies in the

Requirement Specification Document for Meeting Management, the Design Specification

for Client Interface, the Design Specification for Meeting Management, and the Design

Specification for Transaction Management.

Requirement Specification Document for Meeting Management:

Page 5, second bullet under the roles of normal workgroup member:
* It should be 'list members of workgroup and/or users' to be consistent with the

sequence diagram shown on Page 8.

Page 8:
* Add another label in the sequence diagram for Relinquishing work group membership

to be consistent with the roles specified earlier.

Page 9:
0 The roles of 'set meeting agenda, set meeting roles and select a meeting template'

should be clearly stated as roles when the normal user becomes a meeting leader.
Stating it clearly will remove ambiguity.

Page 13, section 3.1.1.4, last line:
* The resources that need to be cleaned maybe should probably stated explicitly.

Design Specification for Client Interface:

Page 4, line 3:
" The word 'variable' should be replaced by 'function'.
* Under the column 'requirement met', the section number in the parenthesis should be

checked. They do not correspond correctly to the document they are supposed to
point at.

80

Page 9:
e There is no line arrow connecting the registration window and the main window after

the UID is returned from the server.

No sequence diagrams for logging out, performing search, create W.G., Schedule
Meeting and Meeting Logs, from the GUI.

Design Specification for Meeting Management:

Page 2, section 1.2, line 2:
* There is no description of each diagram in the document. So, either the description

has to be written or this sentence should be rephrased.

Page 7, Page 13:
e The function 'update meeting' should cater for 'meeting roles, change agenda,

participants, cancel meeting etc'. In the sequence diagram on Page 13, only a few of
the activities such as change leadership, meeting times etc are addressed and shown.

Page 3 - Page 9:
* In the column where a particular requirement met is shown, the section number in the

parenthesis should be rechecked to make sure it is actually pointing to the right part
of the requirement specification. Some of them seem to be misplaced.

Page 13 - Page 14:
* The diagram is inconsistent as far as displaying the error message is concerned.

Where the return value of -1 is there, a label showing what it signifies should be
inserted in Page 13 as is done in Page 14.

Page 14:
* Check for access time is shown in the sequence diagram here although, such

constraints are not laid out in the requirement specification document.

Page 15:
* No provision to say what happens to the Meeting leader if he leaves the meeting

before it completes. Does someone else obtain that role? If a chairman is controlling
the meeting, then does the normal user ask for permission to leave? This detail
should be highlighted in the sequence diagram. The way it shows now is as if the
user leaves whenever he can without any involvement of the chairman.

Page 20:
* When a meeting is removed, how do you notify users that the meeting has been

cancelled? There is mention in the requirement analysis that the icon color changes
when the status of the meeting is null or void.

81

Page 21:
e There is no label in the diagram showing what the return value -1 means. This is just

a consistency problem, which has to be maintained between the diagrams.

Page 22:
e In the sequence diagram there is no mention of how to add a new WG, to list or to

remove old-meeting logs, which have been mentioned as possible functionality while
updating a workgroup.

There is no sequence diagram showing how to activate or start a meeting once a user has

joined. There is also no mention of the minimum of 10 minutes before which any user
cannot start the meeting and also the constraint that the chairman should be present while
starting the meeting. Also there is no mention of how to save meeting logs by the
chairman.

Design Specification for Transaction Management:

There is no sequence diagram for registering a new broker on our ieCollab server. For a
user to use the services of ieCollab through an A.S.P., the ASP should first be registered
with ieCollab.

Page 20:
* There is no sequence diagram for updating the profile although a slight description is

made.

Page 21:
* There is no ASP server shown in the diagram for user registration. The user will

trigger the ASP server to send a service request to ieCollab server. This is not
highlighted in the sequence diagram.

Page 22:
e Even the logging in sequence diagram does not show the broker.

First of all the sequence diagrams are not consistent with those present in the design
specification for meeting management.

There are no sufficient sequence diagrams to explicitly show the programmers all the

functionalities of the transaction. Only four sequence diagrams are shown out of which
one is on logging in, logging out, registration and account administration. None of them
are complete as highlighted above.

The account administration diagram does not show the details of billing information and
how to pay through a credit card or some other way as specified in the requirement
specification.

82

None of the diagrams show the functions that need to be made and the arguments they are
passing.

More importantly, one does not get the feeling that they are supposed to code an ASP
model after reading this document. All the sequence diagrams show the direct use of the
ieCollab server through the ieCollab interface rather than through a third party ASP
provider.

Through this audit, the QAM was able to uncover some of the basic

inconsistencies that were present in the requirement specification documents and the

design specification documents. The QAM tried to focus mainly on the technical

inconsistencies and faults found in the documents. The QAM did not spend a lot of time

looking over the grammatical errors. However, the QAM did note that there were

numerous grammatical and spelling mistakes found and requested that both teams

responsible for the documents go over them and make corrections. Since the

programming phase was well into its third week, the whole motivation for bringing out

this report so late in the project was to highlight the mistakes and learn lessons from it.

4.5 The Benefits from working as the QAM

One of the benefits obtained from working as the Quality Assurance Managers

(QAM) of the ieCollab was learning about the importance of quality in software

development projects. The QAM learned that without quality, it would be meaningless to

talk about the success of a given project. However, the QAM also learned how difficult,

challenging, and time consuming task it was trying to check, enforce, and maintain

quality in the project.

83

Another benefit was the experience of working with a remote partner to achieve

quality in the project. As it was mentioned before, the Quality Assurance Team was

made up of three students from MIT and one student from CICESE. The QAM learned

to be patient, and to be independent and be prepared to handle whatever situations that

could result in the distributed collaboration setting. The QAM learned from experience

that it was important to work with the remote partner as much as possible in order to

utilize the partner's talent. However, when the situation did not permit the collaboration

with the remote partner, the rest of the QAM had to be prepared to carry out the entire

activities without her.

4.6 Conclusion

This chapter discussed the quality assurance aspect of the ieCollab Project. It

showed how applying quality assurance to ieCollab was very different from applying

quality assurance to other software development projects. It also talked about what the

responsibility of the Quality Assurance Managers should be, then, in such an

environment. Some of the challenges that the Quality Assurance Managers faced and had

to overcome, such as the lack of knowledge and information about performing quality

assurance properly and the collaboration in distributed environment for software project

development, were listed and discussed.

The Quality Assurance Plan Section showed the plan that was submitted by the

Quality Assurance Managers to plan and check quality assurance of ieCollab Project.

The plan showed the purpose of the plan, the management of quality assurance, the

84

relationship and interaction with other teams in the project, the tasks in each and every

phase of the project, and the planning and conducting of four analytical quality

evaluations (peer reviews, walkthroughs, audits, and inspections) in great details. The

section tried to show the significance of the Quality Assurance Plan for this plan was the

specific guideline to achieve and maintain highest quality possible in the project.

The following section described some of the actions that the Quality Assurance

Managers of ieCollab performed over the course of the project. It discussed the creation

of templates for documents, enforcement of making comments to the submitted

documents, conducting of walkthroughs, audits, inspection and validation of codes and

product. This section tried to show that the in order to achieve high quality in a given

project, the quality assurance team has to be involved and working throughout the life of

the project in both larger and smaller areas.

The following section of this chapter showed an example of Analytical Quality

Assurance Evaluations that was performed in the ieCollab Project. Particularly the audit

that was performed on the requirement specifications and the design specifications was

described.

The last section of this chapter discussed some of the benefits and lesson that the

Quality Assurance Managers learned from the ieCollab Project.

85

Chapter Five

Recommendations for Quality Assurance in Distributed
Software Development Collaboration

As it was discussed in Chapter Four, the Quality Assurance Managers (QAM) of

Intelligent Electronic Collaboration (ieCollab), faced many challenges and problems as

they worked to achieve and maintain the high quality in the project. As the QAM tried to

overcome those obstacles, they accomplish quite a bit of the responsibilities given to

them, but they also made mistakes and could not be effective in some areas. This chapter

will discuss the suggestions and the recommendations, which the QAM came up with

from dealing with the challenges and problems, to have more effective quality assurance

role in a distributed software development collaboration.

5.1 Software Development Knowledge and Training

One of the major challenges that not only affected the QAM but the entire project

was having insufficient amount of knowledge and information about the software

development process. As it was mentioned before, many students came into the project

without any prior experience or knowledge in software development. The only learning

86

and training that the students received concerning the software development and their

roles were the lectures given at the beginning of the project before the start of the actual

development phase, usually just one lecture per topic.

This was a very inadequate training for the QAM since most of the students on

the quality assurance team had little idea what their role was as they entered into the

development phase of the project. This resulted in ineffectiveness, confusion, and

frustration on the part of the QAM because they had to carry out responsibilities while

they tried to learn about what they are supposed to do.

The recommendation that the QAM makes on this matter would be to have

ongoing lectures and training session, even a brief one, over the course of the project to

increase and enhance the knowledge required to effectively function as the Quality

Assurance Managers. This would be especially more effective if greater part of the

training can be given after each team has been formed and everyone knows what they are

going to be doing in the project. The students will pay greater attention and have more

interests in the lecture and grasp more from it if they feel that it is going to help them do

their job more effectively.

Another possible way to accomplish this recommendation would be to have a

special training session during the Independent Activities Period (IAP) to fill up the lack

of the knowledge and information. This would be especially beneficial for the Master of

Engineering students who must carry a lot of class loads during the regular semester.

Since it would be hard for them to find the time during the regular semester to go through

87

an extra training, having it during the IAP would give them more time to get into the

training and obtain greater output from it.

5.2 Quality Assurance in a Distributed Collaboration

The Quality Assurance Team was made up of three students from MIT and one

student from Chile. However, it was extremely difficult for all four students to work

together. This was mainly due to one of the team members located in Chile. It was

frustrating and patience-testing experience trying to communicate with the team member

in a remote location. At the beginning, everyone was excited to work with someone who

lived on the other end of the world. But as the project progressed and the team was asked

to do real work and produce real documents, the problems started to arise.

Many meetings were held without the participation of the member in Mexico

when the chatting system disconnected or it took forever for the email reply to come.

The notifications of walkthroughs were sent to the member in Mexico but it was difficult

to actually have her contribute to any walkthroughs. After having meetings for a while

without the member in Mexico participating, it became natural to meet just amongst MIT

students. Everyone on the team realized how difficult it was to collaborate with someone

who you can not see when there existed time constraints and due dates. Everyone also

realized how easy it was to exclude that member in the remote location and just work

amongst us.

The recommendation that the QAM makes on this subject of distributed

environment would be to encourage having more frequent contact and interaction

88

especially with the team members in the remote location to establish a relationship where

people depend on their team members who are in a far away location. Whether through

email or chatting there needs to be more communication with the team members in

geographically dispersed locations. By having more communications, the team members

can build the relationship of trust and find out more about the other members' skills and

talents that they might be able to use later on in the project. So, even if the chatting

service or the video/audio conferencing does not work, the team members would want to

continually work with that remote team member for his/her talent and ability.

5.3 The Quality Assurance Enforcement Power

One other challenge that the QAM had to face was the dependence on the Project

Management Team to enforce many quality assurance issues in the project. It was not

clear from the beginning what kind of role the Quality Assurance Team was going to play

and how much enforcement power the Quality Assurance Team has. The QAM had to

rely on the Project Managers to enforce some of the things that the QAM wanted the

entire team to do or follow on.

The QAM tried very hard asking people in the project to make comments to any

newly submitted documents. However, the strict enforcement of submitting comments to

the new documents was enforced only when the Project Managers (PM) took the

situation into their hands and enforced with the PM power. In some instances, the Project

Managers did even the announcement of walkthroughs.

89

The recommendation the QAM gives would be to grant some enforcement power

to the hands of the QAM in order for the QAM to work more effectively in the project.

The Quality Assurance Team should have an enforcement power in the project

independent of the Project Management Team. It would be inefficient, ineffective, and

time-consuming if the QAM had to go and borrow power of the Project Managers every

time to try to enforce something for the project. In order for the project to be successful

and have satisfying level of quality in it, the QAM should be able to check, achieve,

maintain, and enforce quality at an even higher level than the Project Managers do.

5.4 The Quality Motivation

One of the most important things that a project needs in order to be successful and

have high level of quality would be to have a constant level of motivation driving the

people to work hard and achieve the best quality they could in the work that they are

doing. However, as is the case with many projects, it is hard, if not impossible, to

maintain that level of motivation through out the life of the project. It was also evident in

ieCollab Project that the people started to lose motivation to work harder and maintain

the level of desired quality in their work as the project went on. Dr. Paul Peach discussed

psychological aspect of this "Quality Motivation":

How, then, can we motivate human beings to do what we want
them to do, and in particular to work to quality standards? I think we must
start by admitting that monetary rewards in themselves will not do the job;
we must somehow appeal to the workman's desire for self-approval. In
some cultures-the German and Scandinavian, for example-quality
workmanship is traditional; it takes little or no inducing to get workman to
maintain quality standards, because for any workman to get a reputation

90

for careless or inferior workmanship would quickly earn him the dis-
esteem of the other members of his culture. When there is no tradition of
quality workmanship, management had a problem. How to induce a
workman who, to be blunt, does not care a tuppence whether what he
produces is good or bad-how to induce him to produce the kind of
quality you want? [Peach, 1975]

What Dr. Peach stated above was a similar situation with ieCollab Project. As

people began to face more problems and challenges in ieCollab, their frustration and

impatience grew. It was hard to motivate people to continue to work hard; moreover

produce a high quality work. At first some of the motivation came from just working in

this distributed collaboration. People felt challenged yet motivated to work with their

counterparts in Chile and Mexico to achieve success in this project. That was one of their

driving motivations. However, as the distributed collaboration did not seem to work out

well and people found themselves working more locally than in distributed environment,

that motivation died out. The people needed some other motivations to keep working

hard but they didn't know where to find that motivations. ieCollab Project needed ways

to keep the people motivated throughout the project. Dr. Peach discussed some

suggestions that might keep motivating people to maintain quality in their work:

The essential point is, I think, that we must recognize that if a job
bores the worker, he will take no pride in it. Somehow, we must manage
to keep his interest alive. If the worker can see his contribution to the
final product as something important and essential, we can perhaps appeal
to his self-respect. We cannot do this by verbal persuasion alone; aside
from the message content, any message from "the bosses" to the workers
is automatically suspect. It may be as well to recognize the fact that if few
workers have quality as a goal, few "bosses" care much about the welfare
or happiness of their workers and the workers know it [Peach, 1975].

91

The recommendation that the QAM would like to make about maintaining the

motivation level high in order to maintain a high quality in the project would be to

discuss with the professors and come up with ways to keep the motivation level of the

team members up throughout the project. Whether by having more lectures and training

session to make people feel like they are constantly learning or by other forms of

competitive reward system that might get one team to work harder than other teams, it

would be extremely important to find some ways to sustain the motivation level that the

people have at the beginning stage of the project till the end.

5.5 The Future of Quality Assurance

The last recommendation that the Quality Assurance Managers (QAM) would like

to make would be concerning the future of the quality assurance. It has become an

inescapable fact that the distributed collaboration will be applied more in the future as the

developing software product becomes more sophisticated and larger in scale. The way

for the QAM to keep maintaining the desirable level of quality in their projects would be

to constantly put in their effort in the development and research work to enhance quality

assurance measures in various areas. However, most of all, it will be imperative to keep

reminding the entire project members the importance of maintaining quality performance

and ultimately make them be quality conscious in any type of situations.

The technologies have made the distributed collaboration possible and they will

also make better quality checking devices possible. It is no news that many methods of

computer assisted quality control have been developed and utilized to check and maintain

92

quality in a project since long ago. Despite all the progress that has been made, the

software development process will always be difficult to plan and to create in the future.

This, of course, influences quality assurance. When the software development process

can not be planned out clearly and perfectly, people will try to optimize the situation by

focusing on the time and the cost factors of the project overlooking and sometimes

ignoring or sacrificing the quality factors of the project [Wallmuller, 1994].

It is definitely very important trying to come up with new ways or develop new

technologies that might enable better quality checking. However, the QAM must

remember that in the future, as today, the abilities of qualified software developers and

their quality consciousness will be the central element in successful quality assurance. It

would not matter how highly technical ways of checking and maintaining quality are in a

project. If the people who are involved in the project do not care about quality, then it

would be extremely difficult to achieve quality in that project and its product.

It is recommended that more research work should be done to develop quality

assurance tools that can be used in distributed collaborative settings like the distributed

inspection process model that was introduced in Chapter Two. The availability of

information on performing quality assurance tasks in a distributed collaboration is very

scarce. There needs to be more defined and better outlined methodologies describing the

effective ways of carrying out the duties of the quality assurance team in a distributed

collaboration.

It is also recommended that there should be more research done in the area of

ways to train the project team members' minds to be quality-conscious. Better quality

93

will result if every person involved in the project is constantly thinking, worrying, and

looking for ways to improve quality in their own work as well as in the project as a

whole. One possible suggestion to train people's minds to be quality-conscious would be

to have a weekly seminar on various topics related to quality.

5.6 Conclusion

This chapter presented recommendations for quality assurance in distributed

software development collaboration. It discussed some recommendation that could be

taken into account to effectively check, maintain, and achieve quality in a distributed

collaborative project. It listed several areas where the QAM of the ieCollab faced

problems and challenges in and ways to overcome them to manage a successful quality

assurance.

The first area that it touched upon was the improvement of the knowledge and

information level of the students coming into the project with limited experience on

distributed collaborative software development. It recommended an ongoing training and

teaching to assist the students to better obtain the necessary ability and be more effective

in carrying out their responsibilities in their designated assignment.

The second area that it discussed was the challenge to achieve a better success in

working in a distributed environment. It suggested that in order for people to work

together effectively in a distributed collaborative project, they must have more outside

communications through whatever means possible and build the relationship. As a team,

they must be able to contribute their part to the team and the team members should expect

94

that from each other and depend on each other for. By doing so, the people would want

to work more with the other person whether he/she is in a local area or a remote area.

The third area that it talked about was recommending to give more independence

and enforcement power to the Quality Assurance Managers (QAM) to effectively carry

out their duties. The section discussed how the QAM had to depend on the Project

Managers most of the time to enforce the quality assurance issues in the ieCollab. The

QAM must have enforcement power, in some cases independent even of the Project

Managers, to check, achieve, and maintain quality in a project.

The fourth area of the recommendations was in trying to keep the motivation level

of the people in the project high enough to sustain the quality level in their work and

performance through out the life of the project. It discussed some of the psychological

factors that affect the people's motivation level as the project goes on. It also discussed

the importance of implementing specific methods, such as special training and

competitive rewards, to drive motivational level up during the time of frustration and

difficulties. There has to be motivations in order for a high quality to be present.

The last area of recommendations was to constantly trying to improve the ways to

check, achieve, and maintain quality in the project through development and research

work in the area of quality assurance. But the thing that would be even more important

than to improve the technologies of quality checking was to establish a general sense of

quality consciousness in every team members' minds.

95

Chapter Six

Conclusion

Assuring the quality of a software development project has become a great

responsibility as software development projects have evolved in their sizes and

complexity. The quality assurance managers' role to check, achieve, enforce, and

maintain quality in a given project has become difficult as more projects found

themselves collaborating in a distributed environment. This thesis examined the role of

quality assurance in the distributed software development collaboration project called

Intelligent Electronic Collaboration (ieCollab). ieCollab Project engaged a total number

of 34 students from MIT, CICESE and PUC to experience an actual distributed

collaboration to develop a software system that would enable a better collaboration

between geographically distributed teams between September 1999 and April 2000.

This thesis tried to show the importance of achieving and maintaining quality in

any given software projects. It discussed such topics as the need for quality, the quality

assurance in software engineering, the quality factors and criteria, the factor definitions

and tradeoffs, analytical quality evaluations such as peer reviews, walkthroughs, audits,

96

and inspections. It also introduced the Distributed Inspection Process Model to show an

example of analytical quality evaluations that can take place in a distributed setting.

It also discussed the ieCollab Project in detail describing the teams, the objective

of the project, the process models that the project used to implement, and the challenges

that it faced as a whole. The benefits and the lessons learned from the project were also

discussed. Everyone in the project had to work hard to overcome those challenges that

were described in the thesis, and the learning and the experience from working hard to

overcome the difficulties were just as great as the challenges.

The thesis then talked about the role of the Quality Assurance in ieCollab. It

discussed how applying quality assurance was different from applying quality assurance

to other software projects. It also discussed how that difference brought about problems

and challenges on the Quality Assurance Managers' part in trying to check, achieve, and

maintain quality in ieCollab. It also explained about the Quality Assurance Plan that was

submitted by the Quality Assurance Managers (QAM) and how it became the source of

guidelines for the QAM to follow to build, check, evaluate, and enforce different quality

measures in ieCollab.

This thesis finally discussed some of the recommendations that the QAM found

from their works and experiences in ieCollab. One of the recommendations was to

encourage providing a continued learning and training environment to prepare and teach

the students to fulfill their roles more effectively and completely. It also made

recommendations in areas such as quality assurance in a distributed collaboration, the

quality assurance enforcement power, the quality motivation, and in the future of quality

97

assurance. Especially in the future of quality assurance section, it discussed that even if

the project has a well-prepared classroom with all the enabling technologies that would

better facilitate distributed collaboration, it still may not increase the success and quality

of the distributed collaborative project. The QAM emphasized the importance in

bringing up the issue of quality from the beginning of the project till the end, constantly

reminding the entire members of the significance of quality, and ultimately establishing

the sense of quality consciousness in the minds of the people.

In ending, as it was mentioned in the Software Development and Quality Chapter

(Chapter Two), the software industry has been one of the growing markets in the

economy. Through globalization of markets, it has become unavoidable for people in

remote locations, in a geographically distributed environment to work together in

collaboration to strive for a common goal, and achieve and accomplish success. As the

scale of software projects and the number of people working without face to face contact

increases, the quality assurance has become a crucial part of the software development

projects. In this age of increasing expectations, the quality assurance must be prepared to

handle situations and questions that might not seem possible at the moment. For without

quality, it will be hard to define what a successful software development is.

98

References

[1] Cruz, Gregorio, Quality Assurance in Geographically Distributed Software
Development, M.Eng Thesis, Civil and Environmental Engineering, MIT, May
1999.

[2] Doherty, B.S., "Software quality through distributed code inspection",
Department of Computer Science and Applied Mathematics, Aston University,
United Kingdom, 1997.

[3] Evans, M. W., Marciniak, John, Software Quality Assurance and Management,
New York: Wiley & Sons, 1986.

[4] IEEE, Software Engineering Standards, IEEE Press, 1997

[5] Jones, Capers, Applied Software Measurement - Assuring Productivity and
Quality, New York: McGraw-Hill, Inc., 1991.

[6] Kelly, Mike, Management and Measurement of Software Quality, Vermont:
Ashgate Publishing Company, 1993.

[7] McConnell, Steve, Rapid Development, Washington: Microsoft Press, 1996.

[8] NASA, Software Formal Inspections Guidebook Washington D.C.: Office of
Safety and Mission Assurance at NASA, August 1993.

[9] Nesi, Paolo, Objective Software Quality, Italy, Department of Systems and
Informatics, University of Florence, 1995.

[10] 1.120 Information Technology M.Eng. Project Syllubus, Civil and Environmental
Engineering, MIT, 1999.

[11] Peach, Paul, Bajaria, H. J., Quality Assurance - Methods Management and
Motivation, Michigan: Society of Manufacturing Engineers, 1981.

[12] Pressman, R. S., Software Engineering: A Practitioner's Approach. New York:
McGraw-Hill, 1997.

[13] Ross, M., Building Quality Into Software, South Hampton: Computational
Mechanics Publications, 1994.

99

[14] Sanders, Joc, Software Quality - A Framework for Success in Software
Development and Support, Wokingham: Addison-Wesley Publishing Company,
1994.

[15] Schulmeyer, G. Gordon, McManus, J. I, Hand Book of Software Quality
Assurance, New Jersey: Prentice Hall, 1999.

[16] Summers, Chris, Software Quality Assurance, Reliability and Testing, Vermont:
Gower Publishing Company, 1987.

[17] Tasso, C., Adey, R.A., Pighin, M., Software Quality Engineering, Massachusetts:
Computational Mechanics Inc., 1997.

[18] Vincent, J., Waters, A., Sinclair, J., Software Quality Assurance - Practice and
Implementation, New York: Prentice Hall, 1988.

[19] Wallmuller, Ernest, Software Quality Assurance: A practical approach, New
Jersey: Prentice Hall, 1994.

[20] Yang, Bob, Managing a Distributed Software Engineering Team, M.Eng Thesis,
Electrical Engineering and Computer Science, MIT, May 1998.

100

Appendices

Appendix 1:

Appendix 2:

Appendix 3:

Appendix 4:

Appendix 5:

Appendix 6:

Appendix 7:

Appendix 8:

This is the comment report form that was used in ieCollab. This form was
used to submit one's comments on certain documents....................p:102

This is the walkthrough action item list form that was used in ieCollab.
During walkthroughs, all the action items and open issues were recorded
in this form to be given to the reviewee team at the end of the
w alkthrough..p: 103

This is the audit checklist form that was used in ieCollab. This is the form
used to record all the comments that were made during an audit and the
desired actions to be taken...p: 104

This is the inspection checklist form that was used in ieCollab. This is the
form used to write down comments and status on the planning, the
overview, the preparation, the inspection meeting, the third hour, the
rework, and the follow-up time concerning the inspection..............p: 105

This is the inspection action item list form that was used in ieCollab. This
is the form that was used to record all the locations of a certain document
or a certain code that was being inspected. The place of ambiguity or
inconsistency were marked down and described by the inspector......p: 106

This is the table of definitions of quality factors that were used in ieCollab.
These factors were used to evaluate the code that was written in the
project...p :107

This is the programming standard that was used in ieCollab to evaluate the
details of the code that was written in the project........................p: 108

This is a collection of filled forms and evaluations that took place in the
review of ieCollab Project...p:111

101

Appendix 1

- wP

Vfitten Before Meting

Urgent Malter

Previously Pbstponed Issue

Reinder of Issue

Dsketes

102

Postpne Till Next

See Attchen

Appendix 2

QUALITY ASSURANCE WALKTHROUGH ACTION ITEM LIST

Subject of Review:
Material prepared by:
Moderator:
Reviewers
Current Status

Recorder:
Date of Review:

Design Leader:

New Status

4 ~ -

103

Appendix 3

QUALITY ASSURANCE AUDIT CHECKLIST

Subject of Review:
Material prepared by:
Moderator:
Reviewers
Current Status

Date of Review:
Recorder:

New Status

104

-7m=7
.4111,11 1100

Appendix 4

QUALITY ASSURANCE INSPECTION CHECKLIST

Subject of Review:
Material prepared by:
Moderator:
Reviewers
Current Status

Date of Review:
Recorder:

105

New Status

PLANNING

OVERVIEW

PREPARATION

INSPECTION
MEETING

THIRD HOUR

REWORK

FOLLOW-UP

Appendix 5

QUALITY ASSURANCE INSPECTION ACTION ITEM LIST

Subject of Review:

Date of Review:

Moderator:

Recorder:

Reviewers:

106

Appendix 6

QUALITY FACTORS DEFINITIONS in ieCollab

Accuracy
" Extent to which a program satisfies its specifications and

fulfills the user's mission objectives.
" Does the product do what I expected to do?

e Extent to which a program can be expected to perform its

Reliability intended function with required precision.
* How does it satisfy the requirements over a period of time?

* The amount of computing resources and code requirement

Efficiency by a program to perform a function.
* Does the product utilize hardware resources well?
* Extent to which access to software or data by unauthorized

Integrity persons can controlled.
* Is it safe?
* Effort required learning, operating, preparing input, and

Usability interpreting output of a program.
* Can I easily learn to handle it?
* Effort required locating and fixing an error in an

Maintainability operational program.
* Can I correct a fault easily?
e Efforts required testing a program to ensure it perform its

Testability *intended function?
T Can I test the product without additional cost after making

changes?
e Effort required modifying an operational program.

Flexibility * Can I execute a change easily?
e Effort required transferring a program from a hardware

Portability configuration and/or environment to another.
* Can I use the product on different hardware?

* Extend to which a program can be used in other

Reusability applications related to the packaging and scope of the
functions that the program performs.

e Can I use parts of the product for other applications?
* Effort required to couple one system with another.

Interoperability e Can I create interface to other systems?

107

Appendix 7

Quality Control in Software Development:

Programming Standards

Please return to QA Team Leader Nhi Tan

Name of Inspector:

Date:

ieCollab Version:

File Name/Identifier:

Function/Class Name:

Software Version:

Creator:

Time Spent:

FILE HEADER
File name

Description of code

Creation date

Original author

Modification date

Modifier

Description of modification

Hardware requirements necessary for proper
execution
Software requirements necessary for proper
execution

Design document reference

108

FUNCTION HEADER
Description of action performed by function

Description of parameters passed into function as
arguments
Description of return value

Creation date

Original author

List of source aiding in design of function (URL,
book, person)
Modification date

Modifier

Description of modification

Hardware requirements necessary for proper
execution
Software requirements necessary for proper
execution
Design document reference

FILE NAME
File name is the same as the Class name?

CLASS LAYOUT
Class name is the same as in the design document?

Public, Protected, Private variables defined first in
this order?
Class broken into the following order:

* Constructors
" Operators
" Methods to access object variables
" Methods to change object variables
e Parent class method overrides
" Other functions

109

Subsections separated by a blank line?

Subsections separated by a single line comment?

VARIABLE DECLARATION COMMENTS
Description of variable role if not apparent from
name?
USE OF I, J, K

i, j, k used only in Do While & For loops?

STA TEMENT GUIDELINES
Function arguments separated by space?

Infinite loops coded using an empty for statement
(for(;;)) ?9
One variable declaration per line?

Additional declarations of same type one per line
and indented below the first declaration?
"do" statement in a do-while loop on a separate
line?
"while" statement on the same line as the closing
brace?
"do" portion of function statement on a separate
line as that of the opening brace?

Opening and closing braces in the same column?

NAMING CONVENTIONS
Modifiers for variables follow guidelines given in
the table below?

110

Appendix 8

COMMENTU REPORT

leCOLLAB
Quality Control:

P e rarmi e Standards

1 Please add creater/modmer name to tile. Lngine.Java,
ProfileWindow.java

2 Please add creation date to file. DBTool.java

3 Please add comments describing input arguments, return values and function purpose. Engine.java,
ProfileWindow.java,

CollabUser.java
4 Please add comments describing dass purpose at the top of the file. CollabUser.java,

ProfileWindow.java,
Engine.java

5 Please line open and dose parenthesis by column. CollabUser.java,
DBTool.java

6 Please add hardware, software requirements necessary for proper execution. CollabUser.java,
ProfileWindow.java,

Engine.java,
DBTool.java

7 Please add design document reference. CollabUser.java,
ProfileWindow.java,

Engine.java,
DBTool.java

Written Before Meeting

Urgent Matter

Previously Postponed Issue

Reminder of Issue

Postponed Till Next

See Attachment

Nhi Tan

111

Documents Diskettes

QUALITY ASSURANCE WALKTHROUGH ACTION ITEM LIST

Subject of Review: Requirement Specification Version 1.4
Material prepared by: Requirement Analysts Date of Review: 1/18/00
Moderator: Nhi Recorder: Saeyoon Design Leader: Polo
Reviewers Representatives from each team
Current Status New Status

1
Put the dates in the References and Links part in the
first page.

Corrected

2 Include the page number in the Outline Corrected

3 Fix the bi-directional. Corrected

4 Each figure should have a caption. Corrected

5 Clarify the definition of user. Corrected

6 Proper referencing. Corrected

7 Reference to Documents. Corrected

8 Anyday.com - bibliography including day and year. Corrected

9 Use unique identifier - 'user & broker' or 'user' only. Corrected

10 Work on version 1. Corrected

11 Include use-case scenarios of how the different types Corrected
of transactions are occuring.

12 Number the paragraphs. Corrected

Whether or not to allow the Yahoo.com user to login
Open Issue to Anyday.com with the same username and

password.

112

QUALITY ASSURANCE AUDIT CHECKLIST

Subject of Review: Requirement Specification and Design Specification
Material prepared by: R.A. and Designers Date of Review: 3/10/00
Moderator: Kaissar Recorder: Eswar
Reviewers Quality Assurance Team and Project Managers
Current Status New Status

113

Requirement Specification Grammatical Errors. s Correct errors and
Meeting Management Inconsistency in roles specified in clarify ambiguity.

the sequence diagram.

Requirement Specification
Transaction Management

Add description of each diagram. More description
Design Specification for Recheck the section number for and clarity in the
Meetig Management clarity. document.

Design Specification for Add sequence diagram. Work on diagrams
Transaction Management Noand inconsistency.

Inconsistency in diagrams.
Check the

Design Specification for Misuse of terms. documents and
ieCollab Client Interface Ambiguity in diagrams. eliminate ambiguity.

4 t

Validation of Client Interface
For ieCollab Version 2

Client Interface

Quality Assurance Team

Created by: Nhi Tan
Date: February 15, 2000
Participants on Modification

. offline Session: Nhi Tan

* References and Links
Requirement Specifications for
1.4 February 17, 2000

* Requirement Specifications for
Spec. 1.3 February 17, 2000

* Requirement Specifications for
1.3 February 17, 2000

ieCollab V2, Meeting Management Spec.

ieCollab V1, Transaction Management

ieCollab VI, Meeting Management Spec.

Outline
1. Introduction

1.1 Purpose
2. Validation
3. Conclusion

1. Introduction

1.1 Purpose
The purpose of this document is to validate and verify the requirements of ieCollab as
outlined in the Requirement Analysis documents are met in the product.

1.2 Scope
This document presents a test of ieCollab with respect to the original requirements. This
document tests the Client Interface for requirements outlined in Requirement

114

Specification for ieCollab V2, Meeting Management. As the product moves closer
towards completion, subsequent validation documents of Transaction Management and
Meeting Management for the Requirements Specification will be created as those layers
are completed. In addition, validation of Transaction Management, Meeting
Management, and Client Interface for Design Specifications will be presented in separate
documents.

2. Validation
The following is a validation of the GUI with regard to the Requirements Specification.
The logical format follows the flow of the document in Requirements Specification.

2.1 GUI Description
The client interface is somewhat different from the requirements in the Requirement
Analysis document (Section 3 and Appendix A). However, the spirit of the requirements,
such as hidden options behind buttons and mouse clicks, is kept.

2.2 Buttons

2.2.1 Edit user profile button
Follows requirements.

2.2.2 Schedule Meeting button
e A lot of the requirements are under the "edit Meeting" button. Most requirements are

met either under this button or under edit Meeting.
" No seach tool.
" In edit Meeting, the lists are invited members. There is no list of members who have

accepted the invitation.
" No date and time field.

2.2.3 Create Workgroup button
" A lot of the requirements are under the "edit Workgroup" button. Most requirements

are met either under this button or under edit Workgroup.
* No seach tool.
" In edit Workgroup, the lists are invited members. There is no list of members who

have accepted the invitation.
" Unable to set Workgroup policy functionality.

2.2.4 Logoff button
Unable to test if logoff cleans resources (for both force and accidental logoff).

2.2.5 Search button
Does not function

115

2.3 Lists

2.3.2 The Workgroup List
" Workgroups are not differentiated by appearance (ie, color, type format)
" Not dynamic (no pop-up information window when a Workgroup is selected)

2.3.3 The Meeting List
e Meetings are not differentiated by appearance (ie, color, type format)
e Not dynamic (no pop-up information window when a Meeting is selected)

2.3.4 The Old Meeting Log List
" Logs are not differentiated by appearance (ie, color, type format)
* Not dynamic (no pop-up information window when a Log is selected)

2.3.5 The Invitations List
" Invitations are not differentiated by appearance (ie, color, type format)
" Not dynamic (no pop-up information window when an Invitation is selected)
" No Meeting cancellation message.

3. Conclusion
The product is a work in progress and this document only serves as a gentle reminder to
follows the specifications when finishing the product.

116

Validation
Of

Requirement Analysis & Design Documents

Version 1.0

Version 1.0 by Eswar Vemulapalli

Date: March, 2000
Participants on Modification:

e offline Sessions: Eswar Vemulapalli

References and Links
(All references are stored at http://collaborate.mit.edu/1.120.html)

* Design Specification for ieCollab Client Interface
2000

e Requirement Specification Meeting Management (version.1.4)
2000

* Requirement Specification Transaction Management (version 1.6)
2000

* Design Specification for Meeting Management (version 0.2)
2000

* Design Specification for Transaction Management (version 1.0)

February 22,

February 17,

February 17,

February 22,

March 1, 2000

Outline

1 In tro d u ctio n ... 2
2 Requirement Specification Document for Meeting Management.................... 2
3 Design Specification for Client Interface .. 2
4 Design Specification for Meeting Management.............................. 3
5 Requirement Specification Document for Meeting Management.......................4
6 C o n clu sio n ... 5

117

1. Introduction

This document presents the inconsistencies present between the requirement specification

documents and the design documents. The documents reviewed are the two requirement

specification reports and the two design specification reports for meeting management and

transaction management respectively.

The purpose of this document is to present in a formal layout the differences between the

requirement specifications and the design specifications. It also highlights the lack of detail

in some aspects of the design specifications.

2. Requirement Specification Document for Meeting Management

" On P/5, second bullet under the roles of normal workgroup member.

* It should be 'list members of workgroup and/or users' to be consistent with the

sequence diagram shown on p/8.

" On p/8,
* Add another label in the sequence diagram for Relinquishing work group

membership to be consistent with the roles specified earlier.

" On p/9
* The roles of 'set meeting agenda, set meeting roles and select a meeting template'

should be clearly stated as roles when the normal user becomes a meeting leader.

Stating it clearly will remove ambiguity.

" On p/1 3, section 3.1.1.4, last line.

* The resources that need to be cleaned maybe should probably stated explicitly.

3. Design Specification for Client Interface

" On p/4, line 3
" The word 'variable' should be replaced by 'function'.

* Under the column 'requirement met', the section number in the parenthesis should

be checked. They do not correspond correctly to the document they are supposed to

point at.

* On p/9
* There is no line arrow connecting the registration window and the main window

after the UID is returned from the server

* No sequence diagrams for logging out, performing search, create W.G., Schedule

Meeting and Meeting Logs, from the GUI.

118

4. Design Specification for Meeting Management

" P/2, section 1.2, line 2
. There is no description of each diagram in the document. So either the description

has to be written or this sentence should be rephrased.

" P/7, p/13
* The function 'update meeting' should cater for 'meeting roles, change agenda,

participants, cancel meeting etc'. In the sequence diagram on p/13, only a few of
the activities such as change leadership, meeting times etc are addressed and
shown.

" P/3 - p9
* In the column where a particular requirement met is shown, the section number in

the parenthesis should be rechecked to make sure it is actually pointing to the
right part of the requirement specification. Some of them seem to be misplaced.

* P/13 - p/14
* The diagram is inconsistent as far as displaying the error message is concerned.

Where the return value of -1 is there, a label showing what it signifies should be
inserted in p/13 as is done in p/14.

* P/14
* Check for access time is shown in the sequence diagram here although, such

constraints are not laid out in the requirement specification document.

" P/15
* No provision to say what happens to the Meeting leader if he leaves the meeting

before it completes. Does someone else obtain that role? If a chairman is
controlling the meeting, then does the normal user ask for permission to leave.
This detail should be highlighted in the sequence diagram. The way it shows now
is as if, the user leaves whenever he can without any involvement of the chairman
etc.

" P/20
e When a meeting is removed, how do you notify users that the meeting has been

cancelled? There is mention in the requirement analysis that the icon color
changes when the status of the meeting is null or void.

* P/21
e There is no label in the diagram showing what the return value -1 means. This is

just a consistency problem, which has to be maintained between the diagrams.

119

* P/22
" In the sequence diagram there is no mention of how to add a new WG, list or

remove old meeting logs which have been mentioned as possible functionality
while updating a workgroup.

* There is not sequence diagram showing how to activate or start a meeting once a
user has joined. There is also no mention of the minimum of 10 minutes before
which any user cannot start the meeting and also the constraint that the chairman
should be present while starting the meeting.

* Also there is no mention of how to save meeting logs by the chairman.

5. Design Specification for Transaction Management

e There is no sequence diagram for registering a new broker on our ieCollab server. For a

user to use the services of ieCollab through an A.S.P., the ASP should first be registered
with ieCollab.

" P/20
* There is no sequence diagram for updating the profile although a slight description is

made.

* P/21
* There is no ASP server shown in the diagram for user registration. The user will

trigger the ASP server to send a service request to ieCollab server. This is not
highlighted in the sequence diagram.

" P/22

* Even the logging in sequence diagram does not show the broker.

* First of all the sequence diagrams are not consistent with those present in the design

specification for meeting management.

* There are no sufficient sequence diagrams to explicitly show the programmers all the

functionalities of the transaction. Only four sequence diagrams are shown out of which

one is on logging in , logging out, registration and account administration. None of them
are complete as highlighted above.

e The account administration diagram does not show the details of billing information and

how to pay through a credit card or some other way as specified in the requirement

specification.

" None of the diagrams show the functions that need to be made, the arguments they are

passing etc.

120

* More importantly, one does not get the feeling that they are supposed to code an ASP

model after reading this document. All the sequence diagrams show direct use of the

ieCollab server through the ieCollab interface rather than through a third party ASP

provider.

6. Conclusion

This report covers some of the basic inconsistencies present in the documents. It should be

noted that only technical shortcomings were addressed. It was seen too trivial to address

grammar mistakes although there are aplenty. Since the programming phase is well into it's

third week, the whole motivation for bringing out this report so late in the project is to

highlight the mistakes and learn lessons from it. Also it was kept in mind that continued

development of the product in the future will take place and this report will hopefully go a

long way in helping rectify the mistakes and inconsistencies put forward.

121

