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Abstract
The ion-intercalation materials used in high-energy batteries such as lithium-ion undergo
large composition changes–which correlate to high storage capacity—but which also induce
structural changes and stresses that can cause performance metrics such as power, achievable
storage capacity, and life to degrade. “Electrochemical shock”–the electrochemical cycling-
induced fracture of materials–contributes to impedance growth and performance degrada-
tion in ion-intercalation batteries. Using a combination of micromechanical models and in
operando acoustic emission experiments, the mechanisms of electrochemical shock are iden-
tified, classified, and modeled in targeted model systems with different composition and mi-
crostructure. Three distinct mechanisms of electrochemical shock in ion-intercalation mate-
rials are identified: 1) concentration-gradient stresses which arise during fast cycling, 2) two-
phase coherency stresses which arise during first-order phase-transformations, and 3) inter-
granular compatibility stresses in anisotropic polycrystalline materials. While concentration-
gradient stresses develop in proportion to the electrochemical cycling rate, two-phase co-
herency stresses and intergranular compatibility stresses develop independent of the electro-
chemical cycling rate and persist to arbitrarily low rates. For each mechanism, a microme-
chanical model with a fracture mechanics failure criterion is developed.

This fundamental understanding of electrochemical shock leads naturally to microstruc-
ture design criteria and materials selection criteria for ion-intercalation materials with im-
proved life and energy storage efficiency. In a given material system, crystal symmetry
and phase-behavior determine the active mechanisms. Layered materials, as exemplified
by LiCoO2, are dominated by intergranular compatibility stresses when prepared in poly-
crystalline form, and two-phase coherency when prepared as single crystal powders. Spinel
materials such as LiMn2O4, and LiMn1.5Ni0.5O4 undergo first-order cubic-to-cubic phase-
transformations, and are subject to two-phase coherency stresses even during low-rate elec-
trochemical cycling. This low-rate electrochemical shock is averted in iron-doped material,
LiMn1.5Ni0.42Fe0.08O4, which has continuous solid solubility and is therefore not subject to
two-phase coherency stresses; this enables a wider range of particle sizes and duty cycles to
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be used without electrochemical shock. While lithium-storage materials are used as model
systems, the physical phenomena are common to other ion-intercalation systems, including
sodium-, magnesium-, and aluminum-storage compounds.

Thesis Supervisor: Yet-Ming Chiang
Title: Kyocera Professor of Ceramics

Thesis Supervisor: W. Craig Carter
Title: Professor of Materials Science and Engineering
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1, respectively. At each C-Rate, the stress-intensity factor increases rapidly for

small flaws, but quickly reaches a maximum and decreases, becoming negative

for very large flaws. The dashed horizontal line represents a plausible value

of fracture toughness, KIc = 1 MPa·m1/2. . . . . . . . . . . . . . . . . . . . . 67

2-13 Contour maps of the stress-intensity factor as a function of crack length and

time, KI(a, t), for 23 µm Nernstian particles with (a) no chemomechanical

coupling parameter, θ̂ = 0 and (b) with finite chemomechanical coupling

θ̂ = 4.57. The instantaneous stress-intensity factor–flaw size curves all have

the shape shown in Figure 2-12, increasingl rapidly for small flaws, but quickly

reaches a maximum. These calculations are for 5C galvanostatic charges,

corresponding to a dimensionless current of Î = 0.5. . . . . . . . . . . . . . . 68
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Chapter 1

Introduction

Batteries are electrochemical energy storage devices which have enabled—or are enabling—a

wide range of technologies, including portable electronics, electrified vehicles, and large-scale

grid integration of renewable energy sources such as wind and solar. In general, electrochem-

ical energy storage devices are attractive because chemical bonds have high energy density

and electrochemical devices allow energy to be stored and retrieved as electricity.

Today, lithium-ion batteries are attractive for many applications due to their high spe-

cific energy, energy density, specific power, and power density. Lithium-ion batteries, have

enabled the proliferation of portable electonics, including laptop computers and cellular

telephones and are today enabling the elecrification of automobiles. Today, alternative

chemistries, based around the same ion-intercalation reactions are emergining as potential

alternatives; chemistries of interest include sodium, magnesium, and aluminum. Potential

advantages of these alternative chemistries include cost, abundance, safety, and greater en-

ergy density.

In all of these ion-intercalation materials, large composition changes are essential to high

storage capacity. However, these composition changes are often accompanied by large shape

changes, with most transition metal oxide materials exhibiting stress-free strains on the order
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of a few percent. If constrained, these shape changes can induce large stresses, sufficient to

drive fracture of the ion-intercalation material, degrading performance metrics such as power,

efficiency, and life.

We call this electrochemical-cycling-induced fracture “electrochemical shock," by analogy

to thermal shock of brittle materials [1]. The central objective of this thesis is to develop

microstructure design criteria and materials selection criteria to mitigate electrochemical

shock in ion-intercalation materials. To derive these design and selection criteria, the funda-

mental mechanisms of electrochemical shock are identified and classified using experiments

and continuum models with selected model systems. The particular model systems used in

this thesis are all lithium-storage compounds, but the mechanisms of electrochemical shock

are general and will apply to all ion-intercalation materials.

The remainder of this chapter is organized as follows. First, the operating principles of

ion-intercalation batteries are summarized. The observed compositional (Vegard) strains in

ion-intercalation materials are reviewed in relation to phase-behavior and crystal symmetry.

Anticipating the direction of the thesis, the three distinct mechanisms of electrochemical

shock are summarized and related to qualitative differences among the compositional strains

in different ion-intercalation materials. Previous work in the area of electro-chemo-mechanics

of ion-intercalation materials is summarized, with an emphasis on the state of the literature

at the outset of the thesis.

1.1 Operating Principles of Ion-Intercalation Batteries

Ion-intercalation batteries, such as lithium-ion batteries, operate by shuttling ions between

two intercalation compounds with dissimilar chemical potentials. In intercalation reactions,

the underlying host structure is largely unchanged, with no reconstructive phase transfor-

mations. For example in LiXCoO2, lithium atoms are inserted and removed (intercalated
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and de-intercalated) from distinct crystallographic sites, while the CoO2 framework remains

intact, at least for the reversible cycling window of 0.5 ≤ X ≤ 1.

A prototypical lithium-ion cell uses a transition metal oxide such as LiCoO2 as a positive

electrode material and a graphite negative electrode. As illustrated in Figure 1-1, the positive

and negative electrodes (conventionally referred to as cathode and anode, though such usage

is conventional, rather than formally correct. The positive electrode is the cathode during

discharge, but is formally the anode during charge. Similarly, the negative electrode is an

anode during discharge, but is the cathode during charge.) are composite mixtures of active

material—which stores the intercalating ions—conductive additives such as carbon black,

and a polymeric binder. As the battery is charged, lithium ions and electrons are removed

from the positive electrode material and separated; the conventional half-reaction for this

process is given in Equation 1.1. As shown in Figure 1-1, the overall reaction proceeds

electrochemically because the lithium ions and electrons are separated; lithium ions travel

through an electrolyte which is an ionic conductor and electronic insulator while the electrons

travel through the external circuit. At the negative electrode, lithium ions and electrons

meet and are intercalated into the graphitic material, as described by Equation 1.2. During

discharge, the process is reversed.

(1.1)LiCoO2 ⇋ Li1−xCoO2 + xLi+ + xe−

(1.2)C6 + xLi+ + xe− ⇋ LixC6

Three classes of lithium-storage compounds are used today in commercial lithium-ion bat-

teries: 1) layered lithium-containing materials, such as LiCoO2 which adopt the α-NaFeO2 or-

dered rocksalt structure, 2) spinel oxides, such as LiMn2O4, and 3) olivines such as LiFePO4.

The layered compounds typically adopt rhombohedral or monoclic space groups; the spinels

are typically cubic, but at high lithium concentrations can transform to tetragonally distorted

structures; the olivines adopt an orthorhombic space group.
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1.2 Compositional (Vegard) Strains in Ion-

Intercalation Materials

The ion-intercalation materials used in lithium-ion batteries, and in other kinds of ion-

intercalation batteries, undergo large composition changes, which enable high storage capac-

ity. These composition changes are often accompanied by large shape changes, with most

transition metal oxide materials exhibiting stress-free strains on the order of a few percent.

As a result, electrical, chemical, and mechanical driving forces are all coupled in these elec-

trochemical energy storage devices. Figure 1-2 illustrates the connections—thermodynamic

and constitutive relationships—among electrical, chemical, and mechanical variables. Some

of the relationships are familar, such as the Nernst Equation and Hooke’s Law. Others are less

explored, such as the coupling between electrical potential and stress in a non-piezoelectric,

electrochemical system (though this effect has been measured in lithiated silicon LiXSi [2]).

The Vegard coefficients, which relate compositional and dimensional changes in materials

are of central importance to this thesis; these are defined by the relationship between the

stress-free strain accompanying a compositional change and the extent of that composition

change:
(1.3)ϵij = Ωij∆c

The Vegard coefficients are a proper second-rank tensor and obey all of the symmetry re-

quirements and transformation laws so implied. For cubic materials, the Vegard coefficients

are isotropic, while for lower symmetry materials, there are a larger number of indepen-

dent coefficients, up to six for the most general triclinic crystal systems. In the metallurgy

literature, the Vegard coefficients have also been called the solute distortion tensor [3].

The details of the compositional strains depend on both the crystal symmetry and phase-

behavior of a given ion-intercalation compound. The lithium-storage compounds of com-

mercial and research interest display a wide variety composition-dependent Vegard strains,
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which are readily characterized through the composition-dependent lattice parameters, as

determined by x-ray diffraction.

Four different examples of composition-dependent lattice parameters observed in Li-

storage compounds are shown in Figure 1-3. The most straightforward system is the cubic

spinel polymorph of LiXTiS2, shown in panel (A), which has continuous solid-solubility of

lithium and a linear variation of lattice parameter with changing composition [4]. This sim-

ple behavior is unusual, as the cubic spinel polymorph of LiXTiS2 is the only known example

of this behavior. The opposite extreme is exemplified by LiXFePO4, shown in panel (B),

which has negligible solid-solubility and an anisotropic transformation strain [5]. In this

material, changes in lithium composition are accomodated almost entirely by a first-order

phase transformation between LiαFePO4 and Li1−βFePO4 with α, β ≈ 0. Both end-members

are orthorhombic materials, so the anisotropic transformation strain has three independent

components.

Intermediate cases are more common, such as are encountered in spinel LiXMn2O4, shown

in panel (C), and layered LiXCoO2, shown in panel (D). For electrochemical cycling in

the composition region 0 ≤ X ≤ 1, (where the electrode voltage is ∼ 4 V vs. Li+/Li),

LiXMn2O4 is cubic throughout, but there is complex-phase behavior, with two regions of

solid solubility for 0.5 ≤ X ≤ 1 and 0.2 ≤ X ≤ 0.25 separated by a first-order phase

transformation for compositions 0.25 ≤ X ≤ 0.5 [6]. The two coexisting cubic phases have

lattice parameters which differ by ∼1.2%. At higher lithium-contents (1 ≤ X ≤ 2) this

material undergoes a first-order phase transformation to a tetragonally distorted spinel with

composition Li2Mn2O4. In LiXCoO2, there is also complex phase-behavior with regions of

solid-solubility separated by a miscibility gap. In this layered compound, the shape change

is anisotropic, and the partial molar volume of lithium is negative [7].

Table 1.1 summarizes the experimentally measured, anisotropic, net stress-free strains

for many Li-storage compounds. The initial and final compositions are specified, and the
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tabulated strains are reported for the full composition change, irrespective of phase-behavior.

For low symmetry materials with more than three independent Vegard coefficients, the second

rank tensor has been diagonalized to principal axes and the principal Vegard strains are

listed in descending order. The volumetric strain, and average electrode potential relative to

a Li+/Li reference is also given. Table 1.2 collects analogous data for a number of Na-storage

compounds.

1.3 Electrochemical Shock

The compositional stress-free strains observed in these ion-intercalation materials exceed the

failure strains of most brittle materials. As a result, there have been numerous observations

of mechanical deformation and battery peformance degradation associated with these shape

changes. Figure 1-4 shows examples of observed mechanical damage in Li-storage particles

of varying composition and microstructure, including an individual LiCoO2 crystallite [27], a

coarse individual LiFePO4 [28] crystallite, and a polycrystalline LiNi0.8Co0.15Al0.05O2 parti-

cle [29]. Similar particle-level fracture has been observed in post-mortem electron microscopy

studies of intercalation materials [30, 31, 32], and has been observed through acoustic emis-

sion during cycling of primary Li/MnO2 batteries [33, 34].

We have termed this electrochemical-cycling-induced fracture “electrochemical shock,"

by analogy to thermal shock of brittle materials [1]. Thermal shock refers to fracture due

to thermo-elastic stresses caused by rapid heating or cooling, and this problem has been

treated successfully by fracture mechanics analysis [35, 36, 37, 38, 39]. The analogy between

thermal and electrochemical shock as driving forces for fracture can be quantified by a

simple scaling argument. An equivalent thermal shock temperature drop (∆T ) for a given

lithium storage compound is defined by equating the relative volume expansion (the stress-

free strain) caused by a maximal change in lithium concentration to a linear thermal strain.
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LiCoO2 LiFePO4 LiNi0.8Co0.15Al0.05O2 

Figure 1-4: Examples of fractured lithium-storage particles with different compositions,
crystal structures, and microstructures. Shown are an individual LiCoO2 crystallite [27], a
coarse individual LiFePO4 crystallite [28], and a polycrystalline LiNi0.8Co0.15Al0.05O2 parti-
cle [29].

For the present analysis, which addresses mostly metal oxide compounds, a linear coefficient

of thermal expansion α = 10−5 K−1 is assumed as representative of many metal oxides. The

resulting equivalent thermal shock temperature drops for the Li- and Na- storage compounds

summarized in Tables 1.1 & 1.2 are commonly 1000-2000 K; electrochemical shock is often

a severe service condition.

There is mounting evidence that electrochemical shock contributes to impedance growth

in lithium-ion batteries. [40, 9, 41, 29, 42, 43, 32, 44]. For lithium-ion batteries to succeed

in long-life energy storage applications, it is essential to understand and control all sources

of impedance growth and capacity fade. Models with realistic fracture criteria are needed to

understand the role of fracture in electrode degradation and to design mechanically robust

electrodes and, potentially, life-prolonging duty cycles.

For large-scale energy storage applications, cost is of paramount importance. The lev-

elized cost of stored energy is a figure of merit which describes the premium paid for stored

energy—in addition to the cost of generation and transmission—amortized over the life of

the storage device. The levelized cost of storage is given by the nameplate cost—what is

paid upfront—of storage normalized by the cycle life and efficiency of the device, as shown

36



in Equation 1.4.

(1.4)Levelized Cost of Storage = Nameplate Cost ($/kWh)
Cycle Life (#) × Energy Efficiency

Broadly, there are two distinct strategies to reduce the levelized cost of stored energy: reduce

the nameplate cost or increase the cycle life and efficiency. Degradation mechanisms such as

electrochemical shock limit the energy efficiency and achievable cycle life of ion-intercalation

batteries, thereby effectively increasing the levelized cost of stored energy. Thus, strategies

to mitigate electrochemical shock are needed to improve life, efficiency, and ultimately to

reduce the levelized cost of ion-intercalation batteries.

1.3.1 Electrochemical Shock Mechanisms

In ion-intercalation materials, there are three distinct mechanisms for electrochemical shock:

1) concentration-gradient stresses which arise during fast cycling, 2) two-phase coherency

stresses which arise during first-order phase-transformations, and 3) intergranular compati-

bility stresses in anisotropic polycrystalline materials.

One practical classification for these electrochemical shock mechanisms is according to

electrochemical cycling (C-Rate) sensitivity [45]. A C-Rate-dependent electrochemical shock

mechanism is concentration-gradient stresses which develop in proportion to the applied cy-

cling rate and become important for fast cycling. By contrast, C-Rate-independent elec-

trochemical shock mechanisms—two-phase coherency stresses and intergranular compatibil-

ity stresses—persist to arbitrarily low C-Rates. These C-Rate-independent electrochemical

shock mechanisms are expected in phase transforming and anisotropic polycrystalline ma-

terials. Only materials which are both single phase and isotropic are subject to purely

C-Rate-dependent electrochemical shock; lithium-storage materials fitting this description

are not common. Table 1.3 summarizes the known electrochemical shock mechanisms, their

C-Rate sensitivity, the required materials properties, and some example materials in which
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electrochemical shock is dominated by that mechanism.

Table 1.3: Summary of Known Electrochemical Shock Mechanisms

C-Rate Materials Example
Mechanism Sensitive? Properties Materials
Composition Gradient Yes Isotropic spinel LiXTiS2

Single-phase
Anisotropy No Polycrystalline LiCoO2

Low-symmetry and derivatives
Coherency Stress No Miscibility Gap LiFePO4

Misfit Strain LiMn2−xNixO4

In a given material, the potentially operative electrochemical shock mechanisms are

determined by the phase-behavior with respect to composition and the crystal symmetry

of the intercalation compound. Both of these materials properties are evident from the

composition-dependent lattice parameters, examples of which are given in Figure 1-3. Thus,

LiXFePO4, LiXMn2O4, and LiXCoO2 are all susceptible to coherency-stress fracture due to

the first-order phase transformations, and LiXFePO4 and LiXCoO2 are all susceptible to

compatibility-stress fracture if they are prepared in a polycrystalline form. While all inter-

calation materials are sensitive to concentration-gradient stresses, only in LiXTiS2 is this the

only operative electrochemical shock mechanism. To summarize, most lithium-storage com-

pounds are either non-cubic or have have miscibility gaps; therefore, C-Rate-independent

electrochemical shock mechanisms are ubiquitous.

1.3.2 Review of Prior Work

While large volume changes and the accompanying mechanical degradation of lithium storage

materials have been recognized as problematic for some time [40, 46] and numerous models

have been developed to quantify the mechanical stresses generated under different electro-

chemical service conditions, [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] relatively
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few design criteria have emerged to enable rational design of electrochemical shock resistant

electrode microstructures. As described in the preceding section, there are three distinct

mechanisms for electrochemical shock, with unique sensitivities to microstructure (particle

and primary crystallite size), electrochemical kinetics (C-Rate), and state-of-charge (compo-

sition). Thus, the relevant design criteria depend on the compound, its microstructure, and

the duty cycle.

The most widely studied electrochemical shock mechanism is the C-Rate-dependent

concentration-gradient mechanism. Some prior models of mechanical degradation have cal-

culated diffusion-induced stresses—which arise from dimensional changes due to variations

in composition—for battery electrode materials subjected to common electrochemical pro-

tocols. García, et al. developed a 2-dimensional finite element model to calculate stress

profiles in composite electrodes [61]. Cheng and Verbrugge derived analytical expressions

for stress evolution in spherical particles under potentiostatic and galvanostatic operation

and have included surface effects in their calculation of stresses in nanoscale electrode par-

ticles [62, 63, 49]. Golmon, et al. use a homogenization approach to model composite

electrodes and explored the effects of externally applied loads and electrode porosity [55].

Renganathan, et al. used a quasi-2D porous electrode model for LiCoO2/Graphite cells to

evaluate stresses caused by compositional inhomogeneities and phase transformations [64].

Other models have suggested certain failure criteria to predict particle fracture caused by

diffusion-induced stresses, but fracture mechanics criteria were not proposed or implemented.

Christensen and Newman derived a detailed general model for diffusion-induced stresses in

intercalation electrodes that includes elasto-diffusion coupling, non-ideal solution thermody-

namics, and nonlinear partial molar volume [48, 47]. They suggested a “tensile yield stress”

criterion (assumed to be the same everywhere within the electrode) to predict the onset

of fracture. Christensen has since incorporated the diffusion-induced stress model—again

using a tensile yield stress failure criterion—in a quasi-2D porous electrode (Dualfoil) model

39



of LiMn2O4/MCMB cells [65]. Zhang, et al. implemented a numerical elasto-diffusion model

to calculate diffusion-induced stresses in spherical and ellipsoidal electrode particles [58, 59],

but suggested the von Mises equivalent stress as a predictor of electrode failure. Cheng and

Verbrugge have also proposed a single value of maximum tensile stress to predict fracture [50]

due to diffusion-induced stress.

In typical ion-intercalation compounds, knowledge of the diffusion-induced stress pro-

file is necessary but insufficient to predict fracture. Yield stress and von Mises equivalent

stress failure criteria are not well defined for brittle materials—these concepts from contin-

uum plasticity theory are most appropriate for materials that undergo dislocation-mediated

plastic deformation; they are yield, not fracture criteria. Instead, linear elastic fracture me-

chanics can provide a unique failure criterion in terms of the stress intensity factor, which

incorporates both the stress profile and the pre-existing flaw population.

There is a separate body of literature where fracture mechanics analysis has been applied

to the mechanical degradation of lithium alloy electrodes. In contrast to the above cited

work, diffusion-induced stresses—due to composition gradients—have not been included as

the driving force for fracture. Huggins and Nix developed a one-dimensional model for

fracture of thin film alloy electrodes undergoing a first order phase transformation [66].

Wolfenstine proposed a critical grain size model for micro-cracking due to lithiation of tin [67]

and with collaborators, measured the fracture toughness of LixSn alloys [68]. Aifantis, et al.

modeled radial cracking in composite anodes composed of active particles embedded in inert

matrices [69, 70, 71]. Most recently, Hu, et al. modeled cracks in two-phase LiFePO4/FePO4

particles with interface coherency stresses with fully anisotropic elastic constants and stress-

free strains [72].

The C-Rate-independent electrochemical shock mechanisms are much less studied. Only

Hu, et al. (LiXFePO4) [72] and Grantab, et al. (LiXC6) [73] have incorporated anisotropic

Vegard coefficients. Of these, only Grantab, et al. have considered a polycrystalline mi-
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crostructure, though they did not consider the possibility of grain boundary microfracture.

For phase-transforming ion-intercalation materials (i.e. those with miscibility gaps),

electrochemical shock may occur due to coherency-stresses which develop independent of

the electrochemical C-Rate. Several analyses of phase-transformation induced stresses have

been performed for alloy systems, [66, 67, 68] for spherical core-shell models of isotropic

electrode particles, [74, 47, 75, 64] and for anisotropic two-phase coherency stresses in single

crystal particles. [72]

Thus, there is a need for refined models of electrochemical shock, which address the

underlying mechanisms and incorporate failure criteria appropriate to the materials of in-

terest. At the same time, there is an opportunity for microstructural engineering to enable

mechanically robust, long-life battery electrode materials.

1.4 Critical Sizes

One central theme of this thesis is the identification and quantification of critical sizes for

each of the electrochemical shock mechanisms in ion-intercalation materials.

In the most general sense, fracture is driven by a competition between reducing strain

energy as a driving force and increasing total surface energy as the resistance. For elastic

stresses, the total elastic strain energy is given by a volume integral

(1.5)UE =
∫

V

1
2

σijϵijdV

As elasticity is scale-invariant, for a characteristic system linear dimension, d, and a crack

of size L, the total strain energy will scale as

(1.6)UE = d3Eϵ2Û
(

L

d

)

the dimensionless function Û
(

L
d

)
describes the shape of the elastic strain energy at different

relative crack lengths, L
d
. where ϵ is a characteristic strain and E is a characteristic elastic
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modulus. The surface total energy is given as
(1.7)Usurf = 2γLd

Fracture is driven by a decrease of the total energy

(1.8)
Utotal = UE + Usurf

= d3Eϵ2Û
(

L

d

)
+ 2γLd

Fracture is possible when the total energy decreases, i.e.,

(1.9)∂Utotal

∂L
= d3Eϵ2Û ′

(
L

d

) 1
d

+ 2γd

(1.10)−dEϵ2Û ′
(

L

d

)
≥ 2γ

Define the dimensionless strain energy release rate Z
(

L
d

)
= −Û ′

(
L
d

)
restores this to the

formalism used by Hu, et al. [72]. Fracture is possible when

(1.11)Z
(

L

d

)
Eϵ2d ≥ 2γ

Thus, if the dimensionless strain-energy release rate Z
(

L
d

)
has a maximum value Zmax,

then there is a critical length scale dcrit, below which fracture does not occur,

(1.12)dcrit = 2γ

ZmaxEϵ2

This argument is based on the Griffith (thermodynamic) theory of fracture. A similar

argument can be formulated in terms of the strain-energy release rate of linear-elastic fracture

mechanics. In this case, the dimensionless stress-intensity factor can be defined as

(1.13)K̂
(

L

d

)
= K

Eϵ
√

d

and the crack growth criterion is that
(1.14)K ≥ KIc

Note that here, the characteristic modulus E and characteristic strain ϵ may differ from

those used in the Griffith formulation. Thus, if the dimensionless strain-energy release rate

has a maximum value K̂max the critical size is given by

(1.15)dcrit =
(

KIc

K̂maxEϵ

)2
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1.5 Overview of the Thesis

First, the three electrochemical shock mechanisms are analyzed independently, in the limit-

ing cases which isolate each mechanism. Chapter 2 analyzes C-Rate-dependent electrochem-

ical shock due to concentration-gradient stresses in isotropic, homogeneous electrode parti-

cles. Chapter 3 considers polycrystalline ensembles of anisotropic ion-intercalation materials,

and identifies electrochemical shock microfracture as a C-Rate-independent electrochemical

shock mechanism. Chapter 4 analyzes coherency-stress fracture of phase-transforming ion-

intercalation materials. For materials with complex phase-behavior, with both regions of

solid-solubility and miscibility gaps, such as LiXMn2O4 and LiXMn1.5Ni0.5O4, concentration-

gradient stresses and coherency-stresses are both possible; these two mechanisms are ana-

lyzed concurrently and on an equal basis in Chapter 5. In cases where it is impractical

or impossible to design for complete electrochemical shock resistance, reliability statistics

are needed to achieve designs with tolerable failure levels. Chapter 6 develops a stochas-

tic method to quantify reliability statistics during electrochemical shock, considering as

a particular example the problem of simultaneous anisotropic microfracture and phase-

transformation in polycrystalline LiXCoO2. Finally, the thesis concludes with a summary of

microstructure design criteria for known ion-intercalation materials and materials selection

criteria for new electrochemical-shock resistant ion-intercalation materials.
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Chapter 2

Concentration-Gradient Stresses

2.1 Introduction

The first electrochemical shock mechanism is concentration-gradient (diffusion-induced)

stresses, which arise during fast electrochemical cycling. Inhomogeneous composition pro-

files induce elastic stresses in materials with a non-zero partial molar volume of intercalating

ions. These stresses are analogous to thermal stresses arising due to rapid heating or cooling,

and are identical to the compositional stresses that are used to chemically temper glasses.

In the limiting case of an ion-intercalation material which is isotropic, uniform, and single-

phase over the entire composition range in which electrochemical cycling is performed, this

mechanism will be the only active electrochemical shock mechanism.

The main objective of this chapter is to derive a fracture mechanics failure criterion for

electrochemical systems having diffusion-induced stresses due to composition gradients. To

achieve this goal, a rigorous theoretical framework to model diffusion in non-ideal, elasically

coupled intercalation solutions is developed and applied to model electrochemical cycling of

individual electrode particles. In the most general form, both stress-assisted diffusion and

thermodynamic non-idealities are consistently treated in the kinetic model.
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Using the particle-level electrochemical model, composition and elastic stress distribu-

tions are computed over a range of particle sizes and C-Rates. The elastic stress distributions

are used to estimate the stress-intensity factor distributions, KI(a, t), of pre-existing cracks

of varying size throughout the electrochemical cycle. The stress-intensity factor is a measure

of the crack-growth driving force. The methodology used to estimate the stress-intensity

factor is detailed in Section 2.2.3. The time and flaw-size dependent stress-intensity fac-

tors obtain unique maximum values for a specified combination of particle size and C-Rate.

These maximal stress-intensity factors are used to predict fracture for a wide range of C-Rate

and particle size combinations. The electrochemical shock map is introduced as a graphical

design tool which summarizes the combinations of particle size and C-Rate which can cause

fracture. The methods used here follow closely on those from a previoulsy published work [1].

To analyze the effect of solution thermodynamics and elastic coupling on electrochemical

and mechanical behavior, three different cases of solution thermodynamics are compared

qualitatively and quantitatively: 1) an ideal solution electrode, with a Nerstian open-circuit

voltage and no chemomechanical coupling, 2) an electrode with a Nernstian open-circuit

voltage and a finite chemomechanical coupling, and 3) a material with an experimentally-

determined open-circuit voltage profile (that of LiXMn2O4) and finite chemomechanical cou-

pling. Each of these cases, a qualitatively different composition-dependent chemical diffusiv-

ity, which affects the time-dependence of the composition, elastic stress, and stress-intensity

factor profiles, but which does not alter the scaling of failure with respect to particle size

and C-Rate.

2.2 Methods

To develop and quantify a fracture mechanics failure criterion for C-Rate-dependent elec-

trochemical shock, we use individual spherical particles of an intercalation material with
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complete solid solubility as a model system. We postulate that each particle of radius rmax

contains a finite-sized semi-elliptical surface crack of length a, as shown in Figure 2-1. A

few simplifying assumptions facilitate the development of this model. First, the crack faces

are assumed electrochemically inert so that only the spherical outer surface of the particle

is reactive. Second, the material is assumed to be homogeneous and isotropic in all re-

spects. Finally, the elastic and fracture properties of the host material are assumed to be

composition-independent.

Figure 2-1: Geometry of a semi-circular crack on the surface of a spherical electrode
particle. A tensile tangential stress, σθ acts to increase the size of the crack.

2.2.1 Diffusion in Non-ideal, Elastically Coupled Intercalation So-

lutions

Electrochemical cycling of the particle is modeled by the diffusion equation

(2.1)∂X

∂t
= −∇ · J
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where X is composition which is scaled to take values 0 ≤ X ≤ 1, e.g. X in LiXMn2O4 and

J is the flux, which is proportional to the gradient in the relevant diffusion potential Φ

(2.2)J = −MX∇Φ

The diffusion potential is the generalized thermodynamic driving force which reflects all of

the energy change in a system due to motion of a species. [76] For a non-ideal, elastically

coupled solution, the diffusion potential is

(2.3)Φ = µ0 + RT ln
(

γ
X

1 − X

)
− Ωσh

In addition to the composition, X, the diffusion potential Φ contains µ0, a reference chem-

ical potential; γ, an activity coefficient describing the thermodynamic non-ideality of the

concentrated solution; Ω, the partial molar volume of the diffusing species; and σh, the lo-

cal hydrostatic stress. R is the gas constant and T the absolute temperature. Using this

formalism, the diffusion equation for traction-free spherical particles of an ion-intercalation

material can be expressed as

(2.4)∂X

∂t
= 1

r2
∂

∂r

(
r2D̃(X)∂X

∂r

)

where D̃(X) is a composition-dependent chemical diffusivity defined as

(2.5)D̃(X) = D0X (1 − X)
(

− zF
RT

∂V (X)
∂X

+ θ̂

)

D0 is a characteristic diffusivity, F is Faraday’s constant, z is the formal charge of the inter-

calating ion, and V (X) is the composition-dependent open-circuit voltage of the intercalation

electrode in a half-cell, and θ̂ is a dimensionless chemomechanical coupling parameter. The

composition-dependent open-circuit voltage V (X) is a direct measure of the chemical poten-

tial of the intercalating ions in the intercalation host and it can be used to uniquely define the

activity coefficient γ. The dimensionless chemomechanical coupling parameter, θ̂, is defined

as
(2.6)θ̂ = 2Ω2Ecmax

9RT (1 − ν)
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Table 2.1: Chemomechanical coupling parameter θ̂ for a number of important lithium-
storage materials.

Property LiXMn2O4 LiXCoO2 LiXFePO4

E (GPa) 143 [78] 174 [79] 124 [80]
ν 0.3 0.3 0.28 [80]
ΩLi (cm3/mol) 3.26 [14] -0.77 [7] 2.87 [12]
cmax (mol/m3) 2.37×104 [81] 5.11×104 [82] 2.29×104 [83]
θ̂ 4.57 0.67 2.87

where cmax is the maximum concentration (units of mol/m3), E is the Young’s modulus, and

ν is Poisson’s ratio. This chemomechanical coupling factor arises from the hydrostatic stress

dependence of the diffusion potential, and conventiently for traction-free spherical particles,

it can be expressed uniquely in terms of the local composition gradient [77, 58]. A detailed

derivation of Equation 2.5 is given in Appendix B.2.

Table 2.1 lists values of the chemomechanical coupling parameter θ̂ for the common

cathode materials LiXMn2O4, LiXCoO2, and LiXFePO4. It is important to note that θ̂ is

strictly greater than zero for any stable material. While the partial molar volume, Ω, may be

positive or negative, θ̂ depends on Ω2 which is always positive. As the Poisson’s ratio must

take values −1 ≤ ν ≤ 1/2, the quantity (1 − ν) is always positive; the remaining quantities

comprising θ̂ are all strictly positive.

This particle-level model for electrochemical cycling is strictly valid for materials which

remain in a single-phase over the entire composition range in which electrochemical cy-

cling is performed. However, several models have been suggested which use experimentally-

determined open-circuit voltage profiles as an approximate method for phase-transforming

electrodes [84, 85]. The possibility of using such a method for electrochemical shock modeling

is critically examined.

49



2.2.2 Elastic Stress Distributions

The diffusion-induced elastic stress distributions are determined by solving a linear elastic

boundary value problem analogous to the calculation of thermal stresses [86]. Assuming

isotropic linear elasticity and traction free boundaries, the radial and tangential stress profiles

in a solid spherical particle are

σr(r, t) = 2ΩEcmax

9(1 − ν)
[Xav(rmax, t) − Xav(r, t)] (2.7)

σθ(r, t) = ΩEcmax

9(1 − ν)
[2Xav(rmax, t) + Xav(r, t) − 3X(r, t)] (2.8)

where Ω is the partial molar volume of the intercalating species (cm3/mol), E is the Young’s

elastic modulus (GPa), ν is the Poisson’s ratio (dimensionless), cmax is the maximum con-

centration (mol/m3), and Xav(r, t) is the average composition within a sphere of radius r

(2.9)Xav(r, t) = 3
r3

∫ r

0
X(r, t)r2dr

These expressions are valid for both single-phase and two-phase configurations, assuming

that Ω and E are composition-independent. A derivation of these expressions is given in

Appendix B.1.

2.2.3 Estimating Stress-Intensity Factor

Linear-elastic fracture mechanics provides a deterministic failure criterion in terms of the

stress-intensity factor, which characterizes stress concentration ahead of a flaw. For the sim-

ple case of uniform tension, a material subjected to a stress σ containing a single flaw of

characteristic size a experiences a stress-intensity factor K = Y σ
√

πa where Y is a dimen-

sionless geometric factor. The stress-intensity factor is conventionally expressed in SI units

of MPa·m1/2. For a classical reference on fracture mechanics, see the text by Lawn [87].
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A material’s resistance to crack growth is described by a critical value of the stress-

intensity factor, KIc, known as the fracture toughness. When the applied stress-intensity

factor exceeds the material’s fracture toughness, the pre-existing crack grows. We stress

that the fracture toughness is a material property, whereas the fracture strength–that is, the

stress necessary to induce crack growth–is not. Fracture strength depends on flaw geometry,

loading conditions, and material properties. The crack propagation criterion in linear elastic

fracture mechanics is consistent with thermodynamic free energy minimization. This crite-

rion embodies the competition between a driving force from elastic strain energy—enhanced

by the stress concentration around flaws—and a resistance due to the creation of fresh surface

area. Models that assume a single threshold stress as a fracture criterion do not reflect the

minimum free energy configuration for the system, and therefore do not accurately predict

fracture.

We calculate stress-intensity factors using the method of weight functions and an edge-

cracked plate approximating geometry, shown in Figure 2-2. The dimensions of the plate are

related to those of the sphere as

l = rmax b = πrmax h = πrmax (2.10)

The stress-intensity factor of this plate under uniform tensile loading is used as the reference

case for the method of weight functions, details of which are provided in Appendix A.5.

This geometric approximation avoids an unrealistic assumption of a uniform stress profile,

yet does not require the intricacy of a full-scale finite element model. This approximation

will not affect the character of the solution (i.e., the scaling with respect to flaw size and

material parameters), and therefore serves to provide qualitative insight on the behavior of

cracks subjected to non-uniform diffusion-induced stress profiles.

The stress-intensity factor for the electrochemical shock problem can be calculated fol-
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lowing the approach of Mattheck [88], by the integral equation

(2.11)KI = E

Kref (1 − ν2)

∫ a

0
σ(x)m(x, a)dx

where Kref is the reference stress-intensity factor and m(x, a) is the weight function (a

kernel or Green’s function) against which the diffusion-induced stress profile is integrated.

We use the time-dependent tangential stress distributions σθ(x, t) as input to this calculation

to produce stress-intensity profiles which are functions of flaw size and time KI(a, t). The

stress distribution are subject to the change of variables x = rmax − r.

Figure 2-2: Geometry of plate model used to calculate stress-intensity factors under the
non-uniform stress profiles. (a) Full view of plate. (b) Plan view of the crack plane. To match
the plate and sphere models, we take l = rmax, b = πrmax, h = πrmax. As a simplifying case,
we consider only semi-circular cracks where w = a.

An essential feature of Equation 2.11 is that the stress distribution is integrated over the

entire crack length; this means that the spatial variation of the stress profile matters. A
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moderate, uniform stress profile can induce a stress-intensity factor greater than a sharply

peaked but rapidly decreasing stress profile; this effect is important for electrochemical shock

at large currents. To generate a large stress-intensity factor, the diffusion-induced stress must

be large at the crack tip, not just at the particle surface. The weight function m(x, a) is

characteristic of the reference case; more details are given in Appendix A.5 and the original

literature [88, 89].

The reference case is uniform tensile loading in the z-direction of the semi-elliptical surface

cracked plate [90]. The stress-intensity factor calculated in this way is a function of crack

dimensions a and w and the angle ϕ, all shown in Figure 2-2(b). As a simplifying case, we

restrict our analysis to semi-circular cracks with w = a. Results not presented here show

that ϕ = 0 (and ϕ = π, as required by the symmetry of the problem) is the direction of

maximum stress-intensity factor, so we consider only this direction. We neglect Mode II

and III crack face loading because the material’s other toughness values, KIIc and KIIIc, are

generally much larger than KIc.

The fracture toughnesses of most ion-intercalation materials are presently unknown, but

can be determined experimentally. Measurements of fracture toughness in LiCoO2 give a

value ∼ 1 − 2 MPa·m1/2 which is similar to other oxide materials. In this chapter, when a

numerical fracture toughness is needed for analysis, we present results for a range of values

representative of brittle materials.

2.2.4 Dimensionless Variables

For numerical calculations, and to report values which are meaningful for a variety of mate-

rials systems, we make the problem dimensionless by normalizing all lengths to the particle

radius and we define the dimensionless stress-intensity factor as

(2.12)K̂I = 9(1 − ν)KI

cmaxΩE
√

rmax

53



Note that this definition of the dimensionless stress-intensity factor differs from one that we

have previously reported [1]; the present definition is more general as all materials properties

are subsumed into the dimensionless variables.

Numerically, we implement the electrochemical model in dimensionless variables

r̂ = r

rmax
t̂ = tD0

r2
max

(2.13)

And the stress-intensity factor is computed in dimensionless variables normalized to the

dimension of the particle (rmax).

l̂ = 1 b̂ = π ĥ = π (2.14)

2.2.5 Boundary and Initial Conditions

The boundary conditions for constant current charging of a spherical particle are zero flux at

the particle center and constant flux at the particle surface. In the dimensionless variables,

the boundary conditions are

∂X

∂r̂

∣∣∣∣∣
r̂=0

= 0 ∂X

∂r̂

∣∣∣∣∣
r̂=1

= − Î

D̃(X|r̂=1)
(2.15)

with the surface flux specified as a dimensionless current Î

(2.16)Î = (C-Rate)αρr2
max

3D0cmaxF

where α is the theoretical capacity (Ah/kg) and ρ is the mass density (kg/m3). C-Rate

describes the normalized charging rate of a cell and has units of h−1. A C/n charge accu-

mulates the full theoretical capacity of a cell in n hours. For example, a cell charged at a 2C

rate reaches its theoretical capacity in 30 min.
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In brittle materials, surface flaws subjected to tensile stresses are the most common origin

of catastrophic failure. For this reason, we simulate charging (de-intercalation) of an ion-

intercalation material with a positive partial molar volume, which produces surface tensile

stresses that tend to open the pre-existing crack, as illustrated in Figure 2-1. Analogous

tensile stresses would develop during discharge (intercalation) of a material with a negative

partial molar volume.

To compare the results for the three different cases of solution thermodynamics, consistent

stoichiometric limits 0.2 ≤ X ≤ 0.995 are used to model electrochemical cycling. In the final

case, where the open-circuit voltage of LiXMn2O4 is used, these compositions correspond to

conventional cutoff voltages for electrochemical cycling (3.6 - 4.2 V vs. Li+/Li).

In each case, the initial condition is uniform concentration in the fully lithiated (dis-

charged) state

(2.17)X(r, t = 0) = 0.995

And simulations are terminated when the surface composition reaches X(rmax, t) = 0.2.

2.2.6 Materials Properties for Dimensional Results

To illustrate the results, quantitative examples are provided. An illustrative example with

Î = 0.5, embodied as a 5C galvanostatic charge of a 23 µm particle is used to provide

dimensionalized (i.e., physical units of measure) results. When quantitative values of ma-

terials properties are needed, those corresponding to the spinel LiMn2O4 are used. The

complete set of material properties used as model input is given in Table 2.2. With these

materials properties, the chemomechanical coupling parameter for LiXMn2O4 is estimated

at θ̂ = 4.577.
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Table 2.2: Properties of LiXMn2O4 used in numerical calculations. References are given
for information taken from or derived from the literature.

Property Symbol Units Value
Young’s modulus E GPa 143 [78]
Poisson’s ratio ν - 0.3 [78]
Characteristic diffusivity D0 cm2/s 6 × 10−9 [91]
Partial molar volume Ω cm3/mol 3.26 [14]
Maximum concentration cmax mol/m3 2.37 × 104 [81]
Density ρ g/cm3 4.28 [81]
Theoretical capacity α mAh/g 148 [81]
Temperature T K 300

2.3 Effect of Solution Thermodynamics on

Composition-Dependent Diffusivity

In this section, the three cases of solution thermodynamics are introduced, and the

composition-dependent chemical diffusivities are derived and compared.

First, consider an ideal solution ion-intercalation material, where the open-circuit voltage

arises only from configurational entropy, and the open-circuit potential is given as

(2.18)V (X) = V0 − RT

zF
ln
(

X

1 − X

)
where V0 is a reference potential. The shape of this Nernstian open-circuit voltage is shown

in Figure 2-3, plotted as the potential relative to the reference potential, V (X) − V0.

For this first case, with no chemomechanical coupling (θ̂=0), the diffusivity is independent

of composition, and the diffusion equation reduces to Fick’s Second Law, i.e.

(2.19)∂X

∂t
= D0∇2X

For the second case, consider a material also with a Nernstian open-circuit voltage,

but with finite chemomechanial coupling. The chemical diffusivity becomes composition-

dependent and is given as

(2.20)D̃ideal(X) = D0
[
1 + X(1 − X)θ̂

]
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Figure 2-3: Variation of open-circuit voltage for a Nernstian electrode, relative to an
unspecified reference potential V0 and assuming a monovalent ion, z = 1.

Chemomechanical coupling enhances the diffusivity relative to an ideal solution, and the

effect is symmetric with respect to composition about X = 0.5. The shape and magnitude

of this enhancement is illustrated in Figure 2-4, where ˜D(X)
D0

is plotted as a function of X,

showing the enhancement of the chemical diffusivity relative to the characteristic diffusivity

D0. This enhancement factor is plotted for several values of the chemomechanical coupling

parameter, 0 ≤ θ̂ ≤ 8, encompassing the range of values of common Li-storage materials

as given in Table 2.1. It is important to note that this chemomechanical coupling, which

is thermodynamic in origin, will always enhance diffusion, as θ̂ is strictly greater than zero

for any stable material. Other chemomechanical coupling effects are possible, for example,

if there is a significant activation volume (migration volume), the diffusivity will have an

exponential dependence on the stress, and will be sensitive to the sign of the stress. Such

dependence is not considered in the present work. For LiXMn2O4, the chemomechanical cou-

pling parameter is θ̂ = 4.57 and with this value of the chemomechanical coupling parameter,

the composition-averaged diffusivity enhancement is 1.9.

The third case is a material with an experimental open-circuit voltage corresponding to

LiXMn2O4 and finite chemomechanical coupling. To quantify the composition-dependent
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Figure 2-4: Enhancement of the chemical diffusivity D̃(X)
D0

for a range of values of the
chemomechanical coupling parameter θ̂ and with an ideally Nernstian open-circuit voltage.

chemical diffusivity using Equation 2.5, the open-circuit voltage V (X) of LiXMn2O4 is spec-

ified using the function fit by Doyle, et al. [92], which is given in the Appendix as Equa-

tion B.36 and is plotted in Figure 2-5(a). The key features of the open circuit voltage are

the plateau-like regions at 4.0 V (0.6 ≤ X ≤ 0.995) and 4.1 V (0.5 ≤ X ≤ 0.25), and the

region of rapidly varying open circuit voltage for intermediate compositions (X ≈ 0.6). The

lower 4.0 V region is a single phase of continuously varying composition, 0.5 ≤ X ≤ 0.995.

In real LiXMn2O4, the upper 4.1 V plateau is due to two-phase coexistence between a Li-rich

phase α, with composition Xα = 0.5, and a Li-poor phase β, with composition Xβ = 0.25.

For the purposes of the present analysis, this 4.1 V region is assumed to be a single-phase

plateau-like region analogous to the lower 4.0 V region. The effect of two-phase coexistence

in LiXMn2O4 is considered in detail in Chapter 4 and the present model for electrochemical

cycling is revised in Chapter 5 to account for the phase-transformation. The assumption

of continuous solid solubility is valid for a material such as LiXMn1.5Ni0.42Fe0.08O4, which is

shown in Chapter 4 to be single-phase and has an open-circuit voltage with a shape similar

to that of LiXMn2O4.

While the present model is strictly valid for single-phase materials, similar models us-

58



ing experimentally-determined open-circuit voltage profiles have been suggested as approx-

imate methods for phase-transforming electrodes [84, 85]. In this chapter, the possibil-

ity of using such a method for electrochemical shock modeling of phase-transforming ion-

intercalation materials is critically examined. By comparing the results obtained for single-

phase “LiXMn2O4-like” material to experimental observations in LiXMn2O4, the validity of

this approximate method may be assessed.

Figure 2-5: (a) Open circuit voltage of LiXMn2O4 as given in Ref [92] for 0.2 ≤ X ≤
0.995. (b) Composition-dependent chemical diffusivity of “LiXMn2O4-like” material with
D0 = 6 × 10−9 cm2/s and θ̂ = 4.57 plotted according to Equation 2.5. This matches the
qualitative behavior seen in experimental data for LiXMn2O4.

For the “LiXMn2O4-like” material, there is a close correspondence between features in

the open-circuit voltage and features in the chemical diffusivity. Figure 2-5(b) shows the

composition-dependent chemical diffusivity determined from Equation 2.5. The composition-

dependent chemical diffusivity D̃(X) is quantified assuming a constant characteristic diffu-

sivity D0 = 6×10−9 cm2/s and a chemomechanical coupling factor θ̂ = 4.57. At compositions

where the open circuit voltage changes sharply, e.g. X ≈ 0.6, the chemical diffusivity spikes;
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conversely, at compositions where the open circuit voltage is plateau-like, the chemical dif-

fusivity is low. This chemical diffusivity D̃(X) is in good agreement with the shape of the

experimentally measured chemical diffusivity [91].

The close correspondence between the open-circuit-voltage and the chemical diffusivity

can be rationalized in terms of chemical driving forces. When the open-circuit voltage curve

is flat, a large composition change is necessary to induce an appreciable change in the chem-

ical potential. Conversely, when the open-circuit voltage curve is rapidly varying, a small

composition change induces a large change in chemical potential. Since the diffusion poten-

tial (a generalized chemical potential), Φ, is the true driving force for diffusion, but we wish

to describe diffusion in terms of composition, the composition-dependent chemical diffusivity

provides the link between the driving force and the composition field. Note that the two

end-member compositions surrounding the two-phase region have nearly equal diffusivities:
D̃(0.5)
D̃(0.25) = 1.05.
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Figure 2-6: Enhancement of the chemical diffusivity D̃(X)
D0

for the “LiXMn2O4-like” mate-
rial. The total enhancement is shown as the blue solid curve, and this is decomposed into
contributions from chemomechanical-coupling and open-circuit voltage effects.

The open-circuit voltage term modulates the composition-dependent chemical diffusivity

by an order of magnitude. The chemomechanical and open-circuit voltage contributions to

the composition-dependent diffusivity shown in Figure 2-5(b) can be decomposed by taking
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the limits that θ̂ → 0 and ∂V (X)
∂X

→ 0, as shown in Figure 2-6. The two contributions sum

to the total chemical diffusivity. The composition-averaged diffusivity enhancement over the

range on which electrochemical cycling is modeled, 0.2 ≤ X ≤ 0.995 is 3.43, and is shown as

the dashed horizontal line in Figure 2-6.

2.4 Composition Profiles

The composition profiles X(r, t) are strongly and clearly affected by the shape of the chemical

diffusivity D̃(X). Figure 2-7 shows the time evolution of the composition at three different

radial positions during the 5C charge of Nernstian particles with no chemomechanical cou-

pling (θ̂ = 0) and with chemomechanical coupling equal to that in LiXMn2O4 (θ̂ = 4.57).

In both cases, the composition monotonically decreases at all radial positions, as expected

for deintercalation. To illustrate the effect of the composition-dependent diffusivity on the

composition gradient in a particle, Figure 2-8(b) shows the composition difference between

the particle surface and center ∆X(t) ≡ X(r = 0, t) − X(r = rmax, t) as a function of time

during the constant current charge. The composition drop ∆X(t) scales with the average

composition gradient in the particle. At all times, the composition drop is positive, as the

surface composition is always lower (less lithium content) than the bulk of the particle. In

the particle with no chemomechanical coupling, the composition difference across the particle

monotonically increases, with a rapid initial incease and an asymptotic approach to a steady-

state value. In the particle with chemomechanical coupling, there is a similar transient, but

with a local maximum. The maximum occurs because of the increasing diffusivity which is

obtained by a small amount of deintercalation, which helps to smooth out the composition

gradient.

Figure 2-8 shows the same composition plots for the “LiXMn2O4-like” material, also

for a 23 µm particle subjected to a 5C constant current charge. The double-well shape of
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the chemical diffusivity D̃(X) clearly affects the time-dependent composition drop through

the particle ∆X(t). During the electrochemical charge cycle, the composition drop initially

increases, then decreases to nearly zero at t ≈ 250 s, and finally increases again to a maxi-

mum. The decrease in the composition drop at intermediate times happens when the volume

averaged composition is X̄ ≈ 0.6, where the chemical diffusivity D̃(X) is locally maximized.
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Figure 2-7: Composition, X(r, t), at three different radial depths and Composition drop
∆X(t)—the difference in composition between the particle center and particle surface—
for Nernstian materials with (left) no chemomechanical coupling θ̂ = 0 and (right) finite
chemomechanical coupling θ̂ = 4.57. The composition difference ∆X(t) scales with the
average composition gradient in the particle. Both cases are quantified for a 23 µm particle
charged at a 5C rate, corresponding to a dimensionless current of Î = 0.5.

2.5 Stress Profiles

The spatially inhomogeneous composition profiles give rise to diffusion-induced stresses in

these particles. Figure 2-9 shows the spatial distribution of the tangential and radial stress

profiles in Nernstian particles with no chemomechanical coupling (θ̂ = 0) charged at C-Rates

of 1C, 2.5C and 5C, which correspond to dimensionless currents of Î = 0.1, 0.25, and 0.5,
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Figure 2-8: Composition, X(r, t), at three different radial depths and composition drop
∆X(t) for a 23 µm “LiXMn2O4-like” particle subject to a 5C constant current charge, cor-
responding to a dimensionless current of Î = 0.5.

respectively. Each snapshot is taken at the time corresponding to the maximum stress-

intensity factor for that C-Rate. The spatial profiles are qualitatively identical for all three

cases of solution thermodynamics and at all C-Rates; the time-dependence and magnitudes

of the stresses are quantitatively different among the three cases. In all three cases, the

magnitude of the stresses scale with the dimensionless current. Radial stresses are zero a

particle surface, as required by the traction-free boundary condition; at particle center, there

is hydrostatic compression, with σr = σh. As expected for de-intercalation of a material with

a positive partial molar volume of lithium, the surface tangential stress is tensile (positive),

while the tangential stress at the particle center is compressive. The spatial profile would be

reversed for discharge or if the partial molar volume was negative.

Figure 2-10 shows the time evolution of the tangential stress profile at five different radial

positions during the 5C charge for particles with no chemomechanical coupling (θ̂ = 0) and

63



0 5 10 15 20
−600

−400

−200

0
Ra

di
al

 S
tr

es
s 

(M
Pa

)

Position (µm)

5C

2.5C 

1C

0 5 10 15 20
-500

0

500

Ta
ng

en
tia

l S
tr

es
s 

(M
Pa

)

Position (µm)

250

-250

5C

2.5C 

1C

Figure 2-9: Radial and tangential (hoop) components of the elastic stress distributions
distributions at the time of maximum dimensionless stress-intensity factor K̂I for 23 µm par-
ticles with Nernstian potential with no chemomechanical coupling θ̂ = 0, charged at C-Rates
of 1C, 2.5C, and 5C, corresponding to at dimensionless currents of Î = 0.1, 0.25, and 0.5.
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with chemomechanical coupling equal to that in LiXMn2O4 (θ̂ = 4.57). The time evolution

of these stress profiles closely mirrors the behavior observed in the composition profiles.

At the same particle size and C-Rate, the hoop stresses are more severe in the particle

with no chemomechanical coupling; the chemomechanical coupling effectively increases the

diffusivity, which allows the system to resist the large stresses induced by severe composition

gradients.

As the elastic stress distributions are determined by the composition profile, these quan-

tities have the same qualitative time dependence as the composition drop ∆X(t). In the

Nernstian particle without chemomechanical coupling, the hoop stress profiles rise and reach

steady state values. In the chemomechanically coupled particle, there is a non-monotonic

behavior associated with the shape of the composition-dependent chemical diffusivity. There

is initially a rise, but as the composition is changed, the diffusivity is increasing, and these

two factors trade off, giving rise to a local extrema in the stresses. Figure 2-11 shows the

hoop stress profiles for the “LiXMn2O4-like” material, which are clearly affected by the

double-well shape of the chemical diffusivity. The hoop stress profiles show the same key

temporal features noted in the composition drop: the stresses reach local extrema early in

the charge cycle, decrease to nearly zero at intermediate time when the particle composition

homogenizes, then increase again to global extrema in the latter part of the charge cycle.

2.6 Stress-Intensity Factor Profiles

Figure 2-12 shows the instantaneous stress-intensity factor–flaw size curves for the

23 µm Nernstian particles with no chemomechanical coupling, charged at C-Rates of 1C,

2.5C, and 5C. These are computed from the tangential stress distributions shown in Fig-

ure 2-9, and these are snapshots at the time of maximum stress-intensity factor for the

respective simulations. The magnitude of the stress-intensity factor scales with electrochem-
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Figure 2-10: Hoop stress distributions σθ(r, t) for Nernstian particles with (a) no chemo-
mechanical coupling θ̂ = 0 and (b) finite chemomechanical coupling θ̂ = 4.57. Both cases
are quantified for 23 µm particles charged at a 5C rate, corresponding to a dimensionless
current of Î = 0.5.
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Figure 2-11: Hoop stress σθ(r, t) for the “LiXMn2O4-like” material, plotted against time
at five different radial positions for a 23 µm particle during a 5C charge, corresponding to a
dimensionless current of Î = 0.5.
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ical cycling rate. The stress-intensity factor is decreased when chemomechanical coupling

is present. These stress-intensity factor–flaw size curves have the same qualitative shape

for all three solution thermodynamic cases, and at all times in each of those cases; the

time-dependence and magnitudes are different in all three cases.
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Figure 2-12: Stress-intensity factor KI,max as a function of flaw size a for 23 µm Nernstian
particles with no chemomechanical coupling (θ̂ = 0), charged at C-Rates of 1C, 2.5C, and
5C, which correspond to dimensionless currents of Î = 0.1, 0.5, and 1, respectively. At each
C-Rate, the stress-intensity factor increases rapidly for small flaws, but quickly reaches a
maximum and decreases, becoming negative for very large flaws. The dashed horizontal line
represents a plausible value of fracture toughness, KIc = 1 MPa·m1/2.

Figure 2-13 shows the time and flaw-size dependent stress-intensity factor profiles for the

two Nerstian particles charged at 5C rate, visualized as contour maps. The overall mag-

nitudes of the stress-intensities are greater without chemomechanical coupling. The time

dependence of the stress-intensity factor profiles matches that observed in the composition

drops ∆X(t) and the hoop stresses σθ(r, t). For Nernstian particles with no chemomechani-

cal coupling, the stress-intensity factor increases monotonically at a fixed flaw size. For the

Nernstian particle with chemomechanical coupling, there is non-monotonic behavior match-

ing the time-dependence of the tangential stress profile. Figure 2-14 shows the dynamics
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stress-intensity factor profile for the “LiXMn2O4-like” case, where the double-peaked time-

dependence mirrors the behavior oberved in the composition drop and hoop stress profiles

for this case. In all three solution thermodynamic cases, the instantaneous stress-intensity

factor–flaw size curves have the same shape as those shown in Figure 2-12, but the magni-

tudes are time-dependent.
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Figure 2-13: Contour maps of the stress-intensity factor as a function of crack length
and time, KI(a, t), for 23 µm Nernstian particles with (a) no chemomechanical coupling
parameter, θ̂ = 0 and (b) with finite chemomechanical coupling θ̂ = 4.57. The instantaneous
stress-intensity factor–flaw size curves all have the shape shown in Figure 2-12, increasingl
rapidly for small flaws, but quickly reaches a maximum. These calculations are for 5C
galvanostatic charges, corresponding to a dimensionless current of Î = 0.5.

In each solution thermodynamic case, the time-varying stress-intensity factor distribu-

tions KI(a, t) have unique global maxima. These maxima place a lower bound on the com-

binations of particle size and C-Rate that can cause fracture. As an illustrative example,

consider the Nernstian particle with no chemomechanical coupling. The curves in Figure 2-

12, are instantaneous snapshots at the time of maximum stress-intensity factor for charging

of a 23 µm particle at C-Rates of 5C (red), 2.5C (green), and 1C (blue) For the sake of a

concrete discussion, assume that the fracture toughness is KIc = 1 MPa m1/2, a reasonable
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Figure 2-14: Contour plot of the stress-intensity factor as a function of crack length and
time, K(a, t), for a 23 µm “LiXMn2O4-like” particle charged at a 5C rate, corresponding to
a dimensionless current of Î = 0.5.

value for a brittle oxide material, which is illustrated by the dashed horizontal line in Fig-

ure 2-12. For the charges at 1C and 2.5C, there are no flaw sizes at which the stress-intensity

factor exceeds the fracture toughness. For these conditions of particle size and C-Rate, it is

not favorable for pre-existing cracks to grow. On the other hand, for the 5C charge, there

is a range of flaw sizes over which the stress-intensity factor exceeds the fracture toughness;

under this condition, fracture is possible.

Generalizing from this particular example, fracture only occurs if the maximum stress-

intensity factor for a given particle size and C-Rate exceeds the material’s inherent fracture

toughness. Fracture will not occur if the maximum stress-intensity factor—maximized over

time and flaw size—for a particular particle size and C-Rate does not exceed the fracture

toughness.
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2.7 Electrochemical Shock Maps

The fracture mechanics criterion for electrochemical shock is applied across a wide range of

particle sizes and C-Rates using the dimensionless current and dimensionless stress-intensity

factor. Figure 2-15 summarizes the maximum dimensionless stress-intensity factor, K̂I,max

observed over a range of dimensionless currents, Î, for all three solution thermodynamic

cases: a material with a Nernstian potential and no chemomechanical coupling θ̂ = 0, a

material with a Nernstian potential and finite chemomechanical coupling θ̂ = 4.57, and a

“LiXMn2O4-like” material with the open-circuit voltage of LiXMn2O4 and chemomechan-

ical coupling θ̂ = 4.57. In each case, the maximum dimensionless stress-intensity factor

initially increases with dimensionless current across several orders of magnitude. For the

Nernstian particles, sufficiently high current densities were investigated to observe a de-

creasing maximum dimensionless stress-intensity factor at very high dimensionless currents.

The increase is easily understood as an overall increase of the diffusion-induced tangential

stress as the current increases. The decrease can be explained as a “skin" effect: while the

nominal maximum stresses may be large, the tensile stress field rapidly decays through a

thin region near the particle surface. Therefore, only the smallest flaws—those with their

crack-tip in the vicinity of the surface—are affected and the maximum stress-intensity factor

is diminished. The decrease is expected also for the “LiXMn2O4-like” particles, but was not

observed in the range of parameter space presently explored. Interestingly, the chemome-

chanical coupling effect has a larger quantitative effect than including a measured, non-ideal

open-circuit voltage, even though the open-circuit voltage appears to have a stronger effect

on the composition-dependent chemical diffusivity.

Figure 2-16 shows the critical combinations of particle size and C-Rate that can cause

fracture during galvanostatic charging. This figure—which we call an electrochemical shock

map—gives a simple picture of fracture-safe and fracture likely conditions. This figure is
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quantified for the Nernstian particle with chemomechanical coupling (the second solution

thermodynamic case). As proxies for the unknown fracture toughness of LiMn2O4, we

plot four values of fracture toughness representative of brittle materials: 0.1, 1, 3, and 5

MPa·m1/2. For comparison, the fracture toughness of soda-lime-silicate glass is ∼1 MPa·m1/2,

the single crystal fracture toughness of magnesium aluminate spinel, MgAl2O4, is 1.2 – 1.9

MPa·m1/2 [93], and the fracture toughness of single-crystal sapphire (α-Al2O3) is 2.4 – 4.5

MPa·m1/2 [94]. The range of values for MgAl2O4 and α-Al2O3 is due to the crystallographic

anisotropy of the single crystal fracture toughness in these materials. We anticipate that the

fracture toughness of LiMn2O4 is within this range of values. Combinations of particle size

and C-Rate lying below (and to the left of) the curve for the fracture toughness of LiMn2O4

will not induce fracture; conditions lying above (and to the right of) the curve may cause

fracture, depending on the pre-existing flaw size.

The example case of a 23 µm particle charged at a 5C rate is indicated on the electro-

chemical shock map (Figure 2-16) as an orange point. The position of the star shows that

this particle is subject to fracture if the fracture toughness is (a) 0.1 or (b) 1 MPa·m1/2 but

will not fracture if the fracture toughness is (c) 3, or (d) 5 MPa·m1/2. The general trend

of decreasing critical C-Rate with increasing particle size matches our intuition that large

particles subjected to fast charges are most readily damaged.

2.8 Validity of Approximation for Phase-Transforming

Materials

Models using a composition-dependent chemical diffusivity, have been suggested as approxi-

mate methods for modeling phase-transforming ion-intercalation electrode materials. These

models are very similar to the “LiXMn2O4-like” case considered in this chapter. Therefore,

it is interesting to compare the predictions of the “LiXMn2O4-like” case to experimental
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Figure 2-15: The maximum dimensionless stress-intensity factor K̂I increases with dimen-
sionless current Î for small to moderate values of Î, but decreases somewhat at very large
values of Î. The turnover is attributed to a skin effect, where only shallow surface flaws are
subjected to tensile diffusion-induced stresses. The red points represent computation results
and the dashed black curve indicates a cubic spline interpolating function.

observations to assess whether such a model may be applied as a reasonable approximation

for a phase-transforming ion-intercalation material.

Experimental observations presented Chapter 4 show that LiXMn2O4 particles with

sizes ∼ 2 − 5 µm are subject to low C-Rate (C/50) electrochemical shock, which is at-

tributed to two-phase coherency stresses. These experimental observations are supported

by finite element analysis of two-phase LiXMn2O4 particles, which are performed in the

static (zero C-Rate) limit. Any approximate kinetic model for electrochemical shock in a

phase-transforming ion-intercalation material must capture this essential behavior.

The “LiXMn2O4-like” case considered in this chapter does not meet this essential crite-

rion, as the particle size for electrochemical at a C/50 rate is nearly 100 µm. Thus, this ap-

proximate method for treating solid-phase diffusion in phase-transforming electrodes does not

give an accurate accounting of the mechanical response of individual particles. Therefore, the

results for the composition, elastic stress, and stress-intensity factor distributions should be
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Figure 2-16: Electrochemical shock map for galvanostatic charging of a Nernstian particle
with chemomechanical coupling θ̂ = 4.57, plotted on logarithmic axes. Curves represent
the onset of fracture for five representative values of the fracture toughness, KIc, of brittle
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curve representing each value of fracture toughness, fracture is possible. The orange point
near the 1 MPa·m1/2 line represents the example case of a 23 µm particle charged at a 5C
rate.
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treated as valid only for materials that form continuous solid-solutions with respect to lithium

composition. An accurate description of the mechanical response of phase-transforming elec-

trode particles during electrochemical cycling must explicitly treat the phase transformation.

The present model for electrochemical cycling is revised and generalized in Chapter 5 to in-

corporate phase-transformations in ion-intercalation materials, including and especially real

LiXMn2O4.

Principally, this model fails to accurately capture the two-phase coherency stresses be-

cause it does not produces phase-separation at low current densities. The composition inside

of particles at is plotted against dimensionless radius at different times is shown for two dif-

ferent dimensionless currents in Figure 2-17. The left figure (a) shows a low dimensionless

current Î = 0.01 and the right figure (b) shows a high dimensionless current Î = 1. In the

low dimensionless current case, the composition is nearly uniform throughout the particle,

showing no evidence of a phase-separating behavior when the average composition is in the

two-phase region 0.5 ≥ X ≥ 0.25. In the high dimensionless current case, there is something

approximating a diffuse interface between a lithium-rich phase and a lithium-poor phase.

However, the interface never becomes highly localized because there is no concentration

gradient penalty. For conventional electrochemical modeling, the average and surface com-

positions must be accurately determined to match experimental observations. As described

in this chapter, the stress distributions which drive electrochemical shock are sensitive to the

whole composition profile.

2.9 Discussion

In summary, we have derived a fracture model to predict electrochemical shock using par-

ticle size and C-Rate as inputs. We used a theoretical framework to model electrochemical

cycling of non-ideal, chemomechanically coupled materials, and applied this model to pre-
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Figure 2-17: Comparison of the composition distribution inside of individual particles as
a function of time for two different charging rates (dimensionless currents) (a) Î = 0.01 and
(b) Î = 1.

dict coupled composition and stress profiles for individual spherical particles. Then, we use

our fracture mechanics model to calculate the corresponding stress-intensity factor - flaw

size relationships. The fracture mechanics model is general enough to be integrated with

any model for diffusion-induced stress, including those of Garcìa et al. [61], Christensen

and Newman [48, 47], or Cheng and Verbrugge [62, 49]. This integration would provide a

fracture mechanics failure criterion for those stress models and could be used to extend the

applicability of our model to include non-ideal solution thermodynamics, nonlinear partial

molar volume, and phase transformations.

This fracture mechanics model could also be integrated into a porous electrode model

to predict mechanical damage accumulation in composite battery electrodes. The C-Rate

in Figure 2-16 refers to the local single particle C-Rate, not the homogenized macroscopic

C-Rate describing a composite electrode. In a composite electrode, there may be spatial

inhomogeneities in the current density, especially in the thickness direction. If we have

a model for the current distribution of a porous composite electrode, this fracture model

can be applied to predict fracture of individual active particles composing that electrode.
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Integration of this model with a conventional porous electrode theory would mirror the

approach of Christensen [65] and Renganathan [64].

While we have not incorporated the statistical nature of flaw size distributions, it will

significantly impact the mechanical reliability of real electrode materials. Our model assumes

the existence of a single largest pre-existing flaw in a given particle. Theories of reliability

statistics in brittle materials assume that the probability of finding a “large” flaw scales

rapidly with the volume of material. A model for the flaw distribution could be used when

extending this model to real composite electrodes containing many individual active particles.

Statistical approach to electrochemical shock from C-Rate-independent mechanisms given in

Chapter 6, and model could be extended to include concentration-gradient effects.

2.10 Conclusions

Fracture mechanics predicts a critical C-Rate for fracture during galvanostatic charging,

which decreases with increasing particle size. We show the critical combinations of C-

Rate and particle size for the model system LixMn2O4 on an electrochemical shock map,

which shows the division between fracture-safe and fracture-likely conditions. Electrochem-

ical shock maps can be used as a material selection tool; as one simple example, a designer

given a required C-Rate could identify mechanically durable electrode active materials and

particle sizes on the map.

The highly non-uniform tangential stress profiles caused by galvanostatic charging pro-

duces a maximum stress-intensity factor for a given combination of C-Rate and particle size.

In cases where the maximum stress-intensity factor is less than the fracture toughness of the

material, fracture will not occur. In cases where the maximum stress-intensity factor exceeds

the fracture toughness of the material, pre-existing cracks can grow.

The solution thermodynamics of ion-intercalation materials affect the magnitude of the
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elastic stresses and stress-intensity factors developed in particles, and also qualitatively

change the time-dependence of the stress and stress-intensity factor profiles. However, re-

gardless of the solution thermodynamics, single phase ion-intercalation materials develop

concentration-gradient stresses in proportion to the applied C-Rate, and are sensitive to C-

Rate-dependent electrochemical shock. For phase-transforming ion-intercalation materials,

an approximate model using a composition-dependent chemical diffusivity that incorporates

the observed open-circuit voltage does not accurately describe electrochemical shock.

The dependence of stress-intensity factor on both particle size and galvanostatic charge

rate suggests that electrochemical shock can be avoided by tailoring the microstructure and

charging profiles of intercalation electrodes to minimize the diffusion-induced stress-intensity

factor.
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Chapter 3

Anisotropy-Driven Grain Boundary

Microfracture

Most models of electrochemical-mechanical coupling—including the analysis in Chapter 2—

assume isotropic shape change with lithium composition, an isotropic and homogeneous

particle microstructure, and isotropic linear elastic response. These assumptions are use-

ful to identify important scalings, but rarely do real battery materials fit this idealized

description. As the data collected in Tables 1.1 & 1.2 demonstrate, the Vegard coefficients

accompanying (de)intercalation are often anisotropic, and may result in whole or in part from

first-order phase-transformations. Moreover, depending on their synthesis, active particles

can be single- or poly-crystalline. [95]

Experimentally, there have been numerous observations of electrochemical shock in

polycrystalline particles of several different active materials, including Li1+XMn2O4,[96]

LiXNi0.8Co0.15Al0.05O2 (NCA), [29] and LiXNiO2; [97] all of these materials have anisotropic

Vegard coefficients. In fact, as the data collected in Table 1.1 demonstrate, almost all

technologically important Li-storage compounds have anisotropic Vegard coefficients. Li-

storage compounds with ordered rocksalt, olivine, and tavorite structures all show signifi-

79



cant anisotropy. The exceptions are the cubic spinels, most notably Li4+XTi5O12 which has

negligible dimensional change with varying Li composition. However, even the manganese

oxide spinel LiXMn2O4 undergoes an anisotropic cubic to tetragonal phase-transformation

upon lithium insertion along the 3 V plateau (1 ≤ X ≤ 2). To understand and mitigate

electrochemical shock in real battery electrodes, anisotropic Vegard coefficients must be con-

sidered.

The analogy between thermal shock and electrochemical shock provides useful expec-

tations about electrochemical shock in anisotropic, polycrystalline materials. In thermal

shock, anisotropic materials such as Fe2TiO5 undergo extensive microfracture [98, 99] at

grain boundaries and junctions. Large stresses are generated at these microstructural fea-

tures due to the incompatible shape changes in neighboring, crystallographically misoriented

grains. However, thermal shock microfracture can be suppressed by careful control of the

microstructure. Microfracture does not occur when all grains are smaller than a material-

specific critical grain size; this critical grain size does not depend on the cooling rate. Above

the critical grain size, thermal shock microfracture occurs when the material is subjected to

a sufficiently large temperature change to drive crack growth.

Observations of electrochemical shock in Li-battery electrodes are consistent with this

understanding of thermal shock microfracture: for example, the observations made by Itou, et

al. who studied polycrystalline NCA particles with initial primary crystallite size of ∼0.5-

1 µm and secondary particle size ∼8-10 µm. [29] These particles showed extensive fracture,

concentrated at the grain boundaries, when cycled in 18650 cells against graphite negative

electrodes. The full cell impedance growth up to 800 cycles was almost entirely due to

impedance growth at the positive electrode, which in turn, was strongly correlated with the

extent of fracture in the NCA particles. By limiting the state-of-charge change swing at the

positive electrode, fracture and subsequent impedance growth was suppressed. This final

observation suggests that there is a critical state-of-charge swing—analogous to the critical
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temperature drop in thermal shock—for electrochemical shock microfracture.

The consonance between observations of electrochemical shock microfracture and ther-

mal shock microfracture leads to the hypothessis that anisotropic Vegard coefficients cause

the experimentally observed mechanical degradation of polycrystalline Li-storage materials.

Further, the analogy implies that the existence of a critical primary crystallite size, below

which electrochemical shock microfracture does not occur; this critical primary crystallite

size should be independent of the electrochemical cycling rate (C-Rate), but should depend

on the state-of-charge through which the active material is cycled.

The objective of this chapter is to demonstrate C-Rate independent electrochemical shock

analogous to thermal shock microcracking with in operando acoustic emission experiments

and micromechanical models, using LiXCoO2 as a model system. These results provide new

microstructure design criteria and materials selection criteria for mechanically robust battery

electrode materials.

This chapter is organized as follows. First, we revise and apply a micromechanical model

originally due to Clarke, [100] which incorporates anisotropic Vegard coefficients, polycrys-

talline microstructures, and allows for first-order phase-transformations, thereby relaxing

many of the assumptions made in the analysis of C-Rate-dependent electrochemical shock in

isotropic spherical particles of Chapter 2. The analytical model is validated by comparison

to finite element calculations of the elastic stress distributions and the strain-energy-release

rate. Next, the results of in operando acoustic emission experiments performed with model

electrodes of monolithic sintered LiXCoO2 are presented; these experimental results con-

firm C-Rate independent electrochemical shock during the first electrochemical cycle. Fi-

nally, the analytical microfracture model is applied to additional Li-storage compounds with

anisotropic Vegard coefficients, explaining several observations of fracture in polycrystalline

electrode particles.

First-order phase-transformations with misfit strains, such as in LiXCoO2, require a
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separate analysis of fracture at the single crystallite level due to two-phase coherency stresses;

this problem is studied in Chapter 4 and the analysis of LiXCoO2 is given in Section 4.2.2.

An important conclusion from the analysis of LiXCoO2 is that two-phase coherency stresses

will not drive fracture of two-phase LiXCoO2 crystallites smaller than ∼8 µm.

3.1 Grain Boundary Microfracture in Polycrystalline

Ensembles

In thermal shock, it is well known that polycrystalline materials with anisotropic thermal

expansion coefficients and/or phase-transformations with anisotropic transformation strains

suffer from thermal shock microfracture. Numerous experimental and theoretical studies

have addressed this problem, and there is consensus that microfracture can be suppressed

by processing the material in a manner that keeps all grain sizes below a material-specific

critical grain size. [101, 102, 103, 100, 104, 105, 98, 106, 107, 108] Here, we revise and apply

a model originally due to Clarke to describe electrochemical shock microfracture resulting

from anisotropic Vegard strains in polycrystalline Li-storage materials. [100]

While Clarke’s model is described in detail in the original publication, we summarize here

the essential features of this two-dimensional model. The central entity is an ensemble of

four grains in which each grain undergoes an anisotropic stress-free transformation strain as

depicted in Figure 3-1. The ensemble is embedded in an infinite isotropic linear elastic matrix.

The four-grain ensemble is chosen because it captures the essential physics of collective,

misaligned anisotropic shape changes in neighboring grains in a polycrystalline sample, and

can be solved analytically. Each grain is square with an edge length l, and there is a pre-

existing crack centered at the quadruple junction with an initial length 2a. The four grains

are mutually oriented in a worst-case configuration, so that the transformation strains are

most damaging to the pre-existing crack.
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2a

l

l
Figure 3-1: Four-grain ensemble used for grain boundary microfracture model. The arrows
in each grain indicate the principal axes of the crystallographically anisotropic Vegard strain.
Grain edges have length l and the pre-existing crack at the quadruple junction has length
2a. The four-grain ensemble is embedded in an infinite isotropic linear elastic matrix.

The quantity of interest is the critical grain size, below which it is not favorable for the

pre-existing crack to grow, irrespective of its initial size. This problem is formulated in the

framework of linear-elastic fracture mechanics, [87] using the stress-intensity factor KI as a

measure of the crack growth driving force. When the stress-intensity factor for all flaw sizes

is below the fracture toughness KIC, no pre-existing cracks can grow. We estimate the critical

grain size at which fracture becomes possible by computing the stress-intensity factor as a

function of flaw size and finding the grain size at which the maximum stress-intensity factor

is equal to the fracture toughness. To complete this fracture mechanics analysis, we first

calculate the elastic stress distribution σnn(x) acting across the horizontal grain boundary.

Then, the stress-intensity factor as a function of flaw size is calculated using a standard

superposition integral.
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(3.1)KI = 1√
πa

∫ a

−a
σnn(x)

√
a + x

a − x
dx

To calculate the stress distribution in the crack-free four-grain ensemble, the problem is

treated by the method of Eshelby [109] with a series of virtual cutting and welding opera-

tions. The following steps are taken to calculate the stress distribution: first, the four-grain

ensemble is cut from the surrounding matrix and allowed to undergo the stress-free trans-

formation strain; then, stresses are applied to the ensemble grains to restore them to their

original shape; finally, the ensemble is re-inserted to the matrix and matrix-relaxation forces

are applied at the boundary to ensure continuity of the stresses. The matrix relaxation forces

are calculated using as a Green’s function the stress field due to a point load acting at the

surface of a semi-infinite isotropic half space; these expressions are given in Timoshenko and

Goodier [86] and are repeated here as Equations 3.2–3.4.

σxx(x, y) = P cos θ

4πr

[
(1 − ν) − 2(1 + ν) sin2 θ

]
(3.2)

σyy(x, y) = P cos θ

4πr

[
−(3 + ν) + 2(1 + ν) sin2 θ

]
(3.3)

σxy(x, y) = −P sin θ

4πr

[
(1 − ν) + 2(1 + ν) cos2 θ

]
(3.4)

The anisotropic transformation strain is decomposed into shear (ϵS) and volumetric (ϵV )

components, which are treated separately and then superposed to give the full stress distri-

bution. To reduce the full three dimensional transformation strain to the two dimensional

model we take the two dimensional volumetric strain ϵV equal to one half the three dimen-

sional volume change and the two-dimensional shear strain ϵS equal to one half the difference

between the maximum and minimum linear strains. The resulting stress distribution acting

across the horizontal grain boundaries is given as

(3.5)σnn = E

4π

(
ϵS

1 + ν
gS(x) + ϵV

1 − ν
gV (x)

)
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where gS(x) and gV (x) are dimensionless functions that describe the shape of the stress

distributions due to the shear and volumetric components of the transformation strain. The

parameter x is the distance from the quadruple junction, traversed along the horizontal

grain boundary. However, the printed expression for the dimensionless function gS(x) in

Clarke’s original paper lacks the requisite symmetry under x → −x. We have re-derived

the dimensionless function gS(x), and the resulting expression is given in Equation ??. An

important check of the correctness of our expression for gS(x) is that the present expression

is symmetric for x → −x as required by the symmetry of the four-grain ensemble. The

volumetric strain contribution to the total elastic stress distribution is described by the

dimensionless function gV (x), which we find to be identical to the original expression; this

is given in Equation 3.7. These functions gS(x) and gV (x) are plotted for Poisson’s ratios

of ν = 0, 0.25, and 0.5 in Figures 3-3 and 3-2. The dilatational component gV (x) provides

a compressive, stabilizing stress for a positive dilatational strain ϵV and a tensile stress for

a negative dilatational strain. The magnitude of the dilatational component decreases with

increasing Poisson’s ratio. The shear component gS(x) is heterogeneous, with singularities

as x → 0 and x → l. As the shear component ϵS is defined to be non-negative, the four-

grain ensemble always expriences a singular tensile stress at the quadruple junction. This

singular tensile stress distribution provides the driving force for fracture. Near the edge of

the ensemble, there is a compensating singularity in the compressive direction.

(3.6)

gS(x) =(1 − ν)
[
ln(l2 + (l − x)2) − 2 ln(x2 + l2)

+ ln(l2 + (l + x)2) + 4 ln|x|−2 ln|x − l|−2 ln|x + l|
]

2(1 + ν)
[

2l2

l2 + (l − x)2 − 4l2

l2 + x2 + 2l2

l2 + (l + x)2

]
+

(3 + ν)
[
2 ln(l2 + x2) − 2 ln(x2) − ln(l2 + (l − x)2)

− ln(l2 + (l + x)2) + ln((l − x)2) + ln((l + x)2)
]
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(3.7)
gV (x) =4ν

[
arctan

(
l

l + x

)
+ arctan

(
l

l − x

)]

− 4π + 4
[
arctan

(
l + x

l

)
+ arctan

(
l − x

l

)]

We now provide quantitative estimates of the state-of-charge dependent critical primary

crystallite size for grain boundary microfracture in our selected model system of polycrys-

talline LiXCoO2. To isolate the effect of collective, misaligned anisotropic shape changes in

neighboring grains, we choose several single-phase compositions X = 0.93, 0.74, and 0.50

for analysis. We use composition-dependent anisotropic Vegard coefficients determined from

state-of-charge dependent lattice parameter data, [7] and assume that the polycrystal is ini-

tially stress-free in the fully lithiated (discharged) state, i.e. X = 1. The two-dimensional

shear and volumetric strains for partially delithiated states are calculated with reference to

the fully lithiated state. The two-dimensional volumetric ϵV and shear ϵV strains so defined

are given for each composition in Table 3.1 At each selected state-of-charge, we compute the

elastic stress distribution and the resulting stress-intensity factor–flaw size relationship. We

then use the maximum stress-intensity factor to estimate the critical primary crystallite size

below which the crack will not grow irrespective of its initial size.

To model LiXCoO2, we use isotropic linear elastic properties E = 174 GPa and ν = 0.3,

as determined from nanoindentation measurements [79]. These elastic properties are in good

agreement with the bulk modulus B = 149 GPa measured by high pressure x-ray diffraction

experiments [110] and corroborated by density functional theory calculations. We antici-

pate that the elastic properties of LiCoO2 are anisotropic, but our previous experimental

measurements [79] show that the only available elastic tensor data for LiCoO2 [111] greatly

overestimates the average elastic stiffness. We use a plane strain fracture toughness KIC = 1

MPa·m1/2 which is intermediate between the median and mean fracture toughness measured

in individual grains of dense polycrystalline LiCoO2. [79]

The critical primary crystallite size estimates are performed in terms of the the dimen-
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sionless stress-intensity factor, as outlined in Section 1.4. Here, the two-dimensional shear

strain for a composition X = 0.50 is used as the characteristic strain for all compositions

and the dimenionless-stress intensity factor is defined as

(3.8)K̂ = K

EϵS

√
l

For each composition, the dimensionless-stress intensity factor has a unique maximum Kmax,

which defines the critical primary crystallite size, below which fracture is not favorable

(3.9)lcrit =
(

KIc

K̂maxEϵS

)2

Figure 3-4 shows the normal stress distribution along the horizontal grain boundary,

computed for LiXCoO2 with compositions X = 0.93, 0.74, and 0.50. The severity of the

elastic stress distribution grows as the lithium composition decreases (this corresponds to

increasing state-of-charge). Figure 3-5 shows the dimenionless stress-intensity factor–flaw

size curves corresponding to the same compositions. Each curve has a unique maximum

value, which increases as the lithium composition decreases.
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Figure 3-4: Analytical stress distributions for LiXCoO2 for X = 0.93, 0.74, 0.50.
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Figure 3-5: Dimensionless stress-intensity factors for LiXCoO2 for X = 0.93, 0.74, 0.50.

The critical primary crystallite sizes resulting from this analysis are given for the se-

lected states-of-charge in Table 3.1; we have also listed the corresponding two-dimensional

shear (ϵS) and volumetric (ϵV ) strains, and the maximum dimensionless stress-intensity fac-

tor K̂max for each state-of-charge. As the LiXCoO2 polycrystal is initially delithiated, the

shape change of individual grains is small and the critical primary crystallite size is large,

844 µm. After half of the lithium is removed, i.e. X = 0.50 (the conventional limit for

cycling of LiCoO2), the critical primary crystallite size is orders of magnitude smaller, now

only 0.42 µm. Thus, to avoid grain boundary microfracture when cycling over the compo-

sition range 0.50 ≤ X ≤ 1, polycrystalline LiCoO2 particles should have primary crystallite

size less than 0.42 µm. For narrower state-of-charge windows, larger primary crystallites

can survive without electrochemical shock by grain boundary microfracture. Note that the

critical primary crystallite sizes for compositions X = 0.74 and 0.93 differ from those previ-

ously reported [45]; in the previous analysis, a constant flaw size, corresponding to the most

damaging flaw size for X = 0.50 was used at all compositions. Here, the unique maximum

for each composition is used.
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Table 3.1: Critical primary crystallite size for microfracture in polycrystalline LiXCoO2 at
different states of charge.

X in ϵS ϵV K̂max Critical Primary
LiXCoO2 [%] [%] [-] Crystallite Size [µm]
0.93 0.020 0.045 0.0134 844
0.74 0.395 0.575 0.309 1.58
0.50 1.475 0.950 0.598 0.42

3.2 Finite Element Validation of Analytical Model

The analytical model is validated by comparison to finite element calculations. First, the

analytical stress distributions are compared to numerical results from two-dimensional finite

element calculations. Then, the critical primary crystallite size estimate for composition

X = 0.50 is compared to an explicit calculation of the strain-energy release rate.

All of these finite element calculations are performed usig oof2. The elastic stress

calculations are performed under plane strain conditions, and the strain energy-release rate

estimates are performed for both plane strain and plane stress conditions.

Figure 3-6 shows a schematic depiction of the unit cell modeled in the finite element

analysis. The two mirror symmetries in the four-grain ensemble are used to reduce the

computational domain of the problem. The transforming square grain of size L is embedded

in an isotoropic elastic matrix which is four times longer in each direction. The mirror

symmetries are applied along the left and bottom boundaries by imposing zero-displacement

boundary conditions. The right and top boundaries are allowed to be traction-free.

Figure 3-7 compares the analytical and numerical stress distributions for compositions

X = 0.93, 0.74, and 0.50. The analytical and numerical results are in excellent agreement,

and the analytical model captures the singular tensile stress near the quadruple junction.

The analytical model seems to underestimate the compressive stress singularity as near the

end of the grain, especially for composition X = 0.50, but at this spatial position, it will not
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affect the stress-intensity factor estimates.
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Figure 3-6: Schematic depiction of the FEM model used to validate analytical Clarke
model.

The critical primary crystallite size estimates obtained using the analytical model are

approximate because the the stress-intensity factor is estimated by a superposition method,

which relies on the stress distribution computed in the absence of a crack. The presence

of a crack provides additional compatibility, which reduces the crack-growth driving force

compared to the superposition method estimtes. To understand the role of the added com-

patibility, we estimate the strain-energy-release rate using explicit finite element calculations.

These calculations allow full relaxation of the crack-face displacements. The finite element

analysis is formulated in the equivalent framework of Griffith theory. [87] The crack growth
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Figure 3-7: Comparison of FEM and analytical results for Clarke model applied to
LiXCoO2 for X = 0.93, 0.74, 0.50.

driving force is specified as a strain-energy-release rate, G = −∂UE

∂a
, where UE is the elastic

strain energy and a is the crack length, and crack growth is resisted by the increase in surface

energy.

As described in Section 1.4, the strain-energy release rate can expressed as

(3.10)G = Z
(

a

l

)
Eϵ2

Sl

where Z is the dimensionless strain energy release rate, and the two-dimensional shear strain,

ϵS at composition X = 0.50 is used as the characteristic strain. To estimate the strain-energy

release rate, cracks of length a
l

= 0.02, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, and

0.4 are introduced into the finite element model. Traction-free boundary conditions are

applied along the crack faces to allow relaxation of the crack-face displacements. The finite

element meshes are refined more densely near the crack tip, with the smallest elements near

the crack tip ∼ 10−5 times the crack length. The elastic boundary value problem is solved

in oof2 and the strain energy density is computed. Figure 3-8 shows the two-dimensional

strain energy densities UE computed for cracks of differing lengths under both plane strain
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and plane stress conditions. The points are the computed data and the curves are B-splines

fit to the respective data sets.
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Figure 3-8: Explicit FEM calculations of strain energy density UE for different fractional
crack lengths a/l in LiXCoO2 with X = 0.50 showing actual computed points and the cubic
spline interpolants. Both plane stress and plane strain shown.

Figure 3-9 shows the dimensionless strain energy release rate Z
(

a
l

)
estimated from the

finite element calculations. The dimensionless strain-energy release rates are estimated from

the derivatives of the B-spline interpolations of the strain energy densities. For LiXCoO2 with

X = 0.50, under plane strain conditions, the dimensionless strain energy release rate Z
(

a
l

)
takes a maximum value of Zmax = 0.206. To estimate the critical primary crystallite size, a

critical strain-energy-release rate equivalent to the fracture toughness is used; the value of

this effective surface energy is given by the standard plane strain relationship GC = (1−ν2)K2
IC

E

and the numerical value is Gc = 5.2 J/m2. The critical primary crystallite size is given as

(3.11)lcrit = Gc

ZmaxEϵ2
S

These finite element calculations give a critical primary crystallite size of lcrit = 0.67 µm for

the composition X = 0.50, which differs from the analytical result by only a factor of 1.6.
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As expected, the superposition solution overestimates the stress-intensity factor, as it does

not allow for additional compatibility provided by the crack. This comparison confirms that

the analytical model gives reasonable results, and as it is more readily applied to a variety

of materials, may be used in place of explicit strain-energy-release rate calculations.
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Figure 3-9: Dimensionless strain energy release rates estimated from explicit FEM calcula-
tions for different fractional crack lengths a/l in LiXCoO2 with X = 0.50 showing both plane
stress and plane strain.

3.3 Acoustic Emission Experiments

To experimentally assess the hypothesized C-Rate independent electrochemical shock of

polycrystalline materials with anisotropic Vegard coefficients, we performed in-situ acoustic

emission experiments during low C-Rate cycling of monolithic sintered LiCoO2 electrodes.

Acoustic emission has previously been used to study fracture in lithium battery materials,

including conversion-type materials, [112] silicon anodes, [113] and electrolytic MnO2; [33,

114, 34] acoustic emission methods have also been used to study metal-hydride battery

electrodes. [115] These monolithic sintered electrodes are single continuous polycrystals;

which may be considered the infinite size limit of a polycrystalline particle. LiCoO2 is an
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Figure 3-10: Backscatter electron micrograph of a fracture surface in a sintered LiCoO2
electrode, prepared identically to those used for in-situ acoustic emission experiments, show-
ing typical grain size of ∼1-3 µm.

ideal model system for these experiments because the elastic properties and anisotropy of the

Vegard coefficients of LiCoO2 closely approximate those of LiXNi0.8Co0.15Al0.05O2 (NCA) and

LiNi1/3Mn1/3Co1/3O2 (NMC) which are of practical interest as second generation cathode

materials. As demonstrated previously by Lai, et al., [116] monolithic LiCoO2 electrodes

can be cycled extensively at moderate rates. This is due in part to the excellent electronic

conductivity (∼0.1-1 S cm−1 [117]) of partially delithiated LiCoO2 which ensures that the

polarization from solid phase electronic conduction is negligibly small (≤ 1 mV) for the

present experiments. The microstructure of a typical sintered electrode is shown along a

fracture surface in Figure 3-10, revealing a typical grain size of 2-5 µm, consistent with

Lai, et al. [116]

First, we study the acoustic emission during the first few cycles (three cycles at C/15 CC-

CV to 4.4 V vs. Li metal) of a monolithic sintered LiCoO2 electrode as shown in Figure 3-11.

This slow cycling rate does not induce large solid phase concentration gradients, and therefore

we do not expect C-Rate sensitive electrochemical shock mechanisms are active. The cell
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Figure 3-11: Cell voltage (blue, left axis) and acoustic emission rate (red, right axis)
measured during first three cycles of a LiCoO2 sintered electrode. Acoustic emission events
are highly concentrated in the first charge cycle. The cell was charged with a constant
current-constant voltage (CC-CV) protocol at a C/15 rate to 4.4V with a constant voltage
hold until the current fell below C/50.

voltage (upper curve) is plotted in against the left axis and the rate of acoustic emission in

counts per hour (lower curve) is plotted against the right hand axis; the horizontal axis is

time in hours. We observe that the most pronounced acoustic emission is concentrated in

the first charge cycle and that the large bursts of acoustic emission occur in the middle of the

first charge cycle rather than at the beginning or end of charging. Smaller bursts of acoustic

emission occur at the end of each discharge cycle; we have not yet identified the source of

this recurring event, but we speculate that it may be related to the large polarization at this

point in the cycle.

To assess if the polycrystalline character of our continuous sintered electrode is respon-

sible for the observed acoustic emission behavior, we performed control experiments with

composite electrodes. The high areal specific capacity of our sintered electrodes (∼30 mAh

cm−1) precludes direct comparison against conventional cast electrodes, so we prepared com-

posite pellet electrodes with identical thickness and comparable areal capacity (∼27 mAh
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posite pellet LiCoO2 electrodes during the first charge at a C/50 (50 h) rate and (b) electro-
chemical voltage-capacity curves for same electrodes. The sintered electrode shows 5 times
as many cumulative acoustic counts, despite the almost perfectly overlapping voltage curves.

cm−1).

Figure 3-12(a) compares the cumulative acoustic emission counts measured during the

first C/50 charge of a monolithic sintered LiCoO2 electrode and a thick composite LiCoO2

electrode. The respective voltage-capacity curves are shown in Figure 3-12(b) and are almost

perfectly overlapping. This measured acoustic emission from the sintered electrode shows

that the first cycle fracture events observed at C/15 persist to the extremely slow rate

of C/50. The role of grain boundaries as a key source of acoustic emission events in the

sintered electrode is confirmed by the five times difference in cumulative acoustic emission

counts between the sintered and composite electrodes. The overlapping voltage-capacity

curves suggest that the difference in acoustic emission is not due to a difference in the

electrochemical behavior of the two electrodes.

These in-situ acoustic emission results demonstrate that there is C-Rate independent

electrochemical shock in polycrystalline LiCoO2. As shown in Section 4.2.2 of the next

chapter, the critical size for two-phase coherency fracture of an individual LiXCoO2 crystallite

is NN µm. As the typical grain size in our sintered LiCoO2 electrode is 2-5 µm, this is clearly

below the critical grain size for intragranular fracture due to coherency stresses, but above
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the critical grain size for grain boundary microfracture. The conclusion that intragranular

coherency stress fracture is not active in our monolithic sintered electrodes is consistent with

observations by Clemencon, et al., who studied ∼3-5 µm diameter LiXCoO2 single particles

using in-situ atomic force microscopy. [118] LiCoO2 particles charged up to 4.3 V vs. Li-metal

did not show any obvious signs of fracture despite cycling through the two-phase region, as

evidenced by the close agreement of the sample height change with literature values for the

c-axis lattice parameter change.

3.4 Application to Other Materials Systems

The present acoustic emission experiments and micromechanical analysis demonstrate that

polycrystalline LiXCoO2 fractures, independent of C-Rate, due to its anisotropic Vegard

coefficients. We now explain related observations in the literature for other polycrystalline

materials with anisotropic Vegard coefficients.

First, we apply the microfracture model to Li1+XMn2O4, cycled on the 3V plateau,

where the material undergoes a first-order phase-transformation from cubic LiMn2O4 to

tetragonal Li2Mn2O4. It is well known that the large and anisotropic shape change limits

the reversibility and cycle life of this system. From the energy-volume data of Van der

Ven, et al., [?] we estimate the bulk modulus of Li2Mn2O4 as B = 160 GPa; assuming

a typical value for Poisson’s ratio ν = 0.3, this gives a Young’s modulus E = 192 GPa.

Using these elastic properties and the Vegard coefficients listed in Table 1.1, we estimate

the critical primary crystallite size is 10.8 nm. This very small critical primary crystallite

size is consistent with observations of fractured polycrystalline Li1+XMn2O4 with crystallite

sizes ≥ 20 nm. [96] While it is possible that Li1+XMn2O4 cycled along the 3 V plateau

can partially accommodate the Vegard strain by formation of ferroelastic domains, this has

only been directly observed when starting from an orthorhombic or monoclinic LiMnO2

98



●●
●

● ●●

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■ ■ ■

1000

■

100

10

1

0.1

0.01
0.2 00.40.60.81

LiCoO2

LiNi0.80Co0.15Al0.05O2

LiNi1/3Mn1/3Co1/3O2

No Fracture

Grain Boundary
Microfracture Possible

X in LiXMO2

C
rit

ic
al

 P
rim

ar
y

C
ry

st
al

lit
e 

Si
ze

 (μ
m

)

●
■

Figure 3-13: State-of-charge dependent critical primary crystallite size for C-Rate indepen-
dent grain boundary microfracture of polycrystalline particles of selected LiMO2 compounds.
For cycling to a given state of charge, if the actual primary crystallite size exceeds the critical
value, grain boundary fracture is possible.

starting material, which first transforms to the cubic spinel structure, forming nanoscale

( 10 nm) anti-phase domains which likely facilitate the formation of ferroelastic Li2Mn2O4

domains. [119, 120]

We have also applied the microfracture model to the second generation cathode mate-

rials LiXNi0.8Co0.15Al0.05O2 (NCA) and LiNi1/3Mn1/3Co1/3O2 (NMC), using state-of-charge

dependent lattice parameter data from References [29] and [11], respectively. For NCA and

NMC compositions with two-phase coexistence, the misfit strains are smaller than those

for LiXCoO2, [11] so we expect that the critical crystallite sizes for coherency fracture of

individual crystallites will be larger than those for LiXCoO2. Therefore, we anticipate that

in polycrystalline NCA and NMC grain boundary microfracture is the dominant C-Rate

independent electrochemical shock mechanism. For both NCA and NMC we have assumed

elastic and fracture properties identical to those of LiCoO2 as these materials are structurally

similar and no experimental or theoretical values are available for the mechanical properties
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of either NCA or NMC. For both NCA and NMC, the critical primary crystallite size for

grain boundary microfracture is strongly dependent on the state-of-charge window through

which the electrode is cycled. The critical primary crystallite sizes below which materials

with the selected NCA and NMC compositions will not fracture are plotted as a function

of Li content in Figure 3-13. The values for LiXCoO2 (see Table 3.1) are also plotted for

comparison. The discrete points represent the compositions at which lattice parameter data

was reported for these compounds, and these data points are calculated values; the lines

joining data points are guides to the eye only and do not represent the actual transition be-

tween the points. Comparing the critical primary crystallite size at X ≃ 0.5, for which the

Vegard coefficients are given in Table 1.1, the critical primary crystallite size of Li0.5CoO2 is

largest, and those of NMC and NCA are similar to each other and both are approximately

one fourth as large as the critical size for Li0.5CoO2.

An important conclusion of our analysis is that the observed trends in critical primary

crystallite size for microfracture of polycrystals can be rationalized on the basis of the shear

component of the transformation strain, which is a measure of the degree of anisotropy in a

material’s Vegard coefficients. Note that NCA and NMC have opposite sign of the volume

change, but the principal shear component of the transformation strain, ϵc − ϵa, is almost

identical for the two materials: 3.78 % for NCA and 3.97 % for NMC. Therefore, they

have similar critical primary crystallite size at X = 0.5. The small difference in the critical

primary particle size is due to the net volume increase for NMC, which provides a nearly

hydrostatic compressive stress which has a stabilizing effect.

The maximum principal shear component of a material’s Vegard coefficients thus pro-

vides a simple but powerful design criterion for mechanically stable polycrystalline electrode

materials. For rhombohedral materials, this maximum principal shear component is linearly

proportional to the change in the crystallographic c/a ratio. Previous strategies for crys-

tal chemical engineering of electrode materials have assumed that that near-zero volume
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change is the key target. This has led to attempts at engineering compensating anisotropic

linear strains to achieve zero net volume change. Such a strategy necessarily introduces a

large principal shear component and may be counterproductive if the material is prepared in

polycrystalline form. We propose instead that minimizing the principal shear component is

a more useful design criterion.

It is interesting to compare the predicted critical primary crystallite size for NCA to the

experimental results of Itou, et al. [29] who observed extensive grain boundary fracture of

NCA particles with typical primary crystallite sizes of ∼0.5-1 µm. Based on the first cycle

specific capacity of 154 mAh g−1, we estimate that the NCA particles were cycled to a Li-

content of X = 0.45. The minimum critical primary crystallite size for this state-of-charge

window is ∼125 nm, as shown in Figure 3-13. Thus, the actual primary crystallite size of

these NCA particles is 4-8 times larger than the critical grain size and it is unsurprising that

grain boundary microfracture occurs. Consistent with this analysis, Itou, et al. also found

that by reducing the first cycle specific capacity to ∼135 mAh g−1 (X ≃ 0.52), the rate of

positive electrode impedance growth was drastically reduced. In light of the state-of-charge

dependent critical primary crystallite size, we see that they have electrochemically identi-

fied a critical state-of-charge swing, below which widespread microfracture and subsequent

impedance growth is avoided. The four-grain ensemble envisaged in the present analytical

model assumes the worst possible mutual orientation of the four constituent grains, and

therefore provides a conservative lower bound on the critical primary crystallite size below

which no electrochemical shock microfracture can occur. Closer quantitative agreement with

the observed critical state-of-charge swing may be obtained using a model which embraces

a distribution of grain sizes and crystallographic orientations.

There is also an interesting contrast in the impedance growth due to microfracture be-

tween monolithic sintered LiCoO2 and polycrystalline NCA particles. While Itou, et al.

show that microfracture in NCA particles leads to continuous impedance growth, Lai, et al.,
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have demonstrated stable cycling of monolithic sintered LiCoO2 for ≥ 50 cycles, despite the

first cycle damage described here. [116] We speculate that the relative length scales for frac-

ture and electronic conductivity are different in the two microstructures and is the source of

their different impedance growth response. In the case of Itou, et al.’s NCA particles, cracks

are observed throughout the particle, forcing electrons to travel exclusively through the sur-

rounding polymer/carbon composite matrix, even to reach surface sites on what was initially

a single polycrystalline particle. In the case of monolithic sintered LiCoO2 electrodes studied

presently and by Lai, et al., the sintered electrodes remain intact after extensive cycling; the

remaining intact sinter necks between grains provide a continuous percolating path with high

electronic conductivity.

Due to its crystal chemical and microstructural origins, we expect that electrochemical

shock by grain boundary microfracture will occur in energy storage systems beyond Li-

storage compounds. As one example, many Na-storage compounds also have anisotropic

Vegard coefficients, as the data collected in Table 4 demonstrate. Therefore, we expect that

electrochemical shock will be an important degradation and impedance growth mechanism

for Na-ion batteries as well. In many cases, the intercalation host structures are identical

between Na- and Li-storage compounds. However, while both Li- and Na-storage compounds

have anisotropic Vegard coefficients, there is no general correspondence between the Vegard

coefficients of the Li- and Na- analogues. For example, the two-dimensional shear strain

ϵS for NaCoO2 (4.2 %) is much larger than that of LiCoO2 (1.5 %), but NaFePO4 (2.2

%) is less anisotropic than LiFePO4 (3.4 %). Interestingly, the crystal chemical strategy of

offsetting anisotropic linear strains to achieve net zero volume change materials has already

been applied to Na-storage compounds: on charging to 4.4 V vs. Na+/Na, the advanced

sodium-ion cathode material Na1.0Li0.2Ni0.25Mn0.75Oδ undergoes a principal shear strain of

1.4 %, despite the near zero volume change. [25] Based on the analysis presented here,

we predict that if this material is prepared as polycrystalline particles, it will nevertheless
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experience electrochemical shock and subsequent impedance growth.

3.5 Conclusions

By analogy to thermal shock of anisotropic materials, we predicted, analytically modeled,

and experimentally observed C-Rate independent electrochemical shock due to anisotropic

Vegard coefficients in polycrystalline Li-storage materials. This degradation mechanism,

previously undocumented in electrochemical systems, applies generally to battery materi-

als with anisotropic Vegard coefficients and polycrystalline microstructures. We have used

the analytical micromechanical model to explain several observations of grain boundary

microfracture in anisotropic Li-storage compounds. The micromechanical model predicts a

critical primary crystallite size below which microfracture will not occur, providing an oppor-

tunity for microstructural engineering of polycrystalline electrode active particles. Insights

gained from this model suggest the principal shear strain as a new and important design

criterion for crystal chemical engineering of mechanically robust electrode materials.
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Chapter 4

Two-Phase Coherency Stresses

4.1 Introduction

The third distinct mechanism for electrochemical shock in ion-intercalation materials are

coherency stresses, which develop between coexisting phases with dissimilar lattice parame-

ters. As the lattice parameter data in Figure 1-3 demonstrate, many Li-storage compounds

have miscibility gaps, evidenced compositions with two distinct lattice parameters. At the

interface between the two co-existing phases, the lattice parameter must vary rapidly, which

can generate large coherency stresses. Coherency stresses are the dominant electrochemical

shock mechanism in LiXFePO4 [72], an anisotropic material with essentially no miscibility

in the end-member phases at bulk particle sizes (for LiXFePO4, particle sizes above ∼100

nm behave as bulk).

Even in cubic materials—which have isotropic Vegard coefficients—C-Rate-independent

electrochemical shock can occur if there is a miscibility gap. For example, the cubic

spinels LiXMn2O4 and LiXMn1.5Ni0.5O4, have isotropic Vegard coefficients (all second rank

tensor properties are isotropic for cubic materials), so the grain boundary microfracture

mechanism detailed in Chapter 3 is not active. However, these materials have first-
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order phase-transformations—with accompanying transformation strains—over parts of the

lithium composition region, so two-phase-coherency stresses may be an important electro-

chemical shock mechanism. Indeed, experimental observations suggest the misfit strain

between coexisting cubic phases is strongly correlated with capacity fade in doped spinel

materials [121, 122, 123].

The objectives of this chapter are to analyze coherency-stress fracture in model systems,

LiXMn2O4, LiXMn1.5Ni0.5O4, and LiXCoO2. The spinels LiXMn2O4 and LiXMn1.5Ni0.5O4

are cubic, while layered LiXCoO2 is rhombohedral. As with the other electrochemical shock

mechanisms, a critical microstructure feature size is identified from a fracture mechanics

model. The critical size for coherency-stress driven electrochemical shock is experimentally

tested with LiXMn2O4 and LiXMn1.5Ni0.5O4 by acoustic emission experiments during slow

C/50 cycling. This electrochemical shock is overcome by identifying a cubic spinel material

with no miscibility gap—LiXFe0.08Mn1.5Ni0.42O4, and even with very coarse particles, this

material shows no The effects of anisotropic surface energies, coherency strains, and elastic

properties are discussed. In LiXCoO2, the coherency strains are stronly anisotropic and a

(0001) habit (preferred interface orientation) is expected. In the cubic spinels, anistropy

in the elastic constants which may promote a habit plane; as no measured or computed

anisotropic elastic properties have been reported for any of the Li-storage spinels, this

anisotropy is discussed on the basis of crystal chemical trends in other oxide spinels. This

chapter concludes with design criteria for ion-intercalation materials that are resistant to

electrochemical shock from coherency stresses.

4.2 Critical Size Estimates

Static calculations of cracked, slab-like particles with a coherent interface between dissimilar

phases are performed to study coherency-stress fracture of phase-transforming electrode
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materials. These static calculations provide the zero current limit which an appropriate

kinetic model must approach. The method of Hu, et al., [72] is employted to estimate

the critical crystallite size, below which coherency stresses cannot drive fracture. Two-

dimensional finite-element calculations are used to estimate the strain-energy-release rate G,

which is a measure of the crack growth driving force. When the strain energy release rate

exceeds a critical value, set by the surface energy, pre-existing cracks can grow. A fixed

geometry, shown in Figure 4-1, is assumed, with equal fractions of two coexisting, misfitting

phases in a single slab-like particle, with each phase having a characteristic linear dimension

d. A pre-existing crack, of length L is assumed to exist along the interface between the

two phases. The analysis is restricted to cracks growing inward from a free surface on the

interface plane, as illustrated in Figure 4-1.

xy

2dd

d

(a)
xy

L

(b)

Figure 4-1: Illustration of the single crystal particle geometry envisaged in the coherency
stress fracture analysis. (a) particle in the untransformed single phase state and (b) two-
phase particle with a crack growing inward from the crystallite surface along the two-phase
interface.

As described in Section 1.4, dimensional arguments show that the strain energy release

rate can be expressed as
G = Z

(
L

d

)
Eϵ2d

Where E is a characteristic elastic modulus and ϵ is a characteristic strain. Pre-existing

cracks can grow when the strain-energy-release rate exceeds the work required to create two
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new fresh surfaces, of surface area γ. The dimensionless function Z
(

L
d

)
has a maximum

value, Zmax, which ensures that there is a critical particle size d below which no pre-existing

crack can grow. This critical particle size is given by

(4.1)dcrit = 2γ

ZmaxEϵ2

To determine the dimensionless strain-energy release rate, Z
(

L
d

)
, we compute the total

stored elastic strain energy for cracked particles with crack lengths L
d

= 0.05, 0.08, 0.1, 0.15,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75. All Finite Element calculations are performed using OOF2

(version 2.1.7), a 2-dimensional finite element tool developed at NIST [124, 125, 126, 127]

for finite element calculations. The crack tip is densely meshed with the finest elements near

the tip less than 5×10−3 of the crack length. The two dimensional finite element calculations

remove the third dimension with a plane strain assumption and the external surfaces are

traction-free. At each crack length, the total stored elastic strain energy is integrated and

we interpolate between these crack lengths with a cubic spline to estimate the strain energy

density as a function of crack length UE

(
L
d

)
. The dimensionless strain-energy release rate

Z
(

L
d

)
is estimated from the derivative of this strain energy function as Z = − 1

Eϵ2d
dUE

d(L/d) .

4.2.1 Critical Size for Coherency Fracture in Cubic Spinels

LiXMn2O4 and LiXMn1.5Ni0.5O4 are both cubic spinel materials which remain cubic through-

out electrochemical cycling for compositions X ≤ 1. In each of these materials, there is a

two-phase region, in which two cubic phases with lattice parameters differing by ∼ 1% co-

exist. In LiXMn2O4, there is a single two-phase region for compositions 0.5 ≤ X ≤ 0.25. In

LiXMn1.5Ni0.5O4 the phase behavior is closely linked to the ordering of Ni and Mn cations

on their sublattice [128], and if they are highly ordered, two distinct two-phase regions are

observed, whereas if they are disordered (as occurs under oxygen-deficient conditions), the

phase behavior mirrors that of LiXMn2O4 with a single-phase region and a single two-phase
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region.

For both of these spinel materials, the two-phase coherency fracture problem is quantified

using isotropic elastic constants of E = 143 GPa [78], ν = 0.3, and a linear transformation

strain of ϵ = 0.01. For LiXMn1.5Ni0.5O4, the elastic properties are assumed identical to that

of LiMn2O4. Figure 4-2 shows the computed stored elastic strain energy at different crack

lengths for these two-phase spinel particles. The points represent computed values and the

red curve is the B-spline interpolant.

Figure 4-3 shows the dimensionless strain-energy-release rate Z
(

L
d

)
estimated from the

strain energies of the cracked, two-phase spinel particles. The maximum value of the dimen-

sionless strain-energy-release rate is Zmax = 0.0735 which occurs at a fractional crack lenth

of L
d

= 0.27. Substituting the value of Zmax into Equation 4.2 along with the misfit strain of

ϵ = 0.01, the elastic modulus of E = 143 GPa gives estimates of the critical particle size. As

the surface energies are anisotropic, different interface orientations are considered; Table 4.1

lists the surface energies and estimated critical particle sizes for a variety of possible interface

orientations based on the surface energies computed by Benedek, et al., [129]. The range

of critical particle size, depending on crystallographic orientation is 1.1-2.47 µm. Note that

because the shape change is isotropic, and isotropic elastic properties are used, the strain

energy is not a function of the interface orientation. With anisotropic elastic constants, this

would no longer hold; at present, the bulk modulus is the only measured or computed elastic

property of either of these spinels.

4.2.2 Critical Size for Coherency Fracture in Layered LiXCoO2

The region of two-phase coexistence [7] 0.93 ≤ X ≤ 0.74 in LiXCoO2 presents the pos-

sibility of fracture within individual primary crystallites due to coherency stresses. The

same methodology is applied to estimate the critical crystallite size below which a two-

phase LiXCoO2 crystal will not fracture along the two-phase interface. As the lattice pa-
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Figure 4-2: The calculated (dimensionless) strain energy density for a two-phase LiMn2O4
particle.
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Figure 4-3: The calculated (dimensionless) strain energy release rate for a two-phase
LiXMn2O4 particle.
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Table 4.1: Surface energies (from Ref. [129]) for specific surfaces and the corresponding
critical primary crystallite size for coherency fracture along that interface in a two-phase
LiXMn2O4 crystal (plane strain conditions).

Interface Surface Surface Energy Critical Crystallite
Orientation Termination (J m−2) Size (µm)
(001) MO 0.98 1.86
(001) L 0.58 1.10
(110) MO 1.19 2.26
(110) LMO 0.99 1.88
(111) LMO 1.29 2.45
(111) O 1.30 2.47
(111) M,L 0.85 1.62

rameters of both phases vary with composition, the worst-case scenario is analyzed where

the misfit strains are ϵa = ϵb = −0.12% and ϵc = +1.23%. The c-axis strain, ϵc = 0.0123 is

used as the characteristic strain defining the dimensionless strain-energy release rate, Z (L/d).

We consider both plane strain (thick slab) and plane stress (thin slab) conditions for several

possible interface orientations: (0001), (101̄0), (112̄0), and (101̄4).

As in Chapter 3, isotropic linear elastic properties and anisotropic coherency strains

are used for LiXCoO2. The linear elastic properties (E, ν) are taken identical to those

used in the grain boundary microfracture analysis, and the orientation-dependent surface

energies calculated by Kramer, et al. [130] are used to estimate the orientation-dependent

critical strain-energy-release rate. While anisotropic elastic constants have been calculated

for LiCoO2 using an empirical potential [111], they are strongly overbound compared to

experimental measurements of the elastic properties of LiCoO2 [79, 110] and therefore they

are not used in the critical size analysis.

Figure 4-4 shows the strain energy density at different crack lengths for two-phase

LiXCoO2 particles under both plane strain and plane stress conditions with an interface

orientation of (101̄4). The points are the computed values and the curves are B-spline inter-

polants. Figure 4-5 shows the computed dimensionless strain energy release rate for plane
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strain and plane stress conditions of a two-phase LiXCoO2 particle with a (101̄4) interface

orientation.
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Figure 4-4: The calculated (points) and third-order spline interpolants to the (dimension-
less) stored elastic strain energy density UE for a two-phase LiXCoO2 particle with the phase
boundary oriented along a (101̄4) plane.

For LiXCoO2, the critical crystallite size is strongly dependent on the interface orien-

tation, and the minimum critical crystallite size for all the configurations modeled here is

8.3 µm, for an (112̄0) interface orientation. The critical crystallite sizes for each of the in-

terface orientations considered under plane strain conditions are given in Table 4.2, along

with the corresponding surface energy from Kramer, et al. [130] The critical crystallite sizes

under plane stress are greater than those under plane strain conditions, consistent with the

results of Hu, et al. for coherency stress fracture in LiXFePO4. [72] The greatest critical

primary crystallite size among all orientations considered was 229 µm, for an (0001) in-

terface orientation. While the surface energy is an effective crack growth resistance, the

results in Table 4.2 show no simple relationship between surface energy and the calculated

critical crystallite size; this implies that the elastic stress distributions are strongly sensitive

to the interface orientation. This is consistent with previous analyses of other Li-storage
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Figure 4-5: The calculated (dimensionless) strain energy release rate for a two-phase
LiXCoO2 particle with the phase boundary oriented along a (101̄4) plane. The lines for
plane strain and plane stress conditions overlap significantly.

Table 4.2: Surface energies (from Ref. [130]) for specific surfaces and the corresponding
critical primary crystallite size for coherency fracture along that interface in a two-phase
LiXCoO2 crystal (plane strain conditions).

Interface Surface Energy Critical Crystallite
Orientation (J m−2) Size (µm)
(0001) ∼1 229
(101̄0) 2.943 10.9
(112̄0) 2.241 8.3
(101̄4) 1.048 9.6

compounds with anisotropic coherency strains such as LiXFePO4. [131, 132]

4.3 Experimental Validation of Critical Size

The critical particle size effect is experimentally tested with comparative acoustic emission

measurements duing slow first cycle charging of spinel LiXMn2O4 and LiXMn1.5Ni0.5O4 elec-

trodes with different particle sizes.

Figure 4-6 shows scanning electron micrographs of the LiMn2O4 materials as received
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and after coarsening by sintering and grinding. The as-received powder has primary particle

sizes ∼ 1 µm while the coarsened material has primary particles ∼ 2−5 µm. Both materials

are used to prepare 500 µm thick composite pellet electrodes composed of 90 weight percent

active material, 5 weight percent binder, and 5 weight percent carbon black. The compos-

ite electrodes are electrochemically cycled in a coin cell against a lithium metal negative

electrode with simultaneous acoustic emission measurement.

Figure 4-7 shows the cumulative acoustic emission counts as a function of composition

during the first C/50 charge of composite LiXMn2O4 electrodes with different particle sizes.

The electrode prepared from as-received LiXMn2O4, with typical particle size of ∼ 1 µm,

shows almost no acoustic emission. On the other hand, coarsened LiXMn2O4, with typical

particle size of 2–5 µm, shows substantial acoustic emission, concentrated in the two-phase

region. These experimental observations are in agreement with the predicted critical particle

sizes of ∼ 2 µm in Table 4.1.

5 μm 5 μm

(A) (B)

Figure 4-6: SEM comparison of LiMn2O4 particles. The as-received particles have a pri-
mary particle size of ∼1 µm while the coarsened particles are ∼2-5 µm.

Figure 4-8 shows scanning electron micrographs of the LiMn1.5Ni0.5O4 materials as re-

ceived and after coarsening by sintering and grinding. The as-received powder has primary

particle sizes ∼ 500 nm while the coarsened material has primary particles ∼ 2 − 5 µm.
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Figure 4-7: Half-cell voltage and cumulative acoustic emission counts measured during
first-cycle C/50 charge of the LiXMn2O4 materials shown in Figure 4-6. The as-received
material has typical particle size of ∼1 µm while the coarsened particles are ∼2-5 µm.
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Figure 4-8: SEM comparison of LiMn1.5Ni0.5O4 particles. The as-received particles have a
primary particle size of ∼500 nm while the coarsened particles are 2-5 µm.
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Figure 4-9 compares the observed acoustic emission during C/50 cycling of thick com-

posite electrode with each of these materials. The heat treatment applied to the coarsened

materials yields material with a disordered transition metal sublattice, in which case the

material has a single two-phase region, analogous to LiXMn2O4. The measured acoustic

emission in the coarsened LiXMn1.5Ni0.5O4 material is in excellent agreement with the results

from LiXMn2O4, showing significant acoustic emission again concentrated in the two-phase

region. Again, the as-received material is below the critical particle size identified in the

preceding section, while the coarsened material exceeds that critical particle size.
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Figure 4-9: Half-cell voltage and cumulative acoustic emission counts measured during first-
cycle C/50 charge of the LiXMn1.5Ni0.5O4 materials shown in Figure 4-8. The as-received
material has typical particle size of ∼500 nm while the coarsened particles are 2-5 µm.

4.3.1 Averted Fracture in Single-Phase Spinel

One strategy for averting coherency-stress electrochemical shock is to identify ion-

intercalation materials which do not undergo a first-order phase-transformation.
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LiMn1.5Ni0.42Fe0.08O4 has been identified as one such material, which remains in a single cubic

spinel phase over the range of compositions through which electrochemical cycling is per-

formed. This material has been studied previously, and has been reported to have improved

rate capability and capacity retention compared to undoped material LiXMn1.5Ni0.5O4 [123],

which has been attributed to spontaneous preferential segregation of Fe-ions to the surface of

the particles [133]. However, the composition-dependent lattice parameters of the Fe-doped

material have not been previously reported in the literature.

Figure 4-10 shows the measured lattice parameters for LiXFe0.08Mn1.5Ni0.42O4 at differ-

ent lithium compositions X; the points are the measured lattice parameter values and he

dashed line is the best linear fit to the data. Extrapolation of the linear fit shows that this

material has a total volume change of ∼4% for complete delithiation. These samples were

electrochemically delithiated in composite pellet electrodes charged at a C/50 rate to 4.9 V

vs. Li+/Li, then discharged at C/50 to specified state of charge. Due to the high operat-

ing voltage of this material, there is appreciable uncertainty in the compositions, which are

determined coulometrically, due to electrolyte oxidation at high potentials. Based on the

best-fit line to the measured lattic parameters, the total volume change for this material is

∼4% for complete deintercalation from a composition of X = 1 to X = 0.

Figure 4-11 compares the observed C/50 acoustic emission from LiXFe0.08Mn1.5Ni0.42O4

to the LiXMn1.5Ni0.5O4 data from Figure 4-9. Again, the C/50 cycling of thick composite

electrode with each of these materials. While the LiXFe0.08Mn1.5Ni0.42O4 particles are even

coarser than the coarsened LiXMn1.5Ni0.5O4 particles, ∼5-7 µm, they show essentially no

acoustic emission; a total of 47 counts are measured during the C/50 cycle. The capacity

is less because some Ni has been replaced by Fe, reducing the theoretical capacity of the

material. While there have been reports of preferential Fe-segregation to the particle surface,

the thickness of the Fe-rich shell region is on the order of 10 nm, for particles of several micron

size (as determined by Secondary Ion Mass Spectroscopy) [133]; this thin of a shell cannot
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Figure 4-10: Lattice parameter data as a function of lithium composition X for electro-
chemically delithiated LiXMn1.5Ni0.42Fe0.08O4.

provide sufficient clamping to prevent electrochemical shock.

At each of these compositions, the X-ray diffraction patterns appear single phase to the

limit of detection of the measurement. In any case, if there is two-phase coexistence, the

misfit strain is very small. However, it is not clear why the material is single phase with

respect to lithium composition. Lee and Persson report that in the undoped material, the

phase-behavior is strongly coupled to the Ni/Mn cation ordering [128] and this is supported

by experimental observations [134]. There is also evidence of local ordered-domains, even

in nominally disordered material, on the basis of Reitveld refinement of neutron diffraction

data [133]. The addition of iron may promote a disordered cation arrangement due to

an increase in configurational entropy for a three-component cation sublattice over a two-

component (at 300 K and with xFe = 0.08, the three component system has a −T∆S

stabilization of 274 J/mol), but there may be additonal enthalphic contributions that are

difficult to name a priori.
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Figure 4-11: Half-cell voltages and cumulative acoustic emission counts measured dur-
ing first-cycle C/50 charge of ∼7 µm LiMn1.5Ni0.42Fe0.08O4 particles, compared to the
LiMn1.5Ni0.5O4 materials previously shown in Figure 4-9.
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Figure 4-12: SEM comparison of coarsened LiMn1.5Ni0.5O4 and particles. The coarsened
LiMn1.5Ni0.5O4 particles are 2-5 µm while the coarsened particles are larger still, ∼5-7 µm.
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4.4 Preferred Interface Orientations

In most coherent phase-transformations there is a specific interface orientation which mini-

mizes the elastic energy of the coherent two-phase configuration. Such a preferred interface

orientation is known as a habit plane, and the orientation of the habit plane depends on the

elastic properties of the coexisting phases and the misfit strain between them. For non-cubic

materials, such as LiXCoO2, both the transformation strain and the elastic constants can

be anisotropic, while for cubic materials, anisotropy in the elastic constants determines the

habit.

The habit plane orientation can be estimated using the formalism developed by Khachatu-

ryan [135, 136]. Under the assumption that the two co-existing phases have identical elas-

tic properties (homogeneous modulus assumption), the orientation-dependent strain energy

density B(n⃗) for a coherent interface normal to the direction n⃗ is given as

(4.2)B(n⃗) = cijklϵ
◦
ijϵ

◦
kl − niσ

◦
ijΩjl(n⃗)σ◦

lmnm

where σ◦
ij is the homogensous stress that would arise if the stress-free strain were applied

elastically and Ωjl(n⃗) is an effective directional modulus, defined by its inverse

(4.3)Ω−1
ij (n⃗) = cijklnknl

The habit plane minimizes the strain energy density B(n⃗).

For LiXCoO2, the anisotropic elastic constants computed by a pair-potential model [111]

are used to qualitatively assess the possibility of a habit plane. While these elastic properties

are quantitatively overbound compared to experimental measurements, they can be used to

provide qualitative insight to likely habit planes. The anisotropic misfit strains used to

estimate the critical crystallite size are used to quanitify B(n⃗).

Figure 4-13 shows the three-dimensional strain energy function B(n⃗) for two-phase con-

figurations in LiXCoO2. The key feature is the minimized energy density near a (0001)

two-phase interface orientation; thus, interface orientations slightly away from (0001) should
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be strongly preferred relative to the other orientations considered in Table 4.2. The mini-

mum in B(n⃗) is at an irrational direction; the closest rational direction is [3002]. This can

be simply rationalized due to the small misfit strain along the crystallographic a and b direc-

tions. While the other interface orientations described in the preceding section are possible,

they should be less likely than the (0001) interface. Thus, two-phase coherency stresses may

only drive fracture in extremely large particles of LiXCoO2.

Figure 4-13: The strain energy density B(n⃗) for a coherent two-phase interface in LiXCoO2
for different phase boundary orientations.

[0001]

[1000]

Figure 4-14: The strain energy density B(n⃗) for a coherent two-phase interface in LiXCoO2
for different phase boundary orientations projected in the a − c plane. The minimum energy
orientation is an irrational direction close to the [0001] direction.

In cubic-to-cubic phase-transformations, a habit plane can develop due to the anisotropy
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of the elastic constants. The critical crystallite size calculations for the cubic spinels have

been performed assuming isotropic elastic constants, where there is no preferred interface

orientation. At present, this assumption was necessitated by the lack of measured or com-

puted anisotropic elastic properties for the Li-storage spinel materials. To date, only bulk

modulus measurements have been reported.

In the absence of quantitative values for the anisotropic elastic constants of these Li-

storage spinel materials, it is useful to consider crystal chemical trends observed in other

cubic oxide spinels. In cubic materials, the Zener anisotropy factor (Zener ratio) defined as

(4.4)A = 2c44

c11 − c12

is a scalar metric which describes the elastic anisotropy. For materials with A > 1, the

<111> directions are stiffest and the <100> directions most compliant. For materials with

A < 1, the opposite is true and the material is stiffest along <100> directions and most

compliant along <111> directions. Finally, note that for a stable material, A > 0 (This is

required to ensure the elastic constants are positive definite).

Table 4.3 collects the elastic constants for several oxide spinels and the corresponding

Zener ratio. For all of the spinel oxides listed here, A > 1, suggesting that these materials are

all stiffest along the <111> directions (this is normal to the approximately cubic-close-packed

oxygen anion layers in these materials. As a result, cubic-to-cubic phase-transformations in

any of these spinel oxides will prefer a (100) habit. In fact, among oxide spinels, it has

been noted that the bulk modulus is strongly correlated with the valence of the tetrahedral

cation, with reasoning that the tetrahedra are more compliant than the octahedra, and

lower valent tetrahedral cations generally form weaker A-O bonds than more highly charged

cations [137, 138]. The degree of elastic anisotropy, as quantified by the Zener ratio, is

correlated with the value of the oxygen positional parameter u [139]. Figure 4-15 plots the

Zener ratio A for the cubic oxide spinels in Table 4.3 as a function of the oxygen position

parameter u. For a prototype spinel, u = 0.25, and departures from this value represent
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Table 4.3: Experimental single crystal elastic constants of some cubic oxide spinels.

Material Cation c11 c12 c44 B u A Ref
Composition Distribution (GPa) (GPa) (GPa) (GPa) (-) (-)
MgAl2O4 normal 279 153 153 195 0.262 2.42 [140]
Ni2SiO4 normal 366 155 106 225 0.244 1.00 [139]
Mg2GeO4 normal 300 118 126 179 0.251 1.38 [141, 142]
ZnFe2O4 normal 250 148 96 182 0.261 1.89 [143, 144]
CoAl2O4 normal 291 170 139 210 0.262 2.30 [145, 146]
Fe3O4 inverse 268 106 95 160 0.255 1.18 [147]
Mg2SiO4 normal 327 126 112 193 0.244 1.11 [148]
Fe2TiO4 inverse 139 112 40 121 0.265 2.9 [149]
FeAl2O4 normal 266 183 134 211 0.265 3.2 [150]
ZnAl2O4 inverse 290 169 146 209 0.263 2.41 [151, 152]
LiMn2O4 normal 110-140 0.263 [78, 138]
LiMn1.5Ni0.5O4 normal 0.263 [153]

distortions of the BO6 octahedra (the AO4 tetrahedra are not distorted, regardless of the

value of u). The observed oxygen positional parameter in both LiMn2O4 and LiMn1.5Ni0.5O4

is u = 0.263, which is very similar to that of MgAl2O4, which has a Zener ratio of A = 2.42.

Thus, there may be a strong preference for (100) interface orientations in these cubic Li-

storage spinels.

4.5 Conclusions

Electrochemical shock is observed during low C-Rate (C/50) first cycle charging of phase-

transforming electrode materials LiXMn2O4 and LiXMn1.5Ni0.5O4 via acoustic emssion mea-

surements. In both materials, the observed acoustic emission is concentrated in the two-phase

region, and has a strong particle size dependence, consistent with predictions from static

analysis of coherency stresses in slab-like particles. This electrochemical shock mechanism

is averted in LiXFe0.08Mn1.5Ni0.42O4, a Fe-doped version of LiXMn1.5Ni0.5O4; this material
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0.263 which interpolates to a value of A ≃ 2.4.

is isostructural to LiXMn2O4 and LiXMn1.5Ni0.5O4, but the phase-behavior is qualitatively

different, avoiding coherency stresses as a possible electrochemical shock mechanism.

The design of materials that avoid misfitting, coherent phase-transformations has

been previously identified as a route to electrode materials with enhanced rate capabil-

ity [154, 155, 156, 157]. Metastable intermediate phases, and enhanced solid solubility have

been observed in olivine materials such as LiFePO4 at very small particle sizes, ∼ 10−100 nm,

where chemical modifications which reduce misfit strains can also promote facile phase-

transformation kinetics [12]. Similar effects may be observable in these spinel materials,

which also have a first-order phase-transformation and a misfit strain. Based on the col-

lected observations that chemical modifications can modulate the transformation strains and

miscibility limits of the spinels, there is an opportunity to explore analogous size-dependent

phase-transformation pathways in chemically modified-spinel materials. Nano-sized, chem-

ically modified, spinel materials will provide an interesting model system to explore the

generality of these strategies to modulate phase behavior in ion-intercalation materials.
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Chapter 5

Concurrent Concentration-Gradient

and Coherency Stresses

5.1 Introduction

Many ion-intercalation compounds have complex phase-behavior with regions of limited

solid solubility and regions of two-phase coexistence [15, 18, 6, 7, 13, 11]. In these realistic

systems, C-Rate-dependent and C-Rate-independent electrochemical shock mechanisms may

be simultaneously active, and therefore it is important to distinguish which mechanism

dominates at different particle sizes and cycling rates. While there are several existing kinetic

analyses of elastic stresses in electrode materials with limited solid-solubility [74, 47, 75, 64],

none has employed a fracture mechanics failure criterion, which is essential for brittle oxide

materials [87].

The objective of this chapter is to develop a kinetic model for electrochemical shock

in a lithium-storage material with complex phase-behavior. Such a model will allow si-

multaneous and equal treatment of C-Rate-dependent concentration-gradient stresses and

C-Rate-independent two-phase-coherency stresses. In general, transitions in the dominant
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mechanism may be expected at different characteristic microstructural length scales or dif-

ferent electrochemical cycling rates; it is important to understand if these transitions occur

at practically relevant particle sizes and cycling rates.

This chapter is organized as follows. First, the electrochemical kinetics model presented in

Chapter 2 is generalized to apply to phase-transforming electrode materials, using an explicit

boundary tracking method to solve the resulting moving phase boundary problem. This gen-

eralized electrochemical model is coupled with the previously derived linear-elastic fracture

mechanics model for electrochemical shock. Using LiXMn2O4 as a model system, for which

quantiative results are obtained, concurrent C-Rate-dependent and C-Rate-independent elec-

trochemical shock mechanisms are compared to determine which mechanism dominates under

various conditions of particle size and C-Rate. The model confirms that coherency stress

fracture occurs essentially independent of C-Rate and corroborates both the experimental

acoustic emission measurements and static fracture mechanics analysis from Chapter 4.

5.2 Methods

We model constant-current electrochemical charging (delithiation) of a single spherical par-

ticle of radius rmax in a half cell. The particle is assumed to contain a dominant pre-existing

flaw in the form of a finite-sized semi-elliptical surface crack of length a, and we assume that

the crack faces are electrochemically inert so that only the spherical outer surface of the

particle is reactive. This configuration is identical to that described in Chapter 2. Again,

the stress-intensity factor is estimated using a two-step approach in which the composition

and diffusion-induced elastic stress distributions for the flaw-free particle are first computed;

then, we use the hoop (tangential) stress distributions as input to a method of weight func-

tions calculation of the Mode I stress-intensity factor as a function of flaw-size and time

KI(a, t) as described in Chapter 2.
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We model the evolving composition field in each particle using a generalized diffusion

equation with a composition-dependent chemical diffusivity as described in Chapter 2
∂X

∂t
= 1

r2
∂

∂r

(
r2D̃(X)∂X

∂r

)

The composition-dependent chemical diffusivity D̃(X) includes thermodynamic non-ideality

and elastic coupling effects and can be expressed in terms of fundamental materials properties

as
(5.1)D̃(X) = D0X (1 − X)

(
− F

RT

∂V (X)
∂X

+ θ̂

)

where D0 is a characteristic diffusivity, X is the composition, F is Faraday’s constant, R is

the gas constant, T is the absolute temperature, V (X) is the composition-dependent open-

circuit voltage, and θ̂ is a dimensionless chemomechanical coupling parameter that quantifies

the effect of stress-driven diffusion and is given as

(5.2)θ̂ = 2Ω2Ecmax

9RT (1 − ν)

where Ω is the partial molar volume of the intercalating species (cm3/mol), E is the Young’s

elastic modulus (GPa), ν is the Poisson’s ratio (dimensionless), cmax is the maximum con-

centration (mol/m3).

5.2.1 Moving Phase Boundary Problem

In phase-transforming electrode materials (i.e. those with limited solid solubility), this

generalized diffusion equation applies to each phase individually. Under conditions of two-

phase coexistence, the interface between the coexisting phases must be tracked to determine

the global composition field. Such multi-phase kinetic problems can be modeled with sharp-

interface theories in which the interface is tracked explicitly, or with diffuse-interface theories

in which the interface is tracked implicitly [132].

Here, we adopt a spherical core-shell model in the sharp-interface limit. For three-

dimensional diffusing materials such as LiXMn2O4, and for particles on the micron-scale, a
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core-shell model is a reasonable geometric assumption. Initially, we solve the single-phase

diffusion problem using Equation 5.2 until the surface composition reaches the solubility limit

X(rmax, t) = Xα. Then, the second phase emerges as a shell. While there are two coexisting

phases in the particle, we track the composition field in each phase and the position of the

interface h(t). The two-phase core-shell model and a corresponding composition profile are

shown schematically in Figure 5-1.

α
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rmax

α β

h(t) rmax0
Position
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n

Xα

Xβ

Figure 5-1: The assumed core-shell geometry for two-phase coexistence and schematic
concentration profiles corresponding to that geometry.

We assume that the motion of the interface is diffusion-limited and that the compositions

at the interface are in local equilibrium. At the interface, h(t), there is a discontinuity

in the composition profile X(r, t). Approaching the interface from within either phase,

the composition approaches the corresponding equilibrium solubility limit of that phase

(Throughout, we refer to the Li-rich phase as α and the Li-poor phase as β)

lim
r→h−

= Xα

lim
r→h+

= Xβ

For the model system of LiXMn2O4, we take Xα = 0.5 and Xβ = 0.25
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When the fluxes in each phase are unequal at the interface, the interface must move

to conserve mass. Using a control volume around the interface, this mass conservation

requirement leads to the Stefan condition [158] which we use to compute the interface velocity
dh
dt

[Xβ − Xα] dh

dt
=
[
D̃(Xα)∂X

∂r
|r→h− − D̃(Xβ)∂X

∂r
|r→h+

]

We discretize and solve the moving phase boundary problem using a strategy similar to

that of Zhou and North, in which the interface position is tracked between finite difference

grid points [159].

5.2.2 Elastic Stress Distributions

The elastic stress distributions are determined by solving a linear-elastic boundary value

problem analogous to the calculation of thermal stresses [86]. Assuming isotropic linear

elasticity and traction-free boundaries, the radial and tangential stress profiles are given by

σr(r, t) = 2ΩEcmax

9(1 − ν)
[Xav(rmax, t) − Xav(r, t)]

σθ(r, t) = ΩEcmax

9(1 − ν)
[2Xav(rmax, t) + Xav(r, t) − 3X(r, t)]

Xav(r, t) is the average composition within a sphere of radius r, calculated as

Xav(r, t) = 3
r3

∫ r

0
X(r, t)r2dr

These expressions are valid for both single-phase and two-phase configurations, assuming

that Ω and E are composition-independent.
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5.2.3 Stress-Intensity Factors

The stress-intensity factor is estimated following the approach of Mattheck [88] using the

integral equation

KI = E

Kref(1 − ν2)

∫ a

0
σθ(x)m(x, a)dx

where Kref is a reference stress intensity factor and m(x, a) is the weight function (a kernel

or Green’s function) against which the diffusion-induced stress profile is integrated.

5.2.4 Non-Dimensionalizing

All numerical simulations are performed with dimensionless variables. The particle radius,

time, interface position, flaw size, and the stress-intensity factor are cast in the following

dimensionless forms:

r̂ = r

rmax
t̂ = tD0

r2
max

ĥ = h

rmax
â = a

rmax
K̂I = 9(1 − ν)KI

cmaxΩE
√

rmax

The boundary conditions for constant-current charging of a spherical particle are zero flux at

the particle center and constant flux at the particle surface. In the dimensionless variables,

the boundary conditions are

∂X

∂r̂

∣∣∣∣∣
r̂=0

= 0 ∂X

∂r̂

∣∣∣∣∣
r̂=1

= − Î

D̃(X|r̂=1)

with the surface flux specified as a dimensionless current Î

Î = (C-Rate)αρr2
max

3D0cmaxF

where α is the theoretical specific capacity (Ah/kg) and ρ is the mass density (kg/m3).

130



5.2.5 LiXMn2O4 as a Model System

LiXMn2O4 is a well-known electrode material which is an ideal model system for the present

study. First, this material has complex phase-behavior: in the typical 4 V electrochemical

cycling window (0.2 ≤ X ≤ 0.995), there are both single phase regions and a region of

two-phase coexistence. While LiXMn2O4 remains cubic throughout this range of lithium

composition, it does not form a continuous solid-solution in the 4 V cycling region, a common

misperception [47, 58, 59, 1]. Indeed, the present results show that even cubic-to-cubic

phase transformations, which have an isotropic strain, can be highly damaging. Upon initial

delithiation, there is a region of continuous solid-solution 0.5 ≤ X ≤ 0.995 followed by two-

phase coexistence for compositions 0.5 ≤ X ≤ 0.25 and finally a second single-phase for

compositions 0.25 ≤ X ≤ 0.20. This complex phase-behavior demands that concentration-

gradient and two-phase-coherency stresses must be treated concurrently to obtain an accurate

description of this material.

Second, this material has a highly non-ideal open-circuit voltage, which means that it has

a non-trivial concentration-dependent chemical diffusivity. Third, many physical properties

of this material have been experimentally measured, enabling a quantitative description with

few free parameters. Table 5.1 summarizes the materials properties of LiXMn2O4 used in

this study. We assume the fracture toughness of LiXMn2O4 is 1 MPa·m1/2, which is similar

to that of LiCoO2 [79].

To quantify the composition-dependent chemical diffusivity using Equation 5.1, we need

a functional form of the open circuit voltage V (X) of LiXMn2O4 and values for the charac-

teristic diffusivity D0 and stress-coupling parameter θ̂. The open-circuit voltage is specified

using the function fit by Doyle, et al. [92], which is given in the Appendix as Equation B.36

and is plotted in Figure 5-2(a). The lower 4.0 V region is a single phase of continuously

varying composition, 0.5 ≤ X ≤ 0.995. The upper 4.1 V plateau is due to two-phase coex-

istence between the Li-rich phase α, with composition Xα = 0.5, and the Li-poor phase β,
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with composition Xβ = 0.25.
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Figure 5-2: (a) Open circuit potential of LiXMn2O4 as given in Ref [92] for 0.2 ≤ X ≤ 0.995.
(b) Blue solid curve is the thermodynamically-consistent chemical diffusivity of LiXMn2O4

with D0 = 6 × 10−9 cm2/s and θ̂ = 4.57 plotted according to Equation 5.1. The chemical
diffusivity is not defined in the two-phase region, for compositions 0.25 ≤ X ≤ 0.5.

Galvanostatic charging (deintercalation) of LiXMn2O4 is simulated in the following way.

Particles start with an initial condition of uniform composition near full lithiation, X(r, t =

0) = 0.995. We solve the single-phase diffusion equation with the specified surface flux—

given as a dimensionless current, Î—until the surface composition reaches the solubility limit

of the lithium-rich α phase, Xα. The lithium-poor β phase is then assumed to nucleate as

a uniform, infinitesimal shell on the surface of the particle, with composition Xβ. Now,

the two-phase Stefan problem is solved by simultaneous solution of a diffusion equation in

each phase and tracking of the moving boundary. The moving boundary problem is solved

until either (1) the surface composition reaches the cutoff composition X(rmax, tend) = 0.2,
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Table 5.1: Properties of LiXMn2O4 used in numerical calculations. References are given
for information taken from or derived from the literature.

Property Symbol Units Value
Young’s modulus E GPa 143 [78]
Poisson’s ratio ν - 0.3 [78]
Fracture toughness KIc MPa·m1/2 1
Characteristic diffusivity D0 cm2/s 6 × 10−9 [91]
Partial molar volume Ω cm3/mol 3.26 [14]
Maximum concentration cmax mol/m3 2.37 × 104 [81]
Density ρ g/cm3 4.28 [81]
Theoretical capacity α mAh/g 148 [81]
Temperature T K 300

or (2) the moving boundary reaches the particle center h(t) = 0. If the surface composition

cutoff (condition 1) is reached first, the simulation is terminated. If the interface reaches the

particle center (condition 2) first, then we continue solving the single-phase diffusion problem

until the cutoff composition is reached at the particle surface and then the simulation is

terminated.

5.3 Results and Discussion

First, we compare and contrast the composition distributions that arise during high and

low rate charging of an electrode material with complex phase-behavior. Figure 5-3 shows

two composition profile ’snapshots’ at high (Î = 1) and low (Î = 0.05) dimensionless cur-

rent. These two dimensionless currents will be used as illustrative examples of high and

low charging rates throughout. For both cases, the first snapshot shows the composition

profile at time of maximal stress-intensity factor in the single-phase region and the second

snapshot shows the composition profile of a two-phase configuration with the interface at

position ĥ(t) = 0.85. The exact time-choices were arbitrary, but the four snapshots highlight
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the important similarities and differences among the single-phase and two-phase configura-

tions at high and low charging rates. Comparing the two dimensionless currents, one finds

the expected result that increasing dimensionless current produces increasing concentration

gradient in each individual phase. Comparing the single- and two-phase configurations, one

sees that the two-phase configurations have discontinuous composition profiles, reflecting the

underlying miscibility gap. These differences in the composition profiles are manifested in

the elastic stress distributions.
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Figure 5-3: Composition profile snapshots for (a) low rate Î = 0.05 and (b) high rate Î = 1
charging. At each charging rate, a representative single-phase and two-phase configuration is
shown. The single phase composition profiles snapshots correspond to the maximum stress-
intensity factor in the single phase region and the two-phase snapshots are taken when the
interface is at ĥ(t) = 0.85.

While the particles are single-phase, elastic stresses are caused only by composition gra-

dients. Figure 5-4 shows the elastic stress distributions corresponding to the intermediate

single-phase configurations at both charging rates. Qualitatively, the single-phase stress dis-

tributions have many similarities. In both cases, the particle is traction-free at the surface

and the particle core is under hydrostatic compression. The radial stress goes to zero at

the particle surface and the tangential stress varies smoothly from tension near the particle

surface to compression in the particle center. Quantitatively, however, there are differences

between the high- and low-rate stress distributions. The high-rate charge induces more severe
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elastic stresses (greater in magnitude both in tension and compression) than the low-rate

charge; the peak tensile stress at Î = 1 is fourteen times larger than the peak stress at

Î = 0.05.
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Figure 5-4: Elastic stress distributions in single-phase particles charged at (a) Î = 0.05
and (b) Î = 1. Note the different range of stress levels in the two plots; the dashed gray
lines connecting the two plots show this change in scale. Radial stresses, σr, are plotted in
dashed red and tangential stresses, σθ, are plotted in solid blue.

While the particles are two-phase, the elastic stress distributions are dominated by co-

herency stresses and the two-phase stresses are more severe than the single-phase stresses.

Figure 5-5 shows the elastic stress distributions corresponding to the intermediate two-phase

configurations at both charging rates. Again, there are many qualitative similarities between

the two-phase stress distributions from high- and low-rate charging; these two-phase stress

distributions, however, are qualitatively dissimilar from the single-phase stress distributions.

In the two-phase particles, the tangential stress is discontinuous at the phase boundary—

where the composition has changed discontinuously—jumping from tensile in the shell phase

to compressive in the core phase. The radial stress is continuous at the interface, as required

for mechanical equilibrium. As the elastic boundary conditions are not changed between the

single-phase and two-phase configurations, the particle centers are still under hydrostatic
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Figure 5-5: Elastic stress distributions in two-phase particles charged at (a) Î = 0.05 and
(b) Î = 1. In this figure, the ranges are identical in both plots. Radial stresses, σr, are
plotted in dashed red and tangential stresses, σθ, are plotted in solid blue.

compression and the radial stresses still go to zero at the particle surfaces.

Compared to the single-phase elastic stress distributions, the two-phase stress distribu-

tions are remarkably insensitive to the charging rate. Comparing the two-phase configura-

tions with identical interface position, the peak tensile stress at high rate (Î = 1) is only

seventeen percent greater than the peak tensile stress at low rate (Î = 0.05). There are,

however, some subtle differences in the two-phase elastic stress distributions at low and high

charging rates. At low charging rate, the elastic stress distribution is almost pure coherency

stress, with very little contribution from concentration gradients. This is evidenced by the

nearly hydrostatic stress state in the entire core phase. At high charging rate, there is an

additional contribution from concentration gradients in the individual phases and the stress

state obtains a deviatoric component; the coherency-stress contributions, however, remain

clearly dominant.

To make physical predictions about the possibility of fracture, we quantify the fracture

driving force in terms of a stress-intensity factor. The stress-intensity factor takes into

account the magnitude of the stresses acting on a crack and the size of the pre-existing
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flaw, which serves to intensify those stresses. The stress-intensity factor is a function of

flaw size and time: K̂I = K̂I(â, t̂). For self-compensated stress distributions such as those

shown in Figures 5-4 and 5-5, the instantaneous stress-intensity factor–flaw size relationships

have unique maximum values. Therefore, at any given time, we can use the instantaneous

maximum stress-intensity factor as a characteristic descriptor of that state.
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Figure 5-6: Comparison of the time evolution of the maximum instantaneous dimensionless
stress-intensity factor for spherical particles charged at a dimensionless currents of Î = 0.05
and 1. In both cases, there is a local maximum in the single-phase region and the magnitude
of this maximum increases as the dimensionless current increases. However, the global
maximum in both cases occurs in the two-phase region.

For all charging rates presently investigated—spanning two orders-of-magnitude of di-

mensionless current—the maximum stress-intensity factor always occurs in a two-phase state.

Figure 5-6 shows the instantaneous maximum stress-intensity factor as a function of dimen-

sionless time for the low- and high-rate charging with dimensionless currents of Î = 0.05

and Î = 1, respectively. In both cases, there are two local maxima in the instantaneous

stress-intensity factor; the first is caused by low chemical diffusivity and the second is caused

by two-phase-coherency stresses. The first local maximum occurs when the particle is com-

prised of a single phase (α), and is due to a spike in the concentration-gradient stresses when

the chemical diffusivity is depressed to its minimum value for compositions 0.7 ≤ X ≤ 0.9.
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The second, global maximum occurs when the particle is two-phase. For the high-rate charge

(Î = 1), the stress-intensity factor is still increasing when the charge simulation ends; the

terminal surface concentration was hit before the phase boundary reached the particle center.

At lower charging rates, the stress-intensity factor peaks and then decays in the two-phase

region.

The two-phase maximum occurs due to the tradeoff between magnitude of the elastic

stress and size of the affected flaws. Initially, the magnitude of the stress is highest, but it

quickly turns from tensile in the shell to compressive in the core, so only very small flaws

are substantially affected. When the interface is deep in the particle, very large flaws can be

affected, but the tensile stress in the shell is not very large. Most significantly, the stress-

intensity factor in the two-phase region is over an order of magnitude larger than in the

single-phase region. Thus, we expect that the fracture of these particles is dominated by the

two-phase coherency rather than by concentration-gradient stresses.
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Figure 5-7: Comparison of the maximum dimensionless stress-intensity factors in single-
phase and two-phase configurations of spherical particles of LiXMn2O4 charged at different
dimensionless currents Î. Both axes are logarithmic. Also shown are the dimensionless
stress-intensity factors for the simulations from Chapter 2 with θ̂ = 4.57 and the open-
circuit potential of LiXMn2O4.
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The same two local maxima—one local single-phase maximum and the global two-phase

maximum—are found for every charging rate investigated. As shown in Figure 5-7, the

single-phase maxima show a strong linear dependence on the dimensionless current; across

the two orders-of-magnitude increase of dimensionless current, the maximum single-phase

dimensionless stress-intensity factor increases by a factor of 102. In contrast, the two-phase

maxima are nearly insensitive to the charging rate, increasing by only twenty-three percent

acrosss the two orders-of-magnitude range of dimensionless current. Even in absolute, rather

than relative terms, the increase in the single-phase maximum is greater than the increase

in the two-phase maximum.Also shown in Figure 5-7 are the dimensionless stress-intensity

factors for a single-phase material with θ̂ = 4.57 and the open-circuit voltage of LiXMn2O4,

as were determined in Chapter 2. The single-phase maxima in the present study, and the

results from Chapter 2 follow nearly identical scaling with increasing dimensionless current.

We construct an electrochemical shock map for LiXMn2O4 which accounts for the com-

plex phase-behavior of this material by restoring dimensions to the data in Figure 5-7; the

dimensional electrochemical shock map is shown in Figure 5-8. The electrochemical shock

map is a graphical construction which summarizes the critical combinations of particle size

and C-Rate which can cause fracture of individual electrode particles [1]. The critical sizes

determined from the overall maximum dimensionless stress-intensity factors (those in the

two-phase regions) are plotted as the solid red line. The hypothetical single-phase critical

sizes, as determined in Chapter 2 are plotted as the dashed black line. This electrochemical

shock map shows that over a wide range of practical particle sizes and C-Rates, fracture of

LiXMn2O4 is dominated by two-phase-coherency stresses. Even to C-Rates as high as 1000C,

two-phase-coherency stresses are the dominant electrochemical shock mechanism. The crit-

ical sizes are plotted here assuming a fracture toughness of KIC = 1 MPa · m1/2, which is

similar to the measured fracture toughness of LiCoO2 [79]. The line for electrochemical cy-

cling through the two-phase region is extrapolated to very low C-Rates, shown as the dashed
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Figure 5-8: Electrochemical shock map for LiXMn2O4, accounting for both concentration
gradient stresses and coherency stresses, assuming a fracture toughness of KIC = 1 MPa·m1/2.
Also shown is the hypothetical failure line for a single-phase LiXMn2O4-like material, as
quantified in Chapter 2. Across a wide range of practical particle sizes and C-Rates, the
dominant electrochemical shock mechanism is two-phase coherency stresses, rather than
concentration-gradient stresses. Both axes are logarithmic. Both lines are extrapolated
beyond the range of parameter space which was explicitly modeled and this is indicated by
the fine dashes.
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continuation of the solid red line in Figure 5-8 and the line for the single-phase region is

extrapolated at very high C-Rates.

Analogous effects may be anticipated in other materials with complex phase-behavior. An

obviously analogous system is the high voltage spinel, LiXMn1.5Ni0.5O4, which is isostructural

and has similar transformation strains, in both the ordered and disordered phases. The

disordered phase of this material has nearly identical phase-behavior, with a region of solid-

solubility followed by two-phase coexistence, while the ordered phase is completely phase-

transforming with two regions of two-phase coexistence.

The critical size is strongly sensitive to the magnitude of the transformation strain.

In their analysis of LiXFePO4 coherency-stress fracture, Hu, et al. have noted that the

critical size for fracture due to two-phase-coherency stresses scales in proportion to the

square of the transformation (misfit) strain, ϵ2 [72]. Therefore, we anticipate that chemi-

cal modifications which reduce the misfit-strain between end-member phases offer a route

to dramatic improvements in electrochemical shock resistance. Previous investigations of

chemically modified spinel materials, both LiXMn2O4 and LiXMn1.5Ni0.5O4, have demon-

strated that substitutions which reduce the misfit strain are effective in limiting capacity

fade [160, 41, 122, 43, 123]. We speculate that the reduced driving force for electrochemical

shock contributes to the improved cycle-life of these materials.

The core-shell model we have used may not apply to all phase-transforming electrode

materials [12, 161]. For equal phase-fractions, a core-shell configuration has much higher

elastic energy than a planar interface [12]. Since the spherical core-shell geometry exaggerates

the elastic stresses, it is useful to compare to the static (zero-current), two-dimensional finite

element calculations of two-phase-coherency stress fracture in a slab-like LiXMn2O4 particle

with a planar interface from Chapter 4; there, we found a critical particle size of 1.9 µm.

Therefore, while the core-shell model exaggerates the stored elastic strain energy compared

to a planar interface, the main conclusion that two-phase-coherency stresses dominate the
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fracture of LiXMn2O4 is unchanged.

5.4 Conclusions

A kinetic model for electrochemical shock in phase-transforming electrode particles is pre-

sented; this model predicts that for micron-sized particles, electrochemical shock is possible

in LiXMn2O4, even at vanishly small C-Rates. The model predicts a critical particle size on

the order of one micron, below which electrochemical shock can be avoided in this material.

For particles larger than this critical size, two-phase-coherency stresses are the dominant elec-

trochemical shock mechanism over a wide range of C-Rates. Two-phase-coherency stresses

are an active electrochemical shock mechanism in any lithium storage compound that has

a miscibility gap, even cubic materials. As most technologically important lithium stor-

age compounds form non-ideal solutions with single-phase regions and miscibility gaps, this

electrochemical shock mechanism is ubiquitous. It is now fair to raise the question: are

there any commercially important lithium storage compounds for which C-Rate-dependent

electrochemical shock mechanisms are dominant? Although two-phase-coherency stresses

may be the dominant electrochemical shock mechansim in many materials, crystal chemical

engineering to shrink miscibility gaps and/or to reduce the misfit strains between coex-

isting phases can be effective to design electrohemical shock resistant materials. Finally,

this electrochemical shock mechanism will apply more generally to any intercalation mate-

rial that undergoes a coherent first-order phase-transformation with varying concentration;

the present study focuses on lithium-storage compounds as the best available example of

this phenomenon, but it will occur in other ion-intercalation materials such as sodium- and

magnesium-intercalation materials.
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Chapter 6

Quantifying Reliability Statistics for

Electrochemical Shock in Brittle

Materials

6.1 Introduction

The mechanical reliability of brittle materials is inherently stochastic and is sensitive to both

pre-existing flaw populations—often resulting from processing and fabrication processes—

and service conditions. In structural applications, mechanical strength distributions are

conventionally described by Weibull statistics, which capture the correct scaling of failure

probability with respect to sample size and the applied load. Weibull models are conven-

tionally formulated with a characteristic mechanical stress as the independent variable, but

many non-structural applications of brittle materials generate substantial—and microstruc-

turally heterogeneous—stress states, which can drive the materials to mechanical failure. For

example, large and heterogeneous stresses can arise from thermal expansion anisotropies,

electrochemical cycling-induced compositional changes, and incompatible deformations in
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polycrystalline piezoelectric ceramics. In these cases, it may be advantageous to formu-

late and quantify reliability statistics for in terms of a natural variable for that system:

temperature for thermal shock, composition for electrochemical shock, or electric field for

piezoelectrics. We present a computational Finite Element plus Monte Carlo (FE+MC)

method to quantify reliability statistics in brittle materials subjected to highly heteroge-

neous stresses, and the reliability statistics are formulated in terms of a natural independent

variable for the application at hand.

Several different computational methodologies have been developed to study reliability

statistics in brittle materials. Broadly, these previous studies fall into two categories: models

that analyze heterogeneous microstructural stresses in materials and models that examine the

relationship between flaw size distributions and reliability statistics. The present work com-

bines a microstructurally-resolved elastic analysis with a Monte Carlo study of pre-existing

flaws, which enables a general formulation of reliability statistics in brittle materials. Het-

erogeneous microstructural stresses arise from constrained anisotropic materials, and can be

induced by thermal expansion anisotropies [162, 99, 163, 164, 165] or from electrochemically-

induced composition changes [166]. Some models of this class have included damage accu-

mulation criteria, with various local failure criteria including a scalar metric of the stress

tensor [163, 167, 168, 169], local Weibull statistics [170, 171] or by the use of hybrid ele-

ments [165]. In these models, it is necessary to assume a fixed number of pre-existing flaws

or flaw nuclei, making it difficult to study the effect of a distribution of pre-existing flaws.

Other models have specifically studied the relationship between flaw size distributions and

reliability statistics under loading conditions where analytical stress solutions are possible,

such as flexure or biaxial loading [172, 173, 174]. Many different loading conditions and flaw

size distributions have been examined, and there are clear ties between the pre-existing flaw

distributions and the resulting reliability statistics in each case.

In this chapter, electrochemical shock is analyzed as a first application of this computa-
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tional methodology. The models developed in Chapters 2, 3, and 4 provide microstructure

design criteria to avoid electrochemical shock, but these models do not offer any information

regarding the degradation of such materials in fracture-possible conditions. Furthermore, it

is desirable to develop an understanding of the distribution of likely failure events during

electrochemical shock, as it may be more feasible or cost-effective to design lithium-storage

materials for a tolerable non-zero level of failure rather than designing for zero failure.

This paper is organized as follows. First, the general methodology of the FE+MC

method and the computational details of an initial implementation are described. Second,

the method is validated by considering failure under unaxial tension; the FE+MC method

reproduces Weibull distributions of failure probability, in close agreement with exact numer-

ical results for this problem. Finally, the FE+MC method is used to study electrochemical

shock in polycrsytalline LiXCoO2, which involves heterogeneous stress states arising from

the anisotropic shape changes which occur as this material is electrochemically cycled. The

computed composition-dependent failure probabilities reproduce the key features observed

in in operando acoustic emission measurements made on polycrystalline LiXCoO2 battery

electrodes.

6.2 Methods

The most basic idea of the FE+MC method is to combine a finite element elastic stress

analysis with a Monte Carlo analysis of failure resulting from a population of flaws with a

specified probability distribution of lengths, and which are randomly distributed throughout

a microstructure. The general utility of the finite element analysis allows this method to

be employed to study reliability statistics for a wide range of structural and non-structural

applications. For each hypothetical flaw, the spatially resolved stress distribution information

is combined with the flaw size, position, and orientation to estimate a stress-intensity factor
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that is compared to the fracture toughness KIC to determine if that flaw will cause failure

or not. To estimate failure probabilities, we use repeated trials of the failure analysis with

the same sample.

Each virtual microstructure constitutes a sample and it is assumed to contain a specified

number of flaws. The specific distribution of flaw sizes, positions, and orientations is varied

for each repeated trial on that sample. Each trial, we determine if any of the flaws has a

stress-intensity factor exceeding the fracture toughness; if yes, the sample is considered failed,

if no, then it is safe. This process is repeated a specified number of times (the number of

trials). The failure probability is estimated by the fraction of trials which result in a failure.

Different virtual microstructures (samples) are tested to find estimates of the distribution of

failure probabilities.

6.2.1 General Methods

In this first report on the FE+MC method, it is useful to distinguish between procedures

that any FE+MC implementation should use and the specific computational methods that

we have chosen to employ in this intial demonstration. There are three key features that any

implementation of the FE+MC method should have. First, virtual microstructures approx-

imating the real microstructure of the material of interest must be obtained. The virtual

microstructures can be a digitized representation of a real microstructure, for example ob-

tained from a micrograph, or can be computer-generated. Second, a finite element mesh

approximating the virtual microstructure must be prepared that allows a spatially resolved

calcuation of the elastic stress distributions in the virtual microstructure. The finite element

mesh should allow each grain to have a unique three-dimensional orientation and physical

properties such as elastic modulii and Vegard coefficients consistent with crystallographic

anisotropies of the desired material. And third, the Monte Carlo analysis should combine

the local stress information obtained from the finite element analysis with the size, position,
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and orientation of hypothetical flaws which are randomly distributed throughout the mi-

crostructure to sample a variety of local environments. The sizes of the randomly generated

flaws should be chosen consistenty with an experimental flaw size distribution and the posi-

tion and orientation of each flaw must be specified. This failure analysis should combine all

of the available information to evaluate a physical fracture criterion for each crack.

Any implementation of the FE+MC method should be developed around these general

principles. The specific computational methods and tools used to implement the method may

vary, depending upon the physical problem of interest and available computational resources.

We now describe the details of our initial implementation of the FE+MC method.

(A) (B)

(C)

Figure 6-1: (A) An example virtual microstructure of 100 grains generated by a 2-D
Voronoi construction with pseudorandom seed points, (B) The initial finite element mesh
for the same virtual microstructure which was generated by a simple triangulation of each
grain, (C) A portion of the final refined mesh used for actual FEM calculation with the nodes
sitting along grain boundaries highlighted. Coloring of grains in (B) and (C) is only to help
differentiate between neighboring grains.
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6.2.2 Virtual Microstructures

Computer-generated virtual microstructures, obtained by a two-dimensional Voronoi con-

struction using pseudorandom seed points are used throughout this work. An example of

one of these microstructures, with 100 grains, is shown in Figure 6-1(A). These computer-

generated microstructures are used for easy access to structural information, such as the

location of grain boundaries and triple points which are identified and used throughout the

process. Each virtual microstructure is generated and its structure characterized in Mathe-

matica 8 (Wolfram). Voronoi microstructures with 50, 100, 250, and 500 grains were tested

and 100 grains was found sufficient to give well-converged results for the problems studied

in this paper. For different physical problems, a greater or lesser number of grains may be

required.

6.2.3 Finite Element Calculations

To resolve the elastic stress distributions resulting from the specified duty cycle, an appropri-

ate finite element mesh must be constructed and the resulting boundary value problem solved.

This implementation of the FE+MC method uses OOF2 (version 2.1.7), a 2-dimensional fi-

nite element tool developed at NIST [124, 125, 126, 127] for finite element calculations. To

generate finite element meshes corresponding to our virtual microstructures, we start from

a barebones mesh which is a simple triangulation of each grain as shown in Figure 6-1(B).

This initial mesh is built in Mathematica and is exported along with Python code that auto-

matically drives the refinement of the mesh in OOF2. This automated refinement procedure

ensures that any two calculations may be justifiably compared. Figure 6-1(C) shows an

example of a fully refined mesh used for the elastic stress analysis. The final refined meshes

typically have ≥ 46,000 nodes (92,000 degrees of freedom) with 10 nodes along each grain

boundary. The Python code also specifies the relevant materials properties—elastic prop-
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erties, transformation strains, crystallographic orientation, etc.—and boundary conditions

and then drives the finite element calculation to completion. The resulting boundary value

problems are solved by an iterative conjugate gradient method to a residual error in the

displacment field of ≤ 1 × 10−11, which typically requires ∼ 1500 iterations for the elec-

trochemical shock problems solved here. After solving to a specified error tolerance, the

resulting elastic stress distributions are exported for analysis in conjunction with the re-

tained structural information. Figure 6-7(A) shows a filled contour plot of the three in-plane

components of stress for an example problem of electrochemically delithiated polycrystalline

LiXCoO2 (X = 0.93) with the grain network overlaid. Large tensile stresses are shown in

red and large compressive stresses in blue.

6.2.4 Monte Carlo over Flaw Distributions

To perform the Monte Carlo analysis over hypothetical flaws, we choose flaws with sizes dis-

tributed according to the experimental distribution for surface flaws in glass, as determined

by Poloniecki and Wilshaw [175]. This flaw size probability density is empirically fitted as

(6.1)f(a) = cn−1

(n − 2)!
a−ne−c/a

where f is the probability density, a is the flaw size, c is a characteristic length scale, and

n is a parameter describing the width of the distribution. Figure 6-2 shows this flaw size

distribution plotted for three values of n with fixed c. The key features of this distribution

are that the most probable flaw size is a = c/n and the tail of the distribution scales

as f ∼ a−n. To generate random flaw sizes consistent with this distribution we generate

uniformly distributed random number and invert the corresponding cumulative distribution

function to get appropriately distributed flaw sizes.

The objective of the Monte Carlo failure analysis is to sample different stress states in the

microstructure, using flaws that are randomly distributed throughout the virtual microstruc-
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Figure 6-2: The flaw size distribution, shown for n = 4, 7, 10, with c = 1. The mode flaw
size is a = c/n and the breadth of the distribution decreases as n increases.

ture. At present, we limit the position and orientation of flaws by restricting them to lie

along the the grain boundaries, and therefore the reliability measures reported here refer

strictly to intergranular fracture. With 100 grains, the distribution of grain boundary orien-

tations is nearly uniform. For each flaw, a grain boundary is randomly selected, weighted by

the length of the boundaries, and the position along that boundary is randomly determined.

To estimate stress-intensity factors for each flaw, we need the local normal stress along the

crack. Local normal stress distributions along the grain boundary are extracted by tensor

transformation of the laboratory frame stress tensors and fit it to a cubic polynomial (i.e.

σnn(s) = a + bs + cs2 + ds3, where s, 0 ≤ s ≤ 1, is a parameter which refers to position

along a grain boundary) to smooth noise and to speed later calculations of stress-intensity

factors. An example of the raw data and the fitted cubic polynomial for one randomly se-

lected grain boundary is shown in Figure 6-7(B) and the selected grain boundary is circled

in Figure 6-7(A). Using the polynomial normal stress distribution, the stress-intensity factor

for the hypothetical flaw is estimated by a superposition integral method.
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6.3 Validation—Uniaxial Tension

To validate the FE+MC method, we first consider failure of brittle materials under uniaxial

tension. This problem is useful for validation of our computational method because there is

an exact analytical result for the failure probability in terms of loading and flaw distribution,

and this exact result is very well approximated by Weibull statistics, which observed exper-

imentally for this loading condition. Figure 6-3 shows a schematic depicting an isotropic

material subject to uniaxial tensile loading with a single pre-existing crack, of length 2a and

inclined to the loading direction by an angle β. Analysis by De S. Jayatilaka and Trustrum

shows that for this loading configuration, the Poloniecki flaw distribution (Equation 6.1)

leads to a Weibull distribution of failure probabilities [176, 177]. Therefore, under uniform

tensile loading, our FE+MC model must predict a Weibull distribution of failure probabili-

ties. We validate the FE+MC method by studying random virtual microstructures subjected

to uniform tension and comparing the Weibull modulus obtained from a FE+MC analysis

to that obtained from an exact numerical solution of the failure probabilities for different

flaw-size distributions.

6.3.1 Analytical Results

For a single pre-existing crack chosen from a flaw-size distribution f(a) and with a random

orientation (angle β), the failure probability can be computed as the double integral over

orientation and flaw size [176, 177]

(6.2)F (σ) =
∫ ∞

KIC
πσ2

[∫ π
2

KIC
2aσ2

2
π

f(a)dβ

]
da

Given the flaw distribution of Poloniecki and Wilshaw, this double integral can be solved

exactly. We evaluated the result analytically using Mathematica and found the exact result
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Figure 6-3: Schematic depiction of the sample geometry for the uniaxial tension problem.
The flaw has a size of 2a and the orientation of the flaw is specified by the angle β.

is

(6.3)Fexact(σ) =

(
1
c

)n
cn−1

(
cπσ2

[
Γ(n − 1) − Γ(n − 1, cπσ2

KIc
)
]

+ K2
Ic

[
Γ(n, cπσ2

KIc
) − Γ(n)

])
πσ2Γ(n − 1)

where Γ(z) =
∫∞

0 tz−1e−tdt is the Euler gamma function and Γ(z, a) =
∫∞

a tz−1e−tdt is the

incomplete gamma function.

Using this single crack failure probability distribution function F (σ), the many-crack

failure probability P (σ) for a body containing N cracks is

(6.4)P (σ) = 1 − (1 − F (σ))N

For any desired value of the flaw-distribution width parameter, n, one may numerically

evalute Equation 6.3 to determine the exact single-crack failure probability Fexact(σ) and

then with a specified flaw density N may determine the exact full-sample failure proba-

bility Pexact(σ, N). We regard these exact failure probabilities as benchmarks to which all

approximate methods are compared.
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Empirically, failure probabilities for brittle materials subjected to uniaxial tension are

well modeled by a 2-parameter Weibull distribution

(6.5)P (σ) = 1 − exp
[
−
(

σ

σ0

)m]

where σ0 is the characteristic strength and m is the Weibull modulus. Here, we have taken

the scaling with respect to volume into the definition of the characteristic strength. The

many-crack failure probability Pexact(σ, N) as defined in Equations 6.3-6.4 converges to the

form of a Weibull distribution for large flaw densities (large N). With sufficient number

of flaws (i.e. sufficiently large flaw densities), the Weibull modulus converges and only the

characteristic strength changes as a function of the number of cracks.

The Weibull modulus is often estimated from experimental failure data using a Weibull

plot, which yields the Weibull modulus m as the slope of the line

(6.6)log
(

log
( 1

1 − P

))
= m log σ − m log σ0

We apply this same approach to the exact failure probabilites, fitting the stress-failure data

to a Weibull function for flaw distribution width parameters of n = 3, 5, 7, and 9. For

each value of n, we compute an associated Weibull modulus m. These benchmark Weibull

modulus values are plotted as filled blue points in Figure 6-4. These data points have a line

of best fit with the equation m = 1.36n + 0.12 and this line is drawn as the solid blue line.

6.3.2 FE+MC Results

To validate the FE+MC procedure, we analyzed the problem of uniaxial tension using the

same flaw-distribution width parameter of n = 3, 5, 7, and 9. The results from 100 grain

Voronoi microstructures are reported; tests with 250 and 500 grain virtual microstructures

did not appreciably change the mean Weibull modulus estimates. The mode flaw size c/n

was held constant for all trials. At least 50 samples were tested for each value of the flaw-
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Figure 6-4: Summary of the Weibull modulus results used to validate the FE+MC method.
The exact numerical integration results are shown by the filled blue points and the FE+MC
results are shown by the open red points. The line of best fit for each method is shown with
the equation printed in the Figure.

distribution width parameter n, the reported Weibull modulus is the mean value of pool of

samples. For each sample, 300 trials are used to estimate the Weibull modulus.

The Weibull modulus for each sample is estimated using a typical experimental data

analysis procedure. For each sample, 300 trials with the same virtual microstructure are

performed, each with N = 1000 randomly generated and distributed flaws. For this linear

problem, the failure strength σf of a given trial is determined as the applied stress at which

the first crack in the sample obtains a stress-intensity factor equal to the fracture toughness,

KI = KIC. The trials are ranked in order of ascending failiure strength and the failure

probability is estimated from this rank order, pi = i−0.5
M

where i is the rank and M = 300

(the number of trials). However, this failure probability estimator is not accurate as p → 0

and p → 1; the weighted least squares method due to Bergman [178], which weights trials

with intermediate ranks more heavily, is used to extract more accurate Weibull modulii.

Each trial is weighted as
(6.7)W = A [(1 − p) ln(1 − p)]2

and A is a sale factor chosen so that W takes a maximum value equal to unity. (A ≃ 0.14).

This weight function is plotted as the inset in Figure 6-5(A). The maximum weight occurs
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at p ≃ 0.63.
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Figure 6-5: (A) An example Weibull plot for a single FE+MC sample with 300 trials
and with n = 9, N = 1000, and 100 grains, showing the Weibull modulus (slope) of 13;
(inset) The weight factor used in estimating Weibull modulus; (B) A histogram showing the
distribution of the Monte Carlo estimated Weibull modulus for flaw distribution modulus
n = 9, N = 1000 for 100 samples (different virtual microstructures) of the analysis with
overlaid normal distribution. The mean Weibull modulus is 11.9 and the standard deviation
is 1.0.

Figure 6-5(A) shows a Weibull plot used to extract the Weibull modulus for one sample

with a flaw distribution width parameter of n = 9, showing the fitted Weibull modulus

is m ≈ 13. Each point in the figure represents one of the 300 trials, each of which used

N = 1000 flaws. While there are many parameters which must be checked for convergence,

the number of flaws in each trial is the most sensitive for convergence; it is necessary to

sample adequately from the tail of the flaw size distribution. For all of the values of the flaw

distribution width parameter here tested, N = 1000 gave converged values of the Weibull
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modulus. For larger values of n, a greater number of flaws may be required.

The histogram in Figure 6-5(B) shows the distribution of fitted Weibull modulus for 100

samples with the flaw distribution width parameter of n = 9. These data are reasonably

approximated by a normal distribution, with a mean of 11.9 and a standard deviation of

1.0. Across the range of n values tested, we found coefficients of variation (standard devia-

tion/mean) in the Weibull modulus of 10-15%.

Figure 6-4 compares the FE+MC results to our benchmark results from the direct nu-

merical integration of the exact failure probabilities. The mean FE+MC Weibull modulii

are plotted as the open red data points, and the line of best fit to the FE+MC results

is m = 1.30n + 0.39; this is plotted as the dashed red line. The FE+MC results are in

almost perfect agreement with the exact results for flaw distribution width parameters of

n = 5, 7, and 9. For the very wide flaw distribution with n = 3, the FE+MC method over-

estimates the Weibull modulus. However, the exact results show that this very wide flaw

distribution yields a very low Weibull modulus of m ≊ 3.5, which is very small for engineered

ceramic materials. Thus, the FE+MC method may be confidently applied for most modern

ceramic materials with Weibull modulus m ≥ 6.

6.4 Application to Electrochemical Shock

The FE+MC method is particularly useful for non-structural applications of brittle materials

where heterogeneous stress distributions are generated. One such application arises during

the electrochemical cycling of lithium-storage materials in lithium-ion batteries. While large

composition changes are needed to achieve high storage capacity, these composition changes

are often accompanied by large shape changes, which can cause fracture of the lithium-storage

materials. Such electrochemical cycling induced fracture—“electrochemical shock"—is an

active degradation mechanism in lithium-ion batteries.
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There are several mechanisms which can cause electrochemical shock of lithium-storage

materials, including concentration gradients during high-rate cycling [1, 179], coherent phase

transformations with misfit strains [72, 45] and anisotropic shape changes in polycrystalline

materials [45]. We have shown with micromechanical modeling and experimental acoustic

emission measurements that polycrystalline LiXCoO2 is subject to grain boundary microfrac-

ture [45]. LiXCoO2 adopts the α-NaFeO2 crystal structure in the R3̄m space group and

the lattice parameter changes with varying lithium composition X are dramatically differ-

ent along the a- and c-axis directions [7]. This is mechanism for electrochemical shock is

analagous to thermal shock microfracture in anisotropic refractory materials such as alu-

minum titantate (Al2TiO5).

Previously, we have estimated the grain size below which grain boundary microfracture

is impossible for LiXCoO2 and several isostructural lithium-stroage compounds [45]. This

calculation used an analytical stress analysis of a four-grain ensemble with the grains oriented

in a worst-case arrangment, to maximize the driving force for the growth of a pre-existing

crack at the quadruple junction. [100]. This worst-case scenario provides a lower bound on

the critical grain size, below which it is unfavorable for any pre-existing crack to grow.

While this critical grain size provides a useful design criterion, this model does not offer

any information regarding the degradation of polycrystalline lithium storage materials with

grain sizes larger than this critical size. Furthermore, it is necessary to develop an under-

standing of the distribution of likely failure events during electrochemical shock, as it may

be more feasible or cost-effective to design lithium-storage materials for a tolerable non-zero

level of failure rather than designing for zero failure.

First, it is helpful to review the observations from acoustic emission measurements of

damage accumulation due to electrochemical shock in polycrstyalline LiXCoO2 electrode

materials. Figure 6-6 shows acoustic emission data for a LiXCoO2 monolithic electrode

cycled at slow rate of C/20. Details of the experimental method are reported elsewhere [45].
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The cell voltage is plotted as the blue dashed line, on the left axis and the cumulative

acoustic emission counts—a measure of accumulated damage—is plotted as the red solid

line on the right axis. There is an initial range of compositions over which almost no damage

is accumulated, extending into the two-phase region. Damage begins to accumulate in the

two-phase region and accumulates continuously through to the end of the cycle.
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Figure 6-6: Acoustic emission data collected for a LiXCoO2 electrode electrochemically cy-
cled in a lithium half-cell. The monolithic polycrystalline LiXCoO2 electrode is 760 µm thick
and was pressed to 5/8 inch diameter before sintering. The electrode is charged at a C/20
(20h for full charge) rate to a cutoff voltage of 4.4 V vs. Li+/Li in a 2016 coin cell.

The LiXCoO2 used in this experiment has a typical grain size of 3-5 µm, well above the

critical grain size for microfracture (for a composition of X = 0.50) of 0.42 µm. Therefore,

the observed damage accumulation is expected. We seek now to use the FE+MC method to

better understand the damage accumulation observed in these experimental measurements.

The elastic boundary value problem is modeled for 100 grain two-dimensional Voronoi

microstructures. Each grain is assigned a random crystallographic orientation and a stress-

free strain corresponding to its lattice parameter change relative to a composition of X = 1.0.

The composition-dependent lattice parameters are taken from from X-ray diffraction mea-

surements [7]. The boundaries are assumed to be traction-free and a plane strain condition

is applied to simulate the third dimension. We use the available experimentally measured

elastic and fracture properties for LiCoO2; Young’s modulus of 174 GPa, Poisson ratio of
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0.3, and fracture toughness KIC = 1 MPa m1/2 [79].

Figure 6-7(A) shows filled contour plots of the three in-plane components of elastic stress

distribution for a hypothetical microstructure of LiXCoO2 with X = 0.93 and an average

grain size of ∼3 µm. In the figures, x̂ is horizontal and ŷ is vertical. The highly tensile

regions are colored in red and highly compressive regions in blue. The figures show that the

elastic stresses are singular near grain boundaries and junctions.
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Figure 6-7: (A) Heat maps of the three in-plane stress components for a hypothetical
microstructure of LiXCoO2 with X = 0.93. With x̂ horizontal and ŷ vertical; (B) Example
of a polynomial fit to calculated normal stress along a grain boundary. Line is the third-order
polynomial, points are the extracted data; (C) A probability density histogram of 100,000
randomly generated flaws with c = 0.032 µm and n = 7 with the the theoretical flaw size
distribution overlaid. The flaw size axis is logarithmic.

To match the experimental microstructures as closely as possible, the virtual microstruc-

ture is assigned an average grain size of ∼3 µm. The flaw size distribution used for all of
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these trials has n = 7 (corresponding to a Weibull modulus of m ≈ 10, a reasonable value

for a modern ceramic) and a characteristic flaw size of c = 0.032 µm, approximately one

one-hundredth of the grain size. Each trial uses N = 1000 hypothetical flaws for the Monte

Carlo analysis, the same flaw density as used in validation tests. At each composition, 20,000

trials are performed to estimate the failure probability. The FE+MC analysis is performed

on 12 samples to provide some insight on the distribution of composition-dependent failure

probabilities.

As LiXCoO2 has a miscibility gap for compositions 0.93 ≥ X ≥ 0.74, we must develop a

strategy to analyze compositions inside the two-phase region [7]. Three compositions inside

the two-phase region are tested for each sample. In each two-phase configuration, individual

grains are homogenously single-phase, but the phase assigned to that grain is randomly

selected. The three composition points are generated by assigning 25, 50, and 75% of the

grains to transform to the β-phase with a limiting composition of X = 0.74, as shown in

Figure 6-8. The actual volume fractions of the two phases are calculated from the area

fraction of the grains assigned to that phase. A one-dimensional weighting is applied to the

random grain selection to induce a composition gradient in that direction.

Figure 6-9 shows the FE+MC composition-dependent failure probability estimates for

each of the twelve unique samples we tested. For some—but not all—of these samples, there

is a non-zero failure probability starting in the two-phase region, from a composition around

X ∼ 0.88. This incubation period and the composition of initial damage accumulation is

in excellent agreement with the experimental observations of Figure 6-6. The experimental

data shows a jump in damage for compositions X ≤ 0.90. For all samples, the failure

probability becomes non-zero, and grows monotonically with decreasing lithium composiiton

for compositions 0.74 ≤ X ≤ 0.50.

Using the sample with the greatest failure probability at a composition of X = 0.50

tested here, it is possible to determine the grain size below which no microfracture would
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fβ = 0.257 fβ = 0.537 fβ = 0.766

Figure 6-8: Our approximate method to handling the two-phase region. Assign each grain
to be homogeneously single phase, but randomly select which grains are in each phase. For
each sample, choose three points in the two-phase region, with 25, 50, and 75 % of grains
assigned to the β (Li-poor, X = 0.74) phase. Weight the random selection of grains by the
y position of the seed point to induce a composition gradient. Calculate the actual phase
fraction from the area fraction. Li-rich phase is darker, Li-poor phase is lighter.

� � � � �
�

�

�

�
�

� � � � � �
�

�

�

�

� � � � � �
�

�

�

�

� � � � � � �
�

�

�

� � � � � �
�

�

�

�

� � � � � �
�

�

�

�

� � � � � � �
�

�

�

� � � � � �
�

�

�

�

� � � � � �

�

�

�
�

� �
�
� �

�

�

�

�

�

� � � � � �
�

�

�

�

Fa
ilu

re
 P

ro
ba

bi
lit

y

X in LiXCoO2

1.0

0
1.0 0.50.9 0.8 0.7 0.6

0.8

0.6

0.4

0.2

Two-phase
Region

Figure 6-9: Summary of the composition-dependent FE+MC failure probability estimates
for delithiation of polycrystalline LiXCoO2. Results for twelve different samples (virtual
microstructures) are shown. Points are the calculations and lines connect the calculations
for the same microstructure. The flaw distribution had a width parameter of n = 7 and a
characteristic flaw size of c = 0.032 µm. Each trial used N = 1000 flaws and the failure
probability at each point is estimated from 20,000 trials.
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be observed. That is, we ask the question: what grain size is necessary to make the failure

probability at X = 0.50 go to zero for all of the samples? This grain size is found to

be 0.68 µm, in very good agreement with the conservative estimate of 0.42 µm from the

four-grain, worst-case scenario model [45].

Insights gained from the analytical modeling show that the anisotropy of the shape change

is the principal factor in driving this grain boundary microfracture of LiXCoO2. To test the

role of anisotropy, we performed FE+MC calculations on three samples with the same virtual

microstructures, elastic properties, and boundary conditions, but with the shape change set

to isotropic and equal to the volume change for LiXCoO2 at the same composition. In these

three samples, we found failure probabilities identically zero at all compositions, validating

the conclusion anisotropy is the key driver of fracture. These results further suggest that

even in the two-phase region, the anisotropy of the coherency strain drives electrochemical

shock.

6.5 Discussion

In summary, we have developed a Finite Element + Monte Carlo (FE+MC) method to quan-

tify reliability statistics of brittle materials. This method is particularly useful for studying

non-structural applications which induce heterogeneous stress distributions. The FE+MC

method allows reliability statistics to be formulated in terms of variables that are natural

for the material and application of interest. This method is stochastic, microstructurally

resolved, and explicitly considers pre-existing flaw distributions.

We have validated the FE+MC method using exact results for uniaxial tensile load-

ing, reproducing the expected scaling of Weibull modulus with respect to flaw distribution

parameters. As an initial demonstration of the FE+MC method, we apply it to study electro-

chemical shock of polycrystalline LiXCoO2. Failure probabilities predicted by the FE+MC
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method are in excellent agreement with observations from experimental acoustic emission

measurements.

The FE+MC method can be applied to study reliability statistics of brittle materials

in many other technologically important applications. For example, heterogeneous stress

distributions are also commonly encountered in thermal shock of refractory materials and in

piezoelectric ceramics. One might apply the FE+MC method to study reliability statistics

in these and other non-structural applications. This would enable quantitative estimation

of reliability statistics in terms of variable which are natural to that problem, such as tem-

perature or electric field.

Our implementation of the FE+MC method could be extended in many directions. In-

stead of computer-generated virtual microstructures, one could implement the method using

experimentally determined microstructures (for example scanning electron microscope im-

ages with or without orientation information from electron backscatter diffraction). With

experimental microstructures, it will be important to identify co-existing phases and the

interfaces between them. One might wish to study the effect of crystallographic texture on

reliability statistics, and this could be incorporated by correlating the orientations between

adjacent grains. For the specific application of electrochemical shock, it may be desirable to

incorporate electrochemical kinetics in the finite element model, which would enable simul-

taneous treatment of all electrochemical shock mechanisms.

As the FE+MC method may be applied to arbitrary loading conditions, it could be

used to enable mechanical proof-testing for non-structural applications. For example, one

might combine mechanical reliability tests with a FE+MC analysis to determine the flaw

size distribution parameters (n, c, and N) for the material of interest. Then, the fitted flaw

distribution information can be used in a FE+MC model that specifies the intended duty

cycle. Thus, an acceptable level of failure in the actual duty cycle can be linked to a specified

mechanical strength.
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6.6 Conclusions

Coupling of finite element elastic analysis with a Monte Carlo fracture analysis—using ex-

perimental flaw-size distributions and fracture mechanics failure criteria—enables a general

method for quantification of reliability statistics of brittle materials. Further, this method-

ology allows reliability statistics to be developed in terms of independent variables which are

natural to the application, rather than in terms of mechanical variables which may not be

externally applied. The initial application of this methodology to electrochemical shock in

polycrystalline LiXCoO2 gives excellent agreement with damage accumulation as determined

from acoustic emission measurements.
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Chapter 7

Conclusions: Designing

Electrochemical-Shock-Resistant

Ion-Intercalation Materials

The mechanisms of electrochemical shock in ion-intercalation materials have been identified,

classified, and modeled. In a given material, the active electrochemical shock mechanisms

depend on many factors, including phase-behavior, crystal symmetry, microstructure, elec-

trochemical cycling rate (C-Rate), and composition (state-of-charge).

In this concluding chapter, microstructure design criteria and materials selection criteria

to mitigate electrochemical shock are provided, based on insights gained from the detailed

study of electrochemical shock mechanisms. Most existing ion-intercalation materials are

subject to C-Rate-independent electrochemical shock mechanisms, and therefore electrode

microstructures must be engineered to avert electrochemical shock. When selecting and

engineering new ion-intercalation materials (i.e. compositions), materials which are sensitive

only to C-Rate-dependent electrochemical shock should be preferred. Finally, avenues of

future work, including fatigue effects in electrochemical shock are described.
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7.1 Microstructure Design Criteria for Existing Mate-

rials

Most known ion-intercalation compounds, including Li- and Na-storage compounds have

anisotropic shape changes and/or first-order phase-transformations with non-zero transfor-

mation strains. In such materials, it is essential to engineer microstructures to avoid the

C-Rate-independent electrochemical shock mechanisms.

To design electrochemical shock resistant electrodes, all active electrochemical shock

mechanisms in a given material system must be considered, including C-Rate-dependent and

C-Rate-independent mechanisms. In Chapter 2, the electrochemical shock map—a graphical

tool that shows regimes of failure depending on C-Rate, particle size, and the materials in-

herent fracture toughness KIC—was introduced. However, as described in Chapters 3 and 4,

anisotropic polycrsytalline materials, and materials with first-order phase-transformations

are subject to C-Rate-independent electrochemical shock.

The electrochemical shock map construction can be directly extended to incorporate all

possible C-Rate-independent fracture mechanisms, as we show schematically in Figure 7-1.

Each panel shows a hypothetical electrochemical shock map, presented as a log-log plot of

C-Rate against primary crystallite size, for selected combinations of phase behavior and par-

ticle microstructure. In each electrochemical shock map, the solid line represents the border

between “safe” (no fracture) conditions and conditions where fracture becomes possible and

the dotted lines represent metastable extensions of active, but not limiting, electrochemi-

cal shock mechanisms. We start with the previously described single particle, solid solution

case—detailed in Chapter 2—which is shown here in panel (a). For an equiaxed single crystal

particle, the primary crystallite size is equal to the particle size and the electrochemical shock

map contains a single downward sloping line quantified by the materials fracture toughness

KIC. In single crystal particles of materials with first-order phase-transformations, such as
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Figure 7-1: Schematic electrochemical shock maps for different combinations of phase
behavior (solid solution vs. phase transformation) and particle microstructure (single crystal
vs. polycrystalline). Operating conditions that will avoid electrochemical shock degradation
are bounded to the top and left by the solid red lines, which is determined by materials
properties including Vegard coefficients, ionic diffusivity, elastic and fracture properties.

LiXMn2O4, misfit coherency stresses may cause fracture above a material-specific critical

crystallite size, as described in Chapter 4. This critical crystallite size is shown as a vertical

(C-Rate-independent) line on the electrochemical shock map, as shown in panel (b). For

materials with partial miscibility gaps, there is a knee in the failure curve of panel (b) is de-

termined by the competition between C-Rate-dependent concentration-gradient stresses and

C-Rate-independent coherency stresses. In a given material, this can be determined using the

model presented in Chapter 5; for LiXMn2O4, C-Rate-independent coherency stresses dom-

inate for particles greater than ∼1 µm and up to C-Rates of ∼1000C. For bulk LiXFePO4,

Li-composition changes are taken up almost entirely by a first-order phase-transformation,
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and coherency stresses are the dominant electrochemical shock mechanism. In single crys-

talline particles of layered materials such as LiXCoO2, there are misfitting first-order phase-

transformations which can cause fracture of individual crystallites. In the case of dense

polycrystalline particles, the secondary (overall) particle size determines the C-Rate depen-

dence of electrochemical shock for the particle. We represent this secondary particle size

dependence on the electrochemical shock maps with a family of C-Rate-dependent failure

lines, each for a specific secondary particle size, as shown in panels (c) and (d). Equiva-

lently, this family of curves corresponds to secondary particles with equal primary crystallite

size, but different numbers of grains (Ngrains); secondary particles comprised of more grains

are susceptible to fracture at lower C-Rates. As documented in Chapter 3, materials with

anisotropic Vegard coefficients and polycrystalline microstructures are subject to a different

C-Rate-independent electrochemical shock mechanism when the primary crystallite size ex-

ceeds a material-specific critical size; this case is shown in panel (c). Using the analytical

model presented in Chapter 3, this size can be determined from the composition-dependent

lattice parameters and the elastic and fracture properties of the material. Finally, materials

with both first-order phase-transformation and polycrystalline microstructure—such as the

LiXCoO2 considered in Chapter 6—are subject to both C-Rate-independent electrochemical

shock mechanisms, as shown in panel (d). In this final case, the degradation mechanism with

the smaller critical primary crystallite size limits the available design space. While we have

drawn panel (d) for a particular case where grain boundary microfracture dominates (based

on our understanding of LiCoO2, NCA, and NMC), it is possible that coherency stress frac-

ture will dominate in other materials systems. These C-Rate-independent electrochemical

shock mechanisms provide new critical microstructural length scales that must be considered

to rationally design electrochemical shock resistant battery electrodes.
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7.2 Materials Selection Criteria for Electrochemical-

Shock-Resistance

Insights gained from this thesis provide new materials selection criteria for electrochemical-

shock-resistant ion-intercalation materials

In non-cubic materials, it is more important to minimize the principal shear strain (i.e.

the anisotropy) than to minimize the net volume change. The benefits of such compositional

engineering have been realized in Mg-doping in NCA. In phase-transforming materials, the

misfit strains drive coherency stresses; therefore, the misfit strains should be minimized.

This may be achieved by selecting materials which reduce the transformation strain, or

which shrink the miscibility gap. This may be achieved through engineering the size and

composition of electrode materials, as has been done in LiXFePO4.

To avoid both of the C-Rate-independent electrochemical shock mechanisms, materials

which are cubic and single-phase over the entire composition region in which electrochemical

cycling is performed are preferred, such as LiXFe0.08Mn1.5Ni0.42O4. In this case alone, it is

desirable to minimize the total volume change, to reduce the sensitivity to C-Rate-dependent

concentration-gradient stresses.

7.3 Future Work

7.3.1 New Materials

One direction for future work is to explore the pseudo-ternary LiMnxNiyFezO4 (x + y + z =

2) system to identify the compositions which support single-phase solid-solution electrode

materials. In this model system, compositions which optimize energy density while retaining

the desired phase-behavior may be identified. Further, the identification of a stable single-

phase ion-intercalation material enables experimental testing of the concentration-gradient
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mechanism described in Chapter 2.

Many of the design criteria for electrochemical-shock-resistant materials are consonant

with existing materials selection criteria for high-performance ion-intercalation materials.

The spinel systems, where misfit strains may be compositionally tuned, can connect with

previous obversations in olivine materials that strain accomodation promotes facile phase

transformation kinetics. A similar effect may be anticipated in the cubic spinel materials,

and this can be studied by Potentiostatic Intermittent Tittration Test (PITT) experiments.

7.3.2 Electrochemical Shock Fatigue

This thesis has focused on electrochemical shock during the first electrochemical cycle, using

fracture analyses. Fatigue may promote mechanical failure if sub-critical cracks (i.e., those

having stress-intensity factor less than than the fracture toughness) are present. Cyclic

charging and discharging cycles induce cyclic tension and compression, which is known to

promote sub-critical crack growth. The rate of sub-critical crack growth is characterized by

the empirical relationship known as Paris’ Law, expressed as

(7.1)da

dN
= CParis · ∆Kp

where CParis and p are empirical parameters. Repeated cycling causes the initially small

crack to grow until its stress-intensity factor reaches the fracture toughness and unstable

crack growth—and potentially, terminal failure as was discussed previously—occurs. The

method developed in this study can be used to calculate ∆K for different charge-discharge

cycles to predict fracture events throughout the life of an intercalation electrode. Experience

in fatigue crack growth in brittle materials shows that CParis and p are sensitive to small

changes in environmental conditions. Because the crack tip is an electrochemically active

environment, such sensitivity should be expected in the case of electrochemical shock.
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Further, the observations of high dislocation densities in certain ion-intercalation mate-

rials after cycling suggests that dislocation-mediated deformation may be possible. Analysis

of this electrochemical shock fatigue problem may help explain observations of continual

mechanical degradation—and impedance growth—accumulating over extended cycling.
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Appendix A

Methods

A.1 Experimental Methods

A.1.1 Materials

LiCoO2 powder was sourced from AGC Seimi Chemical Co. Ltd. (Kanagawa,

Japan). LiMn1.5Ni0.5O4 powder was sourced from NEI Corporation (Somerset, NJ).

LiFe0.08Mn1.5Ni0.42O4 was synthesized by solid state reaction from stoichiometric amounts

of Li2CO3, Fe3O4, Mn2O3, and NiO sourced from Sigma-Aldrich. The precursors were ball-

milled in acetone for 24h and then calcined in air at 900◦C for 24h with heating and cooling

rates of 5◦C min−1.

Sintered electrodes were prepared by uniaxial pressing at 140 MPa in either 1/2 or 5/8

inches die and held for 2 minutes. Green body electrodes were then sintered at 950◦C for 1.5h

(for LiCoO2) and 12h (for LiMn2O4 and LiMn1.5Ni0.5O4) with a heating rate of 9◦C min−1 and

a furnace cool. Coarsened powders of LiMn2O4, LiMn1.5Ni0.5O4, and LiFe0.08Mn1.5Ni0.42O4

are prepared by grinding sintered electrodes by hand in an agate mortar and pestle until a

free-flowing powder is obtained.
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A.1.2 Electrochemical Measurements

The composite electrodes used for acoustic emission measurements are formulated with

90/5/5 (wt. %) of active / Super P / Kynar 2101 binder and the composite was prepared by

mixing in 1-methyl-2-pyrrolidinone (NMP), drying on a hot plate overnight, then grinding

by hand in an agate mortar and pestle. The resulting composite powder was then uniaxially

pressed into pellets at 140 MPa in a 1/2 inch die and held for 1 minute to obtain 0.5 mm

thick electrodes. All electrodes (sintered and composite) were held in place on the positive

coin cell can with a conductive binder that is a mixture of PVDF, Ketjen black ECP and

vapor grown carbon fiber (VGCF) in NMP. This binder was cured overnight at 120◦C in a

vacuum oven before transferring the electrodes to the glovebox.

The composite electrodes used for composition-dependent lattice parameter measure-

ments are prepared in an identical manner, but with a formulation of 80/10/10 (wt. %) of

active / Super P / Kynar 2101 binder. Sintered and composite electrodes were prepared

were mounted in 2016 coin cells (MTI Corporation, Richmond, CA).

For LiCoO2 and LiMn2O4, the electrolyte was a blend of alkyl carbonates with 1.2 M

LiPF6 salt; a 1:1 mixture of ethylene carbonate and diethyl carbonate with 1 M LiPF6

was used for LiMn1.5Ni0.5O4 and LiFe0.08Mn1.5Ni0.42O4. All cells used 2 pieces of Tonen

E20MMS separator and a Li metal (Alfa Aesar) negative electrode. Electrodes were cycled

on a MACCOR 4000 tester at constant current to a materials-specific cutoff voltage.

A.1.3 Acoustic Emission

Acoustic emission measurements are collected with a Physical Acoustics Corp µDISP instru-

ment controlled by AEWin software on a laptop PC. A micro-30 sensor was attached to the

positive electrode side of coin cell, using vacuum grease as a couplant and held in place with

rubber bands. Between the sensor and controller, a 2/4/6 voltage pre-amplifier was set to
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Figure A-1: Schematic experimental set-up for acoustic emission measurements.

40 dB gain; no software gain was used. The raw data are collected with an analog frequency

filter with a bandpass of 100 kHz to 2 MHz and analog to digital conversion is done at 1

MHz. The event threshold was set at 24 dB with a front-end filter that excludes events that

register less than 3 counts; these test parameters were chosen to give minimal background,

as measured on an identically prepared cell that is not electrochemically cycled.

A.1.4 Scanning Electron Microscopy

Scanning electron microscopy is performed using a JEOL 5910 instrument. Typical acceler-

ating voltages and working distances are 15 kV and 10-15 mm, respectively. Unless otherwise

indicated, the micrographs are secondary electron images.

A.1.5 X-Ray Diffraction

X-Ray diffraction measurements are taken on a PANalytical X’Pert Pro instrument using

copper Kα tube-source radiation. Measurements are collected with the high-speed optics

in a Bragg-Brentano θ − 2θ geometry. Powder samples are mounted in 16 mm diameter

wells centered on the open Eulerian cradle. Fixed 1
2

◦ slits are used for both the incident and
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diffracted beams. A 10 mm width limiting mask, 1◦ anti-scatter slit and 0.02 radian Soller

slits are also used for all measurements.

Lattice parameters are determined from the measured patterns by profile fitting. Peaks

are fit with asymmetric shape and width. Lattice parameters are refined by first refining

without sample displacement and then turning it on in the refinement. Fe-containing samples

most reliabily refined by starting from a reference pattern for LiMn1.5Fe0.5O4.

A.2 Finite Element Strain-Energy-Release Rate Cal-

culations

The strain-energy-release rates computed from two-dimensional finite element calculations.

Build an initial mesh which includes the crack of desired length, and then use the tools

in oof2to refine it. Refinement driven by automated set of Python scripts. Figure A-2a

shows an example initial mesh overlaid on the two-phase slab-like particle with a crack with

fractional length a
L

= 0.3 and Figure A-2b shows the refined mesh. Figure A-3 shows the

refined mesh near the crack tip, where the smallest elements have a size of ≃ 5 × 10−3 of the

crack length An analogous method was used to refine meshes for strain-energy-release rate

estimates for four-grain ensemble of Chapter 3.

A.3 Numerical Methods for Single Particle Model

The thermodynamic solution cases in Chapter 2 with Nernstian open-circuit voltage pro-

files are solved numerically by the method of lines with spatial discretization using centered

finite differences, using 400 spatial grid points. Time integration is performed using MAT-

LAB’s ode15s solver. The “LiXMn2O4-like” case is solved with the built-in pdepe solver in

MATLAB R⃝. The spherical particle is discretized into 1,000 spatial points and time stepping
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(a) Starting mesh built by hand in Mathemat-
ica.

(b) Final mesh used for computation, after re-
finement steps in oof2.

Figure A-2: Finite element meshes used for strain-energy-release rate estimates in oof2.
Example shown has a

L
= 0.3.

is handled by the ode15s adaptive integrator.

A.4 Moving Boundary (Stefan) Problem

The moving boundary problem of Chapter 5 is solved numerically by the method of lines

with spatial discretization using centered finite differences. In the single phase regions, time

201



Figure A-3: Zoomed in view of the crack tip area of the refined mesh used to compute the
strain-energy-release rate. Example shown has a

L
= 0.3. The highlighted segment adjacent

to the crack tip has a length which is ≃ 5 × 10−3 of the crack length.
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integration is performed using MATLAB’s ode15s solver. In the two-phase regions, we solve

using explicit finite differences (Forward Euler). We have performed numerical calculations

for dimensionless currents 0.01 ≤ Î ≤ 1. We use 300 spatial grid points and a fixed time

step in the two-phase region of ∆t̂ = 2.8 × 10−8 for calculations with dimensionless currents

0.05 ≤ Î ≤ 1 and 150 spatial grid points and a fixed-time step in the two-phase region of

∆t̂ = 1.3 × 10−6 for Î = 0.01. The interface is tracked between grid points by assuming that

the concentration profile on each side of the interface is described by a quadratic polynomial,

a strategy introduced by Zhou and North [159].

A.5 Method of Weight Functions

The method of weight functions uses an integral transform to calculate stress intensity factors

under arbitrary loads. First, this method requires a reference case where the crack geometry,

stress profile, and corresponding stress intensity factor are all known. Then, the the method

of weight functions can be applied to calculate the stress intensity factor for arbitrary load-

ing of the same crack geometry. The non-uniform diffusion-induced stress profiles due to

galvanostatic cycling beg for the method of weight functions, but a satisfactory reference

load for the crack geometry shown in Figure 2-1 does not exist, so we use the approximate

geometry shown in Figure 2-2. This type of geometric approximations typically affects the

numerical value of the calculated stress intensity factor by less than one order of magnitude,

usually on the order of
√

π.

We apply the method of weight functions to calculate the stress intensity factor, following

the approach of Mattheck, et al. [88]. The desired stress intensity factor is calculated from

the reference case as
(A.1)KI = E ′

Kref

∫ a

0
σθ(x)∂ur(x, a)

∂a
dx

where for plane strain, E ′ = E/(1 − ν2) and for plane stress E ′ = E. The weight function
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m(x, a) has been defined in terms of the displacement field near the crack tip

(A.2)m(x, a) = ∂ur(x, a)
∂a

The displacement field, ur(x, a) is calculated from the reference stress intensity factor by the

method of Petroski and Achenbach [89]

(A.3)ur(x, a) = σ0

E ′
√

2

[
4F

(
a

l

)√
a
√

a − x + G
(

a

l

) (a − x)3/2
√

a

]

where the function F is defined by the relationship

(A.4)Kref = σ0
√

πaF
(

a

l

)

and the function G is determined from self-consistency of the method

(A.5)G
(

a

l

)
=
[
S1(a) − 4F

(
a

l

)√
aS2(a)

] √
a

S3(a)

(A.6)S1(a) = π
√

2σ0

∫ a

0

[
F
(

a

l

)]2
ada

(A.7)S2 = 2
3

σ0a
3/2

(A.8)S3 = 2
5

σ0a
5/2

σ0 is a characteristic load of the reference case, which we have taken as uniform tensile

stress. Newman and Raju [90] give analytical expressions for the stress intensity factor of

the semi-elliptical surface cracked plate under pure tension and bending loads as polynomial

functions
(A.9)K = σ

√
π

a

Q
F
(

a

l
,

a

w
,
w

b
, ϕ
)

where Q is the elliptic integral

(A.10)
√

Q =
∫ π/2

0

[
1 −

(
1 − a2

w2

)
sin2 ϕ

]1/2

dϕ
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which for a/w ≤ 1 is approximated by the polynomial expression

(A.11)Q = 1.464
(

a

w

)1.65

For uniform tension, which was used as the reference case for the present study,

(A.12)F =
[
M1 + M2

(
a

l

)2
+ M3

(
a

l

)4
]

fϕgfw

(A.13)M1 = 1.13 − 0.09
(

a

w

)

(A.14)M2 = −0.54 + 0.89
0.2 + (a/w)

(A.15)M3 = 0.5 − 1.0
0.65 + (a/w)

+ 14
(

1.0 − a

w

)24

(A.16)fϕ =
[(

a

w

)2
cos2 ϕ + sin2 ϕ

]1/4

(A.17)g = 1 +
[
0.1 + 0.35

(
a

l

)2
]

(1 − sin ϕ)2

(A.18)fw =
√

sec
(

πw

2b

√
a

l

)

Under the conditions w = a, b = πrmax, l = rmax this reduces to

(A.19)fw =

√√√√sec
(

1
2

(
a

rmax

)3/2
)

and is approximated by

(A.20)fw = 1 + 1
16

(
a

rmax

)3
+ 7

1536

(
a

rmax

)6
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Appendix B

Derivations

B.1 Derivation of Compositional Stress Distributions

Following Timoshenko and Goodier.

In spherically symmetric system, mechanical equilibrium equation reduces to

(B.1)∂σr

∂r
+ 2

r
(σr − σθ) = 0

The relevant stress-strain relations are

ϵr − ΩcmaxX = 1
E

(σr − 2νσθ) (B.2)

ϵθ − ΩcmaxX = 1
E

(σθ − ν [σr + σθ]) (B.3)

The strain-displacement equations are

ϵr = ∂u

∂r
ϵθ = u

r
(B.4)
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Solving the strain equations for the stresses gives

σr = E

(1 + ν)(1 − 2ν)
[(1 − ν)ϵr + 2νϵθ − (1 + ν)ΩcmaxX] (B.5)

σθ = E

(1 + ν)(1 − 2ν)
[ϵθ + νϵr − (1 + ν)ΩcmaxX] (B.6)

Substiting these into the equilibrium equation, and then substitution for the strains

in terms of the displacement—and assuming the partial molar volume is independent of

composition—gives the second order ordindary differential equation for the displacement

field

(B.7)∂2u

∂r2 + 2
r

∂u

∂r
− 2u

r2 = 1 + ν

1 − ν
Ωcmax

dX

dr

The solution of this is

(B.8)u = 1 + ν

1 − ν

Ωcmax

3
1
r2

∫ r

a
Xr2dr + C1r + C2

r2

In terms of this general solution, the stresses are

σr = −2ΩcmaxE

3(1 − ν)
1
r3

∫ r

a
Xr2dr + EC1

1 − 2ν
− 2EC2

1 + ν

1
r3 (B.9)

σθ = ΩcmaxE

3(1 − ν)
1
r3

∫ r

a
Xr2dr + EC1

1 − 2ν
− EC2

1 + ν

1
r3 − ΩcmaxX

3(1 − ν)
(B.10)

Now enforce boundary conditions to find C1 and C2. For a solid sphere, take a = 0 and

require that u(r = 0) = 0. This requires that C2 = 0. For a traction-free surface, require

that σr(r = rmax) = 0. Doing so, we find

(B.11)EC1

1 − 2ν
= 2ΩcmaxE

3(1 − ν)
1

r3
max

∫ rmax

0
Xr2dr
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Substituting all of this,

σr = −2ΩcmaxE

3(1 − ν)

[
1

r3
max

∫ rmax

0
Xr2dr − 1

r3

∫ r

0
Xr2dr

]
(B.12)

σθ = ΩcmaxE

3(1 − ν)

[
2

r3
max

∫ rmax

0
Xr2dr + 1

r3

∫ r

0
Xr2dr − X

]
(B.13)

The average composition inside a sphere of radius r is defined as

(B.14)Xav(r) = 4π
∫ r

0 Xr2dr
4/3πr3

= 3
r3

∫ r

0
Xr2dr

Substituting this gives the desired expressions as given in Section 2.2.2.

σr(r, t) = 2ΩEcmax

9(1 − ν)
[Xav(rmax, t) − Xav(r, t)] (B.15)

σθ(r, t) = ΩEcmax

9(1 − ν)
[2Xav(rmax, t) + Xav(r, t) − 3X(r, t)] (B.16)

These expression are equivalent to those for thermal stresses under the substitutions

α → Ωcmax

3
T → X (B.17)

Where α is the linear coefficient of thermal expansion and T is temperature.
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B.2 Detailed Derivation of Composition-Dependent

Diffusivity for Non-Ideal, Elastically Coupled In-

tercalation Solutions

Electrochemical cycling of the particle is modeled by the diffusion equation

(B.18)∂X

∂t
= −∇ · J

where X is composition which is scaled to take values 0 ≤ X ≤ 1, and the flux J is given by

the generalized flux equation
(B.19)J = −MX∇Φ

where M is a mobility and the flux is proportional to the gradient of the diffusion potential

Φ, which incorporates both chemical and mechanical driving forces for diffusion [76] For

a vacancy-mediated diffusion mechanism, the mobility M is proportional to the vacancy

fraction
(B.20)M = M0 (1 − X)

Here, M0 is a characteristic mobility, which we assume is constant The diffusion potential is

for a non-ideal, elastically coupled solution is

(B.21)Φ = µ0 + RT ln
(

γ
X

1 − X

)
− Ωσh

In addition to the composition, X, the diffusion potential Φ contains µ0, a reference chem-

ical potential; γ, an activity coefficient describing the thermodynamic non-ideality of the

concentrated solution; Ω, the partial molar volume of the diffusing species; and σh, the local

hydrostatic stress. The gradient of the diffusion potential may be expressed as

(B.22)

∇Φ = RT∇ (ln γ + ln X − ln(1 − X)) − Ω∇σh

= RT

(
∂ ln γ

∂X
∇X + 1

X
∇X + 1

1 − X
∇X

)
− Ω∇σh

= RT

(
∂ ln γ

∂X
+ 1

X
+ 1

1 − X

)
∇X − Ω∇σh
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Substituting this yields

(B.23)J = −M0RT (1 − X) X

[(
∂ ln γ

∂X
+ 1

X
+ 1

1 − X

)
∇X − Ω

RT
∇σh

]

For a spherical particle with traction-free boundaries, the term proportional to the gra-

dient in hydrostatic stress can be recast as a term proportional to the composition gradi-

ent [77, 58]. The hydrostatic stress σh(r, t) is given as

(B.24)
σh(r, t) = 1

3
(σr(r, t) + 2σθ(r, t))

= 2ΩEcmax

9(1 − ν)
[Xav(rmax, t) − X(r, t)]

The gradient of the hydrostatic stress is

(B.25)

∇σh = ∇
(

2ΩEcmax

9(1 − ν)
[Xav(rmax, t) − X(r, t)]

)

= 2ΩEcmax

9(1 − ν)
∇[Xav(rmax, t) − X(r, t)]

= −2ΩEcmax

9(1 − ν)
∇X(r, t)

Substitution of this into Equation B.28 allows the hydrostatic-stress-gradient term in the flux

equation to be expressed in terms of a composition gradient and leads to the identification

of the dimensionless chemomechanical coupling parameter θ̂.

(B.26)∇σh = −θ̂∇X

Where the dimensionless chemomechanical coupling parameter θ̂ is defined as

(B.27)θ̂ = 2Ω2Ecmax

9RT (1 − ν)

and cmax is the maximum concentration (units of mol/m3), E is the Young’s modulus, and ν

is Poisson’s ratio. Table 2.1 lists values of the chemomechanical coupling parameter θ̂ for the

common cathode materials LiXMn2O4, LiXCoO2, and LiXFePO4. It is important to note

that θ̂ is strictly greater than zero for any stable material. While the partial molar volume,
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Ω, may be positive or negative, θ̂ depends on Ω2 which is always positive. As the Poisson’s

ratio must take values −1 ≤ ν ≤ 1/2, the quantity (1 − ν) is always positive; the remaining

quantities comprising θ̂ are all strictly positive.

Note that this substitution is only possible for a traction-free spherical particle. For a

constrained spherical particle, the stress-gradient depends on the local composition gradient

and additional non-local terms.

With this substitution, the flux equation is now specified uniquely in terms of local

composition gradients, as

(B.28)J = −M0RT (1 − X) X

[
∂ ln γ

∂X
+ 1

X
+ 1

1 − X
+ θ̂

]
∇X

Now, the Einstein relation, D0 = M0RT may be applied to formulate the flux equation

in terms of a characteristic diffusivity D0.

(B.29)J = −D0 (1 − X) X

[
∂ ln γ

∂X
+ 1

X
+ 1

1 − X
+ θ̂

]
∇X

The non-ideal solution behavior of the intercalation compound is captured in the ∂ ln γ
∂X

term in Equation B.28.

For intercalation materials this thermodynamic non-ideality may be directly determined

from the half-cell open circuit voltage. The open circuit voltage of a half-cell, V (X), is

related to the chemical potential of the intercalated ion Az+ in the host material µA by the

Nernst Equation:

(B.30)
V (X) = −

(
µA − µ0

A

zF

)

= −RT

zF
ln
(

γ
X

1 − X

)

where µ0
A is the chemical potential of elemental A (the reference state), and F is Faraday’s

constant and z is the formal charge of ionic A. Manipulation of this relationship yields an

expression for the non-ideal solution term

(B.31)∂ ln γ

∂X
= − zF

RT

∂V (X)
∂X

− 1
X

− 1
1 − X
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Finally, substitution of Equation B.31 into Equation B.28 gives the desired flux expression

(B.32)J = −D0X (1 − X)
(

− zF
RT

∂V (X)
∂X

+ θ̂

)
∇X

= −D̃(X)∇X

where the second equality defines the chemical diffusivity D̃(X) by grouping all the compo-

sition dependent terms

(B.33)D̃(X) = D0X (1 − X)
(

− zF
RT

∂V (X)
∂X

+ θ̂

)

This expression is general, and may be safely applied to any single phase intercalation

material to link the observed composition-dependent open circuit voltage and the shape of the

composition-dependent chemical diffusivity. It is important to note that this expression is

symmetric with respect to X → 0 and X → 1, both with respect to the non-ideal solution

term and the chemomechanical coupling factor.

Using this composition-dependent chemical diffusivity, the diffusion equation may now

be written as
(B.34)∂X

∂t
= ∇ ·

(
D̃(X)∇X

)
which simplifies in spherical coordinates to

(B.35)∂X

∂t
= 1

r2
∂

∂r

(
r2D̃(X)∂X

∂r

)

Expression for the Open Circuit Voltage of LiXMn2O4 as a function of the lithium com-

position X as fit by Doyle, et al. [92]. Evaluation of this expression for 0.2 ≤ X ≤ 0.995

returns the open circuit voltage in units of Volts relative to a Li+/Li reference electrode.

V (X) = 4.19829 + 0.0565661 tanh (−14.5546 X + 8.60942)

− 0.0275479
[
(0.998432 − X)−0.492465 − 1.90111

]
− 0.157123 exp

(
−0.04738 X8

)
+ 0.810239 exp (−40 X + 5.355) (B.36)
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And the derivative with respect to composition

∂V (X)
∂X

= −0.823297 sech(8.60942 − 14.5546X)2

− 0.0135664 (0.998432 − X)−1.49247

+ 0.0595559 X7 exp
(
−0.04738 X8

)
− 32.4096 exp (−40 X + 5.355) (B.37)

B.2.1 Applicability of the Model to Other Systems

The framework is general enough to be applicable to other materials systems. Figure B-1

compares the predicted composition-dependent chemical diffusivity to experimental mea-

surements [180] in LiXCoO2. The predicted values are off at X ∼ 0.5 because the model for

the open-circuit voltage [181] does not accurately capture the ’knee’ at around 4.15 V that

corresponds to the second-order order-disorder phase transformation.
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Figure B-1: (a) Open circuit potential of LiXCoO2 as given in Ref. [181]. (b) Blue
solid curve is the thermodynamically-consistent chemical diffusivity of LiXCoO2 with D0 =
10−11 cm2/s and θ̂ = 0.61 plotted according to Equation B.33. Experimental data from
Ref. [180] shown as points.
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