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Estimation of Maximum-Likelihood Discrete-Choice Models of the
Runway Configuration Selection Process

Varun Ramanujam and Hamsa Balakrishnan

Abstract— The runway configuration is the subset of the sequencing of runway configurations, assuming knowledge
runways at an airport that are used for arrivals and departures  of their respective capacities, expected airport demand, a
at any time. Many factors, including weather (wind and  ey4iling operating conditions influencing configuratiea-

visibility), expected arrival and departure demand, envion- L .
mental considerations such as noise abatement procedures, sibility [5], [6]. This paper takes a complementary appioac

and coordination of flows with neighboring airports, govern  t0 the problem of configuration selection: we estimate a
the choice of runway configuration. This paper develops a maximum-likelihood model of the runway configuration se-

statistical model to characterize this process using empital  |ection process, as well as the factors that influence the
observations. In particular, we demonstrate how a maximum- 4ijity function of the air traffic controllers, using arsfeid

likelihood discrete-choice model of the runway configurain fi | data. In short. whil t K id aroll
process can be estimated using aggregate traffic count andhatr operational data. In short, while past works guide Corere

archived data at an airport, that are available over 15 minue  ©n what runway configurations to select (in order to optimize
intervals. We show that the estimated discrete-choice motle some predetermined objective such as throughput), thity stu
not only identifies the influence of various factors in decigin- attempts to model how controllers currently select runway
making, but also provides significantly better predictions of configurations, and their underlying utility functions.

runway configuration changes than a baseline model based on Wi del th lecti f fi fi
the frequency of occurrence of different configurations. Tle € model the selecuon of runway connguration as a

approach is illustrated using data from Newark (EWR) and discrete-choice problem faced by the airport authorifiée
LaGuardia (LGA) airports. utility functions of the different alternatives are reprated

as functions of the aforementioned factors (wind, demand,
) ) etc.) that influence configuration selection. The discrete-
_The runway system at major airports are generally COnsngice framework, which has been successfully applied to
sidered to be the primary bottleneck in airport capacitysther applications such as modeling driver lane-changing
and consequently, the capacity of the air transportatiqfahavior, enables the estimation of the relationship betwe
network [1]. Most major airports are equipped with multiplejnfiyencing factors and the favorability of a configuration,
runways, and at any time, a subset of these runways (agdq the prediction of future configuration choices made in
associated traffic directions) are selected to handle asriv response to evolving weather and demand conditions [7], [8]
and departures. This choice of the set of runways, known The rest of this paper briefly describes discrete-choice
as the airport- or runway configuration, is a critical faCtormodeIing as well as the proposed methodology for deter-

in determining airport capacity. There are no precise rulgining the maximum-likelihood discrete-choice model. We
that dictate the choice of active runways; instead, aulesri ihan describe the specific application of this approach to

in the Air Traffic Control Tower (ATCT) consider many the problem of configuration selection. Results from the

factors including weather (wind and visibility), predidte 5ppication of the approach to LaGuardia (LGA) and Newark
arrival and departure demand, environmental consideritio e\wR) airports are used to demonstrate its ability to predic
such as noise abatement procedures, and coordinationyQ ryunway configuration, given the state of the system in
flows with neighboring airports, in selecting the runwayerms of wind, visibility, demand, etc. In this paper, ruywa
configuration at any time. This paper proposes a StatiStiCébnfigurations are represented in the form ‘R1, |AR3, R4’

model that uses empirical observations to characterize thgere R1 and R2 are the arrival runways, and R3 and R4
configuration selection process. In particular, we progse 4.0 the departure runways.

approach to learn the maximume-likelihood discrete-choice
model of configuration selection, and also to infer the air Il. METHODOLOGY

traffic controllers’ utility functions in making these deiins. In this section, we briefly describe discrete-choice madels
Several past works have acknowledged the role of runwgyjiowed by descriptions of the model estimation approach,

configuration selection in airport congestion managemefienitication of the utility function that drives runway o

[2], [3], [4]. Recent research has focused on the develo@i'?uration choice, and the validation techniques applied.

ment of decision support systems that prescribe the optima
A. Conceptual Framework

|I. INTRODUCTION
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depends on several influencing factors (known as attributdsamework, under (a), altl and alt2 would have a common
and denoted). The utility function for each alternative is component to the error terms, while alt2 and alt 3 would have
modeled as the sum of an observed componerftvhich independent errors; under (b), alt2 would have a common
is a linear combination of the influencing factors) and amomponent of error with altl, as well as with alt3 and alt4.
unobserved componerst represented through error terms.

In other words, consider the observation of tite selection /\ /\
decision. Suppos€, is the set of alternatives available for
then' choice. Then, the utility of choicg e C, for selection @ gz Q J%
n is given by
.

Vin = a+B-Xin
Un = Vin+&n, (2) Fig. 1. (a) NL model framework; (b) CNL model framework.

Equation (1) reflects the assumption that the utilities are The expressions for alternative probabilities for the N an

linear functions of the attributes, given by, while Equation CNL models, and their comparisons with the MNL model
e described in [9]. For example, the selection probabilit

(2) acknowle_d_ges the presence of errors due to factors ”%r alternative altl in the NL model (Figure 1 (a)) is given
are not explicity modeled or observed. Then, we assu

that for then® observation, the decision-maker selects the

alternativec; € C, such that P(altl|{altl,alt2,alt3,alt4}) = P(alt1|N1) «P(N1|{N1,N2}) (5)
| = argmaXn. 3)
Hactn where eiN1#Valt1 VN1
N _— . — Yl _ __¢€
The probabilistic distribution assumed for the error terms P(alt1|N1) = S fepefansany €N PINIH{NLN2}) = o e

&n determines the analytical relation between alternative VN1:%*'092j-c,-e{an1anz}e’“'Nl*V’l and similarly forViz.
N1 : 4 ’

selection probabilities and the observed component of the .
Here, the scale parametegrg; andpuy, provide a measure

utility functions, and hence the type of discrete choice alod of the magnitude of error correlation among alternatives

For example, if one assumes complete_mdependen(_:e N €MWkhin nests N1 and N2 respectively. We investigated the
terms across all alternatives and choice observations, and. o all three models (MNL, NL and CNL) for the airport
that the error terms are identically Gumbel distributed, we ' P

obtain the popular multinomial logit (MNL) model [9]. The configuration choice problem through appropriate statsti

MNL model is a popular choice in many applications dueteStS‘

to its analytical tractability, and yields the choice prblity B, Estimation framework

expression given by The model parameters( B in Equation (2)), which are

P(G|Cn) = gVin 4) the coefficients of the observed influencing factggson the
' Y jicjeCn evin’ alternative utilitiesU;,, are estimated using the maximum-
likelihood approach. The likelihood of a given choice ob-

In other words, Equation (4) provides the probability of theservation is simply the probability of selecting the observ

nh choice beingsi, given that the set of feasible alternatives,, . :
’ choice given the values of the model paramet and
was C;. We note that as the observed component of th 9 P ersf)

utility for alternativec; (given by Vi) increases relative to

the utilities of the other alternatives, so does the prdtgbi is the joint probability of observing the sequence of choice

of selectingc;. . .
. . . decisions recorded, or in other words
The assumption of independent error terms in the MNL

model is potentially too restrictive in the context of ruywa Z(a,B) =P((cr|C1)()---[(enICn)la,B.X)  (6)
configuration selection. For instance, let us consider two _ ) )

feasible configurations that contain a common arrival (ohereci is the selected alternative, ar@d is the set of
departure) runway. This common runway might contribut@vailable alternatives fait" observationj € 1,2,..,N.

identical unobserved effects to the configuration utditie e make the additional assumption that the choice obser-
rendering their error terms correlated. To mitigate thisrsh Vations (at each time) are conditionally independent given
coming, we consider advanced versions like the Nested Lodfte Vvalues of the explanatory factor,. This allows us
(NL) and Cross-Nested Logit (CNL) models [9]. ThesdO express the likelihood function presented in Equation
model structures permit error correlation within specified®) as the product of the likelihood of individual choice
subsets of alternatives as illustrated in the nested framew Observations:

shown in Figure 1. Here, four alternativgaltl, alt2, alt3 N

and alt4 are grouped into two nests in (a) an exclusive La,pB) = _rlP(Ci|Ci) (7)
manner (NL representation), and b) an overlapping manner =

(CNL representation) with alt2 shared between the two nestshereP(c;|C;) is given by Equation (4) for the MNL model
We also note that some nests can be singletons. In this Equation (5) for the NL model.

iﬁfluencing factorsXin). The likelihood function for an entire
dataset of choice observations (say, okertime periods)



The parameter estimateﬁ,(ﬁ) are those that maximize for each time period were determined by the set of runways

this likelihood:
P tai
(@,B) = argmaxZ(a, B).
U,E
Likelihood-maximization is a nonlinear optimization prob
lem. In this study, we used BIOGEME ([10]), a freewareB-

(8)

that did not exceed the FAA-specified safety thresholds for

[-winds (5 kn) and cross-winds (30 kn). Observations

featuring operation of infeasible runway configuratione$tn
likely reporting errors) were also excluded from the data se

List of candidate influencing factors and expected impact

package that specializes in estimating discrete-choiatetso ON configuration selection

through customized in-built algorithms.
ch

C. Model specification and structure development in

There are several factors that potentially influence the
oice of configuration (from among the feasible options)
any time period. The following factors were explicitly

Model specification refers to the exact functional form ofncluded in the utility functions of the discrete choice nebd

the systematic utility componei,, comprising of the ob-
served influencing factord,. The specification is developed
through iterative consideration of candidate factorscaiffe

the choice behavior. Standard hypothesis testing proesdur
help assess the statistical significance of every new fac-
tor considered (Likelihood-ratio test for nested hypothes
testing [9], and Cox composite model test for non-nested
hypothesis testing [11], [12]). The structure of a discrete
choice logit model refers to the particular correlatiorustr
ture adopted for the alternative error tergys As mentioned
earlier, MNL, NL and CNL models were all considered in
this study. Established hypotheses tests (Hausman-MelRadd
test [13]), help ascertain the statistical validity of stural
enhancements offered by the NL or CNL model over the
MNL model.

D. Validation

The final step in any empirical model-building process is
the evaluation of its predictive capabilities in companigo
a different, typically simpler, model that serves as theebas

framework. Both the proposed and base models are applied

upon a validation dataset, using parameters estimateddrom
common training dataset, and their predicted probalslgzie
assessed, through well-defined metrics, for their proyimit
to the actual observed choices in the validation datased. Th
definition of the baseline model is critical to the outcome of
the validation task. In this study, we adopt a probabilistic
model depicting configuration selection as a Markovian
transition process to be the base model [14].

The following section presents the details of the applica-
tion of the proposed technique to the configuration selactio
process at LGA and EWR airports, as well as the associated
results and inferences.

IIl. CASE sTUDY. LGA AND EWR AIRPORTS
A. Training data set

The training data set comprised of the 15-minute aggregate
ASPM records for the year 2006, which provide for each 15
minute interval, the chosen configuration as well as other
prevailing airport conditions such as weather, demand, etc
Configuration selection is assumed to occur at every 15-min
interval. Operational data for hours from midnight to 6 am
were excluded from the data set, since it is apparent from
conversations with air traffic controllers that reportingidg
these periods is more prone to errors. Feasible configasatio

« Inertia: Configuration changes are a fairly involved
procedure, require extensive coordination among the
different airport stakeholders, and are thought to cause a
loss in airport throughput [5], [6]. For these reasons, the
configuration from the previous time interval is likely to
be favored pending other considerations, and its utility is
therefore expected to increase on account of this inertial
factor.

« Head-wind speeddt is hypothesized that higher head-
wind speeds are favorable for both arrival and depar-
ture operations, and therefore increase the utilities of
the respective configurations. In this study, we use a
combination of current and forecasted wind conditions
as the measure of the influencing factor. In the absence
of information on the actual forecast used by airport
planners, the observed wind speeds over the immediate
future of every time period is used as a reliable proxy.

« Arrival/departure demandDuring periods of signifi-

cantly high total (arrival+departure) demand, a high-

capacity configuration is likely to be favored. The
capacity envelopes for the configurations observed in

LGA and EWR were acquired from prior work [15].

Noise abatement procedurefn accordance to FAA

procedures, certain runway orientations (and therefore

configurations) are to be avoided during applicable time
periods. The Standard Operating Procedures (SOPs) for
the NY airports identify the overnight hours (10pm-

7 am) for activating the noise mitigation measures,

and time-specific variables are accordingly defined for

the configuration utilities in this study. The pruning
of observations between midnight and 6 am from the
estimation data set reduced the sample space over which
the noise mitigation measure is active; however, we
believe that the estimation data set was large enough
to compensate for this reduced sample size.

Configuration switch proximityConfiguration changes

require increased coordination and disrupt the flow of

aircraft on the surface, and authorities might be inclined

to minimize the level of effort involved. For example, a

configuration change that only requires the addition of a

departure or arrival runway may be easier to implement

than a change that needs to change the direction of
arrival flows entirely. In this study, we equate the type

and magnitude of the change to the incident angles
between the respective arrival and departure runways



of the preceding and succeeding configurations. We.96, the estimate of that parameter can be deemed statisti-
thereby define six distinct possible switch types andally significant. As can be observed, our previously oetlin
study their relative preferability through appropriateapriori hypotheses are corroborated by the estimatioritsesu
categorical variables. For example, the configuratiom the case of inertial effects and headwind speeds. Whde th
change which results in a 90deg reorientation of th&asks of interpreting the estimates for the switch categar
arrival runway and a 180deg reorientation of the depathe JFK configuration coordination variables are ambiguous
ture runway is denote@0,180). due to the lack of clear apriori understanding, we have
« Inter-airport coordination: In multi-airport terminal- attempted a comparison with the estimates obtained on
areas such as New York, arrival and departure flowapplication of the same specification on ASPM data from
into the different airports must be coordinated. Weanother year. The estimates for these variable types seem
therefore investigate the effect of JFK's configuratiorto exhibit consistency across the two years, thereby oiferi
on the concurrent choices for LGA/EWR. We definecredibility to their values.
categorical variables representing interactions between

distinct pairs of runway orientations at JFK and at| ___ revlﬁn':‘eegti':' T R Tmtns
LGA/EWR. Since airport authorities follow runway- Y 9 Z Headwind Zpeed b +S. '
specific airspace routes for landing and takeoff oper-—&mvarrunway : 0.043 9.2)
ations, the existing interactions among the routes from/ Departure runway 0.026 (4.67)
every pair of runways from the two neighboring airports 3. Demand
can be estimated through this set of variables. For crossing runway (high-capacity config) [ 1.65 (9.25)
4. Noise abatement
. . . . - . Runway 31 for morning 6-8 am 1.22 (6.3
C. Estimation of discrete-choice models and utility fuoras Runwa)); Z for evening glo pm - 12 am 0.911( (4.)1)
. . . . - R 31T ing 10 pm - 12 -0.331 (-1.58
As explained in the methodological overview, the utility unway 5- 1o evening ~~ b am ( )
e . 5. Switch proximity
specifications and error structures were developed and st&-angie o ncidence (90,180) 175 (-7.49)
tistically verified through a sequence of tests. The det#ils [Angle of incidence (180,180) -1.99 (-4.40)
the resultant models are discussed below. 6. Coordination with JFK
1) LGA results: The training data set had a total of 17,716 | Departure runways (4@LGA vs 4@JFK) 0524 (2.1)

p . . . . Departure runways (13@LGA vs 13@JFK) -0.404 (-1.37)
choice observations post-filtering (i.e., data from 17,716 pgparure runways (13@LGA vs 22@JFK) -0.586 (-1.68)
time periods), featuring a total of 10 distinct configuratio [Dep. runways (I13@LGA vs 31@JFK) -1.05 (-3.59)
alternatives. The final model has a NL structure with two al- ﬁrr?va: Eunways gigtgﬁ vs ié@;g?;) -(1)-‘215 Eggg

. . . . . . rrival Runways VS -0. -2.
ternative nests, grouping configurations with arrival rags/ Departure Runways (3IGLGA vs 22@IFK) 0.949 (4.07)

4 and 13 respectively as illustrated in Figure 2. The other

configurations are modeled as singleton nests. TABLE |

ESTIMATED UTILITY FUNCTIONS (VALUES OF 3) FOR THE
DISCRETECHOICE MODEL OF CONFIGURATION SELECTION ATLGA.

The bar plots in Figure 3 depict how the estimated
coefficients translate to configuration choice probabiti
We restrict our discussion to prominent runway configura-
tions: 44, 31§31, 413, 22313, 2331 and 3]4. We construct
hypothetical scenarios for illustrating the trade-offéween

AINAL 7] T~ . . . . e . .

yar { switch proximity, wind favorability and operational cajitstc
L = ] ) < figurati lection criteria. W VFR ti
= o e VR N as configuration selection criteria. We assume opayatin
by 4 NANTEUANCE b= gy 31 conditions, the simultaneous configuration at JFK to be its
[P \ & BASE FACILITIES | ) E

14 M~ ~1s+ow /

most prominent (31R1L), and a time period with no noise
abatement regulations. Within this set of conditions, we

consider two demand scenarios, low (demand coefficient not
O OO OO applicable) and high (demand coefficient applicable). Assu
1322022 22131 31j4 3122 ing the current incumbent runway configuration at LGA to be

31|31, we examine the relative selection probabilities of the
prominent configurations at LGA for wind speeds of 40 kn
varyingly aligned along runways 31, 22 and 13 respectively.
Firstly, we note that the probabilities presented for non-
incumbent configurations are measured relative to eachr othe
The results of the utility coefficients are tabulated in bl (i.e, conditioned on the non-selection of the incumbent)
I, along with the corresponding t-statistics in parenthesie to facilitate reasonable comparison. We also append the
note that when the absolute value of the t-statistic exceedssociated absolute selection probability for the incumbe

414 413 4|31 13[4 13[13

Fig. 2. Layout of LGA, along with the estimated NL structu LGA
configuration selection (for year 2006).



LGA configuration probabilities 1. Inertia

1 (Low Demand scenario) _ggzr oy Only for config. from prev. time step (incumbent) | +4.86 (6.73)
08 B 2. Headwind speed
EXN] ] Primary Arrival runway 0.051 (4.28)
3 (314 rel. prob Primary Departure runway 0.04 (2.97)
§0-4 r L2 (rumbeny 1 Extra Arrival runway 0.02 (3.19)
Zoaf P 1 3. Demand
) For parallel runway configuration (when 1.042 (7.99)
Wind along 31 Wind along 22 Wind along 13 demand exceeds crossing runway config. capacity)| )
LGA configuration probabilities For configurations with extra arrival runway (when
1 (High demand scenario) W4 ol prob demand exceeds unhindered arrival capacity) 0.447 (3.72)
L 413 rel. prob | For configurations with extra departure runway (whe
0.8
2| %ﬁ;{;i e | demand exceeds parallel runway config. capacity) 2.32 (9.49)
g 314 rel. prob 4. Noise abatement
§04 r 31[31 (incumben) 1 Runway 11 for morning 6-8 am -1.7 (-7.38)
Soal Mo prob | Runway 29 for morning 6-8 am -1.73 (-5.82)
(&}
0 ‘ » ‘ 5. Switch type
Wind along 31 Wind along 22 Wind along 13 Angle of incidence (0190) -0.728 (-316)
Angle of incidence (90,90) -1.28 (-2.02)
Fig. 3. Relative configuration selection probabilities &A for described Angle of incidence (0,180) -1.91 (-3.29)
hypothetical scenarios involving (a) Low demand, and (btHdemand. Angle of incidence (90,180) -2.12 (-2.80)
Angle of incidence (180,180) -0.407 (-3.92)
6. Coordination with JFK
. . - : Dep. Runways (A@EWR vs 31@JFK) 0.826 (2.35)
configuration. For the_ Iow_demar_1d scenario (Fig. 3 (a) "Bep Runways (22@EWR vs 4@JFK) 0615 (132)
we observe that configurations with wind-aligned runwayspep. Runways (22@EWR vs 13@JFK) 1.14 (-2.35)
are typically favored among the non-incumbents, with thgDep. Runways 29@EWR vs 13@JFK) -0.694 (-2.73)
exception occurring when the wind blows along runway 13.Ar. Runways (4@EWR vs 22@JFK) -1.25 (-3.07)
In this scenario, although the non-incumbent configuration-a—nunways (LLGEWR vs 13@JFK) 0437 (2.57)
n ’ oug -onfig AT, Runways (LI@EWR vs 31@JFK) 0.576 (2.84)
4|13 and 2213 are ‘wind-favorable’ through their departure Ar. Runways (22@EWR vs 13@JFK) 1.2 (2.95)
runways, they would both require a less favorable switchArr. Runways EZZgEWR vs ZZgJFKg -0-94((-2.6)3)
; : ; ; Arr. Runways (29@EWR vs 13@JFK 1.13 (4.08
(type 4) from the_ mc_gmbent co_nf|gl_1rat|on |31, which ArrRunways (200EWR vs 22@JFK) 0-449 (1.60)
reduces their desirability. Also, inertia effects ensune t Runways (29@EWR vs 31@JFK) 122 @.17)
incumbent configuration (331) has a high probability of TABLE Il

being retained for all three wind directions, although this
probability progressively reduces as wind directions beeo
less favorable.

For the high demand scenario (Fig. 3 (b)), configura-
tions with crossing runways (#3, 2413, 2231 and 314)
dominate among the non-incumbents, while the retentigRdependent of the primary runways for configurations fea-
probability for the incumbent also comparatively reducesuring more than one arrival or departure runway. Also, the
highlighting how the increased importance of higher capagstimates for the switch category and the JFK configuration
ity configurations overrides other considerations inatgdi coordination variables were cross-verified with those ob-
switch proximity. tained for year 2007 to assess their credibility. The estma

2) EWR resultsThe training dataset had a total of 23,506or these variable types exhibit reasonable consistenmsac
choice observations post filtering, featuring a total of 2@he two years, thereby corroborating their validity.
distinct configuration alternatives. The final model had a For EWR, we graphically demonstrate the trade-offs be-
NL structure with one nest for a well-defined subset ofween switch proximity, demand-capacity inter-relatioips
alternatives as depicted in Figure 4. The nest groups tegethand coordination with JFK in configuration selection, as im-
all EWR configuration alternatives with an additional aafiv plied by the parameter estimates. As with LGA, we construct
runway. The implication of this nesting is that configurao hypothetical scenarios controlling for other factors siash
with an additional arrival runway share commonalities irwind speed and direction (20 kn along runway 11), visibility
terms of unobserved factors influencing their preferences.conditions (VFR), and noise abatement stipulations (not

The results of the utility coefficients are tabulated in ®blpresent). We restrict our attention to the prominent configu
I, along with the corresponding t-statistics in parenthies rations (4R4L; 4R,114L; 4R,294L; 22L|22R; 22L,1122R;
Once again, we note that when the absolute value of the22L|22R,29) and assume 4R to be incumbent configu-
statistic exceeds 1.96, the estimate of that parameter €andation. We consider three demand scenarios (when demand
deemed statistically significant. exceeds crossing runway configuration capacity, when de-

Once again, our stated apriori hypotheses for inertia amdand exceeds unhindered (or free) arrival capacity, and
wind effects are largely substantiated by the estimatiowhen demand exceeds parallel runway config. capacity) each
results. Additional wind speed coefficients are introducedh conjunction with the two most prominent JFK runway
to capture effects on the supplementary (extra) runway®nfigurations: 31R81L and 13L13R. As with LGA, we

ESTIMATED UTILITY FUNCTIONS (VALUES OF 3) FOR THE
DISCRETE CHOICE MODEL OF CONFIGURATION SELECTION ATEWR.
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Fig. 4. Layout of EWR, along with the estimated NL structuoe EWR configuration selection (for year 2006).

measure the relative selection probabilities for the norand Dep. runways (A@EWR vs 31@JFKConfiguration
incumbent configurations conditioned on the non-selectic2?L,1122R is second-best due to the switching disutil-

of the incumbent. ity relative to the incumbent (switch angle of incidence
(180,180)). Configurations featuring runway 29 are least
EWR configuration probabiities preferred due to adverse wind direction. Configurations wit

N

Il <R 11/4L rel. prob

additional arrival runway (like 4R,14L) are more preferable
when when demand exceeds unhindered arrival capacity,
while configurations with additional departure runway €lik
22L|22R,29) are more preferable when demand exceeds
parallel runway configuration capacity. When JFK oper-
ates 13I13R (Fig. 5 (b)), the dominant non-incumbent is
EWR configuration probabilities 22L,1122R, which is now favored by the JFK configuration
JFK configuration — 13L|13R .
‘ [ Foe (note coefficients foArr. runways (22@EWR vs 13@JFK)
i 1 andArr. runways (LL@EWR vs 13@JFK)e both positive),
overriding switch proximity considerations. Also, we note
7 the preference for the configuration with additional deyrart
1 runway (22l22R,29) remains suppressed even when de-
Sem_ind par=1 Ui e ST demJDﬁexﬁd’;‘:l mand exceeds parallel runway configuration capacity, since
the JFK configuration strongly inhibits it (negative sign fo
Fig. 5. Relative configuration selection probabilities #VE for described coefficient forDep. runways (29@EWR vs 13@JFK)
hypothetical scenarios with JFK configuration as (a) 31R, and (b) . .
13LJ13R. D. Model validation
This section describes the validation of the proposed
When JFK is operating 31R1L (Fig. 5 (a)), we note configuration selection model and its parameter estimates.
that configuration 4R,14L dominates among the non- The validation analysis compares the quality of configorati
incumbents across all demand scenarios, owing to its switckelection predictions for an external test data set between
ing proximity relative to the incumbent as well as favorableestimated discrete choice model and a simpler model (termed
ness under given JFK configuration (note the positive valudmse model) respectively. The test set consisted of ASPM
of coefficients forArr. runways (1L1@EWR vs 31@JFK) data records from 2007 for the study airports, refined using
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same filters applied for the training data set (2006 ASPMet at 12 (no. of 15 min intervals in 3 hours). However, it
records). The base model structure is described in the nestiould not influence the relative comparison of the preaficti
section, following by a brief discussion of the validationqualities of the discrete choice models and their corredpon
results. ing base models. The aggregate validation measures of this
1) Base Model:The use of the discrete choice modelingcomparison are presented below (Table IIl for LGA, and
framework enables the incorporation of relevant influegcinTable IV for EWR). The results are partitioned for two
attributes like weather conditions, demand, etc. in detedisjoint data segments, the first representing obsenation
mination of configuration selection probability. Howevar, from time periods that are not within 3 hours of a switch, and
more rudimentary approach might compute explicitly, usinghe second representing time periods in the temporal ¥cini
available empirical evidence, the probability of a patacu of (i.e., within 3 hours before or after) a switch. We present
configuration being chosen conditional on the configuratioresults for the most frequently used configurations at each
in effect in the previous time interval. Such an approachirport. The validation tables show the aggregate prothabil
would effectively generate a transition probability matri of a runway configuration being correctly predicted, both
A, where an elemen(i, j) would represent the estimatednear and away from configuration switches. We note that
probability of configurationj being chosen for any time the aggregate probabilities in the vicinity of a switch are
interval t, given that configuration was active in time conditioned on the event of a switch. A perfect prediction
intervalt — 1. Peterson (1992) describes an identical modemechanism would have an aggregate probability equal to 1.
based on the Markovian premise, for representing airport
capacity dynamics featuring finite capacity states. Wei+epl
cate his empirical estimation procedure to develop par@amet

| Outside temporal vicinity of switches
Correct prediction

estimates for the base model. . Config | Frequency | Base | Discrete-Choice
GivenG vt = {1,2,..T};C € {1,...,Nc}, whereT is the 2713 4403 0.81 0.95
total number of time intervals\; is the total number of 2231 3725 0.73 0.92
possible configurations, ar@ is the configuration selected 314 2989 0.77 0.90
at timet, then 4]13 2339 0.74 0.91
T 3131 1211 0.61 0.70
o S G == )AG ==0) a4 599 0.50 0.60
A, 1) = z;l'ilctil == Vi.je{L - Ne}. (9) Within temporal vicinity of switches
- i ) ) ) ] Config | Frequency | Base | Discrete-Choice
Note that the above estimation framework implies a discrete 314 1103 0.48 0.71
choice model (MNL) where the configuration utilities are 2231 1043 0.50 0.74
defined as the aggregation Nf — 1 time-invariant categor- 2913 1024 9.5 9.7
( _ ggregatic me- 9 413 569 0.47 0.58
ical variables, each serving as an indicator of the runway 3131 203 0.31 057
configuration in the previous time-step. Other explanatory 44 135 0.31 0.44
factors like weather, demand, etc. are not considered in the TABLE IlI
base model. VALIDATION RESULTS FORLGA (A GGREGATE PROBABILITIES OF

2) Validation Results:In this study, we aggregate pre- corRRECT CONFIGURATION PREDICTION FOROO7DATASET). NO. OF
dicted configuration probabilities to compare the model parRAMETERS INBASE MODEL = 100; NO. OF PARAMETERS IN
predictions to the actual observations. Since typicalaatrp DISCRETE-CHOICE MODEL = 36.
configuration planning horizons are of the order of 3 hours,
we consider the predicted probabilities conditioned on the

configuration observed 3 hours before, and not the previous o o
15-min time period. The validation results show that the predictions generated

Supposeobsc denotes the observed configuration oy the discrete-choice model are significantly better than

time-stegt. The aggregate predicted probabiliggty pr;) for those of the base model, in_spite of the _considerab_ly smaller
configurationi is calculated as: number of parameters required by the discrete-choice model

_ This result highlights the richer use of empirical inforiat
_ Stobsg—iP(G =i|Ct_12 = 0bSC_12) (10) achieved by the discrete choice model. The fact that the

agg-pri = . . o ) .

Stobsc—i 1 improvement in prediction accuracy is consistent across th
where the prediction probabiliti(c; = i|c_12 = k) is com- two disparate sets of observations (near and away from
puted recursively in the following manner: configuration switches) demonstrates the superiority ef th

y discrete-choice model in predicting the timing of configu-
P(ct=jlo-12=k) = fiP(ct =jla-1=i)P(a_1=ilg_12=K) ration switch as well as the continuation of the incumbent
i= configuration if the prevailing conditions don’t motivate a

Ne ; ; [ ; ;
Pla-i=ilo-12=k) = 3 Pla1=ila—2=mP(G2=mc-12=K) switch. In general, the quality of prediction is lower in

=] the vicinity of configuration switches due to the inertia

term biasing predictions towards incumbent configurations
The absolute prediction quality would naturally deteriera Similarly, we note that the model performs relatively pgorl
as we increase the length of the look-ahead duration clyrentn predicting configurations that are used more infreqyentl



prediction was more than 0.7 for the most frequently used
configurations at both airports. The validation also showed
that although the discrete-choice model required fewer pa-
rameters than a baseline Markovian model of configuration

| Outside temporal vicinity of switches
Correct prediction

Config Frequency | Base | Discrete-Choice
22L22R 6583 0.88 0.87
4R/4AL 4173 0.84 0.87
22L,1122R 1686 0.77 0.94
4R,174L 1087 0.74 0.88
4R,294L 715 0.74 0.81
314 211 0.52 0.16

Within temporal vicinity of switches

Config Frequency | Base | Discrete-Choice
221[22R 2073 0.70 0.73
4R/4L 1303 0.65 0.73

22L,1122R 799 0.32 0.76 [1
314 573 0.24 0.21
4R,174L 505 0.40 0.74
4R,294L 336 0.29 0.70
TABLE IV

(2]

VALIDATION RESULTS FOREWR (AGGREGATE PROBABILITIES OF
CORRECT CONFIGURATION PREDICTION FOR0O07DATASET). NO. OF
PARAMETERS INBASE MODEL = 400; NO. OF PARAMETERS IN (31
DISCRETECHOICE MODEL= 57.

(4]

IV. CONCLUSIONS [5]

Runways are a critical capacity bottleneck in the air
transportation system, and runway configuration seledtion 6
a key driver of airport capacity. To the best of our knowledge
this paper presented results of the first effort to learn risode 1
of the configuration selection process using operationil. da
The proposed approach estimated a maximum-likelihood
discrete-choice model of the configuration choice process,
The dependence of the configuration choice upon influencing]
factors like weather, arrival and departure demand, noise
mitigation directives, coordination with neighboring,cet [
was identified and quantified. The proposed discrete—choi?ﬁ,]
modeling framework was applied to two major airports in
the NY metroplex system, LGA and EWR. The estimatedll
utility functions reinforced many of the a priori expectats [12
regarding the impact of the selected influencing factors. Va
idation of the proposed model showed that the probability 3113]
correct configuration choice prediction was more than 0r8 f
the more frequently used configurations, during time period14]
away from configuration changes. For the most frequently
observed configuration at LGA, the probability of correct,s,
prediction was 0.95. While the predictive performance dete
riorated in the vicinity of switches, the probability of cect

change, the former had superior predictive capabilitidse T
proposed models can be used for the simulation of airport
operations, as well as to design and evaluate the benefits of
configuration selection decision-support tools.
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