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Complesso Universitario MSA, Via Cintia, I-80126 Napoli, Italy

2INFN Sezione di Napoli, I-80126 Napoli, Italy
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The proximity force approximation (PFA) relates the interaction between closely spaced, smoothly
curved objects to the force between parallel plates. Precision experiments on Casimir forces necessi-
tate, and spur research on, corrections to the PFA. We use a derivative expansion for gently curved
surfaces to derive the leading curvature modifications to the PFA. Our methods apply to any ho-
mogeneous and isotropic materials; here we present results for Dirichlet and Neumann boundary
conditions and for perfect conductors. A Padé extrapolation constrained by a multipole expansion
at large distance and our improved expansion at short distances, provides an accurate expression
for the sphere-plate Casimir force at all separations.

PACS numbers: 12.20.-m, 44.40.+a, 05.70.Ln

First introduced by Derjaguin [1], the proximity force
approximation (PFA) relates forces between gently
curved objects at close separations to the correspond-
ing interactions between flat surfaces over an area set
by the local radii of curvature. Originally developed in
the context of surface adhesion and colloids, the PFA
has found application as far afield as the study of inter-
nuclear forces and fission[2, 3]. In particular, the PFA
has long been applied to Casimir and other fluctuation
forces that are short range and therefore dominated by
the surface proximity. Despite its nearly universal use
to parameterize Casimir forces in experimentally acces-
sible geometries like a sphere opposite a plate[4, 5], not
even the first correction to the PFA in the ratio of the
inter-surface separation to the scale of curvature, d/R, is
known for realistic dielectric materials or even for generic
perfect conductors. Casimir forces have non-trivial and
sometimes counterintuitive dependence on overall shape,
increasing the interest in developing a thorough under-
standing of the corrections to the PFA and its range of
validity. As the experimental precision of Casimir force
measurements improves, they are becoming sensitive to
PFA corrections, further motivating renewed interest in
this subject. For example, an upper bound on the mag-
nitude of the first order correction to the PFA for a gold-
coated sphere in front of a gold-coated plane was obtained
a few years ago in an experiment by the Purdue group
[6], which found that the fractional deviation from the
PFA in the force gradient is less than 0.4 d/R.

We here provide a general expression for the first cor-
rection to the PFA for the Casimir energy of objects
whose surface curvatures are large compared to their
inter-surface separation. Scattering methods have pro-
vided a fertile route to computing Casimir forces for non-

planar shapes [7]. While conceptual threads connected
to this approach can be traced back to earlier multiple-
scattering methods [8], concrete analytical [7] and nu-
merical [9] results are relatively recent. Indeed, the ex-
perimentally most relevant set-up of a sphere and plate
was only treated in 2008 [10]. The scattering method
is most powerful at large separation, providing analytic
expressions for a multipole expansion in the ratio R/d
and numerical results for R/d <∼ 10, but becomes in-
tractable at the values of d/R ∼ 10−3, needed to study
the PFA. In a feat of mathematical dexterity, Bordag
and Nikolaev (BN) summed the scattering series to ob-
tain the first correction to the PFA for the cylinder/plate
and sphere/plate geometries, initially for a scalar field
obeying Dirichlet (D) boundary conditions (bc)[11], and
later for the electromagnetic (EM) field with ideal metal-
lic bc[12]. Intriguingly, whereas the correction to the
force in the former case for both geometries is analytic in
d/R, the sphere/plate EM case was predicted to include
logarithmic corrections (∼(d/R) ln(d/R)). While the BN
PFA corrections for cylinders (where there are only an-
alytic corrections), were independently verified by Teo
[13], the results of Ref. [11, 12] for the experimentally
interesting sphere/plate EM case remain unconfirmed.

A recent work by Fosco et. al.[14] provides a quite
promising perspective on Casimir PFA corrections. Rein-
terpreting perturbative corrections to parallel plate forces
[16, 17], they propose a gradient expansion in the local
separation between surfaces for the force between gen-
tly curved bodies. They implement their program for
scalar fields and confirm that their general approach re-
produces the BN cylinder and sphere/plate correction for
D bc. Inspired by this work, the current paper is or-
ganized as follows: (i) We show that the extension of
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Ref. [14] to two curved surfaces is constrained by tilt in-
variance of the reference plane (from which the two sep-
arations are measured). This provides a stringent test
of the self-consistency of perturbative results. (ii) Going
beyond the scalar fields and D bc of Ref. [14], we com-
pute the form of the gradient expansion for Neumann
(N) , mixed D/N, and EM (perfect metal) boundaries.
Interestingly, we find that the EM correction must co-
incide with the sum of D and N corrections. (iii) We
reproduce previous results for cylinders [13] with D, N,
and mixed D/N conditions, and the sphere with D bc.
However, we do not confirm the BN predictions for the
sphere/plane geometry[12] either with N or EM bc. (iv)
As a further test, we introduce a Padé approximant for
the (sphere/plate) force at all separations, based on an
asymptotic expansion at large distances and the gradient
expansion at proximity. The Padé approximant agrees
excellently with existing numerical data and implies log-
arithmic corrections to the PFA beyond the gradient ex-
pansion performed here (see Eq. (9)).

Consider two bodies with gently curved surfaces de-
scribed by (single-valued) height profiles z = H1(x) and
z = H2(x), with respect to a reference plane Σ, where
x ≡ (x, y) are cartesian coordinates on Σ and the z axis is
normal to Σ. For our purposes it is not necessary to spec-
ify the precise nature of the fluctuating quantum field.
Our results are valid for scalar fields, for the EM field,
and indeed even for spinor fields. Similarly, the bound-
ary conditions satisfied by the fields on the surfaces of
the plates can be either ideal (e.g. D or N for the scalar
field, or ideal metal in the EM case) or those appropriate
to a real material with complex dielectric permittivity.
The only restriction on the bc is that they should de-
scribe homogeneous and isotropic materials, so that the
energy is invariant under simultaneous translations and
rotations of the two profiles in the plane Σ.

Following Ref. [14], we postulate that the Casimir en-
ergy, when generalized to two surfaces and to arbitrary
fields subject to arbitrary bc, is a functional E[H1, H2] of
the heights H1 and H2, which has a derivative expansion

E[H1, H2] =

∫
Σ

d2xU(H) [1 + β1(H)∇H1 ·∇H1

+ β2(H)∇H2 ·∇H2 + β×(H)∇H1 ·∇H2

+ β−(H) ẑ · (∇H1×∇H2) + · · · ] , (1)

whereH(x) ≡ H2(x)−H1(x) is the height difference, and
dots denote higher derivative terms. Here, U(H) is the
energy per unit area between parallel plates at separation
H; translation and rotation symmetries in x only permit
four distinct gradient coefficients, β1(H), β2(H), β×(H)
and β−(H) at lowest order. While the validity of this
local expansion remains to be verified, it is supported by
the existence of well established derivative expansions of
scattering amplitudes[15] from which the Casimir energy
can be derived by standard methods[7].

Arbitrariness in the choice of Σ constrains the β-
coefficients. Invariance of E under a parallel displace-
ment of Σ requires that all the β’s depend only on the
height difference H, and not on the individual heights
H1 and H2. The β-coefficients are further constrained
by the invariance of E with respect to tilting the refer-
ence plate Σ. Under a tilt of Σ by an infinitesimal angle
ε in the (x, z) plane, the height profiles Hi change by
δHi = −ε

(
x+Hi

∂Hi

∂x

)
, and the invariance of E implies

2 (β1(H) + β2(H)) + 2β×(H) + H
d logU

dH
− 1 = 0 ,

β−(H) = 0 . (2)

Hence the non-vanishing cross term β× is determined by
β1, β2 and U .

By exploiting Eqs. (2) we see that, to second order in
the gradient expansion, the two-surface problem reduces
to the simpler problem of a single curved surface facing
a plane, since U , β1 and β2 can be determined in that
case and β× follows from Eqs. (2). Therefore in Eq. (1)
we set H1 = 0 and define β2(H) ≡ β(H). By a simple
generalization of Ref. [14], where the problem is studied
for a scalar field subjected to D bc on both plates, we can
determine the exact functional dependence of β(H) on H
by comparing the gradient expansion Eq.(1) to a pertur-
bative expansion of the Casimir energy around flat plates,
to second order in the deformation. For this purpose, we
take Σ to be a planar surface and decompose the height
of the curved surface as H(x) = d + h(x), where d is
chosen to be the distance of closest separation. For small
deformations |h(x)|/d� 1 we can expand E[0, d+h] as:

E[0, d+h] = AU(d)+µ(d)h̃(0)+

∫
d2k

(2π)2
G(k; d)|h̃(k)|2 ,

(3)
where A is the area, k is the in-plane wave-vector and
h̃(k) is the Fourier transform of h(x). The kernel G(k; d)
has been evaluated by several authors, for example in
Ref.[16] for a scalar field fulfilling D or N bc on both
plates, as well for the EM field satisfying ideal metal bc
on both plates. More recently, G(k; d) was evaluated
in Ref.[17] for the EM field with dielectric bc. For a
deformation with small slope, the Fourier transform h̃(k)
is peaked around zero. Since the kernel can be expanded
at least through order k2 about k = 0[15], we define

G(k; d) = γ(d) + δ(d) k2 + · · · . (4)

For small h, the coefficients in the derivative expansion
can be matched with the perturbative result. By ex-
panding Eq. (1) in powers of h(x) and comparing with
the perturbative expansion to second order in both h̃(k)
and k2, we obtain

U ′(d) = µ(d) , U ′′(d) = 2γ(d) , β(d) =
δ(d)

U(d)
, (5)
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with prime denoting a derivative. Using the above re-
lation, we computed the coefficient β for the following
five cases: a scalar field obeying D or N bc on both
surfaces, or D bc on the curved surface and N bc on
the flat, or vice versa, and for the EM field with ideal
metal bc. Since in all these cases the problem involves
no other length apart from the separation d, β is a pure
number. βD was computed in [14], and found to be
βD = 2/3. We find βN = 2/3 (1 − 30/π2), βDN = 2/3,
βND = 2/3−80/7π2 (where the double subscripts denote
the curved surface and flat surface bc respectively), and
βEM = 2/3 (1− 15/π2). Upon solving Eqs. (2) one then
finds β× = 2 − β1 − β2, where β1 and β2 are chosen to
be both equal to either βD, βN or βEM, for the case of
identical bc on the two surfaces, or rather β1 = βDN and
β2 = βND for the case of a scalar field obeying mixed
ND bc. While we obtain agreement for D conditions, our
results for β in the case of N and EM conditions disagree
with Refs. [11, 12], which finds βN = 2/3 − 5/π2 and
βEM = −2.1, multiplied by logarithmic terms in the lat-
ter case that we do not obtain. We note that our value
of βEM is equal to the average of βD and βN. Using
the well known results U(d) = −απ2~c/(1440 d3), where
αD = αN = αEM/2 = 1 and αDN = αND = −7/8 in
Eq. (1), it is easy to verify that to second order in the
gradient expansion the ideal-metal EM Casimir energy
for two arbitrary surfaces is equal to the sum of the D
and N Casimir energies in the same geometry.

Using the values for β and β× obtained above, it is
possible to evaluate the leading correction to PFA, by
explicit evaluation of Eq. (1) for the desired profiles. For
example, for two spheres of radii R1 and R2, both with
the same bc for simplicity, we obtain:

E = EPFA

[
1− d

R1 +R2
+ (2β − 1)

(
d

R1
+

d

R2

)]
,

(6)
where EPFA = −(απ3~cR1R2))/[1440d2(R1 +R2)]. The
corresponding formula for the sphere-plate case can be
obtained by taking one of the two radii to infinity. Sim-
ilarly, for two parallel circular cylinders with different
radii and our results, not given here for brevity, fully
agree with those derived very recently by Teo [13]. Fi-
nally we consider two circular cylinders whose axes are
inclined at a relative angle θ,

E = −απ
3~c
√
R1R2

720d sin θ

[
1 +

(
β − 3

8

)
d

R1 +R2

]
, (7)

again assuming the same bc on both surfaces.
Surprisingly, a hyperboloid/plate configuration,

h(r) =
√
R2 + λ2r2 − R leads to a PFA correction pro-

portional to (2β + 1/λ2)d/R, which vanishes for the EM
case if λ = 1.20. To better understand what geometric
features of the surface determine the PFA corrections,
we considered a general profile, expanded around the
point of shortest separation, including cubic and quartic

terms in addition to quadratic terms representing its
curvature. The cubic terms – representing an asymmetry
absent in the shapes considered above – actually result
in a correction term that scales as

√
d/R. The more

standard correction proportional to d/R depends on
both cubic and quartic but no higher order terms in the
expansion of the profile. The quartic coefficients in fact
have opposite signs for the sphere and hyperboloid, and
it is this difference that accounts for the possibility of a
vanishing PFA correction (for the hyperboloid with EM
bc).

d/R

E/E PFA
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Neum
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EM

EM
 (B&N

)
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FIG. 1: Casimir energy normalized to PFA energy as a func-
tion of d/R for the sphere-plate configuration: Numerical data
(dots, from Ref. [10]), Padé approximants (solid curves) and
the first correction to the PFA (dashed lines). Also shown
are the linear slopes (dashed-dotted lines) computed by BN
[11, 12].

The disagreement between our results for N and EM
bc and those of BN[11, 12] in the prototype configura-
tion of sphere and plate calls for a comparison with in-
dependent results. Precise numerical results based on
an extrapolation of a spherical multipole expansion ex-
ist for d/R >∼ 0.1 [10]. Also, at large separations ana-
lytic asymptotic expansions (AE) of the rescaled force
f = R2F/(~c) ∼

∑n
j=1 fjr

j0+j in powers of r = R/d are
available for sufficiently large n, where j0 = 2 for D and
j0 = 4 for N and EM conditions, respectively. We resum
the AE for f , match it with our improved PFA result
using the method of Padé approximants, and compare
the resulting interpolation with the numerical results of
Ref. [10]. We introduce a Padé approximant f[M/N ](r)
that agrees with n terms of the AE for small r and with
the leading two terms∼ r3, r2 for large r given by Eq. (6).
This requires N = M − 3 whereas M is determined by
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n, so that all coefficients in

f[M/M−3](r) =
p0 + p1r + p2r

2 + . . .+ pMr
M

1 + q1r + q2r2 + . . .+ qM−3rM−3
(8)

are uniquely determined. The energy, obtained from
f[M/M−3] by integration over distance is shown with
n = 7, 13 and 15 for D, N and EM bc, respectively, in
Fig. 1 together with our result of Eq. (6) for the sphere–
plate case (R1 = R, R2 → ∞) and the numerical re-
sults of Ref. [10]. The difference between Padé approxi-
mants and the numerical data varies between 0.009% and
0.062% (D), 0.048% and 0.42% (N), 0.009% and 0.248%
(EM). This agreement is quite remarkable given that the
Padé approximants are obtained independent of the nu-
merical data. The Padé approach may thus be valuable
for Casimir interactions between slowly varying surfaces
at all separations starting from expansions valid at small
and large distances respectively. Figure 1 also shows the
BN results for the first correction to the PFA.

The Padé approximant for the force at small d/R and
integration yields for the energy the expansion

E

EPFA
= 1 + θ1

d

R
+ θ2

(
d

R

)2

log
d

R
+O

((
d

R

)3
)

(9)

with θ1 = 2β − 1 and θ2 = 0.08 for D, θ2 = −24.01 for
N and θ2 = −4.52 for EM conditions. The appearance
of a logarithm at second order in Eq. (9) follows from
our assumption that the force can be expanded in pow-
ers of d at small d including a term ∼ 1/d[20]. A Padé
approximation to the energy would yield no 1/d term in
the force. To check that the d2 log d term in the energy
is necessary, we have tried a Padé analysis of the energy,
which of course contains no logarithms, and found much
poorer agreement with the numerical data (with frac-
tional differences of the order of 100 times larger than
those given above for the Padé approximant for the force
and moreover a pole in the approximant). One could
perform Padé approximations to derivatives of the force
which might turn out to be even more accurate but this
would only change the functional form (logarithmic fac-
tors) of Eq. (9) at third order in d/R. As an independent
test of our result θ1 = 2β−1 we fitted the functional form
of Eq. (9) to the numerical data reported in Ref. [10, 18].
The corresponding values for θ1 are summarized in Table
I. When comparing numerical and analytic values for θ1

one must consider that they are limited to d/R >∼ 0.1
with somewhat better accuracy for the D and EM case.
Finally, we note that the presence of the logarithm at or-
der (d/R)2 indicates that the gradient expansion for the
energy might break down at next order.

Based on the derivative expansion proposed by Fosco
et al. [14], we have described a systematic treatment of
the first non-trivial corrections to the PFA. While this
paper focused on ideal boundary conditions, the scatter-
ing amplitudes for material with arbitrary EM response

boundary θ1 from fit to θ1 from gradient

condition numerical data [10] expansion

D +0.36 1/3

N −2.99 1/3 − 40/π2 = −3.72

EM −1.62 1/3 − 20/π2 = −1.69

TABLE I: Coefficient θ1 for D, N and EM boundary con-
ditions on sphere/plate from a fit of the numerical data of
Ref. [10] to Eq. (9) and from the gradient expansion.

(frequency dependent ε(ω), µ(ω), isotropic or not, local
or not) have been computed in the gradient expansion
and can be used to compute improved PFA corrections
in experimentally relevant situations of sphere/plate as
well as corrugated plates and other setups.
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