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Abstract: Recent statistics indicate that the human population is ageing rapidly. Healthy, 

but also diseased, elderly people are increasing. This trend is particularly evident in 

Western countries, where healthier living conditions and better cures are available. To 

understand the process leading to age-associated alterations is, therefore, of the highest 

relevance for the development of new treatments for age-associated diseases, such as 

cancer, diabetes, Alzheimer and cardiovascular accidents. Mechanistically, it is well 

accepted that the accumulation of intracellular damage determined by reactive oxygen 

species (ROS) might orchestrate the progressive loss of control over biological homeostasis 

and the functional impairment typical of aged tissues. Here, we review how epigenetics 

takes part in the control of stress stimuli and the mechanisms of ageing physiology and 

physiopathology. Alteration of epigenetic enzyme activity, histone modifications and 

DNA-methylation is, in fact, typically associated with the ageing process. Specifically, 

ageing presents peculiar epigenetic markers that, taken altogether, form the still  

ill-defined “ageing epigenome”. The comprehension of mechanisms and pathways  
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leading to epigenetic modifications associated with ageing may help the development of  

anti-ageing therapies. 
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1. Introduction 

Ageing is a multidimensional irreversible accumulation of physical, environmental and social 

changes. Nowadays, ageing biology and pathobiology are emerging as one of the most compelling 

areas of biomedical research, owing to current demographic trends and associated healthcare costs in 

Western societies [1,2]. Both the exponential growth of the literature on ageing during the last few 

years and the new “-omic” technology development for the study of lifespan revealed a great deal of 

interest in ageing and ageing-associated diseases among a large number of academic scientists and 

industrial entities [1]. From the onset of reproductive maturity, throughout the organism’s life, the 

efficiency of various physiological processes progressively declines [3,4]. The gradual loss of 

homeostatic mechanisms associated with ageing is hypothetically due to an accumulation of  

molecular oxidative damage [5–7]. Indeed, the “Free Radical Theory of Ageing” is based on oxygen  

toxicity [5,8]. Molecular oxygen is a bi-radical able to generate partially reduced molecules and, then, 

reactive oxygen species (ROS). ROS can be detoxified within the cell by several kinds of antioxidants, 

based on both enzymatic and non-enzymatic mechanisms [5,8–10]. Examples of intracellular 

antioxidant enzymes are: superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxiredoxin 

and sulfiredoxin [5,8,10,11], whereas examples of low molecular weight antioxidants are: glutathione, 

vitamin C, vitamin A and vitamin E [5,8,10,11]. When all these endogenous antioxidants are insufficient, 

ROS increase, altering the cell normal redox state and, thus, provoking oxidative stress. High ROS levels 

cause toxic effects in the cell, because they are potentially detrimental for biological macromolecules, 

such as lipids, nucleic acids and proteins (Figure 1) [5,9]. In mammalian cells, ROS are mainly 

produced during physiological processes, such as cellular respiration, the activation of the arachidonic 

acid cascade and by several enzymes, including, for example, cytochrome p450, Nicotinamide Adenine 

Dinucleotide (NADH)/Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase and nitric oxide 

synthase [5,9]. 

As a consequence of ROS accumulation, oxidative stress, the imbalance of the normal redox state, 

increases exponentially with age, paralleled by a remarkable decline of the cell repair machinery [10] 

(Figure 1). Oxidative stress contributes to the pathogenesis of several cardiovascular, pulmonary  

and neuronal disorders common among elderly people, such as myocardial infarction, diabetes, 

atherosclerosis, chronic obstructive pulmonary disease (COPD) or Alzheimer’s disease [11–13]. 

Very recent studies indicated the multifactorial etiology of ageing-associated diseases as related to 

both genetic and epigenetic changes in the genome [14]. Although at the very beginning, scientists 

focused primarily on the genetic component of ageing, we would like to stress here that epigenetic 

mechanisms involved during ageing may play important physiopathological roles above all in the 

presence of oxidative stress (Figure 1). 
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Figure 1. Oxidative stress, epigenetics and ageing. ROS, reactive oxygen species. 

 

2. The Epigenetic Machinery 

Epigenetics studies the somatically-acquired and, in some cases, trans-generationally inherited 

modifications of chromatin able to alter gene expression without changing the DNA blue-print [15,16]. 

Epigenetic mechanisms may act both qualitatively, to induce flexible, short-term gene silencing 

(histone tail modifications), and quantitatively, to provoke more stable, long-term gene expression 

(DNA methylation) [15]. The so-called epigenome control, in fact, relies on a large number of  

histone-modifying complexes, DNA methylation enzymes and non-coding RNAs, which, to a different 

extent, regulate chromatin structure [17]. 

Histones can be modified at many sites where the principal covalent modifications are: acetylation, 

phosphorylation, methylation, isomerization, ubiquitination and sumoylation (see, for review, [17]). 

Modified histone residues constitute the docking site for distinct chromatin-binding proteins, which 

direct the dynamic transition between transcriptionally active (euchromatin) and transcriptionally silent 

(heterochromatin) chromatin as a consequence of the covalent modification to which they are bound. 

The reversible nature of histone modifications accounts for the presence of chromatin remodeling 

enzymes with opposite functions, which allow chromatin to have a dynamic structure: for example, the 

histone acetyltransferases (HATs) and their counterpart, the histone deacetylases (HDACs), or the 

histone methyltransferases (HMTases), and their opposite, the histone demethylases [17]. 

DNA methylation is a very important epigenetic modification of cytosine residues in the primary 

DNA sequence. It is used by the cell as an epigenetic signal to lock genes in the so-called “off” 

position. Methylation plays an important role during numerous processes, including embryonic 

development, genomic imprinting, X-chromosome inactivation and the preservation of chromosome 
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stability [18,19]. Specifically, during DNA methylation, a methyl group is added to the carbon-5 

position of the cytosine pyrimidine ring by DNA methyltransferases to form 5-methylcytosine  

(5-MeC) [18,19]. DNA methylation occurring at promoter regions typically represses gene 

transcription by maintaining chromatin in a closed state [18,19]. This is achieved by recruiting  

methyl-CpG-binding-domain protein complexes that also contain HDACs. These complexes remove 

acetyl groups from the histone’s N-terminal ends and keep the chromatin in a closed configuration 

inaccessible to transcription factors and co-activators [18,20]. In contrast, the absence of 5-MeC at  

un-methylated promoters permits acetylation of histones (via HATs), which, in turn, allows a number 

of transcription activator complexes [20] to directly access chromatin and to promote transcription of  

a specific genomic region. 

Non-coding RNAs, such as microRNAs, small interfering RNAs and long-non-coding RNAs, 

represent an additional layer of epigenetic control of gene expression [21]. They play a pivotal role in 

the regulation of gene transcription, through the recruitment of chromatin modification complexes, 

including the polycomb group complex [21]. 

3. Epigenetic Traits of Ageing 

The entire epigenetic machinery, hitting specific targets and markers, might orchestrate cellular and 

organismal homeostasis. Alteration of epigenetic mechanisms may lead to accumulation of functional 

errors and to ageing-associated diseases, such as cancer. Indeed, aged organisms present a peculiarly 

modified epigenome (Table 1). 

3.1. Chromatin Alterations 

A large body of literature shows that the global hypomethylation occurring in an aged genome is 

often associated with a decrease in the activity of DNA methylation enzymes [22] with some peak of 

hyper methylation in specific gene loci, such as c-fos [23], IGF-II [24] and p16ink4a [25]. Furthermore, 

ageing is characterized by specific histone modifications (Table 1). Histone acetylation on lysine 16 of 

histone H4 (H4K16) increases gradually, due to a reduction of sirtuin 1 (SIRT1) deacetylase protein 

level [26–28]. The histone methylation pattern is also sensitive to age: methylation of histones H3 and 

H4 changes, and depending on residues, it may decrease or increase [29]. The most relevant modified 

residues affected by the ageing-dependent decrease of the methylation state are: the tri-methylated 

lysine 36 of histone H3 (H3K36me3), the tri-methylated lysine 9 of histone H3 (H3K9me3) and  

the mono-methylated lysine 20 of histone H4 (H4K20me) [30]. Among residues affected by  

an increase of methylation, there are: the tri-methylated lysine 27 of histone H3 (H3K27me3) [30], the  

mono-/di-methylated lysine 79 of histone H3 (H3K79me/me2) [30] and the tri-methylated lysine 20 of 

the histone H4 (H4K20me3) [31,32]. Histone modification alterations are linked to changes in the 

expression level of epigenetic enzymes. Specifically, the, i.e., two histone methylation complexes, the 

polycomb repressive complex member EZH2 (PRC2) and the polycomb repressive complex member 

Bmi1 (PRC1) [26], decrease with age, whereas the histone demethylase jumonji domain containing 3 

(JMJD3) increases (see Table 1) [33,34]. 

Senescence-associated heterochromatin foci (SAHFs) are one of cellular senescence markers more 

easily detectable in mice at the chromatin level. SAHFs are DNA domains that may be recognized 
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when densely stained by 4',6-diamidino-2-phenylindole (DAPI) (Table 1) [35,36]. These peculiar 

heterochromatin structures increase in stress-induced senescent cells, where the activation of the cell 

cycle control Rb-p16ink4a pathway contributes to inducing cell growth arrest. In addition, SAHFs 

associate with regions of transcriptional repression in which H3K9me3 accumulates [35,37]. The 

presence of SAHFs seem to play a causal role in cellular senescence, because they induce repression of 

the E2F transcription factor family, fundamental for the progression of the cell cycle, and cause 

interruption of cell cycle progression [35]. 

Table 1. Epigenetic traits of ageing. 

Epigenetic ageing marker Regulation Reference 

Global DNA methylation Decreased [22] 
DNA methylase activity Decreased [22] 

PRC1, PRC2 Decreased [26] 
SIRT1 Decreased [22,26,27] 

H3K36me3, H3K9me3, H4K20me Decreased [30] 
miR-71 Decreased [38] 

c-fos, IGF-II, p16Ink4a methylation Increased [23–25] 
H4K16ac Increased [22,26,27] 
JMJD3 Increased [33,34] 

H3K27me3, H3K79me/me2 Increased [30] 
H4K20me3 Increased [31,32] 

SAHFs Increased [35–37] 
mir-29 Increased [39–41] 
mir-34a Increased [40–43] 

mir-200 family Increased [44] 

Notes: PRC1, polycomb-group repressive complex 1; PRC2, polycomb-group repressive complex 2;  

SIRT1, sirtuin 1; H3K36me3, tri-methylated lysine 36 of histone H3; H3K9me3, tri-methylated lysine 9 of 

histone H3; H4K20me, mono-methylated lysine 20 of histone H4; miR-71, micro-RNA 71; c-fos, FBJ murine 

osteosarcoma viral oncogene homolog; IGF-II, insulin-like growth factor II; p16Ink4a, cyclin-dependent 

kinase inhibitor 2A; H4K16ac, acetylated lysine 16 histone H4; JMJD3, histone demethylase jumonji domain 

containing 3; H3K27me3, tri-methylated lysine 27 of histone H3; H3K79me/me2, mono-/di-methylated 

lysine 79 of histone H3; H4K20me3, tri-methylated lysine 20 of the histone H4; SAHFs, senescence-associated 

heterochromatin foci; miR-29, micro-RNA 29; miR34a, micro-RNA 34a; miR-200, micro-RNA 200 family. 

3.2. miRNA Role in Ageing 

Several miRNA clusters are up- or down-modulated in different tissues during ageing and are able 

to hit molecular targets that regulate lifespan, such as insulin-like growth factor 1 (IGF1)/insulin [45], 

forkhead box, sub-group O (FOXO) [46], SIRT1 [47] and cyclin-dependent kinase inhibitor 1A (p21) 

(Table 1) [48]. Among miRNAs that affect longevity, in C. elegans, micro-RNA 71 (miR-71) acts to 

increase resistance to heat shock and oxidative stress [38]. Alteration in micro-RNA expression may be 

involved in the age-associated impairment of organ function often seen in elderly people. The vascular 

impairment observed during ageing, in fact, is often combined with the altered expression of several 

micro-RNAs, such as miR-29 [39–41], miR-34a [40–42], miR-217 [40,41] and miR-146 [41,49,50]. 

miR-29 is upregulated by transcriptional and post-transcriptional mechanisms seen in cultured 
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senescent endothelial cells [40,41] and in old mouse aortas, determining the reduction of extracellular 

matrix deposition and aneurysm formation [39]. miR-34a has been found upregulated both in vitro and 

in vivo, associated with the inhibition of cell proliferation, with a subsequent induction of cellular 

senescence and premature death, both in endothelial progenitor and mature cells [40,41,43]. In our 

studies about the effect of oxidative stress on human umbilical vein endothelial cells (HUVECs), we 

found that ROS induce expression of miR-200 family members [44]. Specifically, we observed that the 

increase in miR-200c expression upon oxidative stress determined the down-modulation of the zinc 

finger E-box binding homeobox 1 (Zeb1) transcription factor paralleled by apoptosis and senescence [44]. 

Cardiac ageing is characterized by cardiomyocyte cell death, hypertrophy and fibrosis, which is also 

regulated by miRNA alteration. Recently, Boon and coworkers demonstrated the contributive role of 

miR-34a in the age-dependent decline of cardiac function [42]. Specifically, they found that miR-34a 

is upregulated in the heart during ageing, determining, via repression of its target, PNUTS, telomere  

erosion, DNA damage and cardiomyocytes apoptosis [42]. The authors further demonstrated that the  

miR-34a-PNUTS axis rules ischemia reperfusion injury after acute myocardial infarction, a phenomenon 

strictly associated with oxidative stress damage [42]. 

4. ROS, Epigenetics and Diseases 

Cardiovascular diseases are by far the leading cause of morbidity and mortality in industrialized 

nations [51]. Due to remarkable progress in prevention and acute cardiac patient care, cardiovascular 

diseases nowadays manifest significantly later in life [51]. Therefore, the incidence of coronary artery 

disease, myocardial infarction and heart failure, often strictly interconnected, increases almost 

exponentially with age [51]. Ageing affects cardiovascular tissues, introducing typical markers: aged 

hearts show hypertrophy and fibrosis, whereas the aged vasculature is affected by arterial thickening 

and increased stiffness [52]. In this light, the health of cardiac and arterial systems is not mutually 

exclusive, as each system greatly affects the other [52]. For instance, an increase in arterial stiffness 

leads to compensatory mechanisms by the myocardium, which includes left ventricular hypertrophy 

and fibroblast proliferation [53]. Therefore, physiological modifications may determine age-related 

physiopathological changes, such as vascular dysfunction or insufficient vascular growth and 

remodeling (hypertension). Heart fibrosis and hypertrophy induce slow propagation of electric impulse 

throughout the heart, modifying heart rate and the electrical impulse conduction, which increases the 

incidence of arrhythmias [54]. At the molecular level, ageing is associated with changes in the activity 

of a series of enzymes necessary for cardiovascular homeostasis. For example, aged endothelial cells 

exhibit a decrease in endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) 

production [53]. NO is a gaseous molecule able to regulate vasodilatation, shear stress and vascular 

tone and to prevent thrombotic events and vascular inflammation [55]. 

The production of ROS increases during ageing and determines oxidative stress, which might be 

responsible for the SIRT1, a class III histone deacetylases, decreased activity and protein levels [56]. 

SIRT1 antagonization is involved in senescence of mouse fibroblasts, human cancer cells and 

endothelial cells [57]. Specifically, Ota and co-workers [57] found that SIRT1 chemical inhibition by 

sirtinol, or genetically by siRNA gene knockdown, induces a senescence-like phenotype in HUVECs. 

Specifically, SIRT1 inhibition determines an increase of p53 acetylation with a consequent growth 
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arrest of endothelial cells. On the other hand, SIRT1 overexpression in HUVECs prevented premature 

senescence in the presence of high levels of hydrogen peroxide (H2O2). Therefore, SIRT1 results play 

a pivotal role in the modulation of stress stimuli, at least, in part, via p53 deacetylation [58]. 

Endothelial cell senescence is associated with endothelial dysfunction and vulnerability to 

atherosclerotic lesions. As mentioned above, NO is fundamental for endothelial function. In line with 

this observation, Ota et al. [59] demonstrated that treatment with cilostazol, a phosphodiesterase 3 (PDE3) 

inhibitor, induced NO production, thanks to an increased level of cyclic adenosine monophosphate 

(cAMP) and a consequent eNOS phosphorylation by cAMP/cAMP dependent protein kinase (PKA) 

and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. 

The increase in NO levels may, in turn, enhance SIRT1 activity, which, once more, may delay 

endothelial senescence [59]. Summarizing, during ageing, oxidative stress accumulates, paralleled with 

a decrease in NO production, which might be responsible for SIRT1 inactivation. This negative loop 

facilitates the senescence-like phenotype of endothelial cells (Figure 2). Indeed, it has been recently 

demonstrated that statins, which induce eNOS activity via SIRT1 upregulation, may inhibit  

oxidative-dependent endothelial senescence [60]. 

Figure 2. Oxidative stress, epigenetics and diseases. iNOS, inducible nitric oxide synthase; 

eNOS, endothelial nitric oxide synthase. 

 

Besides the cardiovascular system, lungs are exposed to either endogenous or exogenous sources  

of oxidants. The endogenous oxidants predominantly derive from mitochondrial respiration and 

phagocyte activation, whereas important exogenous determinants of oxidation are air pollutants, 

noxious gases and, last, but not least, the smoke of cigarettes [61,62]. The accumulation of ROS 

directly impairs the function of lung cells, determining posttranslational modifications of histones and 

non-histone proteins, as well as that of chromatin remodeling enzymes [61,62]. The lung disease in 

which all these mechanisms are the most evident is chronic obstructive pulmonary disease (COPD) 
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characterized by chronic low-grade systemic inflammation and premature ageing, the so-called 

“inflamm-ageing”, which determines the obstruction of lung airflow and decreases respiratory  

function [63]. In these patients, inflammation and cellular senescence are exacerbated by tobacco smoke, 

which accelerates or induces premature lung ageing [63–65]. Indeed, cigarette smoke contains a 

number of free radicals and chemical compounds, representing the major source of inhaled ROS, able 

to alter the intracellular balance between acetylation/deacetylation and methylation/demethylation 

processes, leading to a deregulated expression of proinflammatory genes [64,65]. Specifically, it has 

been recently found that cigarette smoke post-translationally modifies histone deacetylase 2 (HDAC2), 

a class I histone deacetylase, causing a significant reduction in its enzymatic activity [64].  

Adenuga et al. [66] observed a smoke-dependent HDAC2 inactivation by phosphorylation at Ser394, 

Ser411, Ser422 and Ser424 in macrophages, human bronchial and primary small airway lung epithelial 

cells and, in vivo, in the mouse lung. In this context, it is the caseine protein kinase 2 (CK2) that 

induces HDAC2 phosphorylation, leading to its inactivation by ubiquitination and degradation via the 

proteasome pathway. This physiopathological condition is associated with severe unfavorable effects, 

such as steroid resistance and abnormal inflammation [66]. Besides phosphorylation, HDAC2 can be 

modified and inactivated by smoke-induced carbonyl stress and NO-dependent S-nitrosylation at  

cysteine [67,68]. Indeed, in the mouse lung, tobacco smoke increases inducible NOS (iNOS) and 

eNOS expression and function, respectively, with a consequent increment of NO generation [69].  

In this regard, we reported that a deregulated NO synthesis in mice expressing a constitutively active 

form of eNOS leads to S-nitrosylation of HDAC2, with a subsequent loss of its deacetylase activity [70]. 

A decreased HDAC2 activity has been associated with inflammation and senescence in COPD patients 

via the increase of histones H3 and H4 acetylation, the activation of the transcription factor, nuclear 

factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB), and the unscheduled transcription 

of proinflammatory genes [66,71,72]. Moreover, HDAC2 activity normally delays cellular senescence 

by negatively regulating pro-senescent genes, such as cyclin-dependent kinase inhibitor 1A (p21) and 

cyclin-dependent kinase inhibitor 2A (p16) [64]. Therefore, a significant reduction in HDAC2 function 

may accelerate cellular senescence and pulmonary emphysema in COPD patients (Figure 2). 

Similarly to the cardiovascular and respiratory systems, the nervous system is also vulnerable to 

oxidative stress. In fact, although brain holds high concentrations of lipids susceptible to peroxidation 

and uses high amounts of oxygen to produce energy, it has a relatively deficient anti-oxidant  

system [73]. Indeed, several lines of evidence have recently underlined the role of oxidative stress and 

the simultaneous downregulation of antioxidant enzymes during progression from healthy ageing to 

dementia [74]. Alzheimer’s disease, the typical dementia form of aged people, is characterized by 

progressive loss of memory and cognitive capacities, due to extracellular amyloid deposits, the  

so-called senile plaques, and to the formation of intraneuronal aggregates of hyper-phosphorylated tau 

protein, forming the so-called “neurofibrillary tangles” [74]. Oxidative DNA damage is now accepted 

as one of the earliest observable events in Alzheimer’s pathogenesis. Remarkably, it can be detected in 

brains and in peripheral tissues of patients either affected by mild cognitive impairment or at their late 

stages of Alzheimer’s disease [74]. The most frequent oxidative DNA lesion is the oxidation of 

guanine to 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-G), which alters transcription factors binding 

to DNA as a consequence of a deranged epigenetic signaling [75–77]. Furthermore, astrocytes belonging 

to the hippocampus and cerebral cortex of Alzheimer’s disease patients often present histone  
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H2A member X phosphorylation, a hallmark of DNA double-strand breaks, which allows formation of  

intranuclear y-H2AX foci [78]. Of interest, a Cytosine nucleotide next to a Guanine nucleotide arrayed 

in a linear sequence forms the so-called “CpG island” in specific DNA regions, often intergenic and 

associated with gene expression control. In this context the presence of oxidized guanosine to form  

8-oxo-G, which is one of the most common oxidative DNA damage biomarkers, is often associated 

with cytosine methylation, leading to the formation of methylated and oxidized CG stretches. These 

regions might represent sites of interplay between epigenetic and oxidative stress signals potentially 

relevant in Alzheimer’s disease physiopathology, as proposed by Zawia and coworkers [79]. These 

authors found that external stimuli during rat brain development might reduce DNA-methyltransferase 

activity, leading to hypomethylation in the regulatory regions of genes associated with Alzheimer’s 

disease, such as β-amyloid-precursor-proteins and secretases [79]. In this light, early life exposure to 

specific stimuli, such as xenobiotic metals, gives an impulse to Alzheimer’s disease, inducing a 

progressive accumulation of β-amyloid-precursor-proteins and β-amyloids [79]. Coincidently to the 

formation of these deposits, an increase of cerebral 8-oxo-G levels has been observed [79]. In this way, 

the epigenetic imprinting can influence the expression of Alzheimer’s disease-related genes, promoting 

DNA damage and pathogenesis progression. Remarkably, it has been observed that 8-oxo-G cannot be 

repaired when it is preceded by a methylcytosine [79]. Thus, in the presence of cytosines methylated 

early in life and belonging to CpG islands, the correction of adjacent guanines in the case of an 

oxidation event occurring late in life will be prevented, leading to accumulation of oxidative DNA 

damage in ageing brains (Figure 2) [79]. In conclusion, the authors established that methylation 

imprinting hits both gene expression and susceptibility to oxidative DNA damage in the late stages of 

Alzheimer’s disease. Hence, the epigenetic machinery may represent an oxidative stress sensor that 

orchestrates the progressive homeostasis impairment typical of ageing, thus shaping the cellular 

senescence often observed during cardiovascular, respiratory and nervous system degeneration. 

5. Youth Fountain: Struggle with ROS 

Lifespan is often correlated to metabolic rate. Albeit that several exceptions exist, it is often 

observed that the faster the metabolism, the higher the ROS production and, thus, the shorter the 

lifespan. For this reason, the controlled reduction of oxidative stress may represent a way to slow the 

progressive homeostasis impairment occurring during ageing. At present, several studies pointed out 

different methods to increase organism lifespans, including caloric restriction, deletion of p66ShcA 

and enhancement of SIRT1 activity. All these methods have in common the ability to decrease 

oxidative stress [10]. 

Restricted caloric intake significantly modifies the rate of ageing and reduces the age-associated 

accumulation of oxidized damaged macromolecules [10]. Gene profiles of caloric-restricted aged mice 

shows low level expression of genes involved in oxidative stress in comparison with aged mice fed ad 

libitum [6,10]. Thus, caloric restriction prevents several gene expression changes usually occurring in 

age-related diseases, concurring to prolong animal lifespans by about 20% [10,80]. 

Sirtuins are the epigenetic beneficial effectors of caloric restriction [81,82]. They belong to a  

family of seven NAD+-dependent class III deacetylases, namely SIRT1-7 [83]. The most characterized 

component of the family is SIRT1. The aforementioned seems to protect against cardiovascular 
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function impairment common in later ages, cope with stress stimuli and contribute to maintain 

telomere stability [81,82]. Oxidative stress, in fact, decreases SIRT1 activity to such an extent that 

some of the negative regulators of oxidative stress, such as p53, forkhead box, sub-group O 3 (FOXO3) 

and eNOS, become deacetylated and unable to efficiently counteract the progressive homeostasis 

impairment of endothelial cells [56]. Noteworthy, SIRT1 regulates NO production, contributing 

indirectly to vascular homeostasis [84]. Specifically, SIRT1 deacetylases eNOS on Lys496 and Lys506 

and stimulates its activity [85]. Actually, during ageing, eNOS phosphorylation levels drop,  

whereas acetylation levels increase. Remarkably, the SIRT1-eNOS coupling not only improves  

endothelium-dependent vasomotor tone [85,86], but possibly that of a larger number of cell types, as 

we recently demonstrated in keratinocytes during the skin repair process of mice [87]. 

Other molecules may have a negative effect on animal lifespan, as in the case of the p66 Src homology 

2 domain-containing (p66ShcA) gene, whose deletion extends life in mice of by least 30% [88]. 

p66ShcA, together with p46ShcA and p52ShcA, is one of the three isoforms of the mammalian adapter 

protein, ShcA [89]. All ShcA isoforms contain a common structure, but only p66ShcA presents a 

unique domain at the N-terminus. p52 and p46 are cytoplasmic signal transduction molecules involved 

in mitogenic signaling from activated tyrosine kinase receptors to Ras, whereas the p66 isoform is 

devoid of this function and regulates ROS metabolism at the mitochondrial level, promoting oxidative 

stress in cells and tissues and apoptosis [89]. Epigenetics plays a pivotal role in the regulation of 

p66ShcA expression [90]. Indeed, p66ShcA expression is partially controlled by different epigenetic 

modifications of its promoter, which present a high content of CG nucleotides, although not sufficient 

to qualify as a CpG island-rich region [90]. As previously discussed, DNA methylation of CpG islands 

is a well-known gene silencing mechanism that confers high stability to chromatin and poor 

accessibility to transcriptional complexes. p66ShcA promoter analysis in different cell lines showed, in 

fact, a strong correlation between nucleotides methylation and the expression level of p66ShcA [90]. 

In cell lines expressing high levels of p66ShcA, bisulfite analysis showed that all the CpG were 

unmethylated [90]. Conversely, among cell lines not expressing detectable amounts of p66ShcA, the 

fraction of methylated cytosines ranged between 41% and 100%. In support of DNA methylation  

as a silencer mechanism for the p66ShcA locus, Ventura and co-workers [90] demonstrated that 

demethylating treatment of these cell lines induces de novo transcription of the p66ShcA gene.  

In addition, further analyses revealed that p66ShcA is transcriptionally repressed by SIRT1, as 

confirmed by the evidence that p66Shc increases following SIRT1 inhibition. Specifically, SIRT1 

directly regulates the p66Shc promoter, decreasing the acetylation of its histone, H3 [91]. 

Oxidative stress is a determinant of ageing, and p66ShcA knockout results in oxidative stress 

resistance and low levels of apoptosis. Indeed, murine embryonic fibroblasts derived from p66ShcA 

knockout (KO) mice are resistant to treatment with oxidant agents and only infrequently respond to 

oxidative stress stimuli, undergoing apoptosis [88]. On the contrary, murine embryonic fibroblasts 

overexpressing p66ShcA present an increased level of apoptosis, which correlates with the intracellular 

production of ROS [88]. In this context, we recently demonstrated that p66ShcA deletion increased 

both skeletal muscle and endothelial cell resistance to acute ischemia, a tissue injury in which the rapid 

formation of ROS plays a detrimental role [92]. Intriguingly, we found that p66ShcA not only 

modulated cell survival, but also differentiation of skeletal muscle progenitors and skeletal muscle 

regeneration after hind limb ischemia [93]. Moreover, as concerns diabetic injury, in which oxidative 
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stress plays a pivotal role, we reported that the ability of p66ShcA to generate ROS was important for 

hyperglycemia-sensitivity in bone marrow-derived endothelial progenitor cells and that an active 

p66ShcA was responsible for the angiogenic impairment induced by diabetes in a mouse model of 

angiogenesis [94]. In line with this, Chen and coworkers observed the involvement of SIRT1 in 

diabetic mice [91]. Specifically, SIRT1 was downregulated in the aorta of diabetic mice, and this, in 

turn, triggered the activation of p66ShcA, causing hyperglycemia-induced endothelial dysfunction [91]. 

All this evidence shows that p66ShcA may function as a sensor of intracellular concentration of 

ROS, regulating apoptosis and lifespan. It is well established now that the absence of p66ShcA confers 

oxidative stress resistance and increases longevity, although this advantage may be limited to the 

laboratory environment in which animals are kept [95]. 

6. Epigenetic Drugs in Ageing and Age-Related Diseases 

Besides genetic interventions, the promise of “healthy ageing” can be pursued, developing epigenetics 

drugs able to cope with the “aged epigenome”. 

The increase of SIRT1 expression and/or activity has positive effects in type 2 diabetes, cancer, 

cardiovascular diseases, COPD and Alzheimer’s disease [96]. In this light, sirtuin therapeutic activation, 

by small molecules, is thought to provide a new approach to treat or prevent age-related diseases. 

Since 2003, resveratrol (see 1 in Figure 3) has been identified as a potent SIRT1 activator that 

mimics the effect of caloric restriction and regulates longevity in yeast, worms, flies, short-lived fish 

and mice [96]. In obese rodents, treatment with resveratrol produces a variety of health benefits, 

including improved metabolic and vascular function, decreased hepatic steatosis, reduced inflammation 

and improved endurance. Recent clinical studies showed that resveratrol also confers metabolic 

benefits to humans. In obese humans, one month of resveratrol supplementation, in fact, induced 

metabolic changes, mimicking the effect of caloric restriction. This beneficial effect has been 

associated with the positive effect of resveratrol on SIRT1 and the consequent reduction of cellular 

senescence and inflammation [97]. Resveratrol is currently being evaluated in clinical trials for the 

treatment of several ageing-related pathologies (see Table 2 for details). 

Other epigenetic molecules are now under evaluation for their potentially positive effect in  

age-associated diseases. Quercetin (2), in fact, has been shown to protect against emphysema, a 

beneficial effect probably due to an increased expression of SIRT1. This observation is in agreement 

with prior studies about the property of quercetin to activate mammalian SIRT1 or its yeast 

orthologous Sir2 [98]. Other polyphenolic compounds, including piceatannol (3), can also activate 

SIRT1. Although these compounds have a modest effect on SIRT1, compared to resveratrol, 

nevertheless, they may have a beneficial application in the treatment of lung inflammation [98]. 

Several synthetic SIRT1 activators have been recently developed for the treatment of age-associated 

diseases, including type 2 diabetes [98]. These activators are known as SRT1720 (4), SRT1460 (5), 

SRT2183 (6), SRT2104 and SRT2379. The most potent among these compounds is SRT1720  

(EC1.5 = 0.16 µM), which improves glucose homeostasis and insulin sensitivity in animal models of 

type 2 diabetes [99]. Furthermore, due to SIRT1 activation, it was found that SRT1720 reduced 

cigarette smoke-induced cellular senescence in the lung. [100]. In addition, SRT1720 improved 

survival and the health of obese mice [101], suggesting that designing novel molecules that are safe 
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and effective in promoting longevity and preventing multiple age-related diseases in mammals may 

represent a promising perspective. Of note, some of these compounds are now in phase I/II  

clinical trials (see Table 2). 

Figure 3. Epigenetic small molecule modulators in ageing and age-related diseases. 

 

Table 2. Epigenetic modulators in clinical trials for age-related diseases. 

Drugs Condition clinicaltrials.gov Identifier Phase 

Resveratrol Type 2 diabetes NCT01677611 I, Completed 

Resveratrol 
Vascular resistance, aging, hypertension, 

antioxidants, aerobic capacity 
NCT01842399 II 

Resveratrol Healthy NCT00996229 III 
Resveratrol Alzheimer’s disease NCT00678431 III, completed 

SRT-2104 Type 2 diabetes 
NCT00937872, NCT00933062, 
NCT00933530, NCT01018017 

I, II 

SRT-2379 Type 2 diabetes NCT01018628 I 
Metformin COPD NCT01247870 IV 
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In 2009, a new class of 1,4-dihydropyridine derivatives (DHPs) was recognized as a novel SIRT 

activator (EC1.5, SIRT1 = 1 µM), showing a reduction in cellular senescence of primary human 

mesenchymal stem cells similar to resveratrol. When tested in murine C2C12 myoblast cell line, the most 

potent compound of this class, diethyl 1-benzyl-1,4-dihydro-4-phenylpyridine-3,5-dicarboxylatenamed 

(MC2562, 7), showed a dose-dependent increase in mitochondrial activity with a mechanism involving 

PGC-1α [102]. In vitro and in vivo studies revealed that the activation of SIRTs by MC2562 stimulated 

keratinocyte proliferation via eNOS phosphorylation and NO production, highlighting its effectiveness 

in accelerating wound repair in a mouse experimental model of skin damage [87]. 

Metformin (8) is a widely used drug for the reduction of hyperglycemia in type 2 diabetes. A recent 

study demonstrated that the beneficial effect of metformin is associated with the activation and 

induction of SIRT1 [103]. Further studies revealed that metformin targets AMP-activated protein kinase 

(AMPK), an upstream kinase important for activating SIRT1. Although the mechanism of metformin 

action in diabetes, lung inflammation and other ageing-associated diseases remains elusive, clinical trials 

are ongoing to study the effect of metformin in the treatment of COPD and its complications (Table 2). 

Cilostazol (9), a selective inhibitor of PDE3, has been reported to protect endothelium, after 

ischemic damage, through the induction of a significant production of NO [59]. It seems to increase 

eNOS phosphorylation via a dose-dependent positive effect on SIRT1 expression. The effect of 

cilostazol on premature senescence is, in fact, abrogated by SIRT1 inhibition [59]. 

Expression levels of the histone acetyltransferases, p300 and cAMP-responsive element-binding 

protein-binding protein (CBP), have been reported to decrease with age in mouse models [104]. 

Remarkably, the genetic or pharmacological inhibition of p300 activity [the latter obtained by using 

Lys-CoA (10), a bi-substrate p300 inhibitor] led to growth inhibition, downregulation of cyclin E and 

activation of the senescence-associated acidic β-galactosidase in human melanocytes and melanoma 

cells, whose proliferation often occurs in elderly people [105]. 

Although HDAC inhibitors (HDACi) are mainly studied for their anti-cancer activity, they also 

show other biological properties, including anti-inflammatory and neuroprotective ones. In recent 

years, experimental data emerged on the life-extending potential of synthetic HDACi. A substantial 

increase in both average and maximum survival without loss of motility, resistance to stress or fertility 

was observed during feeding Drosophila melanogaster with the HDACi, 4-phenylbutyrate (11), 

throughout adulthood [106]. Another study found that also trichostatin A (TSA, 12), the prototype  

pan-HDAC inhibitor, significantly extended the lifespan of flies [107]. Further experiments showed 

that both TSA and phenylbutyrate were to extend Drosophila lifespan [108]. 

In vivo studies demonstrated that pan-HDACi can slow or reverse pathological cardiac  

hypertrophy [109,110]. Treatment with the pan-HDACi TSA, in fact, reduced or prevented the 

development of cardiac hypertrophy in transgenic mice. TSA treatment was also shown to reverse 

established cardiac hypertrophy in mice subjected to aortic constriction. Another HDACi, scriptaid (13), 

has been found to be able to blunt cardiac hypertrophy in a pressure-overload mouse model, reducing 

the size of cardiomyocytes, while improving ventricular performance. In this context, studies performed 

in genetically engineered mice and isolated cardiomyocytes suggested a role for HDAC2 in heart 

failure. More definitive answers likely will come from the use of small molecule inhibitors tailored to 

selected HDAC isoforms. An apicidin derivative (API-D) which is selective predominantly for the 

class I HDACs, 1, 2 and 3, was shown to effectively suppress cardiac hypertrophy and to improve 
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cardiac performance in the presence of pressure overload [110]. Recently, it has been reported that 

only the class I HDACi mocetinostat, (MGCD-0103, 14), and not a class II HDACi, was able to re-express 

the dual specificity protein phosphatase 5 (dusp5) gene, leading to the inhibition of pro-hypertrophic 

gene expression. This finding enlightens a potentially novel pathway target of HDACi [111]. 

A number of histone methyl markers have been reported to be modified with ageing. In general,  

in vitro and in vivo studies revealed a global increase in H4K20me3, as well as a decrease of  

tri-methylated lysine 9 of histone H3 (H3K9me3) and H3K27me3. Interestingly, the Ash-2 complex, 

which trimethylates H3K4, is a negative regulator of lifespan in Caenorhabditis elegans [31–35]. 

Nevertheless, only one small molecule, the 2-(Benzoylamino)-1-(3-phenylpropyl)-1H-benzimidazole-

5-carboxylic acid methyl ester (BRD4770) compound (15), has been recently described to inhibit the 

lysine 9 of histone H3 (H3K9) methyltransferase, G9a, reducing the levels of H3K9me3 and inducing 

senescence in pancreatic adenocarcinoma PANC-1 cells through activation of ataxia telangiectasia 

mutated (ATM) kinase [112]. In light of these observations, although the situation is promising, a large 

amount of work remains to be done in the field of epigenetics to develop effective and enzyme-specific 

drugs with potential therapeutic application in ageing-associated diseases. 

7. Concluding Remarks 

The accumulation of oxidative stress might orchestrate the progressive homeostasis impairment that 

leads to the loss of function typical of aged tissues, which often degenerate in severe pathologies, such 

as coronary artery diseases, Alzheimer’s disease and COPD. Here, we reviewed how epigenetics, 

using all its “weapons” such as histone-modifying enzymes and DNA-methylation, rules out stress 

stimuli and identifies part of the mechanisms associated with the physiopathology of ageing-associated 

diseases. In summary, ageing presents specific epigenetic markers, which, taken altogether, could 

define the ageing epigenome. These modifications may also be part of a physiopathological processes 

undergone during the onset of ageing-associated diseases. The next challenge will be the manipulation 

of this modified epigenome by the use of small molecules: in fact, despite the evidence of a great 

number of epi-markers, which change during ageing, only a few epi-drugs have been tested in this 

context, so far. The understanding of epigenetic pathways involved in ageing and ageing-associated 

diseases cues the development of new therapeutic treatments to contrast relentless tissue impairment, 

thus promising “healthy ageing”. In this context, we suggest that controlling ROS production may 

represent the first step towards the achievement of this aim. As described, SIRT1 and p66ShcA, 

strictly interconnected with each other, might represent two promising targets conferring oxidative 

stress resistance to target cells and, consequently, delaying organism functional impairment. Although 

quite a large amount of work is still needed and there is evidence that the above-mentioned targets are 

not the only ones important in gaining “healthy ageing”, they may represent the beginning of the 

struggle to control ageing physiology and physiopathology. 
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