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1.	  Preface	  

This thesis describes the work that I did in the lab of Dr. Esben Lorentzen for the last 

three and a half years. I have worked on two distinct but related projects and the 

results section in the thesis is thus divided into two main chapters. The results 

described in the first chapter were published as a research article in EMBO J with the 

title: “Crystal structure of the intraflagellar transport complex 25/27”.  The second 

chapter is named “The IFT74/81 complex contains a tubulin binding module required 

for ciliogenesis” and is also presented in the form of a manuscript. As both 

manuscripts are comprehensive with regard to results and analyses, these are inserted 

“as is” into the thesis. A detailed introduction to the field of research precedes these 

two chapters. An extended discussion section follows each chapter that presents the 

implications of the results that are not part of the manuscript and the scope for further 

research. 
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2.	  Contributions	  

As the projects described in this thesis are a collaborative effort, a number of people 

have contributed scientific and technical expertise at various stages. Except for the 

experiments mentioned below, Sagar Bhogaraju designed and carried out all the 

experiments in this thesis under the supervision of Dr. Esben Lorentzen.  

Purification of IFT complexes from insect cells: Dr. Michael Taschner  

 

The following experiments were carried out by collaborators: 

1) Functional experiments in human RPE-1 cells: Dr. Lukas Cajanek (Prof. Dr. Erich 

Nigg’s lab, University of Basel) 

2) Electron Microscopy of MT with binding partners: Dr. Naoko Mizuno 

 

The following people provided technical help to Sagar Bhogaraju: 

1) Isothermal titration calorimetry: Dr. Claire Basquin 

2) Microscale thermophoresis: Christophe Jung and Kristina Weber 

3) Molecular cloning: Michaela Morawetz and Marc Stiegler 
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3.	  Summary	  

Cilia/flagella are microtubule (MT) based membrane protrusions present on the 

surface of many eukaryotic cells. Once regarded as vestigial organelles without much 

functionality, cilia are now acknowledged to play critical roles in many aspects of 

human development, health and disease phenotypes through functions in cellular 

motility, signaling and sensory pathways. Cilia exist in many forms and serve a wide 

variety of tissue-specific functions. Given that cilia do not contain ribosomes and 

ciliary components are constantly turning over at the tip, proteins destined for cilia are 

synthesized in the cytoplasm and have to be actively transported into the cilium. 

Almost all cilia rely on a dedicated transport process called intraflagellar transport 

(IFT) for assembly and maintenance. IFT involves a multi-protein mega-dalton 

complex, known as the IFT complex that binds ciliary cargoes and transports them 

into and out of the cilium. IFT proteins are highly conserved in ciliated organisms 

ranging from the unicellular biflagellate green alga Chlamydomonas reinhardtii 

(Chlamydomonas or Cr) to higher eukaryotes including humans. Mutations in IFT 

genes lead to severe defects in cilia formation and are the primary cause of many 

ciliopathies (diseases caused by ciliary dysfunction). Chlamydomonas is an important 

model organism to study ciliary assembly and major discoveries such as the process 

of IFT, purification of IFT particles and tubulin turnover were made using simple but 

elegant experiments in this biflagellate. Although IFT is implicated in the transport of 

major axonemal components such as tubulin and outer dynein arms, a direct link 

between an IFT protein and a ciliary cargo was still missing prior to this study, largely 

due to the inadequate characterization of individual IFT proteins. This thesis describes 

the structural and biochemical characterization of 4 IFT proteins - namely IFT27, 

IFT25, IFT74 and IFT81 - from human and/or Chlamydomonas.  
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The first half of my thesis deals with the characterization of the heterodimeric 

IFT25/27 complex. Chlamydomonas IFT25 and IFT27 were recombinantly co-

expressed in E.coli and purified to homogeneity as a stoichiometric heterodimeric 

complex. The purified IFT25/27 complex yielded crystals that diffracted to 2.6Å and 

allowed for structure determination using molecular replacement. The crystal 

structure of IFT25/27 revealed that IFT25 adopts a jellyroll fold and binds Ca2+. 

IFT27 adopts a small GTPase fold that is most similar to the family of Rab GTPases, 

and has a longer C-terminal helix that forms extensive hydrophobic and polar contacts 

with the Ca2+ binding loop of IFT25. The binding interface between IFT25 and IFT27 

seen in the crystal structure was further verified using structure-guided point 

mutations that disrupted complex formation. Isothermal titration calorimetry (ITC) 

revealed that IFT27 binds to both GTP (Kd=19µM) and GDP (Kd=37µM) but does not 

bind ATP. Sequence comparison of IFT27 to other small Rab GTPases revealed that 

it lacks a critical catalytic residue involved in the hydrolysis of GTP. Consistent with 

this observation, GTP hydrolysis measurements on IFT27 revealed a very slow 

catalytic rate (2.1×10-3 min-1), indicating that it might need a GTPase activating 

protein (GAP) to stimulate its activity in vivo. Indeed, binding of such a GAP fits with 

the surface conservation analysis of IFT25/27 complex, and BLAST searches 

revealed that several candidate GAPs exist in the Chlamydomonas genome that may 

function in the regulation of IFT by acting upon IFT27. 

As a second project, I have characterized the N-terminal domains of IFT81 (IFT81N) 

and IFT74 (IFT74N). To this end, the crystal structure of the Chlamydomonas 

IFT81N was determined at 2.3Å resolution using anomalous dispersion methods. 

Interestingly, the structure showed that IFT81N adopts a calponin-homology (CH) 

domain fold and showed highest 3D structural similarity to CH domain of NDC80, a 
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kinetochore protein that was shown to interact with MTs. In vitro binding experiments 

showed that IFT81N interacts with both MT and αβ-tubulin heterodimers. Affinity in 

terms of the dissociation constant (Kd) of the IFT81N-tubulin interaction was 

measured using Microscale thermophoresis (MST) experiments as ~15µM. Point 

mutations of several conserved positively charged residues in IFT81N severely 

affected its binding to tubulin. Careful sequence inspection revealed that IFT74, a 

direct interacting partner of IFT81 contains a highly basic N-terminal end (IFT74N). 

Knowledge of a similar basic region in NDC80 that plays an important role in the 

binding of NDC80 to MTs, prompted me to test the role of IFT74N in the context of 

IFT81N-tubulin/MT interaction. For this purpose, the IFT81/74_CC complex 

containing both the N-termini and proximal coiled-coil parts of IFT74 and IFT81 was 

produced. This complex bound MTs with increased affinity and the Kd for tubulin 

was measured using MST to be 0.9µM. Further binding experiments with subtilisin-

treated tubulin and MTs revealed that the IFT81N binds to the globular domain of 

tubulin whereas IFT74N binds to the acidic C-terminal tails. These results suggest 

that the N-termini of IFT74 and IFT81 form a tubulin-binding module that may be 

involved in the transport of tubulin to the tip of the cilium. 

 In collaboration with the group of Prof. Erich Nigg at University of Basel, we 

characterized the role of this tubulin-binding module in ciliogenesis of human RPE-1 

cells. siRNA knockdown of IFT81 expression led to severe ciliogenesis defects. 

Although expressing RNAi resistant wild-type IFT81 rescued this phenotype 

completely, expression of IFT81 with tubulin-binding point mutations failed to do so. 

These functional analyses are consistent with the structural and biochemical data and 

suggest a conserved tubulin transport mechanism mediated through the N-termini of 

IFT74 and IFT81.  
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4.	  Introduction	  

Cilia are tail-like organelles that project from the surface of most eukaryotic cells with 

the exception of fungi and higher plants. Cilia are typically 2-15µM in length. 

Mammalian cilia were first observed by a Swiss anatomist, K.W. Zimmermann, on 

kidney cells in 1898 and later were also discovered on cells in the brain, liver, testis, 

eyes and many other tissue types (Figure 4.1). For the majority of the last century, this 

organelle was considered an evolutionary remnant acquired from a unicellular 

common ancestor having a motility-specific cilium. Recently, however, several 

human diseases were linked to defects in cilia (Badano et al., 2006). These diseases 

are collectively known as ciliopathies, as they all have been associated with defects in 

ciliary assembly and function. Some notable ciliopathies include polycystic kidney 

disease (PKD), primary ciliary dyskinesia, Bardet-Biedl syndrome (BBS), Joubert 

syndrome and Meckel-Gruber syndrome.  

4.1	  Architecture	  of	  the	  cilium	  

Cilium and flagellum are interchangeable terms used to describe the hair-like 

organelle on cells of mammals and other eukaryotic organisms, but are not to be 

confused with the structurally and functionally different bacterial flagellum. One of 

the earliest glimpses into the structure of the cilium came from electron microscopy 

studies on sea urchin sperm flagella (Afzelius, 1959). Technological advances in 

electron microscopy and cryo-electron tomography have greatly increased our 

knowledge of ciliary ultra structure and has enabled the detailed visualization of 

axonemal components (Nicastro, 2006; Nicastro et al., 2005; Sui and Downing, 

2006).  
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Figure 4.1. Four main classes of mammalian cilia constitute “motile 9+0”, “motile 9+2”, 

“non-motile 9+0” and “non-motile 9+2”. Each class of cilia is associated with cells of 

specific tissues and performs unique functions (see section 4.2, adapted from (Fliegauf et al., 

2007)). 

The basic backbone of the cilium is a microtubule (MT)-based structure called the 

axoneme. The axoneme is typically composed of 9 outer doublet MTs, with or 

without a central pair of MTs; this arrangement of MTs in an axoneme is referred to 

as “9+2 arrangement” or “9+0 arrangement”, respectively (Figure 4.2, Axoneme). 

The two MTs in a doublet are referred as the A- and B-tubule. The A-tubule of the 

doublet is “complete” with 13 protofilaments whereas the B-tubule is only composed 

of 10 protofilaments. Similar to their cytoplasmic counterparts, axonemal MTs are 

formed by polymerization of αβ-tubulin heterodimers and grow from their ‘+’ end 

which is at the ciliary tip (Figure 4.2). The 9+2 arrangement of MTs is often 

associated with motile cilia such as respiratory cilia and the sperm flagellum, whereas 
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the 9+0 arrangement is typically associated with the non-motile cilium also called the 

primary cilium. In addition to the central pair of MTs, motile ciliary axonemes also 

contain various appendage structures attached to the doublet MTs that facilitate ciliary 

beating. These include nexins that connect adjacent MT-doublets (Figure 4.2, 

Axoneme). The inner sheath is another appendage structure that is composed of 

fibrous protein complexes surrounding the central pair. Dynein arms are key 

components of the motile cilium as they are directly responsible for generating the 

force required for ciliary movement. Dynein arms emanate from the A-tubule of the 

doublet towards the B-tubule of the adjacent doublet in the direction of the flagellar 

membrane (outer dynein arms) and into the lumen of the axoneme (inner dynein 

arms) (Mitchell, 2001; Warner and Satir, 1974). They contain motor proteins 

(ATPases) that undergo large conformational changes and reversibly bind to the 

adjacent B-tubule (Nicastro, 2006) to create a sliding motion of a doublet with respect 

to its adjacent doublet. Since doublets are connected to each other via nexins and are 

connected to the basal body at one end, this sliding motion translates into bending of 

the cilium (Lindemann and Lesich, 2010). Radial spokes are also motility specific 

structures and connect the A-tubules of each outer doublet to the central pair. 

Together with the central pair, radial spokes regulate the beating pattern of the cilium 

(Barber et al., 2012; Mitchell, 2001; Warner and Satir, 1974). The ciliary membrane 

is continuous with the cellular plasma membrane and surrounds the axoneme. There 

are many variations in the ultra-structure and appearance of cilia from various 

organisms or different tissue types of the same organism (for examples, see Figure 

4.4). Non-motile cilia that lack the central pair of MTs (primary cilia) also lack the 

accessory proteins such as dynein arms, nexins and radial spokes necessary for 

motility. Embryonic nodal cilia have a 9+0 arrangement but are still motile (Nonaka 
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et al., 1998). These cilia lack the central pair of MTs but have retained the motor 

machinery required for motility (Figure 4.1) (Fliegauf et al., 2007). On the contrary, 

kinocilia present in the inner ear possess a central pair but still are immotile as they 

specifically lack outer dynein arms and nexins (Kikuchi et al., 1989; Sobkowicz et al., 

1995) (Figure 4.1). 

 

Figure 4.2: Ultra structure of the cilium.  A cartoon representation of a cilium is shown on 

the left and on the right, cross sections at various positions along the cilium are shown. The 

axoneme forms the backbone of the cilium extending from the basal body triplets. The ciliary 

pocket and transition zone together form a barrier preventing free diffusion of proteins. The 

ciliary necklace works as a membrane barrier and prevents free diffusion of membrane 

proteins into and out of the ciliary membrane. 
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The axoneme is connected to a cytoplasmic structure known as the basal body, which 

is a modified form of the mother centriole (Bornens, 2012; Gönczy, 2012; Nigg and 

Raff, 2009). It has 9 triplet MTs arranged in a cartwheel-like fashion. As two MTs 

(A-tubule & B-tubule) in each triplet extend to form the ciliary axoneme, the 

cartwheel symmetry of these triplets is translated into the symmetry of the axonemal 

outer doublet MTs (Figure 4.2, Basal body) (Mizuno et al., 2012; Ringo, 1967). As is 

true for any organelle in the cell, maintenance of homeostasis by preventing the entry 

of meandering non-native cytosolic proteins and complexes is of great importance for 

the cilium. For this purpose, the cilium has specialized structures that connect the 

axoneme to the ciliary membrane and act as diffusion barriers. Although a lot is 

known about the overall protein composition of these barriers (Garcia-Gonzalo et al., 

2011; Sang et al., 2011), the exact mechanism of “sieving” for ciliary proteins is still 

not known. A barrier-like structure exists just proximal to the basal body preventing 

free diffusion of cytosolic proteins into the cilium. This structure is called the ciliary 

pore. Recent electron tomography analysis of the ciliary pore revealed that it has 9 

holes arranged symmetrically through which 9 outer doublet MTs of the ciliary 

axoneme protrude (Ounjai et al., 2013). It also contains a 53nm wide hole adjacent to 

the B-tubule of each outer doublet that could allow the passage of the ciliary protein 

trafficking machinery such as Intraflagellar transport (IFT) particles (Figure 4.2, 

Ciliary pore). Upstream to the ciliary pore, another barrier like region called 

‘transition zone’ exists. It contains several Y-shaped structures that connect the 

axoneme and the ciliary membrane. These structures are also thought to be involved 

in sorting the ciliary proteins. The membrane component of the transition zone is 

called ciliary necklace and is proposed to act as a barrier for membrane proteins 

entering cilia (Fisch and Dupuis-Williams, 2012; Gilula, 1972). In summary, cilia 
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possess all the characteristic features of a distinct compartment and thus can be 

considered as a bona fide cellular organelle.  

4.2	  Functions	  of	  cilia	  

4.2.1	  Cilia	  in	  development	  

A single copy of a motile cilium is present on each of the embryonic nodal cells. 

Nodal cilia undergo leftward rotation with a regular frequency to create extracellular 

fluid flow that is responsible for establishing the left-right asymmetry in the embryo 

(Figure 4.3). It is proposed that the vigorous circular motion of the nodal cilia 

concentrates the morphogens packaged into nodal vesicular parcels (NVPs) to the left 

side of the node where they interact with signaling proteins thus initiating the 

establishment of asymmetry (Nonaka et al., 1998). Consistent with this hypothesis, 

artificial fluid flow simulating the ciliary nodal flow induces asymmetry in cultured 

mouse embryonic cells (Nonaka et al., 2002). PKD2, a ciliary transmembrane protein 

and a Ca2+ ion channel expressed in the cells at the edge of the embryonic node, 

senses the nodal flow and is found to play a pivotal role in the formation of left-right 

asymmetry (Yoshiba et al., 2012). Defects in nodal cilia are common causes of situs-

inversus in humans where left-right asymmetry during development is dysfunctional 

leading to an inverted position of vital internal organs such as lungs, heart, spleen and 

stomach.  

Another role of cilia in mammalian development is the regulation of the Hedgehog 

(Hh) signaling pathway. Binding of the signaling ligand Hh to the ciliary membrane 

receptor Patched-1 (Ptch1) stimulates the Hh pathway. Upon Hh ligand binding, 

activated Ptch1 is displaced from the ciliary membrane and in turn triggers the 
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accumulation of another transmembrane protein Smoothened (Smo) in the ciliary 

membrane (Rohatgi et al., 2007). 

 

Figure 4.3: Schematic representation of embryonic nodal cilia. Ciliary beating creates a 

leftward fluid flow establishing a gradient of nodal vesicular parcels (NVPs) that triggers the 

left-right assymetry (adapted form (Fliegauf et al., 2007)). 

The ciliary Smo activates Gli transcription factors that further localize to the nucleus 

and trigger the Hh signaling response by activating Hh pathway target genes 

(Haycraft et al., 2005; Kim et al., 2009; Tukachinsky et al., 2010). Major players in 

this pathway Ptc, Smo and Gli transcription factors have been shown to localize to the 

cilium. Mutations in the genes responsible for cilium formation compromise the 

Hedgehog signaling pathway, leading to developmental abnormalities such as 

polydactyly and neural tube closure/patterning defects (Badano et al., 2006; Han et 

al., 2008; Mukhopadhyay et al., 2013).  

4.2.2	  Cilia	  in	  photoreception	  and	  olfaction	  

Rod and cone photoreceptor cells have specialized sensory cilia with an expanded tip 

referred to as the outer segment (Figure 4.4, Photoreceptor cell). The outer segment 

hosts the opsin G-protein coupled receptors (GPCRs) that respond to light and 

transduce the signal to the inner segment by activating the hydrolysis of cGMP and 

thereby closing the cGMP gated channels (Elias et al., 2004; Osawa et al., 2011; 

Strissel, 2005). The heterotrimeric G-protein transducin and rhodopsin kinase (GRK1) 

NVPRight
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that are part of this signal transduction pathway undergo active transport via the 

connecting cilium (Figure 4.4, Photoreceptor cell) to their site of function in the outer 

segment. Mutations that compromise outer segment formation (ciliogenesis) leads to 

diseases such as Retinitis pigmentosa (RP) which is associated with progressive 

degeneration of rod photoreceptors leading to blindness (Badano et al., 2006; Khanna, 

2005). 

Cilia also play a significant role in olfaction. Each olfactory receptor cell (ORC) 

contains several cilia attached to the dendritic knob (Figure 4.4, Olfactory receptor 

cell). The apical part of the ORCs containing the cilia is exposed to the environment 

while the rest of the cell surface is immersed in the epithelium. In this way, the ciliary 

membrane is perfectly placed to sense environmental odors. Olfactory specific 

membrane receptors belong to the GPCR superfamily and are localized to cilia where 

they interact with extracellular odorants and transduce the signal via an olfactory 

specific heterotrimeric G protein called Gαolf . This leads to increased levels of cAMP 

inside the cilium, an important second messenger in the olfaction pathway for a wide 

variety of odorants (McEwen et al., 2008). ORCs with defective cilia cannot respond 

to odorants (Benton et al., 2006; Kulaga et al., 2004). 
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Figure 4.4: Schematic representation of photoreceptor and olfactory receptor cells showing 

various component parts (adapted from (Berbari et al., 2009)). 

4.2.3	  Cilia	  in	  mechanosensing	  

The first hint that cilia play a role in mechanosensing came from the finding that 

mono cilia in cultured renal epithelial cells respond to fluid flow by increasing the 

intracellular Ca2+ levels (Nauli et al., 2003). It was later discovered that ciliary 

transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), mutated in 

polycystic kidney disease (PKD), play an important role in this pathway (Stayner and 

Zhou, 2001). Patients with PKD have unusually large kidneys with multiple cysts, 

compromising kidney function and thereby making them extensively dependent on 

dialysis.  Mono cilia on the apical surface of epithelial cells lining the renal collecting 

duct bend in response to the urine flow, which leads to activation of PC1. This in turn 

activates PC2, a physical PC1 interacting partner and a Ca2+ ion channel (Nauli et al., 

2003; Qian et al., 1997). PC2 upon activation pumps Ca2+ into the cell leading to 

increased intracellular calcium levels. Absence of cilia or mutated PC1 or PC2 results 

in cells that cannot sense the urine flow and this leads to decreased intracellular 
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calcium levels. As a result of this, intracellular cAMP levels increase, leading to 

activation of MAP kinase signaling and to uncontrolled cell proliferation and cyst 

formation (Nagao et al., 2007). Similar to the renal cysts, dysfunctional cilia are also 

proposed to cause pancreatic cysts that arise from the uncontrolled proliferation of 

epithelial cells lining the pancreatic duct (Cano et al., 2006). 

4.2.4	  Miscellaneous	  functions	  of	  cilia	  

Apart from the functions mentioned above, motile cilia are also known to play a role 

in the smooth flow of the cerebrospinal fluid in the brain ventricles (Banizs, 2005; 

Ibanez-Tallon, 2004). Furthermore, motile cilia on respiratory epithelial cells are 

responsible for mucociliary clearance (Duchateau et al., 1985). Normal beating of 

cilia lining the fallopian tube epithelium is essential for pregnancy as these cilia drive 

the movement of the zygote from the ovary to the uterus (Lyons, 2006). A failure to 

do so is an important cause of ectopic pregnancy. Mutations in ciliary assembly 

machinery proteins (IFT), leading to defects in the assembly of the sperm flagellum, 

are known to cause male sterility (Fliegauf et al., 2007). 

4.3	  Intraflagellar	  transport	  

Cilia do not contain ribosomes for the synthesis of their protein components. Given  

that axonemal components are assembled and turned over at the distal end (ciliary tip) 

(Johnson and Rosenbaum, 1992; Marshall and Rosenbaum, 2001b), cilia depend on a 

bi-directional active transport of ciliary precursors for their formation and 

maintenance. This transport process is called Intraflagellar transport (IFT). IFT was 

first discovered in Chlamydomonas flagella by digital interference contrast (DIC) 

microscopy as a motility that is different from the flagellar beating (Kozminski et al., 

1993). The speed of IFT was measured at 2 µm/sec in the anterograde direction (from 
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the base to the ciliary tip) and 3.5 µm/sec in the retrograde direction (from ciliary tip 

to the base). Transmission electron microscopy of Chlamydomonas flagella revelead 

linear arrays of electron dense matter dispersed over the length of the flagellum and 

connected to both the ciliary membrane and the B-tubule of the outer doublet MTs 

(Figure 4.5 A and B). These linear arrays are referred to as “IFT trains” and the 

repetitive components of the trains are known as “IFT particles”.  It was later 

discovered that a hetero-trimeric kinesin (also known as kinesin-2) motor is 

responsible for the anterograde IFT while the cytoplasmic dynein 2 (previously called 

cytoplasmic dynein 1b) motor drives the retrograde IFT (Figure 4.5 B) (Cole et al., 

1998; Kozminski et al., 1995; Pazour et al., 1999).  

 

Figure 4.5: A) Electron micrograph of the Chlamydomonas flagellum showing the IFT trains 

lying in between the flagellar membrane and the axoneme. B) Schematic representation of 

anterograde and retrograde IFT powered by kinesin-2 and dynein 1b, respectively (adapted 

from (Rosenbaum and Witman, 2002)). 
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The first breakthrough linking the polypeptides in the IFT particle to cilia assembly 

came from the finding that the purified Chlamydomonas IFT particle proteins are 

homologous to the proteins required for the assembly of C.elegans sensory cilia (Cole 

et al., 1998). The proteins of the IFT particles were first purified by sucrose density 

gradient centrifugation from isolated Chlamydomonas flagella and were later also 

characterized in C.elegans and mouse (Cole et al., 1998; Follit et al., 2009; Piperno 

and Mead, 1997).  These proteins form a 17S complex (IFT complex) composed of 20 

different polypeptides (see Table 4.1). Each polypeptide is named according to its 

apparent molecular weight on an SDS gel. During the initial sucrose density gradient 

centrifugation of isolated Chlamydomonas IFT complexes, it was observed that by 

increasing the ionic strength, the IFT complex is separated into two sub-complexes 

called IFT-A and IFT-B (Cole et al., 1998).  Further increase of ionic strength during 

purification of the IFT complex led to the dissociation of IFT-B peripheral proteins 

from the salt stable IFT-B “core” (see Table 4.1 for the list of proteins) (Lucker et al., 

2005). Mutational inhibition of IFT-A components in C.elegans and Chlamydomonas 

led to the formation of short and stumpy cilia with large amounts of IFT material 

accumulated inside the cilium (Piperno et al., 1998; Qin et al., 2001). However, 

mutations in the IFT-B proteins in multiple organisms invariably led to the complete 

loss of ciliary assembly (Gorivodsky et al., 2009; Pazour et al., 2000; Yoshiba et al., 

2012). These observations led to the notion that the IFT-A complex plays a role in the 

retrograde transport, whereas the IFT-B complex is involved in the anterograde IFT.  

Mutational studies of IFT motors and polypeptides in Chlamydomonas revealed the 

essential role of IFT in the formation and maintenance of cilia. Mutations in IFT 

proteins are also found to affect ciliary assembly in numerous mammalian cilia 

systems such as renal mono cilia, embryonic nodal cilia and photoreceptor cells 
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(Pazour, 2004; Sedmak and Wolfrum, 2012; Yoshiba et al., 2012) suggesting that IFT 

proteins play an important role in the assembly of a wide variety of cilia. Consistent 

with their role in cilary assembly, IFT proteins are highly conserved in all ciliated 

eukaryotes but are absent from the non-ciliated plants and fungi. 

IFT polypeptide Chlamydomonas reinhardtii C.elegans Homo sapiens 
IFT-A complex    

IFT144 IFT144/FAP66  
(A9XPA7) 

DYF-2 
(G5ECZ4) 

WDR19 
(Q8NEZ3) 

IFT140 IFT140  
(A8J4D9) 

CHE-11 
(P90757) 

IFT140/WDTC2  
(Q96RY7) 

IFT139 IFT139  
(A9XPA6) 

ZK328.7/TTC21 
(Q20255) 

TTC21B 
(Q7Z4L5) 

IFT122 IFT122  
(H9CTG6) 

DAF-10 
(G5EFW7) 

IFT122/WDR10 
(Q9HBG6) 

IFT121 FAP118 
(A8JFR3) 

IFTA-1 
(Q18859) 

IFT121/WDR35 
(Q9P2L0) 

IFT43 IFT43/MOT1  
(A8HYP5) 

Absent IFT43/ C14orf179 
(Q96FT9) 

IFT-B complex    
IFT-B “Core”    

IFT88 IFT88  
(Q9FPW0) 

OSM-5 
(G5ED37) 

IFT88/Tg737 
(Q13099) 

IFT81 IFT81 
(Q68RJ5) 

IFT81 
(A8DYR7) 

IFT81/CDV1 
(Q8WYA0) 

IFT74 IFT74/72 
(Q6RCE1) 

IFT74 
(Q18106) 

IFT74/CMG1 
(Q96LB3) 

IFT70 FAP259 
(A8ITN7) 

DYF-1 
(Q8I7G4) 

TTC30B 
(Q8N4P2) 

IFT52 IFT52 
(Q946G4) 

OSM-6 
(G5EDF6) 

IFT52 
(Q9Y366) 

IFT46 IFT46/FAP32 
(A2T2X4) 

DYF-6 
(Q0G838) 

IFT46 
(Q9NQC8) 

IFT27 IFT27/FAP156 
(A8HN58) 

Absent IFT27/RABL4 
(Q9BW83) 

IFT25 IFT25 
(B8LIX8) 

Absent Hspb11 
(Q9Y547) 

IFT22* IFT22/FAP9 
(A8HME3) 

IFTA-2 
(Q9XUC2) 

RABL5 
(Q9H7X7) 

IFT-B 
“Peripheral” 

   

IFT172 IFT172/FLA11 
(Q5DM57) 

OSM-1 
(Q22830) 

IFT172 
(Q9UG01) 

IFT80 IFT80 
(A5Z0S9) 

CHE-2 
(G5EGF0) 

IFT80/WDR56 
(Q9P2H3) 

IFT57 IFT57  
(Q2XQY7) 

CHE-13 
(Q93833) 

IFT57/HIPPI 
(Q9NWB7) 

IFT54 FAP116 
(A8JBY2) 

DYF-11 
(Q17595) 

IFT54/TRAF3IP1/MIPT3  
(Q8TDR0) 

IFT20 IFT20 
(Q8LLV9) 

IFT20 
(Q8TA52) 

IFT20 
(Q8IY31) 

*Unpublished data (Dr.Michael Taschner) 

Table 4.1: List of IFT proteins. IFT proteins in Chlamydomonas reinhardtii, Homo sapiens 

and Caenorhabditis elegans are listed along with their respective Uniprot identifiers in the 

brackets. Proteins not present are listed as “Absent”. 
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4.3.1	  Domain	  architecture	  and	  function	  of	  individual	  IFT	  proteins	  

Given that IFT proteins play a role in binding and transport of ciliary cargo and exist 

in the form of a ~1.5MDa complex, it is not surprising that many of the IFT proteins 

are predicted to be composed of domains consisting of TPR repeats, β-propellers and 

coiled-coils which are known to mediate protein-protein interactions (Figure 3.6). The 

IFT complex contains 20 proteins in total, with 14 proteins in IFT-B and 6 in IFT-A. 

Notably, except for the crystal structure of IFT25, no other structural information was 

available for any of the IFT proteins prior to the work described in this thesis. In the 

following sections proteins belonging to IFT-A and IFT-B are discussed separately. 

The fourteen IFT-B proteins are further divided into a few biochemical and structural 

sub-groups based on the analysis of the literature available. Proteins belonging to each 

sub-group will be introduced and their possible molecular role in IFT and ciliogenesis 

will be discussed.  

4.3.1.1	  IFT-‐B	  proteins	  

4.3.1.1.1	  IFT27,	  25	  and	  22	  

Rab GTPases are well known for their role in the regulation of various steps of 

membrane trafficking (Stenmark, 2009).  Notably, there are two predicted Rab-like 

GTPases in the IFT-B complex, namely IFT27 and IFT22 (Figure 4.6). RNAi 

knockdown of IFT27 in Chlamydomonas surprisingly led to cytokinesis defects and 

prolonged cell division apart from ciliary assembly defects (Qin et al., 2007). 

However, the role of IFT27 in cell division remains controversial as its depletion in 

mouse did not lead to any defects in mitosis (Keady et al., 2012). Improved 

purification of Chlamydomonas IFT complexes and in vitro pull-down experiments 

led to the discovery of IFT25 as a direct binding partner of IFT27 (Wang et al., 2009). 
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To see if this heterodimer is always a part of the IFT complex, sucrose density 

gradient centrifugation of Chlamydomonas flagellar and cytoplasmic fractions was 

performed and the fractions were subsequently probed by western blotting for the 

presence of IFT25/27. This revealed that majority of IFT25/27 exists independently of 

the IFT complex in the cell body but associates with the rest of the IFT complex in 

flagella. This led to the hypothesis that the association of the IFT25/27 heterodimer 

with the rest of the IFT complex may constitute a regulatory step in the initiation of 

IFT (Wang et al., 2009). The crystal structure of human IFT25 determined by the 

Northeast Structural Genomics Consortium (Ramelot et al., 2008) revealed that IFT25 

adopts a jelly-roll fold and binds to Ca2+ (Figure 4.6).  The stability of IFT27 was 

shown to depend on IFT25, as depletion of IFT25 in both Chlamydomonas and mouse 

resulted in the loss of IFT27 as well (Keady et al., 2012). 

IFT22 is another protein that is predicted to contain a Rab GTPase domain. Sequence 

comparison of IFT22 with other Rab GTPases revealed that one of the essential GTP 

binding motifs (G4) is not conserved in IFT22 (Schafer et al., 2006), thus classifying 

IFT22 as an atypical Rab GTPase (Figure 4.6). Mutations in the IFT22 ortholog of 

C.elegans, IFTA-2, did not have any ciliary morphological defects but surprisingly 

led to a phenotype of extended life span and dauer formation (Schafer et al., 2006). 

Interestingly, IFTA-2 with a mutation in the predicted nucleotide-binding pocket was 

not able to localize to the cilium indicating that nucleotide binding is necessary for the 

localization of IFT22 to this organelle. In contrast to the role of IFT22 in C.elegans, 

RNAi depletion of the IFT22 ortholog in Tryponosoma brucei resulted in short and 

stumpy cilia with large amounts of accumulated IFT material, consistent with a role in 

retrograde IFT. This indicates that IFT22 has species specific functions (Adhiambo et 

al., 2009). Recently, a role for IFT22 in regulating the amounts of cellular pool of IFT 
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proteins was proposed for Chlamydomonas (Silva et al., 2012). It remains to be seen 

what role the mammalian ortholog of IFT22, RabL5, plays in IFT and ciliogenesis.  

4.3.1.1.2	  IFT20,	  54,	  57,	  74	  and	  81	  

The IFT-B complex contains a number of proteins with predicted coiled-coil structure 

(Taschner et al., 2012). IFT20 is the smallest and the best studied of all the coiled coil 

proteins in the IFT complex. Like other IFT proteins, IFT20 was also found to 

localize to the basal body and the cilium. Interestingly, IFT20 is also shown to 

localize to the Golgi complex in mammalian cells (Follit et al., 2006). The partial 

depletion of IFT20 by RNAi led to a decreased transport of the transmembrane 

protein PC2 into the cilium, indicating that IFT20 may function at the Golgi complex 

in sorting membrane proteins destined for the cilium (Follit et al., 2009). Consistent 

with this observation, IFT20 mutations in mouse rod and cone photoreceptor cells led 

to the accumulation of rhodopsin and opsin near the Golgi complex of the inner 

segments without any morphological effects on the outer segment and connecting 

cilium (Keady et al., 2011).  Complete depletion of IFT20 in mammalian cells led to 

severe ciliary assembly defects (Follit et al., 2006). Co-immuno precipitation of flag-

tagged IFT20 from cultured mouse kidney cells revealed that it physically interacts 

with a Golgi protein named GMAP210 (Follit et al., 2008). Further interaction studies 

showed that it also binds to two other IFT-B coiled coil proteins, namely IFT54 and 

IFT57 (Keady et al., 2011). Consistent with their physical interaction with IFT20, 

mutations in both IFT54 and IFT57 led to ciliary transmembrane protein transport 

defects in addition to ciliary assembly defects (Bacaj et al., 2008; Krock and Perkins, 

2008; Kunitomo and Iino, 2008; Omori et al., 2008). In summary, IFT20 along with 

IFT54 and IFT57 are peripheral IFT-B components that form a hetero-trimeric 

complex involved in the transport of ciliary membrane proteins (Figure 4.7). 
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Interestingly, the human ortholog of IFT54, MIP-T3 was shown to interact with tumor 

necrosis factor receptor associated factor-3 (TRAF-3) (Ling and Goeddel, 2000). 

MIP-T3 was also shown to directly interact with MTs, tubulin and actin (Guo et al., 

2010; Ling and Goeddel, 2000) indicating that it might be involved in cytoskeleton 

related functions. 

Apart from IFT20, IFT54 and IFT57 the IFT-B complex also contains two other 

proteins, IFT74 and IFT81, with comparatively large predicted C-terminal coiled-coil 

domains spanning ~500 amino acids. Both IFT74 and IFT81 contain small 

uncharacterized N-terminal domains of ~100 amino acids (Figure 4.6). Chemical 

cross-linking and yeast two-hybrid studies revealed that IFT74 and IFT81 interact via 

their coiled-coil regions (Lucker et al., 2005). In the yeast two-hybrid studies IFT81 

was also shown to homo-dimerize. This led to the speculation that IFT74 and IFT81 

may form a higher order tetrameric complex containing two copies of each protein.  

Cross-linking of the purified IFT complex, E.coli co-expression and pull-down 

experiments revealed that the IFT74/81 complex binds to the IFT25/27 heterodimer 

(Ben F Lucker et al., 2010; Taschner et al., 2011). The purified IFT74/81/25/27 

complex showed the stoichiometry of 1:1:1:1. Furthermore, the static light scattering 

(SLS) profile of this complex did not comply with the speculated tetrameric 

arrangement of IFT74 and IFT81 (Unpublished data: Dr. Michael Taschner). This 

indicates that the tetrameric arrangement of the IFT74/81 complex suggested by 

Lucker et al. 2005 might be a false positive result obtained due to the non-specific 

homo-dimerization of IFT81 in the yeast two-hybrid studies (Figure 4.7) 

(Unpublished data: Dr. Michael Taschner, Lucker et al., 2005). It is proposed that the 

IFT74/81 complex acts as a platform onto which other components of the IFT-B 

complex are assembled (Lucker, 2005; Taschner et al., 2011) (Figure 4.7). 
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Expectedly, mutations in IFT74 or IFT81 orthologs in C.elegans sensory neurons 

resulted in defects in ciliary assembly and IFT (Kobayashi et al., 2007).  

4.3.1.1.3	  IFT46,	  52,	  70	  and	  88	  

In vitro pull-down and co-expression studies revealed that IFT46, IFT52, IFT70 and 

IFT88 form a hetero-tetrameric complex (Ben F Lucker et al., 2010; Fan et al., 2010; 

Taschner et al., 2011). Interestingly, IFT52 was also shown to interact with 

IFT74/81/25/27 tetramer thus bridging two IFT-B “core” sub-complexes, namely 

IFT46/52/70/88 and IFT74/81/25/27 (Taschner et al., 2011) (Figure 4.7). While the 

IFT52 C-terminus binds to other IFT proteins, the N-terminus of IFT52 was predicted 

to contain a putative carbohydrate binding “GIFT domain” (Beatson and Ponting, 

2004; Taschner et al., 2011). However, in vitro purified GIFT domain of IFT52 failed 

to show any carbohydrate binding indicating that this domain may have some other 

function(s) (Taschner et al., 2011). Chlamydomonas bld1 mutants defective in the 

IFT52 gene are devoid of flagella and were shown to contain a completely disrupted 

IFT-B core complex indicating that IFT52 is critical for IFT-B core stability (Figure 

4.7) (Deane et al., 2001; Richey and Qin, 2012). IFT46, another component of the 

IFT-B “core”, contains no predictable domains. Knockdown of IFT46 orthologs in 

mouse and zebrafish revealed a role in normal vertebrate development (Gouttenoire et 

al., 2007). Chlamydomonas with an insertional mutation in the IFT46 gene (ift46) 

contain short flagella that lack the dynein arms required for motility (Hou et al., 

2007). A partial suppressor mutant expressing the C-terminal fragment of IFT46 

rescues the flagellar length phenotype in the Chlamydomonas ift46 mutant strain but 

these cells still specifically lack axonemal dynein arms (Hou et al., 2007). This 

indicates that the IFT46 N-terminus specifically recognizes and transports dynein 

arms into the cilium, while the C-terminus of IFT46 is needed for stability of the IFT-
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B complex (Figure 4.7). Indeed, co-immuno precipitation and in-vitro pull-down 

studies from Chlamydomonas flagellar extracts revealed that IFT46 interacts with 

dynein arms through the adaptor protein ODA16 (Ahmed et al., 2008). 

 

Figure 4.6: Domain architecture of all the IFT- B proteins showing that the majority of the 

proteins are predicted to contain protein-protein interaction motifs such as coiled-coil, WD-

40 repeats and TPRs. The crystal structure of human IFT25 is shown next to its domain 

architecture cartoon. 

  

IFT70 is a TPR (Tetratricopeptide repeat) domain containing protein that was recently 

identified as a core component of the IFT-B complex (Fan et al., 2010). The 

C.elegans ortholog, DYF-1, was shown to play a role in the docking of the IFT 

complex onto the anterograde motor OSM-3 (Ou et al., 2005). Mutations in the 

zebrafish ortholog of IFT70, fleer, led to randomization of left-right asymmetry, 

cystic kidneys, hydrocephalus and defects in photoreceptor rod outer segment 
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formation, all phenotypes suggestive of severe ciliary assembly defects (Pathak et al., 

2007). IFT88 is the largest of the IFT-B “core” proteins and is also a TPR domain 

containing protein (Figure 4.6). Chlamydomonas strains lacking the IFT88 gene are 

completely devoid of both flagella (Pazour et al., 2000). Whereas the complete knock-

out of Tg737, the mouse ortholog of IFT88 causes early embryonic lethality, a 

hypomorphic mutation in the gene leads to the formation of short primary cilia which 

allow development but cause death of mice shortly after birth due to the onset of 

polycystic kidney disease (Pazour et al., 2000). Named as “The Oak Ridge Polycystic 

Kidney (ORPK) mouse”, this IFT88 mutant mouse exhibits a range of phenotypes 

that are comparable to many human ciliopathies (Lehman et al., 2008).  

4.3.1.1.4	  IFT172	  and	  80	  

IFT172 is the largest component of the IFT complex and is a peripheral subunit as it 

dissociates from the IFT-B core at higher ionic strength. It contains an N-terminal 

WD-40 repeat domain and a C-terminal TPR domain. This domain organization is 

similar to COP1 and clathrin vesicle coats, indicating an evolutionary relationship 

beween IFT172 and canonical coat proteins (Figure 4.6) (Jékely and Arendt, 2006). 

At the permissive temperature of 22°C, Chlamydomonas strains with a temperature 

sensitive mutation in the IFT172 gene FLA11 (fla11ts), show normal anterograde and 

retrograde transport rates but have decreased number of IFT particles leaving the 

flagellar tip (Iomini et al., 2001). Moreover, co-immuno precipitation analysis 

revealed that IFT172 interacts with the MT plus end-binding protein EB1. Based on 

these observations, it was proposed that IFT172 functions at the flagellar tip and 

facilitates the transition from anterograde transport to retrograde transport (Pedersen 

et al., 2005). IFT80 is a recently identified peripheral component of the IFT-B 

complex (Beales et al., 2007; Blacque et al., 2004) and contains a WD40 repeat 
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domain at the N-terminus and a small α-helical domain at the C-terminus (Taschner 

et al., 2012). Mutations in IFT80 are associated with two human diseases, Jeune 

asphyxiating thoracic dystrophy (JATD) and short-rib polydactyly (SRP) (Beales et 

al., 2007; Cavalcanti et al., 2011). Both of these diseases are associated with abnormal 

bone formation and cause infant lethality. At the molecular level, mutations in IFT80 

are shown to affect bone differentiation by down-regulating hedgehog signaling (Rix 

et al., 2011; Yang and Wang, 2012).  

 

Figure 4.7: The IFT-B complex. The organizational layout of the complex is represented and 

the known functions of some proteins are indicated. 

In summary, most of the IFT-B proteins are predicted to contain multiple domains. 

Identification of these domains followed by biochemical and structural 

characterization will give important insights into the function of individual proteins. 

Studies such as the one by Taschner et al., 2011 aiming at the precise identification of 

these domain boundaries in IFT-B proteins will be of great importance.  
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4.3.1.2	  IFT-‐A	  proteins	  

The IFT-A complex contains six proteins (IFT144, IFT140, IFT139, IFT122, IFT121 

and IFT43) of which five are large proteins with a molecular weight of more than 

100kDa. Unlike IFT-B proteins, mutations in IFT-A proteins do not lead to lethality 

in vertebrates but are one of the main causes of various human ciliopathies (Arts et 

al., 2011; Davis et al., 2011). Barring IFT139 and IFT43, all the IFT-A proteins have 

a similar predicted domain architecture and contain a WD40 repeat domain at the N-

terminus and a C-terminal TPR domain (Figure 4.8B). This domain architecture is 

similar to proteins forming clathrin vesicle coats and COPI coats (Jékely and Arendt, 

2006). IFT139 is entirely a TPR domain containing protein and IFT43 has no 

predictable domains (Jékely and Arendt, 2006; Taschner et al., 2012). One of the 

earliest glimpses into the function of the IFT-A complex came from the identification 

of an interacting protein, Tubby-like protein 3 (TULP3) (Mukhopadhyay et al., 2010). 

TULP3 was shown to be associated with the IFT-A complex by co-immuno 

precipitation studies performed using extracts from various mammalian cell lines 

(Mukhopadhyay et al., 2010). In serum starved human RPE-1 cells, siRNA mediated 

depletion of TULP3 or IFT-A component proteins were shown to affect the 

localization of a subset of GPCRs to cilia (Mukhopadhyay et al., 2013; 2010). 

Consistent with this, mutations in IFT-A proteins in mammalian cells were also 

shown to affect the transport of membrane proteins involved in the hedgehog 

signaling pathway (Liem et al., 2012).  

Largely due to the size of the proteins involved, recombinant expression of IFT-A 

proteins has been very difficult and the architecture of the IFT-A complex was 

completely unknown until recently. However, elegant biochemical studies using 

Chlamydomonas strains containing loss of function mutations in IFT121 and IFT122 
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(ift121 and ift122) revealed some important organizational features of the IFT-A 

complex (Behal et al., 2012). The authors of this study have isolated IFT-A 

complexes from ift121 and ift122 mutants and analyzed the stability of the IFT-A 

complex as well as the presence or absence of various subunits. This revealed that 

IFT122, IFT140 and IFT144 form the core of the IFT-A complex upon which the rest 

of the subunits are assembled (Figure 4.8A). Akin to the 9-subunit IFT-B “core” 

complex, this 3-subunit IFT-A complex was termed the IFT-A “core”. In vitro 

expression and pull-down experiments also revealed a direct interaction between 

IFT43 and IFT121 (Behal et al., 2012). Similar to IFT-B, the lack of structural 

information on IFT-A complexes and individual components is acting as a deterrent 

in the precise functional characterization of IFT-A proteins. Further dissection of 

interactions amongst the IFT-A proteins followed by mutational analysis will be of 

great importance in understanding the function of IFT-A. The intriguing homology 

between IFT-A proteins and coat proteins also should be explored further to see if 

there is any functional similarity between these complexes. 

 

Figure 4.8: A) IFT-A complex organization. B) Domain architecture of IFT-A proteins show 

that four out of six IFT-A proteins have similar domain architecture as coat proteins. 
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4.4	  Ciliary	  length	  control	  

How cell size and the size of cellular organelles are determined is an interesting and 

largely unresolved question. The cilium represents an ideal organelle to examine such 

questions as the size of a cilium can be reduced to a function of its length, a one-

dimensional parameter. Cilia from various tissues and organisms are of different 

lengths indicating that regulation of ciliary length is a very important aspect of ciliary 

function. For motile cilia such as nodal mono cilia and respiratory epithelial cilia, the 

corresponding functions involve generating hydrodynamic fluid flows by creating 

specialized ciliary beating motions. Such fluid flows are a direct function of ciliary 

length and is greatly altered in several flagellar length mutants, leading to various 

ciliopathies (Ishikawa and Marshall, 2011). Ciliary length was also shown to affect 

the function of the primary cilium, but the exact mechanism has remained a mystery, 

largely due to the lack of information on the factors involved in ciliary length 

regulation. 

However, a consensus model addressing the general features of ciliary length control 

exists and is referred to as the “balance-point” model. This model is largely based on 

some elegant studies on tubulin turnover and flagellar assembly rate measurements in 

the biflagellate model organism Chlamydomonas (Engel et al., 2009; Marshall and 

Rosenbaum, 2001b; Marshall et al., 2005). When a Chlamydomonas strain expressing 

HA-tagged tubulin is mated with the wild-type biflagellate strain, the resulting 

quadriflagellate dikaryon Chlamydomonas contains two intact flagella containing HA 

tagged tubulin and two flagella with unlabeled tubulin. Careful observation of this 

quadriflagellate revealed that over time, flagella with the untagged tubulin started 

incorporating the HA tagged tubulin at its distal end, indicating that the tubulin in 

Chlamydomonas flagella is constantly being turned over (Marshall and Rosenbaum, 
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2001b) (Figure 4.9A). Tubulin turnover failed to occur in Chlamydomonas strains 

with the defective IFT anterograde motor indicating that IFT is responsible for the 

tubulin turnover (Marshall and Rosenbaum, 2001b). Consistent with this, 

fluorescently tagged tubulin was shown to undergo IFT like movement inside 

C.elegans sensory cilia (Hao et al., 2011). Since tubulin forms the MT-based 

backbone of the cilium, regulation of tubulin transport can be a simple and an elegant 

way of controlling ciliary length. This can be accomplished by fine-tuning either the 

levels of tubulin or of the IFT complex during ciliogenesis. 

Surprisingly, quantification of IFT protein levels in Chlamydomonas flagella by 

immuno fluorescence and western blotting revealed that the IFT protein amounts 

inside the cilium remain constant during all the stages of ciliary assembly (Marshall 

and Rosenbaum, 2001b; Marshall et al., 2005). This means that the concentration of 

IFT proteins decreases as the length of the cilium increases, and IFT proteins have to 

travel increasingly longer distances to reach the tip as the cilium grows. This makes 

the ciliary assembly rate implicitly length dependent (negative correlation between 

cilium length and ciliary assembly) (Figure 4.9B). Indeed, the measured flagellar 

elongation rate in Chlamydomonas decreases as the length of the flagellum increases, 

with assembly rate being maximum during the initial stages of elongation (Marshall et 

al., 2005). In contrast to the decelerating assembly rate, the disassembly rate in the 

resorbing fla10ts (defective in IFT) Chlamydomonas flagella was shown to be 

constant, indicating that it is independent of its length (Marshall et al., 2005). Based 

on these observations the balance-point model proposes that the cilium reaches a 

steady-state length when the assembly rate (decreases with increasing ciliary length) 

equals the disassembly rate (constant) (Figure 4.9B). This means that at steady state, 

the cilium assembles and disassembles at the same rate, thereby maintaining a 
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constant length. Several predictions of this model, such as constant disassembly rate, 

decrease in length as number of flagella increase, were tested and found to be in 

complete agreement with the predictions (Engel et al., 2009; Marshall et al., 2005). 

However, there are several important questions that still remain to be answered. For 

example, which factors are responsible for maintaining constant IFT levels during 

cilia growth? Which components of the IFT machinery are directly involved in the 

transport of tubulin? What is the identity of the factors responsible for the constant 

ciliary disassembly rate? Further work is needed to answer these questions and 

understand the nuances of the balance-point model. 

 

Figure 4.9: Flagellar length control. A) Schematic representation of the experiment that 

showed the constant turnover of tubulin at the ciliary tip (adapted from (Marshall and 

Rosenbaum, 2001b)) B) The ‘balance-point model’ for the ciliary length control. The cilium 

reaches a steady-state length when the decelerating assembly rate intersects the constant 

disassembly rate. 

HA-tagged
tubulin

Untagged
tubulin

Chlamydomonas bi!agellates Chlamydomonas quadri!agellate

mating < 2 hrs

Evidence for turnover of tubulin
(A)

(B)

Disassembly rate

Assembly rate

µm
/s

ec

Ciliary length (µm)

Steady-state length

33



	  

5.	  Aim	  of	  research	  

Although a great deal of information is available about the function of IFT proteins, 

mainly from the mutational studies in Chlamydomonas, mouse and C.elegans, the 

lack of high resolution structural information of these proteins (barring the crystal 

structure of IFT25) means that all the functional studies done so far involved either 

knocking down or deleting an entire IFT protein. For most of the IFT-B complex 

proteins, this always resulted in a common phenotype of a ciliary assembly defect 

thus blurring out the molecular/specific function(s) of individual subunits. In addition, 

although the association between ciliary cargo and IFT proteins became evident a 

long time ago (Qin, 2004), there is no evidence so far of a direct interaction between 

an IFT protein and a cargo. Having structural information of IFT proteins will enable 

us to predict their molecular function with more confidence and functional studies can 

be carried in which the effect of point mutations or domain deletions can be tested 

instead of disrupting an entire protein. This will enable us to assign specific functions 

to individual domains/proteins and may also help identify cargo-binding modules in 

the IFT proteins, eventually leading to the molecular understanding of ciliopathies. To 

this end, the studies described in this thesis were aimed at identifying and structurally 

characterizing the domains in some of the IFT-B complex proteins.  
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6.	  Results	  

Chapter	  I	  

Crystal	  structure	  of	  the	  intraflagellar	  transport	  complex	  IFT25/27.	  
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The cilium is an important organelle that is found on

many eukaryotic cells, where it serves essential functions

in motility, sensory reception and signalling. Intraflagellar

transport (IFT) is a vital process for the formation and

maintenance of cilia. We have determined the crystal

structure of Chlamydomonas reinhardtii IFT25/27, an IFT

sub-complex, at 2.6 Å resolution. IFT25 and IFT27 interact

via a conserved interface that we verify biochemically

using structure-guided mutagenesis. IFT27 displays the

fold of Rab-like small guanosine triphosphate hydrolases

(GTPases), binds GTP and GDP with micromolar affinity

and has very low intrinsic GTPase activity, suggesting

that it likely requires a GTPase-activating protein (GAP)

for robust GTP turnover. A patch of conserved surface

residues contributed by both IFT25 and IFT27 is found

adjacent to the GTP-binding site and could mediate the

binding to other IFT proteins as well as to a potential GAP.

These results provide the first step towards a high-resolu-

tion structural understanding of the IFT complex.
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Introduction

Cilia or flagella (interchangeable terms) are membrane-

surrounded microtubule-based structures that protrude

from a wide range of eukaryotic cells and serve a number

of important functions including cellular motility, sensory

reception and signalling (Michaud and Yoder, 2006). The

motile cilium enables unicellular organisms such as Chlamy-

domonas reinhardtii (Cr) to move in response to light or other

environmental cues (Witman, 2009). In mammals, the motile

cilium is found on sperm cells and on cells that line the

fallopian tubes and the trachea of the lungs (Satir and

Christensen, 2008). As the cilium protrudes from the cell

surface, it is in a perfect position to convey signals between

the cell and the environment. Immotile sensory cilia are

found on photoreceptor cells in the eye and on olfactory

neurons and are thus sensory organelles of smell and sight

(Perkins et al, 1986; Snell et al, 2004). Furthermore, cilia are

important to a number of signal transduction pathways such

as platelet-derived growth factor receptor a, sonic hedgehog,

epidermal growth factor and 5HT6 serotonin signalling

(Brailov et al, 2000; Huangfu et al, 2003; Haycraft et al,

2005; Ma et al, 2005; Schneider et al, 2005). Both sensory

reception and signalling in the cilium are believed to be a

result of increased clustering of receptor molecules in the

ciliary membrane. Due to the versatility of cilium function, a

large number of genetic diseases (collectively known as

ciliopathies) and developmental abnormalities are the result

of non-functional cilia. In human, these diseases range from

blindness, male sterility, ectopic pregnancy and polycystic

kidney disease to cognitive impairment and various limb

deformities (Snell et al, 2004; Tobin and Beales, 2007).

The axoneme, which forms the structural framework of the

cilium, is built up of nine doublets of microtubules that grow

from a centriole-derived basal body anchored in the cell body

at the base of the cilium. The axoneme is surrounded by the

ciliary membrane that is contiguous with the plasma mem-

brane, but has a unique composition of lipids and proteins

(Emmer et al, 2010). Transition-zone fibres are proteinaceous

structures that span the distance between the plasma mem-

brane and the microtubules of the basal body (Gibbons and

Grimstone, 1960; Craige et al, 2010). This prevents random

diffusion of macromolecules between the cilium and the cell

body and effectively creates a ciliary pore that brings about

the necessity of active transport in order to correctly target

proteins to the cilium. This transport process was first

discovered by Joel Rosenbaum and co-workers and is termed

intraflagellar transport (IFT) (Kozminski et al, 1993). IFT not

only mediates the kinesin-2-dependent targeting of structural

proteins and signalling receptors to the cilium (anterograde

transport) but is also responsible for the removal of ciliary

turnover products in a dynein-1b/2-dependent manner

(retrograde transport) (Qin et al, 2004). These transport

processes rely on a large protein complex, the IFT complex,

that is believed to mediate the contacts between ciliary cargo

proteins and the motor proteins that facilitate transport

(Piperno and Mead, 1997; Cole et al, 1998; Piperno et al,

1998). The complete IFT complex contains at least 20 differ-

ent proteins and has been shown to dissociate into two

different sub-complexes, namely IFT-A and IFT-B, that are

involved in retrograde and anterograde transport, respec-

tively (Piperno and Mead, 1997; Cole et al, 1998). To date,

six protein subunits of the IFT-A (IFT43, 121, 122, 139, 140

and 144) and 14 of the IFT-B (IFT20, 22, 25, 27, 46, 52, 54, 57,

70, 72/74, 80, 81, 88 and 172) complexes have been identified

(Cole et al, 1998; Piperno et al, 1998; Lucker et al, 2005; Follit

et al, 2009; Lechtreck et al, 2009; Wang et al, 2009; Fan et al,

2010). In addition to the IFT complex, another large macro-
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molecular complex, the BBSome, may participate in IFT

(Nachury et al, 2007; Lechtreck et al, 2009). The BBSome

appears to physically bridge the IFT-A and -B complexes

in Caenorhabditis elegans (Ou et al, 2005) and has been

suggested to function as a coat for the sorting of membrane

proteins to cilia (Jin et al, 2010). IFTappears to be a universal

process as genes encoding IFT subunits are conserved

in almost all ciliated eukaryotic organisms ranging from

single-celled algae to humans (Jekely and Arendt, 2006).

The importance of the IFT complex is illustrated by the fact

that mutations in IFT genes lead to perturbation of cilium

formation in organisms as diverse as green alga, nematodes,

fruitfly, zebrafish, mouse and human (Cole et al, 1998;

Murcia et al, 2000; Pazour et al, 2000; Han et al, 2003; Sun

et al, 2004; Tsujikawa and Malicki, 2004; Pedersen et al, 2005;

Beales et al, 2007). Furthermore, knockouts of the IFT core

proteins IFT88 and IFT172 in mice are embryonically lethal,

which demonstrates that the IFT process is essential for

development (Murcia et al, 2000; Huangfu et al, 2003).

Based on primary sequence information, most subunits of

the IFTcomplex appear to contain protein–protein interaction

domains such as tetratricopeptide repeats, b-propeller or

coiled-coil domains that likely mediate contacts within the

IFT complex as well as contacts to cargo and motor proteins

(Jekely and Arendt, 2006). However, two of the IFT-B core

subunits (IFT22 and IFT27) show significant sequence iden-

tity to members of the small guanosine triphosphate hydro-

lase (GTPase) superfamily and may well serve regulatory

roles in IFT. IFT27 was predicted to be an Rab-like GTPase

and shown to bind GTP in a previous study (Qin et al, 2007).

A complete knockdown of CrIFT27 with siRNA is lethal,

whereas a partial depletion of IFT27 leads to shorter flagella

(Qin et al, 2007). Recently, IFT25 was identified as a compo-

nent of the IFT-B complex in Chlamydomonas (Lechtreck

et al, 2009; Wang et al, 2009) as well as in mouse (Follit

et al, 2009) and has been demonstrated to interact with IFT27

in Chlamydomonas (Wang et al, 2009), mouse (Follit et al,

2009) and human (Rual et al, 2005). IFT25 and IFT27 are

conserved in many ciliated organisms with the notable excep-

tion of C. elegans and Drosophila melanogaster (Lechtreck

et al, 2009). Another interesting exception is Tetrahymena

thermophila that appears to have lost IFT25, but retained

IFT27 (Shida et al, 2010). Although IFT-B complexes are

known to pre-assemble in the cell body before entering the

cilium, sedimentation experiments have shown that IFT-B

from the cell body contains sub-stoichiometric amounts of

IFT25/27 (Wang et al, 2009). A significant portion of IFT25

and IFT27 is pre-assembled in an IFT25/27 sub-complex that

appears to associate with the rest of the IFT-B complex only

upon entrance into the flagellum. These observations have

led to the suggestion that IFT25/27 could be involved in the

regulation of IFT initiation at the base of the cilium (Wang

et al, 2009).

Electron tomographic reconstructions of the Chlamydo-

monas flagellum represent the most detailed structural

study of IFT complexes to date (Pigino et al, 2009).

Although these reconstructions provide a first view of how

IFT complexes assemble into larger particles (so-called IFT-

trains), the resolution is not sufficiently high to model

individual IFT proteins. There is thus a paucity of knowledge

about the molecular basis for IFT in ciliary assembly and

function. To this end, we have determined the crystal

structure of the IFT25/27 sub-complex. The structure reveals

a conserved interaction interface between the two compo-

nents as well as a calcium-binding site in IFT25 and a GTP-

binding site in IFT27. We show that IFT27 has very low

intrinsic GTPase activity and displays micromolar affinity for

GDP and GTP. Additionally, by mapping the degree of surface

conservation onto the complex structure, we identify a

surface patch that likely mediates the interaction to a putative

GTPase-activating protein (GAP) and/or to other proteins of

the IFT complex.

Results

IFT25/27 structure characterization

Initial recombinant expression and purifications of full-length

CrIFT25 and CrIFT27 from Escherichia coli showed that

CrIFT25 can be purified as a soluble protein, but CrIFT27

has a tendency to aggregate and is lost during the purifica-

tion. However, CrIFT27 is significantly stabilized upon co-

expression with CrIFT25. We thus co-expressed and purified

the full-length CrIFT25/27 complex (Supplementary Figure

S1A), but did not obtain any crystals. CrIFT25 contains an

approximately 55 residue long C-terminal glycine-rich

tail that is predicted to be disordered (DRIPPRED server,

http://www.sbc.su.se/~maccallr/disorder/). This C-term-

inal extension of IFT25 appears to be unique to the Chlamy-

domonas protein and is not conserved in other IFT25 ortho-

logues (Supplementary Figure S2). Consequently, a truncated

version of CrIFT25 (IFT25DC, residues 1–135) was co-

expressed with CrIFT27 and the CrIFT25DC/27 complex

was purified and crystallized (Supplementary Figure S1B).

The structure of the complex was determined from two

different crystal forms at resolutions of 2.6 and 2.8 Å, respec-

tively. Both crystal forms show a heterodimer of the

CrIFT25DC/27 complex (Figure 1), which is in accordance

with the molecular weight of the complex in solution, esti-

mated as 37 kDa using static light scattering. The structures

from the two different crystal forms are very similar as they

superpose with a root mean square deviation (r.m.s.d.) of

0.6 Å over all Ca atoms. As typically seen in small GTPases

crystallized in the absence of nucleotide, the switch I region

(residues 39–55) and part of the G4 region (residues 138–140)

of IFT27 did not have any interpretable electron density and

were not included in the model. Further data collection and

refinement statistics are given in Table I.

IFT25 is a calcium-binding protein with a jelly-roll fold

IFT25 displays a jelly-roll fold consisting of nine b-strands

that are organized into two anti-parallel sheets stacked on top

of each other (Figure 1). The CrIFT25 structure is similar to a

previously determined structure of human IFT25 (Ramelot

et al, 2009) as they superpose with an r.m.s.d of 0.7 Å over

95% of the Ca atoms (Supplementary Figure S3A). When

compared with all structures in the protein data bank (pdb)

using the DALI server (Holm and Sander, 1993), the IFT25

structures are most similar to the galactose-binding domain

of bacterial sialidases, superposing with an r.m.s.d. of 1.6 Å

over 490% of the Ca atoms (Gaskell et al, 1995; Boraston

et al, 2007). Although IFT25 shares a conserved calcium-

binding site with sialidases, the putative galactose-binding

site is poorly conserved in IFT25. Indeed, the IFT25/27

complex structure is incompatible with galactose binding as

Structure of IFT25/27
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the C-terminal helix of IFT27 occupies the putative galactose-

binding site (Supplementary Figure S3B). It thus appears that,

although IFT25 and sialidases are clearly evolutionarily

related, they have diverged in function. The calcium ion

bound to CrIFT25 is coordinated by the side chains of

amino acids D30, T35 as well as by several main-chain

carbonyls (Figure 2A). These calcium-binding residues are

completely conserved in IFT25 orthologues and it is thus

very likely that IFT25 proteins from other species also bind

calcium (Supplementary Figure S2).

Prior to its characterization as an IFT complex protein,

IFT25 was classified as a member of the family of small heat

shock proteins (sHSPs) of the a-crystallin fold and named

Hsp16.2 (Bellyei et al, 2007) or HSPB11 (Kampinga et al,

2009). IFT25 could thus have a chaperone function in pre-

venting ciliary proteins or turnover products from aggregating.

Indeed, we observe that CrIFT25 increases the solubility of

IFT27 when co-expressed in E. coli. However, when the IFT25

structure is compared with all structures in the pdb, no

significant similarity with structures of the sHSPs family is

found. Furthermore, the a-crystallin fold, which is a defining

feature of sHSPs (Kappe et al, 2010), and the jelly-roll fold of

IFT25 have only a superficial resemblance and do not share a

common topology. This is also reflected by the low sequence

identity of 6–15% between IFT25 and sHSPs. sHSPs are

known to assemble into large oligomers required for their

chaperone activity (Bagneris et al, 2009). In agreement with

Ramelot et al (2009), we find that full-length CrIFT25

(Supplementary Figure S1A), truncated CrIFT25DC (Supple-

mentary Figure S1B) as well as full-length human IFT25 (data

not shown) all behave as monomers in solution during

size exclusion chromatography (SEC) experiments. Thus, as

previously pointed out by de Jong and co-workers, IFT25

should not be classified as a member of the family of sHSPs

containing the a-crystallin fold (Kappe et al, 2010).

IFT27 is structurally similar to Rab8 and Rab11 but

has no prenylation site

IFT27 adopts the classical fold of an Ras-like small GTPase

that catalyses the hydrolysis of GTP to GDP and inorganic

phosphate. GTPases are switch molecules that exist in an

active GTP-bound form or an inactive GDP-bound form. The

active form can bind downstream effectors, whereas the

inactive form cannot. The regulation of the two forms is

achieved by specific GAPs and guanine-nucleotide exchange

factors (GEFs) (Vetter and Wittinghofer, 2001). In this way,

GTPases can regulate a number of important cellular

processes including cell-cycle control, transport processes

and sensory reception. The overall structure of IFT27, when

compared with all the structures in the pdb, most closely

resembles structures of the Rab family of small GTPases. Rab

proteins constitute the largest sub-family within the super-

family of small GTPases with 460 members in human and

have important roles in membrane trafficking (Stenmark,

2009). It is noteworthy that the five sequence signatures of

Rab proteins are relatively well conserved in IFT27 proteins

(denoted RabF1–F5 in Figure 3). Of all the Rab structures

determined to date, the CrIFT27 structure is most similar

to that of Rab8 (r.m.s.d. of 2.6 Å for 84% of the Ca atoms)

and Rab11 (r.m.s.d. of 2.4 Å for 71% of the Ca atoms).

Interestingly, both Rab8 and Rab11 are known to be involved

in ciliogenesis (Nachury et al, 2007; Knodler et al, 2010).

This suggests that ciliary Rabs could have arisen by gene

Table I Data collection and refinement statistics

C. reinhardtii IFT25DC–IFT27 Native 1 Native 2

Data collection
Wavelength (Å) 0.973 0.973
Space group P21 P21

Cell dimensions
a, b, c (Å) 44.1, 96.2, 66.9 50.0, 68.3, 93.8
a, b, g (deg) 90.0 92.4

Resolution (Å) 50–2.59
(2.59–2.74)

50–2.8
(3.00–2.80)

Rsym 0.090 (0.56) 0.099 (0.65)
I/sI 12.6 (2.2) 14.3 (2.5)
Completeness (%) 0.973 (0.848) 0.993 (0.920)

Refinement
Resolution (Å) 50–2.59 50–2.80
No. reflections 16 992 15 717
Rwork/Rfree 0.212/0.269 0.236/0.317

No. atoms
Protein 4310 4689
Ligand/ion 2 Ca++ 1 Cl� and 2 Ca++

Water 32 27

B-factors
Protein 35 47
Water 36 40

r.m.s. deviations
Bond lengths (Å) 0.011 0.007
Bond angles (deg) 1.5 1.2

Highest resolution shell is shown in parenthesis.

Figure 1 Structure of the IFT25DC/27 complex. Cartoon representation of the overall structure of IFT25DC/27 with IFT27 and IFT25 shown in
green and slate, respectively. The calcium ion bound to IFT25 is shown as an orange ball. The two views of the complex are related by a 180-
degree rotation around the horizontal axis. The switch I and G4 regions of IFT27 are disordered in the structure and represented with dotted
lines in the figure. The N- and C-termini of both proteins are indicated.
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duplication from an ancestral ciliary Rab-like GTPase.

However, despite the large degree of overall structural simi-

larity between IFT27, Rab8 and Rab11, the C-termini of

the proteins are highly divergent. A typical hallmark of Rab

proteins is the presence of a C-terminal prenylation motif

consisting of one or, typically, more cysteines that upon

modification allows for membrane association. Such a

prenylation site can be found in both Rab8 and Rab11, but

as previously noted (Qin et al, 2007) is not present in IFT27

(Figure 3). Interestingly, the other identified Rab-like GTPase

of the IFT complex, IFT22 (also known as RABL5 or IFTA-2),

is also missing a prenylation motif (Figure 3) (Adhiambo

et al, 2009).

Structural organization of the IFT25/27 complex

The IFT25DC/27 structure displays an elongated shape with

dimensions of 80 Å� 40 Å� 25 Å. The complex has a mixed

hydrophobic/hydrophilic interface with a buried surface area

of 1070 Å2. Nine residues from IFT25, contributed from two

loop regions (residues 36–42 and 117–125; Figure 2A), med-

iate binding to IFT27 (Figure 2A). These two loops are

very well conserved among IFT25 orthologues and are thus

likely to mediate IFT27 interactions in other species. The

calcium-binding loop of IFT25 (residues 30–35) precedes the

first of the two IFT27-interacting loops and is in close

proximity to the interaction interface (Figure 2A). Calcium

signalling is known to occur in the cilium and recent findings

show that the levels of calcium influence anterograde IFT

(Besschetnova et al, 2010). One possibility is that calcium

directly regulates IFT via the calcium-binding site of IFT25.

To assess the effect of calcium in complex stability, IFT25/27

was treated with a large excess of the calcium chelator EGTA

and subjected to SEC. The results show that calcium binding

does not have any apparent effect on the stability of the

IFT25/27 complex (Supplementary Figure S4B). Consistently,

neither the D30A nor the T35A single point mutations affect

IFT25/27 complex formation in pull-down experiments (data

not shown). However, it cannot be ruled out that calcium

levels have an effect on the IFT25/27 complex in vivo.

IFT27 contributes residues from several different regions to

the IFT25-binding surface. The residues involved in complex

formation are in general better conserved among IFT25

orthologues than IFT27 orthologues. More specifically,

CrIFT27 residues from b-strand b3 (F72), the C-terminal

a-helix a5 (F186, E191, V194, F197 and C201) as well as

the loop connecting a2 and b4 (Y89 and Y95) contribute to

the protein complex interface (Figures 2 and 3). A substantial

part of the interaction is thus mediated by the C-terminal

a-helical extension of IFT27 that is not typically found in the

GTPase core domain. Interestingly, this C-terminal a-helical

extension is conserved in IFT27 orthologues, where IFT25 is

conserved but not in T. thermophila, where IFT25 is lost,

indicating that a5 of IFT27 could be specific for the inter-

action with IFT25 (Figure 3). Notably, of the eight CrIFT27

residues that interact with IFT25, five are aromatic and

engage in hydrophobic as well as stacking interactions with

residues from IFT25. The two tyrosines Y89 and Y95 are

located towards the end of the switch II region (Figure 3),

indicating that IFT25/27 complex formation could depend on

the nucleotide state of IFT27. To test this possibility, we

carried out pull-down experiments with different nucleotide

states of IFT27 (Supplementary Figure S5A). The conclusion

Figure 2 Structural characterization of the IFT25DC/27 interface.
(A) Close-up view of the protein–protein interface of the IFT25/27
complex. IFT27 secondary structure elements that do not engage in
interactions with IFT25 but hinder the view of the interface have
been removed for better visualization. Residues involved in calcium
coordination (D30 and T35) or forming the interaction interface
between the two proteins are shown in a stick representation and
labelled. The salt bridge between R22IFT25 and E191IFT27 and the
hydrogen bond between E122IFT25 and Y95IFT27 are indicated with
dashed lines. (B) Pull-down experiments with interface mutants.
GST-tagged wild-type IFT27 (GST-27WT) or mutant IFT27 (GST-
27mut, V194R) was co-expressed with C-terminally truncated but
otherwise wild-type IFT25 (25DCWT) or mutant IFT25 (25DCmut,
V38R, T40R and T125E triple mutant) and pulled down using GSH
beads. Whereas both GST-27WT and GST-27mut effectively pull down
25DCWT, they do not pull down 25DCmut, demonstrating that the
interface between the two proteins has been disrupted. To ensure
that 25DCmut is expressed and soluble, the protein was pulled down
separately using the His-affinity tag on IFT25 (right panel).
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Figure 3 Conserved sequence motifs and IFT25-interacting residues of IFT27. Multiple sequence alignment of IFT27 proteins from differences
species with CrIFT22 and the GTPases Rab11 and Rab8. The secondary structure derived from the IFT27 structure presented here is indicated
above the sequences. Important sequence motifs of small GTPases such as switch regions, G-protein-specific sequences (G1-5) as well as Rab-
specific residues (RabF1–5) are marked below the sequence. IFT27 residues that interact directly with residues from IFT25 are coloured green.
The catalytic glutamine conserved in most GTPases, but not in IFT27 or IFT22, is coloured in blue and the prenylation sites at the C-termini of
Rab8 and Rab11 are shown in pink. Hs: Homo sapiens, Mm: Mus musculus, Xl: Xenopus laevis, Dr: Danio rerio, Cr: Chlamydomonas reinhardtii.
Tt: Tetrahymena thermophila.
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from this experiment is that IFT27 can interact with IFT25

irrespectively of nucleotide state. This is consistent with the

fact that Y89 and Y95 are not well conserved among IFT27

orthologues, indicating that they are not crucial for IFT25

interaction. The three phenylalanine residues of CrIFT27

(F72, F186 and F197) that are engaged in IFT25 binding are

well conserved among IFT27 proteins from different species

but not conserved in Rab8 or Rab11 sequences (Figure 3).

This suggests that these residues are specific for the IFT25/27

interaction. In summary, the conservation of interface resi-

dues across species makes it highly probable that the struc-

ture of the CrIFT25DC/27 complex reported here can serve as

a model for IFT25/27 complexes from other species.

From the structure of the IFT25/27 complex presented

here, it should be possible to introduce structure-based

mutations of interface residues to break up the complex

and verify the interaction biochemically. To this end, we

introduced several point mutations of interface residues

in both IFT25 and IFT27 and tested for complex formation

in pull-down experiments with co-expressed proteins

(Figure 2B). The pull-down experiments were performed

using either GST-tagged IFT27 (Figure 2B) or CBP-tagged

IFT25 (Supplementary Figure S5B) and carried out using

co-expressed rather than purified proteins because of the

low solubility of IFT27 when expressed in the absence of

IFT25. Several single point mutations were introduced in

both IFT27 (V194R, GST-27mut in Figure 2B) and IFT25DC

(V38R or T40R, data not shown) but did not prevent complex

formation in the pull-down experiment. Consequently, an

IFT25DC mutant protein was tested where three small non-

charged residues were mutated to large charged residues

(IFT25DCmut in Figure 2B, V38R, T40R and T125E triple

point mutant). IFT25DCmut is well expressed and soluble

(see Ni pull down in Figure 2B) but does not form a complex

with IFT27 demonstrating that the interface has been effec-

tively disrupted. This is also the case in the reciprocal

pull down using CBP-tagged IFT25 to precipitate IFT27

(Supplementary Figure S5B). These data provide a biochem-

ical verification of the structural organization of the IFT25/27

complex.

IFT27 binds GTP/GDP with micromolar affinity and

has very low intrinsic GTPase activity

The crystal structure of the IFT25DC/27 complex presented

here allows us to analyse and compare the active site

configuration of IFT27 to that of well-studied GTPases such

as Ras (Figure 4A). As the IFT25DC/27 crystals represent

the nucleotide-free state of IFT27, the switch I region is

disordered and not modelled. However, the positions of the

phosphate-binding P-loop as well as the a-helix (a1) preced-

ing switch I are well conserved in the structure (Figure 4A).

Additionally, the mapping of sequence conservation onto the

surface of the IFT25DC/IFT27 structure reveals a conserved

surface area at the GTP-binding pocket (Figure 5). Important

nucleotide-binding motifs such as N/TKXD (G4), DXXG (G3)

and GXXXXGKS/T of the P-loop are completely conserved in

IFT27 (Figure 3). Specificity for guanine versus adenine is

provided by the NXXD motif of G4 (Espinosa et al, 2009),

which is conserved in IFT27 orthologues (see Figure 3),

indicating that IFT27 binds GTP but not ATP (confirmed

experimentally; Figure 4C; Supplementary Figure S6). The

sequence and structure of IFT27 are thus compatible with

a competent GTP-binding site. Interestingly, the other

Rab-like protein of the IFT complex B (IFT22/RabL5) does

not have G4 conserved (as previously noted by Adhiambo

et al (2009)) and may not be specific for GTP.

GTP hydrolysis by GTPases relies on the coordination of a

water molecule for the in-line attack on the g-phosphate (Pai

et al, 1990). Different families of GTPases utilize different

catalytic residues to achieve GTP hydrolysis. In case of the

Ras, Rho and Ran GTPases, a conserved glutamine in the

switch II region (Q61 in human Ras; Figure 4A) was found to

coordinate the nucleophilic water molecule (Pai et al, 1990;

Rittinger et al, 1997; Seewald et al, 2002). Mutation of Q61 is

oncogenic in Ras and lowers the intrinsic GTPase activity by

8–10-fold (Der et al, 1986). Other GTPases such as Sar1

(Bi et al, 2002) and elongation factors Tu (Voorhees et al,

2010) utilize a catalytic histidine for the purpose of orienting a

nucleophilic water molecule. The catalytic glutamine of Ras

is conserved in most Rab proteins but appears to be involved

in GAP binding rather than catalysis as demonstrated for

Rab33, where the catalytic glutamine is instead provided

in trans by the Rab-GAP (Pan et al, 2006). In Rap proteins,

the Q61 residue is replaced by a threonine that is involved

in Rap-GAP binding and not in catalysis (Chakrabarti et al,

2007). For Rap proteins, the water molecule needed for

hydrolysis is instead coordinated by an Asn-thumb coming

from the Rap-GAP (Daumke et al, 2004; Scrima et al, 2008).

Despite a conserved fold and GTP-binding motifs, GTPases

thus have different ways of achieving GTP hydrolysis. The

catalytic glutamine of Ras is poorly conserved in IFT27

orthologues and is found to be a serine in the case of

CrIFT27 (S79; Figures 3 and 4A). The other GTPase of the

IFT complex B, IFT22, also has a serine (S67; Figure 3) at the

position of the catalytic Q61 of Ras. Since the switch regions

of IFT27 are likely to undergo significant conformational

changes upon nucleotide binding, it is currently not clear if

S79 could participate in the positioning of a nucleophilic

water molecule. It is noteworthy that the IFT25 protein is

located 410 Å from the nucleotide-binding pocket of IFT27

and is thus unlikely to contribute any nucleotide binding or

catalytic residues.

To test if IFT27 can bind and hydrolyse GTP, we carried out

GTP binding and hydrolysis assays using purified

CrIFT25DC/27. To measure the intrinsic GTP hydrolysis

activity of IFT27, the release of inorganic phosphate upon

conversion of GTP to GDP was followed (Figure 4B). This

experiment shows that IFT25DC/27 has very low but mea-

surable intrinsic GTPase activity. The reaction rate under the

conditions of the assay is 2.1�10�3 min�1±2.9�10�5 min�1,

which is very low but comparable with the intrinsic rate of

other small GTPases (Simon et al, 1996; Scheffzek and

Ahmadian, 2005). As a positive control, the interferon-

induced large GTPase IIGP1 with a reaction rate of 2 min�1

was used in the GTPase assay (Uthaiah et al, 2003; Ghosh

et al, 2004). As for most large GTPases, IIGP1 has robust

GTPase activity without the assistance of a GAP (Ghosh et al,

2004). The GTP hydrolysis can be attributed to the GTPase

site of IFT27 as mutations known to affect GTP binding

or catalysis significantly change the reaction rate of the

IFT25DC/27 complex. The CrIFT25DC/27(S30N) mutant,

where GTP binding is impaired, displays a significantly

lower reaction rate (1.5�10�3 min�1±1.5�10�4 min�1)

than wild-type (WT) complex (Figure 4B). CrIFT27 has a
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serine (S79) at the position of the catalytic glutamine (Q61)

that in the Ras protein coordinates a water molecule for the

nucleophilic attack on the g-phosphate of GTP. To explore if

the residue at this position is also important for the catalytic

activity of IFT27 we introduced an S79Q mutation and tested

the CrIFT25DC/27(S79Q) mutant complex in GTPases assays.

As seen from Figure 4B, the S79Q mutant has signi-

ficantly higher activity (reaction rate of 5.4�10�3 min�1±

5.4�10�4 min�1) than WT protein, indicating that glutamine

at position 79 in CrIFT27 is better suited to coordinate the

catalytic water than serine is. To summarize, CrIFT25DC/27

has very low but measurable intrinsic GTPase activity sug-

gesting that if the cellular function of IFT27 requires GTP

hydrolysis, a yet unidentified GAP is likely to be involved.

To measure the affinities of CrIFT25DC/27 for GDP and

GTP nucleotides, isothermal titration calorimetry (ITC) was

carried out. The results of these experiments show that the

complex binds GTP with a Kd of 19 mM and GDP with a Kd of

37 mM (Figure 4C). The observed nucleotide binding is

specific for the GTPase site of IFT27 as the S30N mutant

Figure 4 IFT27 is lacking a catalytic glutamine residue. (A) Comparison of the GTPase sites of GDP-AlF3-bound Ras (pdb code 1WQ1) and
nucleotide-free IFT27. IFT27 is coloured green, Ras light brown and the bound nucleotide is shown as black sticks. The magnesium ion and the
catalytic water are shown as a purple and red ball, respectively. The catalytic Q61 of Ras and equivalent residue of IFT27 (S79) are shown as
sticks and labelled. Switch regions and the P-loop are also labelled. (B) GTPase assay. The release of inorganic phosphate upon GTP hydrolysis
is followed using the EnzCheck Phosphate kit (Invitrogen) by absorbance measurements at 360 nm. Uncatalysed GTP hydrolysis in buffer as
well as catalysed reactions using 500mM of WT or mutant IFT25DC/27 complex over a time course of 90 min are shown. The concentration of
GTP is in all cases 500mM. As a positive control, 25 mM of the large GTPase IIGP1 is seen to hydrolyse all of the GTP in approximately 10 min.
Whereas the GTP-binding mutant S30N is seen to reduce the GTPase activity, introduction of a glutamine at the position of S79 of IFT27
increases the activity significantly. Each of the curves representing WT or mutant IFT25DC/27 catalysed GTP turnover is the average of two
independent experiments. (C) ITC measurements. ITC was used to measure the affinity of IFT25DC/27 for GDP and GTP nucleotides. WT
IFT25DC/27 is seen to bind both GTP and GDP with micromolar affinities. The occupancies are close to one, demonstrating that only one
nucleotide-binding site is present in the complex. The nucleotide binding can be attributed to the GTPase site of IFT27 since a point mutation
(S30N) in the P-loop of IFT27 abolishes binding to GTP (right panel).
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does not display any GTP binding in our ITC experiment

(Figure 4C). This micromolar affinity for GDP/GTP is much

weaker than what is observed for other small GTPases of the

Ras superfamily that typically display picomolar to nano-

molar affinities for nucleotides (Simon et al, 1996; Esters

et al, 2001). Interestingly, large GTPases that also have Kd’s

for GDP in the mM range typically do not have an identified

GEF and may well function without exchange factors

(Uthaiah et al, 2003). Given the low affinity of IFT27 for

GDP, it is plausible that IFT27 could fulfil its biological role

without a cellular GEF. The conclusions from the biochemical

analyses are that IFT27 binds GTP/GDP with micromolar

affinity and has very low intrinsic GTPase activity.

Discussion

The IFT25/27 structure displays a conserved surface

patch that could mediate protein–protein interactions

IFT25/27 is a sub-complex of the larger 14-subunit IFT-B

complex and was found to associate with a core of IFT-B

proteins after washing away salt labile subunits with 300 mM

NaCl (Lucker et al, 2005). In addition to IFT27, this IFT-B core

was originally shown to contain IFT subunits IFT46, 52, 72/

74, 81 and 88 (Lucker et al, 2005). IFT25 was not identified

as an IFT subunit in the Lucker et al (2005) study, but was

recently shown to belong to the IFT-B and not the IFT-A

complex in co-immunoprecipitation and co-sedimentation

experiments, consistent with its direct interaction with

IFT27 (Follit et al, 2009; Lechtreck et al, 2009; Wang et al,

2009). As we find that IFT25DC/27 forms a stable complex in

the presence of 300 mM NaCl (Supplementary Figure S4C),

IFT25 should also be counted as part of this IFT-B core

complex. It follows that the IFT25/27 complex must present

a surface interface mediating the association with other IFT-B

core subunits. Although there is limited data available

on how IFT25/27 associates with the rest of the IFT-B

core, chemical cross-linking and MALDI-TOF analysis have

indicated a possible interaction between IFT27 and IFT81

(Lucker et al, 2010).

To explore which part of the IFT25/27 complex could

potentially be responsible for IFT-B core binding, we mapped

the degree of sequence conservation of IFT25 and IFT27

orthologues onto the surface of the IFT25DC/27 crystal

structure (Figure 5) (Landau et al, 2005). This method

assumes that surface residues engaged in protein–protein

interactions will show a higher degree of conservation than

residues that are not. Two surface areas of the IFT25DC/27

structure, located on the same side of the complex, show a

high degree of conservation (encircled in Figure 5). One of

these areas maps solely to IFT27 and overlaps with the GTP-

binding site. Adjacent to this, a second, somewhat larger

patch is found to display a surface of highly conserved

residues. This surface area has residues contributed by both

IFT25 and IFT27 and is a good candidate for a protein–protein

interaction surface. Part of this conserved surface overlaps

with the Rab-GAP-binding site as seen in an Rab33-Rab-GAP

crystal structure and could thus be conserved for the purpose

of Rab-GAP binding (see Figure 6 and the following section).

Figure 5 Surface conservation of the IFT25/27 structure. (Top) Cartoon representation of the IFT25DC/27 complex in a similar orientation as
for Figure 1. Residues 24–38 of IFT27 that partly block the view of the GTP-binding pocket have been omitted from the figure for better
visualization. (Bottom) Surface representation of the IFT25DC/27 complex in a similar orientation as for Figure 1. The sequence conservation
between different species of IFT27 and IFT25 (same species as for the alignment in Figure 3; Supplementary Figure S2) are mapped onto the
surface of the IFT25/27 heterodimeric structure. Variable residues are coloured white, whereas conserved residues are shown in orange
according to the colour bar. In addition to a highly conserved GTP-binding pocket of IFT27, a neighbouring surface patch, extending across the
IFT25/27 dimer, is highly conserved and likely to mediate protein–protein interactions.
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However, a significant portion of the surface area is not

predicted to be involved in Rab-GAP binding and could

thus mediate interactions between IFT25/27 and the IFT-B

core complex, although additional biochemical and structural

data are required to verify this prediction.

Is IFT27 GTP hydrolysis activated by a Tre-2, Bub2 and

Cdc16 domain containing GAP?

Small Ras-like GTPases are known to function as switch

molecules cycling between an active GTP-bound form and

an inactive GDP-bound form. Small GTPases in general have

low intrinsic GTP hydrolytic activity and thus usually require

the activation by a GAP for robust GTP turnover. Once GTP is

hydrolysed, typical affinities for GDP in the picomolar to

nanomolar range mean that the GDP-bound form of the

GTPase requires the assistance of a GEF to exchange the

GDP for GTP (Simon et al, 1996; Esters et al, 2001). IFT27

appears to be an unusual small GTPase in the sense that it

exhibits micromolar affinity rather than sub-nanomolar affi-

nity for GDP (Figure 4C). In this respect, IFT27 more closely

resembles large GTPases like IIGP1 that also exhibit micro-

molar affinities for GDP/GTP (Uthaiah et al, 2003; Ghosh

et al, 2004). Since many large GTPases, such as IIGP1, appear

to function without a GEF, it is possible that the low affinity

of IFT27 for GDP allows this small GTPase to efficiently

exchange GDP for GTP without the assistance of a GEF.

Although IFT27 may function without a GEF, its very low

intrinsic GTPase activity indicates that a GAP is needed for

robust GTP turnover. Different families of GAPs serve as

activators for the different families of GTPases (Scheffzek

and Ahmadian, 2005). Although the details of GAP-mediated

activation appear to differ between different GAPs, the inser-

tion of one or more residues into the GTPase active site seems

to be a common feature to facilitate hydrolysis (Scheffzek and

Ahmadian, 2005). In the case of Ras, Ras-GAP contributes

a so-called arginine finger to the GTPase site, thereby increas-

ing the rate of hydrolysis by several orders of magnitude

(Scheffzek et al, 1997). Of the different Ras-like GTPase

families, the sequence and structure of IFT27 most closely

resembles that of Rabs. Rab-like GTPases appear to rely on

GAPs that possess a Tre-2, Bub2 and Cdc16 (TBC) domain for

efficient GTP hydrolysis (Pan et al, 2006). The mechanism

of activation by TBC domain containing Rab-GAPs was

elucidated by the crystal structure of a trapped GDP-AlF3

transition-state intermediate of Rab33 in complex with the

Rab-GAP Gyp1p (Pan et al, 2006). This study demonstrates

that Gyp1p functions via a dual-finger mechanism where, in

addition to the classical arginine finger, a glutamine is

inserted in trans into the active site of Rab33 (Pan et al,

2006). Since IFT27 does not have the catalytic glutamine

conserved, it is thus conceivable that it is also activated by a

TBC domain containing GAP that provides the missing cata-

lytic glutamine in trans. To test if the IFT25DC/27 structure is

compatible with Rab-GAP binding, the Rab33-Gyp1p struc-

ture was superimposed on the IFT25DC/27 structure

(Figure 6). This superposition shows that the TBC domain

containing GAP complements the surface of the IFT25DC/27

structure without any major clashes. It is also noteworthy

that the predicted GAP-binding surface partly overlaps with

the highly conserved surface patch and covers both IFT27

and IFT25. BLAST searches with Gyp1p against the

Chlamydomonas genome reveal the presence of seven TBC

domain containing GAPs (E-value o10�3) that could be

possible candidates for an IFT27 GAP (Supplementary Table

S1). Of the seven candidates, one candidate (gene accession

code XP_001699577.1) was shown to localize to the cilium

(Pazour et al, 2005) but, curiously, does not contain the usual

Rab-GAP catalytic motifs (see Supplementary Table S1).

Further research is thus required to identify the potential

GAP specific for IFT27. The cellular localization of such a

GAP will likely provide important insights into the function of

IFT25/27 in IFT.

Materials and methods

Preparation and crystallization of the CrIFT25/27 complex
IFT25DC and IFT27 were co-expressed in the E. coli BL21 (DE3)
Gold pLysS strain with TEV protease cleavable GST and His tags,
respectively. The complex was purified by Ni2þ and glutathione
sepharose (GSH)-affinity chromatography followed by TEV clea-
vage of the tags and further purification by anion exchange
chromatography (MonoQ, GE healthcare). As a last step, SEC
(Superdex 75, GE Healthcare) was performed in a buffer containing
10 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgSO4, 1 mM CaCl2 and
1 mM DTT to separate excess IFT25DC from the IFT25DC–IFT27
complex. All mutant constructs of IFT25 and IFT27 were generated
using the QuickChange site-directed mutagenesis method from
Stratagene and the proteins purified using the same protocol as for
the WT complex. Crystals of IFT25DC/27 at 30 mg ml�1 were
obtained by sitting drop vapour diffusion at 181C by mixing the
complex with an equal volume of 20% PEG 3350 buffered with
50 mM MES pH 6.0.

Data collection and structure determination
Crystals were cryo protected using mother liquor supplemented
with 35% PEG3350 before flash cooling at 100 K. Diffraction data
were collected at the Swiss Light Source (SLS, Villigen, Switzerland)
and processed with XDS (Kabsch, 1993). Phase information was
obtained for the 2.8-Å resolution data set by molecular replacement
using the coordinates of the human IFT25 structure (pdb code
1TVG) and an ensemble of four different Rab GTPase structures that
were superimposed (pdb codes 2O52, 1Y2K, 2AED and 1N6H) as

Figure 6 Model of putative Rab-GAP binding to IFT25/27. Surface
representation of the IFT25/27 heterodimer with the sequence
conservation mapped onto the surface as for Figure 5. The model
for the putative binding of Rab-GAP to the IFT25/27 complex is
shown in blue as ribbon. The model has been derived by super-
imposing a transition-state structure of Rab33 (the Rab33-GDP-
AlF3–Rab-GAP complex) (pdb code 2G77) onto IFT27 of the
IFT25/27 complex. GDP-AlF3 from the Rab33 structure is displayed
as sticks. Both the GDP-AlF3 and the Rab-GAP binding to IFT25/27
represent models and are not experimentally determined structures.
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search models in the program PHASER (Storoni et al, 2004). The
model was completed by iterative cycles of model building in COOT
(Emsley and Cowtan, 2004) and refinement in PHENIX (Adams
et al, 2010). The structure from the second crystal form (2.6 Å
resolution data set) was determined by molecular replacement
using the model obtained from the 2.8-Å resolution data.

ITC and GTPase assay
ITC was carried out at 251C using a VP-ITC Microcal calorimeter
(Microcal, GE healthcare). Proteins and nucleotides were buffered
with 10 mM Tris, 150 mM NaCl, 1 mM CaCl2 and 5 mM MgSO4 pH
7.5. A volume of 1.44 ml of protein was titrated with nucleotide in
45 injections of 5ml each with 5 min intervals between injections.
CrIFT25DC/27 (WT or S30N mutant) were at a concentration of
50 mM for the GTP and ATP titration and at 95 mM concentration for
the GDP titration. The nucleotides were in all cases 10� the
concentration of protein in the cell. For each ITC curve, a
background curve consisting of the titration of nucleotide into
buffer without protein was subtracted to account for heat dilution.
The ITC data were analysed using the program Origin version 7
provided by Microcal.

The GTPase activity of CrIFT25DC/27 was measured using the
EnzCheck Phosphate kit (Invitrogen) at 201C. For each assay,
500 mM GTP was added to the solutions provided in the assay kit
according to the manufacturer’s recommendations. The reaction
was initiated by the addition of 500 mM CrIFT25DC/27 and the
release of phosphate upon GTP hydrolysis monitored by following
the enzymatic conversion of inorganic phosphate and 2-amino-6-
mercapto-7-methylpurine riboside into ribose 1-phosphate and
2-amino-6-mercapto-7-methyl-purine by absorbance measurements
at 360 nm. Absorbance measurements were taken every 6 s for a
total duration of 90 min, and each curve in Figure 4B represents the
average of two independent experiments. For the positive control,
25mM of the GTPase IIGP1 was found to hydrolyse 500 mM GTP in
approximately 10 m in agreement with its reported reaction rate of
2 min�1 (Uthaiah et al, 2003). As a negative control, the intrinsic
hydrolysis of GTP in buffer (without the addition of any protein)
was measured.

Pull-down experiments
His-tagged CrIFT25DC and GST-tagged CrIFT27 were co-expressed
in E. coli BL21 (DE3) Gold pLysS cells. Cells were lysed in lysis
buffer containing 50 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgSO4

and 1 mM CaCl2 and the supernatants after centrifugation were
incubated with pre-blocked GSH beads to pull down GST-CrIFT27
from the lysate. Beads were washed extensively using the lysis

buffer to remove contaminants and the bound protein was eluted
from the beads using lysis buffer supplemented with 30 mM
glutathione. For the Ni-NTA pull downs of IFT25, lysed cells
expressing the proteins were centrifuged and the supernatant
incubated with Ni-NTA beads followed by extensive washing with
lysis buffer before eluting with 500 mM imidazole. For the CBP pull
downs shown in Supplementary Figure S5B, pre-blocked calmodu-
lin beads were incubated with the supernatant from cells where
CBP-IFT25DC and IFT27 were co-expressed. After extensive
washing, proteins were eluted from the calmodulin beads using a
buffer containing 20 mM EGTA. In all cases, the eluted proteins
were analysed using SDS–PAGE.

Accession codes
The coordinates and structure factors have been deposited in the
pdb under the accession codes 2yc2 and 2yc4.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Figure S1 Purification of full-length CrIFT25/27 and truncated CrIFT25DC/27 

(A) The left panel shows the elution profile of CrIFT25/27 from a Superdex 75 size exclusion 

column. The IFT25/27 complex is seen to elute as a heterodimer whereas excess monomeric 

IFT25 elutes later. The calculated molecular weights (Mw) based on the amino acid 

sequences as well as experimentally determined values by static light scattering (SLS) are 

indicated. The somewhat lower Mw(SLS) value of 35 kDa vs. a Mw(calc) of 43 kDa for full 

length IFT25/27 could be due to the presence of degradation fragments. The right panel 

shows an SDS PAGE gel of the two peaks from the SEC experiment. (B). As (A) but with the 

CrIFT25DC/27 truncated complex.  
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Figure S2 Multiple sequence alignment of IFT25 

Secondary structure elements derived from the CrIFT25 structure are indicated above the 

sequences. IFT25 residues that interact directly with residues from IFT27 are colored green 

and the calcium-ion coordinating residues are red. CrIFT25 is seen to have a long glycine-

rich C-terminal extension not found in other IFT25 orthologues. Hs: Homo sapiens, Mm: 

Mus musculus, Xl: Xenopus laevis, Dr: Danio rerio, Cr: Chlamydomonas reinhardtii. 
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Figure S3 Structural comparison with HsIFT25 and sialidases 

(A) The structure of human IFT25 (in salmon) has been superimposed on the 

Chlamydomonas IFT25/27 complex. HsIFT25 and CrIFT25 show high structural similarity 

and share a conserved calcium-binding site. (B) Structural comparison of a bacterial 

sialidase with the IFT25/27 complex. The overall structure of the sialidase is similar to IFT25 

and the two proteins share a common calcium-binding site. However, the galactose-binding 

site of sialidases is not conserved in IFT25 and is seen to overlap with the C-terminal helix of 

IFT27 in the IFT25/27 complex structure. 
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Figure S4 Effect of different buffer conditions on the IFT25DC/27 complex 

(A) SEC profile of a standard IFT25DC/27 purification using a Superdex 75 column. The 

IFT25DC/27 complex is seen to elute around 60 mL whereas excess 25DC elutes at around 

80 mL. (B) The SEC purified IFT25DC/27 complex (peak 1 from panel (A)) was incubated 

with 10 mM of the strong calcium chelator EGTA for 30 min at 20°C and subjected to 

another round of SEC where 1 mM of EGTA (and no divalent metal ions) was included in the 

buffer to assess the role of calcium in complex formation. The IFT25DC/27 complex is not 

disrupted indicating that calcium-binding is not a requirement for complex stability. (C) The 

effect of salt on IFT25DC/27 complex stability. SEC purified IFT25DC/27 complex (peak 1 

from panel (A)) was incubated with a buffer containing 300 mM NaCl for 30 min at 20°C and 

subjected to SEC run in a 300 mM NaCl-containing buffer. The higher salt concentration 

does not have any apparent effect on the IFT25DC/27 complex stability. 

51



 

Figure S5 IFT27 binds IFT25 regardless of its nucleotide state 

(A) The effect of the nucleotide bound to IFT27 on the ability to bind IFT25 was tested 

experimentally in pull-down assays. GST-tagged IFT25DC can pull down IFT27 regardless 

of the nucleotide-bound state of IFT27. The proteins were pre-incubated for 30 min at 20°C 

with 5 mM GDP, 5 mM GTP or with 10 mM of EDTA before incubating for 1h with GSH-

beads. After washing the beads 3 times, the protein was eluted with 30 mM glutathione (B) 

Pull-down of WT IFT27 using CBP-tagged WT (CBP-25DCWT) or mutant (CBP-25DCmut, 

V38R, T40R and T125E triple mutant) IFT25. Since the proteins are co-expressed and IFT25 

is expressed to a much higher degree than IFT27, the band for IFT25 is stronger than that for 

IFT27. Whereas WT IFT25 can pull-down IFT27, the interface mutant of IFT25 no longer 

precipitates IFT27 consistent with the results shown in Figure 2B. 
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Figure S6 IFT25DC/27 does not bind ATP 

To test if the IFT25DC/27 complex binds ATP, 50mM of the complex was titrated with 500 

µM of ATP in an ITC experiment. The titration curve demonstrates that IFT25DC/27 does not 

bind ATP. 
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Table S1 Putative GAPs for CrIFT27 
 
Gene accession code Localization E value  Conservation of 

catalytic motifs 
IxxDxxR and YxQ 

XP_001698588.1 Unknown 5e-05 yes 
XP_001701653.1 Unknown 8e-08 yes 
XP_001697170.1 Unknown 2e-08 yes 
XP_001690894.1 Unknown 5e-63 yes 
XP_001692974.1 Unknown 6e-09 yes 
XP_001693283.1 Unknown 6e-22 yes 
XP_001700441.1 Unknown 2e-09 yes 
XP_001699577.1 Cilia (Pazour et al., 2005) 5e-06 No 
 
Since IFT27 has very low intrinsic GTPase activity and belongs to the Rab family of small 

GTPases it may be regulated by a TBC-domain GAP as seen for other Rabs. To find putative 

candidates, the TBC-domain Rab-GAP Gyp1p from yeast was blasted against the 

Chlamydomonas genome and significant hits (E value>10-3) listed in the table above. One of 

the candidates (code: XP_001699577.1) was found in the cilium in aprevious study (Pazour 

et al., 2005) but does not contain the classical catalytic sequence motifs of Rab-GAPs. 
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Extended	  discussion	  

Finding	  a	  RabGAP	  specific	  for	  IFT25/27	  

Structural and biochemical analyses carried out in this article point towards a possible 

TBC domain containing protein acting as a GTPase activating protein (GAP) for 

IFT27. Such a GAP could regulate the GTPase activity of IFT27 and in turn cilia 

formation/function. Identifying and characterizing such a GAP would greatly help us 

to understand the cellular role of the IFT25/27 heterodimer. The human genome 

contains 44 genes coding for TBC domain containing proteins. Testing each RabGAP 

for their specificity towards IFT27 would be cumbersome and may also involve many 

false positives (as a single RabGAP can stimulate the activity of a broad range of 

Rabs in vitro) complicating the search. Here I present a strategy to narrow down the 

list of potential IFT27 specific RabGAPs. 

It is reasonable to assume that the IFT27 GAP would have cilia-related functions. 

Therefore, one approach is to test the effect of deletion or overexpression of these 44 

GAPs on cilia formation. Interestingly, such a study exists where the investigators 

have overexpressed all the human RabGAPs and screened for their effect on 

ciliogenesis in serum starved RPE1 cells (Yoshimura et al., 2007). Only 3 out of 44 

exhibited a strong effect on ciliogenesis. These were TBC1D7, TBC1D30 and EVI5-

like protein. Both TBC1D7 and TBC1D30 were shown to localize to the base of the 

cilium. Intriguingly, this is the place where the IFT particles accumulate before being 

injected into the cilium for transport (Deane et al., 2001; Ludington et al., 2013), so it 

is possible that one of these proteins acts as a GAP for IFT27. Sequence analysis of 

these GAPs indicates that TBC1D7 is an unconventional GAP that does not contain 

both of the catalytic residues responsible for the dual finger GTPase activation 

mechanism (Figure 6.1) (Frasa et al., 2012; Pan et al., 2006). Hence it is expected to 
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be an inactive GAP. Interestingly a significant number of human RabGAPs do not 

contain at least one of the catalytic residues. TBC1D3 (also called PRC17) is one such 

RabGAP lacking a catalytic residue. Unlike the typical transient interaction between 

GTPases and GAPs, TBC1D3 binds constitutively to the GTPase Rab5 (Pei et al., 

2002). Hence it was proposed that the unconventional RabGAPs lacking one or both 

catalytic residues bind GTPases with higher affinity and act as effectors rather than 

activators (Frasa et al., 2012). Notably, mutating the catalytic arginine in TBC1D30 

displaces it from the base of the cilium to inside the cilium, strongly suggesting that 

its partner GTPase is a ciliary RabGTPase (Yoshimura et al., 2007). TBC1D7 was 

shown to be a key player in  mTORC1 signaling (Dibble et al., 2012), which is known 

to occur in cilia (Boehlke et al., 2010). Curiously, the mTORC pathway was linked to 

aging in C.elegans, as was the IFT22 orthologue IFTA-2 (Schafer et al., 2006; Smith 

et al., 2008). It would be interesting to see if this functional interaction translates into 

a biochemical one. In summary, characterization of these three GAPs should remain 

the main focus of future research to test if they are specific to IFT27 or IFT22. 

	  IFT25	  as	  a	  Ca2+	  sensor	  in	  the	  Shh	  pathway	  

The article above also describes the Ca2+-binding of IFT25 via coordination with two 

conserved side chains, D30 and T35 (Figure 2A).  The close proximity of the C-

terminal extended helix in IFT27 and the Ca2+-binding loop of IFT25 initially led us 

to speculate that Ca2+-binding may be regulating IFT25/27 complex formation (Figure 

2A). However, treatment of the purified complex with excess EGTA did not 
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Figure 6.1 Sequence alignment of TBC1D7, TBC1D30, EV5I-like and gyp1p. TBC1D7 is an 

atypical RabGAP lacking the catalytic motifs. 

 

affect complex formation (Figure S4B). Moreover, the Ca2+-binding loop of IFT25 in 

the crystal structure of IFT25/27 does not show any significant difference from that of 

IFT25 alone (Figure S3A). This indicates that the interaction between IFT25 and 

IFT27 is independent of Ca2+ binding to IFT25.  

Mutations in mouse IFT88 and IFT172 resulted in cilia malformation and also 

showed severe defects in Shh signaling, indicating that Shh signaling depends on cilia 

formation (Huangfu et al., 2003). Furthermore, the knockout of IFT25 in the mouse 

resulted in early death with severe Shh signaling defects (Keady et al., 2012). 

Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        ------------------------------------------------------------
Hs_EV5I-like      ------------------------------------------------------------
Sc_gyp1p          MGVRSAAKEMHERDHNSDSSSLVTSLMKSWRISSASSSKKPSLYKMNTTESTSLPSGYAS
                                                                             

Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        ------------------------------------------------------------
Hs_EV5I-like      ----------------------------------MASPTLSPDSS---------------
Sc_gyp1p          SADRDRRTSDGNFEAMAKQQASTRRTSNSYSPLRYVSPTLSTASNESPRPALLLRQHHQR
                                                                             

Hs_TBC1D7         ----------------------------------------------------MT--E---
Hs_TBC1D30        -----------------------------------MRQDK--LTGSLRRGGRCLKRQGGG
Hs_EV5I-like      ---------SQEALSAPTCSPTSDSENLS--------PDELELLAKLEEQNRLL--E---
Sc_gyp1p          HHHHQQPRHSSSGSVGNNCSNSTEPNKKGDRYFKDLDEDWSAVIDDYNMPIPIL--TNGG
                                                                             

Hs_TBC1D7         --------------------DSQRNFRSVYYE----KVGF--------------------
Hs_TBC1D30        VGTILSN---------------------VLKKRSCISRTAPRLLCT--------------
Hs_EV5I-like      ----------ADSKSMRSMNGSRRNSGSSLVSSSSASSNL--------------------
Sc_gyp1p          FGTPVAPTRTLSRKSTSSSINSISNMGTSAVRNSSSSFTYPQLPQLQKEKTNDSKKTQLE
                                                     .                       

Hs_TBC1D7         ----RGVEEKKS-------LEILLKDDRLDTEKLCTFSQRFPLPSMYRALVWKVLLGILP
Hs_TBC1D30        --LEPGVDTKLKFTLEPSLGQNGFQQWYDAL--KAVARLSTGIPKEWRRKVWLTLADHYL
Hs_EV5I-like      ----SHLEEDTWIL--WGRIANEWEEWRRRKEKLLKELIRKGIPHHFRAIVWQLLCSATD
Sc_gyp1p          IENERDVQELNSIIQRISKFDNILKDKTIINQQDLRQISWNGIPKIHRPVVWKLLIGYLP
                       ::                ::                :*   *  **  *     

Hs_TBC1D7         PHHESHAKVMMYRKEQYLDVLHALK---------V-----VRFVSDATPQAEVYL-----
Hs_TBC1D30        HSI----------AIDWDKTMRFTFNERSNPDDDSMGIQIVKDLHRTG--CSSYCGQEAE
Hs_EV5I-like      MPV----------KNQYSELLKMSS---------PCEKLIRRDIARTYPEHEFFKGQ-DS
Sc_gyp1p          VNTKRQEGFLQRKRKEYRDSLKHTFSDQHSRD-IPTWHQIEIDIPRTNPHIPLYQFK-SV
                                :: . ::                     :  :      :      

Hs_TBC1D7         ----------RMYQLESGKLPRSPSFPLEPDD------EVFLA-----------------
Hs_TBC1D30        QDRVVLKRVLLAYARWNKTVG----YCQGFNILAALILEVMEG-----NEGDALK---IM
Hs_EV5I-like      LGQEVLFNVMKAYSLVDREVG----YCQ---G------SAF-I-----------------
Sc_gyp1p          QN--SLQRILYLWAIRHPASG----YVQGINDLVTPFFETFLTEYLPPSQIDDVEIKDPS
                             :            :            ..:                   

Hs_TBC1D7         IAKAMEEMVEDSVDCYWITRRFVNQLNTKYRDSLPQLPKA---FEQYLNLEDGRLLTHLR
Hs_TBC1D30        IYLIDKVLPE----SY-------------FVNNLRALSVDMAVFRDLLRMKLPELSQHLD
Hs_EV5I-like      VGLLLMQMPEEEAFCVFVRLMQEYRLRELFKPSMAELGLCIYQFEYMLQEQLPDLNTHFR
Sc_gyp1p          TYMVDEQITDLEADTFWCLTKLLEQITDNYIHGQPGILRQVKNLSQLVKRIDADLYNHFQ
                        : :                   :      :      :   :.     *  *: 

Hs_TBC1D7         M-------------CSAAPKLPYDLWFKRCFAGCLPESSLQRVWDKVVSGSCKILVFVAV
Hs_TBC1D30        TLQRTANKESGGGYEPPLTNVFTMQWFLTLFATCLPNQTVLKIWDSVFFEGSEIILRVSL
Hs_EV5I-like      S-------------QSFHTSMYASSWFLTLFLTTFPLPVATRVFDIFMYEGLEIVFRVGL
Sc_gyp1p          N-------------EHVEFIQFAFRWMNCLLMREFQMGTVIRMWDTYLSETSQEVTSSYS
                                          *:   :   :      :::*  .    : :     

Hs_TBC1D7         EILLTFKIKVMALNSAEKITKF-------LENIPQDSS---DA-----------------
Hs_TBC1D30        AIWAKLGEQIECCETAD---EF-------YSTMGRLTQEMLENDLLQSHELMQ------T
Hs_EV5I-like      ALLQVNQAELMQLDMEGMSQYF-------QRVIPHQFDSCPDK-----------------
Sc_gyp1p          --MSSNDIKPPVTPTEPRVASFVTPTKDFQSPTTALSNMTPNNAVEDSGKMRQSSLNEFH
                         :            *               .   :                  

Hs_TBC1D7         -IVSKAIDL---------------------------------------------------
Hs_TBC1D30        VYSMAPFPF---PQLA-------------ELREKYTYNITPFPATVKPT----SVSGRHS
Hs_EV5I-like      -LVLKAYQVKYNPKKMKRLEKEYAAMKSKEMEEQIEIKRLRTENRLLKQRIETLEKGQVT
Sc_gyp1p          VFVCAAFLIKWSDQLMEM-----------DFQETITFLQNPPTKDWTETDIE--------
                         .                                                   

Hs_TBC1D7         -------------------------------------WHKHCGTPVHSS-----------
Hs_TBC1D30        KARDSDEENDPDDEDAVVNAVGCLGPFSGFLAPELQKYQKQIKEPNEEQSLRSNNIAELS
Hs_EV5I-like      RAQEAEEN--------------------YVIKRELAVVRQQCSSAAEDLQKAQSTIRQLQ
Sc_gyp1p          -----------------------------MLLSEAFIWQSLYKDATS-------------
                                                       :.                    
 

Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        PGAINSC-RSEYHAAFNSMMME---RMTTDINALKRQYSRIKKKQQQQVHQVYIRADKGP
Hs_EV5I-like      EQQENPRLTEDFVSHLETELEQSRLRETETLGALREMQD--------KVLDM------EK
Sc_gyp1p          ------------------------------------------------------------
                                                                              
Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        VTSILPSQVNSSPVINHLLLGKKMKMTNRAAKNAVIHIPGHTGGKISP-VPYEDLKTKLN
Hs_EV5I-like      RNSSLPDENNVAQLQEE------LKA-----------LKVREGQAVASTRELKLQLQELS
Sc_gyp1p          ------------------------------------------------------------
                                                                              
Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        SPWRTHIRVHKK------------------------------------------------
Hs_EV5I-like      DTWQAHLARGGRWKESPRKLVVGELQDELMSVRLREAQALAEGRELRQRVVELETQDHIH
Sc_gyp1p          -HWL--------------------------------------------------------
                                                                              
Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        --NMPRTKSH-PGCGDTVGLIDEQNEASKTNGLGAAEAFPSGCTATAGREGSSPEGSTRR
Hs_EV5I-like      RNLLNRVEAERAALQEKLQYLAAQN-----KGLQT--QLSESR-----RKQA--------
Sc_gyp1p          ------------------------------------------------------------
                                                                              
Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        TIEGQSPEPVFG------DADVDVSAVQAKLGALELNQRDAAAETELRVHPPCQRHCPEP
Hs_EV5I-like      EAECKSKEEVMAVRLREADSMAAVAEMRQRIAELEIQREEGRIQGQLNHSDSS-QYIREL
Sc_gyp1p          ------------------------------------------------------------
                                                                              
Hs_TBC1D7         ------------------------------------------------------------
Hs_TBC1D30        PSAPEENKATSKAPQGSNS-KTP-IFSPFPSVKPLRKS----ATAR----------NLGL
Hs_EV5I-like      KDQIEELKAEVRLLKGPPPFEDPLAFDGLSLARHLDEDSLPSSDEELLGVGVGAALQDAL
Sc_gyp1p          ------------------------------------------------------------
                                                                              
Hs_TBC1D7         -----------------------------------------------
Hs_TBC1D30        YGPTERTPTVHFPQMSRSFSKPGGGNSGTKKR---------------
Hs_EV5I-like      YPLSPR-DARFF----RRLERPAKDSEGSSDSDADELAAPYSQGLDN
Sc_gyp1p          -----------------------------------------------
                                                               

RXXXW mo!f 

YXQ mo!f 

IXXDXXR mo!f 
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Interestingly, the onset of Shh signaling in embryonic spinal cells is associated with 

Ca2+ spike activity in neuronal cilia (Belgacem and Borodinsky, 2011). It is possible 

that IFT25 is sensing intracellular Ca2+ levels during the onset of Shh signaling and in 

turn is helping in transducing the Shh signal to a known or as yet unidentified down-

stream player of the pathway. Future experiments involving the mutation of the Ca2+ 

binding site in IFT25 and testing its effect on Shh signaling in vivo will shed light on 

this. Additionally, quantification of the Ca2+ affinity to IFT25 is also important, as it 

would tell us if the affinity is compatible with the predicted function of IFT25 in 

sensing intracellular Ca2+ levels.  
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Highlights: N-termini of IFT74 and IFT81 are dispensable for normal IFT. IFT81 N-

terminus contains a MT/tubulin-binding CH domain. N-termini of IFT74/81 form a 

tubulin-binding module. Mutant IFT81 with reduced tubulin binding affects 

ciliogenesis.   
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Summary 

The cilium is an important organelle for motility and sensory reception of 

eukaryotic cells. Cilia are built and maintained by intraflagellar transport (IFT) 

of ciliary precursors such as tubulin from the cytoplasm to the ciliary tip. The 

molecular mechanisms of how IFT proteins recognize and transport ciliary 

cargo are currently poorly understood. Here, we show that the N-termini of the 

two core IFT proteins IFT74 and IFT81 contain an αβ-tubulin binding module 

composed of a calponin-homology domain in IFT81 and a highly basic region in 

IFT74. Biochemical experiments demonstrate that IFT81 specifically recognizes 

the globular part of αβ-tubulin whereas IFT74 binds the tubulin E-hooks 

providing increased affinity. Moreover, our knock-down and rescue experiments 

demonstrate the importance of this tubulin-binding module for ciliogenesis in 

human cells. We propose a model where tubulin is recognized as an IFT cargo 

by the IFT complex via a dedicated module in IFT74/81 that directly binds and 

transports αβ-tubulin to the ciliary tip. 
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Introduction 

Cilia are hair-like projections found on the surface of most cells in the mammalian 

body where they function in cell motility, signaling and sensory reception. The cilium 

has recently attracted a lot of attention as many human genetic disorders such as 

polycystic kidney disease (Pazour et al., 2000) are found to result from ciliary defects 

(Fliegauf et al., 2007; Hildebrandt et al., 2011). Although cilia serve different 

functions on different cell types, they share a common architecture of a 

microtubule(MT)-based axoneme surrounded by a ciliary membrane that is 

continuous with the plasma membrane (Ishikawa and Marshall, 2011). The cilium is 

anchored in the cytoplasm via a basal-body, which is derived from the centriole (Nigg 

and Raff, 2009; Bornens, 2012; Gönczy, 2012). Centrioles function in the mitotic 

spindle during cell division and so cilia are disassembled and reassembled during the 

cell cycle in most organisms (Tucker et al., 1979; Cole, 2003; Jékely and Arendt, 

2006). As the cilium is separated from the cytoplasm by the transition zone that act as 

a ciliary pore and lacks protein synthesis machinery (Rosenbaum and Witman, 2002), 

cilia formation and maintenance require active transport of ciliary proteins and 

precursors to the tip of the cilium. This bi-directional translocation process between 

the base and the tip of the cilium is known as intraflagellar transport (IFT) 

(Kozminski et al., 1993) and relies on the movement of molecular motors kinesin 2 

(Walther et al., 1994; Kozminski et al., 1995; Cole et al., 1998) and dynein 2/1b 

(Pazour et al., 1999; Porter et al., 1999; Perrone et al., 2003; Hou et al., 2004; Engel et 

al., 2012) moving along axonemal MTs. In addition to molecular motors, IFT relies 

on the IFT complex that contains 20 subunits (~1.5 MDa), sub-divided into a 6 

subunit IFT-A complex and a 14 subunit IFT-B complex with a biochemically stable 

core of 9 proteins (Cole et al., 1998; Piperno et al., 1998; Lucker, 2005). IFT complex 
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proteins are found at the base of the cilium as well as inside the cilium where they 

undergo bi-directional movement between the base and the tip (Deane et al., 2001; 

Pedersen et al., 2006; Wang et al., 2009; Buisson et al., 2012; Ludington et al., 2013). 

Furthermore, IFT proteins are rich in predicted protein-protein interaction motifs such 

as coiled-coils, WD40 and TPR domains and are believed to mediate the interaction 

between IFT motors and ciliary cargo (Cole, 2003; Jékely and Arendt, 2006). 

However, with the exception of the interaction between IFT46 and outer dynein arm 

(ODA) precursor complexes via ODA16 (Hou et al., 2007; Ahmed et al., 2008), little 

is known about the molecular mechanisms underlying cargo recognition by the IFT 

complex. 

 

Microtubules in the cytoplasm are highly dynamic structures that turn over rapidly. 

However, MTs in the ciliary axoneme are remarkably stable as a result of acetylation 

of α-tubulin, a hallmark posttranslational modification of axonemal MTs (L'Hernault 

and Rosenbaum, 1985; Webster and Borisy, 1989). As cilia do not shorten in the 

presence of MT-depolymerizing drugs such as colchicine, these organelles were long 

thought to be rather static (Tilney and Gibbins, 1968). However, pulse-chase 

experiments have shown that tubulin and other ciliary precursors are not only 

incorporated into the axoneme during cilium growth but also at steady state when 

these organelles maintain a fixed length (Stephens, 1997; 2000; Song, 2001). The 

addition and turnover of tubulin subunits in axonemal MTs were shown to occur at 

the tip of the cilium both during growth (Johnson and Rosenbaum, 1992) and at 

steady state (Marshall and Rosenbaum, 2001). Delivery of new tubulin subunits to the 

ciliary tip relies on IFT, as the addition of axonemal tubulins ceases in a temperature 

sensitive Chlamydomonas reinhardtii (C.reinhardtii or Cr) mutant (known as fla10) 
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of the IFT motor kinesin 2 at the nonpermissive temperature (Huang et al., 1977; 

Marshall and Rosenbaum, 2001). The inhibition of IFT results in the reabsorption of 

full-length cilia, demonstrating the requirement for a continuous supply of axonemal 

precursors to maintain cilium length (Huang et al., 1977; Kozminski et al., 1995). 

Consistent with these observations, studies of Caenorhabditis elegans sensory cilia 

have suggested that tubulin and axonemal dynein subunits are also delivered by IFT 

suggesting a conserved mechanism (Hao et al., 2011; Scholey, 2012). Although the 

transport of tubulin to the tip of the cilium is known to rely on IFT, it is currently not 

known whether the IFT complex directly recognizes tubulin as a ciliary cargo or if 

this occurs via an indirect mechanism, perhaps involving as yet unidentified adaptor 

proteins. 

 

In an effort to characterize the molecular basis for ciliary cargo recognition by the IFT 

machinery, we focused on the two IFT-B core proteins IFT74 and IFT81. We show 

that the N-termini of IFT74 and IFT81 form a module that binds αβ-tubulin with 

1µM affinity. This tubulin-binding module is not required for IFT-B complex 

formation or localization of IFT proteins to cilia, but mutation of tubulin-binding 

residues results in ciliogenesis defects.  Our data support a model where a conserved 

and dedicated module in IFT74/81 directly binds αβ-tubulin heterodimers in the 

cytoplasm and transports these components via IFT to the ciliary tip where they are 

incorporated into the axoneme. 
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Results 

The N-termini of IFT81 and IFT74 are not required for IFT-B core complex 

formation 

The IFT-B complex is composed of 14 proteins and contains a salt-stable core of 8-9 

members (Lucker, 2005). IFT81 and IFT74 are two conserved members of the IFT-B 

core complex and are believed to form a binding platform for the additional IFT-B 

proteins (Lucker, 2005; Follit et al., 2009; Lucker et al., 2010; Taschner et al., 2011). 

Sequence analysis reveals that both IFT74 and IFT81 contain relatively short 

uncharacterized regions at their N-termini (~120 residues for IFT81N and 80-180 

residues for IFT74N) followed by longer (~500 residues) C-terminal domains of 

predicted coiled-coil structure (Fig. 1A) (Cole, 2003; Jékely and Arendt, 2006). 

Whereas the N-terminal domain of IFT81 (IFT81N) is highly conserved across 

species and likely constitutes a small domain, the N-terminus of IFT74 (IFT74N) is 

not well conserved in sequence and, according to structure prediction programs 

(Gasteiger et al., 2005), is likely to be disordered (Figs. 1A and S1). Yeast-two-hybrid 

studies have shown that IFT74 and IFT81 form a heteromeric complex via their 

coiled-coil domains (Lucker, 2005). Additionally, the IFT74/81 complex is known to 

interact with the additional IFT-B proteins IFT25/27 and IFT52 (Lucker et al., 2010; 

Taschner et al., 2011). To test if the N-terminal regions of IFT74/81 are required for 

IFT-B core complex formation, an N-terminally truncated IFT74ΔN/81ΔN complex 

(IFT74128-641 and 81133-655) from C.reinhartdii was co-expressed with IFT25/27 in 

insect cells and subsequently co-purified. Size exclusion chromatography 

demonstrated that the interaction between IFT74/81 and IFT25/27 does not require 

the N-terminal regions of IFT74 and IFT81 (Fig. 1B). To investigate if the truncated 

IFT25/27/74ΔN/81ΔN can form larger IFT-B core complexes, we incubated the 
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purified complex shown in Fig. 1B with trimeric IFT46/52/70 and isolated a 

stoichiometric heptameric IFT-B core complex by size exclusion chromatography 

(Fig. 1C). These results show that only the C-terminal coiled-coil domains of 

IFT74/81 are required for IFT-B core complex formation and suggest that IFT74N 

and IFT81N may serve different functions. 

 

The crystal structure of IFT81N reveals a calponin-homology domain 

To gain insights into the function of the conserved N-terminal region of IFT81, 

residues 1-121 of Homo sapiens (Hs) IFT81 and 1-126 of CrIFT81 were purified and 

screened for crystallization (Fig. S2). Purified CrIFT81N yielded crystals diffracting 

to 2.3Å resolution, which allowed for structure determination (Fig. 2A and Table 1). 

The structure demonstrates that the CrIFT81N domain adopts a globular fold 

consisting of four central α-helices surrounded by three connecting α-helices (Fig. 

2A). Given the reasonably high degree of sequence conservation between CrIFT81N 

and HsIFT81N (39% identity and 62% similarity), a homology model for HsIFT81N 

can be constructed with confidence (Fig. 2B) (Sali, 1995); 

(http://salilab.org/modeller/). Three-dimensional structure searches using the DALI 

server (Holm and Rosenström, 2010) revealed that IFT81N adopts a calponin-

homology (CH) fold, a ~15kDa domain with MT and/or actin binding properties 

(Gimonaa et al., 2002). When compared to all structures available in the protein data 

bank, IFT81N displays the highest structural similarity to the CH-domain of MT-

binding proteins with NDC80, a kinetochore complex component, as the closest 

structural homolog (root-mean-square-deviation (rmsd) of 2.6Å for 97 Cα atoms, see 

Fig. 2C) (Wei et al., 2006). The well-characterized plus-end tracking MT-binding 

protein EB1 can also be superimposed with IFT81N although the overall structural 
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similarity is not as strong as for NDC80 (rmsd of 3.8Å for 90 Cα atoms, Fig. 2D). 

Lower overall structural similarity is detected with CH-domains of actin-binding 

proteins (rmsd’s of 3.3Å-5.5Å for 90-100 Cα atoms). The closest structural homolog 

of IFT81N with actin–binding properties is the CH-domain of Fimbrin (rmsd of 3.3Å 

for 95 Cα atoms). Most CH-domain-containing actin-binding proteins such as 

Fimbrin contain two CH-domains that bind actin in tandem (Goldsmith et al., 1997). 

As only a short linker (residues 122-135) connects the CH-domain to the predicted 

coiled-coil region, IFT81 is unlikely to contain more than one CH-domain. When 

compared to NDC80 and EB1, IFT81N has two noticeable structural differences (Fig. 

2A-D and F). First, helix α3’ connecting α3 and α4 is considerably longer in IFT81N. 

Second, the C-terminal helix α4 of IFT81N is sharply bent towards α2 and α3, 

dividing the longer C-terminal α4 helix found in NDC80 and EB1 into two smaller 

helices α4I and α4II. The most C-terminal helix α4II connects the CH-domain to the 

coiled coil region of IFT81 through a small flexible linker, of which the first 8 

residues are visible in the structure. Although most of α4II is solvent exposed, the 

position of this helix is stabilized by several conserved hydrophobic contacts with the 

α2, α3 and the α2-α3 connecting loop (highlighted in grey in Fig 2E). The atypical 

conformation of α4II is significant as this helix harbors several functionally important 

residues (see the following sections). 

 

To explore whether the IFT81N CH-domain structure is compatible with MT- and/or 

actin-binding, the IFT81N structure was superposed onto the molecular structures of 

CH-domains bound to either MT or F-actin (Fig. S3) (Alushin et al., 2010; Galkin et 

al., 2010). The results show that the IFT81N structure complements the MT surface 

well, but clashes significantly with F-actin due to a significantly longer helix α3’ 
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found in the IFT81N structure (Fig. S3). The structural analyses of IFT81N thus point 

to a potential MT- and/or tubulin-binding function. 

 

IFT81N interacts with MT and αβ-tubulin but not with actin 

As a direct test of the putative filament-binding properties of IFT81N, MT-

sedimentation experiments and F-actin pull-down experiments were carried out. GST-

tagged HsIFT81N was used to pull-down rabbit skeletal muscle F-actin, followed by 

Western blot analysis with anti-F-actin antibody (Fig. S4). Consistent with the 

structural analysis, we did not observe any binding of HsIFT81N to F-actin. Next, we 

evaluated the ability of IFT81N to bind Mts and αβ-tubulin heterodimers. MT co-

sedimentation assays were carried out with HsIFT81N (residues 1-121) and taxol-

stabilized bovine brain MTs. Untagged HsIFT81N at 3µM concentration failed to co-

sediment with MTs (4µM concentration) above background levels, indicating no 

binding or low binding affinity (Fig. 3A). At higher concentrations (50µM GST-

tagged HsIFT81N, 6µM MT), binding was observed in co-sedimentation experiments 

by a small fraction of the available IFT81N (Fig. 3B). Consistent with a dissociation 

constant (Kd) in the double-digit µM range, GST-IFT81N decorated MTs at 10µM but 

not at 1µM concentration, as judged by negative stain electron microscopy (EM) (Fig. 

3C).  

 

As IFT81 is known to be a core protein for IFT, a process required for the delivery of 

tubulin to the tip of the cilium (Marshall and Rosenbaum, 2006; Hao et al., 2011), we 

were interested to see if IFT81N binds αβ-tubulin heterodimers. Βinding was first 

evaluated in GSH pull-down assays by combining bovine brain αβ-tubulin 

heterodimers with GST-HsIFT81N (Fig 3H). Western blots using anti-α-tubulin 
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antibody suggested that HsIFT81N binds to αβ-tubulin, albeit weakly (Fig. 3H, lane 

9). To quantify the affinity of the interaction, fluorescently labeled αβ-tubulin was 

titrated with untagged HsIFT81N in microscale thermophoresis (MST) assays. The 

results of these experiments show that HsIFT81N binds αβ-tubulin with a Kd of 

16±2µM, consistent with the pull-down results (Fig. 3I). The measured affinity is 

weak when compared to the affinity of NDC80 complexBonsai towards MTs (Kd=~40 

nM,) (Ciferri et al., 2008) but is comparable to that of the plus end tracking protein 

EB1 (Kd= ~20.3 µM)  (Zhu et al., 2009).  

 

IFT81N binds αβ-tubulin via a patch of conserved positively-charged residues 

To investigate the molecular basis for αβ-tubulin-binding by IFT81N, we sought to 

identify the residues important for the interaction. Analysis of the molecular surface 

of the IFT81N structure reveals a prominent basic patch of residues (Fig. 3F). 

Interestingly, this patch partly overlaps with residues known to be involved in MT-

binding by the NDC80 and EB1 CH-domains (Fig. 3E) (Hayashi and Ikura, 2003; 

Slep and Vale, 2007; Ciferri et al., 2008). The basic patch on IFT81N is formed by 

conserved K73 and K75 (numbers refer to the HsIFT81 sequence) in the loop 

connecting helices α3 and α3’ as well as K113, K114 and R115 within the C-terminal 

α4II helix that adopts an unusually bent conformation in IFT81N compared to other 

CH-domain structures. Additionally, R87 from helix α3’ is found in an equivalent 

position to K166 of NDC80 (Fig. 3D, 3E), a residue shown to play an important role 

in MT-binding (Ciferri et al., 2008). All of these 5 basic residues are highly conserved 

among IFT81 proteins from different species (Fig. 2E and Fig. 3G). Based on these 

observations, charge-reversal point mutations of HsIFT81N were designed and tested 

for their ability to bind αβ-tubulin in pull-down and MST experiments. Whereas the 
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R87E single point mutation did not affect binding, the K73E/K75E double mutation 

(mut1) significantly reduced the affinity towards αβ-tubulin in pull-down assays (Fig. 

3H, lanes 10 and 11). Mutating all of the five residues K73/K75/K113/K114/R115 to 

glutamates (mut2) resulted in an even stronger reduction in tubulin-binding (Fig. S5). 

All mutants used in this study were soluble and folded as judged from size exclusion 

chromatography (Fig. S2). Quantification of binding affinities using MST showed 

that the HsIFT81Nmut1 mutant binds αβ-tubulin with ~12 fold reduced affinity 

(Kd=187±37µM) compared to wild type HsIFT81N (Fig 3J). Together, these 

experiments demonstrate that the IFT81N-tubulin interaction is specific and occurs 

via a highly conserved basic patch on IFT81. 

 

IFT74N/81N binds αβ-tubulin with 1µM affinity 

The experiments described above point to a specific but rather weak binding of 

IFT81N towards MTs and αβ-tubulin. The measured affinity of 16µM for IFT81N 

towards αβ-tubulin is likely too low to be physiologically relevant in the context of 

tubulin IFT. Interestingly, very weak MT-binding is also observed for the isolated 

NDC80 CH-domain (Ciferri et al., 2008). Robust MT-binding by NDC80 requires a 

~100 residue sequence of unstructured and highly basic amino acids located N-

terminally to the CH-domain that probably interacts with the acidic C-terminal tails of 

tubulin (E-hooks). This amino acid stretch is essential for high affinity MT 

interaction, as its deletion results in ~100 fold weaker binding (Ciferri et al., 2008). 

Inspection of the IFT81 sequence does not reveal a similar basic region flanking the 

CH-domain. However, the N-terminus of IFT74, a direct binding partner of IFT81, 

contains a highly basic stretch of amino acids (Fig. S1). Although the exact position 

of the basic residues is not well conserved between different organisms, the overall 
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basic nature of IFT74N is highly conserved with predicted pIs ranging from 12.1-

12.6. This basic sequence of IFT74 is variable in length and ranges from ~80 residues 

in zebrafish to ~180 residues in C.elegans. In human IFT74, the N-terminal stretch is 

~90 residues long and is predicted to have a pI of 12.6. 

 

Based on these observations we reasoned that IFT74N could be involved in αβ-

tubulin binding, resulting in a significant increase in affinity when compared to 

IFT81N alone. To test this hypothesis, we carried out binding experiments between 

αβ-tubulin and the HsIFT74/81 complex. Since full-length HsIFT74 and HsIFT81 

proved to be insoluble when recombinantly co-expressed in E.coli or insect cells (data 

not shown), various truncated versions of the complex encompassing the entire 

IFT74N and IFT81N regions followed by different coiled-coil lengths were generated 

and co-expressed in E.coli. Co-expression tests demonstrated that HsIFT741-272 and 

HsIFT811-215 were soluble and formed a complex (referred to as HsIFT74/81_CC) 

that remained stable throughout purification (Fig. 4A). Given that IFT74 and IFT81 

interact via their naturally occurring dimerization interface in this HsIFT74/81_CC 

complex, it is reasonable to assume that the IFT74N and IFT81N domains have the 

same relative orientations as in the native IFT complex. The IFT74/81_CC complex 

was first tested for its ability to co-sediment with MTs. We observed that 3µM of 

IFT74/81_CC were sufficient to bind MTs at a concentration of 4µM (Fig. 4B). 

Noticeably, this co-sedimentation was observed at concentrations where IFT81N 

alone did not co-sediment with MT above background levels (compare lane 4 in Fig. 

4B to lane 4 in Fig. 3A). In agreement with the co-sedimentation results, we found 

that the IFT74/81_CC complex substantially decorated MTs at a concentration of 

1.5µM in negative-stain EM experiments (Fig. 4C). Measurement of the affinity of 

71



	  

IFT74/81_CC towards αβ-tubulin by MST revealed a dissociation constant of 

0.9±0.2µM (Fig. 4D), which represents an ~18 fold increase in affinity when 

compared to IFT81N alone. Given the cellular concentration of αβ-tubulin is in the 

low µM range (Hiller and Weber, 1978), the measured affinity of ~1µM between 

IFT74/81 and αβ-tubulin could support IFT of tubulin. 

 

IFT81N binds the globular domain of tubulin whereas IFT74N binds the E-

hooks 

Since IFT81N is a CH-domain and IFT74N forms a highly basic unstructured 

sequence, it is reasonable to hypothesize that IFT81N binds the αβ-tubulin globular 

domains providing specificity, whereas IFT74N binds the E-hooks to enhance 

affinity. To test this hypothesis, we prepared protease-treated αβ-tubulin samples 

where the acidic tail of β-tubulin or the tails of both α- and β-tubulin were removed 

(Sackett et al., 1985), and tested the interaction with HsIFT81N in MST experiments 

(Fig. S6A). Interestingly, core αβ-tubulin without the C-terminal acidic tails displayed 

the same affinity for IFT81N as untreated αβ-tubulin (Figs. 4E and S6B). This 

suggests that IFT81N recognizes the globular fold of αβ-tubulin without significantly 

interacting with the tubulin tails. To evaluate the binding site for IFT74N, MTs were 

treated with protease to remove the acidic tail of β-tubulin and then used in co-

sedimentation assays with IFT74/81_CC. The MT-binding of IFT74/81_CC was 

reduced to background levels in the absence of the β-tubulin E-hook (Fig. 4F). These 

data are in agreement with a model where IFT81N binds the core of αβ-tubulin to 

provide specificity and IFT74N recognizes the β-tubulin tail to increase affinity  (Fig. 

4G). 
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Tubulin-binding of IFT81 is required for ciliogenesis but not for IFT81 

localization in human RPE-1 cells 

To examine the role of tubulin-binding by IFT81 in a cellular system, we first used 

transient transfection in U2OS cells. We observed co-localizing of both Flag-HsIFT81 

and Flag-HsIFT81∆N with or in close proximity to the centriolar marker protein 

Cep152 (Fig 5A). These results suggest that the N-terminal portion of IFT81 is not 

required for its localization to the centrosome. To test the impact of the IFT81 

tubulin-binding domain on ciliogenesis, we transiently expressed Flag-HsIFT81 or 

Flag-HsIFT81∆N in RPE-1 cells and induced formation of primary cilia either by 

treatment with 0.5µM cytochalasin D or serum starvation. In these experiments, 

centrioles and cilia were visualized by staining for CAP350 and the small GTPase 

Arl13b, respectively (Fig. 5B). We detected both Flag-HsIFT81 and Flag-HsIFT81∆N 

at the tip of the primary cilium, and to a minor extent also along the axoneme (Fig 

S7A), suggesting that the N-terminal part of IFT81 is not required for the transport of 

IFT81 within the primary cilium. This observation is in agreement with our in vitro 

results demonstrating that stable IFT-B complexes can be assembled using 

Ν-terminally truncated IFT81 protein (Fig. 1B-C). Remarkably, however, the 

expression of Flag-HsIFT81∆N had a strong negative impact on the extent of 

ciliogenesis induced by cytochalasin D treatment (Fig. 5B and C) or serum starvation 

(Fig. 5D, and data not shown), suggesting that excess IFT81ΔN caused a dominant-

negative effect, presumably through formation of non-functional IFT complexes. 

 

To corroborate the above conclusion and further test the function of the tubulin-

binding domain of IFT81 in ciliogenesis, we carried out siRNA-rescue experiments. 

As expected for a key component of an IFT complex, siRNA-mediated depletion of 
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IFT81 strongly reduced the percentage of ciliated cells (Fig. 5E-F and Fig. S7B), and 

this defect could be rescued by co-expression of an siRNA-resistant full-length IFT81 

(Fig. 5E-F). In striking contrast, none of the IFT81 mutants shown to be deficient in 

tubulin-binding in vitro (IFT81∆N, HsIFT81mut1, and HsIFT81mut2, see Figs. 3H 

and S5) could fully compensate for the depletion of endogenous IFT81. Whereas 

expression of the deletion mutant (HsIFT81ΔN) or the mutant with reduced tubulin 

binding ability (HsIFT81mut1) resulted in partial rescue (with about 45-50% of the 

RPE-1 cells being ciliated; Fig. 5F), expression of HsIFT81mut2 in which the entire 

tubulin-binding patch is mutated, completely failed to rescue the siRNA-mediated 

knockdown of IFT81 (Fig. 5F). Together, these results demonstrate that the tubulin-

binding CH-domain of IFT81 is not needed for IFT81 localization to cilia or its 

transport within cilia but is required for normal ciliogenesis. These observations are in 

agreement with our in vitro experiments and suggest that the IFT81 CH-domain 

functions in intraflagellar transport of tubulin. 

 

The affinity between IFT74/81 and tubulin is optimal for the regulation of ciliary 

length through IFT of tubulin 

 Intraflagellar transport is known to play a direct role in ciliary length control as 

partial inhibition of IFT in a C.reinhardtii mutant resulted in shorter flagella 

(Marshall and Rosenbaum, 2001). To assess whether the modulation of tubulin 

transport is another plausible mechanism for controlling cilium length, we used the 

measured affinity (Kd=0.9µM) to calculate the fraction of IFT complexes bound to 

αβ-tubulin as a function of tubulin concentration (Fig. 6A).  This calculation predicts 

that 90% of IFT complexes have tubulin bound when the cellular concentration of 

free tubulin is 8µM, whereas only 10% of IFT complexes have tubulin bound at a 
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tubulin concentration of 0.1µM. As the cellular tubulin concentration is estimated to 

be in the low µM range (Hiller and Weber, 1978), the affinity to IFT74/81 is thus 

optimal for such a regulatory mechanism. Tubulin is concentrated at the transition 

zone fibres emanating from the basal body (Stephan et al., 2007), a location where 

IFT protein also concentrate (Deane et al., 2001). Furthermore, tubulin expression is 

induced at the onset of ciliogenesis followed by a gradual decrease in tubulin 

concentration during cilium growth (Weeks and Collis, 1976; Stephens, 1977; 

Guttman and Gorovsky, 1979; Silflow, 1981; Stolc et al., 2005). This implies that the 

tubulin-loading of IFT74/81 is maximal during the early stages of ciliogeneis and may 

decreases as the cilium elongates and the concentration of free tubulin in the 

cytoplasm is reduced (Fig. 6B). As a result, less tubulin would be delivered to the tip 

of the cilium as it continues to grow. Combined with modulating IFT, this mechanism 

could provide an additional important control of cilium length. 

 

Discussion 

An NDC80-like MT/tubulin-binding CH-domain in IFT81 

In this paper, we describe the structural and functional characterization of a conserved 

MT/tubulin-binding module in the intraflagellar transport proteins IFT74 and IFT81. 

We show that IFT81N contains a CH-domain that recognizes the globular fold of 

tubulin, whereas IFT74N contains a basic stretch of residues that bind the acidic E-

hooks of tubulin. This binding-mode is similar to MT-recognition by the NDC80 

complex in spindle assembly during cell division (Ciferri et al., 2008; Alushin et al., 

2010), suggesting a common ancestry between NDC80 and IFT81. Indeed, the 

NDC80 CH-domain is the closest structural homolog of the IFT81 CH-domain 

present in the protein data bank, and both proteins contain long stretches of coiled-

75



	  

coil structure C-terminal to the CH-domain. Another striking similarity between the 

NDC80 and IFT81 CH-domains is that robust MT-binding requires a basic disordered 

stretch of amino acids (Fig. 3A and 4C) (Ciferri et al., 2008). In NDC80, the basic 

residues precede the CH-domain, whereas for the IFT81 CH-domain the basic 

residues are provided by IFT74, a direct binding partner of IFT81. Another important 

difference between NDC80 and IFT81 is that the NDC80 complex does not interact 

with soluble tubulin in vitro (Ciferri et al., 2008), whereas the IFT74N/81N complex 

binds tubulin with ~1µM affinity (Fig. 4D). The implication of the structural and 

functional analyses is that the CH-domains of IFT81 and NDC80 evolved from a 

common ancestor to serve different molecular functions. The molecular basis for the 

different functionalities likely reside in helices α3’ and α4II that harbor MT/tubulin-

binding residues and adopt different conformations in IFT81N and NDC80 CH-

domains. Interestingly, to our knowledge IFT81N constitutes the first reported CH-

domain to bind soluble tubulin, and may thus found a new functional class of CH-

domains. 

 

A well-conserved and dedicated tubulin-binding module in the IFT complex 

IFT is well-established as the mechanism of assembly for almost all cilia and flagella 

raising the question of how ciliary proteins are recognizes by the IFT-machinery 

(Ishikawa and Marshall, 2011). Ciliary targeting sequences have been described for 

some proteins destined for the cilium (Tam et al., 2000; Corbit et al., 2005; Geng et 

al., 2006; Berbari et al., 2008; Follit et al., 2010) but general ZIP-codes for transport 

to the cilium have not yet been established. A prime candidate for cargo recognition is 

the IFT complex, with 20 subunits of which many are predicted to contain protein-

protein interaction domains (Cole, 2003). It is therefore surprising that there are no 
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examples in the literature of well-characterized interactions between IFT proteins and 

ciliary cargos, likely a reflection of our limited knowledge of IFT proteins at the 

molecular level. Moreover, it is clear that some cargoes are not directly bound to the 

IFT complex but associate via adaptor proteins such as Tulp3 (some G-protein 

coupled receptors) (Mukhopadhyay et al., 2010) or ODA16 (outer dynein arms) (Hou 

et al., 2007; Ahmed et al., 2008). Whereas some of the less abundant ciliary proteins 

might compete for the same binding sites on the IFT machinery via similar ciliary 

targeting sequences, very abundant cargos may have dedicated binding sites. Tubulin 

is probably the most abundant protein in the cilium, and a robust mechanism is 

expected for tubulin transport into cilia as it is required for both assembly and 

maintenance of this organelle. Additionally, since all cilia, whether primary or motile, 

consist of a MT-based axoneme, the transport of tubulin seems likely to rely on the 

conserved core machinery of IFT and not on the more variable and species-specific 

adaptor proteins. Consistent with this hypothesis, we find a specific αβ-tubulin 

binding module within the IFT-B core proteins IFT74 and IFT81. This module is 

conserved from single celled eukaryotes such as C.reinhardii to mammals and is also 

found in organisms that only require IFT for making primary sensory cilia such as 

Drosophila melanogaster (Vincensini et al., 2012). Additionally, the functional 

residues forming a basic patch on the IFT81N structure that directly binds tubulin are 

also highly conserved among different ciliated species (Fig. 2E and 3F-G). These 

observations support the notion of an ancient IFT74/81 tubulin-binding module, likely 

present in the first ciliated eukaryotic cell. The fact that CH-domains such as the one 

present in IFT81 specifically recognize the globular domain of tubulin means that this 

cargo-binding site is probably dedicated to the transport of tubulin as its sole cargo. 
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IFT of tubulin as a regulatory mechanism for cilium length control 

Axonemal precursors such as tubulin are added to the tip of the cilium in a length-

dependent manner (Johnson and Rosenbaum, 1992; Marshall and Rosenbaum, 2001). 

The removal of tubulin from the axonemal tip on the other hand appears to be 

constant with no dependence on cilium length (Marshall and Rosenbaum, 2001; Song, 

2001). These observations inspired the balance-point model where the length of a 

mature cilium is the result of equal delivery and removal rates for axonemal 

precursors (Marshall and Rosenbaum, 2001; Marshall et al., 2005). Several studies 

have shown that tubulin is up-regulated upon deflagellation followed by a gradual 

decrease as tubulin subunits are used for axonemal assembly (Weeks and Collis, 

1976; Stephens, 1977; Guttman and Gorovsky, 1979; Silflow, 1981; Stolc et al., 

2005). Experiments with human cells have revealed a correlation between the 

available tubulin pool and cilium length. When free tubulin was depleted through 

stabilization of MTs with the drug taxol, cilium formation was less frequent and cilia 

grew significantly shorter (Sharma et al., 2011). Conversely, increasing the tubulin 

pool through MT depolymerization with the drug nocodazole induced the assembly of 

cilia under serum conditions where ciliogenesis normally does not occur that were 

twice the length of cilia on untreated cells (Sharma et al., 2011). Interestingly, while 

the concentration of free tubulin gradually decreases during ciliary assembly, it has 

been shown that the levels of IFT proteins within cilia remain constant (Marshall et al., 

2005; Engel et al., 2009). This fact makes the ciliary assembly rate intrinsically 

length-dependent because the concentration of IFT complexes travelling base to tip 

(anterograde), and thus the capacity to deliver cargo to the ciliary tip, decreases as 

cilium length increases. We propose that the rate of tubulin delivery to the tip is set by 

two variables: the concentration of anterograde IFT complexes and the tubulin 
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occupancy of these complexes, which is influenced by the level of free tubulin in the 

cytoplasm.  Indeed, the measured Kd of ~1µM between IFT74/81 and tubulin is in the 

perfect range for such a control mechanism. These two variables may be independent 

of each other, or they could be coupled. During cilia growth, both anterograde IFT 

complex concentration and tubulin binding are negatively correlated with cilia length, 

resulting in a decreasing assembly rate as the cilium approaches steady state length 

(Fig. 6B-C). Modulation of one or both variables can produce a range of ciliary length 

phenotypes (Fig. 6D), and compensatory changes may help preserve normal length 

when either IFT or tubulin binding is compromised. 

 

Further regulation of the IFT of axonemal precursors is likely to occur via post-

translational modifications that modulate affinity to the IFT machinery. Tubulin itself 

is known to undergo a large number of modifications (Janke and Bulinski, 2011), 

primarily in the acidic C-terminal tail recognized by IFT74, and modifications in this 

region could thus change binding properties. Recently, the induction of arginine 

methylation, which is known to affect protein-protein interactions (Bedford and 

Clarke, 2009), was shown to occur during cilia resorption. The methylation pattern 

was punctate along the length of the cilium, reminiscent of IFT protein staining, 

indicating that one or more IFT proteins could be methylated (Schneider et al., 2008; 

Sloboda and Howard, 2009). Indeed, a protein post-translational modification 

database (PhosphoSitePlus®) search reveals that human IFT74 is methylated at R51 

(Hornbeck et al., 2012). This residue is part of the basic IFT74 N-terminus required 

for the high affinity tubulin binding by IFT74/81 (Fig. 4D). Methylation of R51 may 

thus interfere with the function of IFT74 by neutralizing the critical positive charge 

required for binding to tubulin E-hooks (Fig. 4E) and hence may compromise tubulin 
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transport by the IFT complex. Methylation of IFT81/74 arginines to reduce the 

affinity for tubulin might thus be a regulatory pathway that is especially active during 

ciliary resorption, although further studies are required to elucidate its importance.  

 

	  
	  
Materials	  and	  methods	  
	  
Purification and reconstitution of IFT-B complexes 

For purification of the C.reinhardtii IFT81ΔN/74ΔN/His6-27/25ΔC complex, insect 

cells (HighFive, Invitrogen) were infected with baculovirus expressing the complex 

and grown for 72 hours. Extract preparation was carried out as described previously 

(Taschner et al., 2011), and the complex purified using a combination of Ni-NTA, ion-

exchange (monoQ column) and size exclusion chromatography. Purification of the 

IFT70/IFT52/IFT46 complex from E.coli was performed as described previously 

(Taschner et al., 2011). Reconstitution of the heptameric IFT81ΔN/74ΔN/70/52/46/His6-

27/25ΔC complex was achieved by mixing equimolar amounts of the 

IFT81ΔN/74ΔN/His6-27/25ΔC complex and the IFT70/52/46 complex, followed by 

Superose6 size exclusion chromatography after an incubation at 4°C for 3 hours. 

 

Protein purification and crystallization 

His tagged CrIFT81 (residues 1-126) was expressed in E.coli BL21 (DE3) GOLD 

pLysS strain and lysed in a buffer containing 50mM Tris pH 7.5, 150mM NaCl and 

10% glycerol. The protein was purified by Ni-NTA affinity chromatography followed 

by TEV cleavage to remove the His tag and size exclusion chromatography in a 

buffer of 10mM HEPES pH 7.5, 150mM NaCl using a superdex 75 or 200 column. 
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CrIFT81N was concentrated to 20mg/ml and crystallized by vapor diffusion. Crystals 

of CrIFT81N appeared in 0.8M (NH4)2SO4, 0.1 M Tris pH 8.0 precipitant condition 

(Fig. S2B). HsIFT81N was purified using the same procedure. Point mutants of 

HsIFT81N were made using the Quikchange site directed mutagenesis protocol from 

Agilent Technologies® and all the mutants were expressed and purified like the WT 

protein. 

 

Seleno-methionine (SeMET) labeled His6-CrIFT81N protein was purified like the 

native protein but with the addition of 1mM DTT in the purification buffers. The 

IFT81/74_CC complex was produced by co-expression of His6-HsIFT81 (residues 1-

215) and His6-HsIFT74 (residues 1-272) in the E.coli strain BL21 (DE3) GOLD 

pLysS. Cells were lysed and the proteins were purified using the same procedure as 

described above. 

 

X-ray diffraction data collection and structure determination 

Crystals of CrIFT81N were flash cooled in liquid nitrogen in mother liquor 

supplemented with 25% glycerol as a cryoprotectant.  Diffraction data were collected 

at the Swiss light source (SLS, Villigen, Switzerland).  The data were processed with 

the XDS package (Kabsch, 2010). Phases were obtained by single anomalous 

diffraction (SAD) X-ray diffraction experiments on tantalum bromide (Ta6Br12) 

soaked crystals. These crystals diffracted to higher resolution than the native crystals 

and the experimental phases were calculated using the PHENIX package (Adams et 

al., 2010). The program BUCCANEER (Cowtan, 2006) was used to automatically 

build ~80% of the CrIFT81N structure. The model was completed by iterative cycles 

of manual building in the program COOT (Emsley et al., 2010) and refinement in 
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PHENIX. The obtained structure was then used as a search model for molecular 

replacement with native data. Interestingly, the native structure has higher average B 

factors compared to the structure derivatized with Ta6Br12 indicating that the 

intermolecular contacts made by Ta6Br12 stabilize the CrIFT81N structure. 

 

MT co-sedimentation assays 

99% pure Bovine brain tubulin was obtained from Cytoskeleton® and MT were 

polymerized according to the manufacturers instructions. For co-sedimentation 

experiments, either 3 or 6µM of MTs were pre-incubated with protein (HsIFT81N, 

HsIFT81N-GST or HsIFT74/81_CC) at room temperature for 30 min in the BRB80 

buffer (80mM Pipes-KOH pH 6.8, 1mM EGTA, 2mM MgCl2) supplemented with 

20µM taxol to a final reaction volume of 50 µL. This reaction mixture was then 

carefully pipetted on to 100 µL of cushion buffer (50% glycerol, 80 mM Pipes-KOH 

pH 6.8, 2mM MgCl2, 1mM EGTA) supplemented with 20µM taxol. The resulting 

solution was centrifuged at 40,000 rpm for 30 min in a Beckmann TLA100 rotor. 

Supernatants and pellets were analyzed using SDS-PAGE followed by coomassie 

staining. 

 

Electron microscopy 

Taxol-stabilized MTs at a concentration of 2µM were mixed with different 

concentrations of GST-HsIFT81N or with 1.5µM of HsIFT74/81_CC in 50 µL of 

BRB80 buffer. The mixture was incubated for 30 min at room temperature and 5µL 

of this reaction mix were placed onto a glow discharged EM grid followed by 2-3 

rounds of washing with BRB80 buffer. The sample was stained using 1% Uranyl 

82



	  

acetate solution. Images were collected using aFEI-CM200 microscope operating at 

160 kV at 38,000X magnification corresponding to a pixel size of 2.78Å. 

 

Tubulin co-precipitation assays (pull-assays) 

Three µM of tubulin and 10µM of GST tagged proteins were mixed together in 

100µL of BRB80 buffer and incubated on ice for 30 min. The reaction mixture was 

then added to 15µL of pre-blocked GSH beads and incubated on a shaker for 1 hour at 

4°C. The beads were washed extensively with the BRB80 buffer and the proteins 

bound to GSH beads were eluted with 30mM glutathione and analyzed using SDS-

PAGE. Actin pulldowns were done using a similar protocol except for the use of lysis 

buffer rather than BRB80 buffer. 

 

Microscale thermophoresis (MST) 

Bovine tubulin was labeled on lysine side-chains using the Cy3 protein labeling kit 

from Jena Bioscience according to the manufacturers instructions. The average 

number of lysines labeled per αβ-tubulin dimer was estimated to be 3.6. Labeled 

tubulin (a total of 200nM or nmol) were titrated with 0.03-2000µM of HsIFT81N or 

HsIFT81Nmut1 and 10-16 thermophoresis measurements were carried out per 

sample. Each sample was incubated at room temperature for 10 min before 

measurement. For the HsIFT81/74_CC complex, a lower concentration of 0.003-

200µM was used. Thermophoresis measurements were carried out using the 

NanoTemper Monolith NT.115 instrument (NanoTemper Technologies GmbH) using 

50% LED and 65% laser power with the laser on for 40 sec followed by an off period 

of 10 sec. The resulting raw data were analysed using the NanoTemper software to 

obtain binding curves. 
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Subitlisin treatment of tubulin/microtubules 

Eight µM of preformed and taxol stabilized MTs were mixed with 1.25µM of 

subtilisin in BRB80 buffer containing 20µM taxol in a total volume of 50µL. This 

reaction mixture was incubated at 30°C for 30 min and the proteolysis stopped by 

adding 1mM PMSF. Proteolysed MTs were spun at 40.000 rpm for 30 min in a 

Beckmann TLA100 rotor and the pellet re-dissolved in BRB80 buffer supplemented 

with 20µM taxol. For the subtilisin treatment of soluble tubulin, 25µM of tubulin 

were mixed with 1.25µM of subtilisin in a total of 120µL of BRB80 buffer. The 

solution was divided into two equal halves and incubated at 30°C for 30 and 120 min, 

respectively, followed by the addition of 1mM PMSF. 

 

Cell culture and transfections 

The RPE-1 and U2OS cells were cultured as previously described (Schmidt et al., 

2009). For transient gene expression, cells were transfected with TransIT-LT1 

(Mirus) according manufacturers instructions with pcDNA3.1-IFT81 F.L. and 

pcDNA3.1-IFT81ΔN (human IFT81 sequences). For the rescue experiments, RNAi 

resistant plasmid was generated by making silent mutations in the siRNA spanning 

regions of IFT81 gene and subsequent cloning of this construct into pcDNA5.1 

vector. This RNAi resistant pcDNA5.1-IFT81 F.L. plasmid was further used to 

generate the rescue plasmids with point and deletion mutations (mut1, mut2 and ΔN). 

In case of the rescue experiment, the RPE-1 cells were first transfected with control 

(GL2) or IFT81 siRNA (GGATATCAGTGCAATGGAA and 

CAGCTCATTAAGAGAGTT GAA, each at 50µM) using Oligofectamine 

(Invitrogen) according manufacturers recommendations. Cells were subsequently 

84



	  

nucleofected with pcDNA5.1-IFT81 (F.L or mut1 or mut2 or ΔN) rescue plasmids 

using Amaxa 4D-Nucleofector (Lonza) and the DS137 program, 48h after the siRNA 

transfection.   Following the plasmid transfection, the formation of primary cilia in 

RPE-1 cells was induced either by 0.5µM Cytochalasin D (Sigma) or by changing 

into serum-free media for 24h.  

 

Immunofluorescence and microscopy 

Cells grown on coverslips were washed with PBS and fixed in methanol (-

20°C/5min). In case of the detection of acetylated tubulin, cells were cold treated 

(+4°C/30min) prior the methanol fixation. Blocking, incubation with primary and 

secondary antibodies, and washing were done as described before (Schmidt et al., 

2009). The following primary and secondary antibodies were used: mouse anti-

acetylated tubulin (6-11B-1, Sigma), rabbit anti-Arl13b (17711, Proteintech), mouse 

anti-Flag (M2, Sigma), rabbit anti-Flag (F7425, Sigma), rat anti-IFT81, goat anti-

CAP350 (Yan et al., 2006), rabbit anti-Cep135 (Kleylein-Sohn et al., 2007) (both 

Alexa 647-labeled), rabbit anti-Cep152 (Sonnen et al., 2012)(Alexa 555-labeled), 

Alexa 488 anti-mouse, Alexa 488 anti-rabbit, Alexa 555 anti-mouse , Alexa 555 anti-

rabbit (all from Invitrogen), and Cy2 anti-rat (Jackson Immuno Research). Direct 

labeling of primary antibodies was done with the Alexa-antibody labeling kit 

(Invitrogen). Coverslips were mounted on slides using Glycergel (Dako). Wide-field 

imaging was performed on a DeltaVision system (Applied Precision) with a 60x/1.2 

or 100x/1.4 Apo plan oil immersion objective.  Image stacks were taken with a z-

distance of 0.2µm, deconvolved (conservative ratio, 3-5 cycles) and projected as 

maximal intensity image using SoftWoRX (Applied Precision). For cell counts, at 
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least 50 transfected cells per condition and experiment were analyzed for the 

presence/absence of primary cilia. 

 

Statistical analyses 

Statistical analyses (Students t-test, one-way ANOVA with Bonferronis multiple 

comparison test) were performed using Prism 4 (GraphPad Software). p<0.05 was 

considered as statistically significant difference (*), p<0.01 (**), p<0.001 (***). 

Results are presented as mean plus standard error of the mean (SEM). 
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Figure 1: The N-terminal domains of IFT74 and IFT81 are not required for IFT-B core 
complex formation. (A) Schematics of the IFT-B core complex with 7 of the 9 core subunits 
depicted. The schematics illustrate that both the IFT25/27 and the IFT46/52/70 sub-
complexes associate with the coiled coil regions of IFT74/81. (B) Chromatogram from size 
exclusion purification (left) and associated coomassie-stained SDS-PAGE gel of the indicated 
peak fraction (right) for purified C.reinhardtii IFT25DC/27/74DN/81DN complex lacking the 
N-terminal regions of IFT74 and IFT81. (C) Purification of a heptameric IFT-B core complex 
obtained by mixing the tetramer shown in (B) with a trimeric IFT46/52/70 complex followed 
by purification using size exclusion chromatography. The results show that IFT74N and 
IFT81N are dispensable for complex formation with IFT25/27 and IFT46/52/70.   
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Figure 2: The structure of CrIFT81N reveals a conserved calponin-homology (CH) domain. 
(A) 2.3Å resolution crystal structure of CrIFT81N shown as a cartoon representation. The 
termini and a-helices of the domain are labelled. (B) Homology model of HsIFT81N based on 
the crystal structure of CrIFT81N displayed in the same orientation as in panel (A). (C, D) 
Crystal structures of the CH-domains of the MT-binding proteins NDC80 and EB1 after 
superpositioning onto the CrIFT81N structure shown in (A). (E) Sequence alignment of the 
N-termini of IFT81 proteins from diverse ciliated organisms. Secondary structure elements 
derived from the CrIFT81N structure are indicated at the top and the conservation of 
residues are shown at the bottom of the alignment. Functional tubulin/MT binding residues 
are colored green and conserved hydrophobic residues that keep the C-terminal helix a4II in 
its unusual position are shown in grey. CH-domains from the proteins NDC80 and EB1 are 
also shown as a structure-based sequence alignment with CrIFT81N with the functionally 
important residues colored. (F) Topology diagram for CrIFT81N (green) and HsNDC80 CH 
domain (yellow).  
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Figure 3: IFT81N binds tubulin via a conserved positively-charged patch. (A) MT-
sedimentation assay with HsIFT81N and subsequent SDS-PAGE analysis of the supernatant 
(S) and the pellet (P) reveal only background levels of HsIFT81N co-sedimenting with MT. 
(B) At higher concentrations, a significant amount of GST-HsIFT81N co-sediments with MTs 
although the band intensity indicates only weak binding. (C) Negative-stain EM of taxol 
stabilized MT alone (top panel) and incubated with either 1 mM (middle) or 10 mM (bottom) 
GST-HsIFT81N  demonstrating decoration only at the higher protein concentration. (D) 
Cartoon representation of the CrIFT81N domain in the same orientation as Figure 2A with 
conserved lysines and arginines implicated in tubulin/MT-binding shown as sticks. (E) 
Surface representation of the IFT81N structure with the characterized MT-binding residues 
of NDC80 and EB1 colored in yellow and cyan, respectively. (F) Electrostatic surface 
potential of IFT81N displaying the positively-charged patch with the residues labelled 
according to the HsIFT81 sequence. (G) Surface conservation of IFT81N demonstrates that 
the basic patch is well conserved among different species. (H) Tubulin-binding evaluated by 
GSH affinity pull-down of ab-tubulin using GST-HsIFT81N. Whereas tubulin does not bind 
the GSH-beads and is not pulled down by GST alone, a significant portion is pulled down by 
GST-HsIFT81N demonstrating binding. Whereas the single point mutation R87E does not 
significantly impair binding, the K73K75/EE double mutant (mut1) results in reduced 
amounts of pulled-down tubulin indicating reduced binding. (I) Quantification of tubulin 
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binding to untagged HsIFT81N by microscale thermophoresis reveals a Kd of 16mM. (J) The 
HsIFT81N mut1 has significantly reduced binding with a Kd of 187mM showing that the basic 
patch is required for tubulin binding. The curves in (I) and (J) are calculated for 3 
independent experiments and the error bars represent the standard deviation.  
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Figure 4: IFT74 increases the affinity of IFT81 towards tubulin by 18-fold (A) Purification of 
truncated HsIFT74/81 complex (HsIFT7481_CC) by size exclusion chromatography. The 
complex contains all of the N-terminal domains and a sufficient portion of the coiled-coil 
domains to form a stable interaction. (B) MT-sedimentation of the HsIFT74/81_CC complex 
shown in (A) demonstrates interaction with MT at low mM concentration (S=supernatant and 
P=pellet). (C) Negative stain EM of taxol stabilized MT incubated with 1.5µM of 
HsIFT74/81_CC complex, showing a thick decoration of microtubules (D) Microscale 
thermophoresis titration of tubulin with HsIFT7481_CC reveals a Kd of 0.9 mM. (E) 
Microscale thermophoresis titration of ab-tubulin lacking both the acidic C-terminal tails 
with HsIFT81N gives a Kd of 16mM. This is equivalent affinity to what is observed for full-
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length tubulin and suggests that IFT81N does not interact with the C-terminal tubulin tails 
(curves in D and E are from 3 independent experiments).  (F) MT-sedimentation experiments 
where full-length ab-tubulin or tubulin lacking the C-terminal tail of b-tubulin is titrated with 
the HsIFT74/81_CC complex demonstrates that the high-affinity interaction mediated by 
IFT74N requires the C-terminal tail of b-tubulin. (G) The experiments shown in panel D-F 
suggest a model in which IFT81N recognizes the core-fold of tubulin providing specificity 
whereas IFT74N binds the acidic tail of b-tubulin providing increased affinity. 
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Figure 5: Tubuln-binding of IFT81 is required for ciliogenesis in human cells. (A) Both Flag-
IFT81 and Flag-IFT81∆N (in green) localize to the centrosome (detected by anti-Cep152 
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staining, in red) in U2OS cells. (B) Transient expression of Flag-IFT81∆N, but not Flag-
IFT81 (in green) impairs formation of primary cilia induced by 24h treatment with 0.5µM 
cytochalasin D in RPE1 cells. Primary cilia were detected by Arl13b immuno-staining (in 
red), CAP350 (in blue) was used to visualize centrosomes. Arrowheads show Flag positive 
cells.  (C) Quantification of the effects of Flag-IFT81 and Flag-IFT81∆N expression on the 
presence of primary cilia induced by 0.5µM cytochalasin D. n=3, p<0.001(***) by Student’s 
t-test. (D) Quantification of the effects of Flag-IFT81 and Flag-IFT81∆N expression on the 
presence of primary cilia induced 24h serum starvation. n=4, p<0.05(*) by Student’s t-test. 
(E) Transient expression of Flag-IFT81, but not the tubulin binding-deficient IFT81 mutants 
(in green) rescues the ciliogenesis defect after the IFT81 siRNA knockdown. Primary cilia 
were induced by 0.5µM cytochalasin D and detected by Arl13b antibody (in red). CAP350 (in 
blue, inset images only) was used to visualize centrosomes. (F) Quantification of the rescue 
experiment shown in (E), n=3, statistical analyses by one-way ANOVA. 
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Figure 6: (A) Fraction of IFT complex bound to tubulin at varying tubulin concentration is 
plotted using the equation OIFT = [Tub]/{Kd + [Tub]} (see supplementary material for the 
derivation). OIFT is the fraction of IFT bound to tubulin, Kd is the binding constant that is 
experimentally determined in this study as 0.9µM and [Tub] is the local concentration of free 
tubulin at the base of the cilium.  (B) Model for ciliary length control: 3 representative 
phases of cilia growth are shown. Each phase is characterized by a varying fraction of IFT 
complexes bound to tubulin. OIFT is highest in the initial elongation phase and gradually 
decreases as the cilia approaches its steady state length. 
 
 
 

Figure S1: Sequence alignment of the N-terminal region preceding the predicted coiled-coil 
domain of IFT74 from different organisms. Conservation is indicated below the sequence. 
Positively- and negatively-charged residues are shown in blue and red, respectively. The 
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theoretical pI’s calculated for the shown sequence using the program ProtParam 
(http://web.expasy.org/protparam/) are indicated. 
 
 
 

 
 
Figure S2: (A) Size exclusion profiles of IFT81N wild-type and mutant proteins showing that 
all the mutants are folded. (B) Coomassie stained SDS-PAGE gels of purified HsIFT81N and 
CrIFT81N. (C) Hexagonal crystals of CrIFT81N grown by vapor diffusion.
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Figure S3: The IFT81N structure is compatible with MT-binding but not actin-binding. (A) 
Superpositioning of the CrIFT81N structure (green) onto the CH-domain of a-actinin (dark 
blue, only one of the two CH-domains is shown) bound to F-actin (light blue) (Galkin et al., 
2010). The figure shows that a-helix a3’ clashes with F-actin (dotted circle) and would have 
to undergo a significant conformational change to allow binding. (B) Superpositioning of 
CrIFT81N (green) onto the CH-domain of NDC80 (yellow, only the CH-domain closest to the 
tubulin globular domains is shown) bound to MT (cyan) (Alushin et al., 2010). The 
conformation of the CrIFT81N structure is compatible with MT-binding. 
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Figure S4: HsIFT81N does not bind actin in pull-down experiments. Pull-down of rabbit 
muscle F-actin by GST-tagged protein using GSH-beads and subsequent western-blotting 
with anti-F-actin antibodies. The experiment shows that HsIFT81N does not interact with F-
actin. 
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Figure S5: ab-tubulin pull-down with wildtype and mutant GST-HsIFT81N proteins. (Top) 
Coomassie-stained SDS gel of input and eluted proteins. (Bottom) Western-blot using anti a-
tubulin antibody to visualize the amount of tubulin pulled-down by GST-HsIFT81N. Mutation 
of conserved basic residues of IFT81N reduces the affinity for tubulin. 
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Figure S6: (A) Coomassie-stained SDS-PAGE gel showing subtilisin treatment of ab-tubulin 
to remove the E-hook of b-tubulin (after 20 min) or both a- and b-tubulin (after 130 min). (B) 
Microscale thermophoresis titration of ab-tubulin lacking the C-terminal tail of b-tubulin 
(tubulin DbE-hook) with HsIFT81N (panel (A), 20 min treatment) showing a similar affinity 
as observed for ab-tubulin with E-hooks intact. 
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Figure S7: (A) Both Flag-IFT81 and Flag-IFT81∆N (in green) are detected at the basal body 
and the tip of the primary cilium in RPE1 cells (see the arrowheads). Acetylated tubulin 
immuno-staining (in red) was used to visualize primary cilium. (B) IFT81 siRNA efficiently 
depletes IFT81 protein levels of the centrosome (in green) 48h after transfection and prevents 
the formation of acetylated tubulin positive primary cilium (in green). Cep135 antibody 
staining (in blue) was used to detect centrosomes. 
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Figure S8: IFT81 siRNA knockdown efficiency was probed by testing the levels of IFT81 
protein with anti-IFT81. Transfection of either IFT81 oligo1 or IFT81 oligo2 reduced the 
protein levels. Combination of oligo1 and oligo2 had the maximum effect on the IFT81 
protein levels and hence it was used in the SiRNA rescue experiments shown in Fig. 5. 
Various control RNAi (GL2, Cep164 & Cep170) did not affect IFT81 levels. Levels of a-
tubulin in each lane are indicated as a loading control.   
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Table 1.  Data collection and refinement statistics. 

Statistics for the highest-resolution shell are shown in parentheses. 
 
 
 
 
 
 
 

 Cr81N_Native Cr81N_Ta6Br12 

Wavelength (Å) 
0.9793 1.2545 

Resolution range (Å) 
37.92  - 2.51 (2.60 - 2.51) 38.28  - 2.32 (2.41 - 2.32) 

Space group 
P 64 2 2 P 64 2 2 

Unit cell 
75.05 75.05 93.38 90 90 120 76.07 76.07 94.06 90 90 120 

Multiplicity 
12.0 (12.0) 20.1 (20.0) 

Completeness (%) 
99.51 (96.91) 99.81 (98.14) 

Mean I/sigma(I) 
21.90 (3.06) 49.21 (12.37) 

R-sym 
0.051 (0.644) 0.034 (0.200) 

R-factor 
0.2374 (0.3769) 0.2141 (0.2736) 

R-free 
0.2897 (0.3936) 0.2391 (0.3218) 

Number of atoms 
948 1006 

  macromolecules 
948 981 

  ligands 
NA 4 

  water 
0 21 

Protein residues 
124 124 

RMS(bonds) 
0.009 0.009 

RMS(angles) 
1.50 1.30 

Average B-factor 
98.70 57.10 

  macromolecules 
98.70 57.00 

  solvent NA 57.20 
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Extended	  discussion	  

The	  IFT74/81	  tubulin	  binding	  module	  in	  mitosis	  

In addition to the well established role of IFT in ciliogenesis, the IFT complex was 

also shown to be involved in non-ciliary processes such as mitosis and the formation 

of the immune synapse (Delaval et al., 2011; Finetti et al., 2009). Depletion of IFT88 

in cultured human cells resulted in the loss of astral MTs and spindle disorientation 

during mitosis. Immuno precipitation analysis revealed that other IFT proteins such as 

IFT52 and IFT20 were also part of a cytoplasmic dynein-driven complex involved in 

the transport of these astral MTs. This indicates that an IFT-like transport is involved 

in the assembly of astral MTs during mitosis, allowing proper orientation of the 

spindle (Delaval et al., 2011). Interestingly, IFT81 was also shown to localize to 

centrosomes and their periphery during mitosis in human RPE1 cells (Lamla, 2008). 

MT co-pelleting assays and electron microscopic analysis done in the current study 

show that the IFT74/81 tubulin-binding module is also able to bind MTs (Figure 3B 

& C and Figure 4B & C). Taken together, these data suggest that a single tubulin/MT-

binding module in IFT74/81 may play an essential role in the assembly of both the 

ciliary axoneme and the astral MTs. However, the effect of depleting IFT81 levels on 

mitosis is not assessed in my study. Further research aimed at testing the effect of 

tubulin/MT binding mutants of IFT81 in the transport of astral MTs will shed light on 

this interesting possibility. 

	  The	  life	  cycle	  of	  ciliary	  tubulin	  

From the point of tubulin synthesis in the cytoplasm to its incorporation into the 

ciliary axoneme, tubulin undergoes an extraordinary journey of several steps 

involving proper folding, selection for the properly folded pool at the base of the 
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cilium, and the actual transport into the cilium. In this section, I review the published 

literature on this pathway and try to connect the individual reports to the results and 

the predictions of this study. One of the earliest steps in cilium formation involves the 

localization of tubulin mRNA to the base of the cilium (Han et al., 1997). Sorting of 

mRNAs is a common mechanism for the spatially restricted translation of different 

proteins leading to their correct localization to the respective cellular compartments; 

and ciliary tubulin probably follows the same mechanistic principles (St Johnston, 

2005). Newly synthesized tubulin must undergo cytosolic chaperonin (CCT complex) 

assisted folding to form αβ-tubulin dimers capable of forming axonemal MTs (Yaffe 

et al., 1992). The properly folded tubulin then docks on to the transition fibers 

extending from the mature basal body with the help of another chaperone TBCC. 

TBCC, an orthologue of human RP2 (a gene mutated in the human ciliopathy: 

Retinitis pigmentosa), is proposed to play a role in yet another quality control step of 

the tubulin dimers involving testing of their GTPase activity (Stephan et al., 2007). 

The IFT complex, which is also known to dock to the transition fibers, binds and 

transports the assembly-qualified tubulin to the tip of the cilium where it is 

incorporated into the axoneme (Deane et al., 2001; Hao et al., 2011; Marshall and 

Rosenbaum, 2001b). In this study, we identify the probable molecular players of this 

particular step of the pathway by showing that the IFT74/81 complex directly binds 

αβ-tubulin (Figure 3H, 3I and 4D). We also show that IFT81N binds to the globular 

domain of tubulin and that IFT74N recognizes the C-terminal acidic tails of this 

protein. This suggests a coupled quality control and transport mechanism wherein 

IFT81N recognizes only the properly folded tubulin subunits, adding another level of 

tubulin quality control. The tubulin incorporated into the axoneme turns over and 

must be transported back to the base of the cilium for recycling (Coyne and 
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Rosenbaum, 1970; Marshall and Rosenbaum, 2001a). Akin to the ciliary axonemal 

MTs, tubulin subunits in cytoplasmic MTs also turn over constantly at the + end of 

the MTs. However, the molecular mechanism of this tubulin turnover and re-

utilization in ciliary assembly is unclear. Several CCT complex components which 

are known to participate in proper tubulin folding after synthesis in the cytosol also 

localize to the tip of the cilium (Seixas et al., 2003). These CCT components are 

essential for the proper assembly of the axoneme and cilia formation in Tryponosoma 

bruceii (Seixas et al., 2010). It is possible that this CCT complex localized at the tip 

of the cilium is involved in the recycling of tubulin. Although the study presented in 

this thesis uncovers the molecular mechanism of tubulin transport to the ciliary tip via 

IFT, the molecular details of the other steps of the tubulin life cycle essentially remain 

elusive. Further research is thus needed to characterize the molecular players in the 

tubulin folding and recycling pathways. 
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7.	  Abbreviations	  
	  
Å 

 

 Angstrom, 1Å = 1-10 m 

BBS  Bardet-Biedl syndrome 

Ca2+  Calcium  

cGMP  Cyclic guanosine monophosphate 

cAMP  Cyclic adenosine monophosphate 

Cr  Chlamydomonas reinhardtii 

EGTA  Ethylene glycol tetraacetic acid 

GAP  GTPase activating protein 

GTP  Guanosine triphosphate 

GPCR  G-protein coupled receptor 

IFT  Intraflagellar transport 

IFT81N  N-terminus of IFT81 

IFT74N  N-terminus of IFT74 

ITC  Isothermal titration calorimetry 

MST  Microscale thermophoresis 

MT  Microtubule 

ODA  Outer dynein arm 

ORC  Olfactory receptor cell 

PC  Polycystin 

PKD  Polycystic kidney disease 

Ptc1  Patched-1 

RP  Retinitis pigmentosa 

RPE  Retinal pigment epithelium 

Shh  Sonic hedgehog  

Smo  Smoothened 

TPR  Tetratricopeptide repeat 

TULP3  Tubby-like protein 3 
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