
Coping with Distance and Location
Dependencies in Spatial, Temporal

and Uncertain Data

Tobias Emrich

München 2013





Coping with Distance and Location
Dependencies in Spatial, Temporal

and Uncertain Data

Tobias Emrich

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Tobias Emrich

München, den 08.03.2013



Erstgutachter: Prof. Dr. Hans-Peter Kriegel,
Ludwig-Maximilians-Universität München
Zweitgutachter: Prof. Dr. Thomas Seidl,
Rheinisch-Westfälische Technische Hochschule Aachen
Tag der mündlichen Prüfung: 25.07.2013



Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in



vi



vii

Abstract

The amount of collected data nowadays grows in an exponential manner due to a rapid
development of capturing (such as photo cameras, environmental sensors or smart phones)
and storage devices. Efficiently querying the resulting datasets is a crucial operation in
order to retrieve meaningful information and to support time consuming data mining tasks.
From a database perspective the efficient processing of queries is further facilitated by two
circumstances. First the data becomes more and more complex and is not only given by
single values but can amongst others be multidimensional, time-dependent or uncertain.
Second the issued queries on these data types themselves need to be more sophisticated
since users want to tap the full potential of the available information. This thesis focuses
on three complex types of data, namely spatial, uncertain spatial and uncertain spatio-
temporal data. For each of these data types certain dependencies are identified which can
be utilized for more efficient or more accurate query processing.

The first part of this thesis builds the basis for all following parts. It will give an
introduction to the basic concepts of similarity search in databases. Therefore we will
review the similarity model based on feature vectors and discuss several similarity query
types on multidimensional data. Furthermore we will discuss basic concepts for efficient
similarity query evaluation.

During similarity query processing an important step is to filter out true drops as
fast as possible. In the second part of this work we introduce the concept of spatial
domination which can be utilized for filtering during several similarity queries. State-of-
the-art techniques for detecting spatial domination are either not applicable in all scenarios
or do not accurately detect it. The reason for the latter problem are so called distance
dependencies which are ignored in current methods. Thus this part successively gathers
new techniques which overcome the present limitations in different scenarios. At the end
of this part a technique is presented which is optimal w.r.t. runtime and accuracy.

In the third part of this thesis the developed techniques from the second part are
evaluated in the scope of uncertain spatial data. Again the concept of spatial domination
based on distance dependencies can help to filter out objects during query processing.
However the nature of uncertain objects requires the techniques for spatial data to be
adapted. Thus a method for performing probabilistic domination is introduced. The main
issue here is how to set off the single results against each other. For this purpose a technique
called “uncertain generating function” is developed and evaluated.

In the last part the focus is changed to uncertain spatio-temporal (UST) data. An
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example for UST data are objects which change their positions over time. For the objects
the positions are only known for certain points in time (also called observations). Between
each two successive observations the position is not exactly known and can only be esti-
mated assuming some kind of model (i.e. the maximum speed of the objects). An analysis
of existing works reveals that current state-of-the art models are not able to consider loca-
tion dependencies of an object between successive time steps. Thus it is also not possible
to answer queries according to the possible worlds semantics, which is the prevalent un-
certainty model. To overcome this shortcoming a technique based on Markov Chains to
model the uncertain movement of objects over time is developed. Utilizing this approach
it is possible to efficiently answer queries according to the possible worlds semantics. To
support fast query processing even on very large datasets additionally an index structure
and an efficient sampling approach are proposed in this part.
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Zusammenfassung

Wir beobachten heute, dass die Menge der gesammelten Daten in exponentiellem Maße
wächst. Dies ist vor allem auf die schnelle Entwicklung neuer Aufnahmegeräte (wie Fotoka-
meras, Messsensoren oder Smartphones) sowie neuer Speichermedien mit immer größerer
Speicherkapazität zurückzuführen. Um nun sinnvolle Informationen und zeitaufwendiges
Datamining auf diesen riesigen Datenbeständen zu ermöglichen ist eine effiziente Anfra-
gebearbeitung eine entscheidende Voraussetzung. Aus der Sicht eines Datenbanksystems
wird die effiziente Verarbeitung von Anfragen neben der schieren Menge durch zwei wei-
tere Umstände erschwert. Zum einen werden die gesammelten Daten immer komplexer,
bestehen also nun nicht nur mehr aus einzelnen Werten, sondern können unter anderem
hochdimensional, zeitabhängig oder unsicher sein. Zum anderen werden die Anfragen selbst
anspruchsvoller, da Nutzer das volle Potential der vorhandenen Information ausschöpfen
wollen. Diese Arbeit konzentriert sich auf drei komplexe Datentypen, nämlich räumliche,
unsicher- räumliche und unsichere-raumzeitliche Daten. Für jeden dieser Datentypen wer-
den speziellen Abhängigkeiten identifiziert, welche dann ausgenutzt werden können um
Anfragen effizienter oder exakter beantworten zu können.

Der erste Teil der Arbeit bildet die Grundlage für die nachfolgenden Teile und führt die
Basiskonzepte von Ähnlichkeitssuche in Datenbanksystemen ein. Dazu wird das Ähnlich-
keitsmodel basierend auf Featurevektoren erläutert und unterschiedliche Ähnlichkeitsan-
fragetypen auf mehrdimensionalen Daten besprochen. Anschließend werden grundlegende
Konzepte zur effizienten Bearbeitung von Ähnlichkeitsanfragen eingeführt.

Während der Bearbeitung von Ähnlichkeitsanfragen ist das frühzeitige herausfiltern von
Datensätzen, die nicht zum Ergebnis gehören, sehr wichtig um Effizienz zu garantieren.
Im zweiten Teil dieser Arbeit wird daher das Konzept „spatial domination“ eingeführt,
welches für das Filtern zur Anfragezeit benutzt werden kann. Bisherige Methoden um
„spatial domination“ zu erkennen sind entweder nicht allgemein verwendbar oder liefern
nicht immer das bestmögliche Ergebnis. Der Grund für das letztgenannte Problem sind
sogenannte Distanzabhängigkeiten welche von bisherigen Techniken nicht mit in Betracht
gezogen werden. In diesem Teil werden daher nach und nach Techniken entwickelt um
die Schwachstellen bisheriger Ansätze zu beseitigen. Zu guter letzt wird ein Verfahren
vorgestellt, dass im Hinblick auf Laufzeit und Exaktheit optimal ist.

Im dritten Teil der Arbeit werden die im zweiten Teil entwickelten Techniken auf die
Anwendbarkeit im Zusammenhang mit unsicheren-räumlichen Daten hin untersucht. Wie
schon zuvor kann das Konzept von „spatial domination“ genutzt werden um möglichst
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frühzeitig Tupel aus der Ergebnismenge auszuschließen. Jedoch müssen aufgrund der Be-
schaffenheit von unsicheren Daten die Techniken welche für räumliche Daten entwickelt
wurden angepasst werden. Daher wird an dieser Stelle ein Verfahren zur Berechnung von
probabilistischer „spatial domination“ entwickelt. Das Hauptproblem an dieser Stelle ist
wie einzelne Ergebnisse dieser Berechnungen miteinander verrechnet werden können. Dazu
wird die Methode der „uncertain generating functions“ erarbeitet und evaluiert.

Im letzten Teil werden unsichere-raumzeitliche Daten betrachtet. Unsichere-raumzeitliche
Daten sind beispielsweise Objekte die Ihre Position über die Zeit hinweg ändern (wie bei-
spielsweise Autos), jedoch nur zu gewissen Zeitpunkten beobachtet werden. Zwischen diesen
Beobachtungen ist die Position der Objekte unsicher und kann nur unter Berücksichtigung
entsprechender Modelle (wie z.B. der maximalen Geschwindigkeit eines Autos) abgeschätzt
werden. Die Analyse von bisherigen Arbeiten auf diesem Gebiet zeigt, dass momentane Mo-
delle keine Ortsabhängigkeiten eines Objektes zwischen aufeinanderfolgenden Zeitpunkten
einbeziehen. Dies ist jedoch notwendig um Anfragen unter Berücksichtigung der „possible
worlds“-Semantik, welche das vorherrschende Model für Anfragebearbeitung auf unsiche-
ren Daten ist, zu beantworten. Um diese Lücke zu schließen wird ein Verfahren basierend
auf Markov Kettenentwickelt um das Verhalten von unsicheren Objekten zwischen Beob-
achtungen zu modellieren. Mithilfe dieser Technik ist es möglich Anfragen konform zur
„possible worlds“-Semantik zu beantworten. Um das Verfahren skalierbar auf große Daten-
bestände anwendbar zu machen, wird zusätzlich in diesem Teil eine Indexstruktur und eine
effizienter Sampling-Ansatz vorgestellt.
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Chapter 1

Introduction

1.1 A Data Centric View

We live in a world where the amount of digital data is increasing faster and faster to
enormous scales. People are capturing and sharing billions of pictures and videos while
companies are recording a plethora of information about their customers, suppliers, and op-
erations. Additionally sensors measuring the position, temperature, humidity, acceleration
and much more are included in “intelligent devices”. This phenomenon can be explained
by the fact that devices which capture data digitally (and not analogous anymore) are
becoming incredibly cheap. Thus almost every private person can afford a digital camera,
RFID sensors are attached to throw-away products and all kind of capturing devices are
integrated into physical world devices such as mobile phones and automobiles. Further-
more the capacity of storage devices grows in an exponential manner, which allows for
keeping most or all of the recorded data. To create order out of this “data monster” and to
extract useful information (or knowledge) from the collected data, it is crucial to develop
managing and particularly querying techniques which are mainly data driven. This trend
has been observed by both industry and research: According to a McKinsey report in May
2011 [117], the analysis of big data has a potential of EUR 180 billion annual value to
Europe’s public sector administration. McKinsey projects that 140.000 to 190.000 more
positions for deep analytical skills will be available than expected in the U.S. by 2018.
In academia this trend towards data-driven research is known as the Fourth Paradigm of
scientific research [81]. Although the main scope of this work is similarity search we want
to follow this data centric view and structure this thesis according to the considered data
types. This proceeding will allow us to give detailed insights on the later defined (distance
and location) dependencies which are characteristic for each data type. Particularly we
will focus on (multi-dimensional) spatial data, which is a very general and important data
type as we will discuss in the latter sections. Starting with pure spatial data we will include
uncertainty aspects and the temporal dimension afterwards.
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Spatial Data

Talking about spatial data one usually thinks about 2 to 3 dimensional position informa-
tion of geospatial objects for example restaurants, sights, cell phone users or cars. This is
an important aspect as services like navigation systems, Google Maps 1 and other location
based services enrich our life by valuable information. However in the scope of this work
(and many others in this field) spatial data is understood more generally. Through the
concept of feature vectors which will be introduced in Section 2.1 it is possible to repre-
sent arbitrary objects modelling specific attributes with a high dimensional spatial feature
vector. Using these feature vectors as basis it is possible to define distance functions other
than the usually used Euclidean distance. Objects which are spatially close according to
the used distance function can then be interpreted as similar. This concept is widely im-
plemented in many advanced database systems and allows for a powerful mechanism to
express the concept of similarity.

Uncertain Spatial Data

Uncertainty is an inherent attribute of data collected by sensor devices. On the one hand
parameters measured by sensors are uncertain due to measurement errors. Tracking a
car with the Global Positioning System (GPS) for example only returns a position within
several meters of the exact position of the car. On the other hand uncertainty is added due
to possibly outdated or non existent information. When the position of a car for example
was captured 5 minutes ago and the car then lost the GPS signal due to entering a tunnel
or a forest the current position of the car can only be estimated. Simply ignoring this
uncertainty, and taking all information as certain facts, does often lead to inconsistent and
contradictory data, which can no longer be used for the information gain process. The
reason for this degeneration of data is the loss of vital information that is contained in the
uncertainty. Proper models treat uncertain values as random variables, and allow us to
utilize this information in order to perform meaningful inference.

Uncertain Spatio-Temporal Data

When working with (uncertain) spatial data it is often not only interesting to process the
data which is valid at the currrent point of time, but also take a look at historical data or
even predicted data. This is obvious since some relations of changing values are only visible
considering the temporal context. In such a case the notion of time is crucial. Combining
the spatial and the temporal aspect yields interesting and valuable data types such as
timeseries (e.g. temperature profile in a city over a year) or trajectories (e.g. planned
route of a car). When querying these data types it is particularly important to properly
handle the temporal dimension, especially when there are uncertain aspects involved.

1http://www.maps.google.de



1.2 Outline 5

1.2 Outline
This work will investigate several kinds of dependencies which occur during query process-
ing on the three mentioned datatypes. This investigation will lead to better understanding
of relations in the considered data type and eventually lead to more efficient or correct
query mechanisms. In particular this work is structured as follows:

The rest of Part I of this work (in particular Chapter 2) will give an introduction to
the basic concepts of similarity search in databases. Therefore we will review the similarity
model based on feature vectors and discuss several similarity query types. Furthermore we
will discuss basic concepts for efficient similarity query evaluation.

Part II will focus on spatial data. In Chapter 3 the concept of spatial domination is
introduced. Spatial domination allows us to decide if an object A is definitely closer to
object R than another object B. We will show that several similarity queries rely on this
relation and thus it is important to efficiently and correctly detect this relation. The main
problem here are so called distance dependencies which avoid a straightforward computa-
tion. The three following chapters (Chapter 4 - 7) each discuss an enhanced method to
detect spatial domination (considering the inherent distance dependencies). Based on the
techniques for spatial domination we present methods to compute the domination count
and show how to integrate this new concept into different similarity query types.

In Part III uncertainty in spatial databases will be considered. Uncertain spatial ob-
jects in a database are usually given by a probability density function over the feature
space. Since similarity queries on uncertain spatial data also benefit from the concept of
spatial domination we investigate the problem of distance dependencies under uncertainty
in Chapter 8. In particular Chapter 9 shows to compute probabilistic domination, which is
the equivalent of spatial domination incorporating the uncertainty in the data. To compute
the probabilistic domination count we additionally develop uncertain generating functions.
The developed techniques are then integrated into the application of reverse-nearest neigh-
bor processing on uncertain data in Chapter 10.

In Part IV we investigate uncertain spatio-temporal (UST) data. Chapter 11 gives
an introduction to UST data and reviews related work. The main observation here is
that current works do not allow for probabilistic queries (apart from snapshot queries
which do not consider the time dimension) since it is not possible to assign confidences
to query results. The reason for this shortage is that existing models are not able to
handle so called location dependencies correctly. In Chapter 12 we propose a model to
handle these dependencies correctly and show how the model can be utilized to answer
some basic probabilistic spatio-temporal queries. Afterwards an index structure for UST
data is developed in Chapter 13 and finally 14 shows how more complicated queries can
be answered approximately using an efficient sampling method.
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Chapter 2

Similarity Search

Standard Database Management Systems (DBMS) have a long tradition in managing data
and retrieving results matching a query which is mostly expressed in SQL (Structured
Query Language). Nowadays however exact match and partial-match queries are often not
powerful enough for the needs of users in many scenarios. The introduction of similarity
opens up various possibilities to query and process the managed data. Similarity search
is the task to find objects in a database which are similar to a given query object. Note
however that similarity is a concept that is very subjective to each person and always
dependent on the context. To illustrate the power of similarity search we will give some
sample applications where similarity search is useful and has already been used before.

C ontent based multimedia retrieval: Imagine a user provides a multimedia object and
wants to find similar ones in a database. One of the first applications in this direction
was the QBIC system [124] by IBM where a user could formulate queries by providing
an exemplary image, construct a sketch or select color and texture patterns. The system
would then return similar objects from a database filled with images and video content.
This area of research has been very flourish in the last two decades not only because the
outcome of a research work was mostly fancy. Current systems for image similarity search
involve a rather sophisticated pipeline of image pre-processing before the actual search can
be performed. This pre-processing is often dependent on the type of images which should
be supported. Today’s systems are mostly specialized to certain types of content on the
images but for those the results of a similarity search are highly reliable. Examples include
Google Goggles1 where a user can take a picture of a building with his cellphone and in
return receive background information of this building. Internally the system searches
(in a database of images) for the building most probably being identical with the one on
the taken picture. Additionally each building in the database is connected to background
information of the corresponding building. Another example are face recognition systems
as used at airports and for criminal investigations. For audio based similarity search an

1http://www.google.com/mobile/goggles/
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Figure 2.1: The KDD Process

example is Shazam2, where users can capture several seconds of music with their cell
phone and send the recording to the Shazam server. In return they will receive a message
containing the interpreter and the title of the song they recorded.

G eo-spatial proximity search: Proximity search in geo-spatial applications is very related
to similarity search, since proximity is nothing else than similarity of the positions of
two spatial objects. In particular this topic is very interesting for all kinds of location
based services. Navigation systems for instance have an integrated function for finding gas
stations near the current location of a car. Another example are cell phones which allow
for finding restaurants near the current location of the user. Digital Map providers like
Microsoft’s Bing3 let the user find businesses in a selected part of the earth.

K nowledge discovery in databases (KDD): KDD is the process of extracting new, valid
and potentially useful knowledge from databases. The KDD process, as defined by Fayyad,
Piatetsky-Shapiro and [70], has several steps which are depicted in Figure 2.1. The Process
always starts with selecting parts of the data base which are relevant. Then preprocessing
and possibly transformation is performed. The most important step is the data mining
part, which aims at finding patterns which are evaluated by a user to gain knowledge. In
this step the automatic detection of information takes place. Data mining includes several
subtasks such as clustering, outlier detection and classification. Clustering is the task of
grouping objects, where the similarity of objects within a group has to be maximized,
while the similarity of objects in different groups has to be minimized. On the contrary
outlier detection methods often try to identify objects which are not similar to any object
in the database. Consequently clustering and outlier detection methods heavily depend
on efficient and effective methods to identify similar or dissimilar objects in the database,
or in other words, they depend on similarity search methods. Another data mining task
is classification, which aims at assigning to an object the most appropriate class from a
set of given classes. An example would be to identify the genre for a given song. Nearest
neighbor classifiers are one of several techniques which have shown to be accurate in many
scenarios and do rely on the similarity of objects. This shows that similarity search is a
technique which can help to boost the performance of several data mining tasks.

2http://www.shazam.com/
3http://www.bing.com/maps
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Figure 2.2: (Dis-)similarity between two images in the feature space

Since similarity search is an important aspect in many applications, in the following we
will take a detailed look how similarity between arbitrary objects can be modeled, discuss
interesting similarity query types and show techniques for efficient retrieval of results.

2.1 Similarity Model

A concept to model similarity is always a tightrope walk between expressiveness and effi-
ciency for query processing. The most prevalent model for similarity search which affords
a good trade-off between these two characteristics is the feature-vector based similarity
model. Here a domain expert chooses a set of meaningful single-valued numerical features
that describe the characteristics of the objects in a database, e.g. size, weight, tempera-
ture, etc. This operation is called feature transformation and is of course dependent on
the application domain. The selected features span the so-called feature space and after
this transformation each object in the database can be represented by one point in this
space. This is achieved by interpreting each feature value of an object as a coordinate
in the corresponding dimension of the multi-dimensional feature space. Now the distance
between two objects can be construed as similarity (small distance) or dissimilarity (large
distance) between these objects. The similarity search problem is thus reduced to a prox-
imity search problem which allows us to exploit appropriate spatial access methods and
search algorithms. An example for this proceeding is shown in Figure 2.2 where for an
image the color components of the RGB color schema (red, green and blue) are selected
as features. Since the image showing the pool contains a rather high portion of blue color
and the image showing the pool table consists of mostly green pixels, their representations
in the feature space reflect this characteristic and consequently the distance between the
objects is expected to be relatively large. The remaining problem is to define an appro-
priate distance measure in the chosen feature space. Formally if O is the universe of all
objects that may appear in a database then a similarity distance function is given by:
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Definition 2.1 (Similarity distance function). dist : O ×O → R+
0

Several distance measures have been proposed but the most used and prominent are
the Lp-norms which are defined as follows:

Definition 2.2 (Lp-norm). Let x = (x1, . . . , xn), x ∈ Rn and y = (y1, . . . , yn), y ∈ Rd be
two vectors in an d-dimensional space. The Lp-norm between x and y is defined as:

Lp(x, y) = p

√√√√ n∑
i=1

|xi − yi|p

For p = 1 the Manhattan distance is derived which can be interpreted as the shortest
path between two points when moving is only allowed along the edges of an orthogonal
grid spanning across the space (like the street network of Manhattan). Setting p = 2
corresponds to the well-known Euclidean distance. The Euclidean distance is the most
common distance function in many kinds of applications, often because it matches best
with the intuition of a user. An important property of an Lp-norm is that it is a metric,
which is very desirable for a distance function. Using a metric distance function means that
the triangle inequality holds which can often be exploited in order to boost the performance
of an application. Besides the basic Lp-norms many other distance measures exist including
enhanced versions of the Lp-norms which assign weights to each dimension separately or
even incorporate correlation between the feature values of different dimensions through
quadratic forms [124]. However in this work we will rely on the basic versions of the
Lp-norms.

The feature-vector approach has been successfully used in many application areas rang-
ing from medical imaging [59] over time series [7] and CAD objects [27] to protein databases
[93]. Though other possibilities for modeling similarity exist we want to follow this popular
approach and assume the feature-based similarity model in the rest of this work.

2.2 Similarity Query Types
The main query predicates from standard DBMS are exact or partial match queries which
are not capable to sufficiently express the concept of similarity. For example it is not
possible to formulate a query which finds similar objects to a given query object. Thus
specialized query types are required for applications involving similarity. In this section, we
will present those query types which are most important in similarity search applications.
For illustrating these query types we assume that a database D consisting of N objects
o ∈ Rd and a distance function dist as defined in Definition 2.1 is given.

2.2.1 Similarity Range Query

The most basic similarity query is to find all objects from the database which are closer
to a given query object than some threshold according to the similarity distance. This
query type is often called range query (RQ) or ε-range query with ε being the threshold
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q

Figure 2.3: Example of a range query with q as query object

parameter. Figure 2.3 illustrates a range query for the query object q in a 2-dimensional
feature space assuming Euclidean distance.

Definition 2.3 (ε-range query). For a query object q ∈ Rd and a query range ε ∈ R+
0 , the

result of a similarity range query is defined as

RQε(q) = {o ∈ D|dist(q, o) ≤ ε}

Range queries are for example useful for density based clustering algorithms like DB-
SCAN [68] and OPTICS [9] where an object belongs to a cluster if a certain amount of
other objects are located within a predefined range around this object. Thus processing
range queries fast also improves the runtime of such KDD algorithms. However the prob-
lem with ε-range queries is the user-defined threshold value ε. Setting ε to large yields the
whole database as result in the worst case, on the other hand setting ε to small may yield
no results at all. In many scenarios the parameter ε may not be chosen intuitively and in
order to get a reasonable result set the user my have to pose several queries with the same
query object and different values of ε.

2.2.2 Nearest Neighbour Query

Nearest neighbour (NN) queries overcome the problem of an unknown size of the result set.
A nearest neighbour query returns the object from the database which has the smallest
distance to the query object. A generalisation of nearest neighbor queries are k-nearest
neighbor (kNN) queries, which return the k objects from the database with the smallest
distance. This means when setting k = 1 we end up with an NN query. Figure 2.4
illustrates a kNN query for the query object q and k = 5. With this intuitive description
we formalize the concept the following way:

Definition 2.4 (k-nearest neighbour query). For a database D ⊂ Rd, query object q ∈ Rd

and a parameter k ∈ N+, the result set of a kNN query is defined by

kNN(q,D) = {o ∈ D|∀o′ ∈ D \ kNN(q,D) : dist(q, o) <= dist(q, o′)}

and |kNN(q,D)| = k.
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q

Figure 2.4: Example of a 5NN query with q as query object

Additionally to the 5 nearest neighbours to q Figure 2.4 illustrates the corresponding
ε-range for a range query returning the same result. In general each kNN query can be
transformed into an ε-range query returning the same result set. To achieve this the ε
parameter has to be set to the distance between the query and the furthest object of the
result set of the corresponding kNN query. Specifically this is the kth-nearest neighbour
and its distance to the query is called the kNN-distance. Note that in the deterministic case
more than k objects can qualify. However, often the non-deterministic variant is used where
exactly k objects are returned and distance ties are broken arbitrarily. Thinking of KDD
applications kNN queries are necessary in clustering algorithms like k-means [116] and
outlier detection methods like LOF [38]. Again if fast methods for kNN query processing
can be developed this will also boost many KDD tasks.

2.2.3 Nearest Neighbour Ranking

One variant of the k-nearest neighbor query is the ranking query that is able to incremen-
tally report the next nearest neighbor of q. Commonly, a getnext() function is used to drive
the incremental output. The advantage of the ranking query over the ε-range query and
k-nearest neighbor query is that the user does neither need to choose a similarity threshold
ε, nor a parameter k specifying the size of the result set. Both attributes can be controlled
by performing the ranking and fetching the results iteratively during query time until the
user is satisfied. Of course in the most naive implementation this kind of query could be
realized by performing a kNN query with increasing k (returning only the new object over
the (k − 1)NN set) each time the getnext()-function is called. In this case however the
same objects are queried several times which usually results in unnecessary operations. An
efficient ranking algorithm should therefore not start over for each getnext() call. Nearest
neighbor ranking is an important module allowing for more high-level queries like Top-k
queries [19, 14] or multi-step query processing [141].
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(a) Monochromatic R2NN query

q

(b) Bichromatic RNN query

Figure 2.5: The two types of RkNN queries

2.2.4 Reverse Nearest Neighbour Query

In contrast to the three query types above reverse nearest-neighbour queries are a relatively
new concept and have first been introduced by Korn and Muthukrishnan [95]. Simply
speaking a reverse nearest neighbour (RNN) query returns all objects from a database
which have a given query object as nearest neighbour. This definition can straightforwardly
be extended to reverse k-nearest neighbour (RkNN) queries. Thereby it is distinguished
between two types: the monochromatic and the bichromatic case.

In the monochromatic case there is only one set of objects and the query is an object of
the same “type” than the other objects (in the database). An example of a monochromatic
R2NN query is illustrated in Figure 2.5(a), where the circles corresponding to the 2-nearest
neighbour distance of three objects (o1, o2, o3) are drawn. Each object which now has the
query object q within this range is in turn R2NN of q (in this example o1 and o2). Formally
a monochromatic RkNN query is defined by:

Definition 2.5 (monochromatic reverse k-nearest-neighbour query). Given a database
D ⊂ Rd, a query object q ∈ Rd and a parameter k ∈ N+, the result set of a monochromatic
RkNN query is defined by

RkNNM(q,D) = {o ∈ D|q ∈ kNN(o,D)}

For the bichromatic case two sets of objects are required. In the example in Figure
2.5(b) these two sets are given by point objects and the star-shaped objects. The result
of a bichromatic RNN query then returns all objects from the point set which have the
query object (which is one object of the star set) as nearest neighbour only considering the
objects in the star set. In the example all point objects in the grey area are reverse nearest
neighbours of the object q. We will show how to efficiently derive these area in the latter
Sections. In the general case where k ≥ 1 a bichromatic reverse k-nearest neighbour query
is defined by:



14 2 Similarity Search

Definition 2.6 (bichromatic reverse k-nearest neighbour query). Given two sets of objects
R,S ⊂ Rd, a query object q ∈ R and a parameter k ∈ N+, the result set of a bichromatic
RkNN query is defined by

RkNNB(q,R,S) = {o ∈ S|q ∈ kNN(o,R)}

As an example application again consider Figure 2.5(b) and let the objects from the
star set be restaurants. Furthermore assume the other objects to be customer locations.
Then all customers which are within the gray shaded area have the “query restaurant” as
their closest restaurant and are thus likely to be potential guests of this specific restaurant.
Appart from that, reverse nearest neighbour queries have a wide range of applications
including decision support, continuous referral systems, profile-based marketing, maintain-
ing document repositories and similarity updates in spatial and multimedia databases (cf.
[95]). Additionally RkNN queries can be used to speedup several KDD algorithms, for
example incremental versions of algorithms relying on the kNN distance. Incremental here
means that points are inserted or removed from the database and the data mining algo-
rithm does not have to recompute the result from scratch but use the previous result as
input. Examples include incremental versions of the cluster algorithm OPTICS [9] and the
outlier detection approach LOF [38]. In this work we concentrate on the monochromatic
case if not mentioned otherwise. Note, however that the proposed techniques are usually
easily adaptable to the bichromatic case.

2.3 Efficient Processing Techniques
A naive implementation of the ε-range and the kNN query with q as query object performs
a scan through the whole database computing the distance dist(q, o) to each object o ∈
D. A ε-range query returns all objects having a distance smaller than ε, whereas the
kNN query returns the k objects with the smallest distance. The runtime complexity
(corresponding to the number of distance computations) of these approaches is thus O(n).
Things become even worse for the RkNN query where a naive implementation needs to
compute a kNN query for each object in the database (which is O(n) in the naive case)
and returns the objects having q as one of their k nearest neighbours. This approach yields
a complexity of O(n2). The goal of efficient processing techniques has to be to reduce both
CPU cost (mostly consisting of distance computations) and I/O cost (mostly consisting of
read operations on the database).

2.3.1 Index Structures

Index structures are a common technique in database systems to speedup queries. They
can be divided into two groups: Tree based structures like the B-Tree [20] and Hash based
approaches like linear hashing [113]. Though for multi-dimensional vector data there do
exist hash based methods [125, 98] the majority of index structures is tree-based. Over the
past three decades the variants of the R-Tree family [77] have shown their superiority over
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Figure 2.6: An R-Tree for 2D points

other structures for indexing multidimensional data. The most prominent and prevalent is
the R*-Tree [21] but there also exist further extensions like the X-Tree [26] and the IQ-Tree
[25] for high dimensional data. The basic idea of all these structures is to group objects
in close spatial proximity and bound them spatially using a minimum bounding rectangles
(MBR). Repeating this operation recursively on the resulting MBRs yields a hierarchy of
MBRs (cf. Figure 2.6(a)). To maintain this hierarchy on the database side (secondary or
main memory) a structure using entries and nodes as shown in Figure 2.6(b) is usually
used. An entry thereby stores the spatial approximation (in case of an R-Tree a MBR)
together with a pointer referring to a node. A node on the other hand contains the entries
corresponding to the children of the parent entry according to the hierarchy. The leaf
entries (entries at the lowest level of the tree) usually correspond to the multi-dimensional
point representation of the objects. A node has a maximum capacity which is chosen such
that it utilizes a multiple of the physical block size of the system where the tree is stored.
Thus an access to a node corresponds to a random access on the memory which is the
main I/O cost factor. For further details about construction and update of R-Trees we
refer the interested reader to [21]. Using an R-Tree it is possible to answer many similarity
queries very efficiently. The main idea is always to traverse the tree and prune search paths
as early as possible only using the MBR approximation of the entries. In this way it is
often possible to save distance computations and I/O operations since not all objects of the
database have to be considered. A large problem of index structures for multi-dimensional
objects however is high dimensionality of feature vectors. This effect is also known as the
“curse of dimensionality” [22] and yields a degeneration of the search structure resulting
in many unnecessary page accesses and distance computations. Depending on the data
distribution it may happen that a naive sequential scan outperforms a multi-dimensional
index structure (w.r.t. CPU and I/O) already at around 10 dimensions of the data.
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Figure 2.7: Multi-step query processing

2.3.2 Multi-step Query Processing

Particularly when the data types and the defined similarity measure are complex or the data
is high dimensional, it is not always possible to index the data for efficient query processing.
Under these settings often the sequential scan outperforms index based approaches and
another query processing technique may be advantageous: the multi-step approach. The
main idea is to replace the costly operations for query processing by much simpler (less
costly) ones which indeed are not exact but can be used to remove objects from further
consideration. The multi-step approach is depicted in Figure 2.7. It consists of one or more
filter steps and one refinement step. Each filter divides the remaining data into one of three
categories: Either an object is a true drop4(can not satisfy the query predicate) , a true hit
(satisfies the query predicate) or a candidate (has to be further processed). Each filter in
the pipeline should therefore be more selective (usually at higher costs) than the previous
one. After filtering the refinement of the remaining candidates has to be performed. This
step is usually the most expensive one, but is necessary to yield the final outcome of the
query. Examples for the multi-step approach include the VA-File [163] and the optimal
index based multi-step kNN algorithm [141] which are both used for similarity search in
high dimensional spaces.

Reverse Nearest Neighbour Processing is an excellent example how queries can be an-
swered efficiently using index structures and the multi-step approach. Thus we want to
review some existing processing techniques for RNN queries in the following section.

2.4 Excursion: Reverse Nearest Neighbour Processing

The problem of supporting reverse k-nearest neighbor (RkNN) queries efficiently, i.e. com-
puting for a given query q and a number k the RkNNs of q, has been studied extensively in
the past years. Existing approaches for RkNN search the Euclidean space can be classified
as self-pruning approaches or mutual-pruning approaches.

Self-pruning approaches like the RNN-Tree [95] and the RdNN-Tree [171] are usually
designed on top of a hierarchically organized tree-like index structure. They try to es-
timate the kNN distance of each index entry e which is the maximum kNN distance of
one of the objects contained in e. If the kNN distance of e is smaller than the distance

4The exclusion of objects using a filter is also often called pruning.
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of e to the query q, then e can obviousely be filtered as a true drop (pruned). Thereby,
self-pruning approaches do not usually consider other entries (database points or index
nodes) in order to estimate the kNN distance of an entry e, but simply precompute kNN
distances of database points and propagate these distances to higher level index nodes dur-
ing the construction of the index. Since the kNN distances need to be materialized, these
approaches are generally limited to a fixed value of k and cannot be generalized to answer
RkNN queries with arbitrary values of k. In addition the performance of approaches based
on precomputed distances degenerate when the database is updated frequently.

Mutual-pruning approaches such as [148, 144, 152] use other points to prune a given
index entry e. The most general and efficient approach called TPL (by Tao, Papadias and
Lian) is presented in [152]. It uses any hierarchical tree-based index structure such as an
R-Tree to compute a nearest neighbor ranking (cf Section 2.2.3) of the query point q. The
key idea is to iteratively construct Voronoi hyperplanes around q w.r.t. to the points from
the ranking. A Voronoi hyperplane is the plane consisting of all points which have equal
distance to two points. An example is shown in Figure 2.8 where a Voronoi hyperplane
is constructed between the points q and o. Points and index entries that are beyond k
Voronoi hyper-planes w.r.t. q can be pruned and need not to be considered for Voronoi
construction anymore. Again consider Figure 2.8 for k = 1, where the entry e can be
pruned, because it is beyond the Voronoi hyper-plane between q and candidate o, denoted
by Hqo. The reason is that for each object contained in e, the object o is closer than q
which in turn means that q cannot be NN of any object in e. For the general case, e can be
pruned if e is beyond k hyper-planes w.r.t. all current candidates. If e cannot be pruned,
it is refined, or, if e is already a database object, e is a new candidate and the hyperplane
Hqe will be considered for pruning in the following. If the ranking queue is empty, the
remaining candidate points must be refined, i.e. for each of these candidates, a kNN query
must be launched. For a more detailed description of the TPL algorithm see [152].

Beside solutions for Euclidean data, solutions for general metric spaces (e.g. [3, 2, 156])
usually implement a self-pruning approach. Typically, metric approaches are less efficient
than the approaches tailored for Euclidean data because they cannot make use of the
Euclidean geometry.
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Chapter 3

Spatial Relations of Approximations

During the processing of spatial similarity queries such as distance-range (a.k.a. ε-range)
queries, k-nearest neighbor (NN) queries, reverse kNN queries, etc., an important effi-
ciency aspect is early filtering of objects which can not be part of the result set. This
filter step is also often called pruning and we will use both terms equivalent in this work if
not mentioned otherwise. In this context, spatial pruning techniques are used for numer-
ous application fields including searching in multi-dimensional vector spaces [74, 82, 136],
similarity search in time series databases [94], query processing on spatio-temporal data
[78, 153] and probabilistic query processing on uncertain data [35, 53, 149]. To perform
pruning in the context of spatial applications, the objects are typically approximated by
suitable spatial representations like minimum bounding rectangles (MBRs) or bounding
spheres (BS) in an early stage of the processing. These approximations are used for dif-
ferent purposes but always aim at saving costly operations. Some exemplary application
areas of spatial approximations are the following:

• Approximation of complex spatial objects: Distance computations between complex
(high dimensional) polygons (cf. Figure 3.1(a)) are usually very costly. Computing
the distance based on the spatial approximations of the polygons (cf. the MBR
approximation in Figure 3.1(b)) can yield an upper/lower bound of the exact distance
which is efficiently computable. In this case the spatial approximation may safe
computational expensive operations.

• Approximation of positions of objects: In a spatio-temporal application, where the
position of several cars is captured over time by a central unit. The information of
the position of a car at one point of time may be outdated since the car has not
sent any new information to the central unit. Instead of polling this information
from the car (which usually involves costly usage of a transmission channel) it might
suffice to approximate the position by a bounding sphere calculated by taking into
account the last known position and the maximum possible speed of the car. In
this example the spatial approximation may safe (if the approximation itself yields
sufficient information) lots of transmission time during query processing.
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Figure 3.1: Approximations for complex polygons

• Approximation of a set of objects: Tree based spatial index structures like the R-
Tree [77] group objects in spatial proximity together in order to enable processing of
a whole set of objects during one processing step. In this case approximations allow
for saving CPU time (since many objects do not have to be processed) as well as I/O
operations (since many objects do not have to be accessed).

These examples show that approximations are ubiquitous in spatial databases. In
the following we will introduce two important concepts based on spatial approximations,
namely spatial domination (cf Section 3.1) and domination count (cf Section 3.3) which
support efficient query processing. The main problem which prohibits efficient computation
of these two concepts are certain distance dependencies which we will discuss in Section
3.4. Parts of this chapter have been published in [64] and [60].

3.1 Spatial Domination
Based on this common technique of simple approximation of objects for efficient query
processing we introduce the concept of spatial domination. Specifically for three approxi-
mations A, B and R (which approximate the objects A’, B’ and R’ respectively) we say A
(spatially) dominates B w.r.t. R (Dom(A,B,R)) if the following condition holds:

Definition 3.1. Dom(A,B,R)⇔ ∀a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r)

where dist is a given distance function defined on multi-dimensional points. In other
words Dom(A,B,R) can be used to determine if object A’ “is definitely closer to“ R’ than
B’ to R’. As we will show in the subsequent sections this relation can be used as a basic
operation to support efficient processing of many different similarity queries. For example
if Dom(A,B,R) holds then B’ cannot be nearest neighbour of R’, thus B’ can be filtered
out (pruned) during NN query processing. However to determine Dom(A,B,R), the right-
hand side of the equality from Definition 3.1 is not very helpful because an approximation
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Figure 3.2: MBR pruning example

contains an infinite number of points in Rd and it is simply not computable to test all
triples a ∈ A, b ∈ B and r ∈ R. Rather, a domination decision criterion DDC(A,B,R)
for the domination relation is required, which should fulfill the following properties:

• Correctness: if DDC(A,B,R) returns true then A dominates B w.r.t. R, i.e.

DDC(A,B,R)⇒ Dom(A,B,R).

This property ensures that pruning based on the domination relation does not gen-
erate false drops e.g. objects are excluded from the result set though they belong to
the result.

• Completeness: if DDC(A,B,R) returns false then A does not dominate B w.r.t.
R, i.e.

¬DDC(A,B,R)⇒ ¬Dom(A,B,R).

Though the completeness property is not necessary for most query algorithms to
return the correct result set, it is very important in order to exclude as many ob-
jects as possible during query processing and thus indispensable for efficient query
processing.

• Efficiency: DDC(A,B,R) can be evaluated efficiently.

The domination problem is trivial for point objects. However, applied to extended
approximations, the domination problem is much more difficult to solve. The problem is
that the distance between two objects approximated by rectangles or spheres is no longer
a single value but is represented by an interval. If two such distance intervals overlap, we
cannot definitely detect whether one distance is smaller than the other.

3.2 Existing Domination Decision Criteria

In this section we will review existing domination decision criteria and analyze them w.r.t.
the three properties (completeness, correctness and efficiency).
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3.2.1 The Hyperplane decision criterion for MBRs

The TPL-algorithm for RkNN search (cf Section 2.4) provides us with an interesting way
for detecting spatial domination. Consider Figure 3.2, where two points a and b and a
rectangle R are illustrated. Additionally the dashed Voronoi line Hab between a and b, i.e.
the line containing all points that have equal distance to a and b divides the 2D space into
two half spaces. The two half spaces are labeled Hab(a) and Hab(b) referring to the half
space containing a and b, respectively. It is obvious that all points above that line (located
in Hab(a)) have an Euclidean distance to a that is smaller than the distance to b. Thus,
according to Definition 3.1, a dominates b w.r.t. all objects which lie completely within
Hab(a). As a consequence, Dom(a, b, R) holds.

Definition 3.2 (Hyperplane domination decision criterion). Let a, b ∈ Rd be points and
R ∈ Rd be a rectangle. The Hyperplane domination decision criterion is defined as

DDCHP (a, b, R)⇔ R ⊂ Hab(a).

Lemma 3.1. TheHyperplane domination decision criterion is correct, i.e. DDCHP (a, b, R)⇒
Dom(a, b, R).

Proof. Since for all points p ∈ Hab(a) it holds that dist(p, a) < dist(p, b) and R ⊂ Hab(a)
it clearly holds: ∀r ∈ R : dist(r, a) < dist(r, b)⇒ Dom(a, b, R). 2

Lemma 3.2. TheHyperplane domination decision criterion is complete, i.e. DDCHP (a, b, R)⇐
Dom(a, b, R).

Proof. If it holds that ∀r ∈ R : dist(r, a) < dist(r, b) then it is by definition not possible
that there exists an r ∈ Hab(b) thus it has to hold that ∀r ∈ R : r ∈ Hab(a). 2

The Hyperplane domination decision criterion is also efficiently computable when the
used distance function is Euclidean distance (L2-norm). In this case the test if a rectangle
is in a half space can be computed in O(d) using simple computational geometry operations
[152]. An extension to other Lp-norms is not straightforward.

The most crucial drawback of the Hyperplane domination decision criterion is that a
and b are required to be points and not extended approximations such as MBRs. This
makes the application of this criterion limited. The next criterion is therefore more general
and eliminates this requirement.

3.2.2 The MinMaxDist domination decision criterion for MBRs

Probably the most obvious decision criterion for the domination problem among rectangles
is based on two well known metrics defined on rectangles [136]. The minimum distance
MinDist(A,B) between two rectangles A and B always underestimates the distance of
point pairs (a, b) ∈ A×B and is defined as

MinDist(A,B) = p

√√√√√ d∑
i=1


|Amini −Bmax

i |p, if Amini > Bmax
i

|Bmin
i − Amaxi |p, if Bmin

i > Amaxi

0 , else
(3.1)
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where Xi = [Xmin
i , Xmax

i ] represents the interval of the rectangle X in dimension i and xi
denotes the value of point x in dimension i (1 ≤ i ≤ d).

The maximum distance MaxDist(A,B) between two rectangles A and B always over-
estimates the distances of all point pairs (a, b) ∈ A×B and is defined as:

MaxDist(A,B) = p

√√√√ d∑
i=1

{
|Amaxi −Bmin

i |p , if Amidi ≥ Bmid
i

|Bmax
i − Amini |p , if Bmid

i > Amidi

(3.2)

where Xmid
i = 1

2
· (Xmin

i +Xmax
i ) is the mean of interval Xi.

Definition 3.3 (MinMaxDist domination decision criterion). Let A, B, R ∈ Rd be rect-
angles. The MinMaxDist domination decision criterion is defined as

DDCMM(A,B,R)⇔ MaxDist(A,R) < MinDist(B,R).

Lemma 3.3. The MinMaxDist decision criterion is correct, i.e. DDCMM(A,B,R) ⇒
Dom(A,B,R).

Proof. The following holds due to the conservative properties of MinDist and MaxDist:
DDCMM(A,B,R) ⇔ MaxDist(A,R) < MinDist(B,R) ⇒ ∀a ∈ A,∀r ∈ R, ∀b ∈ B :
dist(a, r) ≤ MaxDist(A,R) < MinDist(B,R) ≤ dist(b, r)⇔ Dom(A,B,R). 2

Lemma 3.4. TheMinMaxDist decision criterion is not complete, i.e. ¬DDCMM(A,B,R) 6⇒
¬Dom(A,B,R).

Proof. Figure 3.2 shows an example for the 2D space where DDCMM(A,B,R) is false
although Dom(A,B,R) holds. In the examples, A = a and B = b are rectangles with
zero extension, i.e. points. Clearly, MaxDist(a,R) < MinDist(b, R) is not satisfied, i.e.
DDCMM(a, b, R) is false, although Dom(a, b, R) holds according to the Hyperplane domi-
nation decision criterion. 2

Here, the problem is that when comparing the maximal distance between A and R with
the minimal distance between B and R we take two different positions of the object R into
account. For the maximal distance between A and R, we assume that the object R is
located at the upper left corner of its rectangle approximation. For the minimum distance
between B and R we assume that the object R is located at the lower right corner of its
rectangle approximation. However, since an object approximated by a rectangle cannot be
located at different positions at the same time, the two distances between A and R and
between B and R depend on each other (we call this phenomenon distance dependencies
and will further discuss this subject in Section 3.4).

Let us note that the MinMaxDist domination decision criterion is complete for two
arbitrary rectangles A and B if R is a point, i.e. R has no extension in all dimensions.
In addition, DDCMM can be computed efficiently in O(d) time since the calculation of
MinDist and MaxDist is linear in d. Additionally the criterion is easily extendable to other
approximations than MBRs if MinDist and MaxDist between each two approximations can
be computed (efficiently) [4].
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Figure 3.3: a1 and a2 are collectively dominating R w.r.t. b

3.3 Domination Count

In most applications, testing the single domination relation of only two approximations
(w.r.t. a reference approximation) is too basic. Rather, in the context of a set of approx-
imations O ⊆ Rd, the number of approximations A ∈ O that dominate a given approx-
imation B w.r.t. R (referred to as domination count) is required. For example, a kNN
query algorithm can use the information that at least k approximations of O dominate
approximation B ∈ O w.r.t. a query approximation R to identify B as true drop that
can be pruned. The number of approximations that dominate a given approximation can
analogously be used e.g. for RkNN queries or inverse ranking queries.

Definition 3.4 (Domination Count). Let B,R ⊆ Rd be approximations and O be a set
of approximations. The domination count of B w.r.t. R is defined by:

DC(O, B,R) = |{A ∈ O|∃r ∈ R, ∀a ∈ A, b ∈ B : MaxDist(a, r)<MinDist(b, r))}|

Intuitively, if the domination count of B w.r.t. R is k, then for each point r ∈ R there
exist at least k approximations A ∈ O which are closer to r than B.

A simple lower bound of the domination count can be achieved by computing the basic
domination count. Intuitively, the basic domination count simply counts the number of
rectangles that (completely) dominate the rectangle B w.r.t. rectangle R.

Definition 3.5 (Basic Domination Count). Let O = {A1, ..., AN} be a set of d-dimensional
rectangles and let B,R ⊆ Rd be two rectangles. The basic domination count of B w.r.t.
R is the number of objects in O that dominate B w.r.t. R, formally:

DCbasic(O, B,R) = |{A ∈ O |Dom(Ai, B,R)}|.

This is approach is for example used in [4] and we will refer to it as the naive or basic
approach.
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3.3.1 Partial Domination

Let us note that the domination count of B w.r.t. R cannot be computed by simply
counting the number of approximations that dominate B w.r.t. R by means of Definition
3.5 because this does not involve groups of approximations that dominate R collectively,
but not individually. An example of such a group of objects is shown in Figure 3.3. Here
a simple example is illustrated consisting of four approximations (note that a point is a
special case of a rectangular approximation with 0 extent). Neither point a1 nor point a2

dominates the point b w.r.t. R when using the Hyperplane criterion (which is correct and
complete). However, B is dominated partially by a1 and partially by a2, respectively, i.e.
it is dominated by a1 and a2 w.r.t. specific subregions of R. In other words each point in
r ∈ R is dominated either by a1 or a2, which means the domination count of R is 1.

In general we need to find the subregion of R with the minimal domination count,
which however is very hard. First, the computation of the intersection of a half-space
and a hyper-polyhedron becomes increasingly complex [152] for increasing dimensionality.
Secondly, the number of subregions grows very fast. To give a brief intuition of the possible
number of subregions generated by a total of n objects, consider the case of axis parallel
pruning regions. If n ≤ d, then each object may split R in a different dimension, resulting
in a total of 2n subregions. For n > d, balanced splitting of dimensions results in at least
(1+bn

d
cd) subregions. If d is assumed to be constant, then (1+bn

d
cd) ∈ O(nd). Thirdly, the

resulting subregions can be complex d-dimensional polygons, particularly the subregions
could have not only straight sides but also parabolic sides which makes computations
involving these polygons very complex.

Though we are not able to compute the exact domination count of a given rectangle
efficiently, we can try to find efficient solutions for approximating the domination count of
a rectangle. In principal, in order to determine the domination count of B w.r.t. R we need
to take the two constituting types of dominations into account: The first part is to count
all objects A for which Dom(A,B,R) holds. This number is called basic domination count.
The second and more challenging part is to detect all minimal groups A that dominate B
as a group but do not contain an element that already dominates B separately, i.e. each
Ai ∈ A only partially dominate B. The consideration of this type of domination requires
the concept of partial domination.

Definition 3.6 (Partial Domination). Let A,B,R ⊆ Rd be rectangles. A dominates B
partially w.r.t. R, denoted by PDom(A,B,R) if A dominates B for some, but not all
r ∈ R, i.e.
PDom(A,B,R) ⇔

¬(∀a ∈ A, b ∈ B, r ∈ R : dist(b, r) > dist(a, r)) (3.3)
∧

∃r ∈ R : ∀a ∈ A, b ∈ B : dist(b, r) > dist(a, r) (3.4)

Inequality 3.3 holds if A does not dominate B w.r.t. all points r ∈ R. Also note that
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Figure 3.4: Domination for pruning

Inequality 3.3 is simply the negation of Dom(A,B,R). In contrast Inequality 3.4 holds if
A dominates B w.r.t. at least one point r ∈ R.

3.3.2 Boosting Similarity Queries using the Domination Count

In this section, we will show how the concepts of spatial domination and domination count
can be used to boost the pruning power of similarity search algorithms. Following are a
few sample query predicates which can be enhanced:
Nearest-Neighbor Search. For a kNN query with query object Q, any object O ∈ D
can be pruned if DC(D, O,Q) ≥ k. Consider Figure 3.4(a) where O is dominated by O1

and O2 w.r.t. Q1. Thus the domination count DC(D, O,Q) is at least 2. We might as
well say:“At least two objects are closer to Q than O”. In this case O can safely be pruned
from further processing. In contrast O′ is not dominated by any other object w.r.t. Q and
has to be further processed.

The spatial domination decision criteria can furthermore not only be used for pruning
true drops. A problem very similar to pruning is the detection of true hits, i.e. to quickly
decide that a potential result candidate must be part of the result set. For example, in the
case of kNN queries, an object B is a true hit, if there may be at most k objects that can be
closer to R than B. In other words, B is a true hit, if it dominates at least |D|−k objects.
Thus, for a kNN query, an object B is a true hit if |{A ∈ D|dom(B,A,Q)}| > |D| − k.
Reverse Nearest Neighbor Search. For a general RkNN query with query object Q,
any object O ∈ DB can be certainly pruned if DC(D, Q,O) ≥ k. Consider Figure 3.4(b)
where Q is dominated by O1 and O2 w.r.t. O. Thus the domination count DC(D, Q,O) is
at least 2. We might as well say:“At least two objects are closer to O than Q. In this case
O can safely be pruned from further processing. In contrast no object dominates Q w.r.t.
O′ thus it has to be further processed.

As before we are also able to identify true hits. For a RkNN query, an object B is a
true hit if |{A ∈ D|dom(Q,A,B)}| ≥ |D| − k.
Inverse Similarity Ranking. The problem of inverse ranking is to determine for a given
query object Q the number of objects that are closer to a given reference object R. Such

1Here we just state that this is the case and not consider this relation in detail.
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queries are useful e.g. to determine the financial standing of bank customers in relation to
existing customers. In this scenario, the attributes of customers are often uncertain (e.g.
income of 40k − 50k) and thus modeled by uncertain regions, i.e. rectangles. Lower and
upper bounds for the rank of Q are DC(D, Q,R)+1 and |D|−|{A ∈ D|dom(Q,A,R)}|+1,
respectively.

3.4 Dealing with Distance Dependencies
The main problem when detecting spatial domination and calculating the domination count
is the problem of distance dependencies. These distance dependencies become obvious
when analyzing Definitions 3.1 and 3.4 where we have to verify that dist(a, r) < dist(b, r).
Obviously the distance on the left-hand side is dependent on the distance on the right-hand
side. This makes the evaluation of these spatial relations problematic. So far we reviewed
two domination decision criteria:

• The MinMaxDist decision criterion as used in [4]: It is correct and it is efficiently
computable as long as the underlying approximations and used distance function
allow for efficient computation of MinDist and MaxDist. The main drawback is that
it is not complete since it does not consider the aforementioned distance dependencies
but only uses bounds of the true distances. The domination count can only be naively
lower bounded.

• The Hyperplane decision criterion as defined in [152]: It is complete, correct and effi-
ciently computable for MBRs of arbitrary dimension if the underlying distance func-
tion is the Euclidean distance. The main drawback is that for checking Dom(A,B,R)
it the object A and B to be points and not extended approximations. The domination
count can be better lower bounded than with the naive implementation (for details
we refer to [152]) but this approach scales very bad (regarding the computational
cost) for high dimensionality of the data.

In the following chapters of this work we will demonstrate new techniques for efficiently
detecting domination, partial domination and calculating the domination count of objects
in order to boost different spatial applications. Namely we will introduce

• the EntryHyperplane domination decision criterion in Chapter 4: This criterion is
an extension of the Hyperplane domination decision criterion which is complete and
correct for MBRs and the Euclidean Distance. It removes the requirement that for
checking Dom(A,B,R), B has to be a point for the cost of a higher computational
overhead. Additionally we will show for the case where d = 2 how to exactly compute
the domination count.

• the CornerBased domination decision criterion in Chapter 5: Using this criterion it
is possible that all MBR approximations are extended when checking Dom(A,B,R).
Still the computational overhead of the EntryHyperplane decision criterion remains
and the domination count is only naively lower bounded.
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• a Trigonometric domination decision criterion in Chapter 6: This criterion is designed
for spherical approximations when the Euclidean distance is used. Under this setting
it is correct, complete and most important efficiently computable. The domination
count is again lower bounded naively.

• the Optimal domination decision criterion in Chapter 7: Since MBRs are the most
prevalent approximation in database applications, this criterion combines the advan-
tages of all before mentioned criteria on MBRs. It is complete, correct, efficiently
computable and utilizable under all Lp-norms. The domination count can be it-
eratively approximated guaranteeing the lower bound property and controlling the
computational overhead.

A summary of all domination decision criteria can be found in Table 3.1.

Criterion Chapter Complete Correct Efficient Dom. Count Restrictions
Min-/MaxDist 3 - X O(d) naive -
Hyperplane 3 X X O(d) costly L2, MBR, A,B points
EntryHyperplane 4 X X O(2d) optimal (2d) L2, MBR, B point
Corner 5 X X O(2d) naive MBR
Spherical 6 X X O(d) naive L2, Sphere
Optimal 7 X X O(d) iteratively MBR

Table 3.1: Overview over spatial domination decision criteria
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Chapter 4

The EntryHyperplane Domination
Decision Criterion

In this chapter, we demonstrate how to extend the Hyperplane approach such that for de-
tecting Dom(A,B,R), only B has to be a point (in contrast to the Hyperplane domination
decision criterion where both A and B have to be points) while still being complete. Ad-
ditionally we show how based on the concept of partial domination, the domination count
can be efficiently and exactly computed for the case where d = 2.

As an application we formalize the novel concept of incremental reverse nearest neighbor
ranking. We propose an efficient approach for reporting the results incrementally without
the need to restart the search from scratch. We show how the new domination decision
criterion and the new domination count computation technique can be incorporated for
RNN ranking. Our approach can be applied to a multi-dimensional feature database which
is hierarchically organized by any R-tree like index structure. Our solution does not assume
any preprocessing steps which makes it applicable for dynamic environments where updates
of the database frequently occur. Experiments show that our approach reports the ranking
results with much less page accesses than existing approaches designed for traditional
reverse nearest neighbor search applied to the ranking problem.

Parts of this chapter have been published in [63]. The reminder of this chapter is orga-
nized as follows. In the following Section 4 we introduce the EntryHyperplane domination
decision criterion. In Section 4.3 we formally define the RNN ranking problem we want to
solve here and discuss related work. Section 4.4 explores how the EntryHyperplane domi-
nation decision criterion can be utilized for RNN ranking. An experimental evaluation is
presented in Section 4.5. Last but not least, Section 4.6 concludes the chapter.

4.1 The Criterion

Though complete, correct and efficient DDCHP has the drawback that the objects A and B
have to be points and cannot be spatial approximations with extension. In this section we
want to show how this constraint can be removed for the object A. Note that to determine
if Dom(A, b,R) holds we have to show that each point r ∈ R is definitely closer to any
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Figure 4.1: The EntryHyperplane criterion

point a ∈ A than to the point b. The basic idea of the new criterion is illustrated in Figure
4.1, where some sample points a1, a2, a3, a4 ∈ A are depicted. For each point a1−4 we
additionally included the corresponding hyperplane Ha1−4b. Now if we can find a construct
HAb which conservatively (no hyperplane Habx intersects with HAb(A)) approximates all
hyperplanes build by any point a ∈ A and additionally use HAb to check if the object R
is on the same side than A (R ∈ HAb(A)) then we can drop the constraint for A to be a
point. Thus for determining Dom(A, b,R) we utilize the Hyperplane domination decision
criterion, formally:

Dom(A, b,R)⇐ ∀a ∈ A : DDCHP (a, b, R)

Obviously it is not possible to efficiently use the above formula directly since there exist
an infinite number of points a ∈ A. So the task at hand is to find the construct HAb and
use it efficiently.

Figure 4.2 illustrates the computation of such a conservative approximation for a given
approximation A in a 2D feature space. First, we have to specify the maximum distance
between the mbr-region of the approximation A and any point in the vector space. It
suffices to find for each point p in the vector space the point a ∈ A which is within the
mbr-region of A having the maximum distance to p. This can be done by considering
partitions of the vector space which are generated as follows: in each dimension the space
is split paraxially at the center of the mbr-region of A. As illustrated for the 2D example
in Figure 4.2, we obtain partitions denoted by NW , NE, SE and SW . In each of these
partitions P , the vertex point of the mbr-region which lies within the diagonal-opposite
partition is the mbr-region point which has the maximum distance to all points in P . In our
example, for any point p in SW the maximum distance of p to A is the distance between
p and point aNE in partition NE. Consequently, the hyperplane HaNEb is a conservative
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Figure 4.2: Construction of the hyperplane HAb

approximation of all hyperplanes between points within the mbr-region of A and b within
the partition SW . In our example, the complete construct associated with A is composed
by the three hyperplanes HaNEb, HaNW b and HaSEb.

In the general multi-dimensional case HAb consists of one hyperplane per vertex of the
mbr A resulting in 2d hyperplanes 1. For checking that an mbr R is on the same side than
A of HAb it is necessary to check if R is on the same side than A for each of these 2d

hyperplanes.

Definition 4.1 (EntryHyperplane Domination Decision Criterion). Let b ∈ Rd be a point
and A,R ∈ Rd be rectangles and let Av be the set of vertex points of the mbr A. The
EntryHyperplane domination decision criterion is defined as

DDCEH(A, b,R)⇔ ∀av ∈ Av : R ∈ Havb(A).

Lemma 4.1. The EntryHyperplane domination decision criterion is complete and correct.

Proof. Follows directly from the construction process of HAb. Since R has to be located in
all Havb(A) it is assured that each point ri ∈ R is within Havib

(A) where avi is the vertex
point having the largest distance to ri. 2

4.2 Domination Count Computation

Let us note again that the exact domination count DC(O, b, R) of an object b w.r.t. object
R can not be computed by just considering the number of objects A ∈ O which fully

1Let us note that we may ignore the vertex located in the partition containing b
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Figure 4.3: Partial pruning based ranking count estimation strategy.

dominate b (cf. Section 3.3). For computing the domination count of b it is necessary to
also consider objects which partially dominate b. This situation is illustrated in Figure
4.3 where R is intersected by three hyperplanes HA1b, HA2b and HA3b since A1, A2 and A3

partially dominate b w.r.t. R. HA1b, HA2b and HA3b partition R into segments. For any
segment s, the domination count of b is equal w.r.t. all points r ∈ s (illustrated by the
red numbers in R). Thus, the minimum number of halfspaces HAib(Ai) any point r ∈ R is
covered by, is the minimal domination count of b w.r.t. all segments of R. Therefore, the
domination count DC({A1, A2, A3}, b, R) is 1 in our example. However, this computation
requires to examine O(2m) segments, where m is the number of hyperplanes intersecting
R. In [152], a similar approach is used, that requires to examine an exponential number
of pruning intersection areas. Next, we propose an efficient approach for partial pruning
that is based on the following observations:

Lemma 4.2. If the object R contains the point b, then the domination count DC(O, b, R)
is always 0.

The above lemma is obvious, because if R contains b, then R contains one point r0 = b
which has a distance of 0 to b Thus, there can not exist any object A ∈ O which has a
smaller distance to r0 than to b.

Lemma 4.3. If an object R does not contain the point b, then the minimal domination
count of b w.r.t. all points r ∈ R is equal to the minimal domination count of b w.r.t. all
points on the edges (i.e. the boundary) of R.

Proof. Assume a rectangle R and a point b outside of R (cf. Figure 4.4). Let r be an
arbitrary point inside of R and let i denote the intersection of segment [b, r] with the
boundary of R. Assume that the domination count of b w.r.t. i is k. Thus, by definition,
at least k objects A0, . . . , Ak−1 are closer to i than to b, i.e. ∀Aj ∈ {A0, . . . , Ak−1} :
dist(i, b) > MaxDist(i, Aj). For each Ai ∈ {A0, . . . , Ak−1}, the following inequation holds:

dist(r, b) = dist(r, i) + dist(i, b) > dist(r, i) +MaxDist(i, Aj)
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and the triangle inequality yields:

dist(r, i) +MaxDist(i, Aj) > dist(r, Aj)

Therefore, any object Aj that is closer to i than to b is also closer to r than to b. Thus
the domination count of b w.r.t. r is at least the domination count of b w.r.t. i. And
since i is located on the boundary of R, DC({A0, . . . , Ak−1}, b, r) is at least the minimum
domination count of b w.r.t. to a point i on the boundary of R. 2

For two-dimensional data, we can use the above lemma to efficiently compute the
domination count DC(O, b, R) using the techniques proposed in the previous section for
objects which fully dominate b w.r.t. R and the following plane sweep algorithm for the
objects which partially dominate b w.r.t. R if b is outside of rectangular region R.

Since only the boundary of an object R is required to determine b’s domination count,
we linearize the boundary of R to the interval [0, 4]. Points on the lower edge of R are
represented by their relative position on that edge, points on the right edge of R are
presented by the relative position on that edge plus one, and so on (c.f. Figure 4.3). For
each hyperplane approximation HAib that intersects R, we determine all intersections of
HAib with R 2 and the respective regions of the boundary of R that is dominated by Ai.
In Figure 4.3 b is dominated w.r.t. the boundary of R by A2 in the interval [2.3,3.4], by
A1 in the interval [1.2,0.5], which is split into two intervals [1.2,4.0] and [0.0,0.5] and by
A3 in the interval [0.2, 2.5]. These intervals can be computed efficiently by simple line-
line intersection operations. The task is to find the minimum domination count w.r.t. all
points on the boundary of R. The domination count of a point r on the boundary can be
obtained by summing up all the domination counts considering all hyperplanes for which
the corresponding interval covers r. Now the minimum domination count of of b w.r.t. all
points on the boundary can be computed using a plane sweep technique as depicted in
Figure 4.3. During the sweep the global minimum of the domination count is computed.
This proceeding provides us with an elegant technique for computing DC(O, b, r). Let
us again note that only objects Aj ∈ O which do partially dominate b w.r.t. r have to
be considered in this plane sweep algorithm. The number objects fulfilling this criteria is
usually very small compared to the complete set of objects |O|. Each of these l objects

2Note that a hyperplane approximation can have at most four intersections with an mbr in 2d, due to
its convex shape.
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may generate at most 6 stop points for the plane sweep algorithm, thus the runtime of this
proceeding is O(l).

In the following section we will show how to incorporate this technique for computing
the domination count can be integrated in order to perform Reverse Nearest Neighbour
Ranking.

4.3 Application: Incremental Reverse Nearest Neigh-
bour Ranking

While the reverse nearest neighbor (RNN) search problem, i.e. finding all objects in a
database D that have a given query q among their corresponding k-nearest neighbors, has
been studied extensively in the past years, considerably less work has been done so far
to support an RNN ranking of objects of a database. An RNN ranking sorts the objects
o ∈ D of the database according to the number of other objects in the database that are
more similar to o than q is. Thus, if an object o has a ranking score of i w.r.t. a query
q, object o would also be a reverse k-nearest neighbor of q for all k ≥ i but not a reverse
k-nearest neighbor of q for all k < i.

Initially, the RNN ranking query reports those objects having the smallest ranking
scores in a non-deterministic way since several objects may have the same minimal ranking
score. Thereby, the results are reported on demand whenever a function called getNext()
is invoked. In other words, each consecutive call of getNext() reports one object with
minimal ranking score until all objects have been reported.

The major challenge for algorithms that support rankings in general and RNN rankings
in particular is that the result of each getNext()-call should be computed incrementally
rather than from scratch, i.e. the current state after each getNext()-call needs to be stored
and serves as a starting point to compute the results of the next call. The advantage of an
incremental ranking method in general is that no parameter k has to be specified for the
query in advance and the first (most relevant) results are reported immediately without
the overhead of simultaneously computing less relevant results. In addition, if the initial
results are not sufficient due to any application specific reasons, further results can be
requested on demand by calling the getNext() function.

4.3.1 Problem Formalization

In the following, we assume that D is a database of n feature vectors and dist is the
Euclidean distance on the points in D. In addition, we assume that the points are indexed
by any traditional aggregate point access method (using rectangles as page approximations)
like the aR-Tree family [103, 126].

Here, we will be interested in computing a ranking of reverse nearest neighbors (RNNs)
w.r.t. a query object q rather than in computing the RkNN of q for a fixed value of k.
The concept of the domination count for an object o ∈ D from the database helps here.
DC(D\ o, q, o) returns the number of objects which are closer to o than the query q. Since
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the database D and the query are fixed in this application we will write DC(o) instead of
DC(D \ o, q, o). Obviously, it holds that o ∈ RkNN(q,D) iff DC(o) ≤ k.

The problem of a reverse nearest neighbor ranking is to return incrementally all objects
o ∈ D in increasing order of the values of DC(o) by calling the method getNext(). In case
of ties, getNext() may report any qualifying object, i.e. we will allow for non-determinism.
Let us note that the i-th call of getNext() not necessarily return an object that is an RiNN
of q, because for a fixed value of k the set RkNN(q,D) − R(k − 1)NN(q,D) generally
may contain an (even empty) set of points. In other words, the i-th call of getNext() may
report an object o with DC(o) 6= i. As a consequence, as additional information, the result
of each of the ranking steps should include not only the actual object o but also its ranking
count (ranking score) DC(o).

4.3.2 Related Work

The problem of supporting reverse k-nearest neighbor (RkNN) queries efficiently, i.e. com-
puting for a given query q and a number k the RkNNs of q, has been studied extensively
in the past years and has already been discussed in Section 2.4.

Recently, a method for ranked RkNN search has been proposed in [105]. In fact, the
authors provide a method for computing the results of an RkNN query with fixed k that are
ranked according to k, i.e. the RiNNs are ranked higher than the RjNNs if i < j ≤ k. This
problem is obviously different to the problem of computing an incremental RNN ranking
which will be addressed here.

4.4 Performing Incremental RNN Ranking

Our approach is based on an index structure I for point data which is based on the concept
of minimal-bounding-rectangles, e.g. the R-tree family like [77, 21, 26]. In particular, we
use multi-resolution aggregate versions of these indexes as described in [103, 126] that e.g.
aggregate for each index entry e the number of objects that are stored in the subtree with
root e. The set of objects managed in the subtree of an index entry e ∈ I is denoted by
subtree(e). Note that the entry e can be an intermediate node in I or a point, i.e. an object
in D. In the latter case, subtree(e) = {e}.

4.4.1 Ranking Count Computation

The general idea of our solution is based on the TPL algorithm for RkNN search [152],
where entries are pruned which are beyond a given number (k) of Voronoi hyperplanes.
However, instead of pruning an index entry e, we need the amount of hyperplanes behind
which each object o ∈ e is located w.r.t. q. This corresponds directly to the domination
count DC(D \ o, q, o) for all points o ∈ subtree(e). Since computing the exact domination
count for an object o requires considering all objects from the database, we will estimate
the actual domination count by the function R(o) (denoted as ranking count) during query
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processing. Specifically R(o) will be set to 0 at the beginning of query processing and will
always conservatively lower bound the actual domination count

R(o) ≤ DC(D \ o, q, o)

Additionally during query processing will compute the ranking count of index entries
e (denoted as R(e)) in the same manner.

Ranking Count Computation based on the Hyperplane criterion

If during query processing we find an object o that dominates q w.r.t. an index entry e,
then we know that for all o′ ∈ subtree(e), the value of R(o′) can be increased by one. For
example, in Figure 4.5, entry e is beyond the Voronoi hyperplane between q and o′, denoted
by Hqo′ . Thus, o′ will have a smaller distance to all objects o ∈ subtree(e) than q, i.e. all
objects o ∈ subtree(e) will have a ranking count R(o) of at least 1. In this we may also say
that the ranking count of e is k (or R(e) = k).

Ranking Count Computation based on the EntryHyperplane criterion

Using the Entry Hyperplane criterion we can identify the following relation during query
processing: “An index entry e′ dominates q w.r.t. an other index entry e” (cf. Figure
4.6). Since we assume that the number of objects stored in the subtree of an index entry
e is known, if we exploit the indexing concept as proposed in [103], we also know for the
hyperplane associated with that index entry e′ (He′q) how many objects this hyperplane
relates to. This means that if an entry/object e is behind a hyperplane He′q associated
with an index entry e′, the entry e is also behind all hyperplanes Hoq associated with
the objects o ∈ subtree(e′). We can use this information in order to increase the ranking
count of entries according to e′ without accessing the child entries of e′. Consequently, the
ranking count of an entry/object e which is behind a hyperplane He′q can be increased by
|subtree(e′)|. In our example R(e) can be increased by 4.
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Ranking count computation based on partial domination

Additionally it is possible to further improve the estimation of the exact domination count
by using the concept of partial domination (cf. Section 4.2). Since each entry e′ in the
index has a weight (representing the number of objects which are contained in the entry
e′) associated with it we have to adapt the proposed technique in the following way (cf
Figure 4.7): Since the entry e′ is an approximation of |subtree(e′)| objects, we may increase
the domination count of each segment of e which is fully covered by He′q by |subtree(e′)|.

4.4.2 Best-First Search Based Incremental RNN Ranking Algo-
rithm

In this section, we show how we explore the index such that the first results can be reported
early without causing unnecessary page accesses. We start with an informal description of
our solution before we present implementation details and pseudo code.

Similar to the TPL approach for RkNN queries our approach is based on a best-first
search method exploiting a priority queue organizing the index entries to be explored.
In contrast to the TPL approach, we propose to give the priorities to the index entries
according to the estimated ranking count, i.e. entries with low ranking counts are ranked
higher than entries with high ranking count. This means that entries containing objects
with a low expected ranking position are explored before entries containing objects with
a high expected ranking position. The rational for this strategy is that in this way we try
to explore those entries first which contain potential candidates to be reported next from
the ranking query.

For the organization of the index entries during the traversal of the index we maintain a
priority queue Q storing entries with the corresponding estimated ranking count which are
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Figure 4.7: Partial pruning for ranking count computation.

sorted in ascending order according to their estimated ranking count. Thereby we assume
that the ranking count of each entry in this queue was generated by taking all current
entries in the queue into account using the aforementioned strategies for increasing the
ranking count.

The top element of the queue is the entry which will be explored next. Whenever an
entry e is explored, i.e. e is loaded from disk and is refined, we have to perform the following
two steps: first, we update the ranking counts of all elements in the queue according to
the children of e and, second, the ranking counts of e’s child elements are computed before
we insert them into Q.

For the first step, we determine those entries in Q which could be affected by the
refinement of an entry e′, i.e. for which the ranking count might be increased after refining
e′. Obviously, those entries which are completely behind the hyperplane representation of
e′, He′q, must also be behind the hyperplane representations of each child of e′ and, thus,
their ranking count is not affected by the refinement of e′. In the example shown in Figure
4.8, entry e3 is not affected by the refinement of entry e′ due to the above considerations.
Furthermore, we can ignore those entries e which cannot be behind a hyperplane of any
object within subtree(e′), e.g. entry e1 in the example in Figure 4.8, i.e. those entries e for
which the following statement holds:

∀p ∈ e.mbr : dist(p, q) < MinDist(p, e′.mbr)

which is equivalent to
Dom(q, e′, e)

Since neither the Hyperplane nor EntryHyperplane criterion are able to detect this relation
we rely on the MinMax Decision Criterion (i.e. test if DDCMM(q, e′, e) holds). Let us
note that since the DDCMM is not complete this test does not always detect Dom(q, e′, e),
however since correctness is assured we will not produce any wrong results.
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Corollary 4.1. Entries which may be affected by the refinement of e′ are the remaining
entries, i.e. those entries e that neither fulfill

DDCEH(e′, q, e) nor DDCMM(q, e′, e)

Each entry e fulfilling none of the above two conditions, e.g. entry e2 in our example in
Figure 4.8, has to be checked against the hyperplane representation of each child of e′. If
the entry e is behind the hyperplane representation of a child e′c of e′, its ranking counter
will be increased by |subtree(e′c)|.

For the second step, we determine the ranking counts of the children of e′. For that
purpose, we simply check all existing entries e ∈ Q and all other children of e′ whether the
current child e′c of e′ is behind the corresponding hyperplanes. If yes, the ranking count of
e′c is increased by |subtree(e)|

Finally, if the top entry e in the queue Q is a point, i.e. e ∈ D, the point can be output
as a result only if neither DDCEH(e′, q, e) nor DDCMM(q, e′, e) for any e′ that are currently
in the queue. An object e for which we find an entry e′ such that the above holds may not
have reached its final ranking count (the exact domination count). In this case we need
to refine any of those entries e′ ∈ Q for which this condition holds. As a consequence, e
might get a higher ranking count and might be shifted towards the end of Q.

The pseudocode of the algorithm for the incremental RNN ranking is illustrated in
Algorithm 1 providing the implementation details of the previously discussed steps. Before
the first call of the getNext()method, we initialize the priority queueQ which stores index
entries sorted in ascending order of their ranking count. Ties occuring in the priority queue
are resolved by, first, prefering leaf index entries to directory index entries and, second, by
sorting the entries in increasing distance to q.

The priority queue is initialized with the root of the index. For each call of the get-
Next() method, we dequeue the first entry e of Q. If e is a directory node, then it will be
refined calling the refine() routine depicted in Algorithm 2. During refinement, we first
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Algorithm 1 getNext()
1: while Q 6= ∅ do
2: e = Q.dequeue()
3: if e is a directory entry then
4: refine(e)
5: else
6: e′ = refinementRound(e)
7: if e′ = NULL then
8: return e
9: else
10: refine(e′)
11: end if
12: end if
13: end while

have to find all entries in Q that are candidates for having their ranking count increased
due to the refinement of e. An entry e′ is such a candidate, if Corollary 4.1 holds (see
line 3 of the refinement procedure in Algorithm 2). These candidates are stored in a list
updateI.

Algorithm 2 refine(e)
1: updateI= {e′ ∈ Q|¬DDCEH(e, q, e′) ∧ ¬DDCMM (q, e, e′)}
2: updateII= {e′′ ∈ (queue ∪ result)|¬DDCEH(e′′, q, e) ∧ ¬DDCMM (q, e′′, e)}
3: for all ec ∈ e do
4: for all e′ ∈ updateI do
5: if DDCEH(ec, q, e

′) then
6: increaseRankingCount(e′, ec.weight)
7: end if
8: end for
9: for all e′′ ∈ updateII do
10: if DDCEH(e′′, q, ec) then
11: increaseRankingCount(ec, e′′.weight)
12: end if
13: end for
14: for all e′c ∈ e do
15: if DDCEH(e′c, q, ec) then
16: increaseRankingCount(ec, ec’.weight)
17: end if
18: end for
19: Q.insert(ec)
20: end for

Additionally, we need all entries that are candidates for increasing the ranking count
of one of the child entries of e. Again we can use Corollary 4.1 to find these candidates
(cf line 2 of the refine() procedure in Algorithm 2), which are stored in a list updateII.
Lines 3-8 check for each child node ec of e and element e′ ∈ updateI, if e re-ranks e′ and
increases the ranking count of e′ if necessary. Analogously, lines 9-13 increase the ranking
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count of ec, if an element e′′ ∈ updateII re-ranks ec. Then, we increase the ranking count
for each child entry e′c of e that is able to re-rank ec. Note that ec and e′c may be identical,
i.e. ec re-ranks itself. Finally ec is inserted into the queue Q.

If the entry e is a leaf entry, i.e. e is an object, then e obviously cannot be refined.
However, we may not yet return e as a result without further checking, because it may be re-
ranked due to an entry that has not yet been refined. In that case, we need to scan the queue
Q for an object that is a candidate for re-ranking e by calling the refinementRound()
function which is depicted in Algorithm 2 and refining (c.f. Algorithm 2) this object. If no
such object exists, e can be returned as the result of the current getNext()-call.

The concept of partial domination for improving the ranking count is not included to
keep the pseudo code as simple as possible. It can however be simply integrated at the
places in the code where the ranking count of an entry e is updated.

Algorithm 3 refinementRound(e)
1: for all e′ ∈ Q do
2: if (MinDist(e, e′) ≤ Dist(e, q) < MaxDist(e, e′)) then
3: return e′

4: end if
5: end for
6: return NULL

4.5 Experimental Evaluation
In this section, we present the results of our experiments. We start by explaining in detail
the settings of our experiments and those of the competitors. Then, we show the results
of our performance evaluation on multi-dimensional data. Finally, we evaluate the effect
of the partial domination technique on 2D-datasets.

4.5.1 Test Bed

We compared our novel approach for computing an RkNN ranking, with two adaptions of
the TPL [152] approach which is the current state-of-the-art algorithm for RkNN query
processing. In fact, we applied two versions of the TPL approach for computing a ranking.
The problem of the TPL approach is that we cannot predict the number of getNext()-calls
beforehand. Thus, we do not know a suitable value of k to answer all getNext()-calls.

The first variant, called TPL-Lazy, implements a lazy strategy assuming that we have
a low number of getNext()-calls. It manages a result list which is initially empty and a
counter kc which stores the current value of k and is initialized with kc = 1. The entries
in the result list are ordered by increasing ranking scores. For each call of the getNext()
method, this variant checks the result list. If the result list is empty, TPL-Lazy computes
a RkNN query with k = kc using the original TPL approach, adds the result of this query
to the result list with a ranking score of kc, and increments kc. These three steps are
processed iteratively until the result list is no longer empty. Last but not least, the TPL-
Lazy method returns the next entry in the result list. Obviously, this variant only issues
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(b) Comparison to TPL-Lazy.

Figure 4.9: Comparison of our RkNN ranking with the competitors on uniformly dis-
tributed data.

a new RkNN query if necessary beginning with k = 1 and successively incrementing the
value of k. The costs for answering l getNext()-calls are the sum of the costs of all queries
for k = 1, . . . necessary to answer the l calls.

The second variant, called TPL-Eager, implements an eager policy assuming a higher
but possible fixed maximum number of getNext()-calls. It simply assumes that the maxi-
mum number of getNext()-calls will be less than the number of result objects of a RkNN
query with a special value of kmax, e.g. kmax = 100. Then, we only need to issue one
RkmaxNN query using the original TPL approach beforehand and sort the results ac-
cording to their ranking score. Whenever a getNext()-call is issued (and as long as the
assumptions stated above regarding the size of the result and the number of getNext()-calls
hold), we can simply return the next object from the result list. The costs for answering l
getNext()-calls equal to the costs of answering the RkmaxNN query (again, as long as the
result contains at least l points). Let us note that there is no direct relationship between
the number of getNext()-calls l and the value kmax. This makes it even harder for the
TPL-Eager approach to guess a proper kmax value. In fact, to obtain a fair comparison,
we computed the most optimistic scenario for the TPL-Eager variant: we first issued l
getNext()-calls with our new ranking method and obtained the ranking count of the re-
sulting point of the last call. This count is the optimal kmax value for the TPL-Eager
approach and we used this value in all our experiments. Thus, in realistic scenarios, the
results of a TPL-Eager approach would be worse than presented here. All experiments are
based on an aR*-Tree (aggregate version of R*-Tree where each page additionally stores
the number of points contained in it [103]) with a page size of 1K. Since all approaches are
I/O bound we compared the number of disc pages accessed during the execution of 500
sample RkNN queries and averaged the results.
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(b) Comparison to TPL-Lazy.

Figure 4.10: Comparison of our RkNN ranking with the competitors on clustered data.

4.5.2 Performance Evaluation

Synthetic Data

We used two synthetic datasets to compare the performance of our ranking algorithm with
the two variants of TPL. The first dataset contains 10,000 uniformly distributed 2D points.
Figure 4.9 displays the performance of the competitors w.r.t. the number of getNext()-calls.
As expected, the performance of the TPL-Eager approach (c.f. Figure 4.9(a))is constant as
long as the number of getNext()-calls is smaller than the number of results of the RkmaxNN
query issued beforehand (which is the case in our scenario – see above). Nevertheless, our
ranking algorithm clearly outperforms this TPL variant in terms of query execution times.
In fact, the costs of our approach increase only slightly with successive getNext()-calls. In
addition, it should be noted that TPL-Eager would need to issue a new RkNN query with a
considerably higher value of k if we have more than 35 getNext()-calls because TPL-Eager
was optimized for 35 results. Thus, in that case, we would have a jump for the TPL-Eager
approach at the 36th getNext()-call while the costs of our ranking algorithm will most
likely evolve like in the range of the first 35 getNext()-calls. On the other hand, the costs
for the TPL-Lazy variant (cf. Figure 4.9(b)) increase much faster than the costs of our
new ranking algorithm. Again our approach clearly outperforms the competitor in terms
of query execution times. Note that the performance of our ranking algorithm is of course
the same in both Figures 4.9(a) and 4.9(b).

A similar observation can be obtained from Figure 4.10 which displays the performance
of the competitors on a 2D synthetic dataset that contains 10,000 points clustered into
four different clusters. The only obvious difference is that here, the TPL-Eager approach
performs much better than on the uniform dataset. As illustrated in Figure 4.12(a), our
ranking algorithm outperforms the TPL-Eager variant only for the first 27 getNext()-calls.
In this setting, the TPL-Eager slightly outperforms our ranking algorithm for 30 to 35
getNext()-calls. However, please note that, first, the TPL-Eager approach was implemented
with the most optimistic assumptions and can be expected to perform considerably worse
in a more realistic scenario where the perfect kmax value can usually not be determined
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(b) Comparison to TPL-Lazy.

Figure 4.11: Comparison of our RkNN ranking and the competitors on 5D gene expres-
sion data.

beforehand. Second, as explained above, TPL-Eager was optimized for 35 results. If we
had more than 35 getNext()-calls, then TPL-Eager would be required again to compute
a new RkNN query with a considerably higher value of k which would cause significantly
higher costs from the 36th getNext()-call on until the next jump limit is reached.

On the other hand, in comparison to the TPL-Lazy variant (cf. Figure 4.12(b)) our
ranking algorithm again performs much better and significantly outperforms the competitor
in terms of query execution times. Again, the performance of our ranking algorithm is of
course the same in both Figures 4.12(a) and 4.12(b).

Real-world Data

We also tested our novel ranking algorithm on real-world data. In Figure 4.11 the per-
formance of our ranking algorithm is compared with the performances of the TPL-Eager
variant (cf. 4.11(a)) and the TPL-Lazy variant (cf. 4.11(b)) on a dataset that features the
expression level of approx. 6,000 genes under 5 conditions. The result on this 5D dataset
is similar to the results on the synthetic datasets reported above. Again, our ranking al-
gorithm clearly outperforms the TPL-Lazy approach. Analogously, the difference to the
TPL-Eager approach is less significant but still considerable. It should again be noted that
the TPL-Eager variant assumes the most optimistic scenario for its application which is
most likely not a realistic setting, and, thus, it can be expected that TPL-Eager performs
less accurate in most applications.

4.5.3 Effect of incorporating Partial Domination

We evaluated our partial pruning technique using a uniformly and a clustered 2D-dataset
each containing 10,000 datapoints. The results are depicted in Figure 4.12. Notice that
the number of page accesses is reduced by enhancing the domination count estimation by
partial domination in both experiments. The effect however, is much more significant on
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Figure 4.12: Effect of the spatial partial pruning.

the uniformly distributed dataset. Finally, we performed the same experiment on a real
world dataset extracted from the Forest Cover Type dataset, retrieved from the UCI KDD
repository [13] consisting of 10,000 2D-points 3. The result in Figure 4.12(c) shows that
the spatial partial pruning technique reduces the number of page accesses by about 25%.

4.5.4 Summary

To summarize the results of our experimental evaluation, our novel ranking algorithm out-
performs both adaptions of the existing TPL algorithm to the ranking problem, TPL-Eager
and TPL-Lazy, significantly in terms of query execution times. While TPL-Eager seems to
be competitive (if at all) only for a higher number of getNext()-calls, TPL-Lazy seems to
be competitive (if at all) only for a very low number of getNext()-calls. This result is quite
intuitive because TPL-Eager tries to estimate the worst-case by precomputing the maxi-

3Here we only used the first two dimensions corresponding to spatial locations and the first 10,000
feature vectors
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mum number of required results for a maximum number of getNext()-calls by computing
one RkmaxNN query. Thus, the more the number of getNext()-calls reaches the number of
resulting objects of the RkmaxNN query, the more the costs for the RkmaxNN query pay
off. Otherwise, TPL-Eager caused a large portion of unnecessary costs to compute a large
number of results that are not needed. On the other hand, TPL-Lazy assumes the best case
of very few getNext()-calls and, thus, computes results only if necessary by consecutively
issuing a RkNN query with increasing k. Obviously, as long as the number of consecutive
RkNN queries, with increasing k necessary to report results, is small, i.e. the number of
getNext()-calls is low, this strategy pays off. Otherwise, TPL-Lazy constantly recomputes
RkNN queries with the next higher value for k which produces a lot of redundant results
w.r.t. the previously computed queries.

Our ranking algorithm obviously performs best because it does not assume worst- or
best-cases but focuses on computing the ranking incrementally. Since in a ranking query
scenario, it is not known beforehand, how often the method getNext() is called, this is the
most efficient solution in the general case but also – as our experiments illustrate – in the
borderline cases where either TPL-Eager or TPL-Lazy perform best.

4.6 Conclusions
In this chapter we introduced the EntryHyperplane domination decision criterion which can
be used to completely and correctly detect Dom(A,B,R), with the restriction that B has
to be a point. Additionally we developed a plane sweep algorithm which can be utilized to
exactly compute the domination count DC(O, b, R) for the two dimensional case. Both of
these techniques are then incorporated into the novel application reverse nearest neighbor
ranking. The RNN ranking is formalized and an original solution is proposed. Our solution
extends existing methods for RNN query processing in the following important aspects.
First, we showed how the techniques for domination count estimation can be utilized for this
problem and second we proposed an incremental algorithm for the RNN ranking problem.
Our experimental evaluation confirms that our new solution outperforms existing methods
adapted for the new problem significantly in terms of query execution times. Additionally
we could show that incorporating the concept of partial domination for improving the
domination count estimation yields another performance boost for this application.
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Chapter 5

The CornerBased Domination Decision
Criterion

In this chapter, we introduce the CornerBased domination decision criterion which can be
used for detecting the domination relation Dom(A,B,R), where all three objects A,B and
R may be rectangular approximations.

As an application we formalize the novel concept of Constrained Reverse k-Nearest
Neighbor (CRkNN) search on mobile objects (clients) performed at a central server. The
CRkNN query computes for a given query object q the set RkNN(q) of objects having q
as one of their k-nearest neighbors, iff the result set exceeds a specific threshold m, i.e.
|RkNN(q)| ≥ m. Otherwise, the query reports an empty result. In our setting, the po-
sitions of the query object and database objects are approximated by minimal bounding
rectangles (safe regions) that depend on the last reported location of the object, as well
as on the time that has been passed since the object reported its recent exact location.
We propose an approach that minimizes the amount of communication between clients
and central server by using the approximation of the positions to identify true hits and
true drops. We present a multi-step filter/refinement framework that uses a novel refine-
ment heuristic to minimize the number of objects that are required to provide their exact
location. This heuristic is based on the CornerBased domination decision criterion and
vastly reduces the required amount of network traffic compared to traditional refinement
heuristics used for RkNN search. Our framework is applicable to both mono-chromatic and
bi-chromatic CRkNN queries. Our solution does not assume any preprocessing steps which
makes it applicable for dynamic environments where updates of the database frequently
occur. Experiments show that our approach considerably reduces the communication load
compared to existing approaches designed for traditional reverse nearest neighbor search
in static data.

Parts of this chapter have been published in [62].The remainder is organized as follows:
In Section 5.1 we introduce the CornerBased domination decision criterion and show how
it can be utilized on order to detect Dom(A,B,R). Afterwards we formalized the problem
of CRkNN query processing in spatio-temporal data implementing a client-server setting
and review related work in Section 5.2. Section 5.3 provides the details of our novel multi-
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HAB

A

R
B

Figure 5.1: Geometric interpretation of Dom(A, B, R)

step CRkNN query processor and describes the complete query algorithm. A comparative
experimental evaluation is presented in Section 5.4. Section 5.5 concludes the chapter.

5.1 The Criterion

A major restriction of the EntryHyperplane domination decision criterion is that for de-
tecting Dom(A,B,R), B has to be a point and not a spatial approximation with extension.
In this section we want to show how this constraint can be removed.

5.1.1 Geometric Interpretation

The starting point for extending the previous approaches (Hyperplane and EntryHyper-
plane Criterion) is to consider the geometric interpretation of the problem. Therefore we
need to identify the construct HAB (Note that for detecting Dom(A,B,R) we need to
check if R ∈ HAB(A)). In Figure 5.1 we illustrated HAB for the two rectangles A and
B. A naive solution for finding HAB would be to materialize all possible hyperplanes Hab

defined by all pairs (a, b) : a ∈ A, b ∈ B. In order to guarantee no false dismissals, the
corresponding half space HAB(A) has to be built by intersecting all half-spaces Hab(a).
Obviously, the materialization of the hyperplanes of all possible pairs of points of A and B
is not applicable. Rather, we only need to focus on the pairs of points which are responsible
for constructing HAB.

In fact, the half space Hab(a) built by points a and b has the property that all points
p ∈ Hab(a) in this space are closer to a than to b, i.e. dist(p, b) ≥ dist(p, a) (cf. Figure 5.1).
Now, let us again consider the object approximations A and B. The half space HAB(A) is
represented by all points p that are definitely closer to each point in A than to each point
in B, i.e.

∀a ∈ A : ∀b ∈ B : dist(p, b) ≥ dist(p, a). (5.1)
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In order get a conservative half space we can replace the distance between p and B by
the minimum distance MinDist(p,B) and the distance between p and A by the maximum
distance MaxDist(p,A). Consequently, we can define the half space by means of the
following lemma:

Lemma 5.1. Let A and B be rectangles then the half space HAB(A) is defined by all
points p for which the following equation holds:

MinDist(p,B) ≥MaxDist(p,A). (5.2)

Proof. Since the half spaces defined by the two equations 5.1 and 5.2 are in fact identical, for
the proof of the above lemma it suffices to show that each point p in the half space defined
by Equation 5.2 is within the half space defined by Equation 5.1 and vice versa. Formally
that ∀a ∈ A : ∀b ∈ B : dist(p, b) ≥ dist(p, a)⇔MinDist(p,B) ≥MaxDist(p,A)

“⇐”: Let p be any point, for which Equation 5.2 holds. Then, each point b ∈ B has a
larger distance to p than MinDist(p,B), i.e.

∀b ∈ B : dist(p, b) ≥MinDist(p,B).

Furthermore, each point a ∈ A has a smaller distance to p than MaxDist(p,A), i.e.

∀a ∈ A : MaxDist(p,A) ≥ dist(p, a).

Consequently, with Equation 5.2 we get the following equation:

∀b ∈ B : dist(p, b) ≥MinDist(p,B) ≥MaxDist(p,A) ≥ dist(p, a),

which is equal to Equation 5.1.
“⇒”: Starting with Equation 5.1

∀a ∈ A : ∀b ∈ B : dist(p, b) ≥ dist(p, a)

we can deduce the special case

⇒ min
b∈B

dist(p, b) ≥ min
a∈A

dist(p, a)

and substitute with the definition of the minimum and maximum distance

⇒MinDist(p,B) ≥MaxDist(p,A)

2

Based on Lemma 5.1 we can define the border of the hyper plane construct HAB which
is defined by all points p for which the following equation holds:

MinDist(p,B) = MaxDist(p,A). (5.3)
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Figure 5.2: Partitioning of objects A and B for the 2d case.

In the remainder we will show how the pruning area can be constructed in consideration
of the topology of the corresponding rectangles. The computation of the border of the
half space HAB(A) defined by two rectangles in a two-dimensional space can be partially
reduced to the basic case. In fact, we have to consider 36 cases, i.e. the space can be
decomposed into 4 · 9 = 36 partitions having certain topological properties w.r.t. to both
rectangles, as depicted in Figures 5.1 and 5.2. The rectangle B decomposes the space into
9 partitions along the rectangle margins (cf Figure 5.2(b)), 3 partitions per dimension. For
each partition P we can determine a point or margin of the rectangle B that represents
or contains the nearest point of B to any point in P . For example, consider the north-
east partition PB

NE built by B. The upper-right corner of B is the nearest point in B
for all points in PB

NE. Furthermore, the lower-right corner of B is the nearest point in
B for all points in the south-east partition PB

SE. Similar representatives can be found for
the north-west and south-west partitions. The nearest point in B to any point in the
east partition PB

E is not a unique point and corresponds to the nearest point on the right
rectangle margin. This also holds for the south, west and north partition PB

S , PB
W and PB

N ,
respectively. Obviously, the partition which is defined by the rectangle B itself composes
all points having a distance of zero to B.

The rectangle A decomposes the space into 4 additional partitions (cf Figure 5.2(a)),
2 partitions per dimension. Here, the center of A is used to define the partitioning which
leads to the partitions PA

NE, PA
SE, PA

SW and PA
NW . In contrast to the partitions defined

by B, here we are interested in partitions having the farthest point in A in common. For
example, all points in the south-west partition PA

SW built by A have the upper right point
of A, i.e. the opposite corner of A w.r.t. PA

SW , as their farthest point in A. Analogous
considerations hold for the other three partitions.

Let us now consider the combined partitioning defined by the two rectangles A and B
in order to determine HAB. HAB is composed of parts defined for each partition. In our
example illustrated in Figure 5.1, HAB within partition PB

NE∩PA
SW is defined by the upper-

right corner of B and the upper-right corner of A. In contrast the partition PB
NE ∩ PA

NW
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defines HAB by means of the upper-right corner of B and the lower-right corner of A. Each
of the above parts can be represented by a single line segment. We achieve a more complex
structure when considering HAB within partition PB

E ∩ PA
SW . Since, this partition has not

a common nearest point in B, i.e. the nearest point in B depends on the location of the
point p ∈ HAB ∩ PB

E ∩ PA
SW , the geometry of the line segment is not linear anymore. The

resulting structure of HAB is now rather complex, persisting of several line segments and
even non linear parts (see the narrow dotted blue line in Figure 5.1). The materialization
of HAB in order to test whether an object R lies completely within HAB(A) is thus not
trivial and could be computationally expensive.

5.1.2 Efficient Computation

Since the geometrical interpretation based on the half space as described above is effective
but the materialization of the pruning area is expensive, we have to find a method to check
whether a point or rectangle is completely within HAB(A) without requiring to materialize
HAB. Note that in figure 5.1 it is sufficient to only test whether the corners of R are within
HAB(A), in order to decide if R as a whole is within HAB(A). In the following, we will
show that this approach can be generalized.

First, we utilize the fact that HAB(A) always has a convex structure which is shown by
the following two lemmas:

Lemma 5.2. Let P1, . . . , Pn ⊂ Rd be convex areas. Then the intersection P = P1

⋂
. . .
⋂
Pn

is also convex.

Proof. Let p1, p2 ∈ P , then p1 and p2 are within every set Pj. Since the sets Pj are convex,
the whole segment [p1, p2] lies within each set Pj. Since this segment lies within each set
Pj, it also is part of the intersection of these sets, i.e. [p1, p2] ⊂ P . Thus the intersection
P of finite number of convex sets is also convex. 2

Lemma 5.3. The half space HAB(A) defined by the two rectangles A and B is convex.

Proof. The half space Hab(a) defined by any two points a ∈ A, b ∈ B is a half-plane, which
is a convex set. The resulting area when intersecting the half-planes of all pairs (a, b) is
again convex as a consequence of Lemma 5.2. 2

Now, we can use the convexity property of HAB(A) in order to check whether a point
or rectangle is completely within HAB(A) in an efficient way using the following lemma.

Lemma 5.4. Let Rv be the set of vertices of the rectangle R. In order to check weather
Dom(A,B,R) holds it suffices to show that for all vertices rv ∈ Rv of R the following
criterion holds:

MaxDist(rv, A) ≤MinDist(rv, B)

Proof. According to Lemma 5.3 B and A form the convex half space HAB(A). Therefore if
R is not completely within HAB(A), at least one corner rv of R must be outside HAB(A).
Thus the following inequality MinDist(rv, B) < MaxDist(rv, A) holds. 2
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As a consequence of Lemma 5.4 the test if a rectangular object R lies withinHAB(A)
formed by two rectangular regions A and B can be reduced to the MinMaxDist domination
decision criterion of the corners of R. This domination criterion is complete and correct
as it is based on the exact pruning area defined by A and B. In particular, it is different
from DDCMM which applies the domination test only for the complete rectangles rather
than to the corner points and, thus, is significantly less selective.

Definition 5.1 (Corner-Based domination decision criterion). Let A,B,R ∈ Rd be rect-
angles in Rd and Rv be the the set of vertices (corners) of R. The CornerBased domination
decision criterion is defined as

DDCCB(A,B,R)⇔ ∀rv ∈ Rv : MinDist(rv, B) < MaxDist(rv, A).

Regarding the efficiency the CornerBased domination decision criterion requires to
perform a distance computation for each vertex of R in the worst case. Thus the runtime
is O(2d). However for spatial applications with a small dimensional space this criterion is
suited very well.

5.2 Application: Constrained Reverse Nearest Neigh-
bor Search on Mobile Objects

In contrast to the reverse k-nearest neighbor search problem on static data, considerably
less work has been done so far to support RkNN queries on mobile objects that may not be
indexed by a point access method. The prevalence of inexpensive and very small Global-
Positioning-Devices (GPS) gives rise to new spatio-temporal database applications. With
these advances it is e.g. possible to track pupils by equipping them with such a GPS-device
or even animals by attaching a GPS-device to their ear or under their skin. However, such
very small GPS-devices posses only a very limited power supply, and the replacement of
a power supply of such a GPS-device can be very expensive. As an example, think of a
wildlife sanctuary, where many animals are equipped with small GPS-devices to observe
and protect them. The GPS signal of the animals can be used to alert the ranger, when a
very rare species is in immediate danger of being attacked by a predator, such as a tiger.
The ranger may then intervene by chasing off the tiger. However, the act of attaching a
GPS-device to an animal or replacing its power source is very stressful and dangerous for
both the animal and the rangers. Usually, the animal has to be tranquilized in order to
allow the veterinary a safe approach. Thus, the power of such miniature GPS-devices is a
very precious resource. In order to preserve this source, the miniature GPS-device should
only submit its exact position if necessary. As a consequence, in such an application
scenario, query processing must account for the fact that any position poll necessary to
answer the query is very costly, or in other words, each single position poll that is saved is
valuable.
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Figure 5.3: R1NN examples.

Many applications also only require to know if the number of RkNNs of a query object
q exceeds a given threshold m. If q has less RkNNs than m, no results need to be reported.
Only if the number of RkNNs of the query is at least m, all RkNNs need to be known.
This type of query is called Constrained Reverse k-Nearest Neighbor (CRkNN) query. As
an example application for a CRkNN query, consider lions in a wildlife sanctuary. Since
lions generally hunt in packs, it is safe to assume that the query animal (or a tourist) q is
not in danger if less than m = 3 lions have q as their nearest prey. If however the number
of reverse nearest lions of the query exceeds the threshold m = 3, then the lions need to
be chased off (or the tourist has to be warned).

To track and observe large numbers of continuously moving objects, their last submit-
ted positions are stored in a database. The conventional assumption, that data remains
constant unless it is explicitly modified, no longer holds when considering mobile objects.
In our examples above, the position of an animal may be given by an exact location at
the time slot the animal submitted its current position. After that, its position is conser-
vatively approximated by a minimal bounding box that contains all possible positions the
lion may have reached since its last location update and that usually grows over time.

We consider the computation of CRkNN queries in this setting for both the mono-
chromatic as well as the bi-chromatic case. The difference of both cases is that in the
mono-chromatic case we have only one set of objects from which the query and the results
are drawn, whereas in the bi-chromatic case, we have two sets, a set of potential query
objects (that are not considered as results when a query is processed) and a set from which
the results are drawn. Figure 5.3 illustrates the concept of CRkNN queries in both cases.
The mono-chromatic CR1NN query (cf. Figure 5.3(a)) for point q returns point 1 and 4 if
m ∈ {1, 2} or nothing ifm ≥ 3. Points 2 and 3 are not returned for any choice ofm, because
they do not find q as their 1-nearest neighbor. In the bi-chromatic case, two object sets
Dred (red objects) and Dblue (blue objects) are considered. The bi-chromatic CRkNN query
returns all elements of Dred that have the query point as on of their k-nearest neighbors if
all other red objects are ignored. Figure 5.3(b) shows the bi-chromatic CR1NN query for
a set of lions (red objects R1, R2, and R3) and a set of potential prey (blue objects B1,
B2, and q). The query object q (from the blue object set) could be a young elephant that
is not yet able to defend itself. In this example, the bi-chromatic CR1NN query yields no
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results for any value of m, because each lion observes another animal as nearest neighbor.
A straightforward solution for computing CRkNN queries is to check for each point

whether it has a given query point as one of its k-nearest neighbors. If more thanm objects
do, the set is output as result, otherwise the result is empty. However, this approach lacks
on a computational point of view when the number of points is large. Even more important
in this setting is that each client is required to send its exact location at least once and,
thus, the drain of the clients’ power sources is very large.

5.2.1 Problem Formalization

Client-Server Scenario

In the following, we assume that D is a database of n objects (clients) moving continuously
within a 2-dimensional Euclidean space and dist is the Euclidean distance1 on the objects
in D. In addition, we assume that the objects (clients) are connected with a central server
via a wireless network and can send their exact positions when requested from the server.

At server side the position of each object o is approximated by a two-dimensional axis
aligned rectangle o.mbr that minimally bounds the possible positions of o. The objects
send their exact positions to the server only if necessary. The exact position of an object
o will not be updated at server side as long as

• the exact object position o.pos is within the region o.mbr.

• the query can be answered based on the information of the object positions that is
currently available at the server.

Here, we will be interested in performing queries among the clients at the server.

CRkNN Query

The problem of a constrained RkNN (CRkNN) query is to report for a given query object
q the result of a RkNN query if and only if the result size exceeds a specific threshold m,
formally

CRkNN(q) =

{
RkNN(q) , if Card(RkNN(q) ≥ m
∅ , else.

Note that the case wherem = 1 corresponds to a traditional, non-constrained RkNN query.

5.2.2 Related Work

Although our problem definition of constrained RkNN is new, it is obviously closely related
to common RkNN queries. Techniques for RkNN query processing in static data have been
discussed in Section 2.4. For moving objects data there are relatively few works which
address the RkNN problem. Most of the existing work in this direction focus on problem

1The concepts described here can also be extended to any Lp-norm and any dimension d > 2
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Figure 5.4: R1NN selectivity estimation based on position approximations.

of continuous reverse nearest neighbour monitoring [170, 90, 168], where the task is to find
for a given query point q the reverse k-nearest neighbours for each point of time. The main
focus lies always on reducing IO and CPU operations (since the position of each object
is known at each point of time) and the query has to be a single point. This is of course
different from our scenario since we want to reduce communication cost and the query can
be a moving object too. In [23] the authors focus on snapshot RkNN queries on moving
objects. But again the query has to be a single point and the positions of the objects in
the database have to be known at each point of time.

5.3 CRkNN Query Processing

In the following sections, we present our framework for answering CRkNN queries on
objects initially approximated by minimal bounding rectangles.

5.3.1 General Idea for Answering CRkNN Queries

The main objective of our approach is to keep the communication cost between the clients
and the server as low as possible while answering CRkNN queries for a given query object
q, and specified values for k and m that may vary from query to query. For this reason,
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we try to avoid unnecessary position updates at the server side. The communication
cost of each position update is assumed to be very expensive, since it composes the cost
required to build up the communication channel between the server and the client, and the
cost for transferring the position information from the client to the server. The problem
is that we might update object positions when issuing CRkNN queries in order to get
exact results. However, the CRkNN query offers a potential for a lazy update strategy.
Whenever a CRkNN query is issued, first, we estimate conservatively the selectivity of
the query only based on the information available at the server, i.e. in consideration of
the object approximations. An example illustrating this estimation task for the mono-
chromatic and the bi-chromatic case is depicted in Figure 5.4. Detailed strategies for
estimating the selectivity, i.e. finding the RkNN candidates, will be discussed in the next
section. Only if the estimated size of the result set exceeds a specified threshold m, then
the server requests exact position updates from the clients. In our example, m must be
smaller than 6 in the mono-chromatic case (cf. Figure 5.4(a)) and smaller than 2 in the bi-
chromatic case (cf. Figure 5.4(b)). Thereby, only those position updates are requested that
are necessary to compute the exact result. The determination of those objects (including
the query object) that definitely have to transmit their exact positions to the server is
challenging. In summary, there are two problems to be solved:

• First, we have to compute a conservative but accurate estimation of the query selec-
tivity.

• Secondly, we have to find a possibly small set of objects whose refined positions suffice
to compute the correct query result.

Obviously, the higher the accuracy of the position information of the query object and the
database objects at sever are, the better is the query selectivity estimation. However, since
our main focus is to keep the position updates as low as possible, we first estimate the query
selectivity without any position update. For the query selectivity estimation we have to
compute RkNN candidates in consideration of the minimal bounding rectangles associated
with the query object and the database objects. For a clear presentation, we focus on the
mono-chromatic case but all concepts can be directly applied to the bi-chromatic case.

5.3.2 Pruning Strategies

First, we will introduce pruning strategies which are applicable for extended query objects
and are used in a filter step to identify potential candidates and, thus, to estimate the
selectivity of the query. Thereby, the main focus is to cut down the number of CRkNN
candidates to achieve a good conservative estimation of the selectivity of an RkNN query
and to identify a possibly small number of objects for which the server has to request the
exact positions.
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Figure 5.5: Conservative and progressive pruning.

Conservative Pruning

For excluding objects from further consideration during query processing we can straight-
forwardly use the CornerBased domination decision criterion. If for two objects (approx-
imated by rectangles) O0, O1 ∈ D from the database and a query object Q it holds that
DDCCB(O1, Q,O0), then O0 can be pruned since it can not be RNN of Q (cf. Figure 5.5
assuming O0 is on the right-hand side). Of course we can extend this pruning to values of
k larger than 1. Therefore we basically perform a naive estimation of the domination count
of O0 by counting the number of objects in the database which dominate Q according to
O0. Formally we can prune an object O0 if:

|Oi ∈ D \O0 : DDCCB(Oi, Q,O0)| ≥ k

Progressive Pruning

Up to now, we presented conservative pruning technique in order to prune candidates that
can be excluded from the query result. Now, we present additional pruning strategies called
progressive pruning that find true hits without any refinement of candidates. Thereby, we
apply similar geometrical properties as used for the conservative pruning. For a given
query rectangle Q and a database rectangle O1 the progressive pruning area (HO1Q(Q))
defines all points that are definitely closer to all points in Q than to all points in O1. An
example is illustrated in Figure 5.5(assuming O0 is on the left-hand side). In contrast to
the margin of the conservative pruning area (HO1Q), the margin of the progressive pruning
area is defined by HQO1 . Hence, if a point or rectangle (O0 in this example) completely
lies within this area, it can be concluded that it is closer to any point in Q than to
O1. Detecting this relation can be achieved by using the Corner-Based decision criterion
by switching parameters (DDCCB(Q,Oi, O0)). For a RNN query, if a point or rectangle
completely lies within the progressive pruning area of each database object (except itself),
it can be immediately reported as RNN(q) result. Again, this technique is extendible to
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the RkNN-problem where an object O0 can be progressively pruned if it lies completely
within |D|−k−1 progressive pruning areas (defined by Q and |D|−k−1 database objects).

5.3.3 Refinement Strategies

After applying our pruning strategies, there may still candidates left. For these candidates,
the decision whether they are part of the result cannot be made by using only information
stored on the server. In this case, one of the objects of the database has to be refined, i.e.
one of the objects is required to transmit its exact location to the server. In this section
we propose two strategies that aim to minimize the total number of refinements. This
is important since we follow our overall goal in minimizing the number of messages sent
between clients and server.

Minimal Mindist Heuristics

The idea of refining the object of the database, that has the smallest Mindist to the query
object q has been proposed in [152]. This heuristic has also been adapted in [4]. The
general idea is, that objects closest to q are likely to be true hits and also generate pruning
areas close to q that potentially prune other objects that are further apart. Thus, for each
object approximation O, we compute the minimal distance MinDist(q, O) to q, and refine
object

argMinO∈DB(MinDist(O, q)).

Maximum Pruning Potential Heuristics

The key of this idea is to pick the object that has the most influence on all other candidates
as next object to be refined (exat position is polled by the server). In particular, that
object for which the likelihood, that due to its refinement, other candidates can be pruned,
is maximized should be chosen.

To evaluate this influence, each object O is associated a pruning potential. The pruning
potential of an object is composed of two components, the Mutual-Pruning Potential,
MPP (O), and the Self-Pruning Potential, SPP (O).

The Mutual-Pruning Potential of an object O estimates the number of candidates that
can possibly be pruned by the exact position o of O, but cannot be pruned by means of
the approximation of O only. An example of this estimation for a CR1NN query is given
in Figure 5.6(a). In this example, we want to determine the Mutual-Pruning Potential of
O′, MPP (O′). Object O1 does not affect MPP (O′), because O1 can already be pruned
based on the approximation of O′. O6 does not contribute to MPP (O′) either, because
regardless of the exact position of o ∈ O′, O6 cannot be conservatively pruned by O′. The
reason for this is that O6 cannot be conservatively pruned by any line that is contained in
the region between the conservative and the progressive approximation of the Voronoi lines
between q and any o′ ∈ O′ regardless of the exact position of O6. The same applies for O5.
Even in the best case, where o′ ∈ O′ is very close to q, O5 cannot be completely pruned by
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Figure 5.6: Different pruning potentials.

o′. Let us note that it is possible that the Voronoi line between q and o′ intersects O5, and
by means of partial pruning, the prune count of O5 can still be increased in combination
with Voronoi lines of other objects. Thus O5 increments MPP (O) by one. For objects
O2, O3 and O4 there exist possible positions o′ ∈ O′, for which they can be completely
pruned. Thus, the Mutual-Pruning Potential of O′ is incremented by one for each of these
objects and finally we getMPP (O′) = 4. In the bi-chromatic case, the following additional
constraints apply:

• The object O for which the Mutual-Pruning Potential is computed must be a member
of set Dblue (the blue objects), because objects of set Dred (the red objects) do not
interfere with other objects, and thus cannot prune other candidates.

• The objects (O1,. . . ,O6 in the example) that increase the Mutual-Pruning Potential
of O must be red, since the result of a bi-chromatic CRkNN query may only contain
red objects. Therefore only red objects can be candidates.

Thus, red objects do not have a Mutual-Pruning Potential and blue objects ignore other
blue objects in the computation of their Mutual-Pruning Potential.

The Self-Pruning Potential of an object O estimates the number of objects that can
possibly conservatively prune the exact position of o ∈ O, but cannot conservatively prune
the approximation O. An example for this situation is depicted in Figure 5.6(b). Here, we
want to determine the Self-Pruning Potential SPP (O′) of O′. Object O1 does not increase
the Self-Pruning Potential of O′, because the approximation of O′ can already be pruned
completely by O1. O2 does not increase the Self-Pruning Potential of O′ either, because
regardless of the exact position of e′ ∈ O′, o′ cannot be pruned. Thus, SPP (O′) = 0. Now,
consider the Self-Pruning Potential of O′′. Although O2 cannot prune the approximation
O′′, O2 may be able to prune o′′ ∈ O′′ if it falls into the pruning region of O2, denoted by
the shaded area. Therefore, O2 increases the SPP (O′′) by one. The situation of O′′′ is even
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more interesting, because here, both O1 and O2 contribute to the Self-Pruning Potential
of O′′′. Again, in the bi-chromatic case additional constraints apply including:

• The object O for which the Self-Pruning Potential is computed must be a member of
set Dred (the set of red objects), because the result of a bichromatic (C)RkNN query
may only contain red objects, and thus, only red objects may be candidates.

• The objects (O1 and O2 in the example) that increase the SPP of candidates must
be blue, because only members of the blue set can prune other objects.

Thus, blue objects do not have a Self-Pruning Potential, and red objects ignore other red
objects in the computation of their Self-Pruning Potential.

After computing MPP (O) and SPP (O) the object with the highest sum of Mutual-
Pruning Potential and Self-Pruning Potential

argMaxO∈DB(MPP (O) + SPP (O))

is chosen to be refined next.
As seen in the examples, in order to compute MPP (O) and SPP (O) for an object O,

we need to find objects that are not completely contained in either the pruning region or
in the true-hit region of other objects. Due to the convexity of both the true-hit and the
pruning region of an object O, we can do this efficiently by testing corners of MBRs only
(see above).

Algorithm 4 CRkNN(Q, k,m,D)
1: cands = Oi ∈ D|]{Oj ∈ D|DDCCB(Oj , Q,Oi)} < k}
2: result = ∅
3: if ]cands < m then
4: return ∅
5: else
6: refine(Q)
7: cands = {Oi ∈ cands|]{Oj ∈ D|DDCCB(Oj , Q,Oi)} < k}
8: while ]result+ ]cands > m && ]cands > 0 do
9: refine(argMaxO∈D(refinement heuristic)
10: cands = {Oi ∈ cands|]{Oj ∈ D|DDCCB(Oj , Q,Oi)} < k}
11: result = {Oi ∈ cands|]{Oj ∈ D|DDCMM (Q,Oj , Oi)} > ]D − k}
12: end while
13: if ]result > m then
14: return result
15: else
16: return ∅
17: end if
18: end if
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5.3.4 Algorithm

In this section we present our algorithm for processing CRkNN queries on approximated
objects. An abstract outline of the algorithm is shown in Algorithm 4. In the first step,
the algorithm applies pruning based on extended regions utilizing the information that is
available on the server. If the number of candidates returned in this step is less than m
the algorithm terminates with the empty set as result, since the number of results can not
possibly exceed m. Otherwise, if the number of candidates is at least m, then the query
object Q is refined, and thus required to send its exact position to the server. Then the
candidate and result lists are updated according to the new information about the exact
position of Q using the various pruning strategies described above. This is repeated while
there are candidates left to be refined. If at any time, the possible number of results,
i.e. the number of current hits (result) plus the number of remaining candidates cands
becomes less than m, the algorithm terminates again with the empty set as result. Once
no more candidates are left, the results are returned if their number exceeds m.

5.4 Experimental Evaluation

In the following, we outline the experimental evaluation. Since all proposed techniques aim
at reducing the number of refined objects, the number of refinements is the main variable
to be measured. In this regard we will show:

• A comparison of the efficiency gain of DDCCB over DDCMM . Therefore we imple-
mented two different algorithms. One is the algorithm described in Algorithm 4,
is based on DDCCB and named Corner-Based-Pruning (CBP). The second one is
an adaption of Algorithm 4, where we replaced all occurrences of DDCCB through
DDCMM . This algorithm is called MinMaxDist-Pruning (MMP).

• A comparison of the two proposed refinement strategies Minimal Mindist-Heuristics
(MMH) and Maximum Pruning Potential Heuristics (MPPH).

• The impact of the constraint parameter m.

The experiments will be performed under various different parameter settings as well
as on different datasets and in both monochromatic and bichromatic environment. Default
values for parameters are k = 5, m = 1, |D| = 10k, |Dred| = 10k and |Dblue| = 10k.

5.4.1 Datasets and Parameters

For the evaluation of the different approaches we used two different 2D point datasets:

• Synthetic dataset with uniform distribution (2D-Uniform)

• The Twin Astrographic Catalog Version 2 [175]
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Figure 5.7: MMP vs. CBP on uniform dataset

Both datasets were normalized to have a feature value in [0,1]. Each point is equivalent
to the exact position of one object. The uncertain area of each object o is constructed by
choosing a random rectangle that covers o with a random side length in [0,maxsidelength].
Queries as well as database objects were picked from one of the datasets for each experi-
ment.

5.4.2 Filter Step

In our first experiment we evaluate the pruning power of our pruning strategy CBP in
comparison to the basic pruning strategy MMP. First, we investigate the cost required
to refine the query object for varying threshold parameter m in terms of the average
number of query object refinements. Note, that in the case where refining the query object
is not required, we have no refinement costs at all, i.e. no database object has to be
refined. The results are depicted in Figure 5.7(a). For very small m (m < 5) our advanced
approach CBP has no improvement in comparison to the simple MMP approach because
for a small m almost in all cases the result set |RkNN(q)| exceeds m and, thus, the query
object has to be refined. For larger settings of the parameter m, indeed we can save
refinements of the query object and, thus, can save the computation of the CRkNN(q)
result. With increasing the parameter m, we can observe that our geometrical pruning
strategy increasingly outperforms MMP. In particular, for m = 11 the CBP is two times
more selective than the MMP approach.

Furthermore, we investigated the pruning power of both pruning strategies in considera-
tion of the number of result candidates reported by the first filter (without any refinement).
Figure 5.7(b) shows the number of candidates generated in the first filter for varying sizes
of the rectangles used to approximate the object positions in terms of the side length of
the rectangles. It is obvious that larger rectangles lead to a lower pruning power with both
competing approaches. However, the CBP pruning produces about 1/3rd less candidates
compared to MMP.
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Figure 5.8: MMH vs. MPPH on uniform and tac dataset

5.4.3 Refinement Strategy

The next set of experiments concerns the effectivity of the proposed refinement strategies.
As a baseline, we use the Minimal Mindist Heuristics (MMH) (c.f. 5.3.3) and compare
it to our proposed Maximum Pruning Potential Heuristics (c.f. 5.3.3). We measure the
total number of refinements, that is, the number of objects that are required to submit
their exact position. Figure 5.8(a) shows the result of our evaluation with respect to k on
uniform dataset. It can be observed that the MPPH shows only a small improvement
over the the MMH for small values of k, but becomes significant outperforms MMH as
k increases. In contrast, the same evaluation is shown in Figure 5.8(b) for the tac dataset.
It can be observed that the total number of refinements is higher on the tac dataset. This
can be explained by the clustered nature of the tac dataset. Objects are closer to each
other than in the uniform dataset, while the max side length of an uncertain area is the
same, resulting in more overlap of the uncertain regions. It can also be observed that the
improvement of MPPH is relatively large for small values of k, increases rather slowly as
k increases.

5.4.4 Constraint Parameter m

As the parameterm constrains the minimum number of RkNN results, which are of interest
to the user, it can be used to stop the refinement process at an early stage. Thus, increasing
m results in a smaller number of refinements. Figure 5.9 again shows the number of
necessary refinements (using MPPH) with respect to k, but with different values of m. It
can be seen, that for the same number of k, the number of refinements can be enormously
reduced by a bigger m. Keep in mind that the case where m = 1 corresponds to a
traditional, non-constrained RkNN query.
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Figure 5.9: Impact of parameter m on the number of refinements
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Figure 5.10: MMH vs. MPPH with varying size of the two sets

5.4.5 Bichromatic Case

In the bichromatic case the interesting variable is the propotion of |Dred| to |Dblue|. Figure
5.10(a) shows the number of refinements dependent on the size of Dred, where the size Dblue
is fixed to 10000. Figure 5.10(b) shows the opposite case, where Card(Dred) is set to 10000
and Card(Dblue) varies from 1000 to 10000. In both cases MPPH outperforms MMH, using
up to 50% fewer refinements.

5.5 Conclusions

In this chapter we introduced the CornerBased domination decision criterion which is able
to detect Dom(A,B,R) when all three objects are given by rectangular approximations.
The only existing domination decision criterion which is able to detect this relation is the
MinMax domination decision criterion. To show the effectivity of DDCMM compared to
DDCMM we additionally formalized a novel server-side reverse k-nearest neighbor prob-
lem for moving clients, the constrained reverse k-nearest neighbor (CRkNN) query. In a
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client/server scenario, the bottleneck for the resources is typically not the query execu-
tion time like I/O or CPU costs at clients or at the server. Rather, the communication
load needs to be minimized because the most precious resource is the power supply of the
clients. Especially in applications, where miniature GPS-devices with low power resources
are used and the exchange of single devices is very complex, the goal of query processing is
to save even single messages between clients and the server. While existing methods for the
traditional RkNN problem are not directly designed to optimize the communication load
but rather the query execution time, we propose an original solution for CRkNN queries
in such a client/server application. In fact, we propose several new pruning strategies in
order to keep the number of candidates as low as possible using only approximative in-
formation on the location of the clients. Our experimental evaluation confirms that our
novel solution is superior to existing approaches adapted to the CRkNN problem in terms
of communication costs.
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Chapter 6

The Trigonometric Domination Decision
Criterion

With the CornerBased domination decision criterion it is possible to detect Dom(A,B,R)
for three rectangular objects complete and correct. However this criterion can not be
evaluated efficiently from a computational point of view when the number of dimensions d
of the space containing the rectangles increases. The main problem is that for each corner
of the rectangle R we have to perform a MinDist and a MaxDist computation. Since the
number of corners of a multidimensional rectangle in d-dimensional space is 2d the runtime
of this criterion increases exponential in the number of dimensions.

In this chapter we will introduce the Trigonometric domination decision criterion which
is able remove this drawback. We achieve this goal by switching the shape of the approx-
imation of the objects A,B and R from rectangles to spheres. After this little trick, it is
possible to detect Dom(A,B,R) through clever application of trigonometric functions.

To show the efficiency and effectivity of the proposed criterion we incorporated the
technique into an all-(k)-nearest-neighbor (AkNN) query processing framework. AkNN is
the task to determine the k-nearest neighbors for multiple query points simultaneously.

Parts of this chapter have been published in [58]. The rest of the chapter is organized as
follows. In Section 6.1 we review how existing domination decision criteria can be adapted
to spherical approximations and introduce the Trigonometric domination decision criterion.
In Section 6.2 we discuss the problem of all-k-nearest neighbour queries, review related
work and present basic solutions. Afterwards we show how to employ the Trigonometric
domination decision criterion for AkNN query processing in Section 6.3. A performance
evaluation is presented in Section 6.4. The chapter concludes with a summary in Section
6.5.

6.1 Domination Decision Criteria for Spheres

The main problem of DDCCB is the computational complexity, which is exponential in the
number of dimensions d of the space Rd in which the objects are defined. In this section we
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Figure 6.1: Domination on spheres

will introduce a decision criterion which is able to detect Dom(A,B,R) for the case where
objects A,B and R are given by multidimensional spheres (i.e. a multidimensional vector
c ∈ Rd representing the center of the sphere and a single value r ∈ R representing the
radius of the sphere) as illustrated in Figure 6.1(a). As a constraint the proposed technique
is restricted to Euclidean distance (L2-norm) which however is one of the most commonly
used distance functions for similarity search.

6.1.1 Adopting existing criteria to spherical approximations

Before getting into the details of the Trigonometric domination decision criterion, we will
first review how to adapt the MinMaxDist and the Hyperplane domination decision crite-
rion to the case where the objects are approximated by spheres.

Therefore we will first define the minimum and maximum distance between two spheres.

Definition 6.1 (MaxDist and MinDist for Spheres). Given two spheres Bi and Bj the
MaxDist between Bi and Bj is defined as:

MaxDist(Bi, Bj) = dist(Bi.c, Bj.c) +Bi.r +Bj.r

The MinDist between Bi and Bj is:

MinDist(Bi, Bj) = dist(Bi.c, Bj.c)−Bi.r −Bj.r

where Bx.c ∈ Rd is the center and Bx.r ∈ R is the radius of sphere Bx and dist() is the
Euclidean distance function.

Given these definitions we can define the MinMaxDist domination decision criterion for
spheres analogously to the the one for rectangles (see Definition 3.3).
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Definition 6.2 (MinMaxDist Domination Decision Criterion for Spheres). Given three
spheres A,B and R the the MinMaxDist domination decision criterion is defined as

DDCMM(A,B,R)⇐MaxDist(A,R) < MinDist(B,R)

Though the MinMaxDist domination decision criterion for spheres is correct (proof is
analogous to Proof 3.2.2), it is not complete. A counter example (showing that DDCMM(A,B,R)
for spheres is not complete) is illustrated in Figure 6.1(b). In this example DDCMM(A,B,R)
does obviously not hold, though Dom(A,B,R) holds (This can be verified by the Hyper-
plane domination decision criterion for dpheres which is defined in the next definition).

The computation of the MinDist and the MaxDist on spheres can be performed in O(d),
since it only involves a distance computation between the two d-dimensional center vectors
and two additions of the radii of the two spheres. Thus also DDCMM(A,B,R) for spheres
can be computed in O(d).

Definition 6.3 (Hyperplane Domination Decision Criterion for Spheres). Let a, b ∈ Rd

be points (spheres with radius 0) and R ∈ Rd be a sphere. The Hyperplane domination
decision criterion for spheres is defined as

DDCHP (a, b, R)⇔ R ⊂ Hab(a).

The proofs for correctness and completeness of DDCMM for spheres are analogous to
the ones for rectangles (cf Proof 3.2.1 and 3.2.1 respectively).

Regarding the efficiency of DDCHP (a, b, R) for spheres again the situation is similar to
the rectangular case. In order to test if a sphere R is completely contained in the halfspace
Hab(a) the distance of the sphere center R.c to the plane Hab has to be computed and
compared with the radius R.r of R. In particular the right-hand side of the following
statement has to be computed

DDCHP (a, b, R)⇔ dist(R.c,Hab) < R.r

where dist() is the Euclidean distance function between point and plane, which can be
computed in O(d), where d is the dimension of R.c and Hab.

6.1.2 The Criterion

In this section we will show how to build a correct and complete domination decision
criterion (in order to detect Dom(A,B,R)) for spheres which is also efficiently computable.
For this purpose we will proceed as follows: First we will focus on the 2-dimensional case
where A and B are points and R is a circle. For this case we will show that for deciding
domination it is sufficient to only consider the surface points of the circle R (and not all
points contained in R). Second we will extend the criterion to higher dimensions (d > 2).
Third we explain how to efficiently compute the criterion and last but not least we will
show how to handle extended spherical approximations of A and B.
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Preliminaries

Let us first show that for deciding domination it is sufficient to consider only the points
on the surface of R for the case where A and B are points. Let us note that this case is
already handled by the Hyperplane domination decision criterion, however we will stepwise
extend this technique for the basic case to more general cases.

Lemma 6.1. Let a and b be points, R be a circle in R2,Rs = {rs|dist(R.c, rs) = R.r} be
the points on the surface of R and dist() be the Euclidean distance function, then

Dom(a, b, R)⇔ ∀r ∈ R : dist(a, r) < dist(b, r)⇔ ∀rs ∈ Rs : dist(a, rs) < dist(b, rs)
(6.1)

Proof. Assume there exists a point r ∈ R such that dist(a, r) > dist(b, r), then let rs ∈
Rs ∧ rs ∈ R.ca be the point on the intersection of Rs and the line connecting R.c and a (cf
Figure 6.2). Then if

dist(a, r) > dist(b, r)

due to the triangle inequality it holds that

dist(a, rs) + dist(rs, r) > dist(b, rs) + dist(rs, r)

which can be simplified to
dist(a, rs) > dist(b, rs)

2

The proof shows that if there exists a point r ∈ R for which dist(a, r) < dist(b, r) then
there also exists a point rs ∈ Rs for which dist(a, rs) < dist(b, rs) holds. Consequently it
is sufficient to only consider the points rs ∈ Rs for deciding if Dom(a, b, R) holds.
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Extension to the Multi-Dimensional Case

Next we want to extend Lemma 6.1 to the multi-dimensional case.

Lemma 6.2. Let a and b points, R be a sphere in Rd, P be the two dimensional plane
defined by the three points a, b and R.c. Furthermore let r ∈ R be a point and dist() be
the Euclidean distance function, then

∃r ∈ R : dist(a, r) > dist(b, r)⇔ ∃rp ∈ P : dist(a, r) > dist(b, r)

Proof. Consider Figure 6.3 as illustration. Let r ∈ R be a point for which dist(a, r) >
dist(b, r). Furthermore let the point rp be the projection of r onto the plane P 1, then the
following holds:

dist(a, r) > dist(b, r)

using Pythagoras’ theorem (which is applicable here due to the right triangle resulting
from the projection) we can rewrite this as

dist(a, rp)
2 + dist(r, rp)

2 > dist(b, rp)
2 + dist(r, rp)

2

thus it holds that
dist(a, rp) > dist(b, rp)

2

The above Lemma 6.2 states that if there exists a point r ∈ R which is closer to point
a than to point b, then there does also exist a point rp ∈ P in the plane defined by a, b and
R.c for which the same holds. Thus this lemma lets us reduce the multi-dimensional case
of finding such a point r ∈ R to the two dimensional case of the projection on plane P .

Combining the implication of Lemma 6.1 and Lemma 6.2 we can now state that if we
cannot find a point rs on surface of the circle defined by the intersection of the plane P
and the sphere R, for which dist(a, rs) > dist(b, rs) then no point r ∈ R can exist for
which dist(a, r) > dist(b, r) holds. For ease of reading and w.l.o.g. we will in the following
explain all techniques for the 2-dimensional case, which only considers the projection of
A,B and R onto the plane P defined by A.c, B.c and R.c respectively.

1Let us note that this projection always results in a point rp ∈ Ri, since circle resulting through the
cut through the center of a sphere is always the largest possible circle
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Efficient Computation

Though we could constraint the number of points to be considered for decidingDom(a, b, R)
the remaining problem is still how to efficiently decide the right-hand side of Equality 6.1.
Aiming at efficient computation we are going to define the surface distance.

Definition 6.4 (Surface Distance dϕ(p,R)). Let R be a sphere around the center point
R.c with radius R.r. Let rs ∈ Rs be a point on the surface of R, i.e. dist(R.c, rs) = R.r
and let p ∈ Rd be a point. The surface distance dist(p, rs) follows the function

dϕ(p,R) =
√
dist(R.c, p)2 +R.r2 − 2 dist(R.c, p)R.r cos (ϕ) ,

where ϕ = ]pR.crs is the angle between
−−→
R.cp and

−−−→
R.crs. If p is equal to the center R.c, ϕ

is not defined, thus we set d∅(p,R) = rR for p = R.c.

With the surface distance it is possible to formulate the following lemma.

Lemma 6.3. Let a and b points and R be a sphere in R2 then

Dom(a, b, R)⇔ ∀ϕ ∈ [0, 2π] : dϕ(a,R) < dϕ−δ(b, R)

where δ = ]aR.cb. This implies that dϕ(a,R) and dϕ(b, R) are the distances between a
and a point rs ∈ Rs and b and the exact same point rs, respectively.

Proof. The above lemma basically tests for each point rs ∈ Rs on the surface of R if
dist(a, rs) < dist(b, rs). If this condition holds then Dom(a, b, R) is also true according to
Lemma 6.1. 2
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An illustration of the surface distance and how it is utilized for trigonometric domination
is given in Figure 6.4. Evaluating the inequality on the right-hand side of Lemma 6.3
efficiently involves several steps. First we rewrite the inequality to

Dom(a, b, R)⇔ ∀ϕ ∈ [0, 2π] : dϕ(a,R)− dϕ−δ(b, R) < 0

Then we can define a new function gϕ(a, b, R) which is given the difference function:

gϕ(a, b, R) = dϕ(a,R)− dϕ−δ(b, R) (6.2)

A root of gϕ(a, b, R) now indicates that dϕ(a,R) is not smaller than dϕ−δ(b, R) meaning
that Dom(a, b, R) does not hold (cf Lemma 6.3). Finding the roots of gϕ(a, b, R) is com-
putational quite expensive, however, we only need to know if there exists a root and not
the exact value. Thus we define a second function which has the same square roots:

kϕ(a, b, R) = (dϕ(a,R))2 − (dϕ−δ(b, R))2

Obviously the function k has it’s roots at the same values of ϕ since the surface distances
are always positive. For detecting if kϕ(a, b, R) has roots we calculate the extrema by
examining the roots of k′ϕ(a, b, R) as defined in Equation 6.3.

k′ϕ(a, b, R) = [(dϕ(a,R))2]′ − [(dϕ−δ(b, R))2]′

= 2 · dist(R.c, a) ·R.r · sin(ϕ)− 2 · dist(R.c, b) ·R.r · sin(ϕ− δ)
(6.3)

k′ϕ(a, b, R) = 0⇒ ϕ1,2 = arctan(
dist(R.c, a) · sin(iπ + δ)

dist(R.c, b) · cos(iπ + δ)− dist(R.c, a)
)

with i ∈ {0, 2} yielding a maximum of 2 extrema points. Using the signum function,
we can now differentiate between the following cases:

1. sgn(gϕ1(a, b, R)) = sgn(gϕ2(a, b, R)) < 0 :

⇒ ∀ϕ : gϕ(a, b, R) < 0 and thus ∀ϕ : dϕ(a, b, R) < dϕ−δ(a, b, R)⇒ Dom(a, b, R).

2. Otherwise:
⇒ ∃ϕ∈ [0; 2π[: dϕ(a, b, R) > dϕ−δ(a, b, R)⇒ Dom(a, b, R) does not hold.

Extended Approximations

Having the theoretical base of Lemmas 6.1 - 6.3 it is now easy to extend the proposed
criterion to the case where A and B are spheres as well.

Lemma 6.4. Let A,B and R be spheres in Rd and let R′ be the projection of R on the
plane P defined by A.c, B.c and R.c, respectively, then

Dom(A,B,R)⇔ ∀ϕ ∈ [0, 2π] : (dϕ(A.c, R′)) + A.r < (dϕ−δ(B.c,R
′))− A.r
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Proof. In order to show that Dom(A,B,R) holds we have to show that

∀a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r)

holds. Which can be reformulated to

∀r ∈ R : MaxDist(A, r) < MinDist(B, r)

The MaxDist (MinDist) between a point and a sphere can be computed by just adding
(subtracting) the radius of the sphere to the distance between the point and the center of
the sphere. This lets us straightforwardly reformulate Lemma 6.3 for the case of extended
objects A and B. Additionally 6.1 and Lemma 6.2 let us restrict the search space of points
r to points rs ∈ R′. 2

Last but not least we have to show that 6.4 can be computed efficiently. Consider the
following function which is the adapted version (without squares and including radii) of
the function defined in Equation 6.2 for extended objects:

Lemma 6.5. Let A,B and R be spheres in Rd and let R′ be the projection of R on
the plane P defined by A.c, B.c and R.c. Furthermore let gϕ(A,B,R) be the following
difference function

gϕ(A,B,R) = dϕ(A.c, R′) + A.r − dϕ−δ(B.c,R′)− A.r

then gϕ(A,B,R) has it’s roots for the same values of ϕ than gϕ(A.c, B.c, R) (which was
defined in Equation 6.2)

Proof. Consider Figure 6.4(b). When A and B are spheres with radius > 0 then the surface
distance function between A.c and R has to be increased by A.r and the surface distance
function B.c and R has to be decreased by B.r at each ϕ ∈ [0 : 2π[. This only results in a
shift of the difference function kϕ(A.c, B.c, R) parallel to the y-axis and has thus no effect
on the ϕ values of the roots of the function. 2

Definition 6.5 (Trigonometric domination decision criterion). Let A,B and R be spheres
in Rd and let R′ be the projection of R on the plane P defined by A.c, B.c and R.c. Then

DDCTR(A,B,R)⇔ sgn(gϕ1(A.c, B.c, R
′) + A.r) = sgn(gϕ2(A.c, B.c, R

′)− A.r) < 0

where ϕ1 and ϕ2 are the roots of the function gϕ(A.c, B.c, R′) which are computed using
the techniques proposed in Section 6.1.2.

The correctness of the Trigonometric domination decision criterion follows directly from
the equivalence relations in Lemmas 6.1 - 6.5. Also DDCTR is efficiently computable since
it only involves two distance computations and a constant number of trigonometric and
more simple operations independent of the dimensionality of the space.
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6.2 Application: All-Nearest-Neighbour Queries
In the preliminaries of this work we emphasised that similarity search in databases is an
important problem in content-based multimedia retrieval. Additionally, similarity queries
are a useful database primitive for speeding up multiple data mining algorithms on large
databases. One of the most important types of similarity queries in this setting are k-
nearest neighbor (kNN) queries, retrieving the k objects in the database which have the
smallest distance to a given query vector q. The majority of the approaches developed so far
focus on the efficient processing of a single query at a time. However, in many applications
like data mining and similarity search, it is previously known that it is necessary to process
a large number of kNN queries to generate a result.

More precisely, an All k nearest neighbour (AkNN) query retrieves the k-nearest neigh-
bors in the inner set or database S for each object in the outer or query set R. Let us
note that the same type of query is also known as kNN join [39]. Multiple computational
problems use AkNN queries: In multimedia retrieval, many recent approaches model the
image content as a set of local descriptors [115] or point clouds [139]. An AkNN query
efficiently retrieves the best matches for a set of local descriptors in a given image database.
Another area of application is data mining: [39] surveys multiple data mining algorithms
that can be accelerated by efficient methods for AkNN computation like parallel kNN clas-
sification and k-means clustering. Furthermore, it is possible to employ AkNN processing
for deriving outlier factors like [38].

In this chapter, we propose a new approach for processing AkNN queries. As our
method uses spherical page regions it employs an SS-Tree [166]. To define the pruning area
around the approximations, we utilize the Trigonometric domination decision criterion
which accounts for the fact that the relevant search space is not necessarily symmetric
around the query approximation. One of its advantages is its capability to calculate pruning
areas which are based on query approximations and to considerably decrease the remaining
search space employed by other approaches like [139, 47].

6.2.1 Problem Formalization

In this section, we will formalize our task of AkNN queries and describe the index structure
used for our approach.

All-k-Nearest-Neighbors

As mentioned before, AkNN queries aim at retrieving the k-nearest neighbors for each
element of a given query or outer set R in the inner data set S.

Definition 6.6 (AkNN Query). Let R,S ⊂ Rn be two data sets and dist : Rd×Rd → R
a distance metric on Rd. An all-k-nearest-neighbor (AkNN) query retrieves the result set
ANNk(R,S) ⊆ R× S for any k ∈ N for which the following condition holds:

∀ R ∈ R, S ∈ S : (R, S) ∈ ANNk(R,S)⇒ S ∈ kNN(R,S)
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Our algorithm for efficiently processing AkNN queries is built on trigonometric func-
tions, which need to be valid in the underlying featurespace. In this chapter we thus rely
on the Euclidean metric, the most popular distance metric for this kind of applications.
Furthermore, we assume that the inner set S is organized in an index structure which is
based on spherical page regions. A spherical page region is specified by a centroid C ∈ Rn

and a radius r ∈ R+ \ {0} and thus, it describes a hypersphere around C, containing all
points Pi with distance d(C,Pi) ≤ r. Although approximating page regions using minimum
bounding rectangles is more common for spatial index structures, there have been several
successful index structures employing spherical page regions [166, 56].

The SS-Tree

As mentioned above, our method employs the SS-Tree [166], an efficient index structure for
similarity search based on spherical page regions. In the following, we will shortly review
the characteristics of the SS-Tree.

Definition 6.7 (SS-Tree). An SS-Tree in the vector space Rd is a balanced search tree
having the following properties:

• All nodes besides the root store between m and M entries. The root is allowed to
store between 1 and M entries.

• The entries of a leaf node are feature vectors in Rd. The entries of an inner node are
nodes, i.e. roots of subtrees.

• Each entry is bounded by a spherical page region containing all son entries.

• For a leaf node L, the center CL of the containing hypersphere BL is the centroid of
all contained feature vectors. The radius of BL, rL, is the maximum distance between
any entry vector L ∈ L and CL.

• For an inner node P , the center CP of the containing hypersphere BP , is the centroid
of the centroids CQ of the contained son pages Q ∈ P . The radius rP is chosen as
maxQ∈P (d(CP , CQ) + rQ).

In general, the structure of the SS-Tree is quite similar to the structure of the R-Tree
[77]. However, the page approximations are spherical instead of rectangular. Additionally,
the split heuristics for creating the tree are different. Instead of minimizing the overlap
between two pages, the SS-Tree tries to minimize the variance within the entries of its
pages. Thus, when splitting a node, the split heuristics determines the dimension having
the largest variance. In this dimension, the partition is selected which minimizes the
variance of the resulting pages and for which both new pages contain at least m entries.



6.2 Application: All-Nearest-Neighbour Queries 79

n The dimension of the feature space
R The outer set (⊆ Rn)
S The inner set (⊆ Rn)
R ⊆ R , S ⊆ S Subsets of the outer set or the inner set
R ∈ R , S ∈ S Points from the outer set or the inner set (∈ Rn)
BR , BS Spheres ≡ blocks around the sets R, or S, respectively (∈ Rn)
Pcand Candidate set of points of the inner set (⊆ S)
rR , rS Radius of sphere BR or BS around set R or S
CR, CS Center point of sphere BR or BS around set R or S

Table 6.1: Table of notations

Principles of AkNN Algorithms

Given two data sets R and S, where S is organized in an index structure. We want to
find the kNNs of all elements Ri ∈ R. The most trivial approach would be to retrieve the
kNN for each element Ri separately by using the index structure organizing S. Obviously
this is not very efficient, e.g. for two query points (in R) with a close proximity the
same pages of the index have to be read twice. An efficient algorithm needs to group
the points in R so that spatially close points fall into the same group. Afterwards these
groups, containing distinct subsets of R, are used as query sets. For the ensuing step, it
is important to decide which pages of S need to be examined for finding the kNN of each
element contained in a subset R ⊆ R. Therefore, the search space, i.e. the space which
could contain kNNs of an element R ∈ R, needs to be defined. To successively minimize
the search space, most algorithms start with the search space containing S. Defining a
pruning area has the opposite intention: define the space which does not have to be further
examined. This means, that all pages of S lying completely in the pruning area can be
discarded as candidates for the subset R. Keep in mind that pages not completely covered
by the pruning area can potentially contain points lying in the search space and therefore
need to be resolved. Since all elements in the search space have to be considered in the
further processing of R, the goal is to minimize the search space as strongly and quickly
as possible. Minimizing the search space, respectively maximizing the pruning area, is the
task of a pruning criterion. The optimal search space would only contain the kNNs of
all R ∈ R. Therefore, a pruning criterion should try to estimate this optimum as well as
possible with low effort. For ease of readability we provide a table of notations for this
chapter (cf Table 6.1).

6.2.2 Using Domination Decision Criteria for AkNN

In this Section we will show how to use the domination relation (Dom(A,B,R)) as a
pruning criterion for the problem of AkNN queries. In the following we first start with the
basic case of k = 1 and will later discuss the case of k > 1.
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Figure 6.5: Domination for AkNN query processing

Lemma 6.6. Let R ⊆ R be as set of points from the outer set and Si ∈ S be a point
from the inner set, then the set of points S ⊆ S can not be part of the result of an A1NN
query if Dom(Si, BS , BR) holds and can thus be pruned.

Proof. The following holds by definition of the domination relation: Dom(Si, BS , BR) ⇒
∀Sj ∈ BS , Rk ∈ BR : dist(Si, Rk) < dist(Sj, Rk). Since the point Si is closer to each point
Rk ∈ BR than any point Sj ∈ BS no point Rk can possibly have a point Sj as nearest
neighbour. 2

Using Lemma 6.6 it is possible to reduce the search space (the space which may possibly
contain results of the query). This remaining search space is often also called active region.

Definition 6.8 (Active Region for A1NN). Let R ⊆ R be as set of points from the outer
set and PC ⊆ S be a set of points from the inner set then the active region is defined by

AR(PC) = {P ∈ Rd|∀Si ∈ PC : ¬DDC(Si, P, BR)}

The active region thus represents the part of the whole data space which could poten-
tially contain a nearest neighbour for one of the points contained in R. Every object which
does not intersect with this active region can thus be pruned for a A1NN query. Obviously
the shape and extension of the active region varies depending on the used domination de-
cision criterion. Figure 6.5 illustrates the active region AR({Si}) for DDCTR (grey shaded
area) and for DDCMM (area in the dotted circle) for a 2-dimensional example. In this
example the set of points contained in BS can be pruned according to DDCTR but cannot
be pruned when using DDCMM .

Extending the idea of using the domination decision criteria from A1NN to AkNN is
very simple: A point or spherical page (containing several points) can be pruned if it is
dominated by at least k points from the inner set S according to a query set R ⊆ R.
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6.2.3 Related Work

There already exist several approaches for processing AkNN queries. The initial and most
simple approach is the computation of a separate kNN query on the inner set S for each
point in the outer set R. This method is often referred to as nested loop join and can be
accelerated by various search methods for kNN query processing. A comprehensive survey
can be found in [138]. Since this basic approach obviously is not optimal w.r.t. the number
of page accesses and distance computations, several dedicated approaches for processing
AkNN queries have been proposed. We first of all have to distinguish index-based from
scan-based solutions. In a scan-based solution, we assume that both data sets are not
organized in any form of index and thus, we have to scan the complete data set for join
processing. Examples for processing kNN joins without the use of index structures are
GORDER [169] and HANN [176].

In this chapter, we assume that at least S is already organized in an index structure.
It is shown in the experiments in [47, 176] that the use of an index structure can consid-
erably speed up kNN join processing. One of the first publications discussing kNN join
algorithms was [39]. In this paper, Böhm et al. demonstrate that kNN joins are useful
database primitives that can be employed to speed up various data mining algorithms like
k-Means clustering. The proposed algorithm is based on a new data structure called mul-
tipage index (MuX) which introduces larger pages for fast I/O accesses which are further
organized into memory pages aiming at minimizing distance calculations. The proposed
join algorithm first retrieves the current page of R and then queries S with the set of
all query points. For each query point, the algorithm maintains its own active page list.
The current pruning distance is considered as the maximum element of any query of these
queues, and pages are refined w.r.t. the minimal distance to any query element. A draw-
back of this approach is that it has an overhead of distance computations because each
object in S has to be compared to all elements in the query page. In [176] the authors
discuss two methods for AkNN queries that assume that S is organized in a spatial index
structure like the R-Tree [77]. The first index-based approach discussed in [176] aims at
improving the use of a disk cache when posing a separate NN query for each query point.
The second proposed method, called batched nearest neighbor search (BNN), groups query
points based on a Hilbert curve and poses one query for each group of points. The method
considers the distance to the k-nearest neighbor δk,x for each element x in the current
query set. The maximum of these distances is now used to extend the minimum bounding
rectangle around the query set and thus, describes the current pruning area. In [173],
a kNN join algorithm based on the similarity search method iDistance [87] is proposed.
The paper describes a basic algorithm called iJoin extending iDistance to the kNN join
problem. Furthermore, two extensions are proposed that employ MBR-approximations to
reduce distance computations and a dimensionality reduction approach to improve the per-
formance on higher dimensionalities. Recently, two approaches have been published which
reduce distance calculations by not considering the particular elements in the current set
of query points. Instead, the pruning area is established on a minimum bounding rectangle
around the query set. [139] presents an approach for applications on large point clouds in
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image processing. In this method, the set of query points is approximated by a minimum
bounding rectangle (MBR) which is posed as a query to an R-Tree organizing S. The
authors propose to employ the maximum distance that two points in two compared MBRs
might have to determine the current pruning range. This criterion is named MaxMaxDist.
The authors prove that their algorithm is optimal w.r.t. the number of pages that intersect
a query area spanned by the MaxMaxDist. The experiments are focused on the problem of
point clouds and thus, are directed at rather low dimensional settings. In [47], the authors
propose NXNDIST which is based on the observation that at each side of an MBR, there
must be exactly one contained data point which realizes the minimum distance. Thus,
NXNDIST decreases the MaxMaxDist by allowing the use of the minimal MaxDist for ex-
actly one dimension. The result is a closer bound for MBRs that is guaranteed to contain
at least one nearest neighbor to any query point in the query MBR in the intersecting pages
of S. In their solution (called MBA in this context), the authors additionally propose to
employ MBR-quadtrees as an index structure for S instead of R-Trees.

In contrast to all discussed approaches, our method uses spherical page approximations
instead of MBRs. We employ the SS-Tree [166] for indexing S. Our main pruning method
which is based on the Trigonometric domination decision criterion describes the remain-
ing search space based on the query approximations only. However, opposed to previous
approaches, the pruning area is not built by symmetrically extending the query approxi-
mation in each direction. Instead, we propose the use of an asymmetric pruning area to
further limit the search space. Finally, we show how our new approach can be effectively
combined with existing pruning methods to achieve a general improvement on data sets of
varying characteristics.

6.3 Performing AkNN Queries

Algorithm 5 gives an overview of our query algorithm. In the following, we explain the
employed data structures and describe the complete algorithm. Finally, we propose an
extension for employing multiple pruning techniques.

The general idea of our algorithm is to preprocess the set R and build several compact
groups of points each approximated with a sphere. Each of these groups is then processed
separately. For a group of points R ⊆ R we traverse the index organizing S in a best first
manner. Additionally we keep a list of points PCLIST containing pruning candidates
(e.g. points from the set S which can be used to prune other elements from S). For each
entry e which is considered during the traversal of the index we check if we find k pruning
candidates which dominate the element according to BR. Whenever we find a point during
the traversal of the index it may be added to the pruning candidates. However adding all
points found in this way to the pruning candidates yields a large list of points which
may result in computational overhead. Thus the question is which points to keep during
processing. Generally, points close to the query region result in a smaller active region,
so that these points are preferable. The active region is further reduced by comparing
a point Sj to all pruning candidates Si ∈ Scand using the domination relation, since the
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resulting active region is equivalent to an intersection of the active regions of all Si. Hence,
more candidate points result in fewer page accesses at the price of an increasing number of
distance calculations. The largest benefit is achieved if the pruning candidates are equally
distributed around CS because the resulting active region is minimized in this case. An
other important issue is that at least k pruning candidates have to exist before defining a
search space smaller than the whole space Rd. Resulting from these findings, we always
keep those points with minimal MinDist to the query as pruning candidates. Additionally
we define the parameter ε, which controls the maximum number of pruning candidates
that should be considered for pruning elements from S, by setting this number to k · ε.

Algorithm 5 AkNN(LISTqueryRegions, SSTREEinnerSet, k, RES_HT)
1: for all R ∈ LISTqueryRegions do
2: PCLIST := new PCLIST(ε · k)
3: PQ := new PQ()
4: PQ.add(SSTREEinnerSet.root, -1)
5: while PQ 6= ∅ do
6: if PCLIST.size = ε · k and PQ.smallestDistance > PCLIST.MaxDistk then
7: break
8: end if
9: node := PQ.removeFirst()
10: if not canBePruned(node, R, PCLIST) then
11: for all child ∈ node do
12: if child is an inner node then
13: PQ.add(child, MinDist(child, R))
14: else if not canBePruned(node, R, PCLIST) then
15: PCLIST.add(child)
16: for all queryPoint ∈ R do
17: RES_HT.add(queryPoint, child)
18: end for
19: end if
20: end for
21: end if
22: end while
23: end for

6.3.1 Data Structures

Algorithm 5 requires the following data structures:
PQ: A priority queue handling all yet unconsidered pages for a query set R ⊆ R. PQ

is organized as a heap with the element with the smallest MinDist to the query region on
top.

RES_HT: A hash table storing one priority queue for each query point. Each queue
has a capacity of k and maintains the k-nearest neighbors for its query point. The call
RES_HT.add(R, Si) adds Si to the priority queue of R.
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PCLIST: A list containing the pruning candidates, ordered by their MinDist to the
query region. The maximum size of the list is defined by ε · k with k being the amount
of nearest neighbors that should be computed and ε ≥ 1 being an adjustable parameter.
The larger ε is chosen, the more pages can be pruned (as PCLIST grows and provides
more pruning power) which saves time consuming I/O-accesses at the cost of distance
calculations.

6.3.2 The AkNN Algorithm

Our algorithm starts with grouping the query setR into compact spherical approximations.
We use BIRCH [178] to produce a list of compact regions in linear time and organize them
in a list. This way, the resulting query regions can be described by compact hyper spheres
having a given maximum radius. Since the pruning area also decreases with the radius of a
query region, we use the algorithm proposed in [17] to calculate the approximate smallest
enclosing ball (SEB) for the data content of each region. Computing SEBs costs extra
CPU time, but it pays off fast with growing |S|, as the resulting SEBs’ radii are about
10% - 20% smaller than the radii of the original spheres.

The main part of the algorithm (cf Algorithm 5) now receives a list of query regions
from R and the number of nearest neighbors k as input and proceeds as follows: The query
regions are processed successively and independently from each other. First, a new query
region is taken from the list. Afterwards, a list for storing pruning candidates (PCLIST)
and a priority queue (PQ) are initialized and the root of the SS-Tree storing S is put into
the page list PQ. The pages in PQ are ordered by the MinDist to the currently processed
query region (BR). The SS-Tree is then traversed in a best-first manner, as proposed
by Hjaltason and Samet [82]. This is done by always removing the first node from the
priority queue PQ processing it and putting all child nodes (if available) back to PQ, as
long as the queue is not empty or the stopping criterion is triggered: The search for other
kNN-candidates can be stopped if the MinDist of the current node to R is larger than the
MaxDist of the k-th pruning candidate. In that case, the node and all its successors in the
PQ can be pruned.

Algorithm 6 canBePruned(node, R, PCLIST, k)
1: count := 0
2: for all S ∈ PCLIST do
3: if DDC(S,Bnode, BR) then
4: count := count+1
5: end if
6: if count ≥ k then
7: return true
8: end if
9: end for
10: return false

If the algorithm cannot be terminated in this way, it tests whether the current node
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Figure 6.6: The gray shaded area shows the active region used by trigonometric prun-
ing (see Definition 6.8) which results from the intersection of the three pruning areas of
P1, P2, P3. The dashed line [P1, P4] indicates the GlobalDist(BR, S) which defines the
pruning area (dashed outer circle) used by BNN in case of a 1NN query.

can be pruned. This is done by the canBePruned() function (see Algorithm 6), which
prunes the node or point w.r.t. the pruning techniques introduced in Sect. 6.2.2. If the
node cannot be pruned and its children are nodes of the SS-Tree, they are all added to the
page list PQ. If the children are data points, another test on whether or not they can be
pruned ensues. If the test is negative, they are added to the PCLIST and to all priority
queues (via RES_HT) of query points contained in R. Let us note that it is possible that
the points will be eliminated from both data structures at a later point of time.

6.3.3 Combining Trigonometric Pruning with Other Pruning Cri-
teria

In this section, we will discuss the use of different pruning criteria to further increase the
performance. Even if employing additional pruning techniques causes additional compu-
tational cost, the cost is negligible if the combination yields a significant decrease of the
search space and thus saves page accesses. In order to maximize the effect of combining
different pruning criteria, it is important that the combined criteria perform always at least
as well as one criterion alone. In our case, this can be achieved when trigonometric pruning
(TP), which is based on DDCTR, is combined with a pruning criterion that also defines
a pruning region so that the intersection of both regions can be used as a new pruning
region.

In our experiments, we combine TP with BNN [176] which turned out to be one of the
best pruning criteria we examined. The fact that the original BNN algorithm is proposed
to be applied on rectangular page regions is not a problem, as it can be transferred to
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spherical page regions, such that BNN can be applied to the SS-Tree as well. The authors
of BNN propose to query the inner set S with compact groups BRi ∈ R whereas each
Ri ∈ BRi organizes its NNs and according maximum-NNDist(Ri,S). The largest value of
NNDist(Ri,S) of all Ri ∈ BRi defines the GlobalDist(BRi,S) of BRi. Pages S can then
be pruned if MinDist(BRi,S) > GlobalDist(BRi,S) as S cannot contain a NN for any
Ri ∈ BRi. The disadvantage of the BNN algorithm compared to TP is that the spatial
relation to other NN candidates is ignored. This can possibly lead to the case where
GlobalDist(C, S) degenerates and converges to MaxDist in the worst case. An example of
the remaining search space when combining both pruning criteria is illustrated in Figure
shown in Fig. 6.6.

6.4 Experimental Evaluation

In the following, we outline the evaluation process of the methods suggested in this chap-
ter. We compare them w.r.t. to I/O cost to the state-of-the-art methods BNN [176] and
MBA [47].

6.4.1 Experimental Setup

In order to make the approaches competitive for data sets of larger dimensionality, we
adapted the algorithm to the X-Tree [26] and the SS-Tree [166] instead of using an R-
Tree [77]. We display results for the following algorithmic settings:

MP AkNN-algorithm (see Algorithm 5), using DDCMM in the canBePruned()
function

XBNN BNN, using S indexed in an X-Tree
SSBNN BNN, using S indexed in an SS-Tree
TP AkNN-algorithm (see Algorithm 5), using DDCTR in the canBePruned()

function
TP+SSBNN AkNN-algorithm combining TP and BNN in an SS-Tree
MBA MBA algorithm [47]

We have evaluated the algorithms on the following three real-world data sets, which
were also used in the evaluation of [47]. The first dataset is the Twin Astrographic Catalog
(TAC) Version 2 [175] which is a library of stellar coordinates resulting in a set of 705 099
two-dimensional star representations. The second dataset is the Forest Cover Type (FC),
retrieved from the UCI KDD repository [80] which consists of 581 012 data points with 10
real-valued attributes, each representing a 30x30 meter square of a forest region. The third
dataset is are Corel color histograms (COREL), which is also available at the UCI KDD
repository [80]. It consists of 32-dimensional color histograms for 68 040 images.

For all experiments we used a third of the data sets as outer set, the rest as inner set.
The page size was set to 1KB for TAC and 4KB for FC and COREL. All experiments were
run on a 64bit Intel R© XeonTMCPU (3GHz) with 16G RAM, under Microsoft Windows
2003 R2, with Service Pack 1.
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Figure 6.7: Comparison of MBA, XBNN and TP for k = 10. The figure displays the sum
of I/O and CPU times for one AkNN query.

6.4.2 Results

In this section, we present the results of our experimental evaluation for the named algo-
rithms and data sets. Additionally, we will describe the effect of the employed parameters
on the query performance.

Comparison to Other Approaches

In order to compare the different approaches, we performed all-10-NN queries with the
mentioned AkNN-algorithms on the three data sets and measured the CPU-time and the
number of page accesses. To combine these two measures, we considered each logical page
access with 8ms. Fig. 6.7 illustrates that TP and BNN perform orders of magnitudes better
than MBA on all used data sets in matters of the overall runtime. Similar results were
obtained with the parametric settings used for the experiments described in the following
paragraphs. Therefore, we excluded the results of MBA in the further diagrams because
the required scaling would conceal interesting effects.

Dependency on k

In Fig. 6.8 (left) we compare the named algorithm w.r.t. the number of retrieved neighbors
k on all three data sets. Though most methods compare their performance on rather small
values of k, larger values of k are often of large practical relevance. In the context of search
engines, it is quite common to provide large result sets which are ordered with respect to
the similarity to the query. Since the performance mainly relies on the I/O operations, only
page accesses are measured. While TP and BNN perform comparable for smaller values
of k, TP clearly shows a better performance for larger values of k. For all data sets, our
new combined approach (TP + SSBNN) performed significantly better than all compared
approaches.
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Figure 6.8: I/O (left) and CPU (right) experiments for AkNN queries on different data
sets by all algorithms
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Dependency on the Choice of ε

The ε parameter regulates the number of pruning candidates and thus, it is the most im-
portant parameter for tuning the AkNN-algorithm based on TP. Larger ε cause a smaller
search space by the price of an increased number of distance calculations. In Fig. 6.9, we
summarize the effect of ε on the performance. As expected, the number of distance calcula-
tions grows with increasing ε due to the larger number of pruning candidates. Contrarily,
more pruning candidates lead to a tighter pruning effect, and thus the number of page
accesses is reduced when increasing ε. For all experiments in this chapter we set ε = 5.

Overall Runtime Performance

The direct comparison in matters of runtime is shown in Fig. 6.8 and yields the following
insights:

Comparing MP and TP shows that TP reduces the page accesses by 30% - 40% in
contrast to MP. This is a consequence of the reduction of the search space as shown in
Fig. 6.5. This effect is very stable over all data sets, suggesting its independence from the
amount of dimensions.

The implementations of BNN on different underlying index structures (XBNN and
SSBNN) show that the SS-Tree is at least comparable to the X-Tree in the performed
experiments. Only for the 32-dimensional COREL data set, the X-Tree leads to a slightly
better performance. Considering that the SS-Tree is not as suitable for large dimensions
as the X-Tree, these results demonstrate that spherical page regions are well-suited for the
AkNN problem.

The effect of TP compared to BNN is dependent on the data set. On the TAC data
set, TP clearly outperforms SSBNN by about 30%. On the FC and the COREL data set,
both pruning criteria perform similar and are both outperformed by the combination of
TP and SSBNN which reduces the costs by 8%− 15%.

This demonstrates that the proposed combination nicely compensates the additional
computation costs and that the better approximation of the search space can significantly
decrease the amount of page accesses.
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CPU Consumption

As seen in Sect. 6.4.2, all AkNN-algorithms are clearly I/O bound. However, through
the use of buffers and caching strategies, the page accesses can be dramatically reduced.
Therefore, it is important to show that TP and TP+SSBNN apply only a negligible com-
putational overhead compared to SSBNN. The results shown in Fig. 6.10 support this
claim. Only at the high-dimensional COREL data set, SSBNN is significantly faster with
respect to CPU-time. Let us note that also in the presence of buffers, the main challenge
for AkNN-algorithms is to reduce the I/O operations. Therefore, it is often beneficial for
the overall runtime to reduce I/O operations by the cost of CPU-time.

For all our compared methods it is necessary to group the outer set R into compact
query regions. In [176], the authors use a grouping approach based on a bulk-load using
the Hilbert order with a maximum threshold for the MBR volume and group size. They
argue that this procedure runs in linear time and leads to better page approximations than,
for instance, the data pages resulting from indexing R like S. This grouping procedure
can also be transferred to spherical page approximations. However, we chose BIRCH [178],
which is a clustering algorithm with linear runtime. Even though this procedure uses
spherical page approximations, we experienced that the groupings resulting from BIRCH
show a better suitability even for the AkNN-algorithm based on the X-Tree (XBNN) than
those resulting from Hilbert grouping. Fig. 6.11 shows the experiments on the three data
sets for the two grouping algorithms. The Hilbert groups have been created by limiting
the group volume to the average data page size of the inner set’s X-Tree. The parametric
setting of BIRCH has been chosen such that the number of groups is comparable to the
Hilbert grouping. For the algorithms based on spherical page approximations, the results
showed even more evidence for using BIRCH as grouping algorithm.

Synthetic Data Sets

We have also compared SSBNN, TP and TP+SSBNN on several synthetic data sets.
Fig. 6.12 displays the results of A-10-NN queries on clustered datasets of varying dimen-
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sions. The 3000 clusters in the example data set of size 600,000 have been generated using
a Gauss-like process: For each cluster a centroid has been sampled from a uniform distribu-
tion. The standard deviation used for generating the cluster points was chosen uniformly
for each dimension. The experiments show that the combination of TP and SSBNN out-
performs TP by approximately 10% and that it outperforms SSBNN by 20 to 30%. We
note that this effect is stable for all dimensions.

6.5 Conclusions
In this chapter, we introduced the Trigonometric domination decision criterion which is
able to detect Dom(A,B,R) when all three objects are given by spherical approximations.
In contrast to previously existing domination criteria it is correct, complete and computable
in O(d). To show it’s effectiveness we considered the problem of AkNN query processing
using an index structure with spherical page approximations (SS-Tree). We developed
an AkNN where the domination decision criterion can be easily replaced and compared
DDCTR to DDCMM which was adapted to the case of spherical approximations.

Afterwards, we further extend AkNN processing to employ multiple pruning criteria.
Thus, it is possible to construct even tighter bounds around the remaining search space
and thus to further decrease the number of necessary page accesses. In our experimental
evaluation, we demonstrated that our proposed methods decrease the all-over runtime as
well as the page accesses necessary to process AkNN queries on three real-world data sets.
Especially for larger values for k, our new method considerably improves the query times.
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Chapter 7

The Optimal Domination Decision
Criterion

The Trigonometric domination decision criterion discussed in Chapter 6 provides us with
a complete and correct domination decision criterion which is efficiently computable. The
drawbacks of the criterion are that it is only applicable for the case where the approxi-
mations of the objects are spherical and for the special case of the Lp-Norm where p = 2.
However the most commonly used approximation for complex objects in the context of
databases is still the rectangle. For example MBRs are used as spatial key for the most
prominent spatial access methods, e.g. the R-Tree [77], R*-Tree [21], X-Tree [26] as well
as specialized adaptations like the TPR tree [137] and the U-Tree [149] among many oth-
ers. In the last decade, MBR approximations have also become very popular for uncertain
databases [35, 52, 49, 110] in order to approximate all possible locations of an uncertain
vector object such as a GPS signal.

Thus in this chapter, we propose a novel effective (complete and correct) and efficient
criterion to determine the spatial topology between multi-dimensional rectangles. In partic-
ular given three rectangles R, A, and B we develop a criterion to determine Dom(A,B,R).
We prove that our decision criterion is correct, complete, and efficient to compute even for
high dimensional databases. In addition, we tackle the problem of computing the number
of objects dominating an object o. The challenge here is to incorporate objects that only
partially dominate o. In this work we will show how to detect such partial domination
topology by using a modified version of our decision criterion. We propose strategies for
conservatively and progressively estimating the total number of objects dominating an ob-
ject. Our experiments show that when plugged into an application the new domination
decision criterion, albeit very general and widely applicable, significantly outperforms cur-
rent state-of-the-art domination decision criteria. In addition, it is the basis for our novel
method to determine conservative and progressive bounds for the domination count of an
object efficiently. In particular, we claim the following contributions.

• We propose a novel decision criterion for the domination problem among rectangles
that is correct, complete, and can be efficiently computed.
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• We propose a number of heuristics that can be used to estimate the domination count
in consideration of partial domination.

• We show how our domination decision criterion and our heuristics to determine the
domination count can be used to improve spatial pruning strategies for a variety of
spatial query processing methods.

• We present extensive experiments to evaluate our new pruning criteria in comparison
to state-of-the-art approaches.

Parts of this chapter have been published in [64]. The remainder of this chapter is
organized as follows: Section 7.1 introduces our novel domination decision criterion. An
effective estimation of the domination count based on this new decision criterion is proposed
in Section 7.2. Section 7.3 presents experimental results and Section 7.4 finally concludes
the chapter.

7.1 The Criterion

We will derive a new decision criterion that is correct, complete, and can be computed
in O(d) time. Our novel domination decision criterion can be derived from the original
definition of domination in Definition 3.1 by applying the following six equivalences.

Equivalence 1.
∀a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r)⇔

∀r ∈ R : MaxDist(A, r) < MinDist(B, r)

Proof.
(1) “⇒”
If the left-hand side holds for each r ∈ R then it also holds for a ∈ A and b ∈ B that
maximize and minimize the distance to r, respectively. These points a ∈ A and b ∈ B
obviously determine the values of MaxDist and MinDist, respectively.

(2) “⇐”
If the right-hand side holds for each r ∈ R as well as for that a ∈ A and b ∈ B that
maximizes and minimizes the distance to r, i.e. determines the value of MaxDist and
MinDist, respectively, then it also holds for any a ∈ A and any b ∈ B. 2

Equivalence 2.
∀r ∈ R : MaxDist(A, r) < MinDist(B, r)⇔
∀r ∈ R : p

√∑d
i=1 MaxDist(Ai, ri)

p < p

√∑d
i=1 MinDist(Bi, ri)

p

Proof. Follows directly from the definition of MaxDist and MinDist for Lp norms (see
Section 3.2.2). 2
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Equivalence 3.

∀r ∈ R : p

√∑d
i=1 MaxDist(Ai, ri)

p < p

√∑d
i=1 MinDist(Bi, ri)

p ⇔
∀r ∈ R :

∑d
i=1 (MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0

Proof.

∀r ∈ R : p

√∑d
i=1 MaxDist(Ai, ri)

p < p

√∑d
i=1 MinDist(Bi, ri)

p ⇔
∀r ∈ R :

∑d
i=1 MaxDist(Ai, ri)p <

∑d
i=1 MinDist(Bi, ri)

p ⇔
∀r ∈ R :

∑d
i=1 MaxDist(Ai, ri)p −

∑d
i=1 MinDist(Bi, ri)

p < 0 ⇔
∀r ∈ R :

∑d
i=1(MaxDist(Ai, ri)p −MinDist(Bi, ri)

p) < 0 2

Equivalence 4.
∀r ∈ R :

∑d
i=1 (MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0 ⇔

maxr∈R(
∑d

i=1(MaxDist(Ai, ri)p −MinDist(Bi, ri)
p)) < 0

Proof. Instead of considering all possible r ∈ R, it is sufficient to consider only that point
r′ ∈ R which maximizes the left-hand side of the inequality. If the inequality holds for this
point r′, then it obviously holds for all possible r ∈ R and vice versa. 2

The next equivalence requires the following lemma:

Lemma 7.1. Let F : Rd → R be a function that is summed by treating each dimension
independently, i.e. there exists a function f : R→ R such that

F (o) =
d∑
i=1

f(oi)

Also, let A ⊆ Rd be a rectangle and

σ := argmaxa∈A(F (a))

be the object in A that maximizes F . Then, the following holds:

max
a∈A

(
d∑
i=1

f(ai)) =
d∑
i=1

max
ai∈Ai

(f(ai))

Proof.

max
a∈A

(
d∑
i=1

f(ai))
Def F (a)

= max
a∈A

(F (a))
Def σ
= F (σ)

Def F (a)
=

d∑
i=1

f(σi)
Def σ
=

d∑
i=1

max
ai∈Ai

(f(ai))

2
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Equivalence 5.
max
r∈R

(
∑d

i=1 MaxDist(Ai, ri)p −MinDist(Bi, ri)
p) < 0 ⇔∑d

i=1 max
ri∈Ri

(MaxDist(Ai, ri)p −MinDist(Bi, ri)
p) < 0

Proof. This follows from lemma 7.1 by substituting

F (r) = MaxDist(A, r)−MinDist(B, r)

2

The final equivalence (equivalence 6) makes the equation computable. It is based on
the assumption that for finding the maximum ri in dimension i, it is sufficient to consider
the boundary points (Rmin

i and Rmax
i ) of the interval Ri. This assumption is proven in the

following two lemmas.

Lemma 7.2. Let A and B be intervals. The function f : R → R defined as f(x) =
MaxDist(A, x)p −MinDist(B, x)p has no local maximum.

Proof. By definition, the value ofMaxDist(A, x) only depends on A.mean while the value
of MinDist(B, x) only depends on B.min and B.max. Since A.min ≥ A.max, this leads
to the three possible cases depicted in Figure 7.1. In the following, we will show for each
of the cases that there may not exist any point for which it holds that f(x) is increasing
to the left of x and decreasing to the right of x.

Case 1: A.mean ≤ B.min (Figure 7.1(a)):

• For the interval ]−∞, A.mean] Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.max)p − dist(x,B.min)p =
(|A.max− x|)p − (|B.min− x|)p.
This is constant if p = 1 or if A.max = B.min since both |A.max−x| and |B.min−x|
are decreasing. If p > 1, this term can be either monotonically increasing or
monotonically decreasing, depending on whether A.max is greater than B.min
or not.

• For the interval ]A.mean,B.min] Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.min)p − dist(x,B.min)p, where dist(x,A.min) is increasing and
dist(x,B.min) is decreasing, thus f(x) is monotonically increasing for any p.

• For the interval ]B.min,B.max] Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.min)p − 0.
This term is monotonically increasing since dist(x,A.min) is increasing.

• For the interval ]B.max,∞[ Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.min)p − dist(x,B.max)p =
(|A.min− x|)p − (|B.max− x|)p.
This is constant for p = 1 since both |A.min−x| and |B.max−x| are increasing. Since
A.min < A.mean < B.min < B.max, above term is monotonically increasing
for p > 1.
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A
B

A.mean B.min B.max

(a) A.mean ≤ B.min

A
B

A.meanB.min B.max

(b) B.min < A.mean < B.max

A
B

A.meanB.min B.max

(c) A.mean ≥ B.min

Figure 7.1: Illustration of Lemma 7.2.

Putting the monotonic pieces together, it is clear that f(x) may have one local minimum
at A.mean, but definitely has no local maximum.
Case 2: B.min < A.mean < B.max (Figure 7.1(b)):

• For the interval ]−∞, B.min] Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.max)p − dist(x,B.min)p =
(|A.max−x|)p−(|B.min−x|)p. This term is constant for p = 1 since both |A.max−x|
and |B.min− x| are decreasing. Since |A.max− x| ≥ |A.mean− x| > |B.min− x|,
above term is monotonically decreasing for p > 1

• For the interval ]B.min,A.mean] Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.max)p − 0. This is monotonically decreasing for any p ≥ 1.

• For the interval ]A.mean,B.max] Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.min)p − 0. This is monotonically increasing for any p ≥ 1.

• For the interval ]B.max,∞[ Equations 3.1 and 3.2 yield:
f(x) = dist(x,A.min)p − dist(x,B.max)p =
(|A.min− x|)p − (|B.max− x|)p.. This is constant for p = 1 since both |A.min− x|
and |B.max− x| are increasing. Since |A.min− x| ≤ |A.mean− x| < |B.min− x|,
above term is monotonically increasing for p > 1.

Thus, f(x) has one local minimum at A.mean, but definitely no local maximum.

Case 3: A.mean ≥ B.max (Figure 7.1(c)): This case is analogous to the first case. 2

Lemma 7.3. Let f : R → R be a function that has no local maximum and I =
[Imin, Imax] ⊂ R be an arbitrary finite interval. The value that maximizes f in the in-
terval I must be either Imin or Imax, i.e.

argmax
i∈I

(f(i)) ∈ {Imin, Imax}

Proof. Let p ∈ [Istart, Iend] be the value that maximizes f in I, i.e. p = argmaxi∈I(f(a)).
Then, ∀i ∈ I : f(i) ≤ f(p), in particular, f(Imin) ≤ f(p) and f(Imax) ≤ f(p). Note that
f(Imin) < p and f(Imax) < p cannot both be true, because this would be a contradiction to
the assumption that f(x) has no local maximum. Thus it must either hold that f(Istart) =
f(p) or f(Iend) = f(p), i.e. Imin = argmaxi∈I(f(x)) or Imax = argmaxi∈I(f(x)). 2
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Now we can derive the final equivalence.

Equivalence 6.∑d
i=1 maxri∈Ri

(MaxDist(Ai, ri)p −MinDist(Bi, ri)
p) < 0 ⇔

d∑
i=1

max
ri∈{Rmin

i ,Rmax
i }

(MaxDist(Ai, ri)p −MinDist(Bi, ri)
p) < 0

Proof. Follows from lemma 7.2 and 7.3. 2

Definition 7.1 (Optimal Domination Decision Criterion). Our novel optimal domination
decision criterion is defined as

DDCOPT (A,B,R)⇔
d∑
i=1

max
ri∈{Rmin

i ,Rmax
i }

(MaxDist(Ai, ri)p −MinDist(Bi, ri)
p) < 0

Lemma 7.4. The novel optimal domination decision criterion is correct and complete.

Proof. Correctness and completeness follow directly from equivalences 1 to 6. 2

Obviously, the novel optimal domination decision criterion can be computed in O(d)
time and, thus, fulfills all three desired properties mentioned in Section 3.1.

Using our novel domination decision criterion DDCOPT , the basic domination count
DCbasic can be computed in O(N · d). This is worth noting since existing decision criteria
only allow either to compute the exact DCbasic value in exponential time or to compute
an approximation of the DCbasic value in linear time. In the latter case, we would obtain
a lower bound of DCbasic which makes the lower bounding estimation of the domination
count even more loose.

7.2 Domination Count Computing
The computation of the domination count DC(O, B,R) of an object B w.r.t. object R
can be separated into two sub problems:

• First, compute the number of rectangles that (completely) dominate the rectangle B
w.r.t. rectangle R. This can be done by computing DCbasic (cf. Definition 3.5) using
DDCOPT .

• Second, take into account all sets of rectangles that increase the domination count of
B as a group and that do not contain any element that does so separately. For this
part we need the concept of partial domination (cf. Definition 3.6).

Obviously, the sets of objects that dominate B as a group can only contain rectangles
Ai ∈ O that partially dominate B, i.e. for which PDom(Ai, B,R) holds. In other words,
for the computation of the second part of the domination count of a rectangle B, we could
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use the detection of partial domination as a first step because only those rectangles Ai for
which PDom(Ai, B,R) holds could be the elements of those set of rectangles that dominate
B as a group.

In the following we will discuss how our novel domination decision criterion DDCOPT

can be used for (i) detecting partial domination in O(d) and (ii) deriving a conservative
approximation of the domination count.

7.2.1 Partial Domination

Partial domination can efficiently be detected by applying the following six equivalences
analogously to Section 7.1. We start with inequality 3.4.

Equivalence 7.
∃r ∈ R : ∀a ∈ A, b ∈ B : dist(b, r) > dist(a, r)

⇔ ∃r ∈ R : MaxDist(A, r) < MinDist(B, r)

Proof. This proof is analogous to the proof of Equivalence 1, i.e. it exploits that DDCMM is
optimal in the case where R is a point. 2

Equivalence 8.
∃r ∈ R : MaxDist(A, r) < MinDist(B, r)⇔
∃r ∈ R : p

√∑d
i=1 MaxDist(Ai, ri)

p < p

√∑d
i=1 MinDist(Bi, ri)

p

Proof. Follows directly from the definition of MaxDist and MinDist for Lp norms. 2

Equivalence 9.

∃r ∈ R : p

√∑d
i=1 MaxDist(Ai, ri)

p < p

√∑d
i=1 MinDist(Bi, ri)

p ⇔
∃r ∈ R :

∑d
i=1 MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p < 0

Proof.

∃r ∈ R : p

√∑d
i=1 MaxDist(Ai, ri)

p < p

√∑d
i=1 MinDist(Bi, ri)

p ⇔
∃r ∈ R :

∑d
i=1 MaxDist(Ai, ri)p <

∑d
i=1 MinDist(Bi, ri)

p ⇔
∃r ∈ R :

∑d
i=1 MaxDist(Ai, ri)p −

∑d
i=1 MinDist(Bi, ri)

p < 0 ⇔
∃r ∈ R :

∑d
i=1 MaxDist(Ai, ri)p −MinDist(Bi, ri)

p < 0 2

Equivalence 10.
∃r ∈ R :

∑d
i=1 MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p < 0⇔

minr∈R(
∑d

i=1 MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. The rationale for equivalence 10 is that if there exists an r ∈ R for which the left-
hand side returns less than 0, then this also holds for the r which minimizes the term on
the right-hand side and vice versa. 2
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Equivalence 11.
minr∈R(

∑d
i=1 MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0⇔∑d

i=1 minri∈Ri
(MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0

Proof. This proof is analogous to the proof of Equation 5 using minimization instead of
maximization. 2

Analogously to Equivalence 6, the last equivalence below makes the equation com-
putable. Again, we need two lemmas.

Lemma 7.5. Let D be a one dimensional vector database using Lp-Norm. Let A and B
be intervals. The function f : R→ R:

f(x) = maxDist(A, x)p −minDist(B, x)p

may have a local minimum only at A.mean.

Proof. This proof is contained in the formal proof of lemma 7.2. 2

Lemma 7.6. Let f : R→ R be a function that has at most one local minimum at x. For
any finite interval I ⊂ R = [Istart, Iend] the following holds:

argmin
i∈I

(f(i)) ∈ {Istart, Iend, x}

That is, the point of the interval I that minimizes f(x) must be either the lower or the
upper bound of I, or the local minimum x.

Proof. The proof is similar to the proof of Lemma 7.3 and thus omitted here. 2

In consideration of the above lemmas we now derive the final equivalence:

Equivalence 12.∑d
i=1 minri∈Ri

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0⇔∑d
i=1 minri(MaxDist(Ai, ri)

p −MinDist(Bi, ri)
p) < 0,

where ri ∈ {Rmin
i , Rmax

i , Amidi }

Proof. Directly follows from Lemma 7.5 and Lemma 7.6. 2

Thus, using the formula in Equivalence 12 we can efficiently detect all partial domi-
nations. However, as indicated above, this is only the first step towards computing the
domination count. In fact, we need to determine that subregion of the reference rect-
angle R, for which the domination count is minimal. Since we cannot test all possible
points r ∈ R (see also the discussion above), we propose three heuristics to conservatively
approximate the domination count of a rectangle.
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A

HAB

B R

Figure 7.2: Partial domination using grid partitioning

7.2.2 Domination Count Estimation

Using the techniques proposed in Sections 7.1 and 7.2.1 we can check if an MBR A dom-
inates B completely or partially w.r.t. R. These tests are generally applicable as long as
the involved objects are MBRs. For calculating the domination count of B it is therefore
possible to split R into smaller MBRs and then calculate the domination count for each
cell individually. The following three heuristics use different approaches for splitting R to
estimate the domination count.

Domination Count Estimation based on grid partitioning

A straight forward approach for splitting R is performed by using a grid with a fixed
number m of partitions in each dimension. Considering the example in Figure 7.2, we can
(using the decision criteria for domination and partial domination) assert that A dominates
B w.r.t. all dark gray cells and partially dominates B w.r.t. all light gray cells of R. For
the rest of the cells (white) A does not dominate B. Using this grid partitioning, the
domination count (DC(O, B,R)) can be estimated by the minimum domination count of
all cells ci ∈ R, that is:

DCgrid(O, B,R) = mini(DCbasic(O, B, ci))

This estimation is valid as we know that B is dominated by at least this amount of
Ai ⊂ O w.r.t. each cell ci ∈ R.

An example for the grid based partial pruning is given in Figure 7.3. Here an MBR
R is partitioned into 16 cells. In addition two Voronoi hyperplanes HA1B and HA2B are
shown. The objects O = {A1, A2} and B generating the hyperplanes are ommited here.
For the area on the right-hand side of HA1B, object B is dominated by object A1 and for
the left-hand side of HA2B, B is dominated by A2. It is clear that neither A1 nor A2 (fully-)
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1 1 1 1HA1B HA2B

1 2 1 10

1 2 2 10

1 1 2 10

1 1 2 21

Figure 7.3: Domination Count estimation using grid partitioning.

dominate B with respect to the whole MBR R. For each cell the conservative domination
count DCbasic(O, B, ci) is shown. With respect to dark cells, A1 and A2 dominate B and
thus the cells have a value of 2. With respect to light cells, only one of the two objects
dominates B, therefore they get marked with a value of 1. By taking the minimum value
of all cells ci ∈ R we obtain DCgrid(O, B,R) = 1. The advantage of this approach is, that
it returns a very accurate estimation of the domination count while avoiding expensive
materialization of the Voronoi hyperplanes. The accuracy can be boosted by increasing
the number of splits per dimension. In return increasing m will highly increase the runtime
of the algorithm, as the number of cells ci ∈ R is md. This implies that this approach is
not applicable for high dimensions. For each cell ci, DCbasic(O, B, ci) can be computed
in a single scan of the objects for which PDom(Ai, B,R) holds using the DDCOPT (c.f.
Definition 7.1). Thus the total time complexity is in O(d · |O| ·md).

Domination Count Estimation based on slices

In order to reduce the runtime of the domination count estimation, we propose a second
algorithm, which is not based on a grid partitioning. Instead of cells, this approach con-
siders slices. Therefore an MBR R is split into m slices sdimi in each of the d-dimensions
(1 ≤ dim ≤ d). This results in d·m overlapping slices. The domination count DC(O, B,R)
can then be approximated by computing, for each dimension, the minimal domination count
of all slices and using the result of the dimension maximizing this estimation.

DCslice(O, B,R) = maxdim(mini(DCBasic(O, B, sdimi )))

For example, the domination count DC(O, B, si) for each slice si (i.e. each row and
each column) and each cell ci is shown in Figure 7.3 for a 2 dimensional MBR R. The
minimal domination count considering all rows is 0, while the minimal domination count
w.r.t. all columns is 1. Thus DCslice(O, B, si) = 1 in this example. The complexity of
this algorithm is in O(m · d). However, this approach yields much worse results than the
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(a) initial setting

H HHA1B HA2B

1 0

(b) after 1st split
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(d) after 3rd split

Figure 7.4: Example for computing DCbisect

grid-based approach for an identical m parameter. Details can be found in our experiments
(Section 7.3).

Domination Count Estimation based on bisections

We next propose a bisection based approach that yields much better efficiency, while still
being linear in d. This approach works iteratively. During each iteration, one section of R
is chosen to be split evenly (mean split) in one dimension. After m splits, this results in
m+ 1 sections s0 ∪ s1 ∪ . . . ∪ sm = R and it holds that:

DCbisect(O, B,R) = mini(DCbasic(O, B, si))

The challenge here is to wisely choose the split section of R and the dimension to split in
each iteration.

We propose to split the section s ⊂ R with the lowest domination count estimation.
This decision is optimal, because the estimation of DC(O, B,R) is determined by the
section which results in the lowest domination count. Thus, in order to increase the
domination count approximation, s must be split. If the decision for s is ambiguous, then
one of the candidates of s is chosen arbitrarily. To determine the split axis, the heuristic
tests each dimension, and greedily uses the dimension that yields the highest domination
count DCbisect(O, B,R) considering the two resulting bisections of s. In the case of ties the
axis is chosen which maximizes the sum

∑m
i=0DCbasic(O, B, si). An example is shown in
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Figure 7.5: Refinement areas of DDCMM and DDCOPT

Figure 7.4. Considering Figure 7.4(a) it is clear that none of the two objects A1, A2 ∈ O
that are responsible for the Voronoi hyperplanes HA1B and HA2B dominates B w.r.t. R.
Beginning with the y-axis as split axis would result in two equi-sized MBRs both of which
result in a domination count DCbisect(O, B,R) of 0 and therefore the approximation of
DC(O, B,R) does not increase. Choosing the x-axis as split axis would result in two equi-
sized MBRs shown in Figure 7.4(b) yielding the same domination count approximation
but a higher sum (

∑m
i=0DCbasic(O, B, si) = 1). In the next iteration, the right MBR is

chosen to be split, since it is responsible for the lowest domination count approximation.
Both possible split axes are equal according to our heuristic. In the example, the y-axis is
chosen arbitrarily (c.f. Figure 7.4(c)). The third (see Figure 7.4(d)) split of the lower-right
MBR increases DCbisect(O, B,R) to 1.

The bisection-based Domination Count Estimation algorithm usesm iterations. In each
iteration i there exist exactly i sections of which the section with the lowest conservative
domination count has to be found. This yields a complexity of O(m2) but can be reduced
to O(m · log(m))) by using a Priority Queue to find the section with the lowest conservative
domination count. For the greedy heuristic, in each iteration, each dimension has to be
tested to determine the best split axis in O(m · d). Thus we get a total complexity of
O(m · log(m) +m · d) = O(m ·max(log(m), d)), where m is the number of iterations.
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7.3 Experimental Evaluation

This section evaluates the effectiveness and efficiency of our novel domination decision
criterion in comparison to the prevalent DDCMM decision criterion 1. After that we eval-
uate the performance of the domination count estimation approaches from Section 7.2.2.
Finally, we will exemplarily show how our new methods influences the performance of ex-
isting similarity search method designed for kNN and RkNN queries. For all experiments
the underlying distance function is the Euclidian norm.

7.3.1 Single Object Domination

We first evaluate the effectiveness gain of DDCOPT compared to DDCMM in consideration
of the decision power. In order to measure the decision power, we take for a given pair of
rectangles R and A the region into account containing all points that cannot be detected to
be dominated by A w.r.t. R. In the reminder we call this region refinement area, since all
objects intersecting this area might be refined in order to detect the domination relation.
It should be clear that the smaller this area, the higher the corresponding domination
power. Figure 7.5(a) exemplarily shows the refinement areas for the 2-dimensional MBRs
A and R w.r.t. both criteria DDCMM and DDCOPT , respectively. In this example,
object B is detected to be dominated by A only if we apply DDCOPT instead of DDCMM .
The refinement areas depend on several conditions such as position, shape, distance and
extension of the MBRs specifying the refinement area as well as the dimensionality of the
space. For our experiment evaluating the domination power, pairs of MBRs R and A are
positioned in [0, 1]d with a fixed MinDist of 0.5 and equal distances in each dimension. The
length of each side of the two MBRs was scaled from 0.1 to 0.5 and dimension screened
from 1 to 10. The gain of the domination power is measured by the ratio of the volumes of
the refinement area w.r.t. DDCOPT and the refinement area w.r.t. DDCMM by means of
Monte-Carlo-Sampling. The results in Figure 7.5(b) show that DDCOPT leads to a much
higher decision power. The effect becomes more evident as the number of dimensions and
the extension of the MBRs increase. As expected, increasing the extension of the MBRs
leads to diminishing completeness of the DDCMM decision criterion. It is notable, that
the DDCMM criterion suffers considerably from an increasing dimensionality. Note that
we used MBRs of equal side length as we observed that this setting favors the decisions
power based on DDCMM in order to make a fair comparison. In fact, the advantage of the
gain of the decision power based on DDCOPT will increase even further for non-quadratic
rectangles.

In addition to the above experiment which is more from a theoretical point of view,
we compared the number of domination relations detected by applying DDCOPT and
DDCMM . Therefore we randomly generated one million triples of rectangles (A, B, R)
with a fixed extent (i.e. the sum of side lengths) in the [0, 1]2 space. For each triple

1Let us note, that we did not compare against DDCCB since it yields the same effectivity than DDCOPT

at the price of higher computational cost
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Figure 7.7: Heuristics for partial domination

we tested if the decision criterion is able to determine whether Dom(A,B,R) holds. Fi-
nally we aggregated the number of positive decisions for different extents of the MBRs.
The results are illustrated in Figure 7.6(a). Note that an extent of zero yields points
instead of rectangles such that both criteria perform equal. However, we can observe
that with increasing extent, the percentage of positive decisions of DDCOPT compared to
DDCMM increases considerably. The gain of the decision power based on DDCOPT over
DDCMM is illustrated in Figure 7.6(b) showing the factor of positive domination decisions
using DDCOPT in comparison of that using DDCMM . We varied the dimensionality of
the rectangle space up to 5 dimensions. Here we can observe that the gain increases with
increasing extent. In contrast, when increasing the dimensionality, the gain of the decision
power decreases. The reason is that in this setting, the extent of the MBRs is fixed for
all dimensionality settings such that the average side length per dimension decreases and
MBRs converge to points for high dimensionality.
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7.3.2 Domination Count Estimation

The next experiments evaluate the accuracy of the domination count estimation of a rectan-
gle B w.r.t. a rectangle R for the approaches proposed in Section 7.2.2: Basic Domination
Count Estimation (DCbasic), grid partitioning (DCgrid), slice partitioning (DCslice) and
bisection based partitioning (DCbisect). For these experiments, we generated one thousand
three-dimensional MBRs with random position. One MBR R was positioned in the center
of the data space. Then we computed the conservative domination count w.r.t. R for
each MBR using the four approaches mentioned above. We performed several runs for
different parametric settings and averaged the results. Figure 7.7 shows the performance
of all four approaches in terms of estimated domination count. First, we want to get a
grasp of the relationship between accuracy of the domination count estimation and the cost
required for the domination count computation. Therefore, the cost is measured in terms
of number of calls of DDCOPT . It should be clear that when increasing the number of
MBR partitions, and thus the required number of DDCOPT calls, the estimation accuracy
of all approaches improves, except for the basic approach since it does not use any parti-
tioning. Figure 7.7(a) shows the results for MBRs with an extent of 0.3. It can be seen
that all approaches show a significant improvement compared to DCbasic when increasing
the number of allowed DDCOPT calls. In particular, the accuracy increases very fast at
the beginning of the partitioning process but slows down later on. We can also observe
that DCbisect significantly outperforms the other approaches when allowing more than 27
DDCOPT calls per MBR, while DCgrid performs best for 8 or less DDCOPT calls.

In the next experiment, as shown in Figure 7.7(b), we fixed the number DDCOPT calls
per MBR to 64 and varied their extent. We measured the gain of the domination count over
DCbasic. Here, again, DCbisect outperforms the other approaches in particular for larger
MBR sizes. Note that for a given application, the optimal number of partitions depends
on the cost for evaluating a candidate object. The higher that cost, the more partitions
can be used in order to reduce the total runtime.

7.3.3 Impact on Standard Spatial Query Processing Methods

In our last experiments, we evaluate the impact of our approaches on the performance of
standard query processing methods. Here, we refer to Section 3.3.2, describing how our
methods can be plugged into state-of-the-art query processing methods. In particular, we
exemplarily consider the most prominent query methods, the k-nearest neighbor search and
the reverse k-nearest neighbor search. For this evaluation we use one synthetic dataset,
containing 100k uniformly distributed 5D points, and two real world datasets TAC [175]
consisting of 705099 2D points and Forest [80] containing 581012 10D points.

First, we evaluate the impact of our two domination-count estimation approaches
DCbasic and DCbisect on a reverse k-nearest neighbor search method. As a baseline, we
use the algorithm proposed in [4] (in the following referred to AKKRZ ) for RkNN search
on the Euclidean space using an R∗-Tree2. The AKKRZ algorithm originally uses the Min-

2We use the R∗-Tree provided in the Elki Framework [5]
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Figure 7.8: AKKRZ using different decision criteria. Page accesses (top row) and distance
calculations (bottom row).

MaxDist domination decision criterion to conservatively prune candidates. We evaluate
the impact by comparing the query performance of the original AKKRZ algorithm with the
version where we replace the domination count estimation with our methods. Note, that
with except of the domination count estimation method, both RkNN versions are identical.
The results illustrated in Figures 7.8(a), 7.8(b) and 7.8(c) show the query performance of
both RkNN versions in terms of average number of page accesses for varying parameter k
and different datasets. It is notable that the enhanced algorithm requires less page access
by almost a full order of magnitude on all datasets. Using DCbisect to apply the paradigm
of partial pruning based on bisections (c.f. Section 7.2.2) with a maximum number of ten
splits per MBR, the number of page accesses can be decreased even further. The large
performance increase compared to the original version of AKKRZ can be explained by
the fact that our domination decision criterion has a much higher pruning power on large
MBRs compared to the original version that is based on the MinMaxDist domination de-
cision criterion. This allows us to prune candidates already on a high directory level and,
thus, to prune a large number of candidate MBRs very early.

Beside the I/O cost, it is also important to consider the CPU cost since the accuracy
of our domination count estimation methods is highly influenced by the CPU cost spent
for the estimation process, as shown in the previous section. For this reason, in addition
to the I/O cost evaluation we evaluate the CPU cost measured by the number of distance
calculations required for the competing techniques as the CPU cost are mainly distance
computation bounded. We counted the total number of distance calculations. Calls of
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Figure 7.9: Evaluation of the different decision criteria for 10 nearest neighbor queries.

DDCOPT and DDCMM were penalized with two distance calculations3. The resulting
numbers of total distance calculations are shown in Figures 7.8(d), 7.8(e) and 7.8(f). It can
be observed that the enhanced AKKRZ algorithm using DCbasic significantly outperforms
the basic AKKRZ by close to two orders of magnitude. The rationale for this is that the
number of calculations increases quadratic in the number of candidates. However, the high
computational cost required when applying partial pruning becomes evident here. Using
DCbisect with a maximum of ten splits, the number of distance calculations increases by a
factor of about five.

Finally, we evaluate the impact of DDCOPT and partial domination on kNN queries
among objects approximated by MBRs. These experiments are based on three artificial
datasets that rely on the three datasets used in the foregoing experiments (TAC, Uniform,
Forest). Each vector in a dataset defines the center of an MBR. For each of the resulting
datasets 100 MBRs were chosen randomly as query MBR Q for a 10-NN query on the
remaining dataset. Here we did not apply any index structure. The performance of the
competing approaches were measured by the average number of candidates that could
neither be pruned nor be reported as true hits. The results showing the performance in
terms of the number of remaining candidates are depicted in Figure 7.9 for varying extent of
the MBRs. It can be observed, that DCbasic significantly reduces the number of candidates
compared to pruning based on DDCMM on all datasets. The relative performance boost
increases for an increasing extent of the MBRs. We also found out in our experiments,
that the parameter k has no significant influence on the relative performance boost. Figure
7.9 also shows, that DCbisect is able to further boost the performance, especially for large
MBRs independent of the dataset.

7.4 Conclusions

As chapters 3 - 7 revealed the concept of spatial domination is a very useful tool to perform
spatial pruning on rectangles and other approximations in a wide field of applications. The
domination decision criteria can be plugged into several different query types like reverse

3in concordance with run-time experiments



nearest neighbour queries, reverse nearest neighbour ranking and all-k-nearest neighbour
queries. Since existing domination decision criteria were either incomplete (MinMaxDist
domination decision criterion) or were subject to some crucial restrictions (Hyperplane
domination decision criterion) we successively developed more powerful criteria removing
these constraints. Starting from the Hyperplane criterion we developed the EntryHyper-
plane where approximation A in the relation Dom(A,B,R) was allowed to be extended.
With the gained insight we were able to construct the CornerBased domination decision
criterion which also allowed approximation B to be extended, still yielding exponential
runtime in the number of dimensions. The Trigonometric criterion removed this drawback
by introducing spherical approximations. In this last chapter of Part II of this work we pro-
posed a domination decision criterion that is complete, correct and efficiently computable
in O(d) on rectangular approximations. In addition, we discussed how this decision crite-
rion can be used to accurately estimate the domination count of objects by incorporating
information about partial domination. While all current approaches that use informa-
tion about partial domination can only be used on low dimensional data our solution can
be applied to data of arbitrary dimensionality. Our experimental evaluation shows that
our novel decision criterion can be used to vastly increase the pruning power of existing
applications.



Human science is an uncertain guess.
Edward G. Prior

Part III

Distance Dependencies in Uncertain
Spatial Data
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Chapter 8

Uncertain Data

8.1 Introduction
In recent years uncertain data has emerged as a hot topic in the database research commu-
nity. This trend can be explained by the fact that there is a immanent need for a correct
handling of uncertainty in many applications collecting and storing data. Examples how
uncertain data can arise in a database are:

• Automatic Knowledge Extraction: When natural language processing techniques are
used to extract knowledge from unstructured web documents, the extracted informa-
tion will usually not be 100% accurate. Using uncertain data modelling it is possible
to assign probabilities corresponding to the level of confidence with the extracted
information. For example we may assign a probability of 0.7 to the fact that “Buck
works at the LMU”.

• Human Readings: A similar issue may arise with human observations. Suppose a
witness saw a red car, leaving the scene of an accident but is not sure whether the
brand of the car was a “Toyota” (probability of 0.75) or a “Mazda” (probability of
0.25).

• Sensor Readings: Sensors measuring environmental variables are never fully accurate
due to discretization or inherent uncertainty. Thus a sensor may only report that
the temperature is 30◦C±2◦C and GPS devices are only able to indicate the current
position with several meters of accuracy.

• Extrapolated Data: Extrapolated data, e.g. weather forecasts are inherently un-
certain. For example the chance of sunny weather next Tuesday in Munich is only
30%.

These examples illustrate that data in many applications is never fully certain, thus
dealing with this uncertainty is an important and highly relevant problem. One approach
to do this is to clean the data in order to remove the uncertainty and then store the data



114 8 Uncertain Data

in a traditional DBMS. However this cleaning process is not trivial and requires a lot of
effort dependent on the data and the application [134]. Another approach is to keep the
uncertainty in the data and treat the values “correctly” during query processing meaning
assigning probabilities to query results. This approach does not require any preprocessing
of the data but query processing becomes much more challenging. The second approach
however has two huge advantages:

• Each result is now assigned with a confidence (probability) and thus lets the user
much better decide how to interpret the outcome of a query. In contrast after data
cleaning it is not clear to the user how the data has been changed and reorganized.

• Relationships between different entries in the database remain existent and can be
interpreted during query processing according to the understanding of the user.

Following these thoughts, this part will focus on the correct management and handling
of uncertain data specifically with the goal to support efficient similarity search on this
data. Parts of this chapter have been published in [30].

8.2 Modelling Uncertain Data

The management of uncertain data has gained increasing interest in diverse application
fields, e.g. sensor monitoring [54], traffic analysis, location-based services [167] etc. Thus
the topic of uncertain data, i.e., data containing potentially uncertain information, has
received a lot of attention from the database research community in recent years [10, 143,
145]. It involves a number of challenges in terms of collecting, modelling, as well as indexing
and querying uncertain data. Though uncertain data management has been studied in the
traditional database literature [16, 102, 18, 42, 69, 73], this field has seen a revival, recently,
due to new techniques for collecting inherently uncertain data. As a consequence, novel
concepts for managing uncertain data have been developed. Most prominent concepts for
probabilistic data management are MayBMS [10], MystiQ [37], Trio [6] and MCDB [88].
These uncertain database management systems (UDBMS) provide solutions to cope with
uncertain relational data. In the following we will first focus on the modelling of uncertain
data in relational databases in general and afterwards consider the special case of uncertain
spatial databases.

8.2.1 Categorization

According to [142] uncertainty in relational databases can be categorized in tuple uncer-
tainty and/or attribute uncertainty.

Following the tuple uncertainty model, each tuple in the database is associated with a
probability that the tuple is existent. This model is often also called existential uncertainty.
An example where the incorporation of uncertainty as tuple uncertainty is used is shown in
Table 8.1. Here the data is collected by an indoor RFID tracking system. RFID tracking
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ID Time Person Location Prob.
t1 Jack 10:15 Jack’s Office 0.8
t2 Diane 10:20 Conference Room 1.0
t3 Jack 10:20 Kitchen 0.4
t4 Jack 10:25 Conference Room 0.9

Table 8.1: Tuple uncertainty example

ID Witness Time Car Color
t1 John 11:30 [Mazda : 0.2] ⊕ [Toyota : 0.8] red
t2 Adam 11:35 [Honda : 0.6] ⊕ [Mazda : 0.4] red
t3 Bob 11:30 Mazda [red : 0.7] ⊕ [orange : 0.3]

Table 8.2: Attribute uncertainty example

is however subject to several sources of error and is thus not always accurate [135]. This
leads to data tuples in the database which can not be assumed to be certain but only exist
with the associated probability.

The attribute uncertainty model on the other hand side assumes that each tuple is
existent in the database, but the exact values of some attributes are not known for sure.
Consider the previously mentioned witness example shown in Table 8.2. Here the witnesses
are all sure that they have seen a car leaving an accident, just the brand (e.g. John saw
a Mazda with 20% or a Toyota with 80% probability) and the color ( Bob saw a red car
with 70% or an orange with 30% probability) are not always known for sure. Following
the attribute uncertainty model the probabilities for all possible values of an attribute of
a tuple sum up to 1.0. When using attribute uncertainty to model the uncertainty, the
models can further be classified in two types: discrete and continuous uncertainty models.
Discrete models represent each uncertain attribute by a discrete set of alternative values,
each associated with a probability. This model is in general adopted for probabilistic
databases, where tuples are associated with existential probabilities , e.g.[57, 108, 146, 83].
In the continuous model an uncertain attribute is represented by a probability density
function (pdf ) over the value space. Figure 8.1 illustrates the difference between the two
characteristics for one uncertain attribute.

It is also possible to combine attribute and tuple uncertainty which is shown by the
example in Table 8.3. Here sensors s1, s2 and s3 capture values which are not certain, but
rather a set of possible values assigned with a probability is given. The probabilities of
the sensor readings of s2 do not sum up to 1 which implies existential uncertainty of the
reading (i.e. it is possible that the sensor has not transmitted a sensor reading at all).

8.2.2 The Possible Worlds Semantics

Nowadays the most common way to treat this uncertainty in databases is the possible
worlds semantics [99]. Many works [1, 140, 86] view a probabilistic database as a set of
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(a) Discrete attribute uncertainty (b) Continuous attribute uncertainty

Figure 8.1: Variants of attribute uncertainty

ID Value
s1 [3 : 0.3] ⊕ [8 : 0.7]
s2 [6 : 0.5]
s3 [1 : 0.2] ⊕ [2 : 0.1] ⊕ [4 : 0.7]

Table 8.3: Sensor readings

possible instances (worlds) associated with their probabilities. In the scope of this chapter
(and also most existing works) we assume attribute values (which are random values) of
different tuples to be mutually independent. However attribute values of the same tuple
may not be independent from each other.

Definition 8.1 (Possible Worlds). D = {T1, . . . TN} be an uncertain database and let
W = t1, . . . , tn be any (certain) database instance which corresponds to a subset of tuples
ti appearing in D such that ti ∈ Ti, i ∈ {1, . . . , N}. The probability of this database
instance (world) W to occur is P (W ) = ΠN

i=1P (ti). If P(W) > 0, W is a possible world:
the set of all possible worlds is denoted by W .

Considering the example from Table 8.3 we can generate the set of possible worlds as
shown in Table 8.4. Under possible worlds semantics it is now possible to answer queries
and assign probabilities to the results. Again considering the example shown in Table 8.3,
we may issue the following query: “Is the value of sensor s1 larger than the value of sensor
s3?”. For computing the answer we have to investigate all possible worlds and sum up the
probabilities for each possible outcome. The result to this query is NO with a probability
of 0.21 (P (W3) + P (W6)) and YES with a probability of 0.79 (ΣWi∈W\W3,W6P (Wi)).

8.2.3 Uncertain Spatial Data Model

Up to now we have considered uncertain relational data, but in this part we want to
concentrate on uncertain spatial data. The thoughts and basics from above can however
straightforwardly be adapted to the multidimensional spatial case. Following, we assume
that the database D consists of multi-attribute objects U1, ..., UN that may have uncertain
attribute values. An uncertain attribute is defined as follows:
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World Tuples Prob.
W1 {s1 = 3}, {s2 = 6}, {s3 = 1} 0.03
W2 {s1 = 3}, {s2 = 6}, {s3 = 2} 0.015
W3 {s1 = 3}, {s2 = 6}, {s3 = 4} 0.105
W4 {s1 = 3}, {s3 = 1} 0.03
W5 {s1 = 3}, {s3 = 2} 0.015
W6 {s1 = 3}, {s3 = 4} 0.105
W7 {s1 = 8}, {s2 = 6}, {s3 = 1} 0.07
W8 {s1 = 8}, {s2 = 6}, {s3 = 2} 0.035
W9 {s1 = 8}, {s2 = 6}, {s3 = 4} 0.245
W10 {s1 = 8}, {s3 = 1} 0.07
W11 {s1 = 8}, {s3 = 2} 0.035
W12 {s1 = 8}, {s3 = 4} 0.245

Table 8.4: Possible worlds

Definition 8.2 (Uncertain Attribute). A uncertain attribute attr of object Ui is a random
variable drawn from a probability distribution with density function fattri .

Based on this definition we are able to define an uncertain object.

Definition 8.3 (Uncertain Object). An uncertain object Ui has at least one uncertain
attribute value. The function fi denotes the multi-dimensional probability density distri-
bution of Ui that combines all density functions for all probabilistic attributes attr of Ui.
Thus Ui can be interpreted as a random variable.

In practice the spatial location of an object is assumed to be a random variable with a
given probability distribution over all possible locations, either in terms of continuous dis-
tributions [155, 127, 32] or discrete distributions [96, 97]. Discrete distributions represent
each uncertain object by a discrete set of alternative values (cf Figure 8.2(a)), each associ-
ated with a probability [112, 32]. In the continuous case each uncertain object is given by
a multi-dimensional PDF (c.f. Figure 8.2(b), where the uncertain attributes may be mu-
tually dependent. Therefore the object PDF can have any arbitrary form, and in general,
cannot simply be derived from the marginal distribution of the uncertain attributes. Meth-
ods based on continuous distributions. Operations on this model usually involve expensive
integrations, hence typically special approximation and indexing techniques for efficient
query processing are employed [55, 149, 30]

Following the convention of uncertain databases [35, 46, 50, 52, 57, 110, 145], we assume
that fi is (minimally) bounded by an uncertainty region Ri such that ∀x /∈ Ri : fi(x) = 0
and ∫

Ri

fi(x)dx ≤ 1.

Specifically, the case
∫
Ri fi(x)dx < 1 implements existential uncertainty, i.e. object Ui

may not exist in the database at all with a probability greater than zero. In the following
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Figure 8.2: Variants of uncertain objects

we focus on the case
∫
Ri fi(x)dx = 1, but the proposed concepts can be easily adapted

to existentially uncertain objects. Although the proposed approaches are also applicable
for unbounded PDF, e.g., Gaussian PDF, here we assume fi exceeds zero only within a
bounded region. This is a realistic assumption because the spectrum of possible values of
attributes is usually bounded and it is commonly used in related work, e.g. [46, 50] and
[35]. Even if fi is given as an unbounded PDF, a common strategy is to truncate PDF
tails with negligible probabilities and normalize the resulting PDF. In specific, [35] shows
that for a reasonable low truncation threshold, the impact on the accuracy of probabilistic
ranking queries is quite low while having a very high impact on the query performance.

8.3 Related Work

Uncertainty in databases is a relatively new field and has received a lot of attention in
the past few years. The main challenges here are data representation [35, 50, 6, 128] and
efficient query processing [108, 147]. While the main goal for most similarity queries on
certain data is to minimize the I/O-cost, in the context of uncertain data, the CPU-cost also
have a dramatic impact on the overall runtime. Probabilistic similarity query processing
on uncertain relational databases has focused on various aspects, with top-k and ranking
queries being the most important and well researched class of queries [107, 57, 108, 83,
146, 32].

Probabilistic queries on uncertain spatial databases retrieve, for a given query object,
those objects from the database having a high probability of satisfying some spatial query
predicate. In particular approaches for probabilistic distance range queries [149], proba-
bilistic nearest-neighbour (kNN) queries [52, 97, 85], probabilistic reverse nearest- neigh-
bour queries [45, 110] as well as probabilistic similarity join queries [96] have been proposed.
To reduce computational effort, [50] add threshold constraints in order to retrieve only ob-
jects whose probability of being the nearest neighbor exceeds a user-specified threshold to
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control the desired confidence required in a query answer. In order to support probabilistic
spatial queries efficiently, methods for indexing uncertain spatial data have been investi-
gated. The most prominent index for uncertain spatial data is the U-Tree [149, 155] and
its extension [179] which bound each spatial uncertain object with an MBR and addition-
ally associates it with a set of "probabilistically constrained regions" (PCR). PCRs are
rectangular regions serving as a tight conservative spatial approximation of the underlying
uncertain object’s spatial distribution. These PCRs can be used for probabilistic pruning
during query processing. For efficiency reasons, the set of PCRs are conservatively approx-
imated by a linear function over the parameters of the PCRs. Böhm et al. have introduced
the Gauss-Tree [40], an index for locations whose distributions follow a Gaussian function.
An approach for efficient probabilistic ranking based on this index is shown in [41]. Most of
the existing approaches are however restricted to a certain query object. The few existing
approaches allowing uncertainty of the query either use expected distances [114] or other
methods which do not return results according to the possible world semantics and may
thus produce very inaccurate results, that may have a very small probability of being an
actual result ([146, 108]). Existing solutions on probabilistic k-nearest neighbor (kNN)
queries restrict to expected distances of the uncertain objects to the query object [114]
or also use a threshold constraint [51]. However, the use of expected distances does not
adhere to the possible world semantics and may thus produce very inaccurate results, that
may have a very small probability of being an actual result ([146, 108]). To the best of
our knowledge, k-nearest neighbor queries, reverse k-nearest neighbour queries as well as
ranking queries on uncertain data, where the query object is allowed to be uncertain and
the possible world semantics is considered, have not been addressed so far. Since we have
already observed that spatial domination is a practical tool for improving the runtime of
many similarity queries, we want to investigate the concept of domination on uncertain
data. In the following the goal is to boost all of the above mentioned similarity queries
when using the domination criteria as a pruning criterion.

8.4 Distance Dependencies in Uncertain Spatial Data

Uncertain objects as defined in Definition 8.3 are obviously subject to the same distance
dependencies than extended spatial objects (actually they are a special case of extended
spatial objects) during similarity query processing. Uncertain objects however provide
much more information than simple spatial approximations, thus it is possible to refine the
concept of domination for this special data type.

8.4.1 Probabilistic Domination

Again we are interested in the following variation of the domination problem: Given three
uncertain objects A, B and R in a multidimensional space Rd, determine whether object
A is closer to R than B w.r.t. a distance function defined on the objects in Rd. If this
is the case, we say A dominates B w.r.t. R. In contrast to Part II, where this problem
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Figure 8.3: A dominates B w.r.t. R with high probability.

is solved for certain data, in the context of uncertain objects this domination relation is
not a predicate that is either true or false, but rather a (dichotomous) random variable as
defined in the following definition.

Definition 8.4 (Domination Random Indicator Variable). Let A,B and R be uncertain
objects. A ≺R B is the random indicator variable that is 1, iff A dominates B w.r.t. R,
formally:

A ≺R B =

{
1, if a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r)

0, otherwise

where a, b and r are realizations of the random variables A,B and R, respectively and dist
is a distance function on vector objects.

In the example depicted in Figure 8.3, there are three uncertain objects A, B and R,
each bounded by a rectangle representing the possible locations of the object in R2. The
PDFs of A, B and R are depicted as well. In this scenario, we cannot determine for sure
whether object A dominates B w.r.t. R. However, it is possible to determine that object A
dominates object B w.r.t. R with a high probability. The problem at issue is to determine
the probabilistic domination relation defined as:

Definition 8.5 (Probabilistic Domination). Given three uncertain objects A, B and R,
the probabilistic domination P (A ≺R B = 1) denotes the probability that A dominates B
w.r.t. R. For simplicity this probability will be denoted as P (A ≺R B).

Naively, we can compute P (A ≺R B) by “simply” integrating the probability of all
possible worlds in which A dominates B w.r.t. R exploiting inter-object independency:

P (A ≺R B) =

∫
a∈A

∫
b∈B

∫
r∈R

δ(a, b, r) · P (A = a) · P (B = b) · P (R = r)da db dr,
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where δ(a, b, r) is the following indicator function:

δ(a, b, r) =

{
1, if dist(a, r) < dist(b, r)

0, else

The problem of this naive approach is the computational cost of the three-fold-integral.
The integrals of the PDFs of A, B and R may in general not be representable as a closed-
form expression and the integral of A ≺R B does not have a closed-from expression.
Therefore, an expensive numeric approximation is required for this approach.

Obviously it is easy to show how to detect whether A completely dominates B w.r.t.
R (i.e. if P (A ≺R B) = 1) regardless of the probability distributions assigned to the
rectangular uncertainty regions. Many existing works still use DDCMM to detect this
relation [122, 97]. Although correct, this criterion is not complete (see Part II of this work)
in all cases, i.e. not each case where A dominates B w.r.t. R is detected by the criterion.
Therefore, we adopt the spatial domination concepts proposed in Chapter 7 (Definition
7.1) for rectangular uncertainty regions.

Corollary 8.1 (Complete Probabilistic Domination). Let A,B,R be uncertain objects
with rectangular uncertainty regions. Then the following statement holds:

P (A ≺R B) = 1⇔
d∑
i=1

max
ri∈{Rmin

i ,Rmax
i }

(MaxDist(Ai, ri)p −MinDist(Bi, ri)
p) < 0,

where Ai, Bi and Ri denote the projection interval of the respective rectangular uncer-
tainty region of A, B and R on the ith dimension; Rmin

i (Rmax
i ) denotes the lower (upper)

bound of interval Ri, and p corresponds to the used Lp norm. The functions MaxDist(A, r)
and MinDist(A, r) denote the maximal (respectively minimal) distance between the one-
dimensional interval A and the one-dimensional point r.

Corollary 8.1 follows directly from the considerations of the optimal spatial domination
decision criterion (DDCOPT ) in Chapter 7; the inequality is true if and only if for all points
a ∈ A, b ∈ B, r ∈ R, a is closer to r than b. Translated into the possible worlds model, this
is equivalent to the statement that A is closer to R than B for any possible world, which
in return means that P (A ≺R B) = 1.

In addition, it holds that

Corollary 8.2.
P (A ≺R B) = 1⇔ P (B ≺R A) = 0

The complete probabilistic domination is only a special case of the probabilistic domina-
tion relation. Determining P (A ≺R B) in the general case is a complex problem involving
costly integration. In Chapters 9 and 10 we will therefore present techniques for approx-
imating this probability in order to further use the outcome to compute the probabilistic
domination count.
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Figure 8.4: Example of probabilistic domination

8.4.2 Probabilistic Domination Count on Uncertain Object Databases

After being able to correctly compute probabilistic domination the next challenge at hand
is how to derive the probabilistic domination count.

Definition 8.6 (Probabilistic Domination Count). Consider an uncertain database D =
{o1, ..., oN} and an uncertain reference object R. For each uncertain object B ∈ D, let
PDC(D, B,R) be the random variable of the number of uncertain objects A ∈ D (A 6= B)
that are closer to R than B:

PDC(D, B,R) =
∑

A∈D,A 6=B

A ≺R B

PDC(D, B,R) is the sum of N − 1 non-necessarily identically distributed and non-
necessarily independent Bernoulli variables. The problem to be solved is how to efficiently
compute the probability density distribution of PDC(D, B,R).

As already mentioned determining the domination count is a central module for most
types of similarity queries in order to identify true hits and true drops (pruning). In the
context of probabilistic similarity queries, knowledge about the PDF of PDC(D, B,R)
can be used to find out if B satisfies the query predicate. Computing PDC(D, B,R) how-
ever is not straightforwardly possible even when we are able to compute P (A ≺R B) for
three objects A,B and R. To give an intuition how challenging the problem is, we follow-
ing present a naive solution that can yield incorrect results due to ignoring dependencies
between domination relations.

Example 8.4.1. Consider a database of three certain objects B, A1 and A2 and the
uncertain reference object R, as shown in Figure 8.4(a). For simplicity, objects A1 and A2

have the same position in this example. The task is to determine the domination count of
B w.r.t. R. The domination half-space (HA1/2B(A1/2)) for A1 and A2 is depicted here as
well (the upper halfspace). Let us assume that A1 (A2) dominates B with a probability
of P (A1 ≺R B) = P (A2 ≺R B) = 50%. Recall that this probability can be computed by
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integration. However, in this example, the probability that both A1 and A2 dominate B is
not simply P (A1 ≺R B) · P (A2 ≺R B) = 50% · 50% = 25%.

The reason for the wrong result in this example is that this kind of computation requires
mutually independent random variables. However, in this example, it holds that if and only
if R falls into the domination half-space HA1B(A1), it also falls into the domination half-
space HA2B(A2). Thus we have the dependency A1 ≺R B ↔ A2 ≺R B and the probability
for R to be dominated by both A1 and A2 is according to the multiplication theorem of
probability

P (A1 ≺R B ∩ A2 ≺R B) = P (A1 ≺R B) · P (A2 ≺R B)|A1 ≺R B) = 0.5 · 1 = 0.5.

The above simple approach thus ignores possible dependencies between domination
relationships. Although we assume independence between objects, the random variables
A1 ≺R B and A2 ≺R B are mutually dependent because the distance between A1 and R
depends on the distance between A2 and R because object R can only appear once. The
correct probabilistic domination count of B w.r.t. R for the example is is therefore either
0 or 2 depending on the position of R (cf. Figure 8.4(b)).

8.5 Challenges of Distance Dependencies in Uncertain
Data

The rest of this part is separated into two chapters. In Chapter 9 we will build the theoret-
ical foundation for computing probabilistic domination and the probabilistic domination
count. Subsequently we will show in Chapter 10 how the proposed computation can be
plugged into the application of probabilistic reverse nearest neighbour processing on dis-
crete uncertain data. In particular this part will focus on the following challenges:

As mentioned in Section 8.4.1 the naive computation of P (A ≺R B) is very costly in the
general case since it involves a three-fold-integration over the pdfs of the involved objects.
Thus the first step is to find an efficient way to approximate this value for three given
uncertain objects A,B and R. In Example 8.4.1 we showed that it is not possible to use
the values P (Ai ≺R B) naively in order to compute the probabilistic domination count
PDC(D, B,R) for objects Ai ∈ D, B and R. However we will show that it is possible to
obtain the approximations of all P (Ai ≺R B) in a way that they can be offset with each
other. This operation however is not trivial and we will develop a technique which we term
uncertain generating functions (UGFs). These UGFs allow for an efficient approximation
of the probabilistic domination count, which is sufficient in most applications.

As a proof of efficiency for the proposed techniques we chose the application of proba-
bilistic reverse nearest neighbour processing on discrete uncertain data. For this purpose
we develop a framework which allows for efficient computations of a broad class of proba-
bilistic similarity queries. We adapt the developed techniques from Chapter 9 to the special
case of the discrete uncertainty model and show how the probabilistic domination count
can be utilized as pruning criterion to develop algorithms which are superior to existing
approaches.



124 8 Uncertain Data



125

Chapter 9

Probabilistic Domination on Continuous
Uncertain Data

In this chapter, we show how to efficiently approximate (i.e. upper and lower bound) the
probabilistic domination P (A ≺R B) of three objects A,B and R. Furthermore we will
show how to utilize these bounds in order to compute bounds of the probabilistic domi-
nation count PDC(D, B,R). The approach supports a general uncertainty model using
continuous probabilistic density functions to describe the (possibly correlated) uncertain
attributes of objects. Specifically, we propose an iterative filter-refinement strategy for con-
servatively and progressively estimating the probabilistic domination count in an efficient
way while keeping correctness according to the possible worlds semantics. In an experi-
mental evaluation, we show that our proposed technique allows to acquire tight probability
bounds for the probabilistic domination count quickly, even for large uncertain databases.

Parts of this chapter have been published in [30]. The rest of this chapter is organized
as follows: In Sections 9.1 and 9.2 we show how to compute bounds for probabilistic dom-
ination and the probabilistic domination count, respectively. In order to set the results off
against each other we develop the technique of generating functions in Section 9.3 and show
how it can be implemented efficiently in Section 9.4. Section 9.5 shows how the proposed
methods can be integrated in different query predicates. An experimental evaluation is
given in Section 9.6 before Section 9.7 concludes this chapter.

9.1 Bounding Probabilistic Domination

We start by considering the case where A does not completely dominate B w.r.t. R. In
consideration of the possible world semantics, there may exist worlds in which A dominates
B w.r.t. R, but not all possible worlds satisfy this criterion (corresponding to the concept
of partial domination introduced in Definition 3.6). Let us consider the example shown
in Figure 9.1 where the uncertainty region of A is decomposed into five partitions, each
assigned to one of the five grey-shaded regions illustrating which points are closer to the
partition in A than to B. As we can see, R only completely falls into three grey-shaded
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Figure 9.1: Probabilistic domination

regions. This means that A does not completely dominate B w.r.t. R. However, we know
that in some possible worlds (at least in all possible worlds where A is located in A1, A2 or
A3) A does dominate B w.r.t. R. The question at issue is how to determine the probability
P (A ≺R B) that A dominates B w.r.t. R in an efficient way. The key idea is to decompose
the uncertainty region of an object X into subregions for which we know the probability
that X is located in that subregion (as done for object A in our example). Therefore,
if neither Dom(A,B,R) nor Dom(B,A,R) holds, then there may still exist subregions
A′ ⊂ A, B′ ⊂ B and R′ ⊂ R such that A′ dominates B′ w.r.t. R′. Given disjunctive
decomposition schemes A, B and R we can identify triples of subregions (A′ ∈ A, B′ ∈ B,
R′ ∈ R) for which Dom(A′, B′, R′) holds. Let δ(A′, B′, R′) be the following indicator
function:

δ(A′, B′, R′) =

{
1, if Dom(A′, B′, R′)

0, else

Lemma 9.1. Let A,B and R be uncertain objects with disjunctive object decompositions
A,B andR, respectively. To derive a lower bound PLB(A ≺R B) of the probability P (A ≺R
B) that A dominates B w.r.t. R, we can accumulate the probabilities of combinations of
these subregions as follows:

PLB(A ≺R B) =
∑

A′∈A,B′∈B,R′∈R

P (A′) · P (B′) · P (R′) · δ(A′, B′, R′),

where P (X ′) denotes the probability that object X is located within the partition X ′.

Proof. The probability of a combination (A′, B′, R′) can be computed by P (A′) · P (B′) ·
P (R′) due to the assumption of mutually independent objects. These probabilities can
be aggregated due to the assumption of disjunctive subregions, which implies that any
two different combinations of subregions (A′ ∈ A, B′ ∈ B, R′ ∈ R) and (A′′ ∈ A, B′′ ∈
B, R′′ ∈ R, A′ 6= A′′ ∨ B′ 6= B′′ ∨ R′ 6= R′′ must represent disjunctive sets of possible
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worlds. It is obvious that all possible worlds defined by combinations (A′, B′, R′) where
δ(A′, B′, R′) = 1, A dominates B w.r.t. R. But not all possible worlds where A dominates
B w.r.t. R are covered by these combinations and, thus, do not contribute to PLB(A ≺R B).
Consequently, PLB(A ≺R B) lower bounds P (A ≺R B). 2

Analogously, we can define an upper bound of P (A ≺R B):

Lemma 9.2. An upper bound PUB(A ≺R B) of P (A ≺R B) can be derived as follows:

PUB(A ≺R B) = 1− PLB(B ≺R A)

Proof. This equation is evident due to Lemma 9.1 and the observation that in any world
where A = a, B = b and R = r it holds that Dom(a, b, r)⇔ ¬Dom(b, a, r). 2

Naturally, the more refined the decompositions are, the tighter the bounds that can be
computed and the higher the corresponding cost of deriving them. In particular, starting
from the entire MBRs of the objects, we can progressively partition them to iteratively
derive tighter bounds for their dependency relationships until a desired degree of certainty
is achieved (based on some threshold). However using the retrieved bounds directly for
computing the probabilistic domination count still yields the same problems as already
discussed in the Section 8.4.2 (where we stated that the exact values P (Ai ≺R B) can not be
used to calculate the probabilistic domination count PDC(D, B,R)). In the next section,
we show how to derive bounds for the probabilistic domination count PDC(D, B,R) of a
given object B (cf. Definition 8.6) by using a methodology based on generating functions.

9.2 Bounding the Probabilistic Domination Count
In general, domination relations may have arbitrary correlations. Therefore, we present a
way to compute the probabilistic domination count PDC(D, B,R) while accounting for
the dependencies between domination relations. The basic idea here is to use bounds for
the probabilistic domination which are mutually independent from each other.

9.2.1 Complete Domination

In an initial step, complete domination (as mentioned in Corollary 8.1) serves as a filter
which allows us to detect those objects A ∈ D that definitely dominate a specific object
B w.r.t. R and those objects that definitely do not dominate B w.r.t. R by means of
evaluating P (A ≺R B) and P (B ≺R R) respectively. We are able to achieve this for
example by using DDCOPT from Part II of this work. It is important to note that complete
domination relations are mutually independent, since complete domination is evaluated
on the entire uncertainty regions of the objects. After applying complete domination, we
have detected objects that dominate B in all, or no possible worlds. Consequently, we
get a first approximation of the probabilistic domination count PDC(D, B,R), obviously,
it must be higher than the number N of objects that completely dominate B and lower
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than |D| −M , where M is the number of objects that dominate B in no possible world,
i.e. P (PDC(D, B,R) = k) = 0 for k ≤ N and k ≥ |D| −M . Nevertheless, for N < k <
|D −M | we still have a very bad approximation of the domination count probability of
0 ≤ P (PDC(D, B,R) = k) ≤ 1.

9.2.2 Probabilistic Domination

In order to refine this probability distribution, we have to take the remaining set of objects
influenceObjects = {A1, ..., AC} influencing the probabilistic domination count. In par-
ticular the influenceObjects set contains objects which neither completely dominate B nor
are completely dominated by B w.r.t. R. Consequently for each Ai ∈ influenceObjects
the probability P (Ai ≺R B) may be unequal 0 or 1. For these objects, we can compute
probabilities P (A1 ≺R B), ..., P (AC ≺R B) by integration or bound the probabilities ac-
cording to the methodology in Section 9.1. However, due to the mutual dependencies
between domination relations (cf. Section 8.4.2), we cannot simply use these probabili-
ties directly, as they may produce incorrect results. However, we can use the observation
that the objects Ai are mutually independent and each candidate object Ai only appears
in a single domination relation A1 ≺R B, ..., AC ≺R B. Exploiting this observation, we
can decompose the objects A1, ..., AC only, to obtain mutually independent bounds for the
probabilities P (A1 ≺R B), ..., P (AC ≺R B), as stated by the following lemma:

Lemma 9.3. Let A1, ...AC be uncertain objects with disjunctive object decompositions
A1, ...,AC , respectively. Also, let B and R be uncertain objects (without any decompo-
sition). The lower (upper) bound PLB(Ai ≺R B) (PUB(Ai ≺R B)) as defined in Lemma
9.1 (Lemma 9.2) of the random variable Ai ≺R B is independent of the random variable
Aj ≺R B (1 ≤ i 6= j ≤ C).

Proof. Consider the random variable Ai ≺R B conditioned on the event Aj ≺R B = 1.
Using Equation 9.1, we can derive the lower bound probability of Ai ≺R B = 1 conditioned
to the event Aj ≺R B = 1 as follows:

PLB(Ai ≺R B|Aj ≺R B) =∑
A′i∈Ai,B′∈B,R′∈R

[P (ai ∈ A′i|Aj ≺R B) · P (b ∈ B′|Aj ≺R B) · P (r ∈ R′|Aj ≺R B) · δ(A′i, B′, R′)]

Now we exploit that B and R are not decomposed, thus B′ = B and R′ = R, and thus
P (B ∈ B′|Aj ≺R B) = 1 = P (B ∈ B′) and P (R ∈ R′|Aj ≺R B) = 1 = P (R ∈ R′). We
obtain:

PLB(Ai ≺R B|Aj ≺R B = 1) =∑
A′i∈Ai,B′∈B,R′∈R

[P (ai ∈ A′i|Aj ≺R B = 1) · P (b ∈ B′) · P (r ∈ R′) · δ(A′i, B′, R′)]
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Next we exploit that P (ai ∈ A′i|Aj ≺R B) = P (ai ∈ A′i) since Ai is independent from
Aj ≺R B and obtain:

PLB(Ai ≺R B|Aj ≺R B) =∑
A′i∈Ai,B′∈B,R′∈R

[P (ai ∈ A′i) · P (b ∈ B′) · P (r ∈ R′) · δ(A′i, B′, R′)] = PLB(Ai ≺R B)

Analogously, it can be shown that

PUB(Ai ≺R B|Aj ≺R B = 1) = PUB(Ai ≺R B).

2

In summary, we can now derive, for each object Ai a lower and an upper bound of
the probability that Ai dominates B w.r.t. R. However, these bounds may still be rather
loose, since we only consider the full uncertainty region of B and R so far, without any
decomposition. In Section 9.3.5, we will show how to obtain more accurate, still mutual
independent probability bounds based on decompositions of B and R. Due to the mutual
independency of the lower and upper probability bounds, these probabilities can then be
used to get an approximation of the domination count of B. In order to do this efficiently,
we adapt the generating functions technique which is proposed in [108]. The main challenge
here is to extend the generating function technique in order to cope with probability bounds
instead of concrete probability values. It can be shown that a straightforward solution
based on the existing generating functions technique applied to the lower/upper probability
bounds in an appropriate way does solve the given problem efficiently, but overestimates
the domination count probability and thus, does not yield good probability bounds (We
will reveal the problems of this approach in Section 9.3.4). Rather, we have to redesign the
generating functions technique such that lower/upper probability bounds can be handled
correctly.

9.3 Uncertain Generating Functions (UGFs)
In this section, we will give a brief survey on the existing generating function technique (for
more details refer to [108]) and then propose our new technique of uncertain generating
functions.

9.3.1 Generating Functions

Consider a set of N mutually independent, but not necessarily identically distributed
Bernoulli {0, 1} random variables X1, ..., XN . Let P (Xi) denote the probability that
Xi = 1. The problem is to efficiently compute the sum

N∑
i=1

Xi =
N∑
i=1

Ai ≺R B
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of these random variables. A naive solution would be to count, for each 0 ≤ k ≤ N ,
all combinations with exactly k occurrences of Xi = 1 and accumulate the respective
probabilities of these combinations. This approach, however, shows a complexity of O(2N).
In [34], an approach was proposed that achieves an O(N) complexity using the Poisson
Binomial Recurrence. Note that O(N) time is asymptotically optimal in general, since
the computation involves at least O(N) computations, namely P (Xi), 1 ≤ i ≤ N . In the
following, we propose a different approach that, albeit having the same linear asymptotical
complexity, has other advantages, as we will see. We apply the concept of generating
functions as proposed in the context of probabilistic ranking in [108]. Consider the function
F(x) =

∏n
i=1(ai+bix). The coefficient of xk in F(x) is given by:

∑
|β|=k

∏
i:βi=0 ai

∏
i:βi=1 bi,

where β = 〈β1, ..., βN〉 is a Boolean vector, and |β| denotes the number of 1’s in β.
Now consider the following generating function:

F i =
∏
Xi

(1− P (Xi) + P (Xi) · x) =
∑
j≥0

cjx
j.

The coefficient cj of xj in the expansion of F i is the probability that for exactly j
random variables Xi it holds that Xi = 1. Since F i contains at most i+ 1 non-zero terms
and by observing that

F i = F i−1 · (1− P (Xi) + P (Xi) · x),

we note that F i can be computed in O(i) time given F i−1. Since F0 = 1x0 = 1, we
conclude that FN can be computed in O(N2) time. If only the first k coefficients are
required (i.e. coefficients cj where j < k), this cost can be reduced to O(k ·N), by simply
dropping the terms of the sum cjx

j where j ≥ k.

Example 9.3.1. As an example, consider three independent random variables X1, X2 and
X3. Let Xi correspond to the event that Ai ≺R B. Furthermore for the sake of simplicity
we assume that the random variables Xi are mutually independent (which is not the case
in general and will be addressed later). Let P (X1) = 0.2, P (X2) = 0.1 and P (X3) = 0.3,
and let k = 2. Then:

F1 = F0 · (0.8 + 0.2x) = 0.2x1 + 0.8x0

F2 = F1 · (0.9 + 0.1x) = 0.02x2 + 0.26x1 + 0.72x0 ∗= 0.26x1 + 0.72x0

F3 = F2 · (0.7 + 0.3x) = 0.078x2 + 0.418x1 + 0.504x0 ∗= 0.418x1 + 0.504x0

Thus, P (PDC(D, B,R) = 0) = 50.4% and P (PDC(D, B,R) = 1) = 41.8%. We
obtain P (PDC(D, B,R) < 2) = 92.2%. Equations marked by * exploit that we only need
to compute the cj where j < k = 2.
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9.3.2 Uncertain Generating Functions

Given a set of N independent but not necessarily identically distributed Bernoulli {0, 1}
random variables Xi, 1 ≤ i ≤ N . Let PLB(Xi) (PUB(Xi)) be a lower (upper) bound
approximation of the probability P (Xi = 1). Consider the random variable

N∑
i=1

Xi.

We make the following observation: The lower and upper bound probabilities PLB(Xi) and
PUB(Xi) correspond to the probabilities of the three following events:

• Xi = 1 definitely holds with a probability of at least PLB(Ai <R B).

• Xi = 0 definitely holds with a probability of at least 1− PUB(Xi).

• It is unknown whetherXi = 0 orXi = 1 with the remaining probability of PUB(Ai <R

B)− PLB(Ai <R B).

Based on this observation, we consider the following uncertain generating function
(UGF):

FN =
∏

i∈1,...,N

[(PLB(Xi) · x+ (1− PUB(Xi)) · y + (PUB(Xi)− PLB(Xi)))] =
∑
i,j≥0

ci,jx
iyj.

The coefficient ci,j has the following meaning: With a probability of ci,j, B is definitely
dominated at least i times, and possibly dominated another 0 to j times. Therefore,
the minimum probability that

∑N
i=1Xi = k is ck,0, since that is the probability that

exactly k random variables Xi are 1. The maximum probability that
∑N

i=1Xi = k is∑
i≤k,i+j≥k ci,j, i.e. the total probability of all possible combinations in which

∑N
i=1 Xi = k,

may hold. Therefore, we obtain an approximate PDF of
∑N

i=1Xi. In the approximated
PDF of

∑N
i=1Xi, each probability

∑N
i=1 Xi = k is given by a conservative and a progressive

approximation.

Example 9.3.2. Let PLB(X1) = 20%, PUB(X1) = 50%, PLB(X2) = 60% and PUB(X2) =
80%. The generating function for the random variable

∑2
i=1Xi is the following:

F2 = (0.2x+ 0.5y+ 0.3)(0.6x+ 0.2y+ 0.2) = 0.12x2 + 0.34x+ 0.1 + 0.22xy+ 0.16y+ 0.06y2

That implies that, with a probability of at least 12%,
∑2

i=1Xi = 2. In addition, with a
probability of 22% plus 6%, it may hold that

∑2
i=1 Xi = 2, so that we obtain a probability

bound of 12% − 40% for the random event
∑2

i=1Xi = 2. Analogously,
∑2

i=1 Xi = 1 with
a probability of 34% − 78% and

∑2
i=1Xi = 0 with a probability of 10% − 32%. The

approximated PDF of
∑2

i=1Xi is depicted in Figure 9.2.
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Figure 9.2: Approximated PDF of
∑2

i=1Xi.

Each expansion F l can be obtained from the expansion of F l−1 as follows:

F l = F l−1 · [PLB(Xl) · x+ (1− PUB(Xl)) + (PUB(Xl)− PLB(Xl)) · y].

We note that F l contains at most
∑l+1

i=1 i non-zero terms (one ci,j for each combination
of i and j where i+ j ≤ l). Therefore, the total complexity to compute F l is O(l3).

9.3.3 Efficient Domination Count Approximation using UGFs

We can directly use the uncertain generating functions proposed in the previous section
to derive bounds for the probability distribution of the domination count PDC(D, B,R).
Again, let D = A1, ..., AN be an uncertain object database and B and R be uncertain
objects in Rd. Let Ai ≺R B, 1 ≤ i ≤ N denote the random Bernoulli event that Ai
dominates B w.r.t. R.1 Also recall that the domination count is defined as the random
variable that is the sum of the domination indicator variables of all uncertain objects in
the database (cf. Definition 8.6).

Considering the generating function

FN =
∏

i∈1,...,N

[(PLB(Ai ≺R B)·x+(PUB(Ai ≺R B)−PLB(Ai ≺R B))·y)+(1−PUB(Ai ≺R B))]

=
∑
i,j≥0

ci,jx
iyj (9.1)

we can efficiently compute lower and upper bounds of the probability that PDC(D, B,R) =
k for 0 ≤ k ≤ |D|, as discussed in Section 9.3.1 and because the independence property of
random variables required by the generating functions is satisfied due to Lemma 9.3.

1That is, X[Ai ≺R B] = 1 iff Ai dominates B w.r.t. R and X[Ai ≺R B] = 0 otherwise.
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Lemma 9.4. A lower bound PDCk
LB(D, B,R) of the probability that PDC(D, B,R) = k

is given by
PDCk

LB(D, B,R) = ck,0

and an upper bound PDCk
UB(D, B,R) of the probability that PDC(D, B,R) = k is given

by
PDCk

LB(D, B,R) =
∑

i≤k,i+j≥k

ci,j

Example 9.3.3. Assume a database containing uncertain objects A1, A2, B and R. The
task is to determine a lower (upper) bound of the probabilistic domination count probability
PDCk

LB(D, B,R) (PDCk
UB(D, B,R)) of B w.r.t. R. Assume that, by decomposing A1 and

A2 and using the probabilistic domination approximation technique proposed in Section
9.1, we determine that A1 has a minimum probability PLB(A1 ≺R B) of dominating B of
20% and a maximum probability PUB(A1 ≺R B) of 50%. For A2, PLB(A2 ≺R B) is 60%
and PUB(A2 ≺R B) is 80%. By applying the technique in the previous subsection, we get
the same generating function as in Example 9.3.2 and thus, the same approximated PDF
for the PDC(D, B,R) depicted in Figure 9.2.

To compute the uncertain generating function and thus the probabilistic domination
count of an object in an uncertain database of size N , the total complexity is O(N3).
The reason is that the maximum number of coefficients of the generating function Fx is
quadratic in x, since Fx contains coefficients ci,j where i + j ≤ x, that is at most x2

2

coefficients. Since we have to compute Fx for each (x < N), the total time complexity
is O(N3). Note that only objects influenceObjects ⊆ D for which a complete domina-
tion cannot be detected (cf. Section 9.2.1) have to be considered in the generating func-
tions. Thus, the total runtime to compute PDCk

LB(D, B,R) as well as PDCk
UB(D, B,R) is

O(|influenceObjects|3). In addition, we will show in Section 9.5 how to reduce the total
time complexity to O(k2 · |influenceObjects|) for certain similarity queries.

9.3.4 Generating Functions vs Uncertain Generating Functions

It is clear that instead of applying the uncertain generating function to approximate the
domination count of B, two regular generating functions can be used; one generating
function that uses the progressive (lower) bounds PLB(Ai ≺R B) and one that uses the
conservative (upper) probability bounds PUB(Ai ≺R B). In the following we give an
intuition and a formal proof that using regular generating functions yields looser bounds
for the approximated probabilistic domination count.

Let D = A1, ..., AN be an uncertain object database and B and R be uncertain objects
in Rd. Let Ai ≺R B, 1 ≤ i ≤ N denote the random Bernoulli event that Ai dominates B
w.r.t. R. Let PLB(Ai ≺R B) (PUB(Ai ≺R B)) be a lower (upper) bound approximation of
the probabilistic event X[Ai ≺R B] = 1.

A lower bound of the probability PDC(D, B,R) = k can be derived using the following
generating function:
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FN =
∏

i∈1,...,N

[(PLB(Ai ≺R B)) · x+ (1− PUB(Ai ≺R B))] =
∑
i≥0

cix
i. (9.2)

Intuitively, this generating function uses the progressive approximation PLB(Ai ≺R
B) of the probability that Ai dominates B w.r.t. R and the progressive approximation
1−PUB(Ai ≺R B) of the probability that Ai does not dominate B w.r.t. R. This generating
function is equal to the uncertain generating function (cf. Equation 9.1) if the uncertain
percentage (i.e. the coefficient of y) is omitted for each candidate Ai, i.e. if the coefficient
of each y is set to 0.

Lemma 9.5. Let ck be the coefficients obtained by the generating function in Equation 9.2
and let PLB(PDC(D, B,R) = k) be the lower bound derived by applying the generating
function in Equation 9.1 and exploiting Lemma 9.4. It holds that

ck = PLB(PDC(D, B,R) = k),

i.e. the lower bound obtained by the (non-uncertain) generating function in Equation 9.2
is as good as the lower bound obtained using the technique in Section 9.3.3.

Proof. The lower bound derived using the uncertain generating function for the probability
PDC(D, B,R) = k is equal to the coefficient ck,0. The coefficient ck,0 corresponds to the
variable xky0 = xk. Since Equation 9.2 and Equation 9.1 are identical except for the
variables containing at least one y, but no y is contained in the variable of the coefficient
ck,0 in Equation 9.1, it is identical to the coefficient ck in Equation 9.2. 2

We can see that we can use a (non-uncertain) generating function to derive the same
lower bound. The advantage here is that the (non-uncertain) generating function is easier
to compute, due to a much (linear in k) lower number of coefficients. However, deriving an
upper bound of the probability PDC(D, B,R) = k is not as easy, because the upper bound
does use the uncertainty of objects. An upper bound can be derived using the following
generating function:

FN =
∏

i∈1,...,N

[(PUB(Ai ≺R B) · x+ (1− PLB(Ai ≺R B))] =
∑
i≥0

cix
i. (9.3)

The idea is to use a conservative approximation PUB(Ai ≺R B) for the probability that
Ai dominates B and a conservative approximation 1 − PLB(Ai ≺R B) for the probability
that Ai does not dominate B. The difference of this generating function compared to
the uncertain generating function (cf. Equation 9.1) is that the uncertain percentage (the
coefficient of y) is added to the probabilities of both events Ai ≺R B = 1 and Ai ≺R B = 0,
respectively2.

2Note that adding the coefficient of y to only one of the terms of the sum will result in incorrect bounds.
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Lemma 9.6. Let ck be the coefficients obtained by the generating function in Equation 9.3
and let PLB(PDC(D, B,R) = k) be the lower bound derived by applying the generating
function in Equation 9.1 and exploiting Lemma 9.4. It holds that

ck ≥ PLB(PDC(D, B,R) = k),

i.e. the upper bound obtained by the (non-uncertain) generating function in Equation 9.2
is in general not as good as the lower bound obtained using the technique in Section 9.3.3.

Proof. We give an example where the upper bound derived by Equation 9.2 is worse than
the upper bound derived by Equation 9.1 and exploiting Lemma 9.4. Assume a database
containing uncertain objects A1, A2, B and R. The task is to determine the probability
that PDC(D, B,R) = 1. Also assume that we have determined (e.g. as proposed in Section
9.1) a lower bound PLB(A1 ≺R B) (PLB(A2 ≺R B)) and an upper bound PUB(A1 ≺R B)
(PUB(A2 ≺R B)) of the probability that A1 (A2) dominates B w.r.t. R. To ease the
notation, let A+

i denote PLB(Ai ≺R B), let A−i denote 1−PUB(Ai ≺R B) and let A?
i denote

the uncertain fraction PUB(Ai ≺R B)− PLB(Ai ≺R B). Using this notation, Equation 9.1
becomes:

(A+
1 x+ A?

1y + A−1 ) · (A+
2 x+ A?

2y + A−2 )

Expansion yields:

A+
1 A

+
2 x

2 + A+
1 A

?
2xy + A+

1 A
−
2 x+ A?

1A
+
2 xy + A?

1A
?
2y

2+

A?
1A
−
2 y + A−1 A

+
2 x+ A−1 A

?
2y + A−1 A

−
2

Exploiting Lemma 9.4 yields the following upper bound probability for PDC(D, B,R) = 1:

PUB(PDC(D, B,R) = 1) =

A+
1 A

?
2 + A+

1 A
−
2 + A?

1A
+
2 + A?

1A
?
2 + A?

1A
−
2 + A−1 A

+
2 + A−1 A

?
2

On the other hand, Equation 9.2 becomes:

((A+
1 + A?

1)x+ A−1 + A?
1) · ((A+

2 + A?
2)x+ A−2 + A?

2)

Expansion yields:

(A+
1 + A?

1) · (A+
2 + A?

2)x2 + (A+
1 + A?

1) · (A−2 + A?
2)x+

(A−1 + A?
1) · (A+

2 + A?
2)x+ (A−1 + A?

1) · (A−2 + A?
2)

Extracting the coefficient c1 of x1 yields:

c1 = (A+
1 + A?

1) · (A−2 + A?
2) + (A−1 + A?

1) · (A+
2 + A?

2)

Expansion yields:
c1 = A+

1 A
−
2 + A+

1 A
?
2 + A?

1A
−
2 + A?

1A
?
2+

A−1 A
+
2 + A−1 A

?
2 + A?

1A
+
2 + A?

1A
?
2
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Comparing PUB(PDC(D, B,R) = 1) and c1, we obtain:

c1 − PUB(PDC(D, B,R) = 1) = A?
1A

?
2

Thus, the upper bound c1 of the (non-uncertain) generating function is greater (and thus
worse) than the upper bound PUB(PDC(D, B,R) = 1) of the uncertain generating function
by A?

1A
?
2. 2

Intuitively, the problem of the upper bound using the (non-uncertain) generating func-
tion is that the uncertain fraction (i.e. A?

1) is added to both the probability that Ai
dominates B (i.e. A+

1 ) and to the probability that Ai does not dominate B (i.e. A−1 ).
Therefore, this approach incorrectly considers some possible worlds more often than once.

9.3.5 Efficient Domination Count Approximation Based on Dis-
junctive Worlds

Since the uncertain objectsB andR appear in each domination relationA1 ≺R B, ..., AC ≺R
B that is to evaluate, we cannot split objects B and R independently (cf. Section 8.4.2).
The reason for this dependency is that knowledge about the predicate Ai ≺R B may im-
pose constraints on the position of B and R. Thus, for a partition B1 ⊂ B, the probability
P (Aj ≺R B1) may change given Ai ≺R B (1 ≤ i, j ≤ C, i 6= j). However, note:

Lemma 9.7. Given fixed partitions B′ ⊆ B and R′ ⊆ R, then the random variables
Ai ≺R′ B′ are mutually independent for 1 ≤ i, j ≤ C, i 6= j.

Proof. Similar to the proof of Lemma 9.3. 2

This allows us to individually consider the subset of possible worlds where b ∈ B′ and
r ∈ R′ and use Lemma 9.7 to efficiently compute the approximated domination count
probabilities PDCk

LB(D, B′, R′) and PDCk
UB(D, B′, R′) under the condition that B falls

into a partition B′ ⊆ B and R falls into a partition R′ ⊆ R. This can be performed
for each pair (B′, R′) ∈ B × R, where B and R denote the decompositions of B and R,
respectively. Now, we can treat pairs of partitions (B′, R′) ∈ B × R independently, since
all pairs of partition represent disjunctive sets of possible worlds due to the assumption
of a disjunctive partitioning. Exploiting this independency, the PDF of the domination
count PDC(D, B,R) of the total objects B and R can then be obtained by creating an
uncertain generating function for each pair (B′, R′) to derive a lower and an upper bound of
P (PDC(D, B′, R′) = k) and then computing the weighted sum of these bounds as follows:

PDCk
LB(D, B,R) =

∑
B′∈B,R′∈R

PDCk
LB(D, B′, R′) · P (B′) · P (R′).

The complete algorithm of our domination count approximation approach can be found in
the next Section.
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Algorithm 7 PDC(D, B, R)
1: influenceObjects = ∅
2: CompleteDominationCount = 0
3: //Complete Domination
4: for all Ai ∈ D do
5: if DDCOPT (Ai, B,R) then
6: CompleteDominationCount++
7: else if ¬DDCOPT (B,Ai, R) then
8: influenceObjects = influenceObjects ∪ {Ai}
9: end if
10: end for
11: //probabilistic domination count
12: PDCLB= [0,...,0] //length |D|
13: PDCUB= [1,...,1] //length |D|
14: while ¬ stopcriterion do
15: split(R), split(B), split(Ai ∈ D)
16: for all B′ ∈ B, R′ ∈ R do
17: PLB= [0,...,0] //length |influenceObjects|
18: PUB= [1,...,1] //length |influenceObjects|
19: for all (0 < i < |influenceObjects|) do
20: Ai = influenceObjects[i]
21: for all A′i ∈ Ai do
22: if DDCOPT (A′i, B

′, R′) then
23: PLB[i] = PLB[i] + P (A′i)
24: else if DDCOPT (B′, A′i, R

′) then
25: PUB[i] = PUB[i] + P (A′i)
26: end if
27: end for
28: end for
29: compute PDCLB(D, B′, R′) and PDCUB(D, B′, R′) based on PLB and PUB using

UGFs.
30: for all (0 < i < D) do
31: PDCLB[i] = PDCLB[i] + PDCLB(D, B′, R′) · P (B′) · P (R′)
32: PDCUB[i] = PDCUB[i] + PDCUB(D, B′, R′) · P (B′) · P (R′)
33: end for
34: end for
35: ShiftRight(PDCLB,CompleteDominationCount)
36: ShiftRight(PDCUB,CompleteDominationCount)
37: end while
38: return (PDCLB, PDCUB)
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9.4 Implementation

Algorithm 7 is a complete method for iteratively computing and refining the probabilis-
tic domination count for a given object B and a reference object R. The algorithm starts
by detecting complete domination (cf. Section 9.2.1). For each object that completely
dominates B, a counter CompleteDominationCount is increased and each object that is
completely dominated by B is removed from further consideration, since it has no influence
on the domination count of B. The remaining objects, which may have a probability greater
than zero and less than one to dominate B, are stored in a set influenceObjects. The set
influenceObjects is now used to compute the probabilistic domination count (PDCLB,
PDCUB). PDCLB and PDCUB are lists containing, at each position i, a lower and an up-
per bound for P (PDC(D, B,R) = i), respectively. This notation is equivalent to a single
uncertain domination count PDF. Thereby we reduce the number of considered objects
for bounding the probabilistic domination count to the influenceObjects only. At the
end of each iteration we then use the ShiftRight() operation which shifts the domination
count PDF to the right by CompleteDominationCount positions. The main loop of the
probabilistic domination count approximation starts in line 14. In each iteration, B, R,
and all influence objects are split into an increasing number of disjunct partitions. For each
combination of partitions B′ and R′, and each database object Ai ∈ influenceObjects,
the probability P (Ai ≺R′ B′) is approximated (cf. Section 9.1). These domination prob-
ability bounds are used to build an uncertain generating function (cf. Section 9.3.3) for
the domination count of B′ w.r.t. R′. Finally, these domination counts are aggregated for
each pair of partitions B′, R′ into the domination count PDC(D, B,R) (cf. Section 9.3.5).
The main loop continues until a domain- and user-specific stop criterion is satisfied. For
example, for a threshold kNN query, a stop criterion is to decide whether the lower (upper)
bound that B has a domination count of less than (at least) k, exceeds (falls below) the
given threshold.

The progressive decomposition of objects (line 15) can be facilitated by precomputed
split points at the object PDFs. More specifically, we can iteratively split each object X
by means of a median-split-based bisection method and use a kd-tree [24] to hierarchically
organize the resulting partitions. In other words each call of the split(X)-method provides
us with the partitioning corresponding to the next level of the kd-tree. The kd-tree is a
binary tree. The root of a kd-tree represents the complete region of an uncertain object.
Every node implicitly generates a splitting hyperplane that divides the space into two
subspaces. This hyperplane is perpendicular to a chosen split axis and located at the
median of the node’s distribution in this axis. The advantage is that, for each node in the
kd-tree, the probability of the respective subregion X ′ is simply given by 0.5X

′.level−1, where
X ′.level is the level of X ′. In addition, the bounds of a subregion X ′ can be determined
by backtracking to the root. In general, for continuously partitioned uncertain objects, the
corresponding kd-tree may have an infinite height, however for practical reasons, the height
h of the kd-tree is limited. The choice of h is a trade-off between approximation quality and
efficiency: for a very large h, considering each leaf node is similar to applying integration
on the PDFs, which yields an exact result; however, the number of leaf nodes, and thus the
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worst case complexity increases exponentially in h. Note that our experiments (c.f. Section
9.6) show that a low h value is sufficient to yield reasonably tight approximation bounds.
Yet it has to be noted, that in the general case of continuous uncertainty, our proposed
approach may only return an approximation of the exact probabilistic domination count.
However, such an approximation may be sufficient to decide a given predicate as we will see
in Section 9.5 and even in the case where the approximation does not suffice to decide the
query predicate, the approximation will give the user a confidence value, based on which
a user may be able decide whether to include an object in the result.

9.5 Applications
In this section, we outline how the probabilistic domination count can be used to effi-
ciently evaluate or accelerate a variety of probabilistic similarity query types, namely the
probabilistic inverse similarity ranking query [111], the probabilistic threshold k-NN query
[51], the probabilistic threshold reverse k-NN query and the probabilistic similarity ranking
query [33, 57, 108, 146]. We start with the probabilistic inverse ranking query, because
it can be derived trivially from the probabilistic domination count introduced in Section
8.4.2. In the following, let D = {A1, ..., AN} be an uncertain database containing uncertain
objects A1, ..., AN .

Corollary 9.1. Let B and R be uncertain objects. The task is to determine the probabilis-
tic ranking distribution Rank(D, B,R) of B w.r.t. similarity to R, i.e. the distribution of
the position Rank(D, B,R) of object B in a complete similarity ranking of A1, ..., AN , B
w.r.t. the distance to an uncertain reference object R. Using our techniques, we can
compute Rank(D, B,R) as follows:

P (Rank(D, B,R) = i) = P (PDC(D, B,R) = i− 1)

The above corollary is evident, since the proposition “B has rank i” is equivalent to the
proposition “B is dominated by exactly i− 1 objects”.

The most prominent probabilistic similarity search query is the probabilistic threshold
kNN query.

Corollary 9.2. Let Q = R be an uncertain query object and let k be a scalar. The
problem is to find all uncertain objects PkNN(Q,D, τ) that are the k-nearest neighbors of
Q with a probability of at least τ . Using our techniques, we can compute the probability
P (B ∈ kNN(Q,D)) that an object B is a kNN of Q as follows:

P (B ∈ kNN(Q,D)) =
k−1∑
i=0

P (PDC(D, B,Q) = i)

The above corollary is evident, since the proposition “B is a kNN of Q” is equivalent
to the proposition “B is dominated by less than k objects”. To decide whether B is a kNN
of Q, i.e. if B ∈ PkNN(Q,D, τ), we just need to check if P (B ∈ kNN(Q,D)) > τ .

Next we show how to answer probabilistic threshold RkNN queries.
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Corollary 9.3. Let Q = R be an uncertain query object and let k be a scalar. A proba-
bilistic reverse k-nearest neighbour (PRkNN) query finds all uncertain objects Ai that have
Q as one of their kNNs with a probability of at least τ , that is, all objects Ai for which
it holds that Q ∈ PkNN(Q,D, τ). Using our techniques, we can compute the probability
P (B ∈ RkNN(Q,D)) that an object B is an RkNN of Q as follows:

P (B ∈ RkNN(Q,D)) =
k−1∑
i=0

P (PDC(D, Q,B) = i)

The intuition here is that an object B is a RkNN of Q if and only if Q is dominated
less than k times w.r.t. B.

For PkNN and PRkNN queries, the total complexity to compute the uncertain gener-
ating function can be improved from O(|influenceObjects|3) to O(|influenceObjects| ·k2)
since it can be observed from Corollaries 9.2 and 9.3 that for kNN and RkNN queries, we
only require the section of the PDF of PDC(D, B,R) where PDC(D, B,R) < k, i.e. we
only need to know the probabilities P (PDC(D, B,R) = x), x < k. This can be exploited
to improve the runtime of the computation of the PDF of PDC(D, B,R) as follows: Con-
sider the iterative computation of the generating functions F1, ...,F |influenceObjects|. For
each F l, 1 ≤ l ≤ |influenceObjects|, we only need to consider the coefficients ci,j in the
generating function F i where i < k, since only these coefficients have an influence on
P (PDC(D, B,R) = x), x < k (cf. Section 9.4). In addition, we can merge all coefficients
ci,j, ci′,j′ where i = i′, i+j > k and i′+j′ > k, since all these coefficients only differ in their
influence on the upper bounds of P (PDC(D, B,R) = x), x ≥ k, and are treated equally
for P (PDC(D, B,R) = x), x < k. Thus, each F l contains at most

∑k+1
i=1 i coefficients (one

ci,j for each combination of i and j where i + j ≤ k). Thus reducing the total complexity
to O(k2 · |influenceObjects|).

Finally, we show how techniques can be utilized to boost applications calculating the
expected rank (cf. [57]) of an uncertain object.

Corollary 9.4. Let Q = R be an uncertain query object. The problem is to rank the
uncertain objects Ai according to their expected rank E(Rank(Ai)) w.r.t. the distance to
Q. The expected rank of an uncertain object Ai can be computed as follows:

E(Rank(Ai)) =
N−1∑
i=0

P (PDC(D, Q,Ai) = i) · (i+ 1)

Other probabilistic similarity queries (e.g. kNN and RkNN queries with a different
uncertainty predicate instead of a threshold τ) can be approximated efficiently using our
techniques as well. Details are omitted due to space constraints.

9.6 Experimental Evaluation
In this section, we review the characteristics of the proposed algorithm on synthetic and
real-world data. The algorithm will be referred to as IDCA (Iterative Domination Count
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Figure 9.3: Runtime of MC for increasing sample size.

Approximation). We performed experiments under various parameter settings. Unless
otherwise stated, for 100 queries, we chose B to be the object with the 10th smallest MinDist
to the reference object R. We used a synthetic dataset with 10,000 objects modeled as 2D
rectangles in [0, 1]2. The degree of uncertainty of the objects in each dimension is modeled
by their relative extent. The extents were generated uniformly and at random with 0.004
as maximum value. For the evaluation on real-world data, we utilized the International Ice
Patrol (IIP) Iceberg Sightings Dataset3. This dataset contains information about iceberg
activity in the North Atlantic in 2009. The latitude and longitude values of sighted icebergs
serve as certain 2D mean values for the 6,216 probabilistic objects that we generated. Based
on the date and the time of the latest sighting, we added Gaussian noise to each object,
such that the passed time period since the latest date of sighting corresponds to the degree
of uncertainty (i.e. the extent). The extents were normalized w.r.t. the extent of the data
space into the [0, 1]2-space, and the maximum extent of an object in either dimension is
0.0004.

9.6.1 Runtime of the Monte-Carlo-based Approach

To the best of our knowledge, there exists no approach which is able to process uncertain
similarity queries on probabilistic databases with continuous PDFs. A naive approach needs
to consider all possible worlds and thus needs to integrate over all object PDFs, implying a
runtime exponentially in the number of objects. Since this is not applicable even for small
databases, we adapted an existing approach to cope with the conditions. The approach
most related to our work is [111], which solves the problem of computing the domination
count for a certain query and discrete distributions within the database objects. Thus
the proposed comparison partner works as follows: Draw a sufficiently large number S of
samples from each object by Monte-Carlo-Sampling. Then, for each sample qi ∈ Q of the
query, apply the algorithm proposed in [111] to compute an exact probabilistic domination
count PDF of an object B. As proposed in [111], this is done using the generating function

3The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site
(http://nsidc.org/data/g00807.html).
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Figure 9.5: Uncertainty of IDCA w.r.t. the relative runtime to MC.

technique and using an and/xor tree to combine individual samples into discrete distributed
uncertain objects. Finally, accumulate the resulting certain domination count PDFs of each
qi ∈ Q into a single domination count PDF by taking the average. The execution time
for this approach, which we will refer to as MC in the following, is shown in Figure 9.3.
It can be observed that for a reasonable sample size (which is required to achieve a result
that is close to the correct result with high probability) the runtime becomes very large.

Note that our comparison partner only works for discrete uncertain data. To make a
fair comparison our approach relies on the same uncertainty model (default: 1000 sam-
ples/object). Nevertheless, all the experiments yield analogous results for continuous dis-
tributions.

9.6.2 Optimal vs. MinMax Domination Decision Criterion

In the first experiment, we evaluate the gain of pruning power using the complete similar-
ity domination technique (cf. Section 9.2.1) instead of the MinMax domination decision
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Figure 9.6: Runtimes of IDCA and MC for different query predicates k and τ .

criterion which is still often used in many probabilistic query processing pipelines to prune
uncertain objects from the search space. The first experiment evaluates the number of un-
certain objects that cannot be pruned using complete domination only, that is the number
of candidates are to evaluate in our algorithm. Figure 9.4(a) shows that the optimal dom-
ination decision criterion (DDCOPT ) is able to prune about 20% more candidates than the
MinMax (DDCMM) criterion. In addition, we evaluated the domination count approxima-
tion quality (in the remainder denoted as uncertainty) after each decomposition iteration
of the algorithm, which is defined as the sum

∑N
i=0 PDC

i
UB(D, B,R)− PDCi

LB(D, B,R).
The result is shown in Figure 9.4(b). The improvement of the complete domination (de-
noted as iteration 0) can also be observed in further iterations. After enough iterations,
the uncertainty converges to zero for both approaches.

9.6.3 Iterative Domination Count Approximation

Next, we evaluate the trade-off of our approach regarding approximation quality and the
invested runtime of our domination count approximation. The results can be seen in Figure
9.5 for different sample sizes and datasets. It can be seen that initially, i.e. in the first
iterations, the average approximation quality (avg. uncertainty of an influenceObject)
decreases rapidly. The less uncertainty left, the more computational power is required to
reduce it any further. Except for the last iteration (resulting in 0 uncertainty) each of
the previous iterations is considerably faster than MC. In some cases (see Figure 9.5(b))
IDCA is even faster in computing the exact result.

9.6.4 Queries with a Predicate

Integrated in an application one often wants to decide whether an object satisfies a predi-
cate with a certain probability. In the next experiment, we posed queries in the form: Is
object B among the k nearest neighbors of Q (predicate) with a probability of 25%, 50%,
75%? The results are shown in Figure 9.6 for various k-values. With a given predicate,
IDCA is often able to terminate the iterative refinement of the objects earlier in most of
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Figure 9.7: Impact of influencing objects.

the cases, which results in a runtime which is orders of magnitude below MC. In average
the runtime is below MC in all settings.

9.6.5 Number of influenceObjects

The runtime of the algorithm is mainly dependent on the number of objects which are
responsible for the uncertainty of the rank of B. The number of influenceObjects depends
on the number of objects in the database, the extension of the objects and the distance
between Q and B. The larger this distance, the higher the number of influenceObjects. For
the experiments in Figure 9.7(a) we varied the distance between Q and B and measured
the runtime for each iteration. In Figure 9.7(b) we present runtimes for different sizes of
the database. The maximum extent of the objects was set to 0.002 and the number of
objects in the database was scaled from 20,000 to 100,000. Both experiments show that
IDCA scales well with the number of influencing objects.

9.7 Conclusions

In this chapter, we transferred the concept of spatial domination to the domain of uncertain
data. We utilized the optimal domination decision criteria as a filter to conservatively and
progressively approximate the probability that an object is being dominated by another
object. An iterative filter-refinement strategy is used to stepwise improve this approxi-
mation in an efficient way. Specifically we propose a method to efficiently and effectively
approximate the probabilistic domination count of an object using the novel technique of
uncertain generating functions. We showed that the proposed concepts can be used as a
probabilistic pruning criterion to efficiently answer a wide range of probabilistic similarity
queries while keeping correctness according to the possible world semantics. Our experi-
ments show that our iterative filter-refinement strategy is able to achieve a high level of
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precision at a low runtime. The question at hand is how much are these techniques able
to improve similarity search algorithms on uncertain data.
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Chapter 10

Probabilistic Reverse Nearest
Neighbour Queries on Discrete
Uncertain Data

In this chapter we want to show how the techniques for approximating the probabilistic
domination count can utilized in order to develop efficient similarity algorithms on un-
certain data. Specifically we will focus on probabilistic reverse nearest neighbor (PRNN)
queries. Given a query object q, a reverse nearest neighbor query in a common certain
database returns the objects having q as their nearest neighbor. PRNN queries conse-
quently return the uncertain objects having the query object as nearest neighbor with
a sufficiently high probability. We propose an algorithm for efficiently answering PRNN
queries using new pruning mechanisms based on probabilistic domination. We compare
our algorithm to state-of-the-art approaches recently proposed. Our experimental evalua-
tion shows that our approach is able to significantly outperform previous approaches. In
addition, we show how our approach can easily be extended to PRkNN (where k > 1)
query processing for which there is currently no efficient solution. Parts of this chapter
have been published in [31].

The rest of this chapter is organized as follows: First we give an overview of sample ap-
plications in Section 10.1 and a formal definition of the problem of PRNN queries in Section
10.2. In 10.3, we describe the general framework for PRNN query processing. In Section
10.4, we give a description including implementation details of our proposed algorithm.
In Section 10.5 we show how to extend the PRNN framework and algorithm to efficiently
answer PRkNN queries. We will subsequently show how the two existing approaches for
PRNN query processing fit in this framework (cf Section 10.6). All proposed techniques
and the competitors are experimentally evaluated in Section 10.7. Finally Section 10.8
concludes this chapter.
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256 The Life of Brian 12 % 10 %
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Figure 10.1: Uncertain object example: user ratings.

10.1 Applications of PRkNN Queries

RkNN query processing has been studied extensively on certain data (cf Section 2.4).
However, due to the immense number of applications dealing with uncertain data, novel
solutions to cope with uncertain objects are required. The main challenge here is that the
event that an object belongs to an RkNN result set, is no longer a predicate, but a random
variable that may be true with some probability. In this chapter, we study the problem
of probabilistic reverse k-nearest neighbor (PRkNN) search in uncertain databases. A
PRkNN query returns the set of objects having a sufficiently high probability to be the
reverse k-nearest neighbor of a query object. Let us note that the query object can be
uncertain as well. Traditional methods as proposed in [148, 152] do not qualify for uncertain
objects, since an uncertain object – instead of being a single point in a multi-dimensional
space – is a random variable defined by the probability distribution over the distance space.
According to the possible worlds model [1], an uncertain database can be viewed as a set of
possible database instances (worlds), to which traditional pruning methods can be applied
to. Since the number of possible worlds is exponential in the number of objects, we need
special methods to avoid consideration of all possible worlds.

There is a wide field of applications for PRNN queries (k=1), e.g. decision support,
marketing, location-based services among others [45, 110]. For instance consider a movie
recommendation database, where each movie is represented by the set of reviews for this
movie, each consisting of a set of attribute values. Examples of such attributes are clas-
sification of the genre, humoristic value and suspense. An example for two such records
is given in Figure 10.1. Thus, each movie record is represented by multiple records from
different users. Differences between records of the same movie reflect the uncertainty in
the user ratings. The advantage of using this uncertain data instead of simply using the
average user recommendation of each movie record is shown by the following example:
Consider a movie like “Monty Python’s The Life of Brian” [44]: Many users will rate this
movie as extremely funny. However, since this movie is based on a rather black sense of
humor, some users may rate this movie as absolutely not funny. Thus, this movie would
have an average of “moderately funny” and would result in a very large distance to other
funny movies. Thus, this movie would never be recommended to users purchasing funny
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movies, even though there is a high probability that a user looking for funny movies may
indeed be interested in this movie. For recommendation purposes a system now wants
to report a KNN-list (consisting of the probabilistic k-nearest neighbours) of movies that
are similar to a movie the user is interested in. For performance reasons these KNN-lists
are precomputed for each movie in the database. Whenever a new movie is added to the
database this may cause an update of various KNN-lists. A naive approach would thus re-
compute the KNN-lists of all movies which would result in a large computational overhead.
A better approach however would be to specifically update the KNN-lists of movies which
are among the probabilistic reverse k-nearest neighbours of the newly inserted object. This
is usually a much smaller set and thus much more efficient. Additionally, probabilistic RNN
queries also have applications in the following fields:

• In privacy preserving location-based services, the exact location of every user is ob-
fuscated into a cloaked spatial region [119]. Yet, users may still be interested in
finding their RNNs.

• In stock market trend analysis, a stock s has many deals. A deal is recorded by price
(per share) and the volume (number of shares). In such an application, we can model
stocks as uncertain objects treating its deals as uncertain instances. For a given stock
s, clients may be interested in finding all other stocks that have trading trends more
similar to s than others. [45].

• Consider a density based clustering on uncertain data based on nearest-neighbor
distances, e.g. single link clustering. When an object is inserted, removed or updated
a naive approach would require the whole clustering to be recomputed. However, we
can exploit that only the RNNs of the inserted/removed/updated object are affected.

There is a large number of other applications for queries that consider the proximity of
uncertain objects (e.g. [97, 50, 35]) for which the applications of RNN queries on uncertain
objects are very similar.

10.2 Problem Definition
Traditional (monochromatic) RNN queries have already been defined in Definition 2.5. An
example is illustrated in Figure 10.2(a). Consider the point object set (p1−5 ∈ P ) with q
as query object. Here, the result of an RNN query would contain the objects p1 and p2.
The uncertain case however is not that trivial (cf Figure 10.2(b)).

10.2.1 Uncertainty Model

Following the Block-Independent Disjoint Scheme ([106]) which is one of the most com-
monly used uncertainty models, we assume the following: a probabilistic database D is
given by a set of uncertain objects D = {U1, . . . , Un} with d uncertain attributes. An
uncertain object Ui is represented by a set of d-dimensional points u1, . . . , um reflecting all
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Figure 10.2: Examples for RNN and PRNN.

possible instances of Ui. Each instance uj is assigned with a probability P (uj) denoting
the probability that Ui appears at uj, i.e. all instances of Ui reflect the probability distri-
bution of Ui. The probability distributions of each two objects are pairwise independent
and the events of occurrence of all instances u ∈ Ui are mutually exclusive. For clarity
we assume P (Ui) = Σm

j=1uj = 1, although the proposed algorithms can easily be adapted
to the case where P (Ui) ≤ 1. A possible world W = u1, . . . , un is a set of instances con-
taining one instance from each object and occurring with an appearance probability of
P (W ) = Πn

i=1P (ui). Let Ω denote the set of all possible worlds, then ΣW∈ΩP (W ) = 1.

10.2.2 PRNN Queries in Uncertain Databases

For PRNN queries on uncertain databases the threshold parameter τ is introduced (cf.
[45, 110]. Using τ as threshold, the user can restrict the result set to objects which have at
least a predefined probability to be in the result in order to avoid reporting unnecessarily
many results that are unlikely. A probabilistic reverse nearest neighbor query PRNN τ

Q

then returns the set of all objects Ui ∈ D where P (Ui ∈ RNNQ) (in the following denoted
by P (RNNQ(Ui))) ≥ τ . Naively, this probability can be calculated by performing a (non-
probabilistic) RNN query on each possible world:

P (RNNQ(Ui)) =
∑
W∈Ω

P (W ) · δ(RNNW
Q (Ui))

where δ(RNNW
Q (Ui)) is an indicator function that is 1 if Ui is a reverse nearest neighbor ofQ

in worldW and 0 otherwise. In the example given in Figure 10.2(b), RNNQ(U1) holds in all
possible worlds, therefore P (RNNQ(U1)) = 1. In contrast,
P (RNNQ(U2)) = P (RNNQ(U4)) = P (RNNQ(U5)) = 0, since there is no possible world in
which RNNQ(U2), RNNQ(U4) or RNNQ(U5) hold, as in each possible world the nearest
neighbor of U2 is U1 and the nearest neighbor of U4 is U5 and vice versa. For U3, we ob-
tain the probability P (RNNQ(U3)) by building the sum of the probabilities of all possible
worlds where at least one of the objects Ui (i ∈ {1, 2, 4, 5}) is closer to U3 than Q to U3.



10.3 PRNN Algorithm Sketch 151

Obviously, this brute-force approach taking each possible world into account is in general
not applicable because the number of possible worlds grows exponentially with the number
of involved uncertain objects.

As we will see PRNN queries are CPU bound (in the presence of an appropriate index
structure) and we have to concentrate on optimizing the CPU operations. To the best
of our knowledge, there are currently two approaches for answering PRNN queries. The
approach from Chen et al. [110] which is designed for PRNN queries on uncertain objects
represented by continuous probability density functions (PDFs) and the approach from
Cheema et al. [45] which works for the discrete case only. Both algorithms are discussed
in more detail in Section 10.6.

In order to reduce the computational overhead of such queries, in this chapter we
introduce efficient filter methods used to exclude (prune) as many objects as possible from
the expensive query evaluation process.

10.3 PRNN Algorithm Sketch

In this section, we propose our approach for PRNN processing. For this purpose we follow
a multi-step framework consisting of the following four steps:

• Approximation: This step happens prior to the actual query processing and includes
offline approximations and precomputations which can be used for boosting the query
process.

• Spatial Pruning: During query processing spatial pruning is used to prune objects
which cannot be part of the result independent of the threshold parameter τ . There-
fore only the most basic approximation of the objects is usually utilized.

• Probabilistic Pruning: In this step the remaining objects after spatial pruning are
examined. For each of these candidates a bound for the candidate to belong to the
result is calculated. If the lower (upper) bound of this probability is larger (smaller)
than the threshold τ then the candidate is included in (excluded from) the result and
is not further considered.

• Verification: The remaining objects after the probabilistic pruning step are then
verified in a usually expensive verification step. This step yields the final result.

In the following we will give a more detailed description of the above four steps and discuss
how our proposed algorithm fits into this framework. The detailed implementation of our
PRNN query processing approach can be found in Section 10.4. The above framework will
also be used for detailed evaluation of the comparison partners. Therefore we show how
the two existing solutions by Cheema et al. [45] (in the following called CLWZP) and by
Lian et al. [110] (in the following called LC) are implemented according to this framework
in Section 10.6.
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Figure 10.3: Pruning uncertain objects using minimal and maximal distance.

10.3.1 Approximation of Objects

The probability distribution (or more specifically the uncertainty region) assigned to an
uncertain object can become arbitrarily complex causing expensive distance computations
at query time. A common solution to overcome this problem is to use conservative approx-
imations, like spheres or rectangles providing efficient distance computation in a filter step.
Similar to the approximation technique used for the CLWZP algorithm ([45]), in order to
approximate uncertain objects we use minimum bounding boxes covering the uncertainty
regions. This approximation is mainly used for spatial pruning. For probabilistic pruning,
we need a more detailed object approximation. Therefore, we additionally assume that
each uncertainty region of an object X ∈ D ∪ {Q} is hierarchically decomposed using a
hierarchical space partitioning scheme. Specifically, we use an R∗-tree [21] to hierarchically
organize the instances of X. In addition to the spatial keys, each index entry stores the
aggregated probability of all instances in the corresponding subtree. When traversing the
index assigned to an uncertain object X in a breadth-first manner, each level of the R*-
tree provides a disjoint and complete partitioning X of X such that each partition X ′ ∈ X
contains a non-empty set of m′ ≤ m instances {x′1, ..., x′m′} and⋃

X′∈X

= {x1, ..., xm} and ∀X ′i ∈ X , X ′j 6=i ∈ X : X ′i ∩X ′j = ∅.

An index entry representing partition X ′i contains the aggregated probability P (X ′i) =∑
x′j∈X′i

P (x′j). Note that the disjoint property implies that any instance x ∈ X is contained
in at most one partition. The rectangular approximations of the instances contained in
each R∗-tree node however may overlap. Let us note that we have to carefully select the
refinement resolution since the PRNN computation is CPU-bound, as we will see in our
experiments (cf. Section 10.7). We obtain a good control of this variable by using a very
low R∗-tree node capacity, e.g. in our experiments we used less than four entries per node.

To summarize, we use a memory-resident R*-tree to organize the objects X ∈ D (global
R*-Tree). The leaf entries containing the MBRs of the objects point to the local R*-trees of
the objects. The local R*-trees are stored in a breadth-first manner, such that the highest
levels of the trees can be obtained with one single scan.



10.4 Implementation 153

10.3.2 Spatial Pruning

As already discussed it is possible to (spatially) prune objects without considering their
probability distributions when using only the (spatial) approximations of the objects.
Therefore, a pruning technique is needed. The concept of spatial domination is obvi-
ously applicable for this purpose. Thus all techniques for detecting spatial domination as
reviewed and proposed in Part II can be used. For instance an object B can be pruned by
an object A for a query Q if DDCMM(A,B,Q).

Example 10.3.1. Consider the example shown in Figure 10.3. For a R1NN query, object
U1 can be excluded from further consideration, as the maximal distance between U1 and
U2 is smaller than the minimal distance between Q and U1. Thus U1 can never be R1NN
of Q.

The used pruning technique for uncertain objects efficiently organized by an index is
easily extendable for pruning higher-level pages of the index. For example assume object
U1 in Figure 10.3 to be an index page containing several uncertain objects. Then all objects
in this page can be pruned immediately.

10.3.3 Probabilistic Pruning

Probabilistic pruning is performed for objects that cannot be pruned spatially. In the
probabilistic pruning step, the uncertainty regions of objects are partitioned. The aim of
this partitioning is to prune more objects based on the probability threshold τ .

For this purpose we can easily adapt the techniques proposed in Section 9.2 for com-
puting the probabilistic domination count. If for an uncertain object U it holds that
PDC1

LB(D, Q, U) > τ then U can be probabilistically pruned. The decomposition scheme
of objects is thereby given by the local R*-Tree of the objects. Whenever we want to refine
this bound we may consider the next level of entries in the local indexes of all involved
objects.

10.3.4 Verification

An object Ui which cannot be pruned by the pruning techniques is denoted as candidate.
The next step requires each candidate to be verified, which means it has to be checked
if P (RNNQ(Ui)) ≥ τ . This involves finding all objects which affect this probability and
considering these objects in more detail. The verification step is very expensive, since
many possibilities have to be considered. In our implementation we rely on the generating
function technique as proposed in [108] for computing the exact result probabilities of each
candidate.

10.4 Implementation
In this section, we describe the implementation of our PRNN algorithm.
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Algorithm 8 PRNN(Q, IDB, τ , depth)
1: Scnd = ∅, Sprn = ∅
2: spatialPruning(Q, IDB , Scnd, Sprn)
3:
4: Sres = ∅
5: for each B ∈ Scnd do
6: Sifl = getInfluenceObjects(Q, B, Scnd \ {B}, Sprn)
7: i := probabilisticPruning(Q, B, Sifl, τ , depth)
8: if i=1 then
9: //B cannot be RNN of Q
10: else if i=-1 then
11: //B is RNN of Q
12: Sres = Sres ∪ {B}
13: else
14: //B has to be verified
15: if verify(Q, B, Sifl, τ) then
16: Sres = Sres ∪ {B}
17: end if
18: end if
19: end for
20: return Sres

10.4.1 Overview

Algorithm 8 combines the main modules for PRNN processing. The input requires an un-
certain query object Q, an R-tree based index structure organizing the uncertain objects
from the database IDB, a probability threshold τ and a parameter depth controlling the
depth of our probabilistic pruning computation. The spatialPruning method fills the sets
Scnd with potential result objects and Sprn with objects (entries) which can certainly be
excluded using a technique for detecting spatial domination (cf Part II). For each remaining
object B ∈ Scnd, the getInfluenceObjects method returns a set (Sifl) of all objects from
the two sets (Scnd and Sprn) which could influence P (RNNQ(B)). With these objects,
probabilistic pruning is performed. Depending on the result, the candidate is either dis-
carded, added to the result set or verified. In the latter case, computation following [108]
and [45] is performed to calculate the exact P (RNNQ(B)). If this probability is above τ ,
the candidate can be confirmed as a result. In the following, we explain the individual
modules in detail.

10.4.2 Spatial Pruning

The spatialPruning method (cf. Algorithm 9) performs a best-first search using a heap
H prioritized by minDist(Q, e), where e is an entry of the index IDB. The heap is im-
plemented such that the set of contained objects can be accessed without destroying the
heap structure. For each de-heaped entry e, the predicate DDC(e2, e, Q) checks if this
entry is pruned by another object or entry e2 (contained in H, Sprn or Scnd) according to
Q, using a spatial domination decision criterion (in general DDCOPT is used here). If it
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Algorithm 9 spatialPruning(Q, IDB, Scnd, Sprn)
1: init min-heap H with root entry of IDB

2: while H is not empty do
3: de-heap an entry e from H
4: if ∃e2 ∈ H ∪ Sprn ∪ Scnd : DDC(e2, e,Q) then
5: Sprn = Sprn ∪ {e}
6: else if e is directory entry then
7: for each child ch in e do
8: insert ch in H
9: end for
10: else if e is data entry then
11: Scnd = Scnd ∪ {e}
12: end if
13: end while

can be pruned, it is inserted in the Sprn set. Otherwise, if e contains a data object, it is
added to the candidate set Scnd and if e is a directory entry, its children are inserted into
the heap.

The naive spatial pruning takes each pair of objects A,B ∈ D where A 6= B and checks
whether Dom(A,B,R). Thus the runtime is O(|D|2). In the average case, this step can be
accelerated by the use of a spatial index structure to (O(|D| · log(|D))), but the worst-case
runtime remains O(|D|2). The spatial pruning provides us with a set of candidate objects
Scnd where each candidate Ci ∈ Scnd is associated with a set of influence objects Siifl.

Algorithm 10 getInfluenceObjects(Q, B, Scnd, Sprn)
1: Sifl = ∅
2: for each e ∈ Sprn ∪ Scnd do
3: if ¬(DDC(Q, e,B)) then
4: if e is directory entry then
5: Sprn = Sprn \ {e}
6: for each child ch in e do
7: Sprn = Sprn ∪ {ch}
8: end for
9: else if e is data entry then
10: Sifl = Sifl ∪ {e}
11: end if
12: end if
13: end for
14: return Sifl

10.4.3 Probabilistic Pruning

For each candidate B, it is important for the next steps to find the objects which influence
P (RNNQ(B)). These are obviously the objects which might be closer to B than Q (objects
e for which P (e ≺B Q 6= 0) This is done by Algorithm 10, which exploits Corollary
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8.2 in order to exclude those objects that might not possibly prune B (for those objects
DDC(Q, e,B) holds). Each other data entry e for which DDC(Q, e,B) does not hold is
inserted into the Sifl set.

The goal of the probabilistic pruning (cf Algorithm 11) is to estimate P (RNNQ(B))
for a candidate B in a best possible way. If we can detect early that P (RNNQ(B)) > τ
or P (RNNQ(B)) < τ , further computation can be saved. The parameter depth is used
to control how deep the hierarchical index structures (organizing the instances of each
uncertain object) are resolved for more accurate pruning. Thus, the parameter offers
to define a trade-off between accuracy and computational efficiency in the probabilistic
pruning step.

Algorithm 11 probabilisticPruning(Q, B, Sifl, τ , depth)
1: for 1. . . depth do
2: split(Q)
3: split(B)
4: ∀I ∈ Sifl split(I)
5: PLB(RNNQ(B)) = 0, PUB(RNNQ(B)) = 0
6: for all Q′ ∈ Q and B′ ∈ B do
7: PLB(RNNQ′(B′)) = 1, PUB(RNNQ′(B′)) = 1
8: for each I ∈ Sifl do
9: PLB(I ≺B′ Q′) = 0, PUB(I ≺B′ Q′) = 1
10: for each I ′ ∈ I do
11: if (I ′ ≺B′ Q′) then
12: PLB(I ≺B′ Q′) = PLB(I ≺′B Q′) + P (I ′)
13: else if (Q′ ≺B′ I ′) then
14: PUB(I ≺B′ Q′) = PUB(I ≺B′ Q′)− P (I ′)
15: end if
16: end for
17: PUB(RNNQ′(B′)) = PUB(RNNQ′(B′)) · (1.0− PLB(I ≺′B Q′))
18: PLB(RNNQ′(B′)) = PLB(RNNQ′(B′)) · (1.0− PUB(I ≺′B Q′))
19: end for
20: PLB(RNNQ(B)) = PLB(RNNQ(B) + P (Q′)) · P (B′) · PLB(RNNQ′(B′))
21: PUB(RNNQ(B)) = PUB(RNNQ(B) + P (Q′)) · P (B′) · PUB(RNNQ′(B′))
22: end for
23: if PLB(RNNQ(B)) > τ then
24: return -1
25: else if PUB(RNNQ(B)) < τ then
26: return 1
27: end if
28: end for
29: return 0

Let Sifl = {I1, ..., I|Sifl|} denote the set of influence objects of B, which neither com-
pletely pruneB w.r.t. Q nor are completely pruned byB. Only the set {I1 ≺Q B, ..., I|Sifl| ≺Q
B} of random events has to be considered, since any object Ii for which P (Ii ≺Q B) = 0
holds has no influence on P (RNNQ(B)), and if there exists an object Ii for which it holds
that DDC(Ii, Q,B), then we can already conclude that P (RNNQ(B)) = 0. But due to
the problem of mutual dependencies between pruning events (cf. Section 8.4.2), here we
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cannot simply use the probability bounds PLB(Ii ≺ BQ) and PUB(Ii ≺ BQ) directly, as
this would yield incorrect results. However, we can use the observation that the objects
Ii are mutually independent and each candidate object Ii only appears in a single ran-
dom variable I1 ≺B Q, ..., I|Sifl| ≺B Q. Exploiting this observation, we can decompose1

the objects I1, ..., I|Sifl| only to obtain mutually independent bounds for the probabilities
P (I1 ≺B Q), ..., P (I|Sifl| ≺B Q), as stated by the following lemma:

Lemma 10.1. If B and Q are not decomposed, i.e. if B = {B} and Q = {Q}, then
P (RNNQ(B)) is lower bounded by

PLB(RNNQ(B)) =
∏

Ii∈Sifl

1− PUB(Ii ≺B Q).

Proof. In a nutshell, the lemma can be proven by showing that the probability bounds
PUB(Ii ≺B Q), 1 ≤ i ≤ |Sifl| can be computed independently of each other, since the
computation of DDC(Ii, Q,B) for Ii ∈ I makes no assumptions on the positions of objects
B and Q. This independence can be shown by exploiting that the bounds PUB(Ii ≺B Q)
are using the unpartitioned objects B and Q as parameters. Due to this independence, the
probability bounds can simply be multiplied to derive the joint probability. 2

An upper bound can be derived analogously:

PUB(RNNQ(B)) =
∏
Ai∈I

1− PLB(Ai ≺Q B).

In summary, we can now derive, for each uncertain candidate object B a lower and
an upper bound of the probability that B is an RNN of Q. However, these bounds may
still be rather loose, since we only consider the full uncertainty region of B and Q so far,
without any decomposition. Since the uncertain objects B and Q appear in each random
event Ii ≺B Q (Ii ∈ Sifl) that has to be evaluated, we cannot split the objects B and Q
independently. Intuitively, the reason for this dependency is that any knowledge about
the random event Ii ≺b Q may impose constraints on the position of B and Q. However,
Lemma 10.1 directly yields the following corollary:

Corollary 10.1. Given partitions B′ ⊆ B and Q′ ⊆ Q, then

PLB(RNNQ′(B
′)) =

∏
Ii∈Sifl

1− PUB(Ai ≺Q′ B′).

Note that the probability PLB(RNNQ′(B
′)) is equal to the probability PLB(RNNQ(B)|B ∈

B′, Q ∈ Q′), where B ∈ B′, Q ∈ Q′ is a constraint to all possible worlds where B is located
in partition B′ and Q is located in partition Q′. This allows us to individually consider
the subset of possible worlds where B ∈ B′ and Q ∈ Q′ and use Lemma 10.1 to efficiently
compute PLB(RNNQ′(B

′)) and PUB(RNNQ′(B
′)). This can be performed for each pair

1e.g. using the bounding boxes of the R∗-trees of the objects
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(B′, Q′) ∈ B × Q, where B and Q denote the decompositions of B and Q, respectively.
Now, we can treat pairs of partitions (B′, Q′) ∈ B × Q independently, since all pairs of
partitions represent disjoint sets of possible worlds due to the assumption of a disjoint
partitioning. Exploiting this independency, we can derive tighter bounds PLB(RNNQ(B))
and PUB(RNNQ(B)) for the probability that B is an RNN of Q by computing a lower
and an upper bound of P (RNNQ′(B

′)) for each (Q′ ∈ Q) and each (B′ ∈ B) and then
computing the weighted sum of these bounds as follows:

PLB(RNNQ(B)) =
∑

B′∈B,Q′∈Q

PLB(RNNQ′(B
′)) · P (B′) · P (Q′). (10.1)

Thus in each iteration of the algorithm the involved objects (Q, B and all I ∈ Sifl) are
partitioned, which means we consider the partitioning at the ith level of each local R*-tree.
For each of these combinations, we first obtain bounds PLB(I ≺′B Q′) and PUB(I ≺′B Q′)
of the probability that each I ∈ Sifl prunes B′ w.r.t. Q′, using Lemmas 9.1 and 9.2.
Subsequently we multiply the complement of these bounds to acquire the lower (upper)
bound probability PLB(RNNQ′(B

′)) (PUB(RNNQ′(B
′))) that no object I ∈ Sifl prunes

B′ according to Q′. Since all combinations (Q′ ∈ Q, B′ ∈ B) are mutually independent,
the results can be summed up (weighting with the possible world probability of (Q′ ∈
Q, B′ ∈ B)), to obtain the global probability bounds PLB(RNNQ(B)) and PUB(RNNQ(B))
according to Equation 10.1. This method returns -1 if the candidate B is PRNN of Q (with
τ as threshold), and 1 if B can be pruned. If depth is not set to the maximum height of
the R*-trees, it is possible that no decision can be made. In this case the method returns
0.

Regarding the runtime complexity the probabilistic pruning step considers each can-
didate object B Scnd separately and partitions the candidate object, the query Q and
the influence objects Siifl. Assuming a branching factor of the spatial local index of b,
each object consists of at most bdepth partitions, where depth is a parameter chosen before
query processing. The domination relation I ′ ≺B′ Q′ is used for each pair of partitions
Q′ ∈ Q,B′ ∈ B and each partition I ′ of objects I ∈ Sifl. This leads to a runtime of
O(b2·depth · |Sifl| · bdepth) = O(|Sifl| · b3·depth) for each candidate B ∈ Scnd. In the worst
case, where |Sifl| ∈ O(|D|), |Scnd| ∈ O(|D|) and bdepth = m this yields a total runtime of
O(|D|2 ·m3), where m is the number of instances in each object.

10.4.4 Verification

After the probabilistic pruning step, a smaller set of candidates S ′cnd(⊆ Scnd) remains. For
each candidate B ∈ S ′cnd verification is performed. Using the algorithm based on generating
functions proposed in [108], this requires to sort all m · |Siifl| instances of objects in Siifl
according to allm instances in B. We derive a runtime of O(|S ′cnd|·|Siifl|·m2 ·log(|Siifl|·m)).
It can be observed, that for the case where m is large, the runtime of the probabilistic
pruning step may exceed the runtime of the verification step. In our experimental section,
we will verify this observation, and show how to choose values for the parameter depth
such that this problem is avoided.
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10.5 Probabilistic RkNN Queries

In this section we show how our proposed techniques can be extended to probabilistic
RkNN queries. An RkNN query is defined as follows: Given a set of (certain) points P , a
query object q, and a positive integer k, a reverse nearest neighbor query (RNNq) returns
all p ∈ P which have q in their k-nearest neighbor set, formally ([152]): RkNNq = {p ∈
P |dist(p, q) ≤ dist(p, pk)}, where pk is the k-th nearest neighbor of p. In the context of
uncertain objects, a PRkNN τ

Q query returns the set of all objects Ui ∈ D, for which the
probability P (Ui ∈ RkNNQ) that Ui is a RkNN of Q is at least τ .
Approximation: Analogous to the k = 1 case, we approximate uncertain objects using
mbrs and hierarchical partitioning.
Spatial Pruning: In the case where k > 1, the predicate Dom(A,Q,B) must hold for
at least k uncertain objects Ai, 1 ≤ i ≤ |D| in order to prune candidate B. Therefore, an
uncertain candidate object can safely be pruned if there exist at least k objects for which
the complete pruning criterion (cf. Lemma 7.1) holds. The complexity for the spatial
pruning step is O(|D|2) and independent of k, since in the worst case where a candidate B
cannot be pruned, all objects may have to be considered.
Probabilistic Pruning: For probabilistic pruning, the task is to determine for a candidate
object B, if its probability to be RkNN of Q is definitely less than τ (at least τ) in order to
prune B (return B as a true hit). Analogous to the k = 1 case, we can derive the following
bounds for the probability P (A ≺B Q) that A ∈ D\B is closer to B than Q: a lower bound
PLB(A ≺B Q) and an upper bound PUB(A ≺B Q). Given these bounds, we can apply the
concept of uncertain generating functions (cf Section 9.3) in order to compute for each
0 ≤ j < k a lower bound PLB(#Pruners = j) and an upper bound PUB(#Pruners = j)
of the probability of the random event that for exactly j uncertain objects Ai, Ai ≺Q B
is true. Bounds for the probability of the event RkNNQ(Ui) that Ui is a RkNN of Q can
then be derived as follows:

PLB(RkNNQ(Ui)) =
∑

0≤j<k

PLB(#Pruners = j)

PUB(RkNNQ(Ui)) =
∑

0≤j<k

PUB(#Pruners = j)

An uncertain object Ui can be pruned if PUB(RkNNQ(Ui)) < τ and returned as a true hit
if PLB(RkNNQ(Ui)) > τ .

As shown in Chapter 9, the computational complexity is linear in k, yielding a total of
O(|DB|2 × k) for the probabilistic pruning.
Verification: The verification step can be performed analogously to the k = 1 case using
the algorithm proposed in [32], which has been designed for k ≥ 1. The total complexity
of this algorithm is O(|D|2 ·m2 · log(|D| ·m) + k · |D|2 ·m2).
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10.6 Related Work

To the best of our knowledge there exist the following two solutions for the PRNN problem.

10.6.1 LC Algorithm

Approximation: This algorithm is designed for the case where the appearance probability
of uncertain objects is represented as a continuous PDF. Though it can easily be adapted
to the discrete case. Each uncertain object is approximated by a sphere.
Spatial Pruning: The proposed pruning technique is based on trigonometric functions
and can only be applied for spherical objects. Thus, it cannot be directly applied to the
index pages (the authors use an R-tree as index structure). To overcome this shortcoming,
each (rectangular) page of the index is at runtime approximated by a sphere containing
this page.
Probabilistic Pruning: Additionally, a second sphere is computed for each database
object in a preprocessing step. This sphere has the same center as the first sphere, but the
radius is chosen as the minimal radius covering instances with a cumulated probability of
at least 1− τ . The idea of this approach is that if this second sphere can be pruned, then
the corresponding object is pruned with a probability of at least 1 − τ , so it must have a
probability less than τ to be an RNN of Q, and thus, it cannot be a PRNN of Q.
Verification: In the verification step, a range query around each candidate Ui is issued.
The result contains all objects Uj such that MinDist(Uj, Ui) < MaxDist(Ui, Q), i.e. all
objects which affect P (RNNQ(Ui)). Then P (RNNQ(Ui)) is calculated by considering all
possible worlds of the involved objects.

10.6.2 CLWZP Algorithm

Approximation: The CLWZP algorithm uses minimum bounding rectangles for the ap-
proximation of the uncertain objects. Additionally, each uncertain object has a local R-tree
which organizes its instances.
Spatial Pruning: The pruning is performed using several pruning techniques arranged
in series. The first used technique is MinMax. As shown in Section 3.2.2, MinMax is not
complete, which means that, based on rectangular approximations, MinMax cannot detect
valid pruning in all cases. Therefore, a second technique is proposed for special spatial
relations of the query object and the pruner. If this technique cannot be applied, a general
technique is used which considers all corners of the pruner for prune evaluation (see [45]
for details). All proposed techniques (except MinMax) generate a pruning region defined
by the pruner and the query. In this region objects can safely be pruned.
Probabilistic Pruning: Probabilistic pruning utilizes the generated pruning regions.
Based on these regions, it may happen that only parts of a prunee get pruned. In this case,
the prunee is trimmed down and further represented by an MBR containing all instances
which could not be pruned (using a computational geometry algorithm). Additionally, the
authors propose to partition object Q, to further improve the pruning.
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Verification: In this phase, a range query is issued for each candidate Ui containing all
objects affecting P (RNNQ(Ui)). For each instance ui of a candidate, the instances of these
objects are sorted by the distance to ui and inserted in a list. Based on these lists it is
possible to calculate P (RNNQ(Ui)).

10.6.3 Discussion

Although the LC algorithm is the only PRNN algorithm so far which can handle uncertain
objects represented by a continuous PDF, it has the following drawbacks:

Parameter τ : Since the probabilistic pruning sphere has to be pre-computed using τ ,
it is not possible to change τ at query time. In a dynamic query environment however, the
parameter may be adapted to the user’s preferences, which is not possible in this approach.

Spherical Approximation: The main challenge, especially for the higher-dimensional
case, is to find a small enclosing sphere of an uncertain object for effective pruning results.
Finding the smallest enclosing sphere of an arbitrarily shaped object however has exponen-
tial runtime (w.r.t. to the number of vertices of the object), which allows only finding good
but not best possible spheres in reasonable computational time. Additionally, as stated
in [110], the spatial pruning technique is only conservative but not optimal for dimensions
larger than 2. A third problem regarding the spherical approximation is the approximation
of pages of the R-tree, which are rectangular by definition. A spherical approximation of
an index page will therefore rarely be tight yielding low pruning power.

Verification: The verification step using integration of all remaining objects is based
on the used uncertainty model. However, if the objects consist of discrete instances, there
are more efficient solutions for the verification step (e.g. [108]). Note that also for the
case where objects are represented by continuous PDFs, this step can be performed more
efficiently, as we will show later.

The CLWZP algorithm however has a very complex spatial pruning technique (which
is also used in the probabilistic pruning step) which requires 2d distance calculations in the
worst case (where d is the dimensionality of the data). This makes the approach practically
inapplicable for the high-dimensional case. Just as the LC pruning, the CLWZP pruning is
conservative which means that there exist cases where pruning is not performed although
possible. Regarding the probabilistic pruning of CLWZP, the problem is that trimming
requires expensive geometric computation but is used extensively in the algorithm.

10.7 Experimental Evaluation

In the experimental section, we compare our approach which we call HP (hierarchical
pruning) with the two state-of-the-art PRNN query algorithms CLWZP [45] and LC [110].
For the implementation of CLWZP and LC we replaced R-trees by R*-trees wherever they
were used. For the global R∗-tree we use a page size of 1024 byte. For the local R∗-trees
indexing the instances of an uncertain object, we set the page size to a maximal capacity
of three entries. The page size was chosen small in order to minimize CPU-cost, which we
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parameter values synthetic values real
db size 2000 - 10000 6216
dimensionality 2, 3, 4, 5 2
# instances 50, 100, 200, 400 100
τ 0.1 0.2, 0.3 0.2
maxdepth 0, 1, 2, 3, 4 2
MBRextent 0.01, 0.02, 0.03, 0.04, 0.05 N/A

Table 10.1: Parameters and their default values.

will see is the main bottleneck of a PRNN query. Whenever we had to access a local R∗-
tree we treated this as a random access (Since the tree is very small the scanning process
of reading the whole tree is negligible). We tested the three approaches under various
parameter and data settings. For each setting, we performed 100 queries and averaged the
measures. Since our experiments have been conducted against discrete uncertain datasets,
we have adapted the LC algorithm to the discrete case for a fair comparison. The involved
parameters and their default values (bold) can be seen in Table 10.1. For our experiments,
we used one real-world dataset and several synthetic datasets to show the effect of changes
in dimensionality and size. The datasets are described as follows: We generate synthetic
uncertain objects in the [0, 1]d space by uniformly selecting the expected position of the
objects in the space. A rectangle is generated around the expected position with a fixed
total sum of side lengths (referred to as extent) with a default value of 0.05. By default,
the extent is distributed uniformly on the dimensions, so there is a diversity of mbr shapes,
some that are nearly cuboid, while others have a very large extent in few dimensions only.
The object instances within the mbr are distributed uniformly by default.

As a real-world dataset, we utilize the International Ice Patrol (IIP) Iceberg Sightings
Dataset2. This data set contains information about iceberg activity in the North Atlantic
in the years 1960 to 2010. It contains the latitude and longitude values of 6216 sighted
icebergs. An uncertain object is generated for each iceberg, by generating 100 Normal-
distributed instances having a mean value corresponding to the position of its most recent
sighting at the date 31.12.2009 and a variance corresponding to the time period between
this date and the sighting. To avoid extreme impact of icebergs that have not been seen
for decades, any instances outside a square of extent 0.0004 centered at the mean are cut
off. The instances of an iceberg are Normal-distributed with a variance based on the time
since the its sighting.

The experiments were run on a Windows 7 notebook with an Intel Core i5 processor
(2.27 GHz), 6GB RAM.

2The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site
(http://nsidc.org/data/g00807.html).
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Figure 10.4: Comparison of different pruning techniques.

10.7.1 Spatial Pruning

The first set of experiments compares the spatial pruning techniques of the three com-
peting algorithms and additionally for completeness the MinDist/MaxDist based pruning
(cf. Section 3.2.2) called MinMax. We generated 2000 uncertain 3-D objects uniformly
distributed in the [0, 1]3 space. Each object consists of 100 instances. 100 RNN queries
were issued and we compared the number of candidates which were left after the spatial
pruning step for the competing techniques. For the experiments shown in Figure 10.4(a),
we tested the influence of different extensions in the dimensions of the objects. Three
cases were compared: Random (random extension in each dimension, with fixed maxi-
mum), Equal (each dimension had the same extension = hypercube) and Dominant (one
dimension has 5 times higher extension than the others). The results show that the spatial
pruning technique from our algorithm has the highest pruning power in almost all settings.
Only for objects equally extended in each dimension the LC-pruning is competitive. This
is due to the reason that in this case, a sphere is a tight approximation for an uncertain
object. However, in the other settings the LC-pruning yields the worst performance. We
also compared the spatial pruning techniques for data with different dimensionality. Figure
10.4(b) illustrates that the advantage of HP-pruning is stable over varying dimensionality.

10.7.2 I/O-Cost

Next, we investigated the number of page accesses of the three algorithms needed on the
global R*-tree (the index organizing the uncertain object approximations). The results are
shown in Figure 10.5(a) for synthetic data with different database size. The LC algorithm
needs by far the most page accesses which is reasonable, due to the handicaps mentioned
in Appendix 10.6.3. The CLWZP algorithm performs even slightly better than the HP
algorithm. The reason is mainly founded by the step to get the influence objects for
each candidate. CLWZP here performs a search based on all instances of a candidate
which produces a tighter bound than only using the approximation of the candidate (as
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Figure 10.5: Performance of the PRNN Algorithm.
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performed in HP). The drawback of this tighter bound is a much higher computational
effort, which can be seen in the experiments in the next section. In summary, even for a
small page size of 1 kB, the main bottleneck of a probabilistic RNN query are the CPU-cost,
not the I/O-cost.

10.7.3 CPU-Cost

The Parameter depth: The main tuning parameter of the HP algorithm is depth. This
parameter offers a tradeoff between the computational overhead for the probabilistic prun-
ing and the verification step. This behavior can be seen in Figure 10.5(c), where by
increasing depth, it is possible to dramatically reduce the CPU-cost in the verification step
and thus the overall costs. It can be observed that for a low value of depth, the verifi-
cation step is the main bottleneck. This is clear, since for a low value of depth, the set
of partitions of each object X that is used for the probabilistic pruning is very small and
contains large partitions. On the one hand, a small number of partitions leads to a very
fast probabilistic pruning step, since only a small number of combinations of partitions has
to be considered. On the other hand, the pruning power of the probabilistic pruning step
is low in this case, due to the coarse approximations. The effect of the depth parameter in
this setting is typical: there exists an optimal depth value depthopt. Our experiments have
shown that depthopt correlates to the height H of the R∗-Tree. In all of our experiments,
choosing depth = H/2 has shown to be a good heuristic. Determining better heuristics to
find depthopt is part of our future work.
Scalability Experiments: Figure 10.5(b) shows the effects of the database size on the
runtime of the LC, CLWZP and HP algorithms. It can be observed that the LC algorithm
has an extremely high CPU-cost. The reason is that the LC algorithm was proposed for
continuous uncertain objects and thus requires to consider the set of all possible worlds in
the verification step, which is exponential in the number of influence objects. In contrast,
both CLWZP and HP scale super-linearly in the database size. Regarding the effect of the
number of instances size S, Figure 10.5(d) shows that the both algorithms CLWZP and
HP also scale super-linearly. The reason is that both algorithms require to sort instances
of a set of influence objects in the verification step, leading to a leading to a runtime of
O(S · log(S)).
Impact of τ : Figures 10.5(e) and 10.5(f) show that the runtime of the HP algorithm
decreases for an increasing value of τ for both synthetic and real datasets. The rationale
is that a high value of τ reduces the minimal probability 1 − τ required for an uncertain
object A ∈ D \B to prune B.
PRkNN: We augmented our algorithm to answer PRkNN queries as proposed in Section
10.5 and evaluated the performance of this algorithm on the synthetic dataset using default
parameters (cf. Table 10.1). In the first experiment (cf. Figure 10.6(a)), we varied the
parameter k. It can be observed that the runtime scales slightly worse than linearly, which
can be explained by the usage of uncertain generating functions that show a complexity
of O(k2) ([30]). This is notable, since naive approaches need to consider all

(
N
k

)
possible

results. In the remaining experiments (Figures 10.6(b) to 10.6(d)) we evaluated the impact
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Figure 10.6: Behaviour of the PRkNN-Algorithm.

of the parameter τ , the database size and the number of instances per object (when setting
k = 5). Each of these parameters scales equivalently to the k = 1 case. Note that in the
experiments shown in Figure 10.6(d) we set maxdepth = 3 for more than 150 instances,
matching our intuition of setting maxdepth = H/2.

10.8 Conclusions
In this chapter, we developed a general framework for probabilistic reverse nearest neighbor
queries on uncertain data. We showed how two existing approaches and our new algorithm
fit into the framework. Through new techniques to improve important parts of the frame-
work, our algorithm is able to outperform the existing approaches under various settings.
In addition, we proposed an efficient extension for probabilistic reverse k-nearest neighbor
queries. An interesting starting point for future would be to evaluate techniques to dy-
namically adapt the parameter depth in the probabilistic pruning step to the distribution
of instances within an object.



The only thing that makes life possible is permanent, intolerable uncertainty;
not knowing what comes next.
Ursula K. LeGuin

Part IV

Location Dependencies in Uncertain
Spatio-Temporal Data
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Chapter 11

Uncertain Spatio-Temporal Data

11.1 Introduction
With the wide availability of satellite, RFID, GPS, and sensor technologies, spatio-temporal
data - data incorporating both location and time information - can be collected in a mas-
sive scale. Datasets containing such information are therefore becoming increasingly large,
rich, complex, and ubiquitous. The efficient management of such data is of great inter-
est in a plethora of application domains: from structural and environmental monitoring
and weather forecasting, through disaster/rescue management and remediation, to Geo-
graphic Information Systems (GIS) and Tourist Information Systems. In most current
research however, the assumption is made that the trajectory, i.e., the function of a spatio-
temporal object that maps each point in time to a position in space, is known entirely
without any uncertainty, such as the trajectory depicted in Figure 11.1(a). A survey on
techniques for managing, querying and mining trajectory data without uncertainty is given
in [180]. However, the physical limitations of the sensing devices or application dependent
limitations of the data collection process introduce two sources of uncertainty:

• In real-life applications it is usually not possible to continuously capture the position
of an object for each point in time. When recording the position of a car using GPS,
the signal may for example be unavailable when the car passes a tunnel. In an indoor
tracking environment where the movement of persons is captured using static RFID
sensors, the position of the people in between two successive tracking events is also
not available. Rather in such scenarios only a limited set of (location, time) pairs -
so called observations - is available. In between these observations the exact values
are missing (cf. Figure 11.1(b)).

• In most real-life applications the observed spatial location of an object at some point
in time is not accurate. Using GPS or RFID for example the position of an object can
only be determined with an accuracy of several meters. An other example is when
the position of an object is inferred from different (partially) inconsistent sources.
Thus the observations themselves may be imprecise or uncertain (cf. Figure 11.1(c)).

As an exemplary application, consider the problem of monitoring iceberg activity in the
North Atlantic. Ships transiting between Europe and east coast ports of North America
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Figure 11.1: (Uncertain) Spatio-Temporal Data

traverse a great circular route that brings them into the vicinity of icebergs carried south
by the cold Labrador Current. It was here that the R.M.S. Titanic sank in 1912, after it
struck an iceberg. This disaster resulted in the loss of 1517 lives and led directly to the
founding of the The International Ice Patrol (IIP) in 1914. The mission of the IIP is to
monitor iceberg danger near the Grand Banks of Newfoundland and provide the locations
of all known ice to the maritime community. The IIP does this by sighting icebergs, using
visual observations from ships and aircrafts, as well as data from buoys and radars. A
database stores the recorded positions and extents of observed icebergs and data models
are used to predict their movement, based on the uncertainty of the recorded observations.
Estimating the position of an iceberg at a time t underlies the two mentioned sources
of error: (i) the obsoleteness of the most recent observation (cf Figure 11.1(b)) and (ii)
the observation measurement error (cf Figure 11.1(c)). Using a model to describe this
uncertainty, we can derive at each time t and each uncertain object o (i.e. an iceberg) a
probability density function describing the position of object o at time t, and answer any
related queries.

One of the most basic queries on spatio-temporal data (without uncertainty) is the
following: “find all objects within a given area (or at a given point) some time during a
given time interval (or at a given time instant)" [133]. This query is called spatio-temporal
window query. Since we are dealing with uncertain data we have to adapt the definition
of this query type. For the above example the query has to altered to “find all objects
within a given area (or at a given point) some time during a given time interval (or at
a given time instant) with a sufficiently high probability". In fact we will formally define
two different probabilistic spatio-temporal queries in Section 12.1 and for now rely on this
informal introduction of the probabilistic spatio-temporal window query. Parts from this
chapter have been published in [66] and [65].

11.2 Related Work

Uncertain data management has received a lot of attention in the past decade, due to
the abundance of uncertain data, typically collected by the above mentioned monitoring
devices. There exists a wide range of work studying spatial uncertainty in the static
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Figure 11.2: Models for UST data

(snapshot) case, where only one point of time is considered, (cf Section 8.3).
On the other hand, the problem of modeling and managing uncertain spatial data with

a temporal component has surprisingly only received limited attention by the community.
Existing works on uncertain spatio-temporal data management can be categorized into four
groups: Models which remove the uncertain nature of the data by interpolation (similar
to data cleaning), models which approximate the location of uncertain objects over time,
models which treat time as an additional dimension to the uncertain location of the objects
and models which use stochastic processes to model the possible movement of the uncertain
objects.

11.2.1 Interpolation Models

In recent years, the research community often employed linear interpolation to model the
movement of spatio-temporal objects [133, 137, 154], as depicted in Figure 11.2(a). [151]
and [153] addressed the problem of query processing (window queries, joins, and near-
est neighbour queries) under the assumption of linear interpolation. With the algorithms
introduced in these works, the validity interval of a query result can be computed. How-
ever, clearly, the simple model of linearly interpolating between observations shows several
drawbacks. On the one hand, whenever the sampling rate becomes low (observations are
sparse), the true trajectory of an object might deviate greatly from the estimated trajec-
tory. On the other hand it is even possible that a linearly interpolated trajectory becomes
impossible: Imagine a car travelling from Munich to Berlin with sample points in exactly
those two cities. The driver will never travel exactly along the straight line between the
two cities because there are no streets following this trajectory. Although linear interpo-
lation is one of the most common means of modelling the motion between observations
in certain databases, other approaches have been evaluated as well. [150] introduced a
framework that allows the future motion of objects to be described in a more complex
manner than linear interpolation. Based on these complex motion functions, the authors
aimed at predicting the future position of objects with minimized error. All approaches
introduced so far do not take uncertainty into account. However, in scenarios where data
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are inherently uncertain, such as spatial and spatio-temporal databases, answering tradi-
tional queries using expected values and positions is inadequate, since the results could
be incorrect [35]. This problem is also illustrated in Figure 11.2, where when using linear
interpolation between the observations, the query is not satisfied (since the object does
not pass the spatio-temporal window). However there might exist possible paths (worlds)
between the observations where the object passes through the query window and thus
satisfies the query. To mitigate this problem, several algorithms taking uncertainty into
account have been developed.

11.2.2 Spatio-Temporal Approximation Models

The prevalent approach is to bound all possible (time, location) pairs of an object by a sim-
ple geometric structure in time and space. The result is a spatio-temporal approximation
that is based on previous knowledge such as the maximum speed and the maximum accel-
eration of objects. An example for the one-dimensional case is shown in Figure 11.2(b),
using the maximum speed of objects to obtain a conservative two-dimensional (space,
time)-approximation. Generally, such approaches utilize various geometrical shapes, such
as sheared cylinders [159, 160, 161], diamonds [121] and so called beads [101, 158] for the
case of two spatial dimensions (the third dimension is time). Queries on these models
include range queries [132, 160, 161] and kNN queries [159, 52]. The main problem of
all these approaches is that no probability information is given for any object approxi-
mation. Thus, it is not possible to assess the probability of an object to satisfy some
query predicate: For example, for the query window Q depicted in Figure 11.2(b), the only
conclusion that can be made is that the approximated object may possibly intersect Q.
However no information about the likelihood of this event can be assessed. In particular,
this probability can be zero due to the conservative nature of these approximation models.
Simple assumptions to estimate this probability, such as a uniform distribution over the
conservative approximation, are often impractical: In practice, a vehicle having a fairly
constant velocity between two (location, time) pairs is more likely than the same vehicle
going at maximum speed, passing its destination, then performing a U-turn to race back
the opposite direction in order to barely reach the second (location, time) pair in time.

11.2.3 Models treating time as a separate dimension

Some existing works treat spatio-temporal uncertainty as a simple extension of spatial
uncertainty. For instance, the methods of [52] and [159] assume that for each timestamp
in the history and every object, there is a location sample, which carries uncertainty. The
samples are then modeled as uncertain regions, using probability density functions (PDFs)
and these regions are connected to form the trajectories. Given a spatio-temporal range
query [52], we can then estimate the probability that a trajectory intersects the query
region by the overlap of the corresponding PDFs with the region. These types of models,
however, may not be acceptable in the case where we only have a sample of locations in the
moving history of an object. In this case, for timestamps where locations are not sampled,
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we have to infer the whereabouts of the object with the help of stochastic models. These
models are particularly useful when predicting the future locations of objects, with the
help of current (or recent) location and movement observations. In addition, these models
allow for the economic representation and storage of the data, since only a subset of the
object locations need to be sampled and used for the inference of their remaining locations.

In order to assess the actual probability of events in a spatio-temporal database,
Mokhtar and Su [121] describe a model where the uncertainty region of each object is
described by a time dependent stochastic process. Objects are given by MBRs which
change their location and extent over time following the stochastic process. The paper
shows how to answer certain types of window queries based on this model. However, de-
scribing the parameters of the uncertainty regions (instead of the object trajectories) by
a stochastic process yields wrong results, i.e., results that cannot possibly be the correct
result. The reason is that location dependency between consecutive timestamps is ignored
by this model. Hence the position of an object at time t is assumed to be independent
of its previous position at time t-1. A more detailed description of this basic problem is
given in the next Section. Approaches like [15] and [172] consider uncertain time series
(where the concrete value at each point of time is not known for certain) and data streams,
respectively. Similar to other work, they disregard correlations between points in time.

11.2.4 Models using stochastic processes

An initial approach to address the problem of location dependencies in UST data has been
made in [135]. The authors assume a discrete state space and the Markov property to
allow transitions between successive points of time. Their query language Lahar allows to
formulate queries by stating regular expressions on an alphabet of states, and returns the
probability of observing a sequence of states satisfying this regular expression. However,
this syntax cannot handle time context as required by many common queries. For example,
no regular expression can express the language that contains at least one character x at a
given position interval. Such a query corresponds to a window query as used above.

In summary all existing approaches fail to answer probabilistic spatio-temporal (win-
dow) queries in a correct manner (according to possible worlds semantics). The approaches
discussed in Section 11.2.1 and 11.2.2 are not able to provide any confidence for the result,
the approaches reviewed in Section 11.2.3 disregard location dependencies which are crucial
for window queries and the approach discussed in Section 11.2.4 is not powerful enough to
answer probabilistic spatio temporal window queries.

11.3 Location Dependencies in Uncertain Spatio-Temporal
Data

The approaches discussed in Section 11.2.3 suffer from the problem of treating the uncer-
tain location of an object at each point of time independent from other timesteps. This
proceeding yields a big problem, since it ignores location dependencies. To illustrate the



174 11 Uncertain Spatio-Temporal Data

Position

Time
t0 t1 t2 t3  t4  t5  t6  t7 

(a) Abstract Model

Position

Time
t0 t1 t2 t3  t4  t5  t6  t7 

(b) Assuming location indepen-
dence

(c) Not assuming location inde-
pendence

Figure 11.3: location dependencies in UST data

problem of location dependencies, consider Figure 11.3(a), where an uncertain object tra-
jectory is modeled. Here, it is assumed that an object moves forward in a one-dimensional
space with an uncertain velocity. The velocity of o may change over time, but will not drop
below some minimum speed greater than zero, and will not exceed some maximum speed
(an example could be a sensor buoy on a river). Therefore, given the position of an object
o at time t0, the future position of the object can be modeled using the expected speed of
o, the dashed line in Figure 11.3(a), as well as lower and upper bounds, or alternatively a
variance, depicted by the intervals at each point of time. Under the assumption of tem-
poral independence, at each point of time, the positions of o are modeled as independent
random variables. Therefore, a trajectory as depicted in Figure 11.3(b) has a probability
greater than zero. However, since o makes a large leap backward between times t5 and
t6, this trajectory is not possible given the knowledge about the movement of o, which
this model should incorporate. A possible trajectory is shown in Figure 11.3(c). Here,
the object moves within its speed limits at each point of time. The flaw of modelling
trajectories which are not actually possible becomes a problem when processing spatio-
temporal queries based on this model. For example, consider a spatio-temporal window
query, which returns for an object o the probability that o intersects the query window q,
depicted in Figure 11.3(b) and Figure 11.3(c). For any model that ignores the dependency
between locations at subsequent points of time, the probability that o is always outside of
the window is the product of many probabilities, thus becoming very small. Therefore, for
a large number of points of time inside the query region, the probability that o intersects
the query window converges to one. However, if the dependency between locations at sub-
sequent points of time is considered, then the probability that o is outside of the window
at time t6 depends on the probability at time t5 in this example: If o is not in the window
q at t5, then it cannot be in q at t6 either, since the object cannot move backwards. Thus,
the probability that o intersects the query window q at any time, is equal to the probability
that o intersects the query window at time t5. Thus, an important aim of adequate models
for UST data is to properly model such location dependencies, instead of simply treating
time as an additional dimension in space.



11.3 Location Dependencies in Uncertain Spatio-Temporal Data 175

The rest of this part is organized as follows: In Chapter 12 we will develop a basic
model based on Markov Chains to describe uncertain spatio-temporal data. Based on this
model we will show how to answer different types of probabilistic spatio-temporal window
queries according to possible worlds semantics. Chapter 13 then discusses an indexing
technique for UST data, which is able to speed up scan-based query processing by several
orders of magnitudes. Finally Chapter 14 considers other types of (similarity) queries on
UST data and offers a general framework for efficiently approximating query results based
on a efficient sampling technique.
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Chapter 12

Querying Uncertain Spatio-Temporal
Data

In this chapter we present a framework for efficiently modeling and querying uncertain
spatio-temporal data. The key idea of our approach is to model possible object trajectories
by stochastic processes. This approach has three major advantages over previous work.
First it allows answering queries in accordance with the possible worlds model. Second,
dependencies between object locations at consecutive points (as discussed in Section 11.3)
in time are taken into account. And third it is possible to reduce all queries on this model
to simple matrix multiplications. Based on these concepts we propose efficient solutions
for different probabilistic spatio-temporal queries for a particular stochastic process, the
Markov Chain. In an experimental evaluation we show that our approaches are several
orders of magnitudes faster than state-of-the-art competitors. Parts from this chapter
have been published in [66].

The rest of this Chapter is organized as follows: In Section 12.1 we formally describe
the problem of modelling UST data and define important query types on this data. Subse-
quently in Section 12.2 we illustrate how UST data can be modelled using Markov Chains.
Section 12.3 presents two methods for query processing on the Markov Chain model. Af-
terwards the techniques are extended in order to handle multiple observations in Section
12.4 and two additional query types are discussed in Section 12.5. Sections 12.6 and 12.7
evaluate the proposed techniques and conclude the chapter, respectively.

12.1 Problem Definition

In this part, we assume discrete space and time domain S and T , where space is defined by
coordinates and time denotes points in time. Formally, let S = {s1, ...s|S|} ⊆ Rd be a finite
set of possible locations in space which we call states and let T = N+

0 be the time-space.
Consequently, a (certain) object o that moves in space is represented by a trajectory given
by a function o : T → S that defines the location o(t) ∈ S of o at a point of time t ∈ T .

We assume uncertain spatio-temporal objects, i.e. objects o ∈ D that are associated
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with uncertain object trajectories. We have to cope with uncertain trajectories when tak-
ing future motions of objects (e.g., by extrapolation) into account or if we want to infer
locations between subsequent object observations (i.e., by interpolation). In some applica-
tions, like the iceberg tracking example in the introduction (cf Section 11.1), observations
are rare and we have to infer the object locations at most timestamps in the domain T .
An observation at a specific time may be precise or uncertain. To model uncertain object
trajectories, we suppose that the locations of an uncertain spatio-temporal object o ∈ D
at time t are realizations of a random variable o(t). An uncertain object trajectory of
object o ∈ D comprises a set of trajectories, each assigned with a probability indicating its
likelihood to be the true trajectory of o. This consideration suggests modeling uncertain
object trajectories as a realization of a stochastic process [92], formally:

Definition 12.1 (Uncertain Object Trajectory). Given the spatial domain S and the time
domain T , an uncertain object trajectory o(t) ∈ S of an object o ∈ D is a stochastic process
{o(t) ∈ S, t ∈ T }.

An example of an uncertain object trajectory of an object o ∈ D is illustrated in Figure
12.1. The raster models all possible locations (i.e., states) in S, shown for the time sequence
t = 〈1, 2, 3, 4〉. Here we assume that the last observed location of object o was at time
t = 0; all locations of o that follow are uncertain. Consequently, the uncertain trajectory
of o comprises all possible trajectories starting at t = 0.

Our goal is to efficiently evaluate probabilistic spatio-temporal queries on uncertain
spatio-temporal objects; i.e., queries about objects that are probably located in a given
spatial region during a given range in time. We assume a set of uncertain spatio-temporal
objects D, i.e. objects associated with uncertain object trajectories o(t), and focus on
spatio-temporal queries specified by the following parameters: (i) a spatial region S2 ⊆ S,
i.e. a set of (not necessarily connected) locations in space, and (ii) a set T2 ⊆ T of
(not necessarily subsequent) points in time. In the remainder, we use Q2 = S2 × T2 to
denote the query ranges in the space and time domain. The most intuitive definition of a
probabilistic spatio-temporal query is given below:
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Definition 12.2. [Probabilistic Spatio-Temporal (Exists) Query] Given a query region
S2 in space and a query region T2 in time, a probabilistic spatio-temporal exists query
(PST∃Q), retrieves for each object o ∈ D the probability P ∃(o, S2, T2) that o is located
in S2 at some time t ∈ T2.

This query type has been studied before (e.g. in [161, 160]), albeit over data models that
disregard dependencies between locations at consecutive timestamps, as we have discussed
in Section 11.2. For our motivating application described in Section 11.1, an exemplary
query could be: find all icebergs that have non-zero probability to be inside the movement
range of a particular ship during the ship’s movement in the North Atlantic. Another query
could be to predict the number of cars that will be in a congested road segment after 10-15
minutes. In addition, we study the following two interesting probabilistic query variants.
Note that the second variant has not been considered in the past:

Definition 12.3. [Probabilistic Spatio-Temporal For-All Query] A probabilistic spatio-
temporal for-all query (PST∀Q) retrieves for each object o ∈ D the probability P ∀(o, S2, T2)
that o remains in S2 for all times t ∈ T2.

Definition 12.4. [Probabilistic Spatio-Temporal k-Times Query] A probabilistic spatio-
temporal k-times query (PSTkQ) retrieves for each object o ∈ D and each parameter
1 ≤ k ≤ |T2| the probability P k−times(o, S2, T2) that o is located in S2 at exactly k times
t ∈ T2.

PST∀Q and PSTkQ are important complements to the PST∃Q. For example, these
queries can progressively determine candidates that remain in a certain region for a while.
For example, for a given region somewhere in the north Atlantic we want to retrieve all
icebergs that have non-zero probability remaining in this region for a specified period of
time, e.g. to be able to make some measurements over a certain time period. Further
examples where such queries are useful are for location-based-service (LBS) applications,
e.g. a service provider could be interested in customers that remain in a certain region for
a while, such that they can receive advertisements relevant to the location.

Note that, although the spatial (temporal) parameters of the queries define contiguous
regions (intervals) in the space (time) domain, our query processing approaches are also
applicable for any arbitrary subset of the space (time) domain.

12.2 Modeling Uncertain Spatio-Temporal Data
In accordance to the previous section, the constituent parts of an uncertain spatio-temporal
object are specifications of probability distributions over the space and time domain. Naive
models typically restrict the regions that the object can be at each timestamp. All uncertain
trajectories are combinations of locations in these regions, giving all these trajectories equal
probabilities ([159, 161, 160, 15, 172, 121]). However, as already mentioned, these models
disregard any location dependencies between successive points in time, possibly yielding
incorrect results.
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According to Definition 12.1, the uncertain motion of an object is defined as a stochastic
process. In particular, the (first-order) Markov-Chain model in a discrete time- and state-
space is assumed. The state space of the model is the spatial domain S. State transitions
are defined over the time domain T . In addition, the Markov-Chain model is based on the
assumption that the position o(t+ 1) of an uncertain object o at time t+ 1 only depends
on the position o(t) of o at time t. Formally:

Definition 12.5. A stochastic process o(t), t ∈ T is called a Markov-Chain if and only if

∀t ∈ N0∀sj, si, st−1, ...s0 ∈ S :

P (o(t+ 1) = sj|o(t) = si, o(t− 1) = st−1, ..., o(0) = s0) =

P (o(t+ 1) = sj|o(t) = si)

The conditional probability

M o
i,j(t) := P (o(t+ 1) = sj|o(t) = si)

is the (single-step) transition probability of o from state si to state sj at a given time
t. Transition probabilities are represented by a matrix M o(t), called transition matrix of
object o at time t.

Let P (o, t) be the distribution vector of an object o at time t, such that Pi(o, t) =
P (o(t) = si) corresponds to the probability that o is located at state si at time t. The
distribution vector of o at time t+ 1 can be inferred from P (o, t) as follows:

Corollary 12.1.
P (o, t+ 1) = P (o, t) ·M o(t)

The (single-step) transition matrixM o(t) ∈ RS2 is a stochastic matrix, i.e. the following
properties hold:

∀i, j ∈ S : Mi,j ≥ 0

∀i ∈ S,
∑
j∈S

Mi,j = 1

Definition 12.6. AMarkov Chain is homogeneous if and only if the transition probabilities
are independent of t, i.e. Mi,j(t) = Mi,j.

An instantiation of the object at each point of time is called a possible world (or possible
trajectory). Figure 12.2 depicts a small subset of all possible worlds of an uncertain object
for a given Markov-Chain model.

Note that in this work we assume that the transition probabilitiesM o
i,j(t) are given, e.g.

derived from expert knowledge or derived from historical data. For example, the current
of the water in the Atlantic ocean can be used to infer the transitions of icebergs. For
traffic data, the transition probabilities at each road intersection are usually estimated by
historic traffic records. This approach models the movement between successive points



12.2 Modeling Uncertain Spatio-Temporal Data 181

Figure 12.2: Some possible worlds of one uncertain object

in time, based on background knowledge (e.g., physical laws) and has proven capable
of effectively capturing the behavior of real objects in practice. For instance, [12] and
[79] show how Markov-models can effectively capture the movement of vehicles on road
networks for prediction purpose. In [135], it is shown that Markov-models can also be used
to model the indoor movement of people, as tracked in RFID applications. As shown in
[118], Markov Chains can be employed for modelling human movement.

For simplicity we will model any uncertain object o ∈ D by a homogeneous Markov-
Chain and we assume the same model is valid for all objects in the database. Let us note
that the proposed methods are also applicable for the general case of inhomogeneous and
individual Markov Chains (with the query-based processing technique from Section 12.3.2
being an exception since it requires all objects in the database to follow the same model).

The main challenge in answering probabilistic spatio-temporal queries is to correctly
consider the possible world semantics in the model. In other words, the issue at hand
is to return the fraction of possible worlds of an object o, for which it holds that at any
time t ∈ T2 it holds that o(t) ∈ S2. Again considering Figure 12.2, any world, for which
the corresponding path intersects the spatio-temporal query window, satisfies the query
predicate (for a PST∃Q).

Still, the number of possible worlds is in O(|S|T ); i.e., exhaustively examining all of
them requires exponential time, even for finite time and space domains. Clearly, any naive
approach that enumerates all possible worlds, is not feasible. An overview of the most
important notations used in this part of the thesis is given in Table 12.1.
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Symbol Meaning
o ∈ DB a UST object from the database
o(t) random variable describing the location of o at time t
S = {s1, . . . , sS} the state space
T = {t1, . . . , tT } ∈ N the time space
M o(t) transition matrix of object o at time t
M o

ij(t) = P (o(t+ 1) = sj|o(t) = si)

P (o, t) distribution vector of o at time t
Pi(o, t) P (o(t) = si)
Θo = {Θo

1, . . . ,Θ
o
|Θo|} set of observations for object o

Θo
i =< toi , θ

o
i > an observation ((time, location)-pair) of object o

θoi distribution vector over the state space, in case of a certain obser-
vation θoi may also represent the state sob where the observation
took place

Table 12.1: Table of notations

12.3 Probabilistic Spatio-Temporal Query Processing us-
ing the Markov-Chain Model

In this section, we show how the queries that we presented in Section 12.1 can be evaluated
efficiently. For the ease of presentation, we first assume that for each object, there is a
single observation at time t = 0 and that we want to predict the result of a probabilistic
spatio-temporal exists query (Definition 12.2) in the future. We generalize our results for
the case of multiple observations and other queries in Sections 12.4 and 12.5, respectively.

We propose two approaches towards efficient query processing. The object-based ap-
proach (Section 12.3.1) directly computes P ∃(o, S2, T2) in an efficient way, while the query-
based approach (Section 12.3.2) follows a reverse methodology: computation starts at the
query window and the transposed Markov-Chain matrix is used to compute, for each state
s ∈ S the probability that an object starting at s satisfies the query predicate. Figure 12.3
shows a high-level example of query evaluation using these two approaches. Consider a
spatio-temporal query with query time interval [t2start, t

2
end] illustrated by the shaded rect-

angle on the right of each subfigure. We would like to predict the result of the query, based
on observations about the locations of the objects at time (t = 0) and a given model that
captures their state transition probabilities (states correspond to spatial locations illus-
trated by the y-axis in the example). Exemplary objects are shown in oval shapes. The
object-based approach, illustrated in Figure 12.3(a), examines for each object the possible
trajectories (i.e., possible worlds) that the object will follow in the future and finds the
probabilities of trajectories that intersect the query window. For instance, the top-most
object has a non-zero probability to be a result of the query, the middle object has a higher
probability and the object at the bottom has a zero probability. To compute the prob-
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Figure 12.3: Schematic illustration of object-based (OB) and query-based (QB) query
processing.

abilities of all possible worlds that intersect the window, for each object, we use matrix
multiplications. We show how pruning techniques can be incorporated into the matrix
multiplications for efficiency. Still, this approach iteratively examines all objects in the
database exhaustively. The query-based approach (Figure 12.3(b)), on the other hand,
reverses the computation: given that an object intersects the query window, we compute
the probability that this object corresponds to any of the objects in the database; this way,
examining objects that are irrelevant to the query is avoided, while at the same time the
query results are computed in batch. We now describe these two approaches in detail.

12.3.1 Object-Based Query Processing

Given an object o, in order to find the probability that o is part of a query result, we
could use the following straightforward approach: compute, for each point of time t ∈ T2

the probability that o is located in S2 and aggregate these probabilities. Clearly, this
approach yields incorrect results (cf Section 11.3). The problem of this approach is that a
specific possible world (i.e., trajectory) may be considered more than once, if it overlaps
with the query at multiple timestamps. Therefore, to correctly process queries, possible
worlds which satisfy the query predicate should only be considered once in the computation
of the result.

As an example of proper query evaluation, consider the following Markov-Chain with
three states:  0 0 1

0.6 0 0.4
0 0.8 0.2

 ,

for which all possible worlds are depicted in Figure 12.4(a) for the first four points of time.1

1Probabilities are omitted for readability, but can be found in the Markov-Chain.
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Figure 12.4: Procedure of object-based (OB) and query-based (QB) query processing.

Additionally, assume a window query defined by S2 = {s1, s2} and T2 = {2, 3} and assume
an object o which has been observed at s2 at time t = 0, i.e. P (o, 0) = (0, 1, 0). To compute
the probability P ∃(o, S2, T2) that o intersects the query window, we first compute the
probability distribution P (o, 2) at time t = 2, using Corollary 12.1 two times. The resulting
probability vector P (o, 2) = (0, 0.32, 0.68) gives us a lower bound of 32% for P ∃(o, S2, T2),
since any world in which o is located at state s2 at time t = 2 satisfies the query window.
Thus, these worlds can already be considered as true hits and must be ignored at future
points of time. Thus, we obtain a new probability distribution P (o, 2)′ = (0, 0, 0.68)
which will be used for the next state transition using Corollary 12.1. The resulting vector
P (o, 3) = (0, 0.544, 0.136) means that out of the remaining 68% of worlds which have not
already been reported as true hits, another 54.4% can now be returned as true hits, since in
these worlds o is located at s2 at time t = 3. Since t = 3 is the last point of time belonging
to the query window, the fraction of 0.136 worlds can be reported as true drops, since in
these worlds, o has not intersected the query window at any t ∈ T2. Thus, the result of
this query is 0.32 + 0.544 = 0.864.

The above example gives an intuition on how to answer queries correctly by identifying
worlds that satisfy the query and excluding them from further processing. We incorporate
this technique directly in the Markov-Chain, to facilitate efficient on-the-fly pruning when
matrix multiplication is performed between a state vector and the Markov-Chain. To
achieve this goal, we introduce a new state which is denoted by “X”, denoting true hits, i.e.
for any world in which an object o reaches X, we know that o satisfies the query predicate.
This X state satisfies the absorbing property, i.e. any world reaching this state cannot
leave it. Instead of directly using the Markov-Chain M , we build the following two new
matrices

M− =

(
M zero(|S|)

zero(|S|)T 1

)
and M+ =

(
M ′ sum(S2)

zero(|S|) 1

)
,

where zero(|S|) is a vector of size S containing zeroes only, zero(|S|)T is its transposed,
M ′ is derived from M by replacing all columns that correspond to states in S2 by zero
vectors, and sum(S2) is a column vector containing for each line in M the sum of values
removed this way. The idea is to useM− outside of the query window time andM+ during
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the time when the query window is active. By using the transition matrix M+ all possible
worlds which satisfy the query are pushed into the absorbing state.

The initial object distribution vector of an object o is now extended by an additional
value of zero, corresponding to the fact that initially (at time t = 0) we cannot identify
any worlds which satisfy the query predicate.2 At each state transition, where the target
state does not belong to T2, we can now use M− instead of M , which has the same effect
as M , while preserving the probability of state X. If the target state belongs to S2, then
M+ is used instead. This way, worlds leading into states in S2 are now redirected to state
X instead.

Example 12.3.1. For the matrix

 0 0 1
0.6 0 0.4
0 0.8 0.2

 of our running example, the corre-

sponding new matrices are M− =


0 0 1 0

0.6 0 0.4 0
0 0.8 0.2 0
0 0 0 1

 and M+ =


0 0 1 0
0 0 0.4 0.6
0 0 0.2 0.8
0 0 0 1


The corresponding visualization is depicted in Figure 12.4(b). Here M− is used for

the first transition from t = 0 to t = 1, while for the transitions from t = 1 to t = 2
and from t = 2 to t = 3, M+ is utilized as transition matrix. Thus, for an object that
has been observed at state s2 at time t = 0, we obtain the initial probability distribution
vector P (o, 0) = (0, 1, 0, 0), where the fourth value denotes the initial probability of being
a true hit, which is zero since t = 0 does not belong to T2. The transition to t = 1
yields P (o, 1) = P (o, 0) · M− = (0.6, 0, 0.4, 0). Clearly, the fourth value corresponding
to state X is zero, since no state t ∈ T2 has been visited so far. Transition to t = 2
yields P (o, 2) = P (o, 1) ·M+ = (0, 0, 0.64, 0.36) and the final transition yields P (o, 3) =
P (o, 2) ·M+ = (0, 0, 0.136, 0.864). Therefore, the resulting probability that o intersects the
query window is 0.864.

12.3.2 Query-Based Query Processing

The object-based approach applies for each object o the methodology described in Section
12.3.1 to compute the probability that o is part of the query result. The query-based
approach assumes that an object intersects the query. Based on this assumption, this
approach starts at the last point of time in the query window, and goes backward in
time using the transposed Markov-Chain. This way, we can compute, at any time t, the
probability vector P (t) containing for each state s, the probability that an object starting
at state s at time t will satisfy the query predicate.

Therefore, we start at time t2end := max(T2). Clearly, at t2end, a path satisfies the query
predicate if and only if it is in state X: If it is not in state X at time t2end, then it will

2In the special case where t = 0 belongs to T2, we adjust the initial vector by moving all probabilities
of states in S2 to state X.
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never reach state X, since at any time after t2end, the matrix M− will be used which does
not allow to enter state X. Thus, the vector P (t2end) has the form (0, ..., 0, 1). Intuitively,
this vector corresponds to the assumption, that a path satisfies the query. Now we go back
in time using this assumption by using the transposed matrices (M−)T and (M+)T : If the
current state belongs to S2, we use (M+)T , otherwise, we use (M−)T . This procedure is
repeated until t = 0, the last point of time at which an object o has been observed, is
reached. The resulting vector v yields, for each state s ∈ S, the probability that an object
starting at s (with a probability of one) satisfies the query. Vector multiplication of the
probability distribution P (o, 0) with v yields the result probability P ∃(o, S2, T2).

Example 12.3.2. Again, consider the example depicted in Figure 12.4(c), where we want
to compute the probability that an object o intersects the query S2 = {s1, s2}, T2 = {2, 3}.
By transposing M− and M+, we obtain:

(M−)T=


0 0.6 0 0
0 0 0.8 0
1 0.4 0.2 0
0 0 0 1

 and (M+)T=


0 0 0 0
0 0 0.0 0
1 0.4 0.2 0
0 0.6 0.8 1


The query-based approach starts by assuming the probability distribution P (t = 3) =

(0, 0, 0, 1). Since t = 3 ∈ T2, we compute

P (t = 2) = P (t = 3) · (M+)T = (0, 0.6, 0.8, 1).

Since t = 2 ∈ T2 as well, we repeat this computation:

P (t = 1) = P (t = 2) · (M+)T = (0.8, 0.92, 0.96, 1).

Finally, since t = 1 /∈ T2, we get

P (t = 0) = P (t = 1) · (M−)T = (0.96, 0.864, 0.928, 1)

This vector contains, for each state, the probability that an object started at this position
will intersect the query. Let us again, assume that initially, the object is located at s2, i.e.
P (o, 0) = (0, 1, 0, 0) we finally obtain:

P ∃(o, S2, T2) = P (o, 0) · P (t = 0)T = 0.864.

This result equals the result that we derived using the object-based approach.

12.3.3 Discussion

The advantage of the query-based approach is that we only have to compute P (t = 0) once,
and then compute, for each object o the P ∃(o, S2, T2) by one single vector multiplication,
which can be performed in O(|P (o, 0)|), where |P (o, 0)| is the number of non-zero elements
in P (o, 0), i.e. the number of possible positions of o at t = 0. In particular, if we assume
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that the number of possible states observed at t = 0 is small (which is realistic even for
inaccurate observation types),we approach a total CPU cost of O(1) per object. The initial
computation of P (t = 0) has to perform time-transitions using the transposed Markov-
Chain. Thus, a vector-matrix multiplication is required for each transition from t2end to
t = 0. Thus, the total runtime of the query-based approach is O(|D|+ |Sreach|2 · δt), where
|D| is the number of database objects, |Sreach| is the number of states that have to be
explored, and δt is the number of transitions between t = 0 and t2end.

In contrast, the object-based approach has to perform time-transitions using the Markov-
Chain for each object. Although it is possible in some cases to stop these transitions early
using the inherent true-hit detection (computation can be stopped as soon as the proba-
bility of state X becomes sufficiently large), in the worst case, all transitions from t = 0 to
t2end have to be performed, and for each such transition, a vector-matrix multiplication has
to be performed in O(|Sreach|2) time, where |Sreach| is the total number of states reachable
by o in the time interval [0, t2end]. The total runtime of the object-based approach is thus
O(|D| · |S|2 · δt).

Nevertheless, the query-based approach makes the assumption that all objects follow the
same model, i.e. all have the same Markov-Chain. In many applications, this assumption is
reasonable: The movements of all icebergs are subject to the same currents - the form and
shape of an iceberg can be assumed to have negligible impact on the icebergs movement. In
road networks, objects may indeed follow different models. In the worst case, we may have
to perform the query-based approach once for each object, to compute P (t = 0) for it. If the
objects can be partitioned to classes (e.g. buses, trucks and cars), the query-based approach
can naturally be applied once for each class. In general, if objects follow different Markov-
Chains, a technique to speed up the query-based approach is to cluster objects with similar
Markov-Chains, and represent each cluster by one approximated Markov-Chain, where each
entry is a probability interval instead of a singular probability. This approximated Markov-
Chain can be used to perform pruning by detecting clusters of objects which must have
(or cannot possibly have) a sufficiently high probability to satisfy the query predicate.
Only clusters which cannot be decided as a whole need their objects to be considered
individually.

12.4 Multiple Observations

So far, we have assumed that there is only one observation per object and that this ob-
servation happened at a time that (temporally) preceded the query time. In this section,
we first show how to compute P ∃(o, S2, T2) given two observations, one before query time
and one after query time. Abstractly, this approach can be seen as a time-interpolation,
whereas so far we have only considered time-extrapolation. The aim is to incorporate
knowledge of both observations, in order to exclude all worlds which are not possible,
given both observations, and properly re-weight the probabilities of the remaining worlds.
Our proposed technique is applicable for both the object-based as well as the query-based
approach. Later, we will give an intuition why considering additional observations, which
are further apart from the query window than a considered observation, may still provide
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Figure 12.5: Multiple observations of an object

additional information. Finally, we outline how these techniques can be easily adapted to
incorporate information from an arbitrary number of observations.

Given multiple observations, we have to distinguish between three classes of worlds:

A Worlds that become impossible due to the given observations,

B possible worlds that satisfy the query predicate and

C possible worlds that do not satisfy the query predicate.

The example in Fig. 12.5 shows 4 possible worlds (trajectories) of an object o observed
at a point of time t = 0. In addition, two further observations of o exists at time t = x
and t = y. The possible locations of o at each time of the observations are illustrated by
the ellipses. Due to the observation made at t = y, worlds w3 and w4 become impossible
because they include impossible states at time t = y, i.e. both worlds belong to class A. In
contrast, w2 belongs to class B, since this world includes only possible states at all three
observations and satisfies the query predicate of intersecting the query window. Finally,
w1 belong to class C, since, albeit possible, it does not intersect the window.

Intuitively and according to the possible worlds semantics, the probability Ptotal that
an object satisfies the query predicate, given some observations, is the fraction of possible
worlds that satisfy the query predicate, i.e. the fraction

Ptotal =
P (B)

P (B) + P (C)
. (12.1)

For each object o ∈ D we assume a set of observations Θo = {< to1, θ
o
1 >,< to2, θ

o
2 >

, . . . , < to|Θo|, θ
o
|Θo| >} where toi ∈ T denotes the time and θoi ∈ S the location of an

observation. W.l.o.g. let to1 < to2 < . . . < to|Θo|. The location of an observation is given by a
probability density function over the state space. In our case of discrete space, this PDF
can be seen as a |S|-dimensional probability vector, i.e. θoi ∈ P|S|, with P = [0, 1].

Then, the derived matrices M− and M+ can be used for the query-based approach.
The approach of Section 12.3.1 cannot be applied directly, because now, worlds which have
reached the query window are no longer equivalent, and can no longer be unified in a single
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state X. The reason is that the current state of such a world now effects the probability of
reaching the state observed at time t = 3. Therefore, for each world that has intersected
the query, we need to maintain information about its current state at each time. Therefore,
we replace the state X by a set of states s1X,...,s3X. Each state siX corresponds to the
probability, that o has intersected the query window and is currently located in state si.
The transition matrices M− and M+ need to be adjusted accordingly. The shape of M−

is clear: For a transition from t to t + 1, where t + 1 /∈ T2 (the case where M− is used),
states are simply transitioned, and worlds which have (not) intersected the query at t must
(not) have done so at t+ 1. We obtain:

M− =

(
M 0
0 M

)
In the case whereM+ is used, that is the case where t+1 ∈ T2, we have to ensure that any
transition to a state s ∈ S2 leads to the corresponding state sX. This yields the matrix

M+ =

(
M −M ′ M ′

0 M

)
,

where M ′ is derived from M by setting all columns to zero, where the corresponding state
s /∈ S2, and M −M ′ is derived by setting all columns to zero for which s ∈ S2.

We start by using the probability distribution θo1 of an object o observed at to1. As in the
previous sections, we iteratively apply the modified matrices M− and M+ until we reach
to2. At this point, we have two probability distributions: One distribution derived using the
observation at to1, which has been transitioned to to2, as well as the probability distribution
θo2. These observations can be unified by exploiting independence between observations.

Lemma 12.1. Let X(i) := {θoi,1, . . . , θoi,n} be a set of PDFs of an object o at time ti,
derived from independent observations. The joint probability distribution P (o, t) of o at
time t is given by:

P (o, toi ) = N(
∏
x∈X

x1, ...,
∏
x∈X

x|S|),

where N(·) is the vector normalization function, i.e. N(x) = ( x1∑
x
, ...,

x|S|∑
x
)

Proof. For each j ∈ 1, ..., |S|, P (o, ti)j is, by definition of a probability density function,
the probability of the random event that object o is located in state sj. Without loss of
generality, let a = (a1, ..., a|S|) ∈ X be the first observation. Given this observation only,
then clearly P (o, ti) = a holds. Given further observations, the probability of this event
becomes conditioned to

P (o, t)j = P (aj|X \ {a}).
Since the errors of all observations are mutually independent, we get

P (o, ti)j = aj ·
∏
x∈X

xj,
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Figure 12.6: Two observations of an object

which is the fraction of all worlds, including worlds which are no longer possible given the
observationsX, in which o is located in state sj at time ti. Due to possible worlds semantics
(c.f. Equation 12.1), we are only interested in the fraction of possible worlds in which o is
located in state sj at time t. Since v contains all possible worlds, the normalization N(v)
yields the correct result. 2

As an example, consider Figure 12.6, where we again use our running example Markov-
Chain

M =

 0 0 1
0.5 0 0.5
0 0.8 0.2


and assume that an object O has been observed at state s1 at time t1 and at state s3 at
time t4. We obtain the transition matrices

M− =

(
M 0
0 M

)
=


0 0 1 0 0 0

0.5 0 0.5 0 0 0
0 0.8 0.2 0 0 0
0 0 0 0 0 1
0 0 0 0.5 0 0.5
0 0 0 0 0.8 0.2


and

M+ =

(
M −M ′ M ′

0 M

)
=


0 0 1 0 0 0
0 0 0.5 0.5 0 0
0 0 0.2 0 0.8 0
0 0 0 0 0 1
0 0 0 0.5 0 0.5
0 0 0 0 0.8 0.2


Since at time t = 0, o has been observed in state s1, and since o cannot have reached the
window yet, the initial distribution of o is θo1 = P (o, 0) = (1, 0, 0, 0, 0, 0). Transition to t = 1
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using M+ (since t = 1 ∈ T2) yields P (o, 1) = (0, 0, 1, 0, 0, 0). The next transition using
M+ yields P (o, 2) = (0, 0, 0.2, 0, 0.8, 0). The intuition of this vector is that, at time t = 2,
object o is located in state s3 while having reached the query window with a probability
of 20%, and otherwise is located in state s2 having reached the query window. The next
transition uses M− (since t = 3 /∈ T2) and yields P (o, 3) = (0, 0.16, 0.04, 0.4, 0, 0.4). Now,
at time t = 3, the second observation was made. We assume that this observation only
has information about the state at t = 3, but no information whether o has intersected
the query window. Thus, the observation vector has the form θo2 = (0, 0.5, 0, 0, 0.5, 0). Due
to Lemma 12.1, and since we assume that the observation at t1 (from which P (o, 3) was
derived) and θo2 are independent observations, we can directly multiply the entries of P (o, 3)
and θo2, yielding P (o, t)′ = (0, 0.08, 0, 0, 0, 0). Normalization yields P (o, t) = N(P (o, t)′) =
(0, 1, 0, 0, 0, 0), which means that at t = 3, given both observations, o must be in state s2

and must not have intersected the query window. This is intuitive, since the only path
between s1 at t = 0 and s2 at t = 3 does not intersect the query window.

12.5 Additional Spatio-Temporal Queries

Based on the proposed concepts for answering spatio-temporal ∃-queries, we will now show
how different query predicates can be answered efficiently.

PST∀Q:

In some applications, it may be interesting to compute the probability that o is in the
query window at all times t ∈ T2. Clearly, the probability that o is located in S2 at all
times in T2 complements the probability that o is outside S2 at any time in T2, i.e.

P ∀(o, S2, T2) = 1− P ∃(o,S \ S2, T2).

Although, in general, |S| >> |S2|, the time required to compute P ∃(o,S \ S2, T2) is
generally not larger than the time required to compute P ∀(o, S2, T2). The only difference
between these two computations is the content of the matrix M+, since different sets of
columns of matrix M are merged. In most cases, the computation of P ∃(o,S \ S2, T2) is
actually faster, since more columns of M+ are zero.

PSTkQ:

So far, an object o satisfies the query predicate in any world where it intersects the query
window, regardless for how long o remains in the query window. In the following, we will
show how the probability distribution of the number of times that o is located in the query
window (c.f. Definition 12.4) is computed.

To answer this query, we can extend the idea of adding new virtual states, to capture
the number of times an object has visited the query window; we use the set of states
S ′ = S × {0, ..., |T2|}. Intuitively, an object in state s′ = (s ∈ S, k ∈ {0, ..., |T2|}) ∈ S ′
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is currently located in state s and has been in the query window at k points of time. At
any point of time t ∈ T2, all possible worlds located at a state s ∈ S2 are transitioned in
order to increase their k value by one. The resulting matrices are

M− =


M 0 ... 0
0 M ... 0
... ... ... ...
0 0 ... M



M+ =


M −M ′ M ′ 0 ... 0

0 M −M ′ M ′ ... 0
... ... ... ... ...
0 0 ... M −M ′ M ′


Since initially, an object o visited the query window zero times3, the initial distribution of
an object is concatenated with k · |S| zeroes. If we perform time transitions until we reach
t2end, we obtain for each s′ = (s ∈ S, k ∈ {0, ..., |T2|}) ∈ S ′ the probability that o will visit
the query window exactly k times and will finally be in state s. Grouping this result by k,
we obtain for each k ∈ {0, ..., |T2|}, the probability that o visits the query window exactly
k times.

Obviously the above approach is not very memory efficient, sinceM− andM+ each blow
up the memory requirement of the original transition matrix M by a factor of |T2|. Thus,
we suggest a more memory efficient algorithm for this problem. For processing an object
o ∈ D, an additional (|T2| + 1) × |S|-Matrix C(t) is necessary. Each entry ci,j(t) ∈ C(t)
corresponds to the probability that o is currently located in state sj and has been located
in S2 at exactly i points of time t′ ≤ t ∈ T2. We begin by setting the first row of C(0)
to P (o, 0) and all other entries to zero, since at t = 0, o cannot possibly have entered the
query region. At each state transition from t to t + 1, a transition using M is performed
for each row. This is simply achieved by computing C ′(t + 1) = C(t) ·M . If t is not in
T2, then we set C(t+ 1) = C ′(t+ 1). Otherwise, if t ∈ T2, then we additionally shift each
column corresponding to a state si ∈ S down by one, and fill the top entry of this line with
zero. That is

ci,j =


c′i,j, if j /∈ S2

0, if j ∈ S2 ∧ i = 0
c′i−1,j otherwise.

When t2end is reached, the probability for o to be in the query exactly k-times can
be obtained by summing up all probabilities in row k of C(t2end). Thus the probability
P k−times(o, S2, T2) that o has visited the query window exactly k times is given by

P k−times(o, S2, T2) =
∑
j

ck,j(t
2
end)

3The special case where t = 0 belongs to T 2 is omitted. In that case, the initial distribution of an
object simply starts at k = 1, i.e. is shifted by |S|.
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Considering our running example we start with the matrix C(0) and transition as along
as t /∈ T2:

C(0) =

0 1 0
0 0 0
0 0 0

 ·M2

−−→ C(2) =

0 0.32 0.68
0 0 0
0 0 0


Now we shift down the probabilities of the states in S2 by one row:

C(2) =

0 0 0.68
0 0.32 0
0 0 0

 ·M−→ C(3) =

 0 0.544 0.136
0.192 0 0.128

0 0 0


After performing the last shift we obtain

C(3) =

 0 0 0.136
0 0.544 0.128

0.192 0 0

 rowsum−−−−→

0.136
0.672
0.192

 .

The resulting vector reflects the probability of o to be in the query exactly 0 (0.136), 1
(0.672) and 2 (0.192) times.

12.6 Experimental Evaluation

12.6.1 Datasets and Experimental Setting

For our experimental evaluation we used synthetic as well as real datasets. In order to
observe the influence of data characteristics we used several parameters for the construction
of the synthetic datasets. Each experiment is performed using a database of |D| objects.
The location of each object at time t0 is given by a PDF over a certain number of states.
This value is controlled by the parameter object_spread and characterizes the amount of
uncertainty in the database. The total number of states of the system is characterized by
|S|. To control the density of the transition matrix (which corresponds to the number of
possible transitions in the modeled system) we used the parameter state_spread. From
each state it is possible to transition into state_spread states. To model locality of the
transitions within the system we also introduced a parameter which bounds the possible
states which can be reached by one transition. An object in state si can only transition
into states sj ∈ [si−max_step/2; si+max_step/2]. All parameters for the synthetic datasets are
summarized in Table 12.2.

As real datasets we used two road network datasets. The first is the road network of
North America which consists of 175,813 nodes and 179,102 edges. As this is a rather sparse
graph we also extracted the road network from Munich which has 73,120 nodes and 93,925
edges. The transition matrix is equivalent to the adjacency matrix of the corresponding
graph. This means each node is treated as a state and each edge corresponds to two
non-zero entries in the transition matrix. The value of the non-zero entries of one line in
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parameter value range default
|D| 1,000 - 100,000 10,000
|S| 2,000 - 100,000 100,000
object_spread 5 5
state_spread 1 - 20 5
max_step 10 - 100 40

Table 12.2: Parameters for the synthetic datasets

the matrix are set randomly and sum up to one. In this way they reflect the transition
probabilites from one node in the road network to its directly connected neighbors.

In our experiments we evaluate object-based (OB) and query-based (QB) query pro-
cessing using several query predicates (∃,∀ and k-count). Additionally we compare these
approaches to a Monte-Carlo based method (MC). The MC approach samples paths of
each object and outputs the fraction of the sampled paths which fulfill the query predi-
cate. Sampling the path of an object requires first drawing a start state from the objects
distribution. Afterwards for each timestep a state from the successor states of the current
state is chosen according to the probability distribution given by the transition matrix.
Note that MC only returns approximate results, where the accuracy can be improved if
more paths are sampled. Since the sampling of paths is equivalent to a Bernoulli sequence,
the standard deviation between the sampled probability (p̂) and the true probability (p) is

given by σp̂ =
√

p·(1−p)
n

. For 100 samples, the standard deviation between p and p̂ is thus
at least 5% and gets worse for small and large values of p.

All experiments were run on a single 64-Bit machine with an Intel Xeon 5160 processor
with 3.0 GHz and 32GB of RAM. The computations where performed using MATLAB
R2011a. Unless mentioned otherwise, we generated 10,000 objects randomly distributed
across the state space and the query window is defined by the states [100, 120] and time
interval [20, 25]. For the Monte-Carlo based approach the number of drawn samples was
set to 100.

12.6.2 Experiments

In the first experiment, we vary the size of the state space |S| and measure the cost of
query evaluation for a PST∃Q. In Figure 12.7(a), we used a relatively small synthetic
dataset (|D| = 1, 000, |S| = [1, 000; 10, 000]). The MC approach is computationally very
demanding in comparison to the other two algorithms. The reason is, that even for such a
small setting the Monte-Carlo based approach has to draw a very high amount of samples.
Note that already for a small number of sampled paths (we used 100 in this setting)
this approach becomes expensive, because the sampling of one path already requires to
draw as many samples as the considered stamps in the query. This corresponds to 2,500
samples for one object in the database. Due to these high costs we excluded the MC
algorithm from the remaining experiments. As expected the QB approach is much faster
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Figure 12.9: Performance evaluation of query predicates.
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Figure 12.10: Comparison of QB and OB behavior with scaling parameters

than the OB approach. Figure 12.7(b) shows how these two methods scale at larger
datasets (|D| = 100, 000, |S| = 10, 000).

The experiments shown in Figures 12.8(a) and 12.8(b) show the dependency of the
PST∃Q algorithms on the timeslot we want to query on synthetic and real data sets. The
runtime of OB is increasing much faster than the runtime of QB. As expected the runtimes
of both algorithms suffer from a longer glance in the future as the vectors to be multiplied
become less sparse with each time stamp. Besides this, QB should not be influenced by
the number of timestamps whereas the runtime of the OB approach scales linearly to that
parameter. To justify the used model, we also performed an experiment which compared
our model to a model where temporal correlations are ignored (cf. Figure 12.8(d)) w.r.t.
accuracy. In this experiment we posed PST∃ queries with an increasing query time window
and measured the average probability of objects having a non-zero probability to fulfill the
query predicate. It is clearly visible that ignoring the temporal dependency returns a
biased result and the error compared to the correct result even increases for larger query
windows.
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In Figure 12.9(a) we compare the three proposed query types PST∃Q, PST∀Q and
PSTkQ query using the object-based approach. Obviously for the PSTkQ we have to
maintain not only one but multiple vectors (as many as the number of times in T2) per
object, which leads to an increased runtime. The PST∃Q and PST∀Q had equal runtime in
all experimental settings. Using the QB approach all queries run in a fraction of a second
and the runtime of PSTkQ seems to scale rather linearly with k (cf. Figure 12.9(b)) .

In the next set of experiments, the runtime behavior of the two approaches w.r.t. dif-
ferent locality parameters is tested. Figure 12.10(a) shows the runtime for increasing the
max_step parameter whereas Figure 12.10(b) shows results for increasing state_spread
parameter (Note that the algorithm runtimes are marked at different axes). Both algo-
rithms scale at most linearly with those parameters.

12.7 Conclusion
In this chapter, we studied the problem of probabilistic query evaluation over uncertain
spatio-temporal data. We consider uncertain trajectories, for which some points are sam-
pled via observations, while the remaining points are instantiated by a stochastic process.
We investigated query processing over uncertain moving object data, which are modeled
by stochastic processes, specifically Markov-Chains. This approach has three major advan-
tages over previous work. First it allows answering queries in accordance with the possible
worlds model. Second, dependencies between object locations at consecutive points in time
are taken into account. And third, it allows us to infer the probability an object reaches
a certain location (state) by matrix multiplications that can be processed extremely effi-
cient. Based on this method we propose a framework for processing queries over such data,
which injects pruning techniques into the Markov Chain matrices. An object-based and a
query-based approach are proposed; the latter is always more efficient, typically by orders
of magnitude. In our experiments we show that we are able to answer queries on settings
with 100,000 location states and 10,000 objects in a fraction of a second on a single machine
in contrast to state-of-the-art solutions that are multiple orders of magnitude slower, e.g.
the Monte-Carlo approach requires several hours for the same query. We show how the
framework can be applied for the cases where there exist one or multiple observations per
object and for various probabilistic spatio-temporal query variants.
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Chapter 13

Indexing Uncertain Spatio-Temporal
Data

In the last chapter we showed how to model uncertain spatio-temporal data and per-
form probabilistic spatio-temporal window queries on this model. Though this proceeding
showed to be very efficient in terms of CPU time, it is still necessary to evaluate each ob-
ject in the database separately resulting in a sequential scan through the whole database.
For large amounts of uncertain spatio-temporal data this may not be feasable especially in
time critical applications. In this chapter, we propose an index structure that facilitates
efficient processing of spatio-temporal window queries based on an appropriate model for
uncertain trajectories. Our hierarchical index uses novel approximation techniques in order
to probabilistically bound the uncertain movement of objects; these techniques allow for
efficient and effective filtering during query evaluation. As underlying model for the move-
ment of each object we assume a Markov Chain. However the pruning techniques of the
index structure are not restricted to this model. The objective of our index is to minimize
the number of objects for which exact probabilistic evaluation has to be performed.

Therefore, we show how to bound the movement of each object o and derive a spatio-
temporal approximation of o. For example, Figure 13.1 shows that the movement of the
object between consecutive observations can be bounded by a diamond, assuming that the
object’s velocity is bounded. Furthermore, we propose techniques to identify probabilistic
spatio-temporal approximations, i.e. smaller spatio-temporal approximations which guar-

Indexing Uncertain Spatiotemporal Data
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Figure 13.1: Spatio-temporal data.
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antee that an object remains inside them with a certain probability. By indexing both
types of approximations for all objects, we can prune objects that do not qualify a given
probabilistic query. Parts from this chapter have been published in [65].

The rest of the chapter is organized as follows. Section 13.1 presents the model that
we adopt for the uncertain movement of an object between consecutive observations and
formally defines the spatio-temporal queries that we address in our study. Related work is
discussed in Section 13.2. Section 13.3 presents our approximation techniques for object
trajectories, based on which the proposed index is developed (cf Section 13.4). Section
13.5 presents our experimental evaluation. Finally, Section 13.6 concludes the chapter.

13.1 Problem Definition

This section formally defines the type of spatio-temporal data that we index, the stochastic
model that we use for uncertain trajectories derived from the data, and the query types
that we handle.
Data: We consider a discrete time (T = N+

0 ) and space (S = {s1, ...s|S|} ⊆ RD) domain
as assumed in the previous Section and many existing works (e.g. [135, 12, 79]). Given this
spatio-temporal domain, the (certain) movement of an object o corresponds to a trajectory
represented as function o : T → S of time defining the location o(t) ∈ S of o at a certain
point of time t ∈ T . We consider incomplete (and/or imprecise) spatio-temporal data,
where the motion of an object is not recorded by a crisp trajectory. Instead, we are only
given a set Θo of (time, location) observations for each object o. At any time t /∈ Θo, the
position of o is uncertain, i.e., a random variable. Note that in this chapter we assume
certain observations, i.e. the location distribution θoi ∈ Θo at time toi concentrates in one
state. In other words θoi is a distribution vector with all-zero entries, except for one entry
which is equal to 1 (the state corresponding to the certain location of the observation). In
the scope of this chapter and since the context is clear we use θoi also to refer to the state
of the observation Θo

i . Thus for each observation Θo
i it holds that Pθoi (o, toi ) = 1.

Uncertain Data Model: We refer to the spatio-temporal approximation of a trajectory
of an object o in a time interval spanned by two consecutive observations of o at toi and
tj as a bead or diamond �(o, toi , tj). The diamond can be computed by considering the
maximum and minimum (singed) velocities of the object in each dimension [161]. The
whole approximation of the trajectory based on a set Θo of observations (i.e., a chain of
beads) is referred to as a necklace. For example, the movement of the object in Figure 13.1
is bounded by a chain of diamonds.

Again we model the uncertain movement of an object within a diamond, using a first-
order Markov-chain model (cf Definition 12.5) as described in Section 12.2. In this chapter,
however we consider the case where each object may have its own time-dependent transition
matrix M o(t).
Queries: Within the scope of this chapter, we focus on selection queries specified by the
following parameters: (i) a spatial window S2 ⊆ S, (ii) a contiguous time window T2 ⊆ T ,
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and (iii) a probability threshold τ . In the remainder, we use Q2 = S2 × T2 to denote the
search space of a query. Specifically we will consider probabilistic spatio-temporal τ exists
(PSTτ∃) queries and spatio-temporal τ forall (PSTτ∀) queries. A PSTτ∃ query returns all
objects o ∈ D for which P ∃(o, S2, T2) ≥ τ (cf Definition 12.2). Analogously a PSTτ∀ query
returns all objects o ∈ D for which P ∀(o, S2, T2) ≥ τ (cf Definition 12.3). By modeling
the movement within a diamond using a Markov-chain model, the true probability that
an object o satisfies a PSTτ∃ or PSTτ∀ query, can be computed in PTIME as shown in
Section 12.3.3, exploiting that the matrix M is generally sparse (only a few states are
directly connected to a single state). Still, query evaluation remains too expensive over a
large spatio-temporal database, where we have to compute the qualification probabilities
of all objects. In view of this, we define a set of approximations of uncertain object
trajectories enabling spatio-temporal and probabilistic filtering in Section 13.3. We then
show in Secion 13.4 how we can organize these approximations in an index in order to
perform efficient query evaluation.

13.2 Related Work
The problem of managing, mining and querying spatio-temporal data has received continu-
ous attention over the past decades (for a comprehensive coverage, see [76]). Specifically for
efficient query processing a vast amount of indexing structures for different purposes and
data characteristics has been developed (an overview and a classification can be found in
[120] and [123]). From this body of work, our approach is mostly related to spatio-temporal
data indexing for predictive querying, for example indexes like [137, 89] and approaches
like [149]. Still, these papers neither consider probabilistic query evaluation nor model the
data with stochastic processes.

Our work is also inspired by methods for indexing uncertain spatial data. The U-Tree
[149, 155] and its extension [179] bound each spatial uncertain object with an MBR and
additionally associate it with a set of “probabilistically constrained regions” (PCR). These
PCRs can be used for probabilistic pruning during query processing. For efficiency reasons
the set of PCRs are conservatively approximated by a linear function over the parameters
of the PCRs.

13.3 Approximating UST-Objects
In this section, we introduce (conservative) spatio-temporal as well as (conservative) prob-
abilistic spatio-temporal (UST-) object approximations, which serve as building blocks for
our proposed index, to be presented in Section 13.4.

13.3.1 Spatio-Temporal Approximation

To bound the possible locations of an object o between two subsequent observations
(Θo

i ,Θ
o
i+1), we need to determine all state-time pairs (s, t) ∈ S × T, toi ≤ t ≤ toi+1 such
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that o has a non-zero probability of being at state s at time t. This is done by considering
all possible paths between state θoi at time toi and state θoi+1 at time toi+1. An example
of a small set of such paths is depicted in Figure 13.2(a). Here, we can see a set of five
possible trajectories of an object o, i.e., all possible (state, time) pairs of o in the time in-
terval [toi , t

o
i+1]. In practice, the number of possible paths becomes very large. Nonetheless,

we can efficiently compute the set of possible (state, time) pairs using the Markov-chain
model: The set of state-time pairs Si reachable from Θo

i can be computed by performing
toi+1−toi transitions using the Markov chainM o(t) of o, starting from state θoi and memoriz-
ing all reachable (state, time) pairs. Similarly, we can compute Si+1 as all state-time pairs
(s, t) ∈ S × T , toi ≤ t ≤ toi+1 such that o can reach state θoi+1 at time toi+1 by starting from
state s at time t. Si+1 can be computed in a similar fashion, starting from state θoi+1 and
using the transposed Markov chain M o(t)T . The intersection Si,i+1 = Si ∩ Si+1 yields all
state-time pairs which are consistent with both observations. Let us note that in practice,
it is more efficient to compute Si and Si+1 in a parallel fashion, to reduce the explored
space. When the computation of Si and Si+1 meet at some time toi ≤ t ≤ toi+1, we can prune
any states which are not reachable by both θoi at time toi and θoi+1 at time toi+1. However, the
number |Si,i+1| of possible state-time pairs in Si,i+1 can grow very large, so it is impractical
for our index structure (proposed in Section 13.4) to store all Si,i+1 for each o ∈ DB in our
index structure. Thus, we propose to conservatively approximate Si,i+1. The issue is to
determine an appropriate approximation of Si,i+1 which tightly covers Si,i+1, while keeping
the representation as simple as possible. The basic idea is to build the approximation by
means of both object observations Θo

i and Θo
i+1 with the corresponding velocity of propa-

gation in each dimension. To do so, we first compute for the set of state-time pairs Si to
derive the maximum and minimum possible velocity in the time interval [toi , t

o
i+1]:

v0d := max(s,t)∈Si
(
s[d]− θoi [d])

t− toi
)

v6d := min(s,t)∈Si
(
s[d]− θoi [d])

t− toi
)

where s[d] (θoi [d]) denotes the projection of state s (θoi ) to the d-th dimension. By
definition, we can guarantee that for any toi ≤ t ≤ toi+1 it holds that

o(t)[d] ≤ θoi [d] + (t− toi ) · v0d and

o(t)[d] ≥ θoi [d] + (t− toi ) · v6d
where o(t)[d] denotes the projection of all states s with a non-zero probability P (o(t) =

s) on the d-th dimension. Furthermore, we bound the velocity of propagation at which o
can have reached state θoi+1 at time toi+1 from each location in the state-space Si+1:

v1d := max(s,t)∈Si+1
(
θoi [d]− s[d]

toi+1 − t
)

v>d := min(s,t)∈Si+1
(
θoi [d]− s[d]

toi+1 − t
)
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Figure 13.2: Spatio-temporal approximation.

Again, we can bound the position of o in dimension 1 ≤ d ≤ D at time toi ≤ t ≤ toi+1 as
follows:

o(t)[d] ≤ θoi+1[d]− (toi+1 − t) · v1d , and

o(t)[d] ≥ θoi+1[d]− (toi+1 − t) · v>d
In summary, using the positions of state θoi at time toi and θoi+1 at time toi+1, and using

velocities v0d , v
6
d , v

>
d , v

1
d , we can bound the random variable of the position o(t) of o at time

toi ≤ t ≤ toi+1 by the interval

o(t)[d] ∈ Id(t) := [max(θoi [d] + (t− toi ) · v6d , θ
o
i+1[d]− (toi+1 − t) · v>d )),

min(θoi [d] + (t− toi ) · v0d , θ
o
i+1[d]− (toi+1 − t) · v1d )] (13.1)

Deriving these intervals for each dimension yields an axis-parallel rectangle, approxi-
mating all possible positions of o at time t. In the following, we will call this time dependent
spatial approximation of o(t) in the time interval [toi , t

o
i+1] between two observations θoi and

θoi+1 a spatio-temporal diamond, denoted as �(o, toi , toi+1) 1. A nice geometric property of
this approximation is that computing the intersection with the query window at each time
t is very fast. Another advantage is that existing spatial access methods (e.g., R-trees)
can be easily used to efficiently organize these approximations. To store the approxima-
tion, we only need to store the 4 ·D real values v0d , v

6
d , v

1
d , v

>
d , 1 ≤ d ≤ D. Note that the

observations Θo
i and Θo

i+1 which are furthermore required to span a diamond, are already
stored in D. A diamond is reminiscent to a time-parameterized rectangle, used to model
the worst-case MBR for a set of moving objects in [137]; however, the way of deriving

1Our definition of a diamond differs from related work, since the 4 sides of the polygon (when projected
to each dimension) may differ in length, so the polygon may not be a rhombus, but in practice, the polygon
does resemble a diamond in most cases.
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velocities is different in our case. As an example, Figure 13.2(a) shows for one dimension
d ∈ D, positions of state θoi at time toi and o(toi+1) at time toi+1. The diamond formed by the
velocity bounds v0d , v

6
d , v

>
d and v1d conservatively approximates the possible (location, time)

pairs. Note that it is possible to use a minimal bounding rectangle 2(o, toi , t
o
i+1) instead of

the diamond �(o, toi , toi+1) to conservatively approximate the (location, time) space Si,i+1.
In cases, however, where the movement of an object in one dimension is biased in one direc-
tion, a rectangle may yield a very bad approximation (see Figure 13.2(b) for an example).
Our index employs both approximations 2(o, toi , t

o
i+1) and �(o, toi , toi+1) for spatio-temporal

pruning; 2(o, toi , t
o
i+1) is used for high-level indexing and filtering, while �(o, toi , toi+1) is used

as a second-level filter.

13.3.2 Spatio-Temporal Filter

Based on the spatio-temporal approximation of an uncertain object as described in the
previous section, it is possible to perform filtering during query processing. In the case of
a PSTτ∃Q query, if none of the diamonds assigned to an object o ∈ D intersects the query
window, then o is safely pruned. In turn, if a diamond of o is inside the query window
S2 in space, i.e. fully covered by S2, at any point of time t ∈ T2, then o is a true hit
and, thus, o can be immediately reported as result of the query. Similarly, for a PSTτ∀Q
query, objects whose diamonds do not intersect the query window during the entire query
time-range T2 can be pruned. On the other hand, an object o with a diamond which is
fully covered by S2 for each point of time t ∈ T2 is immediately reported as a true hit. In
order to employ the above spatio-temporal pruning conditions, for a diamond �(o, toi , toi+1)
of an object o we need to determine the points of time when it intersects the query window
S2 in space, as well as the points of time when �(o, toi , toi+1) is fully covered by S2. For
this purpose, it is helpful to focus on the spatial domain S and interpret a diamond as
well as the query as a time-parameterized (moving) rectangle. By doing so, we can adapt
the techniques proposed in [137]: In general, a rectangle R1 intersects (covers) another
rectangle R2, if and only if R1 intersects (covers) R2 in each dimension. Thus, for each
spatial dimension d (d ∈ {1, . . . D}), we compute the points of time when the extents of
the rectangles intersect in that dimension and the points of time when the extents of the
diamond rectangle are fully covered by the query rectangle S2.

For a single dimension d, with Equation 13.1 the query window given by Q2
d intersects

the diamond given by o(toi )[d], o(toi+1)[d], v0d , v
6
d , v

1
d and v>d within the points of time

Iint,d := {t ∈ (T2 ∩ [toi , t
o
i+1]|Id(t) ∩ S2

d }.

Similarly, Q2
d fully covers the diamond within the points of time

Icov,d := {t ∈ T2 ∩ [toi , t
o
i+1]|Id(t) ⊆ S2

d }.

An example is illustrated in Figure 13.3(a). To compute both sets Iint,d and Icov,d, we
intersect the margins of the diamond with the query window resulting in a set of time
intervals, which subsequently have to be intersected accordingly in order to derive Iint,d
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Figure 13.3: Intersection between query and diamond

and Icov,d. Now, let us consider the overall intersection time interval Iint =
⋂D
d=1 Iint,d (e.g.,

see Figure 13.3(b)) and the overall points of covering time Icov =
⋂D
d=1 Icov,d. In the case

of a PSTτ∃Q, if for an object o ∈ D there is no diamond yielding a non-empty set Iint, o
can be safely pruned. If any diamond of o yields a non-empty set Icov, o can be reported
as result. In the case of a PSTτ∀Q, an object o ∈ D can be safely rejected if all Iint of
all diamonds of o together do not completely cover the query time range T2. Contrary, if
all Icov of all diamonds of o together completely cover T2, o can be reported as a result of
PSTτ∀Q.

In summary, the spatio-temporal filter can be used to identify uncertain object trajec-
tories having a probability of 100% or 0% intersecting (remaining in) the query region Q2.
Still, the probability threshold τ of the query is not considered by this filter. In addition,
the object approximation may cover a lot of dead space if there exist outlier state-time
pairs which determine one or more of the velocities, despite having a very low probabil-
ity. In the following, we show how to exclude such unlikely outliers in order to shrink
the approximation, while maintaining probabilistic guarantees that employ the probability
threshold τ .

13.3.3 Probabilistic UST-Object Approximation

We now propose a tighter approximation, based on the intuition that the set of possible
paths within a diamond is generally not uniformly distributed: paths that are close to the
direct connection between the observed locations often are more likely than extreme paths
along the edges of the diamond. Therefore, given a query with threshold τ , we can take
advantage of a tighter approximation, which bounds all paths with cumulative probabilities
τ to perform more effective pruning. Based on this idea, we exploit the Markov-chain
model in order to compute new diamonds, which are spatio-temporal subregions, called
subdiamonds, of the (full) diamond �(o, toi , toi+1), as depicted in Figure 13.4(a). For each
such subdiamond, we will then show how to compute the cumulative probability of all
possible trajectories of o passing only through this subdiamond. Let us focus on restricting
the diamond in one direction of one dimension; we choose one dimension d ∈ D, and one
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direction dir ∈ {∧,∨}. Direction ∧ (∨) corresponds to the two diamond sides v0d and
v1d (v6d and v>d ). To obtain the subdiamond, we scale the corresponding sides by a factor
λ ∈ [0, 1] relative to the average velocity vavgd =

θoi+1[d]−θoi [d]

toi+1−toi
. We obtain the adjusted velocity

values for direction ∧ as follows:

v0
λ
d = ((v0d − v

avg
d ) · λ) + vavgd

= v0d · λ+ vavgd · (1− λ)

and
v1

λ
d = ((v1d − v

avg
d ) · λ) + vavgd

= v1d · λ+ vavgd · (1− λ)

The adjusted velocity values for direction ∨ can be computed analogously. Thus, for a
given diamond �(o, toi , toi+1), dimension d ∈ D, direction dir ∈ {∧,∨} and scalar λ ∈ [0, 1],
we obtain a smaller diamond �(o, toi , toi+1, d, dir, λ), derived from �(o, toi , toi+1) by scaling
direction dir in dimension d by a factor of λ. Figure 13.4(b) illustrates some subdiamonds
for one dimension, the ∧ direction and for various values of λ.

To use such subdiamonds for probabilistic pruning, we first need to compute the proba-
bility P (inside(o, �(o, toi , toi+1, d, dir, λ))) that object o will remain within �(o, toi , toi+1, d, dir, λ)
for the whole time interval [toi , t

o
i+1], in a correct and efficient way. The main chal-

lenge for correctness is to cope with temporal dependencies, i.e. the fact that the ran-
dom variables o(ti) and o(ti + δt) are highly correlated. Thus, we cannot simply treat
all random variables o(t) as mutually independent and aggregate their individual dis-
tributions. To illustrate this issue, consider Figure 13.4(a), where one subdiamond is
depicted. Assume that each of the five possible trajectories has a probability of 0.2.
We can see that three trajectories are completely contained in the subdiamond, so that
the probability P (inside(o, �(o, toi , toi+1, d, dir, λ))) that o fully remains in the subdiamond
�(o, toi , toi+1, d, dir, λ) is 60%. However, multiplying for all time instants t ∈ [toi , t

o
i+1] the

individual probabilities that o is located in �(o, toi , toi+1, d, dir, λ) at time t produces an ar-
bitrarily small and incorrect result, as location dependencies (cf Section 11.3) are ignored.

Furthermore, due to the generally exponential number of possible trajectories, it is
too expensive to compute P (inside(o, �(o, toi , toi+1, d, dir, λ))) by iterating over all possible
trajectories. Instead, we compute this probability efficiently and correctly, as follows. To
compute the probability of possible trajectories between θoi at toi and θoi+1 at toi+1 that are
completely contained in �(o, toi , toi+1, d, dir, λ), an intuitive approach is to start at θoi at time
toi and perform toi+1−toi transitions using the Markov-chainM o(t). After each transition, we
identify states that are outside �(o, toi , toi+1, d, dir, λ). Any possible trajectory which reaches
such a state is flagged. Upon reaching toi+1, we only need to consider possible trajectories
in state θoi+1, since all other worlds have become impossible due to the observation of o at
toi+1. The fraction of un-flagged worlds at state θoi+1 at time toi+1 yields the probability that
o does not completely remain in �(o, toi , toi+1, d, dir, λ).
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To formalize the above approach, we first rewrite the probability P (inside(o, �)|Θo
i ,Θ

o
i+1))

that the trajectory of o remains in the subdiamond �,2 given the observations Θo
i , Θo

i+1,
using the definition of conditional probability:

P (inside(o, �)|Θo
i ,Θ

o
i+1) =

P (o(toi+1) = θoi+1|inside(o, �),Θo
i )

P (o(toi+1) = θoi+1|Θo
i )

,

where P (o(toi+1) = θoi+1|inside(o, �),Θo
i ) denotes the probability that o reaches the state

θoi+1 observed by observation Θo
i+1, given that o, starting at state θoi at time toi remains inside

�. P (o(toi+1) = θoi+1|Θo
i ) denotes the probability that state θoi+1 at time toi+1 is reached, given

that o starts at state θoi at time toi , regardless whether o remains in �.
To compute the latter two probabilities, we proceed as follows. Instead of a single

probability vector P (o, t) of length |S|, describing the state distribution of o at time t, we
use two probability vectors P (o, t)+ and P (o, t)−, each of length |S|. An entry Ps(o, t)+

corresponds to the joint probability of the event that o is located at state s at time t and
the event inside(o, �, t) that o has (so far) been completely contained in the diamond in
the time interval [toi , t

o
i+1]. Analogously, an entry Ps(o, t)− corresponds to the probability

that o is located at state s at time t and has already left the diamond at, or before,
time t. Thus, vectors P (o, t)+ and P (o, t)− describe the probability density function of
o on the two dimensional event space (state × inside(o, �, t)), where the random variable
inside(o, �, t) is dichotomous (i.e. true or false). Then, we proceed as follows: Starting
at toi , we perform toi+1 − toi transitions using alternated Markov-chains, using both vectors
P (o, t)+ and P (o, t)−. Initially, P (o, toi )

+ is a unit vector, having Pθoi (o, toi )
+ = 1 (and all

other entries set to zero) and Pθoi (o, toi )
− is the zero vector. Semantically, this means that

at time toi , o must be in state θoi with a probability of one and must so far have retained
to �. At each transition from tk to tk+1, we decide for each reachable state s ∈ S, whether
s is located in � at time tk+1. This decision can be easily made by simply testing whether
the coordinate s[d] of state s in dimension d falls into interval of � using Equation 13.1. In
the following, let in(s, t, �) be an indicator function that returns 1 if the state/time pair
(s, t) is inside �, and 0 otherwise. For each state s where in(s, tk+1, �) = 0, we add the
probability of Ps(o, t)+ to Ps(o, t)+ and set Ps(o, t)+ to zero. That is, in each iteration we
compute

P (o, tk + 1)+ = P (o, tk)
+ ·M o(t), P (o, tk + 1)− = P (o, tk)

− ·M o(t)

and then for each state 1 ≤ s ≤ |S|

Ps(o, tk + 1)− = Ps(o, tk + 1)− + P(o, tk + 1)+ · (1− in(s, t, �)),

Ps(o, tk + 1)+ = Ps(o, tk + 1)+ · in(s, t, �)

At the final time toi+1, value P (o, toi+1)+ corresponds to P (o(toi+1) = θoi+1|inside(o, �)); i.e.,
the probability of o having reached the observed state θoi+1 at time toi+1, without having left

2Since the context is clear, we simply use � to denote �(o, toi , toi+1, d, dir, λ).
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�, and the sum of P (o, toi+1)+ and P (o, toi+1)− corresponds to the probability P (o(toi+1) =
θoi+1) that θoi+1 is reached at all. Thus:

P (inside(o, �)) =
Pθoi+1

(o, toi+1)+

Pθoi+1
(o, toi+1)+ + Pθoi+1

(o, toi+1)−

The overall time for computing the probability of a subdiamond � is in O((toi+1− toi ) · |S|),
since in each of the toi+1−toi iterations, we only need to consider a finite number of 2|S| states.
Since M is a sparse matrix, the vectors P (o, t)+ and P (o, t)− remain sparse as well. This
observation allows to further accelerate the computation of P (inside(o, �)) using sparse
matrix operations. Also note, that sampling methods are of limited use for computing
P (inside(o, �). In addition to the approximative nature of sampling, most sampled paths
derived by starting at θoi at time toi using the Markov chain M o(t), will not reach state
θoi+1 at time toi+1. Thus, a very large sample of paths has to be sampled, in order to find a
representative number of paths that intersect θoi+1 at time toi+1.

13.3.4 Finding the optimal Probabilistic Diamond

In the previous section, we described how to compute the probability of a probabilistic
diamond �(o, toi , toi+1, d, dir, λ) from a diamond �(o, toi , toi+1), dimension d, direction dir, and
scaling factor λ. In this section we will show how to find, for a given query window
Q2 and a given query predicate the subdiamond with the highest pruning power. Let
us focus on PSTτ∃ queries first. That is, our aim is to find a value for d, dir and λ,
such that the resulting subdiamond �(o, toi , toi+1, d, dir, λ) does not intersect Q2, and at
the same time it has a high probability P (inside(o, �)). This probability can be used to
prune o as we will show later. To allow effective pruning, we will show how to find, for
a given query window Q2, diamonds having a sufficiently small probability of intersecting
Q2 in order to prune these. Therefore, we will show how to find the best combination
of parameters d ∈ D, dir ∈ {∨,∧}, λ ∈ [0, 1] such that the corresponding probabilistic
diamond does not intersect Q2 and the probability P (inside(o, �(o, toi , toi+1, d, dir, λ))) is
maximized. Formally, we want to efficiently determine

argmaxd∈D,dir∈{∨,∧},λ∈[0,1][P (inside(o, �(o, toi , toi+1, d, dir, λ))]

constrained to Q2 ∩ �(o, toi , toi+1, d, dir, λ) = ∅.
For a single dimension d, and the north direction, a possible situation is depicted in

Figure 13.4(d). Here, the projection �d(o, toi , toi+1) of the full diamond �(o, toi , toi+1) to the
d-th dimension and the projections Q2

1 [d] and Q2
2 [d] of two query windows Q2

1 and Q2
2

are depicted. The aim is to find the largest values λopt of λ, such that the corresponding
probabilistic diamond �(o, toi , toi+1, d,∧, λ∃opt) which we call optimal subdiamond, does not
intersect Q2

1 (Q2
2 ). To solve this problem, we distinguish between the following cases.

Case 1: the direct line between observations < θoi , t
o
i > and < θoi+1, t

o
i+1 > in dimension

d intersects Q2[d]. In this case there exists no probabilistic diamond for dimension d
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in direction ∧. If this is the case for each dimension, i.e. if the direct line between
< θoi , t

o
i > and < θoi+1, t

o
i+1 > intersects Q2 in the full space, then we cannot find any

useful probabilistic subdiamond. Intuitively, for such a diamond the true probability of
intersecting Q2 (after refinement), is expected to be very large, thus �(o, toi , toi+1) is unlikely
to subjectable to probabilistic pruning, and thus we skip it entirely in the probabilistic
pruning step of our algorithm.
Case 2: the direct line between < θoi , t

o
i > and < θoi+1, t

o
i+1 > does not intersect Q2[d], and

we assume without loss of generality that Q2[d] is located above this line.3 In addition,
in this case, the time value of the north corner c of �d(o, toi , toi+1) is located in the interval
T2 (e.g., see Q2

2 in Figure 13.4(d)).4 In this case, the edge v0opt of the optimal subdiamond
�(o, toi , toi+1, d, dim, λ

∃
opt) is given by < θoi , t

o
i > and (s, t) where s corresponds to the lower

bound of S2[d] and t equals to the time component of c.
Case 3: Q2 is above the direct line between < θoi , t

o
i > and < θoi+1, t

o
i+1 > (as in Case

2), but the time value of the north corner c of �d(o, toi , toi+1) is not located in the time
interval T2 (e.g. Q2

1 of Figure 13.4(d)). In this case, the optimal subdiamond must touch
a corner of Q2[d] due to convexity of both Q2[d] and any diamond. If Q2[d] is located
to the left of c (the right direction is handled symmetrically), then the edge v0opt of the
optimal subdiamond is given by the line between < θoi , t

o
i > and the lower right corner of

Q2[d] (e.g., see Figure 13.4(d)).

The optimal value λ∃opt for cases 2 and 3 equals the quotient v0opt−vavg
v0−vavg , i.e., the fraction

of the maximum velocity of the optimal subdiamond and the maximum velocity of the full
diamond, both normalized by the average velocity vavg =

θoi+1[d]−θoi [d]

toi+1−toi
. After identifying the

value for λ∃opt, for a dimension d and a direction dir, we can compute the probability of the
corresponding subdiamond �(o, toi , toi+1, d, dir, λ

∃
opt). Since we can guarantee, that any path

in this subdiamond does not intersect the query window, we can obtain a lower bound

PLB(never(o, toi , t
o
i+1, Q

2)) = P (inside(o, �(o, toi , toi+1, d, dir, λ
∃
opt))) (13.2)

of the event that o never intersects the query window in the time interval [toi , t
o
i+1]. This

directly yields an upper bound

PUB(sometimes(o, toi , t
o
i+1, Q

2)) = 1− P (inside(o, �(o, toi , toi+1, d, dir, λ
∃
opt))) (13.3)

of the probability that the reverse event that o intersects the query window at least once
in [toi , t

o
i+1]. This bound can be used for probabilistic pruning for PSTτ∃ queries, as we will

see in Section 13.3.6.
For PSTτ∀ queries we can naively use the probabilistic subdiamond computed above,

exploiting the fact that any world that does not qualify a PSTτ∃ query Q2, cannot satisfy
the corresponding PSTτ∀ query Q2. Still, we can do better: We can extend the proba-
bilistic subdiamond (i.e., increase the value of λ), until it becomes possible that a path in

3If Q2[d] is below the line, we consider direction dir = ∨ symmetrically.
4Corner c is given by the intersection of lines (o(toi ), toi ) + v0 and (o(toi+1), toi+1) + v1.



13.3 Approximating UST-Objects 211

the subdiamond remains completely in Q2. In Case 1, where vexp intersects Q2, again we
can find no probabilistic subdiamond; in both other cases, we find the best probabilistic
diamond for each dimension and each direction, as the maximum λ∀opt, such that the result-
ing subdiamond does not contain both corners of Q2[d] facing �(o, toi , toi+1). An example is
given in Figure 13.4(e). Here, λ∀opt is chosen for the north direction, such that v1 meets the
lower right corner of Q2[d]. The resulting diamond �(o, toi , toi+1, d, dir, λ

∀
opt) is guaranteed

to not contain any path that satisfies a PSTτ∀ query. The reason is that λ∀opt is chosen
such that there is guaranteed to be one point of time 5 when the query window Q2 is not
intersected by �(o, toi , toi+1, d, dir, λ

∀
opt).

This observation allows to derive the lower bound probability

PLB(sometimes_not(o, toi , t
o
i+1, Q

2)) = P (inside(o, �(o, toi , toi+1, d, dir, λ
∀
opt)))

of the event that o misses the query window at least once. Again, we derive an upper
bound probability

PUB(always(o, toi , t
o
i+1, Q

2)) = P (inside(o, �(o, toi , toi+1, d, dir, λ
∀
opt)))

of the reverse event that o is always located in Q2, which can be used for pruning for
PSTτ∃ queries (see Section 13.3.6).

13.3.5 Approximating Probabilistic Diamonds

The main goal of our index structure, proposed in Section 13.4, is to avoid expensive
probability computations for subdiamonds. Since the query window is not known in ad-
vance, 2D computations (i.e., one for each dimension and direction) have to performed
in order to identify the optimal subdiamond for a given query and candidate object o.
To avoid these computations at run-time, we propose to precompute, for each diamond
�(o, toi , toi+1) in D, probabilistic subdiamonds for each dimension and direction and for a
set Λ of λ-values. This yields a catalogue of probability values, i.e. a probability for each
�(o, toi , toi+1, d, dir, λ), d ∈ D, dir ∈ {∨,∧}, λ ∈ Λ.

Given a query window, the optimal value λopt computed in Section 13.3.4 may not be in
Λ. Thus, we need to conservatively approximate the probability of probabilistic diamonds
�(o, toi , toi+1, d, dir, λ) for which λ /∈ Λ. We propose to use a conservative linear approxima-
tion of P (inside(o, �(o, toi , toi+1, d, dir, λ))) which increases monotonically with λ, using the
precomputed probability values. For example, Figure 13.4(c), shows the (λ, probability)-
space, for six values Λ = {0, 0.2, 0.4, 0.6, 0.8, 1}. The corresponding precomputed pairs
(λ, P (inside(o, �(o, toi , toi+1, d, dir, λ)))) are depicted. Our goal is to find a function f(λ)
that minimizes the error with respect to P (inside(o, �(o, toi , toi+1, d, dir, λ)), while ensur-
ing that ∀λ ∈ [0, 1] : f(λ) ≤ P (inside(o, �(o, toi , toi+1, d, dir, λ)). The latter constraint is
required to maintain the conservativeness property of the approximation, which will be re-
quired for pruning. We model this as a linear programming problem: find a linear function

5corresponding to the corner which is not intersected by �(o, toi , toi+1, d, dir, λ
∀
opt)
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l(λ) = a ·λ+ b that minimizes the aggregate error with respect to the sample points, under
the constraint that the approximation line does not exceed any of the sample values (e.g.,
the line in Figure 13.4(c)). That is, we compute:

minf(a, b), where f(a, b) =
∑
λ∈Λ

P (λ)− (a+ b · λ)

subject to: ∀λ ∈ Λ : P (λ) ≥ a+ b · λ

Using the simplex algorithm we are able to solve this optimization problem extremely
fast. In summary, a probabilistic spatio-temporal object o is approximated by a set of
|Θo| − 1 diamonds, one for each subsequent time points toi , toi+1 ∈ Θo. Each diamond
approximation contains its spatio-temporal diamond �(o, toi , toi+1), consisting of four real
values v0, v6, v1, v>, and a set of 2 · D linear approximation functions fd,dir(λ), one for
each dimension d ∈ D and each direction dir ∈ {∨,∧}. Next, we will show how to use
these object approximations for efficient query processing over uncertain spatio-temporal
data.

13.3.6 Probabilistic Filter

For each dimension d ∈ D and direction dir ∈ {∨,∧}, we now have a linear function to
approximate all (λ, P (o, toi , t

o
i+1, d, dim, λ)). However, using this line directly may violate

the conservativeness property, since the true function may have any monotonic increasing
form, and thus, for a value λQ located in between two values λ1 and λ2 (λ1, λ2 ∈ Λ, λ1 <
λQ < λ2) the probability is bounded by P (λ1) ≤ P (λQ) ≤ P (λ2). To avoid this problem,
we can exploit that the catalogue Λ is the same for all diamonds, dimensions and directions.
Thus, we chose the function f(λ) = l(bλc), where bλc denotes the largest element of Λ such
that bλc ≤ λ. In our running example, the function f(λ) is depicted in Figure 13.4(f). In
this example, assume that we have computed an optimal value λopt in the previous steps.
The corresponding conservative approximation f(λopt) is shown.

Now, we show how these probability bounds can be used to bound the probability that
an object (i.e. its corresponding chain of diamonds) satisfies the query predicate. This
is done by probing each uncertain trajectory approximation (each necklace) on the query
region Q2. Obviously, we only have to take into account diamonds intersecting the query
time range T2. In turn, when probing an uncertain trajectory approximation �(o, toi , toi+1)
on the query range Q2, we only have to take the time range [toi , t

o
i+1] into account; i.e.,

if the time range T2 of the query spans beyond [toi , t
o
i+1], we truncate T2 accordingly.

Consequently, in the case where more than one diamonds of an object intersect T2, we
can split Q2 at the time dimension and separately probe the object diamonds on the
corresponding query parts. The resulting probabilities obtained for individual diamonds
can be treated as independent.

Lemma 13.1. Let �(o, toi , toi+1), �(o, toi+1, tk) be two successive diamonds of object o and
�1 := �(o, toi , toi+1, d1, dir1, λ1), �2 := �(o, toi+1, tk, d2, dir2, λ2) be probabilistic subdiamonds,
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associated with respective probabilities P (�1) and P (�2) that o intersects these subdia-
monds. Then, the probability P (�1 ∧ �2) that o intersects both subdiamonds, is given
by

P (inside(o, �1) ∧ inside(o, �2)) = P (inside(o, �1)) · P (inside(o, �2))

Proof. We first rewrite P (inside(o, �1) ∧ inside(o, �2)) using conditional probabilities.

P (inside(o, �1) ∧ inside(o, �2)) = P (inside(o, �1)) · P (inside(o, �2)|inside(o, �1))

Furthermore, we exploit the knowledge that object o is at the observed location o(toi+1) at
time toi+1

P (inside(o, �1) ∧ inside(o, �2)) = P (inside(o, �1)) · P (inside(o, �2)|inside(o, �1) ∧ o(toi+1))

Based on the Markov model assumption, we know that, given the position at toi+1, the
behavior of o in the time interval [toi+1, tk] is independent of any position at times t < toi+1.
Thus, we obtain:

P (�1 ∧ �2) = P (�1) · P (�2|o(toi+1))

Finally, the lemma is proved based on the fact that the position o(toi+1) has been observed,
and thus, is not a random variable. 2

Lemma 13.1 shows that the random events of two successive probabilistic diamonds of
the same object are conditionally independent, given the observation in between them. This
observation allows us to compute the probability P ∃(o) that the whole chain of diamonds
of o intersects a query window Q2. Let {toi , toi+1} ⊆seq Θo be the set of pairs of subsequent
observations in Θo. Then,

P ∃(o) = P (
∨

{toi ,toi+1}⊆seqΘo

sometimes(o, toi , t
o
i+1, Q

2))

That is, o satisfies a PSTτ∃ query, if and only if at least one diamond of o intersects Q2

at least once. Rewriting yields

P ∃(o) = 1− P (
∧

{toi ,toi+1}⊆seqΘo

never(o, toi , t
o
i+1, Q

2))

Exploiting Lemma 13.1 yields

P ∃(o) = 1−
∏

{toi ,toi+1}⊆seqΘo

P (never(o, toi , t
o
i+1, Q

2))

Using our probability bounds derived in Section 13.3.4, we obtain

P ∃(o) ≤ 1−
∏

{toi ,toi+1}⊆seqΘo

PLB(never(o, toi , t
o
i+1, Q

2))
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Figure 13.5: The UST-tree.

which can be used to prune o, if

1−
∏

{toi ,toi+1}⊆seqΘo

PLB(never(o, toi , t
o
i+1, Q

2)) < τ (13.4)

Analogously, we can prune an object o for a PSTτ∀ query if

P ∃(o)≤1−
∏

{toi ,toi+1}⊆seqΘo

PLB(sometimes_not(o,toi ,t
o
i+1, Q

2))<τ (13.5)

If Equation 13.4 (Equation 13.5) cannot be applied for pruning, we propose to iteratively
refine single diamonds of o.6 Thus, the exact probability P (sometimes(o, toi , t

o
i+1, Q

2))
or P (always(o, toi , t

o
i+1, Q

2)) are computed using the technique proposed in the previous
chapter, respectively. This exact probability of a single diamond can then be used to re-
apply the pruning criterion of Equation 13.4 (Equation 13.5), by using the true probability
as lower bound. When all diamonds of o have been refined, Equation 13.4 (Equation 13.5)
yields the exact probability P ∃(o) or P ∀(o), respectively.

13.4 The UST-Tree

In the previous section, we showed that we can precompute a set of approximations for each
object, which can be progressively used to prune an object during query evaluation. In this
section, we introduce the UST-tree, which is an R-tree-based hierarchical index structure,
designed to organize the object approximations and efficiently prune objects that may
not possibly qualify the query; for the remaining objects the query is directly verified
based on their Markov models, as described in Section 12.4 (refinement step). Section
13.4.1 describes the structure of the UST-tree and Section 13.4.2 presents a generic query
processing algorithm for answering both PSTτ∃Q and PSTτ∀Q probabilistic query types
efficiently.

6Heuristics to determine the order in which diamonds are refined are out of scope of this work.
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13.4.1 Architecture

The UST-tree index is a hierarchical disk-based index. The basic structure is illustrated
in Figure 13.5. An entry on the leaf level corresponds to an approximation of an object o
represented by a quadruple (2(o, toi , t

o
i+1), �(o, toi , toi+1), {fd,dir : d ∈ D, dir ∈ {∨,∧}}, oid),

containing (i) the MBR approximation 2(o, toi , t
o
i+1) (cf. Section 13.3.1), (ii) the diamond

approximation �(o, toi , toi+1) (cf. Section 13.3.1), (iii) a set {fd,dir : d ∈ D, dir ∈ {∨,∧}}
of 2 · D linear approximation functions for the precomputed probabilistic diamonds of o
(cf. Section 13.3.5), and (iv) a pointer oid to the exact uncertain spatio-temporal object
description (raw object data). Intermediate node entries of the UST-tree have exactly the
same structure as in an R-tree; i.e., each entry contains a pointer referencing its child node
and the MBR of all MBR approximations stored in pointed subtree. Note that the necklace
of each object is decomposed into diamonds, which are stored independently in the leaf
nodes of the tree. Since the directory structure of the UST-tree is identical to that of the
R-tree, the UST-tree uses the same methods as the R∗-tree [21] to handle updates. Update
operations on the UST-tree are handled in the same way as in an R∗-tree. Consequently,
since the structure of intermediate nodes comply with that of the R∗-tree, split and merge
operations on intermediate nodes are quite obvious. For the leaf level, we also adopt the
split and merge heuristics of the R∗−tree by just taking thembr-entries into consideration.

13.4.2 Query Evaluation

Given a spatio-temporal query windowQ2, the UST-tree is hierarchically traversed starting
from the root, recursively visiting entries whose MBRs intersect Q2; i.e., the subtree of
an intermediate entry e is pruned if e.mbr ∩ Q2 = ∅. For each leaf node entry e, we
progressively use the spatio-temporal and probabilistic diamond approximations stored in
e to filter the corresponding object.

In the spatio-temporal filter step, we first use 2(o, toi , t
o
i+1) (ST-MBR Filter) using

simple rectangle intersection tests. If this filter fails, we proceed using �(o, toi , toi+1) (ST-
Diamond filter) by performing intersection tests against Q2 as described in Section 13.3.2.
Note that sometimes multiple leaf entries associated with an object are required to prune
an object or confirm whether it is a true hit. Therefore, candidates are stored in a list until
all their diamond approximations have been evaluated.

Finally, for the remaining candidates we exploit the probabilistic filter (Probabilistic
Diamond Filter) as described in Section 13.3.6. Thereby, we use the linear approximation
functions {fd,dir : d ∈ D, dir ∈ {∨,∧}} stored in the leaf-node entry in order to derive
an upper bound of the qualification probability P (∃t ∈ (T2 ∩ [toi , t

o
i+1]) : o(t) ∈ S2) or

P (∀t ∈ (T2 ∩ [toi , t
o
i+1]) : o(t) ∈ S2) (depending on the query predicate). For each object

o which is not pruned (or reported as true hit), we accumulate in a list L(o) all upper
bounds of its qualification probabilities from the leaf entries that index the diamonds of
o. After collecting all candidate objects, the qualification probabilities stored in the list
L(o) for each candidate o are aggregated in order to derive the upper bound of the overall
qualification probability P (∃t ∈ T2 : o(t) ∈ S2) for o, as described in Section 13.3.6. If
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this probability falls below τ we can skip o, otherwise we have to refine o by accessing the
exact object data referenced by oid.

13.5 Experimental Evaluation

13.5.1 Datasets and Experimental Setting

In order to evaluate the proposed techniques we used data derived from a real application
and several synthetic data sets.
Real Data. As a basis for the real world data served the trajectory data set containing
one-week trajectories of 10,357 taxis in Beijing from [174]. This heterogeneous dataset
contains trajectories having different samples rates, ranging from one sample every fives
seconds to one sample every 10 minutes. The average time between localization updates
(observations) is 177 seconds. The average distance between two observations is 623 m. We
applied the techniques from [48] to obtain both a set of possible states (mostly correspond-
ing crossroads) and a transition matrix reflecting the possible movements of the taxis. We
only included data of taxis where the time between two GPS signals (observations) is no
more than two minutes to train the Markov chain. The resulting data set consists of 3008
states and 11699 possible transitions between theses states.
Synthetic Data. In order to demonstrate the behavior of the proposed techniques de-
pending on the underlying data we also generated a set of synthetic data sets with different
characteristics. For the possible states, we generated n points uniformly distributed in the
[0, 1]2 space. Each point was then connected to the points which have an Euclidean distance
smaller than ε. Those connections correspond to the possible movements of an object in the
space and we randomly assigned probabilities to each connection such that the sum of all
outgoing edges sums up to 1. These values are the entries for the corresponding transition
matrix. As a default for this dataset we generated 1000 objects each with 100 observations
(= 99.000 probabilistic diamonds) and the parameters were set to n = 10000, ε = 0.02 and
the catalogue size |Λ| = 10.
Observations. Additionally to the positions of the states and the transition matrix, we
further need observations from each object in order to build a database. The observa-
tions were constructed by a directed random walk through the underlying graph (states =
vertices and non-zero transitions = edges). At some time steps we memorize the current
position of the object and take these time-state-tuples as an observation of the object.
The time steps between two successive observations was randomly chosen from the interval
[10,15] if not stated otherwise. For the observations of the real dataset we used the GPS
data of taxis, where the time between two signals is between 2 and 20 minutes.

All experiments were run on a Quad Intel Xeon server running Windows Server 2008
with 16 GB RAM and 3.0 GHz. The UST-tree was implemented in Java. For all opera-
tions involving matrix operations (e.g., the refinement step of queries) we used MATLAB
for efficient processing. All query performance evaluation results are averaged over 1000
queries. The spatial extent of the query windows in each dimension was set to 0.1 and the
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Figure 13.6: Diamond construction

duration of the queries was set to 10 time steps by default. Unless otherwise stated, we
experimented with PSTτ∃ queries, with τ = 0.5. The page size of the tree was set to 4 KB.
Our experiments assess the construction cost of the UST-tree structure and its performance
on query evaluation. For experiments regarding the effectivity of the Markov-chain model,
and an evaluation of its capability to capture the real world in various applications, we
refer to previous work, e.g., [12, 48, 79, 135], where Markov Chains were proved successful
in modeling spatio-temporal data.

13.5.2 UST-tree Construction

The first experiment investigates the cost of index construction. In particular, we evalu-
ate the cost for generating the spatio-temporal and probabilistic diamond approximations
used to build the entries of the leaf level; this is the bottleneck of constructing and up-
dating the tree, since restructuring operations always take at most 1ms. On the other
hand, constructing the probabilistic diamonds is typically 2-3 orders of magnitude costlier,
as illustrated in Figure 13.6(a). Still, this cost is reasonable, since the construction of a
probabilistic diamond is comparable to the construction of 2 ·D · |Λ| subdiamonds, which in
turn corresponds to one refinement step (considering the subdiamond as a query window).
Construction times pay off, when the query load on the database is reasonable. Figure
13.6(a) illustrates the construction time as a function of the speed of the objects (upper
x-axis values) and the number of time steps between successive observations (lower x-axis
values). From a theoretical point of view, both parameters linearly increase the number of
reachable states, i.e., the density of the sparse vectors representing the uncertain position
of an object at one point of time. The results reflect the theoretical considerations showing
a quadratic runtime behavior with respect to both parameters. In a streaming scenario
with several updates/insertions per second and large probabilistic diamonds (due to high
speed of objects or large intervals between observations), the construction of probabilistic
diamonds can be performed in parallel and is therefore still feasible. Figure 13.6(b) shows
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Figure 13.7: Overall performance (synthetic data set)

the construction cost as a function of parameter |Λ| (which determines the number of sub-
diamonds). Theoretically this parameter should have a linear impact on the construction
time. However our implementation exploits the monotonicity of the uncertain trajectories
regarding probabilistic subdiamonds; a trajectory which is not included in the probability
of a subdiamond, is also excluded from larger subdiamonds in the same dimension and
direction. This explains the sublinear runtime w.r.t. |Λ|.

13.5.3 Query Performance

In the first set of query performance experiments, we compare the cost of using UST-tree
with two competitors on synthetic data (see Figure 13.7). Scan+ is a scan based query
processing implementation, i.e., without employing any index [66]. For each pair of two
successive observations of an object, refinement is performed immediately, i.e., there is no
filter cost. We enhanced the implementation of Scan+ by prepending a simple temporal
filter, which only considers observation pairs which temporally overlap the query window.
The R*-Tree competitor approximates all possible locations (i.e. state-time pairs) between
two successive observations of an object using only 2(o, ti, tj). These MBRs are then
indexed using a conventional R*-Tree [21]. In Figure 13.7(a), we show the average CPU
cost per query (I/O cost is not the bottleneck in this problem), for the three competitors.
The cost are split into filter and refinement costs. Although the R*-Tree has lower filter
cost, the overall query performance of the UST-tree is around 3 times better than that
of the R*-Tree (note the logarithmic scale). This is attributed to the effectiveness of the
different filter steps used by the UST-tree; the overhead of the UST-tree filter is negligible
compared to the savings in refinement cost.

Figure 13.7(b) shows the cost and the effectiveness of the individual filter steps of
the filter-refinement pipeline used by the UST-tree. The bars show the overall runtime
(query time) of each filter and the numbers on top of the bars show the effectiveness of
the filter in terms of remaining (observation pair) candidates after the corresponding filter
has been applied. We clearly see that the spatio-temporal filters reduce the number of
candidates and, thus, the number of required refinements, drastically. We can also observe
that the probabilistic filter can reduce the number of refinements by 30% after applying the
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sequence of spatio-temporal filters. Comparing the cost of the probabilistic filter (which
is comparable to that of the spatio-temporal filter) to the cost of candidate refinement,
we can observe that the cost required to perform the probabilistic filter can be neglected.
This experiment shows that each of the filters incorporated in the UST-tree indeed pays
off in terms of CPU cost.

Although I/O cost is not the bottleneck under our setting, the I/O costs of R*-Tree
and the UST-tree are illustrated in Figure 13.7(c) for completeness. Filter cost here means
all costs which occur during the traversal of the corresponding index structure, i.e., access
to intermediate and leaf nodes. Refinement cost includes the number of page accesses
to refine the observation pairs that pass the filter step, assuming one I/O per such pair.
Note, that the cost of a refinement can be much higher than one page access (e.g. if the
Markov Chain, which can become very large does not fit in one disk page) under different
settings. The UST-tree has higher filtering cost, since the representation of the probabilistic
diamonds requires more space and the tree is larger than the R*-Tree, which only stores
MBR approximations but incurs much higher I/O cost for refinements.

The above experiments unveil that the most costly operation is the refinement of spatio-
temporal diamonds; thus, we now take a closer look at the effectiveness of the three different
methods on pruning spatio-temporal diamonds. The next experiments measure the number
of spatio-temporal diamonds which have to be refined at the refinement step; these results
can be directly translated to runtime differences of the different approaches.

Size of the Catalogue |Λ|. An important tuning parameter for the index is the size
of the catalogue which is used for building the probabilistic diamond approximations. In
Figure 13.8(a), it can be observed that the filter effectiveness converges at around |Λ| = 10
(default value for the experiments). Depending on the query parameter τ , a too small
catalogue yields up to twice as much candidates which have to be refined. Note that the
number of refinement candidates does not decrease monotonically in |Λ|. In general a
larger catalogue results in a linear function with a larger approximation error. However,
the step-function for the conservative approximation becomes smoother which results in a
smaller approximation error. Because of these two contrary effects a larger catalogue does
not always result in higher filter effectiveness.

Query Parameters. The characteristics of the query have different implications on the
index performance. Increasing the spatial extent of the query obviously yields more can-
didates since more diamonds in the database are affected (cf. Figure 13.8(b)). The spatio-
temporal filter utilizing the diamond approximations becomes more effective in comparison
to the ST-MBR-Filter. The percentage of the diamonds which can be pruned using the
probabilistic filter remains rather constant (at around 30%) in comparison to the spatio-
temporal filter. Another query parameter is the temporal extent of the query. Increasing
the length of the query time window T2 increases the number of refinement candidates.
The results are very similar to the results when increasing the spatial extent of the query.

Changing the value of τ obviously only affects the probabilistic filter (cf. Figure 13.8(c)).
The higher τ is set, the more candidates can be pruned by the probabilistic filter. From
a value of around 20%, the candidates which have to be refined decrease linearly with τ .
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Figure 13.8: Experiments on synthetic data
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Figure 13.9: Experiments on real data (∀)

The PSTτ∀ query shows similar performance results (cf. Figures 13.8(g) and 13.8(h)) for
the mentioned parameters. For the experiments, we reduced the temporal query extent to
5, since the number of result objects for a PSTτ∀ query is usually much lower than for a
PSTτ∃ query with the same query window.
Influencing Variables of ST Diamonds. The size of the spatio-temporal diamonds is
generally affected by two parameters. One is the time interval between successive observa-
tions, since a larger interval increases the space that can be reached by the moving object
between the two observations. For this experiment, the number of time steps between suc-
cessive observations in the data set was chosen randomly from the intervals on the x-axis
in Figure 13.8(d). The second parameter is the speed of the object and has a similar effect.
The speed corresponds to the parameter ε, which reflects the maximum distance of points
which can be reached by an object within one time step (cf. Figure 13.8(e)). Since larger
spatio-temporal diamonds usually result in more objects which intersect the query window,
the number of candidates to be refined increase when increasing these two parameters. In-
terestingly, the effectiveness of the ST-Diamond Filter decreases over the ST-MBR-Filter,
whereas the pruning effectiveness of the Probabilistic Filter increases. This shows, that
the probabilistic filter copes better with more uncertainty in the data than the other two
filters.
Database Size. We evaluated the scalability of the UST-tree by increasing the amount
of observations (cf. Figure 13.8(f)). The number of results increases linearly with the
database size. The experiment also shows that the number of refined candidates increase
linearly.
Real Data. The experiments on the real world data, show similar behavior as those
on the synthetic data. Thus we only show excerpts from the evaluation. Figure 13.9(a)
illustrates the results for PSTτ∀ queries when varying the value of τ . It is notable that
the ST-Diamond Filter seems to even perform better (compared to the ST-MBR-Filter)
on the real dataset. The reason for this is that the real dataset has much more inherent
irregularity (regarding the locations and the movement of obejcts). This favors the ST-
Diamond filter over the MBR approximation (since diamonds are more skewed as in Figure
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13.2(b)). The probabilistic filter is apparently not affected. When varying the query extent
(cf Figure 13.9(b)) the results resemble the results on the synthetic dataset.

13.6 Conclusions
In this chapter, we proposed the UST-tree which is an index structure for uncertain spatio-
temporal data. The UST-tree adopts and incorporates state-of-the art techniques from
several fields of research in order to cope with the complexity of the data. We showed how
the most common query types (spatio-temporal ∃- and ∀-window queries) can be efficiently
processed using probabilistic bounds which are computed during index construction. To
the best of our knowledge, this is the first approach that supports query evaluation on very
large uncertain spatio-temporal databases, adhering to possible worlds semantics. Outside
the scope of this chapter is the consideration of an object’s location before its first and
after its last observation. In both cases, the resulting diamond approximation would be
unbounded. An approach to solve this problem is to define a maximum time horizon
for which diamond approximations are computed. Beyond this horizon, we can use the
stationary distribution of the model M to infer the location of an object.
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Chapter 14

Sampling and Similarity Search on
Uncertain Spatio-Temporal Data

The preceding chapters of this part focused on probabilistic spatio-temporal window queries
on uncetain spatio-temporal data. In this chapter, we address the problem of similarity
search in a database of uncertain spatio-temporal objects. Each object is defined by a
set of observations ((time,location)-tuples) and a Markov chain which describes the ob-
jects uncertain motion in space and time as discussed in the previous two chapters. To
model similarity, we extend the definition of the well-known Longest Common Subsequence
(LCSS) measure to the case of uncertain spatio-temporal data (ULCSS). We show how the
aligned version (without time shifting) of the ULCSS can be exactly computed in PTIME.
In addition, we show how to use a sampling approach to approximate the general ULCSS.
For this purpose, an efficient solution for sampling a possible world (trajectory) is neces-
sary. Therefore we develop a method that is based on Bayesian inference to incorporate
the observations into the model. In addition to approximating the ULCSS, our approach
can also approximate the results of a broad class of queries over uncertain spatio-temporal
data. Parts of this chapter have been published in [66].

The rest of this chapter is organized as follows: Section 14.1 gives an introduction to
similarity search in uncertain spatio-temporal databases and provides several application
scenarios. We will extend the distance measure LCSS to an uncertain setting in Section
14.2. Section 14.3 reviews related work. Section 14.4 presents an exact polynomial-time al-
gorithm to compute a special case of the ULCSS, where the allowed amount of time-shifting
is set to zero. To solve the problem of the prohibitively large computational complexity of
the exact solution to the general ULCSS, in Section 14.5 we develop a sampling algorithm.
In addition, we show how to apply our sampling algorithm to other queries on uncertain
trajectories based on the Markov model, demonstrating the wide applicability of our ap-
proach (Section 14.7). Finally, we conduct an experimental evaluation on both synthetic
and real datasets in Section 14.6 and conclude the chapter in Section 14.8.
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14.1 Introduction

Similarity search on trajectory data has an increasing number of applications, especially
after the widespread availability of location data, such as GPS tracks. Data analysis tasks
such as identifying frequent motion patterns or trajectory clustering require finding objects
that moved in a similar way or followed a certain motion pattern. Furthermore, similarity
search on trajectory data gives support to a variety of applications such as traffic routing,
logistics, emergency handling, drive guiding systems and flow analysis [157].

A number of similarity measures have been proposed for trajectory data. Among these,
the Longest Common Subsequence (LCSS) has been reported less sensitive to noise com-
pared to other distance functions such as DTW and Euclidean distance [162]. The LCSS
between two trajectories (i.e., moving objects) can be interpreted as the maximum amount
of time the two objects were located at the same position. Further relaxations of this basic
LCSS version can be made; i.e. two trajectory positions can be assumed to be equal if
their spatial distance by at most ε and their time difference is at most δ.

Most of the previous work on similarity search in trajectory databases assumes the
data to be certain or deterministic, which is not the case in many real applications. For
example, even though we can get snapshots of the positions of a mobile object through
RFID technology, the trajectory data is incomplete and therefore uncertain, since the
locations of the object between two consecutive RFID readers are unknown. Other tracking
and positioning methods such as GPS and odometry introduce similar problems due to the
uncertainty of the underlying signal. Clearly, the previous work for certain trajectory data
cannot be applied in the presence of uncertainty. Therefore, it is essential to develop new
techniques to find similar trajectories on uncertain data.

In this chapter, we model uncertain trajectories by a Markov model as suggested in
Chapter 12, where an object, located at a given spatial cell at time t can transition into
other cells at the next timestamp with given transition probabilities. Therefore, an uncer-
tain object may not be located at a given spatial location at a given point in time but at
several possible locations instead. To handle data uncertainty, we have to take all of these
locations into account. Since an uncertain trajectory may include an exponential number
of possible worlds, it becomes challenging to compute the similarity between uncertain tra-
jectories. The simple approach of replacing an uncertain trajectory by an exact trajectory,
where the in-between positions are computed by interpolation may yield an impossible
world (e.g., running through a lake), which is unacceptable. Alternatively, using a single
possible trajectory (e.g. the most probable trajectory), may lead to inaccurate results,
since even the most probable trajectory could have a very low probability.

In particular we study how the LCSS can be extended to apply on uncertain data
(ULCSS). Since in our scenario the exact motion of an object is unknown (i.e. multiple
trajectories of an object become possible) we can model ULCSS as a distribution of all
possible LCSS (considering all possible worlds in the uncertain data).

Applications LCSS over uncertain data has many applications. For example, it can be
used to evaluate the spread of flu or other diseases. Suppose that an object was diagnozed
with a serious communicable disease (source object). To curtail this disease, the health
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Figure 14.1: Uncertain trajectories.

authorities may want to identify all individuals possibly been infected by the source object.
They know that enough virus cells are transmitted between two individuals, if the two
persons share the same location for at least k points in time. Additionally, individuals
might not even have to meet spatially, since germs can also be transmitted over air. To
identify all individuals that might have been infected, the authorities could run an ULCSS
query to find all objects having a large enough probability of being at the same location
as the source object for at least k points in time.1 As a example of the above scenario,
consider the observations of three objects with their corresponding timestamps, as shown
Figure 14.1. Assume that the observations of the object which is the source of the infection
is illustrated by the triangles. By taking only these sparse observations into account, we
might not be able to attribute accurate probabilities on whether the other two objects
(illustrated by circles and rectangles) could have been infected by the source object. Instead
we should consider all the possible paths of the uncertain objects with their corresponding
probabilities (exemplary shown by the three alternative trajectories between the two last
observations of the object illustrated by the green rectangles).

Another application for ULCSS (and trajectory similarity search in general) is suspect
identification. Consider a database with (uncertain) trajectories of users in a city at a
particular day when a crime took place. An authority (e.g., the police) which has access to
the database can identify the trajectories (and identities) of suspects by finding the most
similar trajectories to the criminal’s route; if a trajectory has a long subsequence which
is temporally and spatially close to the criminal’s route, this may indicate an exchange
between the corresponding person and the criminal, which renders the person a suspect.

Other applications include finding “popular routes”, traffic pattern analysis [104], and

1Google Flu Trends has a similar goal; it employs the amount of flu-related search terms queried at a
given location to estimate flu activity. However, in contrast to our approach, Google Flu Trends does not
take the motion of objects into account.
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trajectory clustering. Traffic data are often given by a sequence of observations of cars
such as those illustrated in Figure 14.1. Since the trajectories are uncertain, ULCSS can
be used to identify similar movements with a high probability.

14.2 Problem Definition
Again we rely on the model described in Chapter 12. In contrast to the previous Chapter
we assume the general case where observations may not only be restricted to one state but
may be a pdf over the state space. Assume we are given two database objects o1 and o2,
each of them given by a set of observations Θo1 and Θo1 and a transition matrixM o1(t) and
M o2(t), respectively. Our goal is now to assess the similarity between these two uncertain
objects.

Definition 14.1 (LCSS[162]). Let A and B be two trajectories of moving objects with
size n and m respectively, where A = (a1, . . . , an) and B = (b1, . . . , bm). Let Head(A) :=
(a1, . . . , an−1). Given an integer δ and a real number ε, the Longest Common Subsequence
is defined as follows: LCSSδ,ε(A,B) :=

0 if A = ∅ or B = ∅, else
1 + LCSSδ,ε(Head(A), Head(B))

if dist(an, bm) < ε and |n−m| ≤ δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A,Head(B)))

otherwise

Parameter ε constraints the spatial distance between two locations in order to match
in space; in many applications, objects rarely visit the same locations, but being "close
enough" is equivalent to meeting. Parameter δ controls how far in time we can expand in
order to match a given point from one trajectory to a point in another trajectory; in many
applications (like the flu spreading problem discussed in the Introduction), two trajectories
of A and B may still be considered similar, even if they do not visit positions at the same
time. For instance, in an application where it is required to find objects which follow a
similar route then the similarity of two trajectories should not decrease if two objects vary
their speed on the same route. In [162], LCSS has been reported less sensitive to noise
compared to other similarity measures for multi-dimensional time series, like Dynamic
Time Warping and Euclidean distance.

In this work, we aim at computing LCSSδ,ε(o1, o2) for two uncertain trajectories o1

and o2. According to possible world semantics, the result of LCSSδ,ε(o1, o2) is not longer
a single scalar, but rather a probability density function on N, mapping each possible
outcome k ≤ min(length(o1), length(o2)) to a probability P (LCSSδ,ε(o1, o2) = k).
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Definition 14.2 (ULCSS). Let o1 and o2 be two uncertain trajectories. The Uncertain
Longest Common Subsequence (ULCSS) between o1 and o2 is a random variable, defined
by the following probability density function:

ULCSSδ,ε(o1, o2) : D ×D → (N→ [0, 1] ∈ R)

ULCSSδ,ε(o1, o2) := pdf(x ∈ N) = P (LCSSδ,ε(o1, o2) = x)

In addition, we study the special case of ULCSS, where δ = 0; for this case, we propose
a PTIME algorithm for its exact computation:

Definition 14.3 (UALCSS). Let o1, o2 be two uncertain trajectories. The Uncertain
Aligned Longest Common Subsequence is defined by UALCSSε(o1, o2) = ULCSS0,ε(o1, o2).

To quantize the similarity between two uncertain trajectories, we can use the expected
ULCSS:

∑
x

P (ULCSS = x) ∗ x. In addition, a threshold based approach can be used (e.g.,

P (ULCSS ≥ φ)).

14.3 Related Work
Similarity search in trajectory databases has received plenty of attention (e.g. see [162] and
its follow-up work). However, for the case where the trajectories of objects are uncertain,
there exists, to the best of our knowledge, no work so far which is in accordance to the pos-
sible worlds semantics. Therefore, in this section, we review the works related to similarity
search using Markov chains as a model and query processing in uncertain spatio-temporal
databases.

Similarity Search and Markov Chains. Due to their representation power and
relatively simple computation, Markov Chains and their variants have been used in various
applications. [36] addressed the problem of estimating the probability of finding a word
of length k common between r of q strings generated by a Markov process. This work is
different from ours since we want to compute the probability distribution over the length
of arbitrary common substrings produced by two Markov processes with possibly different
transition properties. [11] provided approximations for the length of the (unaligned) longest
common subsequence on the Markov model under the assumption that the underlying
Markov chains are aperiodic and irreducible. [91] addressed a similar problem as [11];
the authors assumed the transition matrices to be at least similar. Probabilistic analyses
such as [11, 91] usually investigate the asymptotic probability of the longest common
substring/subsequence, i.e. probabilities where the length of the underlying sequences is
large, which is not necessarily the case in our scenario. [75] aimed at matching subsequences
onto probabilistic time series described by a hidden semi-Markov-model. The use of the
semi-Markov-model, initially applied to speech recognition, enables the possibility of time
shifting, i.e. matching different points in time. Another common application area of hidden
Markov models is in the area of bioinformatics where gene sequences have to be matched
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(e.g. [84] and the references therein). When employing hidden Markov models, viterbi-like
algorithms [71] and extensions that can handle insertions and deletions (c.p. [8], [84], [100])
are usually employed for computing the maximum likelihood, and not a distribution over
the possible outcomes. Besides their advantage of estimating the edit distance between
sequences, these approaches can only be used to match sequences to Markov chains but
not two Markov chains.

Furthermore, similar to our algorithm of adapting transition matrices is the Baum-
Welch algorithm for hidden Markov chains [165]. This algorithm aims at estimating time-
invariant transition matrices and emission probabilities of a hidden Markov model when
these probabilities are not known. In contrast, we assume this underlying model to be
given, however we aim at adapting it to allow efficient sampling by computing time-variant
transition matrices. Therefore, the Baum-Welch algorithm, following the well-known EM-
paradigm is approximate and iterative in nature, converging to the true distribution while
ours is exact.

Related to our algorithm is also the Forward-Backward-Algorithm for Hidden Markov
models, but this algorithm aims at computing the state distribution of a Markov chain
for each point in time, given an observation. In contrast, we aim at computing transition
matrices for each point in time, given a set of observations.

Similarity Search in Spatio-Temporal Databases. The chapter addresses the
problem of trajectory similarity, as e.g. addressed in [131] (and the extensive references
therein) – given their classification, we investigate the problem of spatio-temporal simi-
larity. Trajectory similarity is often obtained by employing Euclidean Distance, Dynamic
Time Warping (DTW), and LCSS. However, all of these approaches mainly adapt to tra-
jectories in a certain setting. [162] relaxed this assumption by taking the effect of noise into
account, however different paths of an object cannot be considered equivalent to Markov
chains. Uncertain trajectory similarity has been investigated in the context of trajectory
classification by [129] employing intuitionistic fuzzy sets. However this work addresses
position uncertainty instead of motion uncertainty. The idea behind this model is that
GPS measurements are uncertain such that the position at a given point in time cannot
be determined accurately. However, we aim at modeling the behaviour of an object under
the condition that neither position nor motion are known at a given point in time, but
might have been known at some time in the past. Recently, [109] addressed the problem
of computing the windowed LCSS on randomly generated strings. However, the different
characters in a word are drawn independently in this context, whereas the state at time t
depends on the previous state in our problem setting.

14.4 Uncertain Aligned Longest Common Subsequence

LCSS was originally proposed to model similarity between strings. In this case there
does not exist a parameter ε, since the characters of the strings have to match exactly.
An open problem in applied probability is the following: compute the longest common
subsequence shared by two sequences (or strings) of length N , whose elements are chosen



14.4 Uncertain Aligned Longest Common Subsequence 229

state 

time 0 1 2 

1 
2 
3 

o1 

o2 (a) w1 (b) w2 

(c) w3 (d) w4 

Figure 14.2: The possible paths and possible worlds {w1−4} of two uncertain objects.
Possible worlds have a probability of 0.25 each.

at random from a finite alphabet. In particular, calculating the exact distribution and the
expected value of the length of the LCSS between two random sequences is NP-hard [72].
The above problem however is a special case of the one tackled in this work, since the
probability for each character is independent from the previous character, which is not the
case in uncertain spatio-temporal data, making our problem of computing ULCSS even
more difficult.

Nevertheless, while it remains unsolved how to compute the exact ULCSS in the general
case, in this section we show how to exactly compute the UALCSS (ULCSS for the special
case of δ = 0) between two uncertain spatio-temporal objects, which represents the pdf
over all possible length of the LCSS between the two evaluated objects with a polynomial
time algorithm. UALCSS is relevant to many applications, like the infection application
mentioned in the Introduction; virus particles in a droplet infection can only be spread
through space, but not through time.

Figure 14.2 (left) shows the uncertain trajectory of objects o1 (represented by the solid
line) and o2 (represented by the dotted line). From these, we derive four possible worlds
as illustrated in Figure 14.2 (right). We can see that in w1 the (certain) LCSS equals 3, in
worlds w2 and w4 LCSS=2, while in w3 LCSS=1. If we assume, in this example, that for
each object each alternative trajectory has a probability of 0.5, we get a probability vector
[0,0.25,0.5,0.25] for UALCSS, where the kth element in the list denotes k hits between two
paths. Clearly, such an approach of enumerating all possible worlds and aggregating their
probabilities is not a viable option, since in general, the number of possible trajectories of
an uncertain trajectory is exponential in the length of the uncertain trajectory. Thus, the
number of possible worlds is also exponentially large.

14.4.1 Computation of UALCSS

For computing UALCSS, we have to take certain dependencies of the two objects into
account, i.e., the relative position of o1 to o2 at time t = 0 (w.l.o.g. we assume that
the first observations of o1 and o2 are at time t = to11 = to21 = 0) will affect the length
of the UALCSS at a later time t > 0. For this reason, we have to take the conditional
probabilities of object o1 being in state si when o2 is in state sj into account: At the initial
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time t = 0 we assume both objects locations to be independent, and therefore we can
write P (o1(0) = si ∧ o2(0) = sj) = P (o1(0) = si) · P (o2(0) = sj). Let T (t) be a probability
matrix with Tij(t) = P (o1(t) = si∧o2(t) = sj), denoting that the corresponding objects are
within state si and sj at time t. The matrix T 0(0) can be easily computed as follows (the
superscript 0 denotes the numbers of hits gained so far): T 0(0) = P (o2, 0) ·P (o1, 0)T . This
is the case because we have T 0

ij(0) = Pi(o1, 0) · Pj(o2, 0) = P (o1(0) = si) · P (o2(0) = sj).
The elements T 0

ii(0) denote the probabilities that both uncertain objects are located
within the same state i at time 0, increasing the longest common subsequence by 1, such
that these possible worlds have to be marked. This can be simply achieved by moving
them into a second matrix T 1(0), where T 1

ii(0) = T 0
ii(0) and T 1

ij(0) = 0 for i 6= j. Besides,
the shifted elements have to be deleted from T 0(0) by performing T 0

ii(0) = 0. Now both
matrices contain possible worlds, split by their number of hits.

After initialization, this method can be applied in a similar manner to compute the
equivalence classes of possible worlds within each time t 6= 0, which is achieved by updating
all state matrices T k(t − 1). As a first step, the states of o1 and o2 in T k(t − 1) have to
be transitioned. Given a state vector P (oi, t − 1), this transition is usually performed by
multiplying P (oi, t−1) with its corresponding, pre-determined, transition matrixM oi(t−1),
i.e., P (oi, t) = M oi(t− 1)T · P (oi, t− 1). However, in our scenario, we do not have a single
state vector, but a state matrix T k(t − 1), containing conditional probabilities of both
objects. The elements in this matrix have to be transitioned according to both transition
matrices M o1(t− 1) and M o2(t− 1). It can be proven that:

T k(t) = M o1(t− 1)T · T k(t− 1) ·M o2(t− 1)

Proof. Let Mk(t− 1) at time t− 1 be given. The goal is to compute Mk(t), i.e., Mk with
transitions applied to o1 and o2 for time t.

T kij(t) = P (o1(t) = si ∧ o2(t) = sj|t)

=
∑
sx∈S

∑
sy∈S

P (o1(t− 1) = sx ∧ o2(t− 1) = sy) ·M o1
xi (t− 1) ·M o2

yj (t− 1)

=
∑
sx∈S

M o1
xi (t− 1) ·

∑
sy∈S

P (o1(t− 1) = sx ∧ o2(t− 1) = sy) ·M o2
yj (t− 1)

=
∑
sx∈S

M o1
xi (t− 1) ·

∑
sy∈S

T kxy(t− 1) ·M o2
yj (t− 1)

⇔M o1(t− 1)T ·Mk(t− 1) ·M o2(t− 1)

2

After performing the transition, the matrix element T kij(t) again contains the conditional
probabilities at time t that o1 is in state j while o2 is in state i. After transitioning, the
hits are extracted from the matrix, by shifting the diagonal elements to T k+1

ii (t − 1) and
removing them from T kii(t − 1). Therefore each of the t transitions leads to at most one
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additional matrix; thus, the total space complexity of this algorithm is at most O(|S|2 · t)
and the runtime complexity is O(∆t2 · |S|3). In practice, these costs are much lower since
vectors P (oi, t) and M oi(t) are both sparse and we can save space and computations by
employing sparse matrix operations on compressed representations.

After having completed t transitions, we can derive the probability distribution for the
relative frequency of worlds that had a given number k of hits:

P (|{x ∈ T |o1(x) = o2(x)}| = k) =
∑
∀i,j

T kij(t)

The formal description of this algorithm in pseudocode can be found in Algorithm 12.
Incorporating observations (function reweight() in Algorithm 12) is generally similar to
incorporating observations in the sampling-based approach described later on. Let us first
assume that o1 was observed at state i. Then all columns j 6= i in Mk have to be set to 0
and all matrices have to be reweighted such that

∑
x∈tM

k = 1. Accordingly, if o2 has been
observed at a given state, the corresponding rows have to be set to zero. If observations are
uncertain, the rows and columns corresponding to an observation must be multiplied by the
probability of the observation happending in exactly this row/column, and be reweighted
accordingly. Furthermore, the algorithm can be easily adapted for ε > 0. In this case, not

Algorithm 12 UALCSS(o1, o2, tmax)

1: T 0 = P (o2, 0) · P (o1, 0)T

2: T 1
i 6=j = 0

3: T 1
ii = T 0

ii

4: T 0
ii = 0

5: for t = 1; t ≤ tmax; t+ + do
6: for k = t; k ≥ 0; k −− do
7: T k = M o1(t− 1)T · T k ·M o2(t− 1)
8: T k+1

ii = T k+1
ii + T kii

9: T kii = 0
10: end for
11: if ∃to1i : to1i = t ∨ ∃to2j : to2j = t then
12: reweight({Mk}, θo1i , θo2j )
13: end if
14: end for
15: p = Array[tmax + 1]
16: for t = 0; t ≤ tmax; t+ + do
17: pk = |T k|L1

18: end for
19: return p

only diagonal elements from Mk have to be shifted, but also further matrix elements that
correspond to locations with a distance ≤ ε to a given location of an uncertain object.
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14.4.2 Example

Let us exemplarily compute the UALCSS for the Markov chains from Figure 14.2 for the
time interval t = [0, 2]. The initial state vector is o1(0) = o2(0) = (0, 1, 0)T for both
uncertain objects. From this we derive the conditional probability of an object being in
one state if the other object is in the other state by evaluating Line 1, yielding

T 0(0) =

0 0 0
0 1 0
0 0 0


The resulting matrix denotes that both objects are within state 1 at t = 0 for sure, leading
to a hit such that T 1(0) = T 0(0) and T 0(0) = 0. The resulting matrices T 0(0) and T 1(0)
denote the set of possible worlds with zero and one hits at time t = 0, respectively.

From Figure 14.2 we can derive the transition matrices for the two uncertain objects;
these will be used during the next point in time. Again, the entries of a transition matrix,
Mij, denote the probability that an uncertain object changed its state from state i to state
j at a given round. Given that the probability of entering a branch in 14.2 is uniformly
distributed over all branches, the transition matrix can be directly derived from the figure:

M o1 =

 1 0 0
0.5 0 0.5
0 0 1

 ,M o2 =

0.5 0 0.5
1 0 0
0 0 1


For the sake of brevity, we will not evaluate both loops from the pseudocode separately.

At time t = 1, we first have to transition the set of possible worlds, yielding

T 0(1) = T 0(0), T 1(1) =

0.5 0 0.5
0 0 0
0 0 0

 (Line 2-4)

The semantic of this matrix is that object o2 is in state 3 for sure. Furthermore o1 is in
state 1 or 3 with a probability of 0.5. By evaluating lines 8-9, we can then derive the
probability distribution over the number of hits at time t = 1:

T 0 = 0, T 1 =

0 0 0.5
0 0 0
0 0 0

 , T 2 =

0.5 0 0
0 0 0
0 0 0


At the next point in time, we again transition the three matrices based on the two transition
matrices, resulting in:

T 0 = 0, T 1 =

0 0 0.25
0 0 0
0 0 0.25

 , T 2 =

0.25 0 0
0 0 0

0.25 0 0
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Figure 14.3: Traditional MC-sampling.

We again shift the diagonal matrix of each object by one to the right, resulting in:

T 0 = 0, T 1 =

0 0 0.25
0 0 0
0 0 0

 , T 2 =

 0 0 0
0 0 0

0.25 0 0.25

 , T 3 =

0.25 0 0
0 0 0
0 0 0


Finally, we can subsume the probability in each matrix to determine the distribution

of the aligned longest common subsequence, resulting in p = [0, 0.25, 0.5, 0.25]

14.5 Sampling Possible Trajectories

As discussed in 14.4 computing ULCSS in the general case is NP-hard. However, in
most applications it is sufficient to compute an approximate ULCSS. For this purpose,
in this section, we propose a sampling approach, tailored to uncertain spatio-temporal
data. We first show that a traditional (naïve) sampling approach is not applicable for our
problem, as it does not account for all observations of an object, creating a very large
number of sample paths, which are not possible given all observations. To tackle this
issue, we employ a different approach, which incorporates information about observations
directly into the Markov model, following a forward-backward paradigm. Our approach
uses Bayesian inference in order to iteratively adapt the parameters of the model, given
each observation. Based on the resulting adapted model, again a (time inhomogeneous)
Markov chain, we can perform traditional sampling in order to ensure samples that are
consistent with all observations, and therefore guarantee that the probability of drawing
each sample is equal to the true probability of the corresponding trajectory.
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14.5.1 Traditional Sampling

To sample possible trajectories of an object, a traditional Monte-Carlo approach starts by
taking the first observation of an object, then transitioning to new states according to the
distribution given by the underlying transition matrix. This approach however, cannot
directly account for additional observations, as illustrated in Figure 14.3. Here, we assume
(for simplicity) a one dimensional space, and an object randomly transitioning to adjacent
states at each point of time. In the plot, 1000 samples are initiated at the first observation
at time t = 0 and transition according to the model. Given the second observation at time
t = 20, a number of trajectories become inconsistent (i.e., impossible given this second
observation), because these trajectories do not conform to both the observation and the
motion constraints of the object. Such impossible trajectories are no longer expanded to
further states in Figure 14.3. At time t = 40, even more trajectories become invalid; in the
end, only one out of a thousand samples remains possible and useful.

Clearly, the number of sample trajectories required to obtain a single valid trajectory
increases exponentially in the number of observations of an object, making this traditional
Monte-Carlo approach inappropriate. In the next section, we will show how to obtain
possible samples efficiently, for an arbitrary number of observations. The main challenge
here is not only to ensure that only possible trajectories are sampled, but also that the
probability of a sampled path corresponds to the true probability of the object taking this
path, given the initial model and all observations.

14.5.2 Adapting the Model to Observations

The traditional sampling approach essentially uses the transition probabilities P (o(t+1) =
sj|o(t) = si) given by the Markov chain to create sample trajectories. To incorporate the
knowledge given by a set of observations Θo of an object o, we need to consider the
probability

P (o(t+ 1) = sj|o(t) = si,Θ
o),

that is the probability that object o transitions to state sj from state si at time t, given
all observations. The Markov property yields:

P (o(t+ 1) = sj|o(t) = si, {θom|tm ≥ t})

This is derived by assuming that o is located at si at time t, and then computing the
probability of visiting state sj at time t+1. This can be computed using an ∃-window query
as defined in Definition 12.2. An ∃-window query returns the probability of intersecting a
set of (time, location) pairs (in this case this set contains only the pair (t + 1, sj)), given
observations in the future. Performing the above computation for each time t between
the first and the last observation of o, and for each state pair si,sj yields a new Markov
chain, which is adapted to Θo. The resulting inhomogeneous Markov chain can be used to
draw sample trajectories, which are guaranteed to comply with all observations, and whose
probability of drawing this sample corresponds to the true probability of this trajectory
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Figure 14.4: An overview over our forward-backward-algorithm.

given information about the initial Markov chain and all observations. 2 Although correct
and computable in polynomial time (unlike the naïve sampling approach), this approach
still suffers from high computational cost for the construction of the new transition matri-
ces: for each point in time, each entry of the original Markov chains has to be considered
and a window query, which runs in O(|S|2 ·∆t) (cf Section 12.3.3), has to be performed.
Although this has to be done only once, independent of the number of samples, the total
time complexity of O(|S|4 · ∆t2) makes this approach inapplicable for real applications,
even when sparse matrix and vector operations are exploited.

We now present a different algorithm, which can compute the probabilities P (o(t+1) =
sj|o(t) = si,Θ

o) more efficiently.

14.5.3 Efficient Model Adaption

In a nutshell, this problem can be solved in the well-known forward-backward manner:
Starting at the time of the first observation to1 with the initial observation θo1, we perform
transitions of object o using the original Markov chain of o until the final observation at
time t|Θo| is reached. During this Forward -run, Bayesian inference is used to construct a
time-reversed Markov-model Ro

t of o at time t given observations in the past, i.e., a model
that describes the probability

Ro
ij(t) := P (o(t− 1) = sj|o(t) = si, {θom|tom < t)})

of coming from a state sj at time t − 1, given being at state si at time t and given the
observations in the past.

Then, in a second step, the Backward -run, we traverse time backwards, from time
t|Θo| to t1, by employing the time-reversed Markov-model Ro(t) constructed in the forward
step. Again, Bayesian inference is used to construct a new Markov model F o(t − 1) that
is further adapted to incorporate knowledge about observations in the future. This new
Markov model contains the transition probabilities

F o
ij(t− 1) := P (o(t) = sj|o(t− 1) = si,Θ

o). (14.1)

for each point of time t, given all observations, i.e., in the past, the present and the future.
2This claim can be proven simply by applying possible worlds semantics, as shown in Section 12.4
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As an example, Figure 14.4 visualizes a one-dimensional uniform random walk, i.e. a
very simple Markov chain where the object may move to adjacent states with a uniform
distribution. Figure 14.4(a) shows the initial model, using knowledge about the first ob-
servation only. In this case, a large set of (time,location) pairs can be reached with a
probability greater than zero. The shading of reachable (time,location) pairs indicates the
likelihood of these pairs, assuming that a detour is less likely than a direct path.3 The
adapted model after the forward phase is depicted in Figure 14.4(b), significantly reducing
the space of reachable (time,location) pairs and adapting respective probabilities, thus
drastically improving the model. Since the model of Figure 14.4 (b) is obtained trivially,
the main contribution of this section is the backward-phase which adapts the Markov
model to observations in the future. This task is not trivial, since the Markov-property
does not hold for the future, i.e., the past is not conditionally independent of the future
given the present. During the backward phase, we traverse the Markov chain backwards,
from time t|Θo| to t1, by employing the information acquired in the forward-phase. This
phase yields the final transition matrices for each point in time, such that all observations
Θo are taken into account for the adapted model. The resulting final transition matrices
F o(t− 1) contain the transition probabilities F o(t− 1)ij = P (o(t) = sj|o(t− 1) = si,Θ

o).
Figure 14.4(c) shows the resulting final model after the backward phase. Before describing
the algorithm in more detail, we prove the following corollary of the Bayes Theorem.

Lemma 14.1 (Conditional Bayes).

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)

Proof. By applying the Multiplication Theorem of Probability and due to the commuta-
tivity of the conjunction of random events we get:

P (A ∧B ∧ C) = P (C)P (B|C)P (A|B,C)

⇔ P (A ∧B ∧ C)

P (B|C)P (C)
= P (A|B,C)

⇔ P (A ∧B ∧ C)

P (C)
= P (A|C)P (B|A,C)

Mutual substitution leads to Lemma 14.1. 2

Forward Phase

The main challenge of the forward-phase is to construct necessary data structures for
efficient implementation of the backward-phase, namely the time-reversed transition matrix
Ro(t) that summarizes the transition probabilities for a transition from time t to time t−1.

3This assumption is only made for illustration of this example. In general, a detour via a highway may be
more likely than a direct path through a lake. These likelihoods are captured by the given Markov-model.
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This matrix is used to incorporate information about future observations in the backward
phase. To obtain Ro(t), we can apply the theorem of Bayes as follows:

Ro(t)ij := P (o(t− 1) = sj|o(t) = si) = (14.2)

P (o(t) = si|o(t− 1) = sj) · P (o(t− 1) = sj)

P (o(t) = si)

By assuming existence of all observation pasto(t) := {θom|tom < t)} of o that occurred before
time t, all events become further conditioned to these observations as follows, using Lemma
14.1:

Ro(t)ij := P (o(t− 1) = sj|o(t) = si, past
o(t)) = (14.3)

P (o(t) = si|o(t− 1) = sj, past
o(t)) · P (o(t− 1) = sj|pasto(t))

P (o(t) = si|pasto(t))
The probability P (o(t) = si|o(t − 1) = sj, past

o(t)) can be rewritten as P (o(t) =
si|o(t − 1) = sj), exploiting the Markov property (cf Equality 12.5).4 This probability is
given by the original Markov-chain T o(t).

Furthermore, both priors P (o(t − 1) = sj|pasto(t)) and P (o(t) = si|pasto(t)) can be
computed in a single run: We start at t = t1 using the initial distribution of θo1. Then,
transitions are performed iteratively using the original Markov chain M o(t). For each
intermediate point of time t, all probabilities P (o(t − 1) = sj|pasto(t)) are memorized.
In each iteration of the forward algorithm, where a new observation presento(t) := θox, <
tox, θ

o
x >∈ Θo, tox = t is reached, we incorporate this information to the model. Therefore,

we compute P (o(t) = si|pasto(t), presento(t)) from P (o(t− 1) = sj|pasto(t)) for all states
si, employing all sj 5. This is done by exploiting the assumption that observations are
mutually independent, i.e. that the error made between two measurements is independent.
This allows to compute the probability of the event Yj := [o(t) = sj|pasto(t)] = “o is in state
sj at time t given observations before t”, and the event Zi := [o(t) = si|presento(t)] =“o is
in state si given the observation θox at time t” exploiting

P (Yj ∧ Zi) = P (Yj) · P (Zi). (14.4)

Clearly, the above joint distribution between states observed due to observations before
t and states observed due to the observation at time t allows contradicting observations
where both random variables result in different states. Let Y := [o(t)|pasto(t)] and Z :=
[o(t)|presento(t)]. Then such contradicting worlds can be removed by conditioning the
probability of Equation 14.4 events to the event Y = Z.

P (Yj ∧ Zi|Y = Z) =
P (Y = Z|Yj ∧ Zi) · P (Yj ∧ Zi)

P (Y = Z)
(14.5)

4The transition probabilities of object o between time t − 1 and t are independent of the distribution
of o at time t− 1.

5The probability P (o(t − 1) = sj |pasto(t)) is given by induction hypothesis, with P (o(to1) = sj |∅)
being the induction start given directly by the first observation θo1 at time t = to1. We show how to
compute P (o(t) = sj |pasto(t)) from P (o(t− 1) = sj |pasto(t− 1)), thus completing induction for all times
to1 ≤ t ≤ to|Θ|.
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In the above equation, the term P (Y = Z|Yj ∧ Zi) acts as an indicator function that is
one if for the two random variables Y and Z it holds that Y = Z, i.e., if the observations
are non-contradicting, and zero otherwise. The term P (Yj ∧ Zi) can be rewritten to the
product of the probabilities of both observations to materialize to sj according to Equa-
tion 14.4. Finally, the denominator P (Y = Z) corresponds to the total probability that
both observations are non-contradicting, and can rewritten as

∑
i Yi · Zi also exploiting

independence of observations in Equation 14.4.
In summary, the total probability P (Yj ∧Zi|Y = Z) = P ([(o(t) = sj|past0(t)]∧ [o(t) =

si|presento(t))]|si = sj) that object o is at state sj at time t can be computed by per-
forming a simple element-wise multiplication between the j’th element of vector P (o(t) =
sj|pasto(t))(j) and the j’th element of vector θot .

Algorithm 13 AdaptTransitionMatrices(o )
1: {Forward-Phase}
2: P (o, t1) = θo1
3: for t = to1 + 1; t ≤ to|Θo|; t++ do
4: X ′(t) = M o(t− 1)T · diag(P (o, t− 1))

5: Pi(o, t) =
|S|∑
j=1

X ′ij(t)

6: Ro(t)ij =
X′ij(t)

Pi(o,t)

7: {Incorporate observation}
8: Pi(o, t) = normalize(Pi(o, t) · present(t))
9: end for
10: {Backward-Phase}
11: for t = to|Θo| − 1; t ≥ to1; t-- do
12: X ′(t) = Ro(t+ 1)T · diag(Pi(o, t+ 1))

13: Pi(o, t) =
|S|∑
j=1

X ′ij(t)

14: F o(t)ij =
X′ij(t)

Pi(o,t)

15: end for
16: {Return modified object; state vectors and changed transition matrices are relevant}
17: return o

Now that all observations at time t and before are considered, both data structures, the
new state vector P (o, t) and the adapted transition matrix Ro(t) can be efficiently derived
from the following temporary matrix, computed in Line 4 of Algorithm 13:

X ′(t) = M o(t− 1)T · diag(P (o, t− 1))

The equation is equivalent to a simple transition at time t, except that the state vector
is converted to a diagonal matrix first. This trick allows to obtain a matrix describing the
distribution of the position of o at time t − 1 and t, instead of a simple distribution of
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the location of o at time t. Formally, each entry X ′(t)i,j corresponds to the probability
P (o(t− 1) = sj ∧ o(t) = si|pasto(t)) which is equivalent to the numerator of Eq. 14.3.6 To
obtain the denominator of Eq. 14.3 we first compute the row-wise sum of X ′(t) in Line 5:

∀i ∈ {1..|S|} : Pi(o, t) =

|S|∑
j=1

X ′(t)ij

The resulting vector directly corresponds to P (o, t), since for any matrix A and vector x
it holds that A · x = rowsum(A · diag(x)). By employing this rowsum operation, only one
matrix multiplication is required for computing Ro(t) and ~so(t).

Next, the elements of the temporary matrix X ′(t) and the elements of P (o, t) can now
be normalized in Equation 14.3, as shown in Line 6 of the algorithm:

∀i, j ∈ {1..|S|} : Ro(t)ij =
X ′(t)ij
Pi(o, t)

Here, the resulting reverse probabilities of R are stored directly in the matrix M o(t), so
matrix M o can be discarded. This optimization allows to reuse the allocated space of
matrix M o(t), since the old transition probabilities are no longer used in the remainder of
the algorithm. Finally, possible observations at time t are integrated in Line 8, using Eq.
14.5.

Backward Phase

During the backward phase, we traverse time backwards, to propagate information about
future observation back to past points of time, as depicted in Figure 14.4(c), thus termi-
nating our algorithm. This phase is equivalent to the Forward-Phase, except that we do
not use the initial matrices but rather the reverse transition matrices Ro(t) created during
the forward phase, which contain, for each point of time t, transition probabilities already
conditioned to observations at time t and before time t. The main benefit of Ro(t) is to
allow transitions backwards in time, since Ro(t) is defined as a transition matrix contain-
ing the probabilities of going from one state at time t+ 1 to another state at time t. In a
nutshell, Ro(t) is a Markov chain with the time axis being reversed. The following reverse
Markov property holds for each element Ro

ij of matrix Ro:

P (o(t) = sj|o(t+ 1) = si, o(t+ 2) = st+2, ..., o(t+ k) = st+k) =

P (o(t) = sj|o(t+ 1) = si) (14.6)

As an initial state for the backward phase, we use the state vector P (o, to|Θo|) that
results from Section 14.5.3, by element-wise multiplication of the vector derived by using
the Markov-chain and all observation but the final observation and the vector θo|Θo| of the

6The proof for this transformation P (A ∩ B|C) = P (A|C) · P (B|A,C) can be derived analogously to
Lemma 14.1.
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final observation. This way, we take the final observation as given, making any further
probabilities that are being computed conditioned to this observation. At each point of
time t ∈ [t|Θo|, t1] and each state si ∈ S, we compute the probability that o is located at state
si at time t given (conditioned to the event) that the observations futureo(t) := {θom|tom >
t)} at times later than t are made. Using the probabilities of Ro(t) which are already
conditioned to the observations pasto(t) and presento(t), this yields the final transition
probabilities F o

ij(t) := P (o(t) = sj|o(t + 1) = si,Θ
o), thus including all observations Θo =

pasto(t) ∪ presento(t) ∪ futureo(t). To compute these final probabilities, which we need
for our sampling approach (c.f. Section 14.5.2), we once again exploit Lemma 14.1:

P (o(t+ 1) = sj|o(t) = si,Θ
o) =

P (o(t) = si|o(t+ 1) = sj,Θ
o) · P (o(t+ 1) = sj|Θo)

P (o(t) = si|Θo)

By exploiting the reverse Markov property (c.f. Equation 14.6), this becomes equal to:

P (o(t+ 1) = sj|o(t) = si,Θ
o) =

P1 · P (o(t+ 1) = sj|Θo)

P (o(t) = si|Θo)
, (14.7)

where P1 = P (o(t) = si|o(t+ 1) = sj, present
o(t), pasto(t))

The probability P1 is now given by the entries of matrix Ro(t), by its definition. Again,
both priors P (o(t + 1) = sj|Θo) and P (o(t) = si|Θo) can be computed in a single run:
We start at t = t|Θo| using the distribution of P (o, to|Θo|). Then, transitions are performed
backwards until time t = t1 is reached, and for each intermediate point of time t, all
probabilities P (o(t) = si,Θ

o
1) are memorized.

Note that even if the initial transition matrix was homogeneous (time-invariant), the
resulting transition matrices would typically be inhomogeneous. Also note, that further
observations will lead to a higher sparsity of the transition matrices, since new observations
may render a large number of (time,state) pairs unreachable, as illustrated in Figure 14.4
(c). Finally, we further note that the transition matrices become more sparse at points of
time close to observations. The formal backward algorithm can be found in Lines 11-14 of
Algorithm 13 and follows the structure of the forward phase. The returned state vectors
P (o, t) can be employed as an initial distribution for starting sampling at any arbitrary
point in time.

The overall complexity of this algorithm is O(∆t|S|2). The initial matrix multiplication
requires |S|2 multiplications. While the complexity of a matrix multiplication is usually in
O(|S|3), the multiplication of a matrix with a diagonal matrix, i.e., MT ·s can be rewritten
asMT

i ·sii, which is actually a multiplication of a vector with a scalar, resulting in an overall
complexity of O(S2). Rediagonalization needs |S|2 additions as well, such as renormalizing
the transition matrix, yielding 3 ·∆t · |S|2 for the forward phase. The backward phase has
the same complexity as the forward phase, leading to an overall complexity of O(∆t|S|2).

Example 14.5.1. To make the algorithm more clear, consider the following example from
Figure 14.5(a), consisting of four consecutive timestaps and three states. The initially
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(a)

T =

0 0 1
1
2

0 1
2

0 4
5

1
5



(b)

Figure 14.5: Exemplary Markov Chain, Visualization (a) and Transition Matrix (b).

time-homogeneous transition matrix, visualized as dashed lines in Figure 14.5(a), is given
in Figure 14.5(b). Furthermore, let two observations θo1 = (0, 0, 1)T and θo2 = (0, 1, 0)T be
given. Clearly, given these observations, there is a total of only two possible trajectories
(the black lines): p1 = (s3, s3, s3, s2) and p2 = (s3, s2, s3, s2). The probabilities of these
pathes is P (s3, s3, s3, s2) = 0.2 · 0.2 · 0.8 = 0.032 and P (s3, s2, s3, s2) = 0.8 · 0.5 · 0.8 = 0.32.
Thus, given the new observations, the probability of trajectory p1 equals 0.032

0.032+0.32
= 1

11

and the probability of trajectory is 0.32
0.032+0.32

= 10
11
. Albeit correct, it is impractical to

compute this exact result in practise, as it requires to enumerate the exponentially large
set of all possible trajectories. Furthermore, as discussed in this Section, a naive sampling
approach is not viable, as in practice, only an exponentially small number of samples will
hit all observations. Thus, we show in the following how to adapt the Markov model of
this example, to allow drawing samples that are guaranteed to draw samples conform to
the observations, without incurring any bias of the distributions of these correct samples.

To generate the adapted transition matrices that can only produce the two valid tra-
jectories denoted within the picture, we run the algorithm introduced above.

Forward. First, we multiply the transposed transition matrix M with the initial
diagonalized observation:

X ′(2) =

0 1
2

0
0 0 4

5

1 1
2

1
5

 ·
0 0 0

0 0 0
0 0 1

 =

0 0 0
0 0 4

5

0 0 1
5



⇒ P (o, 2) =

0
4
5
1
5

 , R(2) =

0 0 0
0 0 1
0 0 1


The vector P (o, 2) denotes the distribution of the object after the first transition, R(2)

the backward transition probabilities of the object. In the following iteration, we build
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upon P (o, 1) and get:

X ′(3) =

0 2
5

0
0 0 4

25

0 2
5

1
25

⇒ P (o, 3) =

 2
5
4
25
11
25

 , R(3) =

0 1 0
0 0 1
0 10

11
1
11


The next iteration works equivalently:

X ′(4) :

0 2
25

0
0 0 44

125
2
5

2
25

11
125

⇒ R(4) :

 0 1 0
0 0 1
50
71

10
71

11
71

 , P (o, 4) =

 2
25
44
125
71
125


Since at t = 3 we have an observation, we incorporate it by piecwise multiplication and

normalization, getting P (o, 3) = P (o, 3)) · θo2 = (0, 1, 0)T

Backward. The backward phase is quite similar to the forward phase, however we
reuse the reverse transition matrices computed during the forward phase. We get:

X ′(3) = R(4)T · diag(P (o, 4)) =

0 0 0
0 0 0
0 1 0


⇒ F (3) =

0 0 0
0 0 0
0 1 0

 , P (o, 3) =

0
0
1


X ′(2) :

0 0 0
0 0 10

11

0 0 1
11

⇒ F (2) =

0 0 0
0 0 1
0 0 1

 , P (o, 2) =

 0
10
11
1
11


X ′(1) :

0 0 0
0 0 1
0 10

11
1
11

⇒ F (1) =

0 0 0
0 0 1
0 10

11
1
11

 , P (o, 1) =

0
0
1


The matrices F o(i) computed during the backward phase are returned as the set of

adapted, now time-inhomogeneous transition matrices.
Sampling Process. Once the transition matrices for each point of time have been

adapted to incorporate knowledge about all observations, the actual sampling process is
simple: For each object o, each sampling iteration starts by sampling an initial position
P (o, t1) as a random realization of the random variable defined by the initial distribution
of the object’s first adapted state vector at time t1. Then, a random walk is performed,
using the transition probabilities given by the adapted transition matrices until the final
observation of o at time tm is reached: For each t1 < t ≤ tm a state P (o, t) is sampled
by a random transition using the adapted transition matrix F o(t1). Thus, P (o, t) is the
realization of the random variable defined by the P (o, t−1)’th line of the adapted transition
matrix F o(t). On these certain trajectories P (o, t), t1 ≤ t ≤ t|Θo|, which are realized for
each object, a standard LCSS algorithm[28] for certain trajectories can be applied.
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Lemma 14.2. The relative frequency of the LCSSε,δ(o1, o2) values yields an un-biased
estimator of the distribution of the uncertain ULCSSε,δ(o1, o2) given observations and
transition matrices of objects o1 and o2.

Proof. The random variable ULCSSε,δ(o1, o2) follows a multinomial distribution. Thus,
the random variable ULCSSε,δ(o1, o2) = k that the LCSS of two uncertain spatio-temporal
objects equals some integer k follows a binomial distribution. This way, we can deduce a
confidence region of the ULCSSε,δ(o1, o2)-vector as a product of these intervals. Proceeding
that way allows to use all the existing methods for the binomial distribution. In particular,
we can use Chebyshev inequality to bound the maximum error for each P (ULCSS = k):

P (|p̂− p| ≥ ε) ≤ p · (1− p)
ε2 · n

≤ 1

4ε2 · n
.

Clearly, the approximation for each probability approaches zero if the number of samples
approaches infinity, thus the sum of error also approaches zero. However, it is difficult
to take into account the constraint that the components of p sum up to 1. Thus, the
resulting bounds will be looser than necessary. More advanced techniques to bound the
approximation error that are able to take this constraint into account, are described in
[43]. 2

14.6 Experimental Evaluation

All tested methods were implemented in C++. For performing the sparse matrix operations
we utilized the Eigen7 package. All experiments were run on a single 64-Bit machine with
an Intel Core i7 processor with 2.93 GHz and 8GB of RAM.

14.6.1 Datasets and Experimental Setting

Our evaluation focuses on evaluating the computation of ULCSS (uncertain versions of
other similarity measures, like DTW, is beyond the scope of this chapter). For the sampling-
based approach both the time for constructing a sampling object (performed each time an
object is added to the database) and the performance of the actual sampling have to
be taken into account. While the exact ULCSS computation is fixed to δ = 0, we ran
the experiments of the sampling based approach with both δ = 0 (UALCSS) and δ = 5
(ULCSS) in order to assess the exact computation and to show the impact of higher values
for δ in approximate computation.

Artificial Data

The experiments on artificial data are based on a state space in the two-dimensional Eu-
clidean space, consisting of n states. Each of these states is drawn uniformly from the

7http://eigen.tuxfamily.org/index.php
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(a) The synthetic dataset (b) The real dataset

Figure 14.6: Examples of the state space (nodes) and the transition probabilities (edges)
between them.
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Figure 14.7: Experimental results - varying n

[0, 1]2 space. Afterwards, a graph was created from these states by connecting points with
an Euclidean distance smaller than r =

√
b
n∗π , with b being the average number of neigh-

bours of a state. This choice of r ensures that the number of neighbors of a state does
not depend on the number of states in general, which is a straightforward assumption in
spatio-temporal databases (e.g., the number of lanes exiting a crossing does not depend on
the number of crossings in general).

The graph’s edge weights were assigned indirectly proportionally to the distance of a
state to its neighbour, assuming that it is more probable that during a transition an object
moves to a closer state than to a state further away. The marked adjacency matrix of
the resulting graph was then used as an object’s transition matrix in the following. An
example graph constructed by this method is shown in Figure 14.6(a). States are drawn
as circles and connections between states with a non-zero transition probability are drawn
as black lines.
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Figure 14.8: Experimental results - varying r

Variable Values Unit
n 100, . . . , 10000, . . . , 100000 states
l 25, . . . , 50, . . . , 125 timesteps
i 5, . . . , 10, . . . , 50 timesteps

r 0.01,. . . ,
√

b
n∗π , . . . , 0.075 space units

δ 0,. . . , 5, . . . , 50 timesteps
δ 5000, . . . , 10000, . . . , 1000000 samples

Table 14.1: Values for the used independent variables (synthetic data)

Real Data

In addition to experiments on artificial data we performed experiments on a street network
dataset from the city of Beijing, created by the authors of [66]. The dataset consists
of 3008 states, the crossings of a street network. These are connected according to the
turning probabilities of cars extracted from a GPS dataset. Figure 14.6(b) visualizes this
real dataset. Based on this transition matrix, a random trajectory was drawn to construct
(certain) observations of an uncertain object, and every i-th point from this trajectory was
used as an observation of the uncertain object.

In the experimental evaluation we varied the number of states n, the length l of the an-
alyzed time interval, the interval i between two observations, the range r, and the allowed
amount of time shifting δ to measure the runtime of computing the ULCSS. Additionally
we varied the number of samples σ in order to measure the quality of the resulting approx-
imated distribution. The values used for these variables used in the experiments can be
found in Table 14.1; default values are denoted in bold.
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Figure 14.10: Experimental results - varying i

14.6.2 Results

Varying the Number of States n.

Constructing the underlying state network with a higher resolution or increasing the size
of the world both increase the number of states in the network. Within this experiment
we aimed at varying the worlds size (n), while increasing r (the next experiment) can be
interpreted as increasing the resolution of a world.

As shown in Figure 14.8, with increasing n, matrix operations become more costly
such that both the performance of the exact ULCSS computation and the performance
of constructing the simplified transition matrices for the trajectory sampler drops. The
number of non-zero entries in the matrix array of the UALCSS algorithm grows faster than
the matrices stored in the trajectory sampler. Let |P (o, t)| denote the number of states
where o might be located with non-zero probability. Then a matrix computed by the exact
algorithm contains |P (o1, t)| ∗ |P (o2, t)| non-zero entries. For the trajectory sampler, a
matrix contains about |P (o| ∗ const non-zero entries.

Note that the actual sampling process of the suggested approximation algorithm does
not depend on n, such that whenever a sampling object has been computed once, the size
of the underlying state space barely affects the performance once the simplified transition
matrices have been computed.

Varying the Range r of Connectivity.

Varying the range of connectivity r clearly shows a negative impact on the performance
of all approaches. With a higher connectivity, the filling degree of transition matrices
increases, such that more states can be reached in a shorter amount of time. The higher
filling degree of the used matrices decreases the positive impact of using sparse instead of
dense matrix arithmetic.

Varying the Length l of the LCSS.

Increasing the length of the time interval for which the ULCSS has to be computed (Fig-
ure 14.9) increases the number of iterations for the exact approach such that more matrix
multiplications have to be performed during each iteration. Note that the number of matrix
multiplications for this algorithm is O(t2); i.e., the overal runtime complexity is superlinear
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Figure 14.11: Experimental results - varying δ

in t. In contrast, the number of matrix multiplications performed when sampling is in O(t),
which is another advantage of sampling. Since the computation of the UALCSS is linear
in t for the sampling-based approach, the remaining sampling process is efficient as well.

Varying the Interval i between Observations.

When increasing the time interval between two observations (Figure 14.10), objects become
more uncertain, i.e., the objects can be located in more states. Therefore state vectors, sim-
plified transitioning matrices, and the matrices generated by the exact UALCSS algorithm
contain more entries, leading to a worse runtime performance of all algorithms. While the
negative effect on the exact approach is quite large, the impact on the sampling process
is much lower. Furthermore note that the actual sampling process of drawing trajectories
for an uncertain object increases as well, because if there are only a few observations, an
object can move along more paths than with a higher number of observations.

Varying the Degree of Time Shifting (δ).

The degree of time shifting (δ) can only be set on the approximate approach. It is well-
known that the LCSS problem can be solved in O(t ∗ δ) time. The experiments shown in
Figure 14.11 show a similar behavior. Note that the runtime for the LCSS computation
converges for higher values of δ. In our experiments, the default length of a sequence was
set to 50. Therefore, according to the definition of the LCSS, for δ = 25 nearly every
element of the first sequence has to be compared to nearly all elements of the second
sequence, which is only slightly better than for δ = 50.

Sampling Quality: Varying the Number of Samples σ.

To evaluate the approximation quality of the sampling-based approach we computed the
sum of differences between buckets from the exact and approximate distributions; the
results can be found in Figure 14.12. With 10.000 samples, the approximate distribution
deviates from the exact distribution by about 2.5 percent. Higher accuracy can be achieved
by drawing a larger number of samples.
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Figure 14.13: Experimental results (real data), varying i

Real Data Experiments.

A snapshot of experiments on real data can be found in Figure 14.13, which visualizes
the impact of the interval between observations on the runtime of both the exact and the
sampling-based LCSS computation. The resulting curves fit nicely to the ones from the ar-
tificial dataset. The results when varying other parameters are similar to the corresponding
ones on synthetic data and they are omitted due to space constraints.

14.7 Sampling for arbitrary Queries
Clearly, this sampling approach can be used to solve arbitrary queries in an uncertain
setting based on the Markov model. The general idea of using the sampling approach is
the following:

1. Compute the adapted model for each object in the database

2. Until the desired accuracy is reached:

(a) Sample a trajectory for each of these objects using this adapted model

(b) Solve the query in this certain setting

(c) Increase a counter defined by the outcome of the query

3. Return query results based on the resulting distribution
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Obviously, additional optimizations, pruning techniques and index structures can be
applied to this basic approach, increasing the speed of query evaluation. For example,
during nearest neighbor query processing, pruning can be employed in order to avoid
sampling of objects too far away from a query object.

14.8 Conclusion
In this chapter, we addressed the problem of similarity search on uncertain spatio-temporal
data under the Markov-Chain-Model. We developed an exact algorithm to compute the
LCSS distribution of two uncertain objects. While the complexity of this exact approach
is polynomial, it can only be employed to settings without time shifting. Furthermore, the
complexity of O(∆t2S3) is still prohibitively large.

To tackle both of these problems, we proposed a sampling-based approach that uses
Bayesian inference to adapt the transition matrices of the underlying uncertain objects,
enabling the use of Monte-Carlo based sampling techniques. This does not only lead to a
lower runtime complexity of LCSS computation, but also allows to approximate the LCSS
with arbitrary time shifting δ.

In our experimental analysis we have shown that the theoretical runtime complexity
of both the exact and approximate solutions also hold in practical situations. While the
performance of computing the exact LCSS distribution between two objects is usually slow,
sampling is generally much more feasible, even if the number of samples is high.

Last but not least, after adapting the transition matrices of an uncertain object, sam-
pling can be used to solve arbitrary problems in an uncertain setting under the Markov-
chain model, for example nearest neighbor queries or computing other similarity measures
such as the Dynamic Time Warping Distance or the Edit Distance.
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Chapter 15

Final Remarks
In this chapter we conclude the thesis by summarizing and reviewing the contributions and
giving ideas for future research on the covered topics.

15.1 Summary and Contributions

bl
ue

red

The main focus of this thesis is similarity search on three im-
portant data types, namely spatial data, uncertain spatial data
and uncertain spatio-temporal data. The introductive first part
of this work reviews the concept of feature based similarity
search using feature vectors as prevalent representation of multi-
attribute and geo-spatial objects in similarity search applica-
tions. Additionally, this part explicates common similarity query
types (such as ε-range, k-nearest neighbor and reverse-k-nearest

neighbor queries) and efficient processing techniques (such as spatial index structures and
multi-step query processing).

R

A B

The second part of this work concentrates on spatial data and in-
troduced the concept of spatial domination as module to boost
the introduced similarity queries when spatial approximations
are involved. To detect if “object A is definitely closer to ob-
ject R than object B” (given these objects by approximations)
it is necessary to develop domination decision criteria (DDC).
State-of-the-art techniques for detecting spatial domination suf-
fer from the problem of incompleteness (MinMaxDist DDC) or

restrictions regarding the approximations (The Hyperplane DDC requires A and B to be
a point). The main problem here are so called distance dependencies. Starting from the
Hyperplane domination decision criterion, which is a geometrical approach, successively
new criteria were developed in order to mitigate these restrictions:

• The EntryHyperplane DDC removes the restriction for A to be a point.

• The CornerBased DDC removes the restriction for B to be a point, still yielding
exponential runtime.
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• The Trigonometric DDC is also efficiently computable but requires spherical approx-
imations and Euclidean space.

• The Optimal DDC is complete, correct and efficiently computable for rectangular
approximations under all Lp-norms.

Based on the definition of spatial domination we introduced the module of domination
count which in the most basic form is approximated by naively counting the number of ob-
jects Ai ∈ D in the database which dominate an object B w.r.t. a third object R. However
we showed that the approximation based on the basic domination count can be improved
by considering partial domination. The efficiency and the wide applicability of the proposed
methods was experimentally shown within the scope of various applications and query pred-
icates.

BB

A

R

The third part focused on uncertain spatial data. Uncertainty is
an inherent characteristic of spatial data in many scenarios (due
to inaccurate, missing or contradictory values of attributes). It
introduces another layer of complexity and cannot not just be
treated as a simple extension to spatial data. As similarity
queries are as important on uncertain spatial data as on pure
spatial data we extended the definition of spatial domination to
probabilistic spatial domination. We showed how the probability

of the event “object A is definitely closer to object R than object B” can be approximated
in accordance with the possible worlds semantics avoiding costly integration operations.
Next we extended the domination count to probabilistic domination count and revealed the
problem of setting off the results from the single probabilistic spatial domination computa-
tions against each other. Our solution to this problem is a sophisticated method based on
the well-known generating functions which we name uncertain generating functions. Based
on this technique it is possible to approximate the probabilistic domination count. We
showed how this can be used in order to delay costly integrations during query processing
as long as possible. Plugged into the application of probabilistic reverse nearest neighbor
query processing, our new technique is able to outperform state-of-the art algorithms for
this problem.

t=3

t=2

t=1

t=0

In the fourth part of this thesis the dimension of time is in-
cluded in the data and thus this part focused on uncertain spatio-
temporal data. There is a body of work on this subject, which
bounds the possible movement of objects by spatial approxima-
tions allowing for simple queries like “Is it possible that an ob-
ject passed through a query region within some time interval?”.
However none of the existing works so far was able to assign a
confidence to this event according to possible worlds semantics.
The main problem here is that prevalent methods ignored the

location dependencies between positions of an object at successive points of time. We
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investigated the possibility to model the movement of objects by stochastic processes, in
particular Markov Chains. This has three major advantages: (1) It is now possible to
assign probabilities to query results, (2) the assigned probabilities are in accordance with
possible worlds semantics and (3) computations are based on sparse matrix multiplications
for which there exist extremely efficient methods. Based on this model we were able to find
efficient solutions for three spatio-temporal window query predicates (∀,∃ and k− times).
In order to allow querying of large databases we additionally developed the UST-Index for
the organization of uncertain spatio-temporal data sets. The main advantage over existing
index structures for spatio-temporal data is that the UST-Index implements the concept
of probabilistic pruning in addition to spatial pruning, i.e. it is possible to prune objects
based on the probability threshold τ of a query. This is possible through precomputing
the probability of each object to stay within a spatio-temporal approximation with proba-
bilistic guarantees called sub-diamond (of the original diamond between two observations)
and to bound this probability using an optimized linear function. The superiority of the
UST-Index over the R*-Tree in terms of CPU-cost and I/P-cost was experimentally shown.
Last but not least we showed that there exist similarity queries (e.g. based on ULCSS)
which yield exponential runtime when modeling UST data with Markov-Chains. Our solu-
tion to the problem was a sampling approach which adapts the transition matrices of each
object using Bayesian inference. Using this method it is possible to approximately answer
arbitrary queries on UST data in an efficient manner.

15.2 Future Work

We believe that the subjects covered in this thesis not only yield sophisticated solutions
for several problems but also serve as a starting point for research in several directions.
Specifically we want to highlight the following ideas for future work.

Regarding the concepts of spatial domination and domination count we plan to in-
vestigate the applicability of the proposed criteria to other query scenarios. In fact we
already applied the techniques to RkNN monitoring [61], inverse queries [29] and RkNN
join processing [67]. However there are numerous applications which can be enhanced us-
ing the two proposed concepts. Additionally, we believe that data mining tasks such as
clustering and outlier detection on datasets with extended object approximations might
be an interesting field to consider. Another direction would be to extend the Optimal
domination decision criterion to other types of approximations (e.g. ellipses or general
polyhedrons) and distance functions (e.g. weighted Lp-Norms, quadratic forms or earth
mover’s distance). This could be achieved by regarding the spatial domination problem as
an optimization problem (which is possible for the case of rectangles). Last but not least
the transformation of the ideas to non-vector spaces remains an open problem. However
the definition spatial domination can be straightforwardly transferred to metric spaces in
general. The problem of distance dependencies remains in these spaces. We plan to inves-
tigate reference point embeddings of datasets for query processing and are confident that
techniques can be found to get a grip of the distance dependencies in this setting.
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A similar perspective holds for the methods covered in Part 3 of this thesis. The
techniques for probabilist spatial domination and probabilist domination count computation
can be applied to a larger set of applications. We started by utilizing them in the context
of Voronoi cell computation on uncertain spatial data [177]. The technique of uncertain
generating functions is also of a more general nature and can not only be used in the
context of uncertain spatial data. We also plan to use this technique in other scenarios
such as aggregation queries in uncertain relational databases.

Regarding Part 4 of this thesis we believe that the described parts (model, index struc-
ture and sampling techniques) are the basis of a general framework for managing uncertain
spatio-temporal data. From here there are several new interesting research directions to
follow. The first idea is to investigate other spatio-temporal query types than the ones con-
sidered so far (spatio-temporal window queries and similarity queries based on ULCSS) and
search for efficient solutions based on the existing model. Though the Markov Chain model
has shown to be a useful choice for representing probabilistic spatio-temporal data there
is still much space for improvement to yield a prototype usable for real-life applications.
Future work should try to relax the assumptions on which the model is based:

• The assumption of discrete space – which is only applicable in some applications,
where the universe of discuss is finite (e.g. a road network with a finite number of
edges and vertices) or in applications where a discretization of space (e.g. by a 2D
or 3D grid) does not incur too much loss of information.

• The assumption of discrete time – which rarely holds in real applications, where
time cannot be abstracted to a series of uni-distant points in time (known as ticks).
Making this assumption may yield incorrect results, by missing events in-between
ticks.

• The assumption that objects are mutually independent – which may not hold in
practice where additional information like “person A and person B travel together”
may be given. In this case, the positions of A and B will be highly correlated.

• The assumption of the model being given and correct – which is the strongest as-
sumption. So far no techniques were presented to learn the parameters of the Markov
chain. Thus a more in-depth evaluation of existing techniques to learn models, as
well as the invention of new learning methods is required.

Developing new models and query processing techniques based on more powerful stochas-
tic processes like Markov Processes, Continuous Markov Chains or Wiener Processes is in
our opinion a challenging but profitable way to go.

In addition to querying spatio-temporal data, knowledge discovery in spatio-temporal
data, in particular trajectory clustering, trajectory pattern mining and spatio-temporal
collocation mining (i.e. the problem of finding sets of spatially and temporally correlated
events) has become a hot research topic in the recent years. Many works exist for mining
certain trajectories (for an overview see [104, 180]). The few existing works on uncertain
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trajectory mining (e.g. [164, 130]) usually simplify the problem and do not return results
according to the possible worlds semantics since the underlying model is not powerful
enough to allow for considering temporal dependencies. We believe that the last part of
this work is the first step for a large framework for managing and mining uncertain spatio-
temporal data 1 and a starting point for challenging but thrilling research work.

1A framework including all mentioned techniques is currently under development and near completion
(http://www.dbs.ifi.lmu.de/cms/Publications/UncertainSpatioTemporal)
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