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1 Introduction 

“Cancer is the uncontrolled growth of abnormal cells in the body” (A.D.A.M. Medical 

Encyclopedia). In 2010 cancer was one of the major causes of death in the European 

Union (166.9 deaths per 100 000 inhabitants). The history of neoplastic diseases is long: 

a first case of breast cancer was already described in the Edwin Smith Papyrus written 

approximately 3000 BC [1]. 

In the past tumor tissue was seen as an insular mass of proliferating cells, but as cancer 

research progressed in the past years, nowadays neoplastic tissue is understood as a 

complex aggregate of multiple cell types that participate in heterotypic interactions with 

each other. The recent research was compiled in a review of Hanahan and Weinberg in 

2000 [2]. Lately, in a follow up review in 2012 additionally the immune system was 

stressed as a major key player in cancer progression [3]. 

Neoplastic diseases display a remarkable diversity, thus treatment strategies are 

numerous. Besides resection and radiation, chemotherapy plays an important role in 

the treatment of solid tumors. Although potent chemotherapeutics have been 

developed one major hurdle is emerging. In many cases resistance to the applied 

therapy occurs. Two main resistances categories are known: 1) acquired or 2) intrinsic 

chemoresistance. Acquired chemoresistance means that a tumor which has been 

chemosensitive develops resistances against a certain kind of therapy. In contrast, 

intrinsic chemoresistance implies that a neoplastic disease is resistant already before a 

therapy is applied. Fast proliferating malignant cells form the bulk tumor. These cells are 

targeted by chemotherapeutics. However, slow proliferating cells often remain after 

therapy. The diversity of the tumor cells allows the transition of epithelial tumor cells to 

mesenchymal cells (EMT). Mesenchymal cells carry an elevated migratory potential. 

Thus, they are able to evade the tumor and invade other tissues to form metastases. A 

treatment can therefore even facilitate this effect, by killing only a part of the tumor and 

forcing surviving cells to a molecular evolution to increased aggressiveness and 

chemoresistance. 
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1.1 Resistance formation upon metronomic cyclophosphamide therapy 

To overcome acquired resistance to chemotherapeutic treatment is one of the major 

issues of clinical cancer research nowadays. Up to now a variety of molecular 

mechanisms leading to chemoresistance of cancer cells have been investigated and led 

to the development of new treatment strategies. Besides targeted therapy and 

combinatorial treatments, anti-angiogenic therapy is a promising option to circumvent 

resistance formation [4, 5]. For example, in prostate cancer the prognosis for patients 

with hormone resistant prostate carcinoma (HRPC) is poor, because of frequent 

occurrence of chemoresistance often followed by relapse and further tumor progression 

[6, 7]. One suggested follow up therapy for taxane-resistant HRPC is the metronomic 

treatment (frequent administration of low dose) with cyclophosphamide (CPA), 

reviewed by Emmenegger et al., 2010 [8]. 

The alkylating agent CPA, if given in normal dose, preferably targets tumor cells. 

However, metronomic therapy acts as an anti-angiogenic drug [9-11]. 

The pivotal targets of anti-angiogenic therapy are not cancer cells but blood vessels, 

supplying the tumor with nutrients and oxygen. Thus, one advantage of anti-angiogenic 

therapy is that it targets endothelial cells, not carrying a malignant phenotype. These 

cells are, unlike cancer cells, not able to develop resistance to the treatment due to their 

comparably stable genetics. Studying the mechanisms leading to resistance to anti-

angiogenic therapy is of great interest, as they may differ from resistance to classical 

chemotherapy. In general, resistance to anti-angiogenic therapy can be classified into 

four major groups: 1) evasive resistance, 2) vascular cooption, 3) reduced vascular 

dependence and 4) vascular remodeling [12]. 

In 2011 Emmenegger et al. pointed out that the applied CPA dose (maximum dose or a 

metronomic dosing) directly changes the mechanisms of resistance formation. After 

treatment of PC3 xenografts with maximum dose, tumor cells acquired resistance both 

in vivo and in vitro [12]. However after metronomic application of CPA the resistant 

phenotype became manifested only in vivo. Furthermore, Thoenes et al. showed that 

prostate cancer xenografts, treated metronomically with CPA, acquire chemoresistance. 

After a response phase of around 50 days cells develop resistance and tumors size 

increases (Figure 1-1 A). Resistant tumors were reisolated and cell lines were established 
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[13]. An overview of the distinct cell lines is shown in Figure 1-1 C. When analyzed in 

vitro, cells were chemosensitive to the metabolized, active form of CPA (4-HOO-CPA, 

Figure 1-1 B). 

 
 

PC3 wt parental PC3 cell line (ATCC# CRL1435) 

PC3 A3 in vivo passaged control cell line 

PC3 D3 in vivo resistant cell line 

PC3 D4 in vivo resistant cell line 

 

Figure 1-1 Resistance formation upon metronomic cyclophosphamide therapy, from Thoenes et al. [13] 

A. Growth curve of s.c. PC3 wt tumors in SCID mice during metronomic CPA therapy B. in vitro 4-HOO-CPA 

(active form of CPA) treated PC3 clones C. list of cell lines 

As summarized in Figure 1-2 CPA has an anti-angiogenic effect in this model, which is 

still present in the resistant state. Tumor vessels are destroyed and blood supply is 

reduced during the treatment. Tumors developed a resistance to the therapy regimen 

without restoring tumor vessels or vascular mimicry (Figure 1-2 A). Moreover resistant 

cells did neither acquire a multidrug resistance nor detoxified CPA by alcohol 

dehydrogenase ADH or aldehyde dehydrogenase ALDH (Figure 1-2 B, C). Taken together 

the underling mechanism can be proposed as a member of the major group of reduced 

vascular dependence. 

A. B. 

C. 
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Figure 1-2 Overview of potential resistance mechanisms (A. and B. originate from Thoenes et al. [13]) 

 

Isolated tumor cell lines from resistant tumors revealed their resistant phenotype upon 

reimplantation in vivo [13]. A comparative proteome analysis of chemoresistant versus 

parental PC3 cells was performed, suggesting the involvement of Annexin A3 [13]. To 

further analyze the gene expression of chemoresistant tumor tissue in vivo, a genome 

wide microarray of xenografted PC3 tumor cell lines was performed. Four PC3 sublines 

PC3 wt (standard PC3 cells), PC3 A3 (in vivo passaged control cells) and PC3 D3, PC3 D4 

(in vivo resistant cells) were injected subcutaneously into SCID mice (overview of cell 

lines Figure 1-1 C). After tumor formation, one group of each PC3 subline was treated 

with CPA, whereas the other group was kept untreated. Microarray analysis of four 

individual tumors per group was performed. In order to detect distances and similarities 

between different samples, RMA (robust multichip analysis) normalized data were 

subjected to hierarchical clustering. Here a distinct clustering of the different cell lines 

was observed. In contrast, acute CPA treatment of the different tumors did not induce 

additional clusters (Figure 1-3). This indicates only a minor effect of CPA on the gene 

expression profile. The resistant tumor sublines PC3 D3 and PC3 D4 showed a close 

relation of their gene expression profile, suggesting a similar resistance genotype. 

Furthermore, in vivo passaging strongly influenced the gene expression pattern, 

demonstrating the influence of the tumor environment [14]. 

Further analyses were focused on the inherent differences between samples of resistant 

cell lines PC3 D3 and PC3 D4 versus in vivo passaged cell line PC3 A3 without the direct 

influence of CPA. 

A. B. C. 
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Figure 1-3 Robust multichip analysis (RMA) of parental PC3 wt, in vivo passaged PC3 A3, and resistant 

tumors PC3 D3 and PC3 D4  

Hierarchical clustering on robust multichip analysis (RMA) normalized arrays. red = low distance, blue = 

high distance. Outliners, marked by * are excluded from further data analysis. Data originate from PhD 

thesis of Lilja Thoenes (LMU, 2009) and Kubisch et al. [14] 

Analysis of PC3 D3 (resistant) versus PC3 A3 (control) and PC3 D4 (resistant) versus 

PC3 A3 (control) revealed 415 differentially expressed genes for PC3 D3 and 566 for 

PC3 D4. An intersecting set of 212 genes were differentially expressed in both resistant 

tumor lines (Figure 1-4). The expression of dehydrogenase/reductase member 2 

(DHRS2), PAS domain containing protein 1 (PASD1) and special AT-rich sequence-binding 

protein-1 (SATB1) was increased in the resistant tumors compared to PC3 A3 tumors, 

whereas neurotensin (NTS) and bone morphogenetic protein receptor type I B 

(BMPR1B) expression was decreased in resistant tissue (Figure 1-4). 
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Figure 1-4 Microarray analysis (from Kubisch et al. [14]) 

Venn diagram of PC3 D4 versus A3 (566 genes) and PC3 D3 versus PC3-A3 (415 genes) differentially 

expressed genes (+/- 0.4-fold change cutoff) and table including top 10 higher and lower fold expression 

(log2) score of genes differentially expressed by both PC3 D3 and PC3 D4. bold: qPCR validated genes 

An altered exon expression was found for tissue factor (F3). As shown in Figure 1-5 only 

exon 3-6 displays an elevated expression in resistant tumors (PC3 D4). Further analysis 

of the underling mechanisms was to be performed based on these previous findings. 
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Figure 1-5 Microarray expression profile (probe intensity) of F3 (tissue factor) (from Kubisch et al. [14]) 

 

In summary, metronomically administered CPA acts anti-angiogenic by destroying tumor 

vessels. Xenografted PC3 tumors in SCID mice develop a resistance against this therapy 

after around 50 days. Isolated cells do not display a resistant phenotype in vitro but are 

resistant after reimplementation in vivo. Neoangiogenesis, vascular mimicry, enzymatic 

detoxification as well as multidrug resistance (MDR) transporter activity could be ruled 

out as a cause for resistance. Moreover, cells develop a reduced vascular dependence 

leading to resistance to the anti-angiogenic therapy. 
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1.2 Myxobacterial compounds in cancer treatment 

A further approach to overcome resistance or even circumvent resistance formation is 

development of novel anti-cancer drugs. Here, myxobacteria are of great 

pharmaceutical interest as they are producing a variety of secondary metabolites with 

different biological activities. Up to now more than 7,500 myxobacteria have been 

isolated. Many of them were chemically analyzed and about 100 different core 

structures (plus 500 derivatives) are published [15]. The most prominent myxobacterial 

compound, the paclitaxel mimic epothilone is in clinical trials for the treatment of breast 

cancer [16]. Besides tubulin stabilizer epothilone, other myxobacterial compounds like 

the microtubule destabilizer tubulysin and disorazol are known [17, 18]. Furthermore, 

compounds rhizopodin and the chondramides which interfere with the actin filaments 

of eukaryotes are important members of myxobacterial compounds [19-21]. Recently 

three classes of myxobacterial compounds have come into focus: 1) tubulin inhibitor 

tubulysin and its derivatives, 2) the chondramides (F-actin binding) and 3) archazolid A 

and B which are potent V-ATPase inhibitors [22, 23]. A schematic overview of their 

proposed action in the cell is shown in Figure 1-6. 

 

Figure 1-6 Myxobacterial compounds in cancer treatment 



  

Introduction 

9 

 

The tubulysin derivative pretubulysin has been shown to have anti-angiogenic 

properties and thus potently reduced tumor growth of hepatocellular xenografts in vivo 

[24]. Chondramides strongly prevent polymerization of F-actin and thus exhibit a 

cytostatic effect in vitro [21]. Furthermore, both pretubulysin and chondramid B hamper 

lung colonization of 4T1luc breast cancer cells in BALB/c mice (PhD thesis Laura 

Schreiner, LMU 2013). 

1.2.1 Archazolid a novel V-ATPase inhibitor  

Archazolid A and B (Figure 1-7) are macrolactone structures with V-ATPase Inhibitor 

function [22, 23, 25-28]. Both show similar bioactivity [29]. Archazolid induces apoptosis 

in cancer cells in a nanomolar range [30]. Moreover, it was previously shown that it 

inhibits migration of highly metastatic cancer cells in vitro and reduces the lung 

colonization of breast cancer cells in vivo [29]. Notably, other targets are proposed 

despite V-ATPase but not yet proven. 

 

Figure 1-7 Chemical structure of archazolid A and B from Huss et al. [25] 
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1.3 V-ATPase  

The main target of archazolid is the V-ATPase. Vacuolar (H+)-ATPases are found on 

various membranes, including lysosomes, endosomes, vesicles and the plasma 

membrane. As V-ATPases are ATP dependent proton pumps they are crucial for 

maintaining the pH of these compartments. Thus, they play a vital role in various cellular 

processes like, intracellular targeting of lysosomal enzymes, protein processing and 

degradation as well as receptor-mediated endocytosis [31, 32].  

In cancer a combination of increased metabolism and reduced oxygen and nutrient 

supply leads to an acidic tumor environment (reviewed by Vaupel et al. [33]). Thus, 

tumors have to control their intracellular pH strictly. V-ATPases are reported to play a 

crucial role in tumor pH homeostasis of cancer cells either by pumping protons out of 

the cell or into acidic lysosomes [34, 35]. Therefore, compounds inhibiting V-ATPase are 

proposed as novel drugs for cancer therapy (reviewed by Fais et al. [36]).  

V-ATPases are composed of two major domains: 1) peripheral domain V1 and 2) integral 

domain V0. Each domain is composed of different subunits: V1 A-H and V0 a-e (Figure 

1-8). Subunit V1 is responsible for ATP hydrolysis and V0 for proton translocation-

through the membrane. 

Bafilomycin A1 and concanamycin A as well as archazolid are natural compounds 

efficiently inhibiting the V0c subunit of V-ATPases [23, 37-41]. In contrast to archazolid, 

which inhibits V-ATPase function by binding between the membrane and subunit c, 

concanamycin A and bafilomycin A1 are binding between the different subunits c [23]. 

V-ATPase inhibitors display a novel group of anti-cancer compounds, as their unique 

mode of action strongly differs from common anti-cancer drugs. 
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Figure 1-8 Schematic overview of the vacuolar V‑‑‑‑ATPase complex (drawn after Forgac et al. [32]) 

The V-ATPase complex is composed of a peripheral domain (V1), responsible for ATP hydrolysis, and an 

integral domain (V0), involved in proton translocation across the membrane. Here Archazolid binds to the 

proteolipid subunits c and thus blocks H
+
 transfer. 

1.4 Cathepsin B 

In cancer research lysosomal proteases like the cathepsins became more and more 

important as tumor markers. In particular, cathepsin B is upregulated in many types of 

cancer [42-45]. Nevertheless, its distinct role in tumor progression is not fully 

understood and controversially discussed. During metastasis tumor cells are invading 

the surrounding tissue and migrate to distant sites. One of the crucial steps for this 

process is the degradation of extracellular matrix by extracellular proteases (for review 

see [46-48]). Some authors state that extracellular cathepsins directly contribute to 

matrix degradation [49-53]. In contrast, others show that intracellular cathepsin B is in 
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an indirect way crucial for extracellular matrix degradation by other proteases like 

urokinase (uPA) or matrixmetalloproteinases [54, 55]. 

Cathepsin B is synthesized at the rough endoplasmic reticulum (ER) as 

preprocathepsin B (Figure 1-9). Signal peptides target cathepsin B into the ER lumen. 

Here it becomes cleaved co-translationally to procathepsin B. Thereafter, 

procathepsin B is transported through the ER to the Golgi apparatus. Here it is 

substituted with two asparagine-linked mannose-containing oligosaccharides. These 

residues are then phosphorylated. After phosphorylation procathepsin B is bound to 

membrane associated mannose-6-phosphate receptor (M6PR) in the trans-Golgi 

network (TGN). M6PR-procathepsin B containing vesicles are leaving the TGN and direct 

to prelysosomal compartments (PLC). Importantly, the dissociation of the 

M6PR-procathepsin B complex is pH dependent. If the pH in the compartment is 

neutral, the complexes will not dissociate. Consequently, during the lysosome 

maturation process the pH of these PLC is decreasing which leads to the release of 

cathepsin B from the M6PR and recycling of the receptor to the TGN (for review see [56-

58]. 

 

Figure 1-9 Cathepsin B maturation process; a schematic overview 

ER = endoplasmic reticulum, Golgi app. = Golgi apparatus, PLC = prelysosomal compartment, M6PR = 

mannose-6-phosphate receptor  
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1.5 Aim of the thesis 

In this thesis the mechanisms leading to acquired chemoresistance as well as new 

treatment strategies implying the prevention of tumor cell evasion and metastases 

formation will be addressed. 

As chemoresistance is one of the major hurdles in cancer treatment, the elucidation of 

underlying molecular mechanisms is of great interest. Therefore, one aim of this thesis 

is the analysis of the molecular changes after resistance formation upon metronomic 

cyclophosphamide therapy in a prostate cancer model. The analysis is based on a 

microarray gene expression experiment. In particular the clarification of mechanisms 

leading to the survival of tumor cells during maintained, anti-angiogenic, metronomic 

cyclophosphamide therapy is in focus using state of the art bioinformatics and 

expression analysis methods. 

Moreover, new treatment strategies using novel myxobacterial compounds will be 

elucidated, with special regard to the anti-metastatic action of archazolid, a potent 

V-ATPase inhibitor. V-ATPase inhibitors are known to alter endo- and exocytotic events. 

In the current thesis, secreted proteins of archazolid treated, highly migratory urinary 

bladder carcinoma cells should be identified using a proteomic approach. Furthermore, 

the molecular consequences of V-ATPase inhibition on cellular trafficking should be 

elucidated in vitro using different biochemical, molecular biological and imaging 

techniques. Finally, in vitro results should be confirmed in vivo using a syngenic mouse 

model. This model enables the monitoring of archazolid action on cancer cells by the in 

vivo application of mouse mammary gland tumor cells (4T1luc) stably expressing the 

transgene luciferase as a reporter. In the following, the influence of archazolid on tumor 

growth and metastasis then can be analyzed using the in vivo measurement of luciferase 

activity. Moreover, it facilitates to evaluate also other biochemical parameter ex vivo 

after a certain treatment regimen. 
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2 Material and Methods  

2.1 Material  

2.1.1 Cell culture reagents and media 

DMEM 4,5 g/l Glucose Invitrogen (Karlsruhe, Germany) 

RPMI Invitrogen (Karlsruhe, Germany) 

McCoy’s 5A modified medium Biochrom (Berlin, Germany) 

fetal bovine serum (heat inactivated) Invitrogen (Karlsruhe, Germany) 

L-alanyl-L-glutamine  Biochrom (Berlin, Germany) 

trypsin EDTA solution Biochrom (Berlin, Germany) 

Opti-MEM Invitrogen (Karlsruhe, Germany) 

2.1.2 Cells 

PC3 wt (# CRL1435) ATCC, USA 

PC3 A3 [13] 

PC3 D3 [13] 

PC3 D4 [13] 

T-24 Barbara Mayer LMU (Germany) 

4T1luc Caliper (Alamenda, CA, USA) 

MCF-7 Cell line Services (Germany) 

2.1.3 Plastic- and glassware 

well-plates (6,12,24,48 and 98) TPP (Switzerland)) 

tissue culture flask (25,75 and 100 cm
2
) TPP (Switzerland)) 

cell culture dish 10 cm NUNC, USA 

Coverslips and slides  Gerhard Menzel GmbH (Germany) 

Amicon Ultra-4 Centrifugal Filter Units       

(3 and 10 kDa cut off)  

Merck Millipore (USA) 
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2.1.4 Instruments 

Phase contrast microscope Carl Zeiss Axiovert 200 Carl Zeiss (Germany) 

Fluorescence microscope Carl Zeiss Axiovert 200 Carl Zeiss (Germany) 

Laser scanning microscope Carl Zeiss Laser Scanning 

Microscope LSM 510 Meta 

Carl Zeiss (Germany) 

CyAnTM ADP Dako cytomations (Germany) 

LightCycler 480 system Roche (Germany) 

Luminometer Lumat LB9507 instrument Berthold (Germany) 

FastPrep-24 tissue/ cell homogenizer MP Biomedicals GmbH (Germany) 

Hybaid PCR thermal cycler  Thermo Fisher Scientific (USA) 

Tecan spectra fluor plate reader Tecan (Switzerland) 

SDS-Page Running system Biorad (Germany) 

Wet-Blot-System Biorad (Germany) 

Olympus BX41 microscope 

 

Olympus (Japan) 

2.1.5 Kits 

CellTiterGlo  Promega (USA) 

Transcriptor High Fidelity cDNA Synthesis  Roche (Germany) 

NucleoSpin RNA II  Macherey and Nagel (Germany) 

BCA-Assay  Thermo Fisher Scientific (USA) 

iTRAQ® Reagent 4plex AB Sciex (USA) 
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2.1.6 Antibodies 

antigen  art.-no. source company WB IF 

alpha-Tubulin T9026 mouse  sigma-aldrich (USA) 1:10,000 

 ANXA3 PA5-12438 rabbit Thermo Scientific (USA) 1:1000 1:200 

Cathepsin B  IM27L mouse Calbiochem (Germany) 1:500 1:200 

Cathepsin B  #3383 rabbit CST (USA) 1:1000 
 

Cathepsin D #2284 rabbit CST (USA) 1:1000 
 

F3 sc-23596 goat SantaCruzBiotech. (USA) 1:1000 
 

GAPDH #2118 rabbit CST (USA) 1:5000 
 

M6PR (IGF-IIR) sc-25462 rabbit SantaCruzBiotech. (USA) 
 

1:50 

SATB1 ab49061 rabbit Abcam (USA) 1:1000 1:200 

2.1.7 Primer 

Primer human  

ATP6V0C  UPL Probe #76 left: ttcgtttttcgccgtcat,  

right ccactgggatgatggacttc 

ACTIN BETA  UPL Probe #64 left: ccaaccgcgagaagatga,  

right ccagaggcgtacagggatag 

ANXA3  UPL Probe #29 left: tccggaaagctctgttgact, 

right: atcttgtttggccagatgct 

B2M  UPL Probe #42 left: ttctggcctggaggctatc,  

right: tcaggaaatttgactttccattc 

BMPR1B  UPL Probe #21 left: tttcatgccttgttgataaaggt, 

right: gcttgtttaactttttgtttcctctc 

CATHEPSIN B UPL Probe #26 left: ttcggacttcctgctctacaa 

right: tagggtgtgccattctccac 

CATHEPSIN D UPL Probe #37 left: ggtacctgagccaggacact 

right: acctgcctctccactttgac 

DHRS2  UPL Probe #4 left: tgagactatcacctatcgccaag, 

right: cagcatagtggttggtgtctg 
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F3 Exon 1-2  UPL Probe #15 left: cgccaactggtagacatgg, 

right: gctgccacagtatttgtagtgc 

F3 Exon 5-6  UPL Probe #2 left: cagacagcccggtagagtgt, 

right: ccacagctccaatgatgtagaa 

GAPDH UPL Probe #60 left: ctctgctcctcctgttcgac,  

right: gcccaatacgaccaaatcc 

NTS  UPL Probe #17 left: cagcttgtatgcatgctactcc, 

right: aatgctttcatttcctcttctga 

PASD1  UPL Probe #20 left: caacccacctaccatcaggt, 

right: ctgctccgcagat ctcatc 

PLAT  UPL Probe #59 left: cgggtggaatattgctggt,  

right: cttggctcgctgcaactt 

PROS1  UPL Probe #46 left: acatacctgggtggccttc,  

right: tccagatccaactgtacaccat 

SATB1  UPL Probe #44 left: aatggcattgctgtctctagg, 

right: actttccaacctggattagcc 

SERPINA1  UPL Probe #73 left: gcttaaatacggacgaggaca, 

right: acgagacagaagacggcatt  

SERPIND1  UPL Probe #29 left: tggtggagagatggcaaaa, 

right:gattgtagttcttctccagcttgaat 

SERPINB7  UPL Probe #8 left: gattgtagttcttctccagcttgaat, 

right: caaattgaacttccgttcctg 

Primer mouse 

ACTIN BETA  UPL mouse ACTB Gene Assay, Roche (Germany) 

CATHEPSIN B UPL Probe #47 left: gtgtctgctgaagacctgctt 

right: gggatagccaccattacagc 

CATHEPSIN D UPL Probe #79 left: gcgtcttgctgctcattct  

right: acttgcgcagagggattct 

GAPDH UPL mouse GAPDH Gene Assay, Roche (Germany) 
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2.1.8 Chemicals and Solutions 

Hoechst 33342  Sigma Aldrich (Germany) 

Paraformaldehyde Sigma Aldrich (Germany) 

Triton X 100 Sigma Aldrich (Germany) 

Gelatin solution Sigma Aldrich (Germany) 

FlourSave mounting reagent Merck KGaA (Germany) 

Bafilomycin A1 Sigma Aldrich (Germany) 

Concanamycin A Sigma Aldrich (Germany) 

Tunicamycin Sigma Aldrich (Germany) 

Brefeldin Sigma Aldrich (Germany) 

Cyclophosphamide Sigma Aldrich (Germany) 

Complete®  Roche (Germany) 

Cell lysis buffer Promega (USA) 

Lumi-Light Western Blotting Substrate Roche (Germany) 

X-ray films Fisher Scientific 

DAPI Sigma Aldrich (Germany) 

CA-074 ME (cathepsin B inhibitor) Enzo Life Sciences (USA) 

Z-Arg-Arg-7-amino-4-methylcoumarin 

hydochlorid (cathepsin B substrate) 

 

Sigma Aldrich (Germany) 

Archazolid A was purified and isolated as described previously [22], archazolid B was 

chemically synthesized by Roethle et al. [28]. Both compounds were dissolved in dimethyl 

sulfoxide (DMSO) and show similar bioactivity (supplementary information of Wiedmann 

et al. [29]). For all in vitro experiments archazolid B was used. For all in vivo experiments 

archazolid A was used. 
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2.2 Methods 

2.2.1 Cathepsin B activity assay 

Cathepsin B activity assay was performed in a modified version of the protocol published by 

Barrett, 1980 [59]. The assay buffer was titrated from 2 buffers to get a distinct pH: buffer 1: 

0.1 M NaH2PO4, 0.4 M NaCl, 10 mM EDTA and buffer 2: 0.1 M Na2HPO4, 0.4 M NaCl, 10 mM 

EDTA. In a first experiment different pH values were tested (Figure 2-1). All other 

experiments were carried out using an assay buffer of pH 6.5. pH 6.5 was the pH were the 

cathepsin B activity was in a medium range. By choosing this pH is should be avoided to 

activate procathepsin B by mature cathepsin B. Assay procedure was carried out as follows: 

First assay buffer was placed into a reaction tube. 2 mM cysteine and 30 µg total protein 

sample was added. For background subtraction in one of two samples a specific cathepsin B 

inhibitor (CA-074 ME, 50 µM) was added. To start the reaction 50 µM Z-Arg-Arg-7-amino-4-

methylcoumarin hydrochloride a fluorogenic cathepsin B substrate was supplemented. After 

an incubation time of 30 min at 40 °C the reaction was stopped by adding 2 M Tris (pH is 

raised to 10). Fluorescence of the cleaved substrate was quantified using a tecan reader 

(em 360 nm, ex 450 nm). To determine the specific cathepsin B activity values were 

calculated blank (without sample) and inhibitor corrected. 

 

Figure 2-1 pH dependent cathepsin B activity of recombinant cathepsin B  
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2.2.2 Cell culture  

PC3 human prostate carcinoma cells (PC3 wt, ATCC # CRL1435) and reisolated clones PC3 A3, 

PC3 D3 and PC3 D4 as well as 4T1luc breast cancer cells were cultured in RPMI 1640 medium 

supplemented with 10% FBS. T-24 cells were cultured in McCoy´s modified 5A media 

supplemented with 10% FBS. Cells were grown at 37°C in 5% CO2 in a humidified 

atmosphere. Generation of PC3 subclones was previously described by Thoenes et al. [13]. 

Briefly standard PC3 cells (PC3 wt) had been injected into male SCID mice and treated with a 

metronomic regimen of CPA (120 mg/kg every 6 days). After a response phase, tumors 

restarted growing. Cells of two different resistant tumors were isolated (PC3 D3 and PC3 D4). 

Additionally, a cell lines of untreated tumors was established (PC3 A3), representing an 

in vivo passaged control cell line ([13] and Figure 1-1 C). 

2.2.1.2 Freezing and thawing of cells  

For cell storage in liquid nitrogen, freezing medium (90% culture medium and 10% DMSO) 

was added to the cell pellet. For a slowly freezing of the cells, vials were put into an 

isopropanol containing container and stored at -80°C for at least 24 hours. Thereafter vials 

were transferred into liquid nitrogen. For reculturing of the cells, the cell suspension was 

thawed at 37°C. To remove DMSO residues a media change was carried out 24 hours later. 

2.2.3  Isolation of primary human monocytes 

All experiments including human primary monocytes and macrophages were done in 

cooperation with Professor Dr. Oliver Werz, Chair of Pharmaceutical / Medicinal Chemistry, 

University of Jena. For isolation of PBMC (peripheral blood mononuclear cells) human buffy 

coats (fraction of an anti-coagulated blood sample containing blood cells and platelets 

following density gradient centrifugation) were diluted 1:1 with PBS. To remove erythrocytes 

1:5 dextran was added and samples were incubated for 30-45 min at RT until dextran bound 

erythrocytes were sedimented. Supernatants were collected and slowly put onto density 

gradient centrifugation media (LSM 1077 lymphocyte separation media (PAA, GE Healthcare, 

UK).  
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Figure 2-2 Schematic overview of the different phases after density gradient centrifugation 

 

After centrifugation at 2000 rpm for 10 min (without break) PBMC can be found in the in a 

grey phase indicated in Figure 2-2. PBMC fraction was washed two times with ice cold PBS 

(1200 rpm, 4 °C) counted and 400 x 10
6
 vital cells were seeded per 100 cm

2 
flask in 10% FCS 

containing RPMI media. After 1 - 1.5 hours floating cells were removed. After two washing 

steps with PBS cells were detached by using a cell scraper. For the secretome analysis 5 x 10
6
 

vital cells were seeded per 25 cm
2
 flask in 10% FCS RPMI. After 1 hour monocytes were 

attached and treatment was performed after two washing steps in FCS free RPMI media. 

For macrophage differentiation 15 x 10
6
 vital monocytes were seeded per 100 cm

2
 flask in 

5% FCS containing RPMI + 25 ng/ml hM-CSF (human macrophage-colony stimulating factor). 

Differentiation was carried out for 6 days. Subsequently, 5 x 10
6
 vital macrophages were 

seeded per 25 cm
2
 flask. After 1 hour cells were attached and treatment was performed in 

FCS free RPMI media after 2 washing steps. 

2.2.4 Cell viability assay (CellTiterGlo) 

To analyze the cell viability the CellTiterGlo assay was applied. This assay detects the ATP 

content of a given sample, thus indicating the relative amount of metabolizing, living cells in 

an ATP dependent luciferase reaction. 

CellTiterGlo assay was performed according to the manufacturer’s instructions. Shortly cells 

were seeded in 96-well plates. 24 hours after seeding cells were treated with the respective 

compound in FCS free media. After compound incubation half of the volume of each well 

was replaced by the reaction buffer containing cell lysis buffer, ATP depended luciferase and 
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a luciferase substrate. The luminescence was recorded using a Luminometer Lumat LB9507 

instrument. 

2.2.5 Data-analysis (Microarray) 

Functional analysis of regulated genes was performed using DAVID bioinformatics [60]. 

Description by [60] specifies the stated p-value as the threshold of EASE Score, a modified 

Fisher Exact P-Value, for gene-enrichment analysis. It ranges from 0 to 1. Fisher Exact P-value 

= 0 represents perfect enrichment. Usually P-values equal or smaller than 0.05 are 

considered strongly enriched in the annotation categories. 

2.2.6 In vivo experiments 

Mice were housed in individually ventilated cages, under specific pathogen free conditions, 

with a 12 hours day/night cycle and food and water ad libitum. All animal procedures were 

approved and controlled by the local ethics committee and carried out according to the 

guidelines of the German law of protection of animal life 

2.2.6.1 Warfarin and CPA combinatorial therapy of PC3 A3 tumors 

For tumor formation 1 x 10
6
 PC3 A3 cells in 100 µl PBS were injected subcutaneously with a 

25 G needle into the flank of SCID mice (CB17/lcr-PrkdcSCID/Crl) (8–10 weeks) with 5-7 

animals per group. Two of in total four groups were treated with CPA (120 mg/kg every 6. 

day, i.p.) starting at day 12 after tumor inoculation. The other two groups served as control. 

One of the CPA groups and one of the control groups were treated additionally with 

warfarin, starting at day 11 after tumor inoculation. Until day 18, warfarin was administered 

over the drinking water (7.5 mg/l).  

Warfarin was solved in ethanol. Accordingly the water of the control groups was 

supplemented with the corresponding amount of ethanol (max. 750 µl in 1 l). Although 

acceptance of the ethanol and warfarin supplemented drinking water was tested in a pretrial 

(data not shown), mice stopped drinking around day 16. The treatment regimen was 

changed to warfarin 5 mg/kg i.p. every third day. Mice of the non CPA treated groups were 

euthanized, if the tumor volume was higher than 1000 mm³. On day 57 the experiment had 
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to be stopped due to severe weight loss. For analysis mice of the CPA treatment groups 

which had to be euthanized before day 57 were excluded. 

2.2.6.2 4T1luc tumors 

In a first experiment 2 x 10
6
 4T1luc cells were injected into the flanks of BALB/c mice. At 

day  3, mice were treated 3 times per week i.v. with 3 mg/kg archazolid (n=7), 0.1 mg/kg 

pretubulysin (n=8), 0.5 mg/kg chondramid B (n=8) or vehicle control (5% DMSO in PBS). 

Tumors were measured every two to three days with a caliper, using the formula a x b2/2 (a 

as the largest side of the tumor and b the largest side vertical to a). On day 18 mice were 

euthanized. During the experiment 3 archazolid treated mice had to be euthanized due to 

tail inflammation caused by subcutaneous archazolid. In the following special effort was 

applied to directly inject i.v.. Analysis was done with archazolid n=4.  

In a second experiment 2 x 10
6
 4T1luc cells were injected subcutaneously into the flank of 

BALB/c mice (10 per group). One group was treated with 3 mg/kg archazolid A in 5% 

DMSO/PBS or equal amounts of 5% DMSO/PBS in a second control group. Treatment was 

performed on day 2, 3, 4, 5, 6, 9, 13 and 17 after tumor inoculation. The average tumor 

volumes of the two groups were compared over time. On day 18, mice were sacrificed 

through cervical dislocation. Tumor, lung, liver, kidney and heart of each animal were 

harvested. 

2.2.7 Ex vivo luciferase imaging 

To detect distant metastases of 4T1luc cells in the lung, whole lungs were homogenized 

using a FastPrep-24 tissue/cell homogenizer MP. After homogenization samples were 

centrifuged 13,000 rpm for 10 min at 4°C. Luciferase activity of each sample was determined 

using a Luminometer Lumat LB9507 instrument. 

2.2.8 H&E staining 

Tumors were fixed in formalin and embedded into paraffin. Subsequently paraffin embedded 

tumors were cut with a microtome into 4.5 μm slices and stained with hematoxylin (2 min) and 

eosin (5 min). Results were documented, using an Olympus BX41 microscope. 
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2.2.9 Proteomics 

2.2.9.1 In-gel-digestion 

After electrophoresis, gels were scanned and each lane was cut into similar pieces. Each 

piece was transferred into a reaction tube and covered with 45 mM DTT in 50 mM NH4HCO3. 

After an incubation of 30 min at 55 °C gel-pieces were covered with 100 mM iodoacetamide 

in 50 mM NH4HCO3 for 15 min at RT in the dark. This step was repeated. Subsequently, gel-

pieces were washed two time using 50 mM NH4HCO3. For tryptic digestion pieces were 

chopped using a pipet tip and covered with 50 mM NH4HCO3 containing trypsin in a ratio of 

1 µg trypsin to 50 µg of protein. Incubation was carried out at 37 °C overnight. After the 

digestion supernatants were collected and pieces covered with 70 % acetonitrile for 10 min. 

Supernatants were combined afterwards. After freeze-drying peptide samples were stored 

at -80 °C until LC-MS/MS measurement.  

2.2.9.2 LC-MS/MS analysis 

All LC-MS/MS measurements were done in cooperation with Dr. Thomas Froehlich and 

Dr. Georg J. Arnold (Genzentrum, LMU, Munich, Germany). 

Nano-LC separation was done with a nano-liquid chromatography system (Ettan MDLC, GE 

Healthcare, USA). Peptide samples were loaded on a trap column (10 µl per min, loading 

buffer: 0.1% formic acid; trap column: C18 PepMap 100, 5 µm bead size, 300 µm i.d., 5 mm 

length, LC Packings, USA) and separated with an analytical reversed phase column (Reprosil-

Pur C18 AQ, 3 µm; 150 mm x 75 µm, Dr. Maisch, Germany) using a 30 min gradient from 0 % 

B to 60% B (solvent A: 0.1 % formic acid; solvent B: 84% CH3CN/0.1 % formic acid), at a flow 

rate of 280 nl/min. For electrospray ionization a distal coated SilicaTips (FS-360-20-10-D-20, 

New Objective, USA) and a needle voltage of 1.7 kV was used. Tandem mass spectrometry 

was performed with an Orbitrap XL mass spectrometer (Thermo Scientific, USA). MS and 

MS/MS spectra were acquired using cycles of one MS scan (mass range m/z 300-2000) and 

five subsequent data dependent CID MS/MS scans (“dynamic exclusionTM activated”; 

collision energy: 35%). RAW data were processed using MASCOT Daemon and MASCOT 

Server (V2.3, Matrix Science, Boston, USA) with the human subset of the SwissProt Database 

(Release 2012_11) and the following parameters: a) “Fixed modifications”: Carbamidomethyl 
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(C) b) Variable modifications: Oxidation (M); c) Decoy database: checked, d) Peptide charge: 

1+, 2+ and 3+; e) Peptide tol. ±: 2 Da; f) MS/MS tol. ±: 0.8 Da.  

To generate a high quality dataset of secreted proteins and in order to minimize the number 

of false positive identifications the results were evaluated with the Scaffold software using 

the Peptide Prophet and Protein Prophet algorithms [61]. The probability threshold for 

identified proteins was set to ≥ 99% and exclusively IDs with at least 2 individual peptides 

were accepted. The reliability of the data was further evaluated by counting false positive 

MASCOT hits from the Decoy database [62]. 

2.2.10 Gene expression profiling 

2.2.10.1 RNA isolation 

Cell culture samples were lysed after treatment using cell lysis buffer of the nucleo spin RNA 

Isolation Kit (Macherey-Nagel). For isolation of RNA from tumor samples 30 mg of each 

tumor was lysed in 350 µl of cell lysis buffer additionally using FastPrep-24 tissue / cell 

homogenizer for tissue disruption. RNA isolation was performed according to the 

manufacturer’s instructions.  

2.2.10.2 Reverse transcription 

1 µg of isolated RNA was transcribed with the Transcriptor High Fidelity cDNA Synthesis Kit 

(Roche) according to manufacturer’s protocols using oligo-dT-primer. 

2.2.10.3 Quantitative real-time PCR (qPCR) 

Quantitative real-time PCR was performed using UPL Probes (Roche) and Probes Master 

(Roche) on a LightCycler 480 system (Roche) using GAPDH, Actin B and B2M as controls. 

Experiments were done in triplicates and the obtained average CT values of target genes 

were normalized to control as ΔCT. Changes in expression levels were shown as fold 

expression (2
-ΔΔ CT

), calculated by the ΔΔCT method [62]. 
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2.2.11 Protein analysis 

2.2.11.1 Collection of cell culture supernatants 

1 x 10
6
 T-24 or MCF-7 cells were seeded per 10 cm dish or 1.5 x 10

6
 cells per 75 cm² flask. 24 

hours after seeding cells were washed 3 times (for proteomic analysis) or 1 time (western 

blot) with FCS free media. After treatment of the cells in 10 ml of FCS free media, 

supernatants were harvested, followed by centrifugation of 5 min at 1000 rpm to remove 

cells and cell debris. Supernatants were concentrated to a total volume of 50 µl using 

Amicon Ultra-4 Centrifugal Filter Units (cut off 3 kDa for proteomics and 10 kDa for western 

blot). 

2.2.12 Preparation of whole cell lysates 

After treatment cells were washed with cold PBS and lysed using 0.5 x cell lysis buffer from 

Promega. Cells were lysed on ice for 10 min and centrifuged at 13,000 rpm for 20 min to 

remove cell debris.  

2.2.12.1 Protein quantification 

Protein concentration was determined using the BCA (bicinchoninic acid) Protein Assay Kit 

from Thermo Scientific. The assay principle is that distinct protein side chains are reducing in 

an alkaline medium Cu
2+

 to Cu
1+.

 Bicinchoninic acid selectively detects generated Cu
1+

 by a 

colorimetric reaction. BCA assay was performed in 96-well format according to the 

manufacturer’s instructions. Shortly, 5 µl of sample or standard solution were incubated 

with 200 µl of reaction reagent for 30 min at 36 °C. Absorption was quantified at 590 nm with 

background correction at 630 nm using a tecan plate reader.  

2.2.12.2 SDS-PAGE 

The SDS-PAGE was performed according to Laemmli et al. [63]. 15-50 µg of total protein 

lysate or 30 µl concentrated supernatant were supplemented with Laemmli buffer and 

boiled for 5 min at 95 °C for protein denaturation. Samples were loaded on 10% or 12.5% 

SDS-PA-gels. Protein separation was performed at 0.03 mA per gel for approximately two 

hours. 
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2.2.12.3 Western Blot 

After separation proteins were transferred to a nitrocellulose membrane by wet-blotting 

using the Mini Trans-Blot system from Biorad, Germany.  

For each gel a sandwich was prepared where the gel and a nitrocellulose membrane are 

enclosed by two filter papers. The sandwiches were placed in the apparatus with the gel 

facing the cathode and the membrane facing the anode, to allow the negatively charged 

proteins (negative charge of associated SDS) to migrate from the gel onto the membrane. 

Blotting was performed in transfer buffer at 100 V for 35 min.  

After blotting membranes were incubated with NET-gelatin buffer to block free protein 

binding sides of the membrane for 45 min. Incubation of the primary antibody was 

performed in NET-gelatin buffer at 4 °C overnight. Subsequently, primary antibody was 

removed and membranes were washed three times for 10 min with NET-gelatin buffer. 

Incubation of secondary antibodies coupled to peroxidase was done for 1 hour at room 

temperature, followed by a second washing step (3 x 10 min). 

For developing the specific protein signals membranes were incubated with peroxidase 

substrate (Lumi-Light Western Blotting Substrate, Roche) for 5 min and chemiluminescence 

was detected by exposing the membranes to X-ray films for a distinct time period. 

2.2.13 siRNA transfection 

Cells were seeded in 10 cm dishes or 6-well plates. 24 hours after seeding and at a 

confluence of approximately 70% cells were transfected using lipofectamine 2000 reagent 

from Invitrogen. If put together Lipofectamine 2000 reagent forms liposomes with siRNA 

leading to an enhanced uptake into the cell. Lipoplexes were formed prior to transfection by 

adding siRNA in Opti-MEM to Lipofectamine 2000 in Opti-MEM. In a 10 cm dish 600 pmol 

siRNA (control or target siRNA) in 1.5 ml Opti-MEM and 60 µl Lipofectamine 2000 in 1.5 ml 

were used and were later added to 10 ml of cell culture media. In a 6-well 100 pmol siRNA 

(control or target siRNA) in 250 µl Opti-MEM and 10 µl Lipofectamine 2000 in 250 µl Opti-

MEM were used and were later added to 2 ml of cell culture media. Lipoplexes were formed 

for 20 min at RT ad subsequently added to the cells. 4 hours later to transfection media was 

changed. Analysis was performed 24 and 48 hours post transfection. Control siRNA sequence: 
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5’-AUGUAUUGGCCUGUAUUAG-3’ (sense) V-ATPase subunit V0c: SMARTpool: ON-TARGETplus 

ATP6V0C siRNA, Thermo Fisher Scientific (USA). 

2.2.14 Lysotracker staining 

Cells were seeded in chamber slides. 24 hours after seeding archazolid treatment was 

performed. For lysosome staining 75 nM LysoTracker (Invitrogen) was added to the culture 

medium and incubated for 30 minutes. To stain the nuclei, Hoechst was added in a final 

concentration of 1 μg/ml and incubated for 5 minutes. 

2.2.15 Confocal microscopy 

2 x 10
4
 cells were seeded on coverslips in 6-well plates. After treatment they were fixed with 

4% PFA for 15 min. For intracellular staining samples were permeabilized with 0.2% 

triton X 100 in PBS for 10 min followed by blocking with 10% FCS + 0.05% Triton X 100 in PBS 

for 45 minutes. Incubation with indicated primary antibodies (1:100-1:200) was performed 

for one hour at RT or overnight at 4 °C, followed by incubation with respective secondary 

antibodies (1:400) for 1 hour and Hoechst or DAPI (1 µg/ml) for 10-15 min. Coverslips were 

mounted using FlourSave (Calbiochem) mounting medium. Images were captured using 63 X 

1.4 Oil DIC objective of Laser Scanning Microscope LSM 510 Meta and analyzed using Zeiss 

image browser version 3.2.0.115. 

2.2.16 Statistical analysis 

For statistical significance unpaired Students t-test was performed using GraphPadPrismTM. 

P-values < 0.05 were considered as significant. Furthermore in the ex vivo luciferase 

experiment significant outlier were removed using Grubbs' test (alpha = 0.05). 
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3 Results  

3.1 Gene expression analysis of resistance formation upon metronomic CPA 

therapy  

To analyze the changes in gene expression after resistance formation upon metronomic 

cyclophosphamide therapy a microarray was performed previously as described in the 

dissertation of Lilja Thoenes (2009, LMU) and in the introduction part (1.1).  

In the following the validation and a detailed evaluation of the microarray results is 

presented. Analysis was focused on the differences between tumors of the in vivo passaged 

control cell line PC3 A3 and tumors of the two resistant cell lines PC3 D3 and PC3 D4. The 

most differentially regulated genes dehydrogenase/reductase member 2 (DHRS2), PAS 

domain containing protein 1 (PASD1) and neurotensin (NTS) as well as resistance related 

genes special AT-rich sequence-binding protein-1 (SATB1) and morphogenetic protein 

receptor type I B (BMPR1B) were chosen for microarray validation. Moreover, the 

involvement of two distinct genes 1) SATB1 and 2) ANXA3 was further evaluated. 

Furthermore, a KEGG-Pathway analysis revealed 3 potentially resistance associated 

pathways. 

3.1.1 Validation of regulated genes 

To validate the microarray results (Figure 1-4) five genes were chosen for qPCR analysis. 

Confirming the microarray results, expression of DHRS2, PASD1 and SATB1 was increased in 

resistant tumors compared to PC3 A3 control tumors. NTS and BMPR1B expression was 

decreased in resistant tissue (Figure 3-1).  

In general, gene regulations were stronger in PC3 D4 than in PC3 D3. For example DHRS2 

expression was increased 11-fold in PC3 D4 and 7-fold in PC3 D3. BMPR1B was reduced 

significantly in PC3 D4, whereas in PC3 D3 BMPR1B was only marginally reduced. 

Furthermore, expression of PASD1 was induced 11.7-fold in PC3 D3 and 9.1-fold in PC3 D4 

compared to PC3 A3 control tumors. Also SATB1 expression was induced in resistant tissue 

(2.4-fold in PC3 D3 and 2.3-fold in PC3 D4). In contrast, expression of NTS was clearly 

reduced in resistant sublines (5-fold in PC3 D3 and PC3 D4) (Figure 3-1).  
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Figure 3-1 Target gene expression 

Validation of differentially expressed genes by qPCR: A. dehydrogenase/reductase member 2 (DHRS2), PAS 

domain containing protein 1 (PASD1), special AT-rich sequence-binding protein-1 (SATB1), B. neurotensin (NTS) 

and bone morphogenetic protein receptor, type I B (BMPR1B) *p < 0.05, **p< 0.005, ***p<0.0005 (t-test) 

As resistant cell lines displayed their resistance only upon reimplantation in vivo and were 

sensitive to the activated form of CPA (4-HOO-CPA) in vitro (Figure 1-1 B), the expression of 

these five genes in the sublines under cell culture conditions was analyzed. As shown in 

Figure 3-2, in vitro expression of these genes clearly differed from in vivo expression. 

Whereas, DHRS1, PASD1 and SATB1 were less but still differentially expressed in resistant 

cell lines PC3 D3 and PCR D4, NTS and BMPR1B were not significantly reduced in vitro. 

 

Figure 3-2 Target gene expression in vitro 

Target gene expression in cell culture was analyzed by qPCR: A. dehydrogenase/reductase member 2 (DHRS2), 

PAS domain containing protein 1 (PASD1), special AT-rich sequence-binding protein-1 (SATB1), B. neurotensin 

(NTS) and bone morphogenetic protein receptor, type I B (BMPR1B) *p < 0.05, **p< 0.005, ***p<0.0005 (t-test) 

 

3.1.2 Generation and analysis of ANXA3 and SATB1 over expressing PC3 clones 

As the microarray results were approved by qPCR, the particular involvement in 

chemoresistance of two distinct genes was checked. 1) SATB1, a transcription factor, which 

A. B. 

A. B. 
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was reported to play a role in resistance upon cisplatin resistance in hepatocellular 

carcinoma [64] and 2) ANXA3, a protein previously found in a proteomic study to be more 

abundant in resistant PC3 clones on protein level [13]. In cooperation with Mark Laible, 

Stephanie Blaich and Melanie Hudler (DKFZ, Heidelberg) PC3 clones were stably transfected 

with SATB1 (PC3 SATB1), ANXA3 (PC3 ANXA3) or an empty vector construct (PC3 ev). The 

target genes are expressed under the regulation of a doxycycline dependent promoter. To 

ensure a stable over-expression a system which uses homologous recombination was 

applied (see dissertation of Stephanie Blaich, Ruprecht - Karls – Universität Heidelberg, 2007 

for details). To control the correct expression of the target genes mRNA and protein 

expression was determined by qPCR and western blot analysis. PC3 SATB1 and PC3 ev 

(control) were seeded. 24 hours later the expression was induced with 50 nM doxycycline 

for another 24 hours. Induction of the target gene expression was analyzed by qPCR. Results 

are shown in Figure 3-3 A. SATB1 expression was strongly induced by doxycycline in 

PC3 SATB1 but not in the empty vector control. Notably, PC3 SATB1 already expressed minor 

amounts of SATB1 mRNA without induction of doxycycline. In a next step the correct 

translation of the protein was analyzed by western blot. As shown in Figure 3-3 B detectable 

amounts of SATB1 were only expressed by induced PC3 SATB1 cells. 

 

 

Figure 3-3 Validation of PC3-SATB1 by qPCR and western blot 

A. qPCR of RNA B. western blot of protein lysates isolated from induced (24 hours, 50 nM doxycycline (+dox)) 

and not induced (-dox) PC3 SATB1 cells and PC3 ev (control). 

To evaluate the correct localization of SATB1 inside the cell, immuno-fluorescence imaging 

was performed. As shown in Figure 3-4 SATB1 protein was localized in the nucleus of 

doxycycline induced PC3 SATB1 cells. 

A. B. 
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Figure 3-4 Immuno-fluorescence imaging of PC3-SATB1 

PC3-SATB1 cells were cultivated on coverslips in 6-well plates and A. not induced (control) or B. induced using 

50 nM doxycycline for 24 hours; blue = nuclei (Hoechst) green = SATB1 (alexa 488) 

Subsequent to validation of the correct inducible over-expression of SATB1 in PC3 SATB1 

cells its influence on the chemo-sensitivity in vitro was evaluated. CPA is a prodrug which is 

only active in its metabolized form (4-HOO-CPA). After activation in the liver 4-HOO-CPA is a 

strong alkylating drug, targeting proliferating cancer cells (reviewed by Fenselau [65]). In the 

in vitro experiments CPA was substituted by melphalan another alkylating drug which does 

not have to be metabolically activated. Additionally, cell death induction by cisplatin was 

analyzed, as SATB1 earlier had been shown to induce cisplatin resistance in hepatocellular 

carcinoma [64]. Cells were seeded in 96-well plates and expression of SATB1 was induced by 

50 nM doxycycline for 24 hours. Subsequently melphalan or cisplatin treatment was carried 

out. As shown in Figure 3-5 A SATB1 overexpression had no influence on the chemo-

sensitivity to melphalan in vitro. Cell death was provoked under induced and not induced 

conditions at the same level. In contrast, SATB1 overexpression altered the chemo-sensitivity 

against cisplatin. As shown in Figure 3-5 B SATB1 overexpressing cells were less sensitive to 

the cisplatin treatment than not induced cells. 
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Figure 3-5 Functional analysis of SATB1 overexpression PC3 SATB1 cell line 

Cells were seeded in 96-well plates. One day after seeding STAB1 expression was induced by 50 nM doxycycline 

for 24 hours. Subsequently chemotherapy, melphalan A. or cisplatin B., was applied for 72 hours. Cytotoxicity 

was determined by CellTiterGlo assay. Data is presented as percent of untreated control cells. *p < 0.05, **p< 

0.005, ***p<0.0005 (t-test) 

Similar experiments were performed using the PC3 ANXA3 cell line. Again the empty vector 

cell line (PC3 ev = empty vector) served as control. 

As shown in Figure 3-6 A the endogenous expression of ANXA3 mRNA and protein was 

already high. The induction by doxycycline increased the mRNA expression about 1.75-fold. 

In concordance, the expression on protein level was only increased marginally (Figure 3-6 B). 

Immuno-fluorescence imaging showed that ANXA3 was located in the cytoplasm of both 

ANXA3 induced and not induced cells (Figure 3-6 C). 

The functional analysis showed no alteration in chemo-sensitivity to neither melphalan nor 

cisplatin of ANXA3 overexpressing cells compared to not induced control cells (Figure 3-6 D 

and E).  

 

 

Figure 3-6 continued 

A. B. 

A. B. 
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Figure 3-6 Analysis of ANXA3 overexpression PC3 ANXA3 cell line 

A. qPCR of RNA B. western blot of protein lysates isolated from induced (24 hours, 50 nM doxycycline (+dox)) 

and not induced (control (-dox)) PC3 ANXA3 cells and PC3 ev (control) C. ANXA3 expression was induced using 

50 nM doxycycline and not induced (control) for 24 hours; blue = nuclei (Hoechst) green = ANXA3 (alexa 488). 

D. + E. ANXA3 expression was induced by 50 nM doxycycline for 24 hours. Thereafter, chemotherapy, 

melphalan or cisplatin, was applied for 72 hours. Cytotoxicity was determined by CellTiterGlo assay. Data is 

presented as percent of untreated control cells. 

C. 

D. E. 
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Taken together neither ANXA3 nor SATB1 alone were able to induce an in vitro resistance to 

the alkylating drug melphalan. Notably, a potential influence of ANXA3 or SATB1 

overexpression in vivo was not evaluated within the framework of this thesis. 

Further analysis was no longer focused on one special gene but more on the involvement of 

whole pathways and microenvironmental factors. 

3.1.3 Analysis of pathways involved in chemoresistance 

For further analysis different points were taken into account: 1) Resistant cell lines showed 

no in vitro resistance [13]. 2) The expression of in vivo regulated genes differed a lot from 

in vitro (Figure 3-1 and Figure 3-2). 3) No correlations of single target genes to resistance 

could be made in vitro (3.1.2). All these points lead to the hypothesis that the mechanism 

leading to chemoresistance to anti-angiogenic therapy are very complex, including the 

alteration of whole signaling pathways. 

To evaluate which pathways might be involved in resistance formation, a KEGG-pathway 

analysis was performed, including all genes with an expression change of 0.4 fold (up- and 

downregulated). This analysis revealed a potential involvement of three pathways: 1) axon 

guidance, 2) steroid biosynthesis and 3) complement and coagulation cascades (Figure 3-7). 

As blood flow might play a crucial role during resistance formation to anti-angiogenic 

therapy, further analysis was focused on the genes grouped in complement and coagulation 

cascades. In complement and coagulation cascades grouped genes included: tissue factor 

(F3), plasminogen activator tissue (PLAT), protein S (PROS), serine peptidase inhibitors A1 

and D1. After the analysis two differentially expressed coagulation genes annexin A3 

(ANXA3) and serine peptidase inhibitor clade B 7 (SERPINB7) were added to this group from 

the list of differentially expressed genes, as they are also reported to be correlated with 

coagulation. ANXA3 was shown to inhibit coagulation in vitro and SERPINB7 is a member of 

the serpins, a coagulation related protein-family [66, 67]. 

The expression pattern of the grouped genes was as follows: In resistant tissue the 

expression of coagulation related genes tissue factor (F3), plasminogen activator tissue 

(PLAT) and annexin A3 (ANXA3) was increased in resistant tumors, whereas the expression of 

protein S (PROS1), and serine proteinase inhibitors: SERPIND1, SERPINA1 and SERPINB7 was 

decreased (Table 3-1). 
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Figure 3-7 KEGG-Pathway analysis of regulated genes 

KEGG-Pathway analysis of differentially expressed genes (377 genes +/- 0.4 rel. expr. change)  

 

 

Table 3-1 Expression of complement and coagulation cascades associated genes 
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3.1.3.1 Gene expression of coagulation in resistant tumors 

To confirm the in the microarray predicted differential expression of coagulation related 

genes qPCR analysis was performed. Results are shown in Figure 3-8 as fold expression of 

control tumors (PC3 A3). The expression level of tissue factor was slightly increased. In 

PC3 D3 tumor tissue and in PC3 D4 tumor tissue F3 was highly expressed.  

 

Figure 3-8 Expression of coagulation related genes 

Validation of coagulation related gene expression by qPCR, SERPINA1 = serpin peptidase inhibitor clade A 

member 1, SERPIND1 = serpin peptidase inhibitor clade D member 1, SERPINB7 = serpin peptidase inhibitor 

clade B member 7, PROS1 = protein S (alpha), F3 = tissue factor, PLAT= plasminogen activator tissue and ANXA3 

= annexin A3 *p < 0.05 (t-test) 
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In contrast, SERPINA1 expression was reduced in resistant tumor tissue. In accordance, two 

potentially coagulation promoting genes SERPIND1 and SERPINB7 were downregulated in 

resistant tumors. Moreover, mRNA expression of proteins hampering coagulation PLAT and 

ANXA3 was increased in PC3 D3 and PC3 D4 tumor tissue compared to PC3 A3 control tissue 

(Figure 3-8). 

When analyzing the gene expression from in vitro cultured cell lines again a different pattern 

was observed: F3, PLAT, ANXA3 showed no altered gene expression in PC3 D3 and PC3 D4 

versus PC3 A3 (Figure 3-9), whereas the expression profile of SERPINA1, SERPIND1, SERPINB7 

and PROS1 were similar to that in vivo. 

In summary PLAT and ANXA3 that encode anti-coagulation proteins were upregulated and 

the SERPINs which are potentially promoting coagulation were downregulated in resistant 

tumor tissue, compared to in vivo passaged control tumors. These effects were not present 

in vitro. Interestingly, in contrast to the SERPINS the expression of pro-coagulation F3 gene 

was upregulated. 

 

 

 

Figure 3-9 continued  
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Figure 3-9 expression of coagulation related genes in vitro 

Expression of coagulation related genes in cell culture samples: SERPINA1 = serpin peptidase inhibitor clade A 

member 1, SERPIND1 = serpin peptidase inhibitor clade D member 1, SERPINB7 = serpin peptidase inhibitor 

clade B member 7, PROS1 = protein S (alpha), F3 = tissue factor, PLAT= plasminogen activator tissue and ANXA3 

= annexin A3 *p < 0.05 (t-test) 

 

3.1.3.2 F3 exon structure is altered in resistant PC3 D4 tumors  

F3 is a candidate which does not fit into the structure of an anti-coagulative status. F3 is 

highly upregulated in resistant tumors, but is a coagulation promoting gene. As shown in the 

introduction part (Figure 1-5), the exon structure of F3 was irregular. The microarray probe 

setup allows the expression of a single exon in detail. Comparing resistant PC3 D4 to in vivo 

passaged control PC3 A3 tissue, the exon expression profile of F3 shows an altered signal 

intensity between exon 3 and 6, whereas no differences were detected in exon 1 and 2 

(Figure 1-5). This indicates an expression of different F3 isoforms. Sequencing of the F3 gene 

transcript revealed no mutations in the coding sequence (data not shown). Thus it was 

hypothesized that two diverse transcripts of the F3 gene are present, one being prominently 

expressed in PC3 D4 tumors. To prove this finding, the expression levels of exon 1-2 and 

exon 5-6 were analyzed by qPCR respectively. In PC3 D4 a higher relative expression of exon 

5-6 compared to exon 1-2, providing evidence for the presence of two different F3 

transcripts (Figure 3-10 A) was observed. Western blot analysis of the F3 protein expressed 
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by PC3 D4 cell line when cultured in vitro compared to samples from tumor tissue directly 

reflects the qPCR results (Figure 3-10 B). In vitro PC3 D4 cells expressed low levels of F3 

protein, with a molecular weight of 47 kDa. On the contrary, in PC3 D4 tumor samples two 

types of F3 protein were observed, one with 47 kDa and another one with a lower molecular 

weight. The smaller F3 form is more abundant than the 47 kDa form (Figure 3-10 B).  

 

Figure 3-10 Analysis of F3 exon expression 

A. qPCR of exon 1-2 and exon 5-6 of F3 B. western blot analysis of F3 in resistant cell line PC3 D4 from in vitro 

cell culture samples and in vivo tumor samples 

Overall, it can be hypothesized that the additional short form of F3 missing exon 1 and 2 in 

resistant tumors is present in vivo. This shortening might lead to a loss of function, helping to 

maintain the anti-coagulative status. 

Taken together microarray analysis revealed a potential involvement of anti-coagulation in 

resistances formation upon metronomic CPA therapy. 

3.1.4 Anti-coagulation in vivo 

It could be shown that coagulation might be one of the pathways involved in resistance to 

metronomic CPA therapy. Anti-coagulation genes were upregulated and pro-coagulation 

genes were downregulated. To analyze if an anti-coagulative status contributes to resistance 

formation upon metronomic CPA treatment, the effect of warfarin was tested. Warfarin is an 

anti-coagulative drug.  

PC3 A3 cells were injected subcutaneously into the flanks of male SCID mice (5-7 per group). 

Two of in total four groups were treated with CPA (120 mg/kg every sixth day, i.p.) starting 

A. B. 
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at day 12 after tumor inoculation. The other two groups served as control. One of the CPA 

groups and one of the control groups were treated additionally with warfarin, starting at day 

11 after tumor inoculation. Until day 18, warfarin was applied over the drinking water. As 

mice stopped drinking around day 16 the treatment regimen was change to warfarin 5 

mg/kg i.p. every third day. Mice carrying tumors bigger than 1000 mm³ were euthanized. On 

day 57 the experiment had to be stopped due to severe weight loss. Analysis was carried out 

including only those 3 mice per group which lived until day 57, mice of the CPA treatment 

groups which had to be euthanized before day 57 were excluded. As shown in Figure 3-11 

CPA treatment significantly reduced tumor growth. Approximately at day 40 PC3 A3 tumors 

restarted growing. Warfarin had no significant effect on resistance formation. Comparing 

tumor sizes relative to day 11 warfarin and CPA treated tumors are growing slightly but not 

significantly faster than CPA treated tumors without warfarin administration (Figure 3-11).  

 

 

 

Figure 3-11 PC3 A3 tumor growth in vivo 

Growth of PC3 A3 s.c. tumors over time. A. tumor volume B. percent of tumor volume on day 11 

In summary, it could be shown that resistance to metronomic therapy is a complex 

mechanism. Neither overexpression of ANXA3 nor SATB1 (both genes were upregulated in 

resistant tissue) were able to provoke an in vitro resistance. Moreover, the involvement of 

whole pathways and signaling cascades in resistance formation was shown. In particular, the 

pathway of complement and coagulation cascades was shown to be altered in resistant 

tissue. Up to now this involvement could not been proved in vivo, as warfarin, an inhibitor of 

coagulation did not accelerate resistance to metronomic CPA therapy in a first in vivo 

experiment.  

A. B. 
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3.2  Characterization of archazolid action on the secretion profile of 

eukaryotic cells 

In cancer the V-ATPase plays a pivotal role. It can be located on the plasma membrane as 

well as on intracellular membranes like the lysosome membrane. The V-ATPase is an ATP 

dependent proton pump and pumps protons out of the cell or into lysosomes. Thus it 

maintains the intracellular pH and acidifies endosomes and prelysosomal compartments.  

It is known from literature that V-ATPase inhibition strongly alters exo- and endocytotic 

events by interfering intracellular trafficking [68, 69]. As the microenvironment plays an 

important role in cancer progression the influence of archazolid, a novel V-ATPase inhibitor, 

on the secretion profile of eukaryotic cells was evaluated. Therefore, the protein abundance 

in supernatants of archazolid treated highly migratory [70] human urinary bladder carcinoma 

cells and primary human monocytes were analyzed by LC-MS/MS. 

All LC-MS/MS measurements were performed in cooperation with Dr. Thomas Froehlich and 

Dr. Georg J. Arnold (Genzentrum, LMU Munich, Germany). 

3.2.1 Secretome analysis of archazolid treated monocytes 

As mentioned before the microenvironment plays a crucial role in cancer progression. 

Especially, the influence of the immune system is critical, as it can defeat and actively kill 

tumor cells as well as promote tumor growth. To get a first insight, which proteins are 

secreted from primary human monocytes a qualitative analysis was performed. Monocytes 

were treated with 10 nM archazolid for 24 hours in serum free media. To promote the 

secretion of pro-inflammatory cytokines, stimulation with lipopolysaccharides (LPS) was 

performed simultaneously. Supernatants were collected, concentrated and separated using 

SDS-PAGE (Figure 3-12 A). The coomassie stained gel shows a slightly stronger staining in 

lanes C and D compared to the control in lane A and B which leads to a first assumption that 

an increased amount of proteins was secreted during archazolid treatment. In contrast, an 

alteration of the secretion profile by LPS was not visible on the gel. Furthermore, one can 

estimate that the fetal calf serum (FCS) contamination was neglect able, as the serum 

albumin signal around 60 kDa was in the appropriate intensity. To identify the present 

proteins, lanes were cut into 10 pieces and analyzed using LC-MS/MS. 
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In total 152 proteins were identified. Further, an analysis of the cellular components of the 

identified genes using uniprot.org identified 17% as secreted proteins. The majority was 

identified as intracellular proteins (Figure 3-12 B). Notably, identification of secreted 

proteins is strongly depended on the algorithm applied by the used software. Thus, the 

assignment of the identified proteins to cellular compartments only served to get a first 

insight to the data (Figure 3-12 B). Furthermore a KEGG-Pathway analysis using DAVID 

bioinformatics indicated the involvement of different pathways. The five most enriched are: 

1) regulation of the actin cytoskeleton, 2) glycolysis and gluconeogenesis, 3) leukocyte 

transendothelial migration, 4) focal adhesion and 5) systemic lupus erythematosus (Figure 

3-12 C). 

 

 

 

Figure 3-12 LC-MS/MS Analysis of secreted proteins 

A. 5 x 10
6
 human primary monocytes were seeded per 75 cm

2
 cell culture flasks and treated with 10 nM 

archazolid (lanes C and D) or 0.01% DMSO as control (lanes A and B). LPS stimulation was done using 1 µg/ml 

(lanes A and C). Supernatants were collected after 24 hours, concentrated and SDS-PAGE was performed using 

a 12.5% gel. After electrophoresis each lane was cut into 10 similar pieces. A total number of 152 proteins were 

identified. Identified proteins were analyzed using uniprot.org and DAVID bioinformatics. B. Cellular 

component of identified proteins C. KEGG-Pathway analysis of identified proteins, p-values equal or smaller 

than 0.05 were considered as strongly enriched. 16 pathways were identified as strongly enriched. Shown are 

the 5 pathways with the highest count numbers. 

A. B. 

C. 
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In a second approach secreted proteins of human monocytes were quantified using the 

iTRAQ (Isobaric tag for relative and absolute quantitation) method (Figure 3-13). Here, 

protein abundance in a given sample can be quantified using an isotope-coded covalent tags 

(reviewed by Zieske, 2006 [71]. 

 

Figure 3-13 Chemical structure of the iTRAQ-label 

The iTRAQ-label contains an isobaric tag consisting of a charged reporter group, a peptide reactive group, and a 

neutral balance portion to maintain an overall mass of 145 [71].  

 

Human primary monocytes activated with LPS (lipopolysaccharides) were treated with 

10 nM archazolid for 24 hours or not treated. Protein abundance in the respective 

supernatants was analyzed. Three LC-MS/MS measurements, comparing one treated sample 

with one control sample were performed. In Table 3-2 results of all three measurements are 

shown. A cut off of 0.4 relative differences in abundance was set. Although all samples were 

prepared simultaneously, differences in relative abundance appeared very diverse within the 

measurements.  

To draw further conclusions western blot validation has to be performed in future 

experiments. Potential candidates for validation may be: 1) thrombospondin 1 

(TSP1_HUMAN) as it is differentially abundant in all three samples, 2) interleukin 6 and 8) 

interleukin 8 as they are both cytokines involved in monocyte mediated signal transduction.  
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Table 3-2 Relative quantification (iTRAQ) of secreted proteins 

withe background: less abundant, gray= more abundant  

Sample 7_5 

 

Sample 7_6 

 

Sample 7_7 

# Accession Number rel. a  

 

# Accession Number rel. a  

 

# Accession Number rel. a 

1 ALBU_HUMAN -1,3 

 

1 VIME_HUMAN -1,4 

 

8 TSP1_HUMAN -1,9 

2 ACTB_HUMAN  -0,9 

 

2 MOES_HUMAN -1,2 

 

98 ANXA6_HUMAN -1,7 

3 VIME_HUMAN -0,6 

 

3 PROF1_HUMAN -1 

 

40 IL6_HUMAN -1,4 

4 ENOA_HUMAN -0,6 

 

4 ACTB_HUMAN  -1 

 

72 K2C1_HUMAN -1,4 

5 PROF1_HUMAN -0,6 

 

5 ENOA_HUMAN -1 

 

31 PAI2_HUMAN -1 

6 TSP1_HUMAN -0,4 

 

6 MYH9_HUMAN -0,8 

 

58 IL8_HUMAN -1 

7 TPIS_HUMAN -0,4 

 

7 PLSL_HUMAN -0,7 

 

45 S10A8_HUMAN -0,8 

   

 

8 FLNA_HUMAN -0,7 

 

53 CLIC1_HUMAN -0,7 

   

 

9 ALBU_HUMAN -0,7 

 

27 S10A9_HUMAN -0,5 

   

 

10 TSP1_HUMAN -0,6 

 

28 CXCL7_HUMAN -0,5 

   

 

11 K2C1_HUMAN -0,6 

 

41 TLN1_HUMAN -0,5 

   

 

12 H4_HUMAN -0,6 

 

46 COF1_HUMAN -0,5 

   

 

13 1433Z_HUMAN -0,6 

 

23 H2B1C_HUMAN  -0,4 

   

 

14 TKT_HUMAN -0,6 

 

71 H31T_HUMAN  -0,4 

   

 

15 ALDOA_HUMAN -0,6 

 

   

    

16 LYSC_HUMAN -0,6 

 

   

    

17 ACTN4_HUMAN -0,5 

 

   

    

18 G6PI_HUMAN -0,5 

 

   

    

19 H2B1C_HUMAN  -0,5 

 

   

    

20 ANXA1_HUMAN -0,4 

 

   

    

21 COR1A_HUMAN -0,4 

 

   

    

22 K1C10_HUMAN -0,4 

 

   

    

23 S10AB_HUMAN -0,4 

 

   

    

24 HSP7C_HUMAN -0,4 

 

   

    

25 TALDO_HUMAN -0,4 

 

   

27 ITAM_HUMAN 0,4 

 

78 H12_HUMAN  0,4 

 

17 1433Z_HUMAN 0,4 

28 MYH9_HUMAN 0,4 

 

79 HEXB_HUMAN 0,4 

 

33 GDIR2_HUMAN 0,4 

29 PRDX1_HUMAN 0,4 

 

80 HNRH1_HUMAN 0,4 

 

67 PPIB_HUMAN 0,4 

30 SH3L3_HUMAN 0,5 

 

81 KCD12_HUMAN 0,5 

 

93 SH3L1_HUMAN 0,4 

31 TPM3_HUMAN 0,6 

 

82 LEG1_HUMAN 0,5 

 

32 HSP71_HUMAN 0,5 

32 TALDO_HUMAN 0,6 

 

83 LKHA4_HUMAN 0,5 

 

36 H14_HUMAN 0,5 

33 ELNE_HUMAN 0,6 

 

84 PPIB_HUMAN 0,9 

 

65 PERM_HUMAN 0,5 

34 DEF1_HUMAN  0,7 

 

85 SHPS1_HUMAN  0,9 

 

70 CATS_HUMAN 0,5 

    

86 STMN1_HUMAN 0,9 

 

82 FETUA_HUMAN 0,5 

    

87 SUMO2_HUMAN 1 

 

75 TAGL2_HUMAN 0,7 

    

88 THIO_HUMAN 1 

 

88 NPC2_HUMAN 0,8 

    

89 ANXA2_HUMAN 1,1 

 

84 G3P_HUMAN 0,9 

    

90 CATS_HUMAN 1,1 

 

90 PLBL1_HUMAN 1,3 

    
91 NUCL_HUMAN 1,4 

 
38 SAP_HUMAN 1,4 

    
92 PAI2_HUMAN 1,5 

    

    
93 B2MG_HUMAN 1,7 

    

    
94 CALR_HUMAN 6,2 
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Additional to the proteomic analysis of monocytes supernatants, corresponding cell lysates 

were analyzed by western blot. Furthermore, human primary monocytes were differentiated 

into macrophages and treated with 10 nM archazolid for 4 hours. As it will be shown in the 

following chapters, abundance of the lysosomal protease and tumor marker cathepsin B is 

strongly altered by archazolid treatment. Thus, cathepsin B protein in cell lysates of 

macrophages and monocytes was analyzed by western blot. As shown in Figure 3-14 

cathepsin B protein was not detectable in monocytes. In contrast in macrophages 

cathepsin B was strongly expressed. Here archazolid treatment significantly reduced the 

amount of mature cathepsin B. 

 

 

 

Figure 3-14 Cathepsin B secretion of primary human monocytes and macrophages 

A. Human primary monocytes were treated with 10 nM archazolid = archB, lysosomotropic agent chloroquine = 

CQ (10 µM) or control treated with 0.01% DMSO. LPS stimulation was done using 1 µg/ml. Cells were lysed 

after 24 hours, concentrated and western blot analysis of cathepsin B was performed. B. Human primary 

macrophages were seeded in cell culture flasks and treated with 10 nM archazolid (n=3) or with 0.01% DMSO 

(n=3). Cells were lysed after 4 hours (macrophages), concentrated and western blot analysis of cathepsin B was 

performed. proCTSB = procathepsin B, mCTSB = mature cathepsin B 

  

A. B. 
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3.2.2 Secretome analysis of archazolid treated urinary bladder carcinoma cells 

After analyzing the influence of archazolid on immune cells it was analyzed how V-ATPase 

inhibition by archazolid alters the secretion profile of migratory cancer cells. Thus, in a first 

experiment the secretion profile of archazolid treated T-24 (urinary bladder carcinoma cells), 

was determined. Therefore, supernatants of archazolid treated and control treated T-24 

cells were collected and concentrated. A concentration of 1 nM archazolid was chosen as no 

cytotoxicity was detected for this concentration after 24 hours in FCS free media (Figure 3-15 

B). Moreover, a staining of acidic compartments using the lysotracker reagent showed that 

starting with a concentration of 1 nM archazolid the size and distribution of acidic 

compartments is altered. At a concentration of 10 nM no lysotracker staining was 

detectable, indicating that lysosomes are no longer acidic (Figure 3-15 C). In concordance 

immunofluorescence staining of the lysosomal marker protein (lamp1) shows and altered 

lamp1 protein distribution already at 1 nM archazolid (Figure 3-19).  

 

 

 

 

Figure 3-15 continued 

 

A. B. 
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Figure 3-15 Analysis of archazolid treated T-24 cells 

A. 1.5 x 10
6
 T-24 cells were seeded in cell culture flasks and treated with 1 nM archazolid for 24 h. Supernatants 

were collected, concentrated and SDS-PAGE was performed using a 12.5% gel. After electrophoresis each lane 

was cut into 10 similar pieces. B. CellTiterGlo-Assay of T-24 cells after 24 hours of treatment, STS = 

staurosporine (positive control). C. lysotracker staining of archazolid treated (1 nM and 10 nM for 24 hours) 

T-24 cells.  

Thus, T-24 cells were treated 24 hours with 1 nM archazolid for analysis of the secretion 

profile. Supernatants were collected and concentrated. In the following, proteins were 

separated using SDS-PAGE (12.5%) and each lane was cut into 10 pieces (Figure 3-15 

A).Proteins were reduced, alkylated and digested with trypsin by in-gel-digestion (2.2.9.1), 

prior to LC-MS/MS analysis. 

Identified proteins were analyzed using uniprot.org and DAVID bioinformatics. Analysis of 

cellular component showed that 26% of all identified proteins were mapped into the 

category of secreted cellular component (Figure 3-16 A). Furthermore, KEGG-Pathway 

analysis showed the enrichment of 16 pathways. The five carrying the highest count 

numbers are shown in Figure 3-16 B. 

  

C. 
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Figure 3-16 LC-MS/MS analysis of secreted proteins 

A total number of 374 proteins were identified. Identified proteins were analyzed using uniprot.org and DAVID 

bioinformatics. A. Cellular component of identified proteins B. KEGG-Pathway analysis of identified proteins: 16 

pathways were identified as strongly enriched. Shown are the 5 pathways including the highest count-

numbers. p-values equal or smaller than 0.05 were considered. In the included table on the right identifiers of 

the pathway lysosome are listed. 

Namely, the five most enriched pathways were 1) focal adhesion, 2) ECM-receptor 

interaction, 3) Regulation of actin cytoskeleton, 4) Ribosome and 5) Lysosome. As it is known 

from literature that V-ATPase inhibitor bafilomycin induces lysosomal enzyme secretion in 

macrophages and lysosomal proteases are correlated with enhanced invasion further 

analysis was focused on the lysosomal pathway. Identified proteins annotated in the 

A. 

B. 



  

Results 

50 

 

category lysosome are shown in Figure 3-16 B, right table. Especially members of the 

cathepsin family were prominent in the secretion profile. Therefore quantification by 

western blot was performed for cathepsin B and cathepsin D. Both proteins are tumor 

makers and potentially involved in metastatic processes [42, 45]. T-24 cells were treated 

with archazolid in FCS free media and supernatants were collected after 24 hours. 

Thereafter, samples were concentrated and western blot was performed. As shown in Figure 

3-17 both proteins were significantly more abundant in supernatants of archazolid treated 

cells. Signals indicated that not the active enzymes (25 kDa cathepsin B and 28 kDa 

cathepsin D) but the inactive and larger preforms (41 and 46 kDa) were secreted. 

 

 

 

Figure 3-17 Western blot analysis of secreted cathepsin B and cathepsin D 

Supernatants of archazolid treated T-24 cells (-FCS, 1 nM archazolid, 24 hours) and control supernatants (-FCS, 

DMSO, 24 hours) were collected. After SDS-Page gels were blotted on a nitrocellulose membrane and probed 

with either anti-cathepsin B or anti-cathepsin D specific antibodies. 

To prove that the secretion of procathepsin B and not of mature cathepsin B was induced by 

archazolid, supernatants of treated T-24 cells were separated by SDS-PAGE. The part where 

the signals of the western blot appeared around 41 kDa was excised from the coomassie 

stained gel and proteins in this fraction analyzed by LC-MS/MS. As shown in Figure 3-18 a 

peptide was identified, which is part of the propeptide of cathepsin B proving that 

procathepsin B is the prominent secreted form during archazolid treatment. 
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Figure 3-18 Identification of procathepsin B by qualitative LC-MS/MS 

Supernatants of archazolid treated T-24 cells were separated by SDS-PAGE, a section of the coomassie stained 

cell around >37 kDa (where the signals of the western blot appear) was excised, digested and subjected to 

LC-MS/MS. Source of sequence data: uniprot.org 
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3.3 Lysosome inhibition by archazolid in cancer cells 

Since the secretome analysis showed that archazolid strongly alters the fate of lysosomal 

proteins and induces the secretion of their proforms, in the following the influence of 

lysosome inactivation by archazolid on urinary bladder carcinoma cells was analyzed. 

As previously shown, archazolid neutralizes lysosomes by V-ATPase inhibition similar to 

other V-ATPase inhibitors like bafilomycin or concanamycin [29, 30]. 

Furthermore, an immuno-fluorescence staining of lamp1 (Lysosomal-associated membrane 

protein 1) protein showed that the enlarged lamp1 containing structures, which were earlier 

described as a result of concanamycin and bafilomycin treatment [68] arise also after 

archazolid treatment (Figure 3-19). Lysosome marker lamp1 is located on relatively small 

vesicles in untreated T-24 cells. After 24 hours of 1 nM archazolid the lamp1 signals appear 

in bigger vesicular compartments, which are even larger when cells were treated with 10 nM 

archazolid.  

Taken together archazolid induced inactivation of V-ATPase led to neutralization of the 

lysosomes (Figure 3-15 C) and to the formation of mega-lysosomal compartments (Figure 

3-19). 

 

� DAPI   � lamp1 

 

Figure 3-19 Immuno-fluorescence imaging of lamp1 protein 

T-24 cells were seeded on cover slips in 6-well plates. Cells were treated for 24 hours with 1 nM and 10 nM 

archazolid, fixed and immuno-fluorescence imaging of lamp1 (green) was performed. 
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3.3.1 Concentration and time dependent secretion of procathepsin B 

Archazolid induced the secretion of procathepsin B. Thus, in this chapter the archazolid 

induced secretion of procathepsin B was analyzed more in detail. 

First T-24 cells (urinary bladder carcinoma) as well as a second cancer cell line MCF-7 (breast 

cancer) were treated with increasing concentrations of archazolid. Procathepsin B secretion 

was monitored by western blot analysis of cathepsin B in concentrated supernatants. After 

24 hours procathepsin B secretion by T-24 cells was detected starting at a concentration of 

0.5 nM archazolid (Figure 3-20 A, upper panel). MCF-7 cells secreted detectable amounts of 

procathepsin B at 1 nM of archazolid (Figure 3-20 A, lower panel). 

To evaluate the secretion kinetics, T-24 and MCF-7 cells were treated for extended time 

periods with 1 nM archazolid. Both T-24 and MCF-7 cells secreted detectable amounts of 

procathepsin B after 5 hours of archazolid treatment. Procathepsin B accumulated in the 

supernatants over time (Figure 3-20 B). 

 

Figure 3-20 Western blot analysis of supernatants of archazolid treated cells 

A. T-24 cells or MCF-7 cells were treated with 0.1 nM, 0.5 nM, 1 nM and 10 nM archazolid for 24 hours, 

supernatants were collected, concentrated and western blot was performed. B. T-24 cells or MCF-7 cells were 

treated with 1 nM archazolid; supernatants were collected after 2, 5, 10 and 24 hours, concentrated and 

western blot was performed. proCTSB = procathepsin B 

Taken together, archazolid induced procathepsin B secretion was concentration and time 

dependent in both cell lines. In general, detected effects were stronger in T-24 cells than in 

MCF-7 cells.  

A. B. 
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3.3.2 Reduction of intracellular cathepsin B activity by archazolid 

Previously it was shown that archazolid induces the secretion of lysosomal proenzymes 

procathepsin B and procathepsin D. To evaluate the intracellular fate of different cathepsin B 

forms during V-ATPase inhibition, T-24 cells were treated with increasing concentrations (0.1 

– 10 nM) of archazolid for 24 hours and cell lysates were analyzed by western blot (Figure 

3-21 A). As it is shown in Figure 3-21 A the abundance of procathepsin B (41 kDa) increased, 

whereas the amount of mature cathepsin B (heavy chain, 25 kDa) decreased with increasing 

archazolid concentrations. Also the amount of mature cathepsin D decreased while the 

proform of cathepsin D increased. Furthermore, the mRNA expression of cathepsin B and 

cathepsin D was evaluated. qPCR analysis showed that the mRNA of cathepsin B and 

cathepsin D was more than 3-fold increased in archazolid treated T-24 cells (Figure 3-21 B). 

 

Figure 3-21 Cathepsin B expression 

A. T-24 cells were treated with 0.1, 0.5, 1 and 10 nM archazolid or mock treated with DMSO (control). Cells 

were lysed after 24 hours of treatment proCTSB/D = procathepsin B/D, mCTSB/D = mature cathepsin B/D; 

B. T-24 cells were treated with 1 or 10 nM archazolid or mock treated for 24 hours. Cathepsin B and 

cathepsin D mRNA expression was determined using qPCR. 

A. B. 
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To investigate the cellular distribution of cathepsin B immunofluorescence imaging of 

intracellular cathepsin B (all cathepsin B forms) was performed. As shown in Figure 3-22 

cathepsin B was primarily located in small vesicular compartments in control cells. These 

compartments appeared larger at a concentration of 1 nM archazolid. Even larger, 

cathepsin B positive vesicular compartment were detected after archazolid treatment of 

10 nM. 

 
Figure 3-22 Immuno-fluorescence imaging of cathepsin B 

T-24 cells were seeded on cover slips in 6-well plates. Cells were treated for 24 hours with 1 nM and 10 nM 

archazolid, fixed and immuno-fluorescence cathepsin B (green) was performed. 

Since western blot analysis showed that archazolid induced a dramatic decrease of mature 

cathepsin B (Figure 3-21 A), the proteolytic activity of cathepsin B in archazolid treated cell 

lysates was evaluated by a cathepsin B activity assay (2.2.1). In Figure 3-23 it is shown that 

archazolid significantly reduced the cathepsin B activity down to less than 40% of the 

control. 

 

Figure 3-23 Cathepsin B activity in cell lysates  

T-24 cells were treated with 1 or 10 nM archazolid or were mock treated with DMSO (control). After 24 hours 

cells were lysed. The relative cathepsin B activity in 30 µg (total protein) of each lysate was determined. *p < 

0.05, **p< 0.005, (t-test) 
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In summary, archazolid treatment reduced the amount of intracellular mature cathepsin B, 

which resulted in a decreased cathepsin B proteolytic activity. Concomitantly, the mRNA 

level of cathepsin B increased during archazolid treatment. 

3.3.3 Effects on cathepsin B by V-ATPase V0c silencing 

To estimate if the altered cathepsin B abundance was a direct effect of the inhibition of 

V-ATPase, the target of archazolid, the V0c subunit, was silenced by RNAi. 

Analyzing V0c mRNA expression 24 and 48 hours after transfection, a clear knockdown of 

subunit V0c was detectable (Figure 3-24 A). Similar to archazolid treatment, silencing of 

subunit V0c induced cathepsin B mRNA expression (Figure 3-24 B). 

Western blot analysis of supernatants of V0c silenced cells showed an induced 

procathepsin B secretion (Figure 3-24 C), while in whole cell lysates intracellular mature 

cathepsin B was reduced in V0c -siRNA treated samples. Procathepsin B was slightly elevated 

in V0c-siRNA treated cells compared to the noncoding control (Figure 3-24 D).  

 

 

Figure 3-24 continued 

A. B. 
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Figure 3-24 Effect of V-ATPase knockdown on mRNA and protein level 

T-24 cells were transfected either with siRNA against V0c or control siRNA. Cells were lysed 24 or 48 hours after 

transfection. A. Sufficient knockdown was monitored by qPCR of V-ATPase subunit V0c. B. Expression of 

cathepsin B mRNA during V0c knockdown was analyzed by qPCR. C. procathepsin B secretion and D. 

intracellular cathepsin B after 24 hours was analyzed by western blot. **p< 0.005, ***p<0.0005 (t-test) 

In summary, the described archazolid effects on cathepsin B expression could be mimicked 

by silencing of the archazolid target domain (V0c) of the V-ATPase by RNAi. 

3.3.4 Procathepsin B secretion is induced by lysosome neutralization  

In the previous chapter it was shown that the archazolid effects on cathepsin B expression 

arise from V-ATPase inhibition. Therefore it was analyzed if other V-ATPase inhibitors exhibit 

similar effects on procathepsin B secretion. Thus, T-24 cells were treated with the following 

V-ATPase inhibitors: 1) bafilomycin A1 and 2) concanamycin A. 

Analyzing the supernatants of bafilomycin and concanamycin T-24 cells for cathepsin B 

abundance by western blot analysis, an elevated procathepsin B secretion was detected in 

bafilomycin and concanamycin treated samples but not in supernatants of control treated 

cells. As a second control T-24 cells were treated with DNA-intercalator doxorubicin (Figure 

3-25). Neither 5 nM nor 10 nM doxorubicin did induce procathepsin B secretion after 

24 hours. Similar results were obtained for cathepsin D. 

C. D. 



  

Results 

58 

 

 

Figure 3-25 Induction of procathepsin B secretion by different V-ATPase inhibitors  

T-24 cells were treated with 1 nM archazolid = archB, 1 nM concanamycin A = concA, 1 nM bafilomycin A1 

=bafA1, 0.01% DMSO = control or 5 and 10 nM doxorubicin = DXR for 24 hours. Supernatants were collected, 

concentrated and western blot was performed.  

These results indicate that archazolid induced reduction of mature cathepsin B and induced 

procathepsin B secretion is caused by hampered lysosome function. Due to the fact that 

V-ATPase inhibition leads to the neutralization of the lysosome [29], it was evaluated 

whether the detected secretion of procathepsin B in T-24 cells by archazolid was a result of 

lysosome neutralization. For this purpose, cells were treated with lysosomotrophic agents: 

chloroquine and NH4Cl. In both cases procathepsin B secretion was detected in the 

supernatants (Figure 3-26). 

 

Figure 3-26 Induction of procathepsin B secretion by lysosomotropic agents  

T-24 cells were treated with lysosome disruption agents NH4Cl (5 mM) and chloroquine = CQ (20 µM) for 24 h. 

Supernatants were collected, concentrated and western blot was performed. 
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3.3.5 M6PR-dependent transport of procathepsin B to the lysosome 

In the previous chapters it could be shown that archazolid induced procathepsin B secretion 

and intracellular mature cathepsin B reduction is a result of lysosome neutralization by 

V-ATPase inhibition. To analyze in detail how archazolid action interferes with the 

cathepsin B maturation process further experiments were performed. 

It is known from literature that procathepsin B transport to pre-lysosomal compartments is 

mediated through the mannose-6-phosphate receptor (M6PR) [57]. After glycosylation in 

the Golgi apparatus, procathepsin B is bound to M6PR in the trans-Golgi network (TGN). 

M6PR containing vesicles are then fusing with prelysosomal compartments (PLC). After 

acidification of the PLC, M6PR can release its cargo and recycles to the TGN. M6PR cannot 

release its cargo if the pH of the compartment is too high [72]. As archazolid strongly raises 

the lysosomal pH by inhibiting V0c of the V-ATPase it was hypothesized based on the 

literature that bound procathepsin B cannot be released by the M6PR, when the lysosomal 

pH is elevated by archazolid action. As a result, no new mature cathepsin B can be generated 

and existing mature cathepsin B loses its activity in a non-acidic environment. The lack of 

cathepsin B might lead to an increased transcription of cathepsin B mRNA resulting in a 

procathepsin B overload, as new translated preprocathepsin B can be converted into 

glycosylated procathepsin B but cannot be subjected to M6PR mediated transport, which 

leads to the secretion of procathepsin B (schematically summarized in Figure 3-27 A. 

In order to prove this hypothesis, T-24 cells were treated with tunicamycin, an inhibitor of 

N--acetylglucosamine transferase which is part of the glycosylation process of lysosome 

targeted proteases [73]. As shown in Figure 3-27 B tunicamycin induces the secretion of a 

slightly smaller version of procathepsin B, indicating that blocking of the glycosylation 

process also impairs the M6PR mediated transport, resulting in secretion of procathepsin B 

in an unglycosylated form. Unglycosylated procathepsin B will not be bound to the M6PR as 

it lacks the tagging-sequence.  

Additionally, the transport from the endoplasmatic reticulum to the Golgi app. was inhibited 

by brefeldin. As shown in Figure 3-27 B treatment of T-24 cells using brefeldin fully blocked 

the archazolid induced procathepsin B secretion, as procathepsin B could not be transported 

to the Golgi app.. 
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Figure 3-27 Effect of tunicamycin and brefeldin on procathepsin B secretion 

A. schematically overview of the cathepsin B maturation process B. T-24 cells were treated either with 

tunicamycin = tunm (5 µg/ml), archazolid = archB (5 nM), brefeldin = bref or a combination of brefeldin = 

bref+archB (5 µg/ml) and archazolid (5 nM) for 24 hours.  

To visualize the archazolid induced impaired M6PR-trafficking immuno-fluorescence staining 

of M6PR was carried out (Figure 3-28). Archazolid treatment strongly altered the M6PR 

distribution in the cell, indicating an impaired recycling process. In untreated T-24 cells 

M6PR signals were distributed all over cell, concentrating in a nucleus associated region. In 

contrast, in archazolid treated cells M6PR signals were detected in vesicular compartments 

evenly distributed all over the cell (Figure 3-28). 

A. 

B. 
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Figure 3-28 continued  
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Figure 3-28 Immuno-fluorescence imaging of M6PR and cathepsin B 

T-24 cells were seeded on cover slips and treated with 1 nM and 10 nM archazolid for 24 hours. Cells were 

fixed and immuno-fluorescence was performed using antibodies against cathepsin B (green) and M6PR (red). 

Nuclei were stained using Hoechst dye (blue). 

In summary these results show that V-ATPase inhibition by archazolid impairs M6PR 

mediated trafficking from the TGN to prelysosomal compartments, resulting in a decrease of 

active lysosomal proteases like cathepsin B. 
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3.4 Action of archazolid and other myxobacterial compounds in vivo 

To evaluate if the detected archazolid action on cathepsin B maturation was also present 

in vivo, tumor bearing mice were treated with archazolid. These experiments were 

performed in cooperation with Laura Schreiner (PhD thesis 2013, LMU). In a first experiment 

two other myxobacterial compounds 1) pretubulysin and 2) chondramid B were included. 

An syngenic mouse model using mouse mammary gland tumor cells (4T1luc) stably 

expressing luciferase as a reporter gene was applied to analyze archazolid, pretubulysin and 

chondramid B action on tumor growth in vivo. 4T1luc cells were injected into the flank of 

BALB/c mice. Starting at day 3 after tumor injection, mice were treated 3 times per week i.v. 

with 3 mg/kg archazolid, 0.1 mg/kg pretubulysin, 0.5 mg/kg chondramid B or vehicle control 

(5% DMSO in PBS). None of the 3 substances reduced the growth of the main tumor 

significantly (Figure 3-29 A). Except that archazolid injection induced local cutaneous 

inflammation at the tail injection site, when not been totally injected intravenously, no acute 

toxicity of archazolid, pretubulysin or chondramid B was noticed during the treatment. Mice 

were euthanized on day 18 subsequently to tumor injection (after a total of 7 treatments).  

 

Figure 3-29 In vivo effect of myxobacterial compounds 

4T1luc cells were injected into the flanks of BALB/c mice. Starting on day 3, mice were treated 3 times per week 

i.v. with 3 mg/kg archazolid, 0.1 mg/kg pretubulysin, 0.5 mg/kg chondramid B or vehicle control (5% DMSO in 

PBS). On day 18 mice were euthanized. A. tumor growth B. ex vivo luciferase signal of the lungs on day 18 

None of the three substances exhibited a direct effect on tumor growth in this model. As it 

was known from literature, that 4T1 cells form metastases [74], distant metastases in the 

lungs were detected by the measurement of the luciferase signal. Although obtained results 

A. B. 
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were statistically not significant, lungs of mice which were treated with pretubulysin or 

archazolid showed less metastatic burden (Figure 3-29 B). 

A second experiment was focused on archazolid action on cathepsin B maturation. Again 

4T1luc cells were injected into the flanks of BALB/c mice. Starting at day 3 after tumor 

injection, mice were treated 3 times per week i.v. with 3 mg/kg archazolid. On day 16 mice 

were euthanized, tumors, and organs (lung, heart, kidney, spleen and liver) were harvested. 

Again archazolid treatment did not reduce tumor growth of 4T1luc cells (Figure 3-30 A). 

Furthermore, tumors showed no significant differences in morphology (Figure 3-30 B). 

 

Figure 3-30 Archazolid treatment of s.c. 4T1luc tumors in vivo 

4T1luc cells were injected into the flanks of BALB/c mice. At day 2, 3, 4 , 5, 9, 13 and 17 mice were treated with 

3 mg/kg archazolid or vehicle control (5% DMSO in PBS). On day 18 mice were euthanized. A. tumor growth 

and B. H&E stain of the tumor tissue 

To determine systemic archazolid action cathepsin B activity in livers of archazolid treated 

versus mock treated mice was analyzed. As shown Figure 3-31 A cathepsin B activity in the 

liver was strongly reduced by archazolid. To further evaluate if archazolid impaired also 

tumor cathepsin B, its activity in tumor lysates was determined. As shown in Figure 3-31 B, 

cathepsin B activity was reduced in tumors of archazolid treated mice. In accordance mature 

cathepsin B protein was reduced in the treatment group (Figure 3-31 C). Also in this 

experiment metastatic burden of the lungs was slightly but not significantly reduced in the 

archazolid treated group (Figure 3-31 D). 

In correspondence with in vitro results of 4T1luc cells cathepsin B mRNA expression was 

slightly, however not significantly induced (Figure 3-32).  

A. B. 
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Figure 3-31 Archazolid action on cathepsin B activity in vivo 

A. relative cathepsin B activity of the liver B. relative cathepsin B activity of the tumor *p < 0.05 (t-test) C. 

western blot analysis of tumor samples D. ex vivo luciferase activity measurement of the lungs (n=10). Whole 

lungs were homogenized and luciferase activity of metastasized 4T1luc cells of each sample was determined. 

Significant outlier were removed using Grubbs' test (alpha = 0.05). 

 

Figure 3-32 Cathepsin B mRNA expression of 4T1luc cells 

A. RNA of 30 µg of 5 tumors per group was isolated and cDNA was transcribed. qPCR was performed analyzing 

cathepsin B mRNA expression. B. Archazolid treatment of 4T1luc cells using 1 and 10 nM was performed for 24 

hours. RNA was isolated and cDNA was transcribed. qPCR was performed analyzing cathepsin B mRNA 

expression. 

A. B. 

C. D. 

A. B. 
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In summary, in vitro results were confirmed in vivo, as archazolid treated mice showed a 

reduced amount of cathepsin B protein in tumor tissue as well as a decreased proteolytic 

cathepsin B activity. Furthermore, a functional effect of archazolid on the formation of 

distant metastasis was detected. In two experiments archazolid treated mice exhibited a 

lesser metastatic burden in the lungs as control treated mice. 
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4 Discussion 

4.1 Resistance formation upon metronomic cyclophosphamide therapy 

Cells developing resistance to metronomic cyclophosphamide (CPA) therapy undergo a 

complex molecular evolution. Changes in many different factors and pathways contribute to 

the formation of a resistant phenotype. Metronomically administered CPA acts anti-

angiogenically on tumor vessels, whereas CPA given in standard dose is mainly acting on the 

tumor itself [11-13, 75]. Most of the classical resistance mechanisms can be ruled out in the 

present study (Figure 1-2). Neither increased MDR-transporter activity, nor neo 

angiogenesis, vascular mimicry or impaired CPA activation was observed (Figure 1-2 and 

[13]). Additionally a pharmacodynamic study of metronomically administered CPA suggests 

that it is unlikely that resistance to this kind of regimen is caused by impaired CPA activation 

[75]. The mechanisms of resistance formation to anti-angiogenic therapy are classified into 

four major groups: 1) evasive resistance, 2) vascular cooption, 3) reduced vascular 

dependence and 4) vascular remodeling [12]. In the present study the resistant tumor grows 

under conditions of hypoxia and restricted nutrients without the formation of additional 

tumor vessels [13] thus, the underlying mechanism leading to chemoresistance was assigned 

to the group of “reduced vascular dependence”. 

Previously to this work, a genome wide microarray was performed in a prostate cancer (PC3) 

xenograft model to investigate the molecular basis of in vivo resistance mechanisms to anti-

angiogenic CPA therapy. 

First the importance of appropriate in vivo controls was shown, as already the comparison of 

the gene expression profile of the in vivo passaged and standard PC3 tumors displayed a 

dramatic difference [14]. The gene expression profile of the standard, not in vivo passaged 

PC3 samples were clearly distinct from all other in vivo passaged tumor sublines (Figure 1-3). 

Moreover, gene expression of resistant tumors namely PC3 D3 and PC3 D4 clearly differed 

from the passaged not resistant PC3 A3 tumors. Within the group of resistant tumors an 

acute CPA treatment of the respective tumors for 24 hours only influenced gene expression 

marginally (Figure 1-3). All PC3 D3 samples from four mice clustered in one group, distinct 

from the PC3 D4 group. This indicates that resistant tumors of PC3 D3 and PC3 D4 share 

certain properties but originate from different cell clones. 
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The differentially expressed genes of untreated PC3 D3 and PC3 D4 versus PC3 A3 (in vivo 

passaged control) were regarded as more important and short term CPA effects were taken 

as lesser important. Approximately 50% of the differentially expressed genes in PC3 D3 and 

PC3 D4 versus PC3 A3 were shared by both resistant sub lines (Figure 1-4).  

 

For microarray validation the most differentially regulated genes dehydrogenase/reductase 

member 2 (DHRS2), PAS domain containing protein 1 (PASD1) and Neurotensin (NTS) as well 

as resistance related genes like special AT-rich sequence-binding protein-1 (SATB1) and bone 

morphogenetic protein receptor type I B (BMPR1B) were chosen (3.1.1). 

Dehydrogenase/reductase SDR family member 2 (DHRS2) is a less studied enzyme with the 

alternative name HEP27. It is described as a nuclear protein found in growth-arrested human 

hepatoblastoma cells. It is a member of the short-chain alcohol dehydrogenase family. 

Furthermore, its expression in fibroblasts is reported [76-78]. 

PAS domain containing protein 1 (PASD1) is also less studied. It is reported to be a 

leukaemia-associated antigen [79, 80]. 

Neurotensin (NTS) is an enzyme prominent in various kind of tissue. It was first isolated from 

extracts of the bovine hypothalamus [81]. Beside its function in endocrine cells of the small 

intestine, where it leads to secretion and smooth muscle contraction, it was also described 

to induce proliferation of colorectal cancer cells [82, 83]. 

Special AT-rich sequence-binding protein-1 (SATB1) is a transcription factor. It displays a key 

factor for integration of higher-order chromatin architecture with gene regulation [84-87]. 

Moreover, SATB1 expression is associated with a number of different kinds of cancer [88-

92]. Additionally, it has been reported to be involved in multidrug resistance of breast and 

colorectal cancer [93, 94] as well as in cisplatin resistance in hepatocellular carcinoma [64]. 

Bone morphogenetic protein receptor type I B (BMPR1B) is a member of the bone 

morphogenetic protein (BMP) receptor family, which members are transmembrane 

serine/threonine kinases. Their ligands are the BMPs (bone morphogenetic proteins) which 

are involved in endochondral bone formation and embryogenesis (reviewed by [95]). BMPs 

are also involved in cancer, exhibiting both oncogene and tumor suppressor gene functions 

[96]. 
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A qPCR analysis of these genes proofed the microarray results as valid. Furthermore, the 

expression of the named genes under cell culture conditions strongly differed between 

in vivo and in vitro. This finding agreed with the fact that resistant cell lines showed no 

resistance in vitro. 

 

To test the ability to induce resistance in vitro two genes were chosen: 1) SATB1, was 

strongly upregulated (5-fold) in resistant tumors in vivo but showed only a slight 

upregulation in PC3 D4 cells in vitro. 2) ANXA3, a protein previously found in a proteomic 

study to be more abundant in resistant PC3 clones on protein level [13], was upregulated 

in vivo but not in vitro. ANXA3 is a member of the Ca
2+

 binding-lipocortin family which are 

also known as annexins [97, 98]. 

The generation of SATB1 and ANXA3 overexpressing PC3 clones was performed by Mark 

Laible (DKFZ, Heidelberg). The induction of the target gene expression by doxycycline was 

feasible and led to the expression of the proper protein as shown by qPCR, western blot and 

immuno-fluorescence staining (3.1.2). Neither SATB1 nor ANXA3 overexpression led to 

resistance formation in vitro against the alkylating drug melphalan. However, SATB1 

overexpression induced resistance to cisplatin treatment. This finding confirms the work of 

Kuo et al. [64], who have described a role of SATB1 in cisplatin resistance in hepatocellular 

carcinoma by SATB1-mediated induction of survivin (Figure 4-1). An in vivo resistance of the 

transgenic PC3 clones was not tested for practical reasons and therefore cannot be 

excluded.  

 

Figure 4-1 Proposed model to explain the link between the viral protein HBx and the p38/MAPK pathway 

[64] 



  

Discussion 

70 

 

Due to the complex molecular evolution, leading to the ability to survive the restrictive 

conditions of anti-angiogenic therapy it is unlikely that a single main mechanism acts as a 

main factor for resistance acquisition. In the present study the expression of resistance 

related genes in vivo strongly differs from gene expression in vitro, indicating an involvement 

of microenvironmental factors leading to the observed in vivo resistance. Indeed, three 

pathways could be identified which potentially contribute to the described resistant 

phenotype (3.1.3): 1) axon guidance, 2) steroid biosynthesis and 3) complement and 

coagulation cascades. Prostate cancer cells are able to gain neuronal properties [99, 100], 

thus neuroendocrine-like differentiation might take place as a side effect of resistance 

formation. Steroid synthesis might be altered leading to hormone promoted increased 

proliferation. The most interesting functional group is “complement and coagulation 

cascades”. This group consists of six differentially expressed genes which are associated with 

the coagulation cascade. During anti-angiogenic treatment, blood vessels are destroyed and 

coagulation takes place. It was hypothesized that resistant tumor cells hamper the 

coagulation process in order to overcome the reduced oxygen and nutrient supply. This 

hypothesis is strengthened by the fact that it has been described for flavone acetic acid, also 

an anti-angiogenic drug, that the coagulation time in mice is strongly reduced [101]. Anti 

coagulation associated genes 1) PLAT (reviewed in [102]) and 2) ANXA3 [67] showed 

increased expression in resistant tumors, whereas expression of 3 members of the serine 

protease inhibitor family (SERPINs), which act potentially pro-coagulative [66] was decreased 

in resistant tumor tissue. Increased diffusion of oxygen and nutrients is facilitated by 

impaired thrombosis and fibrosis. 

In contrast to the finding that the expression of anti-coagulation genes is increased and of 

pro-coagulation genes is decreased, PROS a potential anti-coagulation factor [103] was 

downregulated and tissue factor (F3), the main mediator of the extrinsic pathway of blood 

coagulation [104, 105] was highly expressed in PC3 D4 tumor tissue. Interestingly, F3 shows 

an altered exon expression profile in PC3 D4 tumor samples. Comparing the expression level 

of PC3 D4 to PC3 A3, exons 3 to 6 are highly expressed in resistant PC3 D4 tumor tissue, 

whereas no differential expression of exon 1 and 2 can be seen. A version of F3, missing 

exon 1 and 2, has not yet been described, whereas an alternatively spliced variant of F3, 

missing exon 5, has been reported [106]. Exon 1 and 2 of F3 are coding for the first 70 amino 
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acids of the protein. In this area according to uniprot.org [107] a signal peptide and parts of a 

topological domain are located, leading to the hypothesis that the expression of an altered 

F3 protein might result in an impaired activation of blood coagulation by resistant tumor 

tissue or even in facilitating blood flow. 

 

Based on the microarray results, resistance to metronomic CPA therapy was sought to be 

induced by the application of anti-coagulation therapy to CPA treated PC3 A3 tumors in vivo 

(3.1.4). For anti-coagulation Warfarin was chosen. Warfarin is a 4-hydroxycoumarin, which 

inhibits the vitamin K-dependent step in clotting factor synthesis [108]. 

First Warfarin was administered through the drinking water as mice stopped drinking it was 

further administered i.p.. In this treatment regimen no enhanced resistance formation could 

be provoked by anti-coagulative therapy. The co-treatment using another anti-coagulative 

drug may be one opportunity to proof the involvement of coagulation in resistance 

formation. Another approach would be vice versa to inhibit resistance formation by 

induction of coagulation. 

In conclusion, resistance formation to metronomic CPA therapy can be seen as a molecular 

evolutionary process. Anti-coagulation properties of the cells (increased PLAT and ANXA3, 

increased exon deletion variant of F3, decreased SERPIND1, SERPINA1 and SERPINB7) could 

be part of a complex resistance mechanism, but the functional relevance remains to be 

confirmed by subsequent studies. 
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4.2 Myxobacterial compounds in cancer treatment 

Archazolid is a novel myxobacterial V-ATPase inhibitor. V-ATPases are conserved proton 

pumps involved in pH regulation of the cell. They recently came into focus as a novel target 

in cancer therapy because they are overexpressed in many tumor types. Their abundance at 

the plasma membrane in breast and pancreatic cancer cells was shown to correlate with an 

invasive phenotype [34, 109]. When inhibiting V-ATPase for therapeutic reasons, membrane 

bound V-ATPase was regarded as the primary target [110]. Their inhibition was proposed to 

elevate the extracellular pH, as tumors often have and an acidic microenvironment, which is 

correlated with an elevated invasive potential [36]. Moreover, an acidic microenvironment is 

related to an increased ability to express an elevated amount of growth and angiogenic 

factors [111, 112]. Moreover a raised intracellular pH is correlated with serum- and substrate 

independent growth and cell cycle progression [113-116]. 

However, the data presented here draw attention to another intriguing aspect of V-ATPase 

in cancer therapy: the inhibition of intracellular V-ATPase. In this study it could be shown 

that intracellular V-ATPases control the processing and secretion of lysosomal proteases, 

which are involved in tumor progression and metastasis [42-45, 57, 117]. 

 

Lysosomal proteases were found in the supernatants of archazolid treated urinary bladder 

carcinoma as well as of breast cancer cells. Further analysis revealed that predominantly the 

proforms of lysosomal proteases were secreted upon archazolid treatment. In particular 

V-ATPase inhibition by archazolid strongly induced the secretion of procathepsin B (3.2.2). 

Most importantly, the intracellular proteolytic activity of cathepsin B was strongly reduced 

after archazolid treatment, indicating an altered maturation process of cathepsin B (3.3.2). 

Furthermore, the impact of archazolid treatment on immune cells was evaluated. Archazolid 

induced reduction of intracellular cathepsin B was also detected in human macrophages 

(3.2.1). In monocytes no detectable amounts of cathepsin B were found and thus no 

archazolid action on cathepsin B maturation was present. But furthermore, the secretion 

profile of archazolid treated monocytes was analyzed and quantified (3.2.1). The secretion of 

thrombospondin (TSP1) was reduced in all three samples and thus displays a potential 

candidate for further evaluation. In one of the three samples interleukin 6 (IL-6) and 8 (IL-8) 

were less abundant. This is in accordance with unpublished results of the group of Prof. Dr. 
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Oliver Werz, Jena University. Using ELISA (Enzyme-linked immuno sorbent assay) they found 

that archazolid treated LPS-activated monocytes display a decreased secretion of IL-6 and IL-

8. Nevertheless, additional studies are necessary to evaluate a distinct action of archazolid 

on these cells. 

Focussing on archazolid action on cathepsin B maturation, it could be shown that the 

secretion of procathepsin B is a consequence of lysosome malfunction. Procathepsin B 

secretion was proven to be induced by other V-ATPase inhibitors bafilomycin and 

concanamycin as well as lysosomotropic agents chloroquine and NH4Cl (3.3.4, 3.3.5). 

Furthermore, RNAi experiments revealed that the archazolid effect on cathepsin B is a direct 

result from V-ATPase inhibition. Knockdown of the archazolid target domain V0c exhibited 

similar effects on cathepsin B maturation as archazolid treatment (3.3.3). 

Transport and activation of lysosomal proteases are carefully controlled processes [56]. 

Missorted, active proteases can lead to uncontrolled proteolysis and apoptosis. Many of 

those proteases are thus translated as inactive proforms. After glycosylation in the Golgi 

apparatus lysosomal proteases are bound to the mannose-6-phosphate-receptor (M6PR) 

(Figure 4-2 Schematic overview archazolid action on M6PR mediated trafficking). 

Subsequently, M6PR containing vesicles are fusing with prelysosomal compartments (PLC), 

followed by acidification of the vesicle by V-ATPase action. Receptor bound proteases can 

only be released if the pH is decreased, followed by a relocalization of M6PR to the trans-

Golgi network (TGN) [56, 57]. 

In contrast, if the pH cannot decrease in these PLC, e.g. caused by V-ATPase inhibition, the 

release of the cargo from M6PR is impaired and M6PR does not recycle to the TGN [72]. As a 

consequence newly glycosylated lysosomal proenzymes are accumulating and are thus 

transported out of the cell as there is no free M6PR they can be bound to (Figure 4-2). 

In accordance to the present study, also macrophages treated with V-ATPase inhibitor 

bafilomycin are reported to secreted elevated amounts of lysosomal proteases [118]. 

Likewise, the lysosomotropic, anti-malaria drug chloroquine was reported to strongly induce 

lysosomal enzyme secretion [119]. Moreover constitutive procathepsin D secretion by breast 

cancer cells (MCF-7) and colorectal cancer (CaCo-2) cells was found to be promoted by 

lysosome neutralizing reagent NH4Cl [120]. 
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Figure 4-2 Schematic overview archazolid action on M6PR mediated trafficking 

 

The in vitro results presented in the current study showed that archazolid blocks the 

maturation process of cathepsin B. Resulting in strongly decreased intracellular cathepsin B 

levels and a reduced cathepsin B activity. In cancer research lysosomal proteases like the 

cathepsins became more and more important as tumor markers [42-45]. Cathepsin B is 

upregulated in many types of cancer but its distinct role in tumor progression is not fully 

understood and controversially discussed. Nevertheless, cathepsin B genetic down 

regulation or inhibition by specific inhibitors has been shown to reduce invasive properties 

of cancer cells in vitro and in vivo [49, 51]. Earlier, a reduced activity of the pro-invasion 

protease matrix metalloproteinase 9 (MMP9) upon V-ATPase inhibition in pancreatic cancer 

was shown [109]. As it has been reported that inhibition of cathepsin B expression is linked 

to a decreased MMP9 activity in glioblastoma cells [121] the here presented results may be a 

link between these two publications. But most importantly, cathepsin B inhibition by the 

small molecule inhibitor CA-074 has been very recently shown to reduce bone metastasis of 

breast cancer cells in vivo [74]. The in vivo results of the present study showed that 

archazolid reduces the intracellular level of mature cathepsin B of tumor cells (3.4). In 

ER ER 
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particular, in a syngenic mouse model sub cutaneous tumors of mouse mammary gland 

tumor cells 4T1luc showed reduced cathepsin B protein amounts and had a reduced 

proteolytic cathepsin B activity. Furthermore, a functional correlation of reduced cathepsin B 

activity may be drawn to the fact that treated animals exhibited a reduced metastatic 

burden in the lungs, indicating that the reduction of cathepsin B by archazolid in tumors lead 

to a reduced metastatic potential of these cells. 

 

In summary, it could be shown that the V-ATPase inhibitor archazolid reduces the 

intracellular activity of pro-invasion cathepsin B. Furthermore the present study provides 

additional information how inhibition of the V-ATPase can lead to the reduction of the 

invasive potential of cancer cells by blockage of mannose-6-phosphate mediated maturation 

of lysosomal proteases. Moreover, in a pharmaceutical point of view, archazolid displays 

various advantages compared to an anti-metastatic therapy using specific cathepsin B 

inhibitors which are no V-ATPase inhibitors: Archazolid reduces 1) the invasive potential by 

inhibition of membrane bound V-ATPase 2) the migratory potential [29] and 3) the activity of 

pro-metastatic proteases. Furthermore it has been shown that archazolid specifically induces 

apoptosis in cancer cells [30]. 

 

Taken together archazolid can be proposed as a promising anti-metastatic drug. 

 



  

Summary 

76 

 

5 Summary 

In the present study the mechanisms leading to acquired chemoresistance, as well as new 

treatment strategies implying the prevention evading of tumor cells were addressed. 

Resistance formation is one of the major hurdles in cancer therapy. Metronomic anti-

angiogenic treatment of xenografted prostate cancer tumors in mice with cyclophosphamide 

(CPA) results in the appearance of resistant tumors. To investigate the complex molecular 

changes occurring during resistance formation, a comprehensive gene expression analysis of 

the resistant tumors in vivo was performed. A multitude of differentially expressed genes, 

e.g. PAS domain containing protein 1 (PASD1), annexin A3 (ANXA3), neurotensin (NTS) or 

plasminogen activator tissue (PLAT), were observed, when comparing resistant to in vivo 

passaged tumor samples. Moreover, tumor cells from in vivo and in vitro conditions showed 

a significant difference in target gene expression. For clarification of the mechanisms leading 

to the survival of tumor cells during maintained anti-angiogenic CPA therapy the 

differentially expressed genes were assigned to functional pathways like: axon guidance, 

steroid biosynthesis and complement and coagulation cascades. As blood flow might play a 

crucial role during maintained anti-angiogenic therapy, further analysis was focused on the 

genes grouped in complement and coagulation cascades. Upregulation of anti-coagulatory 

ANXA3 and PLAT and downregulation of SERPIN A1 and other SERPIN-family members was 

shown by qPCR analysis. In contrast coagulation factor F3 was upregulated, accompanied by 

the expression of an altered gene product. Taken together, a potential role of anti-

coagulation as a resistance mechanism for anti-angiogenic CPA therapy could be described. 

Furthermore, the role of archazolid, a novel myxobacterial V-ATPase inhibitor in cancer 

treatment and in particular its action on the secreted cellular proteome was evaluated. As 

extracellular protein secretion may have an impact on invasive properties of tumor cells, the 

changes of the secretome profile of highly migratory urinary bladder carcinoma cells upon 

archazolid treatment were analyzed. An induced secretion of prometastatic lysosomal 

proteins such as the cathepsin family was observed. Interestingly, intracellular cathepsin B 

activity however strongly decreases and mature cathepsin B protein diminishes. It could be 

shown that archazolid inhibits the mannose-6-phosphate receptor mediated trafficking of 

procathepsin B from the trans-Golgi network to prelysosomal compartments, leading to an 

impaired cathepsin B maturation process. This results in an unnatural secretion of the 
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inactive proenzyme and a dramatic decrease in intracellular cathepsin B activity. 

Importantly, also in vivo an archazolid induced reduction of cathepsin B activity was proven 

and archazolid treatment resulted in a reduced formation of distant metastases in the lungs. 

In summary these results indicate that archazolid in addition to its known anti-migratory 

properties might exert an anti-metastatic effect by reducing the activity of pro metastatic 

proteases like cathepsin B. 
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6 Abbreviations 

DNA  deoxyribonucleic acid 

LC-MS/MS liqud chromatography tandem mass spectormetry 

µM micro molar (10-6) 

4-HOO-CPA 4-hydroxy cyclophosphamide 

APS ammonium persulfate 

arch archazolid 

ATP adenosin-5`-triphosphat 

bafA bafilomycin A1 

BALB/c mus musculus laboratory inbred strain 

BCA bicinchoninic acid 

bref brefeldin 

cDNA complementary DNA 

concA concanamycin A 

CP chlorpromazine 

CPA cyclophosphamide 

CQ chloroquine 

DAPI 4',6-diamidino-2-phenylindole 

DMEM Dulbecco`s Modified Essential Medium 

DMSO dimethyl sulfoxid 

dox doxycycline 

DTT dithiothreitol 

e.g. exempli gratia (for example) 

EDTA ethylenediamine tetraacetic acid 
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FCS fetal calf serum 

i.p. intraperitoneal(ly) 

i.v. intravenous(ly) 

kDa kilo dalton 

LSM laser scanning microscope 

mM milli molar (10
-3

) 

mRNA messenger ribobucleic acid 

nM nano molar (10
-9

) 

PBS phosphate buffered saline 

PVDF polyvinylidene fluoride 

qPCR quantitative polymerase chain reaction  

RMA robust multichip analysis 

RNA ribonucleic acid 

RT room temperature 

s.c. sub cutaneous(ly) 

S.E.M. standard error of the mean 

SCID severe combined immuno deficiency 

SDS sodium dodecyl sulfate -polyacrylamide gel electrophoresis 

SDS-PAGE sodium dodecyl sulfate 

siRNA small interfering ribonucleic acid 

TEMED Tetramethylene ethane diamine 

TGN trans-Golgi network 

Tris trishydroxymethylaminomethane 

tunm tunicamycin 
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10 Appendix 

Table 10-1 List of identified proteins in supernatants of archazolid treated T-24 cells 

Numbers on the right indicate the quantity of different identified peptides in each replicate (1-5). 

# Identified Proteins (375) Accession r1 r2 r3 r4 r5 

1 Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 FINC_HUMAN 63 55 51 70 72 

2 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 

SV=6 

K2C1_HUMAN 13 21 25 16 16 

3 Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 ENOA_HUMAN 18 18 19 21 25 

4 Galectin-3-binding protein OS=Homo sapiens GN=LGALS3BP 

PE=1 SV=1 

LG3BP_HUMAN 16 16 18 20 17 

5 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 

SV=6 

K1C10_HUMAN 14 20 23 12 14 

6 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 ALBU_HUMAN 5 5 7 8 7 

7 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 ACTB_HUMAN 13 14 15 18 19 

8 Pentraxin-related protein PTX3 OS=Homo sapiens GN=PTX3 

PE=1 SV=3 

PTX3_HUMAN 14 10 9 13 10 

9 EGF-containing fibulin-like extracellular matrix protein 1 

OS=Homo sapiens GN=EFEMP1 PE=1 SV=2 

FBLN3_HUMAN 13 13 10 14 12 

10 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 

SV=3 

TPIS_HUMAN 16 14 14 16 19 

11 Collagen alpha-1(VI) chain OS=Homo sapiens GN=COL6A1 PE=1 

SV=3 

CO6A1_HUMAN 17 14 13 21 24 

12 Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM 

PE=1 SV=4 

KPYM_HUMAN 11 12 8 20 26 

13 Insulin-like growth factor-binding protein 7 OS=Homo sapiens 

GN=IGFBP7 PE=1 SV=1 

IBP7_HUMAN 14 13 14 9 6 

14 Heat shock cognate 71 kDa protein OS=Homo sapiens 

GN=HSPA8 PE=1 SV=1 

HSP7C_HUMAN 16 10 11 22 23 

15 Laminin subunit alpha-5 OS=Homo sapiens GN=LAMA5 PE=1 

SV=8 

LAMA5_HUMAN 35 28 20 39 23 

16 Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2 ACTN4_HUMAN 5 12 23 31 33 

17 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 FLNA_HUMAN 15 7 17 30 37 

18 Sulfhydryl oxidase 1 OS=Homo sapiens GN=QSOX1 PE=1 SV=3 QSOX1_HUMAN 16 9 15 19 16 

19 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 

SV=3 

K1C9_HUMAN 10 15 16 5 7 

20 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

K22E_HUMAN 4 18 16 6 8 

21 Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 PE=1 

SV=3 

PGK1_HUMAN 12 14 12 15 19 

22 Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 PROF1_HUMAN 13 4 7 11 13 

23 Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA 

PE=1 SV=2 

PPIA_HUMAN 12 3 6 13 15 

24 Calsyntenin-1 OS=Homo sapiens GN=CLSTN1 PE=1 SV=1 CSTN1_HUMAN 15 7 6 17 20 

25 Ubiquitin-40S ribosomal protein S27a OS=Homo sapiens 

GN=RPS27A PE=1 SV=2 

RS27A_HUMAN 3 4 4 7 8 

26 Fructose-bisphosphate aldolase A OS=Homo sapiens GN=ALDOA 

PE=1 SV=2 

ALDOA_HUMAN 15 16 12 14 12 

27 Heat shock protein HSP 90-alpha OS=Homo sapiens 

GN=HSP90AA1 PE=1 SV=5 

HS90A_HUMAN 0 9 11 21 23 

28 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens 

GN=GAPDH PE=1 SV=3 

G3P_HUMAN 7 5 6 8 13 

29 L-lactate dehydrogenase A chain OS=Homo sapiens GN=LDHA 

PE=1 SV=2 

LDHA_HUMAN 4 5 5 13 14 

30 Metalloproteinase inhibitor 1 OS=Homo sapiens GN=TIMP1 PE=1 

SV=1 

TIMP1_HUMAN 4 4 6 8 5 
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31 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 

SV=1 

1433Z_HUMAN 14 7 8 14 16 

32 Laminin subunit gamma-2 OS=Homo sapiens GN=LAMC2 PE=1 

SV=2 

LAMC2_HUMAN 12 0 0 24 15 

33 Moesin OS=Homo sapiens GN=MSN PE=1 SV=3 MOES_HUMAN 1 7 5 21 22 

34 Beta-2-microglobulin OS=Homo sapiens GN=B2M PE=1 SV=1 B2MG_HUMAN 6 3 5 5 4 

35 Vinculin OS=Homo sapiens GN=VCL PE=1 SV=4 VINC_HUMAN 6 8 15 13 22 

36 Filamin-B OS=Homo sapiens GN=FLNB PE=1 SV=2 FLNB_HUMAN 2 8 14 21 30 

37 Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 COF1_HUMAN 7 4 4 7 9 

38 Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 

SV=2 

PGAM1_HUMAN 9 4 11 9 8 

39 Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4 EF2_HUMAN 1 2 2 15 23 

40 Insulin-like growth factor-binding protein 4 OS=Homo sapiens 

GN=IGFBP4 PE=1 SV=2 

IBP4_HUMAN 5 3 6 9 4 

41 Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 

SV=1 

TBA1B_HUMAN 7 3 4 10 12 

42 Laminin subunit gamma-1 OS=Homo sapiens GN=LAMC1 PE=1 

SV=3 

LAMC1_HUMAN 12 12 8 19 14 

43 Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 TKT_HUMAN 3 6 4 8 18 

44 Follistatin-related protein 1 OS=Homo sapiens GN=FSTL1 PE=1 

SV=1 

FSTL1_HUMAN 9 9 5 11 8 

45 Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 FETUA_HUMAN 3 3 2 3 3 

46 Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 ACTN1_HUMAN 3 5 7 13 14 

47 Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 

SV=1 

EF1A1_HUMAN 6 3 2 6 10 

48 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 ANXA2_HUMAN 3 5 6 15 11 

49 Plasminogen activator inhibitor 1 OS=Homo sapiens 

GN=SERPINE1 PE=1 SV=1 

PAI1_HUMAN 5 5 4 7 6 

50 Laminin subunit beta-1 OS=Homo sapiens GN=LAMB1 PE=1 SV=2 LAMB1_HUMAN 11 4 2 14 14 

51 Insulin-like growth factor-binding protein 6 OS=Homo sapiens 

GN=IGFBP6 PE=1 SV=1 

IBP6_HUMAN 4 5 6 7 4 

52 Tubulointerstitial nephritis antigen-like OS=Homo sapiens 

GN=TINAGL1 PE=1 SV=1 

TINAL_HUMAN 10 6 7 7 7 

53 Lactotransferrin OS=Homo sapiens GN=LTF PE=1 SV=6 TRFL_HUMAN 4 3 2 3 2 

54 Heat shock protein HSP 90-beta OS=Homo sapiens 

GN=HSP90AB1 PE=1 SV=4 

HS90B_HUMAN 0 3 4 13 13 

55 Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A 

PE=1 SV=5 

HSP71_HUMAN 3 2 0 4 12 

56 Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 A2MG_HUMAN 4 3 4 3 3 

57 Fascin OS=Homo sapiens GN=FSCN1 PE=1 SV=3 FSCN1_HUMAN 4 5 4 8 13 

58 Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1 CLUS_HUMAN 7 3 4 10 8 

59 Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens 

GN=UBA1 PE=1 SV=3 

UBA1_HUMAN 1 2 4 4 18 

60 Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 GELS_HUMAN 7 2 3 12 8 

61 Proactivator polypeptide OS=Homo sapiens GN=PSAP PE=1 SV=2 SAP_HUMAN 11 2 0 5 5 

62 Serglycin OS=Homo sapiens GN=SRGN PE=1 SV=3 SRGN_HUMAN 3 3 3 6 5 

63 Transitional endoplasmic reticulum ATPase OS=Homo sapiens 

GN=VCP PE=1 SV=4 

TERA_HUMAN 0 6 8 6 14 

64 SPARC OS=Homo sapiens GN=SPARC PE=1 SV=1 SPRC_HUMAN 5 4 2 6 6 

65 14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 

SV=3 

1433B_HUMAN 6 2 3 6 9 

66 Tissue-type plasminogen activator OS=Homo sapiens GN=PLAT 

PE=1 SV=1 

TPA_HUMAN 5 1 0 9 10 
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67 Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 PRDX1_HUMAN 7 2 4 7 5 

68 Lysyl oxidase homolog 2 OS=Homo sapiens GN=LOXL2 PE=1 

SV=1 

LOXL2_HUMAN 7 1 0 10 5 

69 Connective tissue growth factor OS=Homo sapiens GN=CTGF 

PE=1 SV=2 

CTGF_HUMAN 9 3 3 6 4 

70 L-lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB 

PE=1 SV=2 

LDHB_HUMAN 2 5 3 9 9 

71 Collagen alpha-1(I) chain OS=Homo sapiens GN=COL1A1 PE=1 

SV=5 

CO1A1_HUMAN 0 2 2 0 1 

72 Cadherin-2 OS=Homo sapiens GN=CDH2 PE=1 SV=4 CADH2_HUMAN 10 3 4 6 6 

73 Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3 PLEC_HUMAN 0 3 5 15 5 

74 Adenosylhomocysteinase OS=Homo sapiens GN=AHCY PE=1 

SV=4 

SAHH_HUMAN 4 5 7 7 11 

75 Amyloid beta A4 protein OS=Homo sapiens GN=APP PE=1 SV=3 A4_HUMAN 2 3 1 12 4 

76 Glucose-6-phosphate isomerase OS=Homo sapiens GN=GPI PE=1 

SV=4 

G6PI_HUMAN 4 5 4 3 9 

77 Gamma-glutamyl hydrolase OS=Homo sapiens GN=GGH PE=1 

SV=2 

GGH_HUMAN 5 2 3 4 3 

78 Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 TBB5_HUMAN 2 0 5 9 11 

79 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 LEG1_HUMAN 6 0 4 5 6 

80 Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 PE=1 

SV=2 

GSTP1_HUMAN 5 5 4 6 6 

81 CD166 antigen OS=Homo sapiens GN=ALCAM PE=1 SV=2 CD166_HUMAN 7 6 5 4 4 

82 Fibulin-1 OS=Homo sapiens GN=FBLN1 PE=1 SV=4 FBLN1_HUMAN 3 3 4 7 7 

83 78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 

PE=1 SV=2 

GRP78_HUMAN 0 4 8 13 4 

84 Nidogen-1 OS=Homo sapiens GN=NID1 PE=1 SV=3 NID1_HUMAN 2 1 0 14 12 

85 Chloride intracellular channel protein 1 OS=Homo sapiens 

GN=CLIC1 PE=1 SV=4 

CLIC1_HUMAN 1 2 5 6 10 

86 Thrombospondin-1 OS=Homo sapiens GN=THBS1 PE=1 SV=2 TSP1_HUMAN 0 1 0 11 10 

87 Latent-transforming growth factor beta-binding protein 2 

OS=Homo sapiens GN=LTBP2 PE=1 SV=3 

LTBP2_HUMAN 8 2 0 6 4 

88 Cystatin-C OS=Homo sapiens GN=CST3 PE=1 SV=1 CYTC_HUMAN 3 0 1 3 3 

89 Nucleoside diphosphate kinase B OS=Homo sapiens GN=NME2 

PE=1 SV=1 

NDKB_HUMAN 5 0 0 7 5 

90 Heat shock 70 kDa protein 4 OS=Homo sapiens GN=HSPA4 PE=1 

SV=4 

HSP74_HUMAN 3 1 2 7 7 

91 Dickkopf-related protein 3 OS=Homo sapiens GN=DKK3 PE=1 

SV=2 

DKK3_HUMAN 2 3 2 5 7 

92 Metalloproteinase inhibitor 2 OS=Homo sapiens GN=TIMP2 PE=1 

SV=2 

TIMP2_HUMAN 3 2 0 4 3 

93 Protein disulfide-isomerase OS=Homo sapiens GN=P4HB PE=1 

SV=3 

PDIA1_HUMAN 0 3 2 8 7 

94 Peptidyl-prolyl cis-trans isomerase B OS=Homo sapiens GN=PPIB 

PE=1 SV=2 

PPIB_HUMAN 4 4 3 5 3 

95 Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4 EZRI_HUMAN 0 1 0 7 9 

96 Carboxypeptidase A4 OS=Homo sapiens GN=CPA4 PE=1 SV=2 CBPA4_HUMAN 6 5 3 6 3 

97 14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 SV=1 1433E_HUMAN 2 4 4 5 5 

98 Tyrosine-protein kinase receptor UFO OS=Homo sapiens GN=AXL 

PE=1 SV=3 

UFO_HUMAN 4 2 3 5 4 

99 Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 H4_HUMAN 2 0 3 4 4 

100 Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 PRDX2_HUMAN 2 0 0 4 7 

101 Keratin, type I cytoskeletal 18 OS=Homo sapiens GN=KRT18 PE=1 

SV=2 

K1C18_HUMAN 2 0 2 6 5 

102 Collagen alpha-2(VI) chain OS=Homo sapiens GN=COL6A2 PE=1 CO6A2_HUMAN 3 1 1 9 6 
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SV=4 

103 Elongation factor 1-gamma OS=Homo sapiens GN=EEF1G PE=1 

SV=3 

EF1G_HUMAN 5 3 0 5 7 

104 Fatty acid-binding protein, epidermal OS=Homo sapiens 

GN=FABP5 PE=1 SV=3 

FABP5_HUMAN 5 0 0 4 6 

105 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 

SV=7 

K2C8_HUMAN 2 0 1 9 7 

106 Histone H2B type 1-C/E/F/G/I OS=Homo sapiens GN=HIST1H2BC 

PE=1 SV=4 

H2B1C_HUMAN 2 1 0 6 2 

107 Alpha-fetoprotein OS=Homo sapiens GN=AFP PE=1 SV=1 FETA_HUMAN 2 2 2 2 0 

108 CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=3 CD44_HUMAN 2 3 1 3 5 

109 Collagen alpha-2(V) chain OS=Homo sapiens GN=COL5A2 PE=1 

SV=3 

CO5A2_HUMAN 3 4 5 2 0 

110 Collagen alpha-2(I) chain OS=Homo sapiens GN=COL1A2 PE=1 

SV=7 

CO1A2_HUMAN 0 2 2 3 3 

111 Protein DJ-1 OS=Homo sapiens GN=PARK7 PE=1 SV=2 PARK7_HUMAN 5 0 1 6 6 

112 Fibrillin-1 OS=Homo sapiens GN=FBN1 PE=1 SV=3 FBN1_HUMAN 2 0 0 13 5 

113 Syndecan-4 OS=Homo sapiens GN=SDC4 PE=1 SV=2 SDC4_HUMAN 5 3 2 2 3 

114 Coactosin-like protein OS=Homo sapiens GN=COTL1 PE=1 SV=3 COTL1_HUMAN 3 0 2 1 5 

115 Protein CYR61 OS=Homo sapiens GN=CYR61 PE=1 SV=1 CYR61_HUMAN 4 4 2 1 3 

116 Rab GDP dissociation inhibitor beta OS=Homo sapiens GN=GDI2 

PE=1 SV=2 

GDIB_HUMAN 1 2 3 3 8 

117 Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 FAS_HUMAN 1 0 0 2 18 

118 Eukaryotic initiation factor 4A-I OS=Homo sapiens GN=EIF4A1 

PE=1 SV=1 

IF4A1_HUMAN 0 0 0 5 11 

119 Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 MYH9_HUMAN 0 1 5 3 7 

120 Transaldolase OS=Homo sapiens GN=TALDO1 PE=1 SV=2 TALDO_HUMAN 1 3 3 6 2 

121 Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 THIO_HUMAN 3 0 1 4 5 

122 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 CLH1_HUMAN 0 1 3 3 7 

123 MAM domain-containing protein 2 OS=Homo sapiens 

GN=MAMDC2 PE=2 SV=3 

MAMC2_HUMAN 4 0 0 6 3 

124 Cathepsin Z OS=Homo sapiens GN=CTSZ PE=1 SV=1 CATZ_HUMAN 3 2 3 4 2 

125 Proliferating cell nuclear antigen OS=Homo sapiens GN=PCNA 

PE=1 SV=1 

PCNA_HUMAN 4 0 1 8 2 

126 Phosphatidylethanolamine-binding protein 1 OS=Homo sapiens 

GN=PEBP1 PE=1 SV=3 

PEBP1_HUMAN 2 2 4 3 5 

127 Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo 

sapiens GN=HNRNPA2B1 PE=1 SV=2 

ROA2_HUMAN 2 2 1 6 3 

128 Metallothionein-1G OS=Homo sapiens GN=MT1G PE=1 SV=2 MT1G_HUMAN 1 1 2 1 3 

129 Plastin-3 OS=Homo sapiens GN=PLS3 PE=1 SV=4 PLST_HUMAN 0 0 0 2 16 

130 Dickkopf-related protein 1 OS=Homo sapiens GN=DKK1 PE=1 

SV=1 

DKK1_HUMAN 1 3 1 5 2 

131 Macrophage migration inhibitory factor OS=Homo sapiens 

GN=MIF PE=1 SV=4 

MIF_HUMAN 2 1 1 2 2 

132 Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3 TAGL2_HUMAN 3 0 0 5 9 

133 Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 

SV=2 

HBA_HUMAN 3 0 0 2 3 

134 Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 

PE=1 SV=4 

PDIA3_HUMAN 0 3 2 8 2 

135 Testican-1 OS=Homo sapiens GN=SPOCK1 PE=1 SV=1 TICN1_HUMAN 2 0 0 5 6 

136 Neural cell adhesion molecule L1 OS=Homo sapiens GN=L1CAM 

PE=1 SV=2 

L1CAM_HUMAN 2 4 3 1 2 

137 Exportin-2 OS=Homo sapiens GN=CSE1L PE=1 SV=3 XPO2_HUMAN 0 0 0 1 6 

138 Semaphorin-4B OS=Homo sapiens GN=SEMA4B PE=1 SV=3 SEM4B_HUMAN 3 2 1 4 1 
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139 Importin subunit beta-1 OS=Homo sapiens GN=KPNB1 PE=1 

SV=2 

IMB1_HUMAN 0 0 0 4 10 

140 GTP-binding nuclear protein Ran OS=Homo sapiens GN=RAN 

PE=1 SV=3 

RAN_HUMAN 1 1 3 1 4 

141 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A 

PE=1 SV=3 

K2C6A_HUMAN 0 4 2 1 1 

142 Glycogen phosphorylase, brain form OS=Homo sapiens 

GN=PYGB PE=1 SV=5 

PYGB_HUMAN 0 0 1 3 10 

143 Cathepsin D OS=Homo sapiens GN=CTSD PE=1 SV=1 CATD_HUMAN 6 5 0 0 0 

144 WD repeat-containing protein 1 OS=Homo sapiens GN=WDR1 

PE=1 SV=4 

WDR1_HUMAN 3 1 0 1 5 

145 Amyloid-like protein 2 OS=Homo sapiens GN=APLP2 PE=1 SV=2 APLP2_HUMAN 0 0 1 4 3 

146 Puromycin-sensitive aminopeptidase OS=Homo sapiens 

GN=NPEPPS PE=1 SV=2 

PSA_HUMAN 0 0 2 3 9 

147 Histone H2A type 1-D OS=Homo sapiens GN=HIST1H2AD PE=1 

SV=2 

H2A1D_HUMAN 1 2 3 2 2 

148 Histone H3.1t OS=Homo sapiens GN=HIST3H3 PE=1 SV=3 H31T_HUMAN 1 0 0 3 2 

149 Neutral alpha-glucosidase AB OS=Homo sapiens GN=GANAB 

PE=1 SV=3 

GANAB_HUMAN 3 1 1 1 0 

150 Exostosin-1 OS=Homo sapiens GN=EXT1 PE=1 SV=2 EXT1_HUMAN 2 2 2 2 2 

151 Attractin OS=Homo sapiens GN=ATRN PE=1 SV=2 ATRN_HUMAN 4 2 3 2 1 

152 Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens 

GN=ITIH2 PE=1 SV=2 

ITIH2_HUMAN 3 2 3 1 0 

153 Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 TRFE_HUMAN 1 0 2 2 0 

154 40S ribosomal protein S12 OS=Homo sapiens GN=RPS12 PE=1 

SV=3 

RS12_HUMAN 2 0 0 3 4 

155 Dystroglycan OS=Homo sapiens GN=DAG1 PE=1 SV=2 DAG1_HUMAN 2 1 3 3 1 

156 60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 

SV=1 

RL12_HUMAN 2 1 1 3 3 

157 Annexin A3 OS=Homo sapiens GN=ANXA3 PE=1 SV=3 ANXA3_HUMAN 0 3 7 0 0 

158 Malate dehydrogenase, cytoplasmic OS=Homo sapiens 

GN=MDH1 PE=1 SV=4 

MDHC_HUMAN 3 1 0 3 3 

159 Exostosin-2 OS=Homo sapiens GN=EXT2 PE=1 SV=1 EXT2_HUMAN 0 1 1 5 3 

160 Cathepsin B OS=Homo sapiens GN=CTSB PE=1 SV=3 CATB_HUMAN 3 2 0 1 0 

161 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 OS=Homo 

sapiens GN=PLOD1 PE=1 SV=2 

PLOD1_HUMAN 0 1 1 5 4 

162 Rho GDP-dissociation inhibitor 1 OS=Homo sapiens 

GN=ARHGDIA PE=1 SV=3 

GDIR1_HUMAN 1 0 0 3 3 

163 Heterogeneous nuclear ribonucleoprotein A1 OS=Homo sapiens 

GN=HNRNPA1 PE=1 SV=5 

ROA1_HUMAN 1 0 0 5 3 

164 Aspartate aminotransferase, mitochondrial OS=Homo sapiens 

GN=GOT2 PE=1 SV=3 

AATM_HUMAN 1 4 4 0 0 

165 Agrin OS=Homo sapiens GN=AGRN PE=1 SV=4 AGRIN_HUMAN 6 0 0 0 0 

166 Fructose-bisphosphate aldolase C OS=Homo sapiens GN=ALDOC 

PE=1 SV=2 

ALDOC_HUMAN 2 1 2 2 2 

167 Epididymal secretory protein E1 OS=Homo sapiens GN=NPC2 

PE=1 SV=1 

NPC2_HUMAN 3 1 1 1 2 

168 Malate dehydrogenase, mitochondrial OS=Homo sapiens 

GN=MDH2 PE=1 SV=3 

MDHM_HUMAN 2 6 4 1 0 

169 Non-histone chromosomal protein HMG-17 OS=Homo sapiens 

GN=HMGN2 PE=1 SV=3 

HMGN2_HUMAN 1 0 1 1 2 

170 Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3 A1AT_HUMAN 2 1 0 2 0 

171 Laminin subunit beta-3 OS=Homo sapiens GN=LAMB3 PE=1 SV=1 LAMB3_HUMAN 3 0 0 3 4 

172 Actin-related protein 2/3 complex subunit 4 OS=Homo sapiens 

GN=ARPC4 PE=1 SV=3 

ARPC4_HUMAN 0 0 1 5 4 
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173 Prelamin-A/C OS=Homo sapiens GN=LMNA PE=1 SV=1 LMNA_HUMAN 0 0 0 8 1 

174 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 HORN_HUMAN 0 3 3 0 0 

175 Peptidyl-prolyl cis-trans isomerase FKBP1A OS=Homo sapiens 

GN=FKBP1A PE=1 SV=2 

FKB1A_HUMAN 2 1 1 1 2 

176 Thioredoxin domain-containing protein 17 OS=Homo sapiens 

GN=TXNDC17 PE=1 SV=1 

TXD17_HUMAN 2 0 2 2 4 

177 Protein-glutamine gamma-glutamyltransferase 2 OS=Homo 

sapiens GN=TGM2 PE=1 SV=2 

TGM2_HUMAN 0 0 2 5 3 

178 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 

SV=3 

K2C5_HUMAN 0 3 2 0 0 

179 Stathmin OS=Homo sapiens GN=STMN1 PE=1 SV=3 STMN1_HUMAN 2 0 0 2 4 

180 Granulins OS=Homo sapiens GN=GRN PE=1 SV=2 GRN_HUMAN 5 1 0 1 1 

181 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 RINI_HUMAN 0 1 1 3 3 

182 4F2 cell-surface antigen heavy chain OS=Homo sapiens 

GN=SLC3A2 PE=1 SV=3 

4F2_HUMAN 6 0 1 1 0 

183 Importin-5 OS=Homo sapiens GN=IPO5 PE=1 SV=4 IPO5_HUMAN 0 0 2 3 2 

184 Proteasome subunit alpha type-6 OS=Homo sapiens GN=PSMA6 

PE=1 SV=1 

PSA6_HUMAN 2 1 1 4 3 

185 Proteasome subunit alpha type-7 OS=Homo sapiens GN=PSMA7 

PE=1 SV=1 

PSA7_HUMAN 2 0 2 3 2 

186 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 OS=Homo 

sapiens GN=PLOD2 PE=1 SV=2 

PLOD2_HUMAN 3 1 0 3 2 

187 Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 ENPL_HUMAN 0 1 2 5 0 

188 Stress-induced-phosphoprotein 1 OS=Homo sapiens GN=STIP1 

PE=1 SV=1 

STIP1_HUMAN 1 0 0 1 5 

189 Ubiquitin-like protein ISG15 OS=Homo sapiens GN=ISG15 PE=1 

SV=5 

ISG15_HUMAN 1 0 0 1 3 

190 Biotinidase OS=Homo sapiens GN=BTD PE=1 SV=2 BTD_HUMAN 1 3 1 1 2 

191 Lactoylglutathione lyase OS=Homo sapiens GN=GLO1 PE=1 SV=4 LGUL_HUMAN 1 0 1 1 3 

192 Inactive tyrosine-protein kinase 7 OS=Homo sapiens GN=PTK7 

PE=1 SV=2 

PTK7_HUMAN 4 2 1 1 0 

193 Ras GTPase-activating-like protein IQGAP1 OS=Homo sapiens 

GN=IQGAP1 PE=1 SV=1 

IQGA1_HUMAN 1 1 0 1 4 

194 Eukaryotic translation initiation factor 5A-1 OS=Homo sapiens 

GN=EIF5A PE=1 SV=2 

IF5A1_HUMAN 1 0 0 2 4 

195 Eukaryotic translation initiation factor 6 OS=Homo sapiens 

GN=EIF6 PE=1 SV=1 

IF6_HUMAN 2 0 0 4 2 

196 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 

SV=4 

K1C14_HUMAN 0 3 2 1 0 

197 Translationally-controlled tumor protein OS=Homo sapiens 

GN=TPT1 PE=1 SV=1 

TCTP_HUMAN 2 0 0 1 0 

198 Poliovirus receptor OS=Homo sapiens GN=PVR PE=1 SV=2 PVR_HUMAN 1 1 2 2 2 

199 Proteasome subunit alpha type-2 OS=Homo sapiens GN=PSMA2 

PE=1 SV=2 

PSA2_HUMAN 2 0 0 1 1 

200 Deoxyuridine 5'-triphosphate nucleotidohydrolase, 

mitochondrial OS=Homo sapiens GN=DUT PE=1 SV=4 

DUT_HUMAN 2 0 1 2 3 

201 SH3 domain-binding glutamic acid-rich-like protein 3 OS=Homo 

sapiens GN=SH3BGRL3 PE=1 SV=1 

SH3L3_HUMAN 2 0 1 1 3 

202 60S ribosomal protein L10a OS=Homo sapiens GN=RPL10A PE=1 

SV=2 

RL10A_HUMAN 1 0 0 5 2 

203 Phosphoribosylformylglycinamidine synthase OS=Homo sapiens 

GN=PFAS PE=1 SV=4 

PUR4_HUMAN 0 0 0 0 7 

204 Semaphorin-7A OS=Homo sapiens GN=SEMA7A PE=1 SV=1 SEM7A_HUMAN 3 1 1 2 1 

205 Glucosidase 2 subunit beta OS=Homo sapiens GN=PRKCSH PE=1 

SV=2 

GLU2B_HUMAN 1 2 1 1 2 
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206 Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 

PE=1 SV=1 

PDIA6_HUMAN 0 2 2 3 1 

207 Peroxiredoxin-6 OS=Homo sapiens GN=PRDX6 PE=1 SV=3 PRDX6_HUMAN 3 0 0 2 2 

208 Superoxide dismutase [Cu-Zn] OS=Homo sapiens GN=SOD1 PE=1 

SV=2 

SODC_HUMAN 0 1 2 0 1 

209 Plasminogen activator inhibitor 1 RNA-binding protein OS=Homo 

sapiens GN=SERBP1 PE=1 SV=2 

PAIRB_HUMAN 2 0 0 1 1 

210 Metastasis-suppressor KiSS-1 OS=Homo sapiens GN=KISS1 PE=1 

SV=4 

KISS1_HUMAN 0 0 0 3 2 

211 Signal-regulatory protein beta-1 OS=Homo sapiens GN=SIRPB1 

PE=1 SV=5 

SIRB1_HUMAN 0 0 2 0 0 

212 Beta-hexosaminidase subunit alpha OS=Homo sapiens GN=HEXA 

PE=1 SV=2 

HEXA_HUMAN 5 2 0 0 0 

213 Xaa-Pro dipeptidase OS=Homo sapiens GN=PEPD PE=1 SV=3 PEPD_HUMAN 3 2 2 1 2 

214 Inter-alpha-trypsin inhibitor heavy chain H4 OS=Homo sapiens 

GN=ITIH4 PE=1 SV=4 

ITIH4_HUMAN 1 1 2 1 0 

215 Glutathione synthetase OS=Homo sapiens GN=GSS PE=1 SV=1 GSHB_HUMAN 2 0 0 1 2 

216 Collagen alpha-1(XII) chain OS=Homo sapiens GN=COL12A1 PE=1 

SV=2 

COCA1_HUMAN 3 3 1 0 0 

217 Lysosomal Pro-X carboxypeptidase OS=Homo sapiens GN=PRCP 

PE=1 SV=1 

PCP_HUMAN 4 0 0 0 1 

218 10 kDa heat shock protein, mitochondrial OS=Homo sapiens 

GN=HSPE1 PE=1 SV=2 

CH10_HUMAN 2 0 0 3 2 

219 14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 SV=2 1433G_HUMAN 3 0 0 3 1 

220 Proteasome subunit alpha type-4 OS=Homo sapiens GN=PSMA4 

PE=1 SV=1 

PSA4_HUMAN 1 1 1 3 1 

221 Protein S100-A6 OS=Homo sapiens GN=S100A6 PE=1 SV=1 S10A6_HUMAN 0 1 0 2 1 

222 Aspartate aminotransferase, cytoplasmic OS=Homo sapiens 

GN=GOT1 PE=1 SV=3 

AATC_HUMAN 0 3 3 1 1 

223 Soluble calcium-activated nucleotidase 1 OS=Homo sapiens 

GN=CANT1 PE=1 SV=1 

CANT1_HUMAN 2 1 1 4 0 

224 NKG2D ligand 2 OS=Homo sapiens GN=ULBP2 PE=1 SV=1 N2DL2_HUMAN 2 0 1 1 1 

225 Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens 

GN=UBE2N PE=1 SV=1 

UBE2N_HUMAN 2 0 0 3 3 

226 Tubulin-specific chaperone A OS=Homo sapiens GN=TBCA PE=1 

SV=3 

TBCA_HUMAN 1 0 0 3 3 

227 Proteasome subunit beta type-6 OS=Homo sapiens GN=PSMB6 

PE=1 SV=4 

PSB6_HUMAN 2 0 0 2 1 

228 Cellular nucleic acid-binding protein OS=Homo sapiens 

GN=CNBP PE=1 SV=1 

CNBP_HUMAN 1 0 0 1 4 

229 Threonine--tRNA ligase, cytoplasmic OS=Homo sapiens GN=TARS 

PE=1 SV=3 

SYTC_HUMAN 0 0 1 0 6 

230 Proteasome subunit alpha type-1 OS=Homo sapiens GN=PSMA1 

PE=1 SV=1 

PSA1_HUMAN 0 0 2 4 0 

231 6-phosphogluconolactonase OS=Homo sapiens GN=PGLS PE=1 

SV=2 

6PGL_HUMAN 2 0 1 1 1 

232 Beta-enolase OS=Homo sapiens GN=ENO3 PE=1 SV=5 ENOB_HUMAN 1 0 1 1 2 

233 Stanniocalcin-2 OS=Homo sapiens GN=STC2 PE=1 SV=1 STC2_HUMAN 0 1 0 4 1 

234 Elongation factor 1-delta OS=Homo sapiens GN=EEF1D PE=1 

SV=5 

EF1D_HUMAN 0 0 0 3 0 

235 Thyroxine-binding globulin OS=Homo sapiens GN=SERPINA7 

PE=1 SV=2 

THBG_HUMAN 0 0 0 2 2 

236 Nucleobindin-1 OS=Homo sapiens GN=NUCB1 PE=1 SV=4 NUCB1_HUMAN 0 0 0 0 2 

237 Proteasome subunit alpha type-5 OS=Homo sapiens GN=PSMA5 

PE=1 SV=3 

PSA5_HUMAN 3 0 0 2 1 

238 Ubiquitin-conjugating enzyme E2 variant 1 OS=Homo sapiens 

GN=UBE2V1 PE=1 SV=2 

UB2V1_HUMAN 0 0 0 0 2 



  

Appendix 

99 

 

239 ATP synthase subunit beta, mitochondrial OS=Homo sapiens 

GN=ATP5B PE=1 SV=3 

ATPB_HUMAN 0 2 4 0 0 

240 Cysteine-rich protein 1 OS=Homo sapiens GN=CRIP1 PE=1 SV=3 CRIP1_HUMAN 0 0 0 1 2 

241 Dipeptidyl peptidase 3 OS=Homo sapiens GN=DPP3 PE=1 SV=2 DPP3_HUMAN 0 1 1 1 2 

242 Pigment epithelium-derived factor OS=Homo sapiens 

GN=SERPINF1 PE=1 SV=4 

PEDF_HUMAN 1 3 1 2 0 

243 Talin-1 OS=Homo sapiens GN=TLN1 PE=1 SV=3 TLN1_HUMAN 0 1 2 0 3 

244 SH3 domain-binding glutamic acid-rich-like protein OS=Homo 

sapiens GN=SH3BGRL PE=1 SV=1 

SH3L1_HUMAN 1 0 1 1 4 

245 T-complex protein 1 subunit beta OS=Homo sapiens GN=CCT2 

PE=1 SV=4 

TCPB_HUMAN 0 0 0 2 1 

246 Collagen alpha-2(IV) chain OS=Homo sapiens GN=COL4A2 PE=1 

SV=4 

CO4A2_HUMAN 0 1 0 3 0 

247 Filamin-C OS=Homo sapiens GN=FLNC PE=1 SV=3 FLNC_HUMAN 0 1 2 0 2 

248 Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 ANXA1_HUMAN 0 0 0 3 2 

249 Lysosomal protective protein OS=Homo sapiens GN=CTSA PE=1 

SV=2 

PPGB_HUMAN 4 0 1 1 0 

250 Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 

SV=3 

TPM4_HUMAN 0 0 0 2 1 

251 Vitamin D-binding protein OS=Homo sapiens GN=GC PE=1 SV=1 VTDB_HUMAN 3 0 0 1 0 

252 Actin-related protein 3 OS=Homo sapiens GN=ACTR3 PE=1 SV=3 ARP3_HUMAN 0 0 0 2 5 

253 Serine/threonine-protein phosphatase 2A 65 kDa regulatory 

subunit A alpha isoform OS=Homo sapiens GN=PPP2R1A PE=1 

SV=4 

2AAA_HUMAN 0 0 0 0 6 

254 Collagen alpha-1(XVIII) chain OS=Homo sapiens GN=COL18A1 

PE=1 SV=5 

COIA1_HUMAN 4 0 0 0 0 

255 Heterogeneous nuclear ribonucleoprotein D0 OS=Homo sapiens 

GN=HNRNPD PE=1 SV=1 

HNRPD_HUMAN 1 1 1 2 2 

256 Small ubiquitin-related modifier 2 OS=Homo sapiens 

GN=SUMO2 PE=1 SV=3 

SUMO2_HUMAN 1 1 1 1 2 

257 Hypoxanthine-guanine phosphoribosyltransferase OS=Homo 

sapiens GN=HPRT1 PE=1 SV=2 

HPRT_HUMAN 2 0 1 1 1 

258 Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1 APOE_HUMAN 0 1 0 2 1 

259 Nucleophosmin OS=Homo sapiens GN=NPM1 PE=1 SV=2 NPM_HUMAN 0 1 0 2 1 

260 Cysteine-rich motor neuron 1 protein OS=Homo sapiens 

GN=CRIM1 PE=1 SV=1 

CRIM1_HUMAN 2 0 4 0 0 

261 Growth-regulated alpha protein OS=Homo sapiens GN=CXCL1 

PE=1 SV=1 

GROA_HUMAN 1 0 0 2 2 

262 Annexin A5 OS=Homo sapiens GN=ANXA5 PE=1 SV=2 ANXA5_HUMAN 0 0 2 2 1 

263 6-phosphogluconate dehydrogenase, decarboxylating OS=Homo 

sapiens GN=PGD PE=1 SV=3 

6PGD_HUMAN 0 1 0 1 4 

264 Hepatocyte growth factor receptor OS=Homo sapiens GN=MET 

PE=1 SV=4 

MET_HUMAN 4 1 0 0 0 

265 Receptor-type tyrosine-protein phosphatase F OS=Homo sapiens 

GN=PTPRF PE=1 SV=2 

PTPRF_HUMAN 1 0 0 3 0 

266 Protein S100-A11 OS=Homo sapiens GN=S100A11 PE=1 SV=2 S10AB_HUMAN 2 0 0 1 1 

267 Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 

SV=1 

RAB7A_HUMAN 1 0 0 1 3 

268 Histidine triad nucleotide-binding protein 1 OS=Homo sapiens 

GN=HINT1 PE=1 SV=2 

HINT1_HUMAN 0 0 0 2 3 

269 Follistatin OS=Homo sapiens GN=FST PE=1 SV=2 FST_HUMAN 0 0 0 5 0 

270 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 OS=Homo 

sapiens GN=PLOD3 PE=1 SV=1 

PLOD3_HUMAN 0 1 2 1 0 

271 Transferrin receptor protein 1 OS=Homo sapiens GN=TFRC PE=1 

SV=2 

TFR1_HUMAN 2 0 1 1 1 

272 14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1 1433T_HUMAN 1 0 1 2 1 
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273 Calreticulin OS=Homo sapiens GN=CALR PE=1 SV=1 CALR_HUMAN 0 1 0 2 2 

274 Endothelial protein C receptor OS=Homo sapiens GN=PROCR 

PE=1 SV=1 

EPCR_HUMAN 3 1 0 1 0 

275 Legumain OS=Homo sapiens GN=LGMN PE=1 SV=1 LGMN_HUMAN 1 0 0 2 2 

276 Desmocollin-3 OS=Homo sapiens GN=DSC3 PE=1 SV=3 DSC3_HUMAN 3 0 1 1 0 

277 Heat shock protein 105 kDa OS=Homo sapiens GN=HSPH1 PE=1 

SV=1 

HS105_HUMAN 0 0 0 3 2 

278 Histone-binding protein RBBP4 OS=Homo sapiens GN=RBBP4 

PE=1 SV=3 

RBBP4_HUMAN 0 0 0 1 2 

279 Adenylyl cyclase-associated protein 1 OS=Homo sapiens 

GN=CAP1 PE=1 SV=5 

CAP1_HUMAN 0 0 0 1 4 

280 Fibroblast growth factor-binding protein 1 OS=Homo sapiens 

GN=FGFBP1 PE=1 SV=1 

FGFP1_HUMAN 3 0 0 1 0 

281 Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 

SV=2 

HSPB1_HUMAN 2 0 0 3 0 

282 Basement membrane-specific heparan sulfate proteoglycan core 

protein OS=Homo sapiens GN=HSPG2 PE=1 SV=4 

PGBM_HUMAN 4 0 0 0 0 

283 Collagen alpha-1(IV) chain OS=Homo sapiens GN=COL4A1 PE=1 

SV=3 

CO4A1_HUMAN 0 1 1 2 1 

284 Inositol monophosphatase 1 OS=Homo sapiens GN=IMPA1 PE=1 

SV=1 

IMPA1_HUMAN 1 0 2 1 1 

285 Macrophage-capping protein OS=Homo sapiens GN=CAPG PE=1 

SV=2 

CAPG_HUMAN 1 0 0 1 2 

286 Insulin-like growth factor II OS=Homo sapiens GN=IGF2 PE=1 

SV=1 

IGF2_HUMAN 1 0 0 1 2 

287 Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1 TBB4B_HUMAN 1 0 0 3 2 

288 Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A PE=1 

SV=3 

RAB1A_HUMAN 1 0 1 0 3 

289 40S ribosomal protein S5 OS=Homo sapiens GN=RPS5 PE=1 SV=4 RS5_HUMAN 1 0 0 1 2 

290 Proprotein convertase subtilisin/kexin type 9 OS=Homo sapiens 

GN=PCSK9 PE=1 SV=3 

PCSK9_HUMAN 0 0 0 1 3 

291 Dipeptidyl peptidase 1 OS=Homo sapiens GN=CTSC PE=1 SV=2 CATC_HUMAN 2 1 0 0 0 

292 Proteasome subunit alpha type-3 OS=Homo sapiens GN=PSMA3 

PE=1 SV=2 

PSA3_HUMAN 0 0 0 2 2 

293 Actin-related protein 2/3 complex subunit 3 OS=Homo sapiens 

GN=ARPC3 PE=1 SV=3 

ARPC3_HUMAN 0 0 0 1 2 

294 Serpin H1 OS=Homo sapiens GN=SERPINH1 PE=1 SV=2 SERPH_HUMAN 0 0 0 3 1 

295 Carbonyl reductase [NADPH] 1 OS=Homo sapiens GN=CBR1 PE=1 

SV=3 

CBR1_HUMAN 0 0 1 2 1 

296 F-actin-capping protein subunit alpha-1 OS=Homo sapiens 

GN=CAPZA1 PE=1 SV=3 

CAZA1_HUMAN 0 0 1 2 1 

297 DNA-(apurinic or apyrimidinic site) lyase OS=Homo sapiens 

GN=APEX1 PE=1 SV=2 

APEX1_HUMAN 0 0 1 2 2 

298 Multiple inositol polyphosphate phosphatase 1 OS=Homo 

sapiens GN=MINPP1 PE=1 SV=1 

MINP1_HUMAN 2 1 1 0 0 

299 Guanine nucleotide-binding protein subunit beta-2-like 1 

OS=Homo sapiens GN=GNB2L1 PE=1 SV=3 

GBLP_HUMAN 1 0 1 2 0 

300 Endoplasmic reticulum aminopeptidase 1 OS=Homo sapiens 

GN=ERAP1 PE=1 SV=3 

ERAP1_HUMAN 0 0 0 2 0 

301 40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 

SV=1 

RS28_HUMAN 1 0 0 1 2 

302 Glypican-1 OS=Homo sapiens GN=GPC1 PE=1 SV=2 GPC1_HUMAN 3 0 0 1 0 

303 Keratin, type II cytoskeletal 1b OS=Homo sapiens GN=KRT77 

PE=1 SV=3 

K2C1B_HUMAN 0 1 2 0 0 

304 Vascular endothelial growth factor C OS=Homo sapiens 

GN=VEGFC PE=1 SV=1 

VEGFC_HUMAN 3 0 0 0 0 

305 Renin receptor OS=Homo sapiens GN=ATP6AP2 PE=1 SV=2 RENR_HUMAN 3 0 0 2 0 
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306 Tumor necrosis factor receptor superfamily member 6B 

OS=Homo sapiens GN=TNFRSF6B PE=1 SV=1 

TNF6B_HUMAN 2 0 0 3 0 

307 Glutamate dehydrogenase 1, mitochondrial OS=Homo sapiens 

GN=GLUD1 PE=1 SV=2 

DHE3_HUMAN 0 0 3 0 0 

308 Endoplasmic reticulum resident protein 29 OS=Homo sapiens 

GN=ERP29 PE=1 SV=4 

ERP29_HUMAN 0 0 1 2 0 

309 40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2 RS3_HUMAN 4 0 0 0 0 

310 Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2 ITB1_HUMAN 0 1 1 0 2 

311 Beta-hexosaminidase subunit beta OS=Homo sapiens GN=HEXB 

PE=1 SV=3 

HEXB_HUMAN 2 1 0 0 2 

312 Destrin OS=Homo sapiens GN=DSTN PE=1 SV=3 DEST_HUMAN 1 0 0 1 2 

313 Thioredoxin domain-containing protein 5 OS=Homo sapiens 

GN=TXNDC5 PE=1 SV=2 

TXND5_HUMAN 0 0 1 2 0 

314 Protein disulfide-isomerase A4 OS=Homo sapiens GN=PDIA4 

PE=1 SV=2 

PDIA4_HUMAN 0 1 0 2 0 

315 C-1-tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens 

GN=MTHFD1 PE=1 SV=3 

C1TC_HUMAN 0 0 0 1 2 

316 Glyoxalase domain-containing protein 4 OS=Homo sapiens 

GN=GLOD4 PE=1 SV=1 

GLOD4_HUMAN 0 1 3 0 0 

317 ATP-citrate synthase OS=Homo sapiens GN=ACLY PE=1 SV=3 ACLY_HUMAN 0 0 0 0 2 

318 D-dopachrome decarboxylase OS=Homo sapiens GN=DDT PE=1 

SV=3 

DOPD_HUMAN 1 0 0 0 3 

319 Transgelin OS=Homo sapiens GN=TAGLN PE=1 SV=4 TAGL_HUMAN 1 0 0 0 2 

320 PDZ and LIM domain protein 1 OS=Homo sapiens GN=PDLIM1 

PE=1 SV=4 

PDLI1_HUMAN 1 0 0 0 2 

321 14-3-3 protein sigma OS=Homo sapiens GN=SFN PE=1 SV=1 1433S_HUMAN 0 0 0 2 1 

322 Peroxiredoxin-5, mitochondrial OS=Homo sapiens GN=PRDX5 

PE=1 SV=4 

PRDX5_HUMAN 0 0 0 0 3 

323 40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 

SV=3 

RS18_HUMAN 0 0 0 0 3 

324 Lysine--tRNA ligase OS=Homo sapiens GN=KARS PE=1 SV=3 SYK_HUMAN 0 0 0 0 2 

325 Protein SET OS=Homo sapiens GN=SET PE=1 SV=3 SET_HUMAN 0 0 0 3 0 

326 Phosphoserine aminotransferase OS=Homo sapiens GN=PSAT1 

PE=1 SV=2 

SERC_HUMAN 0 2 1 0 1 

327 T-complex protein 1 subunit eta OS=Homo sapiens GN=CCT7 

PE=1 SV=2 

TCPH_HUMAN 0 1 0 2 1 

328 Protein jagged-1 OS=Homo sapiens GN=JAG1 PE=1 SV=3 JAG1_HUMAN 1 0 0 1 2 

329 N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 

OS=Homo sapiens GN=B3GNT1 PE=1 SV=1 

B3GN1_HUMAN 0 0 0 1 2 

330 Palmitoyl-protein thioesterase 1 OS=Homo sapiens GN=PPT1 

PE=1 SV=1 

PPT1_HUMAN 2 0 0 1 0 

331 Chloride intracellular channel protein 4 OS=Homo sapiens 

GN=CLIC4 PE=1 SV=4 

CLIC4_HUMAN 0 0 0 2 3 

332 Lysosome-associated membrane glycoprotein 1 OS=Homo 

sapiens GN=LAMP1 PE=1 SV=3 

LAMP1_HUMAN 0 2 2 0 0 

333 60S ribosomal protein L11 OS=Homo sapiens GN=RPL11 PE=1 

SV=2 

RL11_HUMAN 0 0 0 1 2 

334 UMP-CMP kinase OS=Homo sapiens GN=CMPK1 PE=1 SV=3 KCY_HUMAN 0 0 0 1 2 

335 Ubiquitin-conjugating enzyme E2 D3 OS=Homo sapiens 

GN=UBE2D3 PE=1 SV=1 

UB2D3_HUMAN 0 0 0 1 2 

336 Importin-7 OS=Homo sapiens GN=IPO7 PE=1 SV=1 IPO7_HUMAN 0 0 0 0 2 

337 Beta-galactosidase OS=Homo sapiens GN=GLB1 PE=1 SV=2 BGAL_HUMAN 2 0 0 0 0 

338 G-protein coupled receptor 126 OS=Homo sapiens GN=GPR126 

PE=1 SV=3 

GP126_HUMAN 2 0 0 0 0 

339 Calsyntenin-3 OS=Homo sapiens GN=CLSTN3 PE=1 SV=1 CSTN3_HUMAN 3 0 0 0 0 



  

Appendix 

102 

 

340 Cochlin OS=Homo sapiens GN=COCH PE=1 SV=1 COCH_HUMAN 0 0 0 1 2 

341 Ras-related C3 botulinum toxin substrate 1 OS=Homo sapiens 

GN=RAC1 PE=1 SV=1 

RAC1_HUMAN 1 0 0 0 2 

342 RNA-binding motif protein, X chromosome OS=Homo sapiens 

GN=RBMX PE=1 SV=3 

RBMX_HUMAN 2 0 0 2 0 

343 Serpin B5 OS=Homo sapiens GN=SERPINB5 PE=1 SV=2 SPB5_HUMAN 0 0 0 2 1 

344 Signal recognition particle 9 kDa protein OS=Homo sapiens 

GN=SRP9 PE=1 SV=2 

SRP09_HUMAN 1 0 0 0 2 

345 Low molecular weight phosphotyrosine protein phosphatase 

OS=Homo sapiens GN=ACP1 PE=1 SV=3 

PPAC_HUMAN 0 0 0 1 2 

346 40S ribosomal protein S8 OS=Homo sapiens GN=RPS8 PE=1 SV=2 RS8_HUMAN 2 0 0 1 0 

347 CD109 antigen OS=Homo sapiens GN=CD109 PE=1 SV=2 CD109_HUMAN 0 0 0 2 1 

348 40S ribosomal protein S11 OS=Homo sapiens GN=RPS11 PE=1 

SV=3 

RS11_HUMAN 0 0 0 0 4 

349 40S ribosomal protein S19 OS=Homo sapiens GN=RPS19 PE=1 

SV=2 

RS19_HUMAN 0 0 0 0 3 

350 ATP-dependent RNA helicase DDX39A OS=Homo sapiens 

GN=DDX39A PE=1 SV=2 

DX39A_HUMAN 0 0 0 0 2 

351 Proliferation-associated protein 2G4 OS=Homo sapiens 

GN=PA2G4 PE=1 SV=3 

PA2G4_HUMAN 0 0 0 2 0 

352 Bifunctional purine biosynthesis protein PURH OS=Homo sapiens 

GN=ATIC PE=1 SV=3 

PUR9_HUMAN 0 0 0 0 2 

353 NEDD8 OS=Homo sapiens GN=NEDD8 PE=1 SV=1 NEDD8_HUMAN 0 0 0 0 2 

354 ATP-binding cassette sub-family E member 1 OS=Homo sapiens 

GN=ABCE1 PE=1 SV=1 

ABCE1_HUMAN 0 0 0 0 2 

355 Alpha-galactosidase A OS=Homo sapiens GN=GLA PE=1 SV=1 AGAL_HUMAN 1 0 0 3 0 

356 Purine nucleoside phosphorylase OS=Homo sapiens GN=PNP 

PE=1 SV=2 

PNPH_HUMAN 1 0 0 2 0 

357 Ras-related protein R-Ras2 OS=Homo sapiens GN=RRAS2 PE=1 

SV=1 

RRAS2_HUMAN 1 0 0 0 2 

358 Alcohol dehydrogenase [NADP(+)] OS=Homo sapiens 

GN=AKR1A1 PE=1 SV=3 

AK1A1_HUMAN 0 0 0 2 1 

359 Inorganic pyrophosphatase OS=Homo sapiens GN=PPA1 PE=1 

SV=2 

IPYR_HUMAN 0 0 0 2 0 

360 Cysteine-rich protein 2 OS=Homo sapiens GN=CRIP2 PE=1 SV=1 CRIP2_HUMAN 0 0 0 0 2 

361 Glycogen phosphorylase, liver form OS=Homo sapiens GN=PYGL 

PE=1 SV=4 

PYGL_HUMAN 0 0 0 0 3 

362 Chromobox protein homolog 3 OS=Homo sapiens GN=CBX3 

PE=1 SV=4 

CBX3_HUMAN 0 0 0 2 0 

363 MUC5A_HUMAN-R MUC5A_HUMAN-R 0 0 0 0 2 

364 Pterin-4-alpha-carbinolamine dehydratase OS=Homo sapiens 

GN=PCBD1 PE=1 SV=2 

PHS_HUMAN 0 0 0 0 2 

365 60S ribosomal protein L22 OS=Homo sapiens GN=RPL22 PE=1 

SV=2 

RL22_HUMAN 0 0 0 0 2 

366 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 

SV=1 

RS20_HUMAN 0 0 0 0 2 

367 Acylamino-acid-releasing enzyme OS=Homo sapiens GN=APEH 

PE=1 SV=4 

ACPH_HUMAN 0 0 0 2 0 

368 CD70 antigen OS=Homo sapiens GN=CD70 PE=1 SV=2 CD70_HUMAN 0 0 0 2 0 

369 Protein canopy homolog 2 OS=Homo sapiens GN=CNPY2 PE=1 

SV=1 

CNPY2_HUMAN 0 0 0 2 0 

370 Calcyclin-binding protein OS=Homo sapiens GN=CACYBP PE=1 

SV=2 

CYBP_HUMAN 0 0 0 2 0 

371 Follistatin-related protein 3 OS=Homo sapiens GN=FSTL3 PE=1 

SV=1 

FSTL3_HUMAN 0 0 0 2 0 

372 Platelet-activating factor acetylhydrolase IB subunit gamma 

OS=Homo sapiens GN=PAFAH1B3 PE=1 SV=1 

PA1B3_HUMAN 0 0 0 2 0 
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373 Staphylococcal nuclease domain-containing protein 1 OS=Homo 

sapiens GN=SND1 PE=1 SV=1 

SND1_HUMAN 0 0 0 2 0 

374 T-complex protein 1 subunit alpha OS=Homo sapiens GN=TCP1 

PE=1 SV=1 

TCPA_HUMAN 0 0 0 2 0 

375 T-complex protein 1 subunit theta OS=Homo sapiens GN=CCT8 

PE=1 SV=4 

TCPQ_HUMAN 0 0 0 2 0 
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Table 10-2 List of identified proteins in supernatants of primary monocytes 

Numbers on the right indicate the quantity of different identified peptides in each sample. arch = supernatants 

of 10 nM, 24 hours archazolid treated monocytes; co = supernatants 24 hours control treated monocytes; arch 

LPS = supernatants of 10 nM, 24 hours archazolid + LPS treated monocytes ; co LPS = supernatants 24 hours 

control + LPS treated monocytes 

# Identified Proteins (154) Accession Number arch co arch 

LPS 

co 

LPS 

1 Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 

PE=1 SV=6 

K2C1_HUMAN 148 169 68 120 

2 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 FLNA_HUMAN 21 8 67 26 

3 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 ALBU_HUMAN 91 57 65 85 

4 Thrombospondin-1 OS=Homo sapiens GN=THBS1 PE=1 SV=2 TSP1_HUMAN 96 77 59 75 

5 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 ACTB_HUMAN (+1) 67 37 52 53 

6 Moesin OS=Homo sapiens GN=MSN PE=1 SV=3 MOES_HUMAN 19 6 48 43 

7 Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 VIME_HUMAN 30 5 42 13 

8 Plastin-2 OS=Homo sapiens GN=LCP1 PE=1 SV=6 PLSL_HUMAN 30 9 40 38 

9 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 

PE=1 SV=6 

K1C10_HUMAN 119 134 39 112 

10 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 

GN=KRT2 PE=1 SV=2 

K22E_HUMAN 85 88 38 57 

11 Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2 ACTN4_HUMAN 19 21 33 13 

12 Vinculin OS=Homo sapiens GN=VCL PE=1 SV=4 VINC_HUMAN 17 1 32 17 

13 Fructose-bisphosphate aldolase A OS=Homo sapiens 

GN=ALDOA PE=1 SV=2 

ALDOA_HUMAN 14 13 31 18 

14 Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 MYH9_HUMAN 12  30 12 

15 Myeloperoxidase OS=Homo sapiens GN=MPO PE=1 SV=1 PERM_HUMAN 31 11 29 23 

16 Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 TKT_HUMAN 10 13 27 17 

17 Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 ACTN1_HUMAN 18 30 26 13 

18 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 

PE=1 SV=3 

K1C9_HUMAN 63 81 24 55 

19 Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 PROF1_HUMAN 5 3 23 3 

20 L-lactate dehydrogenase B chain OS=Homo sapiens 

GN=LDHB PE=1 SV=2 

LDHB_HUMAN 21 5 22 18 

21 Integrin beta-2 OS=Homo sapiens GN=ITGB2 PE=1 SV=2 ITB2_HUMAN 22 25 21 16 

22 Talin-1 OS=Homo sapiens GN=TLN1 PE=1 SV=3 TLN1_HUMAN 12  21 11 

23 Leukocyte elastase inhibitor OS=Homo sapiens 

GN=SERPINB1 PE=1 SV=1 

ILEU_HUMAN 10 2 20 22 

24 Plectin OS=Homo sapiens GN=PLEC PE=1 SV=3 PLEC_HUMAN 5 1 20 3 

25 Plasminogen activator inhibitor 2 OS=Homo sapiens 

GN=SERPINB2 PE=1 SV=2 

PAI2_HUMAN 18 14 19 26 

26 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 

PE=1 SV=3 

TPIS_HUMAN 21 10 19 18 

27 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 ANXA2_HUMAN 10 4 18 7 

28 L-lactate dehydrogenase A chain OS=Homo sapiens 

GN=LDHA PE=1 SV=2 

LDHA_HUMAN 13  18 14 

29 Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 ENOA_HUMAN 30 11 17 30 

30 Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 ANXA1_HUMAN 4 4 16 6 

31 Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens 

GN=PPIA PE=1 SV=2 

PPIA_HUMAN 9 2 15 2 

32 Transitional endoplasmic reticulum ATPase OS=Homo 

sapiens GN=VCP PE=1 SV=4 

TERA_HUMAN 3 2 15 4 

33 Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 

SV=1 

FETUA_HUMAN 21 11 15 21 

34 Heat shock 70 kDa protein 1A/1B OS=Homo sapiens 

GN=HSPA1A PE=1 SV=5 

HSP71_HUMAN 3  15 12 

35 Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1 LYSC_HUMAN 12 8 14 7 

36 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ 

PE=1 SV=1 

1433Z_HUMAN 14 6 13 17 
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37 Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 GELS_HUMAN 6 7 13 7 

38 Heat shock cognate 71 kDa protein OS=Homo sapiens 

GN=HSPA8 PE=1 SV=1 

HSP7C_HUMAN 6  13 12 

39 Annexin A5 OS=Homo sapiens GN=ANXA5 PE=1 SV=2 ANXA5_HUMAN 5 3 12 7 

40 Ras GTPase-activating-like protein IQGAP1 OS=Homo 

sapiens GN=IQGAP1 PE=1 SV=1 

IQGA1_HUMAN 1 1 12 5 

41 Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 

PE=1 SV=2 

GSTP1_HUMAN 7  12 5 

42 Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 H4_HUMAN 8 22 11 8 

43 Histone H2B type 1-D OS=Homo sapiens GN=HIST1H2BD 

PE=1 SV=2 

H2B1D_HUMAN 13 7 10 5 

44 Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2 LMNB1_HUMAN 4  10 4 

45 Interleukin-6 OS=Homo sapiens GN=IL6 PE=1 SV=1 IL6_HUMAN 4 5 10 4 

46 Glucose-6-phosphate isomerase OS=Homo sapiens GN=GPI 

PE=1 SV=4 

G6PI_HUMAN 4  10 11 

47 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo 

sapiens GN=GAPDH PE=1 SV=3 

G3P_HUMAN 12 4 10 7 

48 Transaldolase OS=Homo sapiens GN=TALDO1 PE=1 SV=2 TALDO_HUMAN 11 3 9 11 

49 Macrophage-capping protein OS=Homo sapiens GN=CAPG 

PE=1 SV=2 

CAPG_HUMAN 6  9 6 

50 Platelet glycoprotein Ib alpha chain OS=Homo sapiens 

GN=GP1BA PE=1 SV=1 

GP1BA_HUMAN 15 10 9 5 

51 Integrin alpha-M OS=Homo sapiens GN=ITGAM PE=1 SV=2 ITAM_HUMAN 17 4 9 10 

52 Actin-related protein 2/3 complex subunit 4 OS=Homo 

sapiens GN=ARPC4 PE=1 SV=3 

ARPC4_HUMAN 2  9 1 

53 Neutrophil elastase OS=Homo sapiens GN=ELANE PE=1 SV=1 ELNE_HUMAN 8  9 5 

54 Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 S10A9_HUMAN 4  8 2 

55 Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 

PE=1 SV=3 

PGK1_HUMAN 21 13 8 30 

56 Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3 TAGL2_HUMAN 5 1 8 4 

57 Serpin B6 OS=Homo sapiens GN=SERPINB6 PE=1 SV=3 SPB6_HUMAN   8 2 

58 Monocyte differentiation antigen CD14 OS=Homo sapiens 

GN=CD14 PE=1 SV=2 

CD14_HUMAN 10 3 8 8 

59 Malate dehydrogenase, cytoplasmic OS=Homo sapiens 

GN=MDH1 PE=1 SV=4 

MDHC_HUMAN 8 2 8 6 

60 Histone H2A type 1-D OS=Homo sapiens GN=HIST1H2AD 

PE=1 SV=2 

H2A1D_HUMAN (+4) 1 2 8 7 

61 14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB 

PE=1 SV=3 

1433B_HUMAN 11 2 8 12 

62 Hexokinase-3 OS=Homo sapiens GN=HK3 PE=1 SV=2 HXK3_HUMAN 5 1 7  

63 Integrin alpha-IIb OS=Homo sapiens GN=ITGA2B PE=1 SV=3 ITA2B_HUMAN 6 1 7 5 

64 Protein DJ-1 OS=Homo sapiens GN=PARK7 PE=1 SV=2 PARK7_HUMAN 2 1 7 1 

65 Receptor-type tyrosine-protein phosphatase C OS=Homo 

sapiens GN=PTPRC PE=1 SV=2 

PTPRC_HUMAN 4  7 1 

66 Phosphatidylethanolamine-binding protein 1 OS=Homo 

sapiens GN=PEBP1 PE=1 SV=3 

PEBP1_HUMAN 1 1 7 1 

67 Fructose-bisphosphate aldolase C OS=Homo sapiens 

GN=ALDOC PE=1 SV=2 

ALDOC_HUMAN 2  7  

68 Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 

SV=3 

A1AT_HUMAN 14 5 6 3 

69 Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 

SV=3 

A2MG_HUMAN 18 7 6 8 

70 14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 

SV=2 

1433G_HUMAN 11 2 6 10 

71 Rab GDP dissociation inhibitor beta OS=Homo sapiens 

GN=GDI2 PE=1 SV=2 

GDIB_HUMAN 4 1 6 7 

72 Malate dehydrogenase, mitochondrial OS=Homo sapiens 

GN=MDH2 PE=1 SV=3 

MDHM_HUMAN 4 2 6 4 

73 Tumor necrosis factor OS=Homo sapiens GN=TNF PE=1 SV=1 TNFA_HUMAN 4  6 2 

74 Fructose-1,6-bisphosphatase 1 OS=Homo sapiens GN=FBP1 

PE=1 SV=5 

F16P1_HUMAN  1 6 1 
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75 78 kDa glucose-regulated protein OS=Homo sapiens 

GN=HSPA5 PE=1 SV=2 

GRP78_HUMAN 5  6 6 

76 Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A 

PE=1 SV=3 

K2C6A_HUMAN 21 35 6 19 

77 Heat shock 70 kDa protein 4 OS=Homo sapiens GN=HSPA4 

PE=1 SV=4 

HSP74_HUMAN 1 1 5 1 

78 Coactosin-like protein OS=Homo sapiens GN=COTL1 PE=1 

SV=3 

COTL1_HUMAN 2 1 5 1 

79 Lactotransferrin OS=Homo sapiens GN=LTF PE=1 SV=6 TRFL_HUMAN 10 4 5 4 

80 6-phosphogluconate dehydrogenase, decarboxylating 

OS=Homo sapiens GN=PGD PE=1 SV=3 

6PGD_HUMAN 7 3 5 7 

81 Serpin B9 OS=Homo sapiens GN=SERPINB9 PE=1 SV=1 SPB9_HUMAN 9 1 5 2 

82 Fermitin family homolog 3 OS=Homo sapiens GN=FERMT3 

PE=1 SV=1 

URP2_HUMAN 2 1 5 1 

83 Core histone macro-H2A.1 OS=Homo sapiens GN=H2AFY 

PE=1 SV=4 

H2AY_HUMAN 2  5 1 

84 Nucleoside diphosphate kinase B OS=Homo sapiens 

GN=NME2 PE=1 SV=1 

NDKB_HUMAN 1  5 1 

85 Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 PRDX1_HUMAN 4  5 3 

86 Rho GDP-dissociation inhibitor 2 OS=Homo sapiens 

GN=ARHGDIB PE=1 SV=3 

GDIR2_HUMAN 4 1 5 5 

87 Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 

PE=1 SV=3 

TPM4_HUMAN 1  5 2 

88 Intercellular adhesion molecule 3 OS=Homo sapiens 

GN=ICAM3 PE=1 SV=2 

ICAM3_HUMAN 2 1 5 5 

89 Actin-related protein 2/3 complex subunit 1B OS=Homo 

sapiens GN=ARPC1B PE=1 SV=3 

ARC1B_HUMAN 6  5 3 

90 Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 ENPL_HUMAN 1  5  

91 Heat shock protein HSP 90-alpha OS=Homo sapiens 

GN=HSP90AA1 PE=1 SV=5 

HS90A_HUMAN 2  4 4 

92 Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A 

PE=1 SV=1 

RAB7A_HUMAN   4  

93 Leukotriene A-4 hydrolase OS=Homo sapiens GN=LTA4H 

PE=1 SV=2 

LKHA4_HUMAN   4 5 

94 Cathepsin S OS=Homo sapiens GN=CTSS PE=1 SV=3 CATS_HUMAN 13  4  

95 Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 

PE=1 SV=2 

PGAM1_HUMAN 4 1 4 6 

96 Alcohol dehydrogenase [NADP(+)] OS=Homo sapiens 

GN=AKR1A1 PE=1 SV=3 

AK1A1_HUMAN 2 1 4 4 

97 Histone H3.1t OS=Homo sapiens GN=HIST3H3 PE=1 SV=3 H31T_HUMAN (+3) 5 2 4 1 

98 Adenylyl cyclase-associated protein 1 OS=Homo sapiens 

GN=CAP1 PE=1 SV=5 

CAP1_HUMAN 1  4 1 

99 Alpha-fetoprotein OS=Homo sapiens GN=AFP PE=1 SV=1 FETA_HUMAN 4 3 4 3 

100 Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 COF1_HUMAN 4 2 4 5 

101 Lysosome-associated membrane glycoprotein 1 OS=Homo 

sapiens GN=LAMP1 PE=1 SV=3 

LAMP1_HUMAN 3  4  

102 Actin-related protein 2/3 complex subunit 3 OS=Homo 

sapiens GN=ARPC3 PE=1 SV=3 

ARPC3_HUMAN 1  4 1 

103 Purine nucleoside phosphorylase OS=Homo sapiens GN=PNP 

PE=1 SV=2 

PNPH_HUMAN 2  4  

104 Glyoxalase domain-containing protein 4 OS=Homo sapiens 

GN=GLOD4 PE=1 SV=1 

GLOD4_HUMAN   4 1 

105 F-actin-capping protein subunit beta OS=Homo sapiens 

GN=CAPZB PE=1 SV=4 

CAPZB_HUMAN 3  4 4 

106 14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 

SV=1 

1433E_HUMAN 3 1 4 3 

107 Poly(rC)-binding protein 1 OS=Homo sapiens GN=PCBP1 

PE=1 SV=2 

PCBP1_HUMAN  1 3  

108 Acylamino-acid-releasing enzyme OS=Homo sapiens 

GN=APEH PE=1 SV=4 

ACPH_HUMAN  1 3 1 

109 N-acetyl-D-glucosamine kinase OS=Homo sapiens GN=NAGK 

PE=1 SV=4 

NAGK_HUMAN 2  3 1 
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110 Proteasome subunit beta type-9 OS=Homo sapiens 

GN=PSMB9 PE=1 SV=2 

PSB9_HUMAN 2 2 3 2 

111 Ferritin light chain OS=Homo sapiens GN=FTL PE=1 SV=2 FRIL_HUMAN 3 2 3 1 

112 F-actin-capping protein subunit alpha-1 OS=Homo sapiens 

GN=CAPZA1 PE=1 SV=3 

CAZA1_HUMAN 2  3 2 

113 Proteasome subunit alpha type-6 OS=Homo sapiens 

GN=PSMA6 PE=1 SV=1 

PSA6_HUMAN 2  3 3 

114 Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 TRFE_HUMAN 1  3 2 

115 Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo 

sapiens GN=ITIH2 PE=1 SV=2 

ITIH2_HUMAN 4  3  

116 Ubiquitin-conjugating enzyme E2 N OS=Homo sapiens 

GN=UBE2N PE=1 SV=1 

UBE2N_HUMAN (+1) 1  3 2 

117 Phospholipase B-like 1 OS=Homo sapiens GN=PLBD1 PE=1 

SV=2 

PLBL1_HUMAN 8  2  

118 Epididymal secretory protein E1 OS=Homo sapiens GN=NPC2 

PE=1 SV=1 

NPC2_HUMAN 3 2 2 1 

119 Ferritin heavy chain OS=Homo sapiens GN=FTH1 PE=1 SV=2 FRIH_HUMAN 6 1 2  

120 ATRIP_HUMAN-R ATRIP_HUMAN-R   2  

121 Coronin-1A OS=Homo sapiens GN=CORO1A PE=1 SV=4 COR1A_HUMAN 6 2 2 9 

122 Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 

SV=3 

FIBG_HUMAN 10 5 2 9 

123 Tryptophan--tRNA ligase, cytoplasmic OS=Homo sapiens 

GN=WARS PE=1 SV=2 

SYWC_HUMAN 3  2 6 

124 Pyruvate kinase isozymes M1/M2 OS=Homo sapiens 

GN=PKM PE=1 SV=4 

KPYM_HUMAN 4 2 2 1 

125 Glutathione reductase, mitochondrial OS=Homo sapiens 

GN=GSR PE=1 SV=2 

GSHR_HUMAN 1 2 2 3 

126 Cathepsin Z OS=Homo sapiens GN=CTSZ PE=1 SV=1 CATZ_HUMAN 4  2 2 

127 Actin-related protein 2 OS=Homo sapiens GN=ACTR2 PE=1 

SV=1 

ARP2_HUMAN 1  2 4 

128 Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4 EF2_HUMAN 4 1 2  

129 Isocitrate dehydrogenase [NADP] cytoplasmic OS=Homo 

sapiens GN=IDH1 PE=1 SV=2 

IDHC_HUMAN 4  2 1 

130 Ras-related C3 botulinum toxin substrate 1 OS=Homo 

sapiens GN=RAC1 PE=1 SV=1 

RAC1_HUMAN (+2) 4 1 2  

131 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 

SV=2 

FIBA_HUMAN 6 2 1 2 

132 MUC5A_HUMAN-R MUC5A_HUMAN-R 1 2 1 1 

133 Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 

PE=1 SV=4 

PDIA3_HUMAN 8 1 1 1 

134 Guanine nucleotide-binding protein G(i) subunit alpha-2 

OS=Homo sapiens GN=GNAI2 PE=1 SV=3 

GNAI2_HUMAN 2  1 3 

135 Aminopeptidase N OS=Homo sapiens GN=ANPEP PE=1 SV=4 AMPN_HUMAN 4  1  

136 Alpha-1-antichymotrypsin OS=Homo sapiens GN=SERPINA3 

PE=1 SV=2 

AACT_HUMAN 2  1  

137 N-acetylglucosamine-6-sulfatase OS=Homo sapiens GN=GNS 

PE=1 SV=3 

GNS_HUMAN 5  1  

138 Chloride intracellular channel protein 1 OS=Homo sapiens 

GN=CLIC1 PE=1 SV=4 

CLIC1_HUMAN 3  1 1 

139 Thymidine phosphorylase OS=Homo sapiens GN=TYMP PE=1 

SV=2 

TYPH_HUMAN 1 2 1 3 

140 Proteasome subunit alpha type-7 OS=Homo sapiens 

GN=PSMA7 PE=1 SV=1 

PSA7_HUMAN 2  1 2 

141 EMILIN-1 OS=Homo sapiens GN=EMILIN1 PE=1 SV=2 EMIL1_HUMAN 2 1 1  

142 Integrin beta-3 OS=Homo sapiens GN=ITGB3 PE=1 SV=2 ITB3_HUMAN 1 4 1  

143 Catalase OS=Homo sapiens GN=CAT PE=1 SV=3 CATA_HUMAN 1  1 2 

144 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 

PE=1 SV=4 

K1C14_HUMAN 26 37  26 

145 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 

PE=1 SV=3 

K2C5_HUMAN 11 26  12 

146 Matrix metalloproteinase-9 OS=Homo sapiens GN=MMP9 MMP9_HUMAN 2 7   
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PE=1 SV=3 

147 Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 

PE=1 SV=1 

IGHG1_HUMAN 3 4  1 

148 Erythrocyte band 7 integral membrane protein OS=Homo 

sapiens GN=STOM PE=1 SV=3 

STOM_HUMAN 1 2  4 

149 Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 FIBB_HUMAN 1   3 

150 Beta-hexosaminidase subunit beta OS=Homo sapiens 

GN=HEXB PE=1 SV=3 

HEXB_HUMAN 4    

151 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 

PE=1 SV=4 

K1C16_HUMAN  31   

152 Lysosomal alpha-glucosidase OS=Homo sapiens GN=GAA 

PE=1 SV=4 

LYAG_HUMAN 4    

153 Adenosine deaminase CECR1 OS=Homo sapiens GN=CECR1 

PE=1 SV=2 

CECR1_HUMAN 2   1 

154 Cathepsin B OS=Homo sapiens GN=CTSB PE=1 SV=3 CATB_HUMAN 3    

 


