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Abstract 

 

i

SUMMARY 
Flavonols, a class of phenylpropanoids, have protective and regulatory functions in plants 

and are important nutritional ingredients. The hydrophobic compounds are glycosylated 

consecutively at their 3-OH and 7-OH positions in Arabidopsis thaliana. UGT78D1 and 

UGT78D2 are the major glycosyltransferases involved in flavonol 3-O-glycosylation in leaves 

of this plant. Accordingly, the ugt78d1 ugt78d2 double mutant was strongly compromised in 

the primary conjugation of flavonol aglycones. Instead of alternative modifications or 

aglycone accumulation, flavonol biosynthesis was repressed in ugt78d1 ugt78d2 retaining 

only one third of the wild-type flavonol level. The reduced flavonol amounts were associated 

with a repressed transcription of many flavonol-biosynthetic key genes including the 

committed step of flavonoid biosynthesis catalyzed by CHALCONE SYNTHASE (TT4). In 

addition, the expression of PHENYLALANINE AMMONIA LYASE (PAL), which constitutes 

the committed step of the general phenylpropanoid pathway, was repressed at the level of 

gene transcription and enzyme activity. However, a strong repression of total flavonol 

biosynthesis in the flavonol synthase 1 mutant did not negatively affect PAL expression nor 

was it repressed by a compromised downstream 7-O-glycosylation. PAL activity was also 

reverted back to wild-type level in tt4 ugt78d1 ugt78d2 lines eliminating flavonoid 

biosynthesis in addition to the repressed 3-O-glycosylation capacity. Chemical 

complementation of tt4 ugt78d1 ugt78d2 plants using naringenin, a flavonoid intermediate, 

could restore the reduction in PAL expression. Thus, these studies revealed a novel 

feedback inhibition of the flavonol-biosynthetic pathway, which was specifically linked to a 

compromised flavonol 3-O-glycosylation, but at the same time dependent on flavonol 

formation itself. Although the molecular mechanism of flavonol-dependent feedback inhibition 

remains obscure, this regulation may serve as a mean to avoid the accumulation of 

hydrophobic and potentially toxic flavonol aglycones. 

 

The ugt78d2 mutant possesses an altered flavonol glycoside pattern and showed severe 

shoot growth defects including dwarfism and loss of apical dominance. The ugt78d2 growth 

defects were eliminated by blocking flavonoid biosynthesis, suggesting that they were 

flavonoid-dependent. The modular combination of mutants in flavonoid biosynthesis or 

glycosylation and their flavonol glycoside profiles identified kaempferol 3-O-rhamnoside-7-O-

rhamnoside (k1) as the ugt78d2 phenotype-inducing metabolite. Flavonoids and in particular 

flavonols have been postulated to modulate auxin transport. However, the active flavonoids 

involved in this process have not yet been identified in plants. Basipetal auxin transport was 

reduced in the k1-overaccumulating ugt78d2 mutant. Preliminary data showed that auxin 

transport was reverted close to wild-type level in an ugt78d2 mutant complemented line. The 
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expression of UGT78D1, which is required for the synthesis of k1, was detected in all the 

tissues examined, but particularly high in the tissues where the modulation of auxin transport 

by flavonoids occurs. These results suggest that k1 is an endogenous auxin transport 

inhibitor.  
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1 Chapter 1: General Introduction 

1.1 Glycosyltransferase 

Glycosyltransferases exist in all living organisms; they transfer a glycosyl moiety from an 

activated donor to an acceptor molecule. The glycosylation reaction is illustrated in Figure 1. 

1. Glycosylation is an important mechanism for regulating the bioactivity, metabolism and 

localization of small molecules in living cells. In plants, a large multigene family of 

glycosyltransferases is involved in these processes, i.e. glycosylating secondary metabolites, 

phytohormones, and environmental toxins. The transfer of a sugar to an aglycone changes 

its chemical properties and bioactivities. A consensus amino acid sequence has been 

identified in the carboxyl terminus of many of these glycosyltransferases, leading to the 

classification of a single UDP-glycosyltransferase (UGT) superfamily (Li et al., 2001). The 

nomenclature system of the UGT superfamily is based primarily on amino acid sequence 

identity and is summarized in Figure 1. 2.  

 
                                                                                      UGT                     

Acceptor     +     Donor sugar                          Product 

 

Figure 1. 1 Illustration of the glycosylation reaction. 
 

 

About 120 putative UGT genes were identified based on the presence of the consensus 

amino acid sequence and therefore were classified as family 1 glycosyltransferase in 

Arabidopsis (Li et al., 2001; Ross et al., 2001; von Saint-Paul et al., unpublished data). A 

comprehensive phylogenetic analysis to all the discovered Arabidopsis UGT genes revealed 

that the superfamily is likely to contain 14 distinct phylogenetic clusters (Li et al., 2001). The 

level of amino acid sequence similarity between these UGT genes varies from above 95% to 

lower than 30% identity. After the discovery of the large number of UGT genes the analysis 

of their functions in plants is becoming a challenging task. 
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Figure 1. 2 Nomenclature system of the UGT superfamily (modified from Ross et al., 2001).  

1.2 Flavonoid biosynthesis in Arabidopsis  

Three subclasses of flavonoids are present in Arabidopsis, including flavonols, anthocyanins 

and proanthocyanidins. In this thesis, I particularly studied flavonols. The structures of major 

flavonol glycosides in Arabidopsis are illustrated in Figure 1. 3.  
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Figure 1. 3 Major flavonol glycosides in Arabidopsis (accession Columbia). R1 = H 

(kaempferol), = OH (quercetin). R2 = glucose (flavonol-3-O-glucoside-7-O-rhamnoside), = 

rhamnose (flavonol-3-O-rhamnoside-7-O-rhamnoside), or = rhamnose (1->2)-glucose 

(flavonol-3-O-[rhamnosyl (1->2 glucoside]-7-O-rhamnoside).  

 

 
The Arabidopsis flavonoid biosynthesis pathway, as illustrated in Figure 1. 4, is one of the 

most well-studied secondary metabolic pathways.  In Arabidopsis, flavonoids are synthesized 

UGT78D1

Superfamily Family Subfamily Individual gene 

UDP Glycosyltransferase 

Number from 71 to 100 (plants),  
grouping UGTs with 40% or more 
amino acid sequence homology 

The number specifys an 
individual UGT gene 

Letter grouping UGTs with 60%
or higher amino acid sequence 
homology 
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by a branched pathway that yields both colourless compounds (flavonols) and coloured 

pigments (anthocyanins and proanthocyanidins). Phenylalanine ammonia-lyase (PAL) 

commits the flux of primary metabolism into the phenylpropanoid pathway, which mainly 

leads to the formation of lignin, sinapate esters and flavonoids. There are four PAL genes in 

the Arabidopsis genome (PAL1-4). However, only PAL1 and PAL2 have been shown to be 

involved in flavonoid biosynthesis (Lillo et al., 2008).  

 

Chalcone synthase (CHS) is at the entry point of the flavonoid pathway and it produces an 

intermediate used in the synthesis of all flavonoids. The Arabidopsis plants carrying a 

mutation of CHS accumulate no flavonoids (Burbulis et al., 1996). Chalcone isomerase (CHI) 

catalyzes the isomerisation of naringenin chalcone to the flavanone naringenin. Naringenin is 

then hydroxylated to form dihydrokaempferol by flavanone 3-hydroxylase (F3H).  From 

dihydrokaempferol or dihydroquercetin, flavonols are synthesized by flavonol synthase (FLS) 

and anthocyanins are synthesized by dihydroflavonol 4-reductase (DFR). Except for FLS, the 

enzymes of the central flavonoid pathway, including CHS, CHI, F3H, F3’H, DFR, ANS and 

anthocyanidin reductase, are encoded by single genes. Six homologues have been identified 

to encode FLS, however, in the Arabidopsis genome (Owens et al., 2008). It was proposed 

that among the six FLS homologues only AtFLS1 contributes to flavonol synthesis in 

Arabidopsis. However, FLS3 was recently shown to be a second functional flavonol synthase 

(Preuss et al., 2009). Apart from the FLS genes, leucoanthocyanidin dioxygenase (LDOX) 

was also shown to have FLS function (Prescott et al., 2002; Turnbull et al., 2004). The FLS 

activity of LDOX and FLS3 may be relevant only in the fls1 mutant background (Preuss et al., 

2009).  
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Figure 1. 4 Phenylpropanoid and flavonoid biosynthesis pathways in Arabidopsis. 
The pathways leading from the central precursor phenylalanine to flavonols and 

anthocyanins as well as other phenylpropanoids like sinapic acid derivatives and lignin are 

displayed (Winkel-Shirley, 2006; Yonekura-Sakakibara et al., 2008). Phenylalanine ammonia 

lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone 

synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3’-

hydroxylase (F3’H), flavonol synthase (FLS), O-methyltransferase (OMT1), dihydroflavonol 

4-reductase (DFR), flavonol 3-O-rhamnosyltransferase (UGT78D1), flavonoid 3-O-

glucosyltransferase (UGT78D2), flavonol 3-O-arabinosyltransferase (UGT78D3), flavonol 7-
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O-rhamnosyltransferase (UGT89C1), flavonol 7-O-glucosyltransferase (UGT73C6). 

Abbreviations: k-3-glc-7-rha, kaempferol 3-O-glucoside-7-O-rhamnoside; k-3-rha-7-rha, 

kaempferol 3-O-rhamnoside-7-O-rhamnoside; k-3-[rha->glc]-7-rha, kaempferol-3-O-

[rhamnosyl (1->2 glucoside)]-7-O-rhamnoside.   The structurally equivalent quercetin (q) and 

isorhamnetin (i) glycosides are abbreviated in a similar way as for kaempferol glycosides.  

The chemical structures of the three flavonol aglycones are given below the pathway. The 

bold printing highlights the 3-OH and 7-OH positions, which are targets for the indicated 

glycosylations. 

1.3 Flavonoid glycosyltransferases in Arabidopsis 

Most flavonoid end products exhibit complex glycosylation patterns in Arabidopsis. Recently, 

much progress has been made toward the elucidation of flavonoid glycosylation in 

Arabidopsis. First, UGT78D1 and UGT73C6 were characterized as the flavonol 3-O-

rhamnosyltransferase and flavonol 7-O-glucosyltransferase, respectively (Jones et al., 2003). 

UGT78D2 and UGT75C1 were identified as the flavonoid 3-O-glucosyltransferase and 

anthocyanin 5-O-glucosyltransferase, respectively (Tohge et al., 2005). UGT89C1 was 

characterized as the flavonol 7-O-rhanosyltransferase. Recently, UGT78D3 was identified as 

the flavonol 3-O-arabinosyltransferase. Integration of transcriptome co-expression analysis 

with a reverse genetic approach has been shown to be a powerful tool to identify UGT genes 

involved in flavonoid glycosylation (Tohge et al., 2005; Yonekura-Sakakibara et al., 2007). 

Obviously, there have to be yet-to-identify genes involved in flavonoid glycosylation because 

(1) genes involved in 3-O-secondary glycosylation are still not identified; (2) the ugt78d2 

mutant still accumulates significant amount of flavonol 3-O-glucoside derivatives, suggesting 

the presence of an unknown flavonol 3-O-glucosyltransferase. 

 

Recently, Saito and colleagues (2008) carried out a comprehensive study on the distribution 

of flavonol glycosides in different organs of Arabidopsis plants, revealing that flavonol 

glycosides are distributed in an organ-dependent manner. For example, kaempferol 3-O-

rhamnoside-7-O-rhamnoside, one of the three abundant flavonol glycosides in leaves and 

flowers, is present only at a very low level in roots. I reasoned that the flavonol UGT might 

also have an organ specific expression to generate the organ dependent accumulation of 

flavonol glycosides. Flavonols are mainly glycosylated at 3-OH and 7-OH positions. Based 

on the combination of flavonol glycoside profiling of the above mentioned five UGT mutants 

and the in vitro substrate preference of recombinant UGT proteins, the 3-O-glycosylation is 

considered to be the first step of flavonol glycosylation, followed by 7-O-glycosylation, then 

further followed by secondary glycosylation at 3-O position in Arabidopsis (Jones et al., 2003; 

Yonekura-Sakakibara et al., 2008). UGT78D1, UGT78D2 and UGT78D3, are highly 
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homologous. Interestingly, these three UGT78D isoforms share the same aglycone 

substrates, but their specificity for donor sugars was different, with UGT78D1 using UDP-

Rha and UGT78D2 using UDP-Glc and UGT78D3 using UDP-Arabinose. It is very intriguing 

that such a specificity and complexity in glycosylation patterns exist. Presumably nature 

won’t produce complex patterns if simple ones sufficed. Therefore there should be some 

distinct biological functions associated with these UGT genes. 

1.4 Transcriptional regulation of flavonol biosynthesis 

Flavonol biosynthesis is tissue specific and developmentally regulated. Among several 

proposed mechanisms, transcriptional regulation is the best studied one. AtMYB11, 

AtMYB12 and AtMYB111 have been identified as the regulators of flavonol biosynthesis in 

Arabidopsis (Mehrtens et al., 2005; Stracke et al., 2007). These three regulators show a high 

degree of functional similarity and display very similar target gene specificity for several 

genes of the flavonoid pathway, including CHS, CHI, F3H and FLS1 (Stracke et al., 2007). 

AtMYB11, AtMYB12 and AtMYB111 have different spatial activity. AtMYB12, for instance, 

regulates flavonol formation mainly in roots, whereas AtMYB111 functions primarily in 

cotyledons. No flavonols are formed in the myb11 myb12 myb111 triple mutant seedling, 

while the accumulation of anthocyanins is not affected (Stracke et al., 2007). Two UGT 

genes, UGT84A1 and UGT91A1, were identified as the target genes of the MYB transcription 

factors, and the expression domains of the different MYB transcription factors correlated with 

the accumulation of distinct flavonol glycosides in seedlings. Thus, these MYB genes were 

referred to as PFG1-3 for ‘PRODUCTION OF FLAVONOL GLYCOSIDES’ by Stracke and 

colleagues (Stracke et al., 2007).  

1.5 Enzyme complexes in the phenylpropanoid and flavonoid 
pathway 

Transcriptional regulation plays an important role in regulating the overall activity of flavonoid 

metabolism. This level of regulation might be not sufficient to control the flux subcellularly. To 

regulate the flavonols at the subcellular level, the flavonoid biosynthetic enzymes are thought 

to be organized as multi-enzyme complexes and the substrates are channelled among the 

complexes (Winkel-Shirley 1999). Several studies (see below) have suggested the existence 

of a flavonoid enzyme complex.  

 

The existence of a flavonoid enzyme complex was first proposed early in 1974 (Stafford 

1974). Fritsch and Grisebach (1975) suggested that flavonoid biosynthesis takes place partly 

or completely on membranes. Substrate channelling, size-exclusion chromatography, and 

cell fractionation were employed to suggest that PAL, cinnamate-4-hydroxylase (C4H), CHS, 
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and a UGT function as part of one or more membrane-associated enzyme complexes in 

amaryllis, buckwheat, and red cabbage (Hrazdina and Wagner 1985). Immunocytochemical 

studies indicated that CHS was located at the cytoplasmic face of the rough endoplasmic 

reticulum (Hrazdina et al., 1987). Integration of these results led to a model in which 

flavonoid pathways are organized as a linear array of enzymes loosely associated with the 

endoplasmic reticulum and anchored via C4H and F3’H (Hrazdina and Wagner 1985). 

Burbulis and Winkel-Shirley (1999) provided evidence for specific protein-protein interactions 

among four enzymes of flavonoid biosynthesis in Arabidopsis, including CHS, CHI, F3H and 

DFR. Recently, FLS1, -3 and -5 were shown to interact with CHS, F3H and DFR using the 

yeast two-hybrid assay (Owens et al., 2008). Despite the convincing evidence listed here, the 

exact organization of the protein complex is still not known largely due to the inability to 

isolate the protein complex from plants.  

1.6 The influence of flavonoids on plant growth and development  

Flavonoids are usually not essential for Arabidopsis plant growth and development as 

suggested by the normal development of flavonoid-less mutant, such as chs. However, there 

are some examples that flavonoids have diverse roles in the regulation of many aspects of 

plant development (see below). It was shown that one flavonol glycoside, kaempferol 3-O-2G-

glycosyl-gentiobioside (K9), has an important role on leaf development in soybean (Buttery 

and Buzzell 1987). The K9 was correlated with reduction in leaf mass, chlorophyII content, 

rate of photosynthesis and stomata density (Buttery and Buzzell 1987). The leaf traits were 

restored to normal by blocking the formation of K9 (Buttery and Buzzell 1987). Flavonoids 

were shown to be required for pollen fertility in petunia. Chemical complementation of the 

infertile, flavonoid-less, petunia pollen using kaempferol aglycone could restore fertility (Mo et 

al., 1992). Flavonoids also appear to be required for proper pollen development in 

Arabidopsis (Preston et al., 2004). Flavonoids are involved in seed dormancy or viability 

(Debeaujon et al., 2003). Most transparent testa mutants showed reduced seed dormancy, 

as evidenced by a high germination rate and a lower requirement for after-ripening 

(Debeaujon et al., 2000). Expression of transcription factors regulating flavonoid biosynthetic 

genes during early embryogenesis suggested the functions of flavonoid in development 

(Hennig et al., 2004). Interestingly, during the converting from flowering stage I to stage II 

and stage III, the flavonol branch is predominantly down-regulated, the anthocyanin branch is 

transiently induced, and the proanthocyanin branch is continuously activated, suggesting that 

different subclasses of flavonoids have different functions (Henning et al., 2004). Recently, it 

was shown that the changes in the flavonol glycosylation pattern i.e., strong increases of 

kaempferol 3-O-monoglucoside, in rol1-2 (ROL1 encodes RHM1, one of the three rhamnose 

synthase proteins, that convert UDP-D-glucose to UDP-L-rhamnose in Arabidopsis), 
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correlate with, and therefore may be responsible for the observed aberrant growth 

phenotypes of the mutant (Ringli et al., 2008). It appears that the function of flavonoids in 

regulating plant growth and development is plant species-specific. 

1.7 Flavonoids and auxin transport 

Flavonoids have been shown to modulate transport of the phytohormone, indole-3-acetic 

acid (IAA) (Murphy et al., 2000; Brown et al., 2001; Buer and Muday, 2004; Peer et al., 

2004). Flavonol aglycones including quercetin and kaempferol were shown to be able to 

displace the auxin efflux inhibitor 1-naphthylphthalamic acid (NPA) from zucchini (Cucurbita 

pepo) hypocotyl microsomes (Jacobs and Rubery, 1988). Evidence for the regulation of 

auxin transport by flavonoids is accumulating by analyzing the auxin transport in Arabidopsis 

flavonoid biosynthetic mutants: tt4 (lacking flavonoids); tt7 (accumulating excess 

kaempferol); and tt3 (accumulating kampferol and quercetin) (Winkel-Shirley et al., 1995; 

Peer et al., 2004). The auxin transport was found to be elevated in tt4 compared with the 

wild-type, while the flavonol-overproducing mutant tt3 exhibited reduced auxin transport, 

consistent with an inhibitory role of flavonols for auxin transport (Murphy et al., 2000; Peer et 

al., 2004).  These experiments have laid a solid foundation for the concept that flavonoids 

are the endogenous auxin transport modulators. However, the effective flavonoids in 

modulating auxin transport in planta are still unknown.  

 

In situ flavonoid localization study using diphenylboric acid 2-aminoethyl ester (DPBA), which 

conjugates flavonoids, revealed that flavonoids accumulate at the regions where auxin is 

abundant, including shoot apex, cotyledon apex, shoot-root junction site and root tip. This co-

localization offers another line of evidence for the modulation of auxin transport by flavonoids 

in vivo. A few studies claimed that flavonoid aglycones, not flavonoid glycosides, modulate 

auxin transport in vivo (Peer et al., 2001). This conclusion is questionable, because flavonol 

aglycones have never been detected with various sensitive approaches, including LC-MS, 

CID-MS/MS and CapLC-ESI-QqTOF-MS from Arabidopsis wild-type or several tt mutant 

plants (von Roepenack-Lahaye et al., 2004; Böttcher et al., 2008; Yonekura-Sakakibara et 

al., 2008). DPBA staining cannot differentiate flavonol aglycones from glycosides. Flavonol 

glycosides are the predominant forms of flavonols in plants. Therefore, the co-localization of 

flavonoids with auxin as concluded from DPBA staining probably reflected the co-localization 

of auxin with flavonoid glycosides, rather than the aglycones. The in vitro studies have shown 

that some flavonol glycosides are inactive in regulating auxin transport (Jacobs and Rubery, 

1988). However, the authors used only ‘rare’ flavonoid glycosides, which are present at low 

levels, or even not detectable in Arabidopsis (Jacobs and Rubery, 1988). The most abundant 

flavonol glycosides in planta, including kaempferol 3-O-rhamnoside-7-O-rhamnoside and 
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quercetin 3-O-rhamnoside-7-O-rhamnoside, were not tested. In conclusion, the previous 

studies cannot rule out the possibility that flavonoid glycosides act as the endogenous auxin 

transport regulators.  

 

Flavonoids are normally glycosylated in cells. But the complex glycosylation patterns make it 

difficult to study the role of a specific flavonoid glycoside in regulating auxin transport. 

However, the high specificity of the well characterized flavonoid UGT provides a possibility of 

using genetic approaches to study the consequences of a specific flavonol glycoside 

compostion. For example, the kaempferol 3-O-rhamnoside-7-O-rhamnoside is absent in 

ugt78d1 knockout mutant, thus ugt78d1 could be a suitable material to study the function of 

this metabolite. Moreover, combination of different glycosylation mutants or combination of a 

glycosylation mutant with a central biosynthetic mutant, such as tt7, can manipulate the 

flavonoid glycoside profiles and allow studying the function of specific flavonoid glycosides in 

plants.  
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1.8 Aims of the thesis  

Previous work has characterized UGT78D1 and UGT78D2 as the major flavonol 3-O-

rhamnosyltransferase and flavonoid 3-O-glucosyltransferase, respectively. Flavonol 

aglycones are potentially phytotoxic and the elimination of possible accumulation of flavonol 

aglycones is carried out by efficient 3-O-glycosylation. 

 

1) The first part of this thesis addressed the question how the plants can cope with the 

severe loss of flavonol 3-O-glycosylation activity (i.e. most flavonol aglycones 

cannot be glycosylated).  

 

Flavonoids particular flavonols were postulated to be endogenous polar auxin transport 

inhibitors. However, the specific effective flavonols have not been identified in this process. 

 

2) The second part of the thesis aimed at identifying a specific flavonol glycoside 

functioning as an Arabidopsis plant growth regulator through the inhibition of auxin 

transport.  

 

Previously, recombinant UGT74F1 and UGT74F2 were shown to glucosylate salicylic acid 

(SA) in vitro (Lim et al., 2002).  In our laboratory, Meßner et al. (unpublished data) showed 

that single mutants of either gene maintained wild-type levels of both free SA and SA 

glucosides.  

 

3) The third part of the thesis attempted to generate ugt74f1 ugt74f2 double mutants 

using the artificial microRNA-mediated gene silencing approach. SA and its 

glycosides were determined in the resultant double mutant plants.
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2 Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Plant material 

Arabidopsis wild-type plants used in this thesis were of Columbia (Col-0) and Nossen (Nö-0) 

ecotypes. T-DNA inserted mutant lines are of Columbia background except for fls1, which is 

of Nossen background. The single mutants, including ugt78d1, ugt78d2, ugt73c6, ugt89c1, 

tt4, tt7 and tt18 mutants are described elsewhere and listed in Table 2. 1 (Jones et al., 2003; 

Buer and Muday 2004; Tohge et al., 2005; Yonekura-Sakakibara et al., 2007; Stracke et al., 

2009).The double mutants, including ugt78d1 ugt78d2, ugt89c1 ugt73c6, tt4 ugt78d2, 

ugt78d2 ugt73c6, tt7 ugt78d2, ugt89c1 ugt78d2, and the tt4 ugt78d1 ugt78d2 triple mutant 

were generated by genetic crossing and confirmed by PCR-based genotyping. The mutants 

mentioned above were all generated in this study except for ugt78d1 ugt78d2, which had 

been generated previously by Burkhard Meßner. Transgenic plants harboring promoter:GUS-

GFP constructs with the promoter of UGT78D1 and UGT78D2  had been generated 

previously by Burkhard Meßner. I selected individual lines for this thesis. 

 

AGI code 
 

Mutant 
name 

Line Ecotype Reference  

At1g30530 ugt78d1 SAIL_568_F08 Col-0 Jones et al.,  2003 
At5g17050 ugt78d2 SALK_049338 Col-0 Tohge et al., 2005 
At2g36790 
At1g06000 
At5g13930 
At5g07990 
At5g08640 
At4g22880 

ugt73c6 
ugt89c1 
tt4 
tt7 
fls1 
tt18 

SAIL_525_H07 
SALK_071113 
SALK_020583 
GK_349F05 
RIKEN_PST16145 
SALK_028793          

Col-0 
Col-0 
Col-0 
Col-0 
Nö-0 
Col-0 

Jones et al.,  2003 
Yonekura et al., 2007 
Alonso et al., 2003 
Rosso et al., 2003 
Stracke et al., 2009 
Stracke et al., 2009 

 
Table 2. 1 Arabidopsis single mutants used in this work. 

2.1.2 Buffers and media 

Typical solutions, buffers and media were prepared according to common protocols used in 

molecular biology. The preparation of special media and solutions is described in the 

corresponding methods. 

2.1.3 Vectors 

The vectors used in the thesis are listed below.  
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Name Application Reference or resource 

pDONR221 Cloning (Invitrogen, Germany) 

pDEST15 Protein expression (Invitrogen, Germany) 

PGEM-T easy Cloning (Promega, Germany) 

pBGW 

pKGW 

pRS300 

Complementation 

Complementation 

Cloning (amiRNA) 

(Karimi et al., 2002) 

(Karimi et al., 2002) 

(Ossowski et al., 2008) 

pET-32a(+) 

pAlligator2 

pBGWFS7 

Protein expression

Protein expression

Protein expression

(Novagen, Germany) 

(Bensmihen et al., 2004) 

(Karimi et al., 2002) 

 

Table 2. 2 Vectors used in this work. 

2.1.4 Restriction endonucleases and DNA modifying enzymes 

The restriction enzymes were purchased from New England Biolabs (Frankfurt, Germany) 

and MBI Fermentas Life Sciences (St. Leon-Rot, Germany). DNA modifying enzymes, e.g. 

Taq DNA polymerase, iproofTM high fidelity DNA polymerase, T4-DNA-ligase, DNase, RNase 

A and H, Reverse transcriptase Superscript II were obtained from Amersham Gibco-BRL, 

MBI Fermentas, Pharmacia, Promeg, Q-Biogene, Stratagene, Roche and Sigma.  

2.1.5 Oligonucleotides and sequencing 

Primers were generated by using Primer 3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) and Primer Express 2.0 (for RT-qPCR). Oligonucleotides were 

obtained from Thermo Electron (Ulm, Germany). Nucleotide sequencing was done by 

Eurofins (mwg/operon, Germany). 

 

2.2 Methods 

2.2.1 Plant growth conditions  

Arabidopsis plants were grown at 22-23°C under 100-200 µmol m-2 s-1 with a 16/8 hr long 

day photoperiod. For GUS reporter analyses, plants were cultured on ½ MS medium 

containing 1.5% sucrose and 0.6% phyto-agar. For tt4 ugt78d1 ugt78d2 triple mutant 

naringenin feeding experiment, seeds were surface sterilized and planted on ½ MS medium 

(same composition as above) and seedlings were allowed to grow for 12 days under a 

11.5/12.5 hr photoperiod. Then seedlings were transferred to water containing 3% Sucrose 

and 100 µM naringenin (100 mM naringenin stock was dissolved in ethanol). After growing 
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for 45 hr under continuous light on a rotary shaker at 110 rpm, the whole rosettes were 

washed with water and harvested for further analyses.  

2.2.2 Seed surface sterilization 

For in vitro culture, Arabidopsis seeds were surface-sterilized under a sterile hood with 80% 

(v/v) ethanol. About 100 Arabidopsis seeds together with two pieces of toothpicks were 

placed on the top of two layers of filter paper (Roth, Karlsruhe, Germany). 80% ethanol was 

sprayed onto the seeds until the filter papers were totally wet. Seeds were left under the 

sterile hood for about 5 to 10 min to dry. The dry seeds were then transferred to Agar plates 

for in vitro culture. 

2.2.3 Bacterial strains 

The E. coli DH5α was used for standard cloning. The Agrobacterium tumefaciens strain 

GV3101 (pMP90) was used for plant transformation.  

2.2.4 Preparation of E. coli competent cells 

A single colony of E. coli DH5α or E. coli DB3.1 was inoculated into 5 ml of Lysogeny broth 

(LB) medium and cultivated at 37°C overnight with moderate shaking. 100 ml LB medium 

was inoculated with the 5 ml overnight culture. The cells were grown to an OD600 of ~0.5, and 

were then collected by centrifugation at 4°C and at 5,000 rpm for 5 min. The pellet was 

suspended and incubated in 100 ml ice-cold TFB1 (30 mM potassium acetate,  100 mM 

RbCl, 10 mM CaCl2,  50 mM MnCl2, 15% glycerol, pH 5.8 with acetic acid) for 5 min on ice. 

The cells were pelleted by centrifugation at 4°C at 5,000 rpm for 5 min. The pellet was re-

suspended gently in 10 ml cold TFB2 (10 mM MOPS, 10 mM MOPS, 75 mM CaCl2,10 mM 

RbCl, 15% glycerol, pH 5.8 with acetic acid) and incubated on ice for 15-60 min. Aliquots of 

60 µl were snap-frozen in liquid nitrogen, then stored at -80°C. Both solutions, TFB1 and TFB 

2, were filter-sterilized (0.45 µm filter Millipore, Germany). 

2.2.5 E. coli transformation by heat shock 

An aliquot of competent E. coli cells (DH5α or BL21 or DB3.1) was thawed on ice. 5-10 µL of 

template DNA (ligation assay, Plasmid DNA 80-200ng) was added, mixed and incubated on 

ice for 10 min. The mixture in an Eppendorf tube was then incubated in a 42°C water bath for 

45 sec and then immediately cooled on ice for 2 min. 900 µl of LB medium was added and 

the sample was incubated for 30-60 min at 37°C with gentle agitation. 25-150 µl of the 

transformed bacterial suspensions were plated on agar plate with the addition of the 

appropriate antibiotic. 



Materials and Methods 

 

21

2.2.6 Agrobacterium transformation by electroporation  

An aliquot of competent E. coli cells (DH5α or BL21) was thawed on ice. Less than 1 µl of 

plasmid DNA (less than 50 ng) was added and incubated for 2 min on ice. The sample was 

then transferred to a prechilled 0.2 cm electroporation cuvette. Electroporation was carried 

out with the BioRad Gene-Pulser using the following conditions:  resistance 400 , 

capacitance: 25 µF and voltage: 2.5 kV. After an electroporation, 1.2 ml of SOC medium was 

immediately added into the cuvette and the bacterial suspension was transferred to a 1.5 ml 

eppendorf tube. The culture was incubated for 2 hr at 28°C with gentle agitation. A 50 µl 

aliquot of the culture was plated on LB agar plate containing appropriate antibiotics. Plates 

were incubated at 28°C for 2-3 days. 

2.2.7 Arabidopsis Transformation by floral dip 

A 5 ml of preculture, inoculated from fresh single colony of Agrobacterium, containing an 

appropriate binary vector, were incubated at 28°C with appropriate antibiotics for 1 day with 

vigorous agitation. 250 ml of LB medium was inoculated with 1 ml of the preculture and 

incubated further under conditions as above for 24 h. The cells were collected by 

centrifugation at RT, at 5,500 rpm for 20 min. The pellet was resuspended in 5% (w/v) 

sucrose solution to a final OD600 of approximately 0.8. Silwet L-77 was added to the 

suspension to a final concentration of 0.05%. Inflorescence shoots from 8-10 Arabidopsis 

plants, fertilized one week ago, were dipped into the suspension and soaked for 45 sec. 

Dipped plants were then covered with a transparent plastic bag to maintain the humidity and 

kept in a low light intensity location for 24 hr. The plastic cover was then removed and the 

plants were moved to normal growth conditions. After about 4 weeks the seeds were 

harvested when the siliques were brown and dry. 

2.2.8 Selection of transformed Arabidopsis plants 

Selection was carried out either by antibiotic resistance or visible markers using seed coat 

specifically expressed GFP (pAlligator2 vector).   

2.2.9   Histochemical GUS assay  

Genomic fragments upstream of the start codon of both UGT78D isoforms (1469bp for 

UGT78D1 or 1481bp for UGT78D2) were amplified from Col-0 genomic DNA by PCR and 

introduced into the vector pBGWFS7 (Karimi et al., 2002), forming UGT78Dpro:GUS-GFP 

fusions were transformed into Col-0 Arabidopsis plants. Histochemical analysis of the GUS 

reporter gene was performed as described before (Deruere et al., 1999) at different 

developmental stages.  
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2.2.10   Preparation of plant genomic DNA 

To facilitate quick and efficient PCR-based genotyping, an Extract-N-AmpTM plant PCR kit 

was used according to the manufacturers protocol (Sigma). The normal CTAB DNA isolation 

approach is as following: Plant material (young leaf piece about 0.5 cm2) was squeezed with 

small pistil in an Eppendorf tube with 250 µl extraction buffer (1.4 M NaCl, 100 mM Tris-HCl 

(pH 8.0), 2% (w/v) CTAB, 20 mM EDTA (pH 8.0), 1% (w/v) polyvinylpyrrolidone, Mr 40,000 

(Sigma PVP-40 or P-0930)). The tube was vortexed briefly and incubated at 65oC for 10 min.  

200 µl of chloroform-isoamyl alcohol (24:1) was added and centrifuged at 1, 4000 rpm at 

room temperature for 2 min. The upper aqueous phase was transferred to a new Eppendorf 

tube containing 1 µl of 1% linear polyacrylamide. For DNA precipitation, 3 volumes of Ethanol 

p.a were added, mixed and left at -20oC for 30 min. This step was followed by a 

centrifugation at 4°C with 14000 rpm for 15 min. The DNA pellet was then washed once with 

70% Ethanol p.a., centrifuged at full speed for 10 min at 4°C. The pellet was allowed to dry 

on the bench and dissolved in 100 µl TE buffer. For PCR amplification 1-2 µl were used. 

2.2.11   Preparation of plasmid DNA  

Plasmid DNA from E. coli and Agrobacterium tumefaciens was prepared with Qiaprep® Spin 

Miniprep Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions.   

2.2.12   Isolation of total RNA for RT-PCR  

The RNA isolation protocol from Chang et al. (1993) was modified and used in this study. 

About 100 mg plant material were ground to a very fine powder with a cold mortar and pestle 

and transferred to a 2 ml Eppendorf tube. 500 ml of pre-warmed (65°C) extraction buffer (2% 

CTAB, 2% PVP K30, 100 mM Tris/HCl pH 8.0, 25 mM EDTA, 2 M NaCl, 0,5 g/l Spermidine, 

2% 2-Mercaptoethanol) were then added. Samples were vortexed thoroughly and total RNA 

was extracted by addition of 500 µl chloroform/isoamylalcohol (24:1) followed by 

centrifugation at 10,000 rpm at 4°C for 5 min. This step was repeated once to increase the 

purity of the RNA sample. The supernatant was then transferred to an new Eppendorf tube 

and total RNA was precipitated overnight at 4°C by addition of 1/4 volume of 10 M Lithium 

chloride. Samples were then centrifuged at 14,000 rpm at 4°C for 20 min. 500 µl SSTE buffer 

(1 M NaCl, 0.5 % SDS, 10 mM Tris/HCl pH 8.0, 1 mM EDTA) was added to the pellet and 

incubated at RT for 1 h with agitation to suspend the pellet. After a new extraction with 500 µl 

chloroform/isoamylalcohol (24:1), the supernatant was transferred into a fresh Eppendorf 

tube and 1/10 Volume of 3 M Sodium-Acetate (NaOAc, pH 5.2) and 1 volume of isopropanol 

were added. After incubation for 20 min at -20°C samples were centrifuged at 14,000 rpm at 

4°C for 20 min. The pellet was then washed with 75% ethanol p.a. and centrifuged as above. 

The pellet was then dried on the bench and resuspended with 500 µL of TM buffer (40 mM 
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Tris/HCl pH 7.5, 6 mM MgCl2). Any traces of DNA were removed by addition of 1 µl DNase 

and incubation at 37°C for 15 min. RNA was then purified again with 500 µl 

chloroform/isoamylalcohol (24:1). Samples were centrifuged and RNA precipitated from the 

supernatant by addition of 1/10 volume 3 M Sodium Acetate (pH 5.2) and 2 volumes of 

absolute ethanol p.a. and incubation for 30 min at -20°C. After centrifugation and washing 

with 75% ethanol as mentioned above, the pellet was dried and resuspended in 20 µl DEPC-

treated sterile water. Quality and concentration of RNA samples were than assessed by 

measuring the absorption at 260 nm in a spectrophotometer. 

2.2.13   Determination of nucleic acid concentrations 

The concentrations of DNA or RNA were determined by measuring the absorption at 260 nm 

and 280 nm, respectively. Double distilled water was used to zero the spectrophotometer 

(Nanodrop ND-1000, Kisker-biotech, Germany). The ratio of A260/A280 was used to 

estimate the purity of total DNA or RNA with respect to contaminants that absorb in the UV 

(e.g. proteins absorb at 280 nm).  A ratio between 1.8 and 1.9 indicates high quality DNA; a 

ratio of 2.0 indicates high quality RNA. 

2.2.14   Gel electrophoresis 

Nucleic acids were subjected to electrophoresis using 0.8 to 2.5% Agorose gels containing 

0.5 µg/ml ethidium bromide. Gels were cast and run in TAE buffer (40 mM Tris, 5 mM sodium 

acetate, 1 mM EDTA, adjusted to pH7.8 with glacial acetic acid). pUC 19 and λ /Hind III DNA 

ladders were routinely used as size markers. After electrophoresis DNA fragments were 

visualized under UV light and recorded with Bio-Rad Gel Doc 2000 (Bio-Rad, Munich, 

Germany). 

2.2.15   Purification of PCR products  

After PCR reactions DNA fragments were purified with Qiaquick® PCR Purification Kit 

(Qiagen, Hilden, Germany) following manufacturer’s instructions. 

2.2.16 DNA gel extraction  

Gel pieces containing desired DNA fragments were excised from the agarose gel. DNA was 

then isolated using Qiaquick® Gel Extraction Kit (Qiagen, Hilden, Germany), according to the 

manufacturer’s instructions.  

2.2.17   Real-Time Quantitative RT-PCR  

Rosette leaves of 21-DAG plants were collected. Total RNA was isolated with Trizol Reagent 

(Invitrogen) according to the manufacturer’s instructions. The first-strand cDNAs were 

synthesized using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 
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Data were collected with the 7500 real time PCR system (Applied Biosystems). In all 

experiments, three biological replicates of each sample and two technical (PCR) replicates 

were performed. The Ubiquitin 9 (At5g18380) and S16 (At4g20890) were used as reference 

genes. The stability of the reference genes was tested using geNorm (Vandesompele et al., 

2002). The gene expression was compared between genotypes by the paired t-test. The 

paired testing takes into account the dependency of the data produced by the experimental 

design. The paired t-test tests the mean difference of the log intensities against zero. In 

addition, t-test based 95%-confidence intervals were calculated for the mean difference of 

the log intensities which is identical to the log fold change. The results were back-

transformed by taking the power to base 10 to obtain the fold change and a confidence 

interval for the fold change. For all calculations, the R software package was employed (R-

Development-Core-Team 2009). The absolute expression levels of the PAL and 4CL 

isoforms analyzed were different in Col-0 leaves. The Ct values of PAL1, PAL2, PAL3, PAL4, 

4CL1, 4CL2 and 4CL3 were about 25, 30, 34, 35, 32, 39 and 32 cycles, respectively, under 

our qRT-PCR conditions. 

2.2.18   Molecular cloning using the Gateway technology 

The Gateway technology was used for cloning all constructs except for the 

UGT74F2amiRNA-pAlligator2 construct in this work. The detailed cloning information is 

available in the corresponding section. Briefly, the cloning of the fragment of interest into 

the destination was achieved by two steps of site-specific recombination reactions, BP and 

LR reaction. The BP reaction is between an attB-flanked DNA fragment and an attP-

containing donor vector and an entry clone is generated. Next, the LR reaction takes place 

between the entry clone and an attR-containing destination vector and the final vector used 

is generated. 

2.2.19   Bioinformatics tool 

Computer analyses of DNA and protein sequences were performed using Vector NTI 

(Invitrogen).  

2.2.20   Construct for ugt78d1 mutant genetic complementation 

A genomic fragment containing the coding region of UGT78D1 and its promoter region was 

first amplified from Col-0 plant genomic DNA with iproofTM high fidelity DNA polymerase 

using the primers: UGT78D1_F-1747 (5’-GGGATTGTTTCTGCTGTGGT-3') and 

UGT78D1_R-2143 (5’-TCTCTCTCTTTCCCCGTCAA-3'). The PCR product was Kit-purified 

and used as the template for the second round PCR amplification with primers (containing 

both GATEWAY BP recombination sequence and gene specific sequence): 

78D1_CO_GW_R1900 (5’-GGGGACCACTTTGTACAAGAAAGCTGGGT 
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tgtcaaattccaattcttgct-3' and 78D1_Pro_GW_F-1460 (5’-ggggACAAGTTTGTACAA 

AAAAGCAGGCTgcagtttccgttgacaacaa-3'). The PCR product was cloned into pDONR221 

(Karimi et al., 2002) via BP recombination (Gateway technology) and the desired sequence 

was confirmed by sequencing. The genomic fragment was further cloned into the vector 

pKGW (Karimi et al., 2002) via LR recombination (Gateway technology). The resulting binary 

vector was used to transform ugt78d1 knock out mutant plants by Agrobacterium 

tumefaciens mediated transformation.  

2.2.21   Construct for ugt78d2 mutant genetic complementation 

A genomic fragment containing the coding region of UGT78D2 and its promoter region was 

amplified from Col-0 plant genomic DNA using the primers (containing both GATEWAY BP 

recombination sequence and gene specific sequence):78D2_Pro_GW_F (5’-ggggAC 

AAGTTTGTACAAAAAAGCAGGCTttcggtccaaaggatttcag-3') and 78D2_CO_GW_R (5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTagattttctgagccgtgcat-3'). The PCR product was 

cloned into pDONR221 vector via BP recombination (Gateway technology) and the desired 

sequence was confirmed by sequencing. The genomic fragment was further subcloned into 

the vector pBGW (Karimi et al., 2002) via LR recombination (Gateway technology). The 

resulting binary vector was used to transform ugt78d2 knock out mutant plants by 

Agrobacterium tumefaciens mediated transformation.  

2.2.22 Construct for artificial miRNA 

An artificial miRNA (amiRNA) targeting UGT74F2 mRNA was designed with a Web 

MicroRNA Designer (WMD 2 http://wmd2.weigelworld.org/cgi-bin/mirnatools.pl?page=1). 

One of the recommended amiRNAs (5’-GAACACCAGACTAGTGATAAA-3’) was chosen. 

The amiRNA containing precursor is generated by PCR using pRS300 as template 

(Ossowski et al., 2008). The PCR products were gel-purified and cloned into pENTRTM1A 

vector via EcoRI and BamHI sites. The amiRNA sequence was then confirmed by 

sequencing and subsequently mounted into the pAlligator2 vector via Gateway LR 

recombination reactions. The resulting expression clone (Figure 2. 1) was introduced into 

ugt74f1 knock-out mutant background to knock-down the closely linked UGT74F2 gene.  

 

 
 
 
Figure 2. 1 Illustration of the construct for amiRNA-UGT74F2 

EN35S: double-enhanced 35S promoter        

HA: 3X HA (hemagglutinin) tag 

T-NOS: Nopaline synthase terminator     

HA amiRNA-UGT74F2 T-NOS T-35S E-GFP EN35S At2S3
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T-35S: 35S terminator 

E-GFP: endoplasmic reticulum targeted GFP 

At2S3: Arabidopsis seed storage protein promoter 

2.2.23 Extraction and determination of free and glucose-conjugated SA  

The method to quantify salicylic acid (SA) was adapted from B. Meßner et al (unpublished). 

Metabolites of pooled 4-week-old rosette leaves from 4-6 individual plants (snap-frozen in 

liquid nitrogen and stored at -80°C) were extracted with a 1 + 2 mixture of methanol and 2% 

(v/v) formic acid. The content of free SA as well as SA released from conjugates was 

determined by an optimized method. Briefly, SA was extracted under acidic conditions using 

reversed-phase sorbent cartridges, recovered under basic conditions, and subsequently 

analyzed via reverse phase HPLC. Quantification was based on SA fluorescence (excitation 

305 nm/ emission 410 nm) with o-anisic acid added as an internal standard and authentic SA 

standards. Enzymatic digestion of parallel aliquots of the leaf extract with (1) 2-glucosidase 

or with (2) esterase prior to reversed-phase extraction allowed to determine (1) total SA 

glucose conjugates plus free SA and (2) SA ester conjugates plus free SA, respectively. 

Thus, the contents of free, not conjugated SA, glucose-conjugated SA, and esterified SA 

could be determined.  

2.2.24   PAL activity assay 

The assay method was modified from a recently published one (Olsen et al., 2008). 

Approximately 100 mg leaves were thoroughly homogenized with 3 ml extraction buffer 

(containing 100 mM Tris-HCl, pH 8.8, and 12 mM 2-mercaptoethanol). After centrifugation at 

14,000 g for 10 min at 4°C the supernatant was desalted by a Sephadex G25 column. The 

protein fraction was used for the PAL assay. The assay mixture contained 450 µl buffer (100 

mM Tris-HCl, pH 8.8), 500 µl protein extract and 50 µl 100 mM L-phenylalanine. After 

incubation for two hours at 37°C, 50 µl 5 M HCl were added to terminate the reaction. The 

UV absorbance was recorded at 290 nm.  The blank made in the same way as the assay, 

but without Phenylalanine. Assays were performed five times (technical repeats) for each of 

the three independent experiments. The activity was expressed as nmol trans-cinnamic acid 

formed per gram plant tissue, per hour. 

2.2.25   Construction of the calibration curves for different flavonols 

A calibration curve was generated from HPLC data and used to calculate the amount of 

kaempferol (µg) per g FW of Arabidopsis tissues. The calibration curve was obtained by 

plotting the measured area (mAU) against different amounts of kaempferol (Roth). The 

calibration curve was obtained using Microsoft Excel (Figure 2. 2). The formula generated by 

Microsoft Excel was used to calculate the concentration of kaempferol in plant extracts. The 
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calibration curves for isorhamnetin (Figure 2. 3) and quercetin (Figure 2. 4) were generated 

in an analogous way. 

 

 
 
Figure 2. 2 The kaempferol calibration curve. The formula of the calibration curve obtained is 

y ═ 1469.6x-56.442 (y ═ mAU, x ═ µg). The error bars are means ± SD, n = 3. The error bars 

are very small. 
 

 
 

Figure 2. 3 The isorhamnetin calibration curve. The formula of the calibration curve obtained 

is y ═ 1460.3x-15.733 (y ═ mAU, x ═ µg). The error bars are means ± SD, n = 3. The error 

bars are very small. 

 

0 

500 
1000 
1500 
2000 
2500 
3000 
3500 

0.5 1.0 1.5 2.0 2.5

m
A

U
 (2

80
 n

m
)

0 
100 
200 
300 
400 
500 
600 
700 
800 

0.1 0.2 0.3 0.4 0.5 0.6 

m
A

U
 (2

80
 n

m
)

Kaempferol (µg)

Isorhamnetin (µg)



Materials and Methods 

 

28

 
 

Figure 2. 4 The quercetin calibration curve. The formula of the calibration curve obtained is y 

═ 1700x-20.607 (y ═ mAU, x ═ µg). The error bars are means ± SD, n = 3. The error bars 

are very small. 

2.2.26   Extraction of flavonol metabolites for HPLC analysis 

Rosette leaves from soil-grown plants 21 days after germination (DAG) and roots from 14 

DAG agar-grown seedlings were collected for flavonol extraction. Extracts were prepared by 

adding 1 ml methanol (with naringenin as internal standard) to 100 mg fresh weight plant 

materials. Samples were ground to a fine suspension and incubated for 1 h with moderate 

rotation at 4°C. The extracts were then clarified by centrifugation at 14,000 g for 10 min with 

a table centrifuge. One third volume of distilled water was added to the extract and 

centrifuged as above to remove the chlorophyll. 20 µl of the clear extract were analyzed by 

HPLC. For flavonol aglycone analysis the clear extract was hydrolyzed by the adding of an 

equal volume of 2 N HCl, incubation was performed at 70°C for 40 min. An equal volume of 

methanol was added to prevent the precipitation of the aglycones. Samples were centrifuged 

at 14,000 rpm for 15 min. 20 µl of the sample was analyzed by HPLC.  

2.2.27   HPLC analysis of flavonols and sinapate esters 

Samples were analyzed using a reverse phase HPLC system at a flow rate of 1ml/min using 

a Luna 5 µ C18 column (Phenomenex, P/No: 00G-4252-E0). Solvent A was 20% formic acid 

with 1% ammonium formate, and solvent B was 88% methanol with 1% ammonium formate. 

The elution gradient program was a linear gradient from solvent A to solvent B (45 min), and 

maintained at 100% B for 5 min. Absorbance at 280 nm was used for detection. The flavonol 

aglycones, including kaempferol, quercetin and isorhamnetin, were identified by their diode 

array spectra and by comparison with authentic standards. 
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2.2.28   Photometric determination of anthocyanins 

Extraction of anthocyanins of 21-DAG Arabidopsis plants was performed as following. 250 µl 

of acidic methanol (1% HCl, w/v) was added to 50 mg of fresh plant material.  The plant 

material was homogenized on ice and then incubated at 4°C for 1h with moderate shaking. 

The suspension was clarified by centrifugation (14,000 rpm, room temperature, for 5 min). 

Absorption of the extracts at 530- and 657-nm wavelength was determined photometrically. 

Quantification of anthocyanins was performed using the following equation: QAnthocyanins = 

(A530 – 0.25* A657) X M-1, where QAnthocyanins is a corrected absorption value linearly correlated 

with the amount of anthocyanins, A530 and A657 is the absorption at the indicated wavelengths 

and M is the weight of the plant material used for extraction (g). All samples were measured 

in triplicate in three independent biological replicates. Error bars indicate the SD of the 

average of the anthocyanin content. 

2.2.29   LC-ESI-MSn 

A Bruker Daltonics esquire 3000plus ion trap mass spectrometer (Bruker Daltonics, Bremen, 

Germany) connected to an Agilent 1100 HPLC system (Agilent Technologies, Waldbronn, 

Germany), equipped with a quaternary pump, and a variable wavelength detector, was 

utilized for all experiments. Components were separated with a Phenomenex 

(Aschaffenburg, Germany) Luna C-18 column (150 mm long x 2.0 mm inner diameter, 

particle size 5 µm) that was held at 25°C. The electrospray ionization voltage of the capillary 

was set to -4000 V and the end plate to -500 V. Nitrogen was used as dry gas at a 

temperature of 300°C and a flow rate of 10 l/min. The full scan mass spectra were obtained 

in a scan range from 50 to 800 m/z with a scan resolution of 13000 m/z/s until the ICC target 

reached 20000 or 200 ms, whichever was achieved first. Tandem mass spectrometry was 

carried out using helium as the collision gas (3.56 x 10-6 mbar) with the collision voltage set 

at 1 V. Spectra were acquired in the positive and negative ionization mode. The LC 

parameters went from 100% A (0.1% formic acid in water) to 50% B (0.1% formic acid in 

methanol) in 30 minutes, then in 5 minutes to 100% B, held for 15 min at these conditions, 

then returned to 100% A in 5 min at a flow rate of 0.2 ml min-1. The detection wavelength was 

280 nm.  

2.2.30   LC-ESI-MSn Metabolite analysis  

One hundred mg of freeze-dried Arabidopsis leaf powder were extracted with 500 µl 

methanol containing 0.1 mg/ml 4-methylumbelliferyl-β-D-glucuronid as an internal standard. 

Methanol was removed in a rotary vacuum concentrator and the extract was re-dissolved in 

35 µl water for analysis by LC-ESI-MSn. Metabolites were identified by their retention times, 

mass spectra and product ion spectra in comparison with the data determined for authentic 
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reference materials. Relative metabolite quantification was performed using the DataAnalysis 

3.1 and QuantAnalysis 1.5 software (Bruker Daltonics, Bremen, Germany) normalizing all 

results to the internal standard. The extraction and analyzing of metabolites were performed 

by T. Hoffmann (Weihenstephan, Freising, Germany). 

2.2.31   Auxin transport assay 

The auxin transport assay was modified according to previously published methods (Okada 

et al., 1991; Przemeck et al., 1996; Besseau et al., 2007). Briefly, fragments of 2.5 cm in 

length cut from the basal part of the primary stem were used for the assay. The auxin 

solution contained 30 µl mixture of Murashige and Skoog (MS) medium (pH 5.5) with 10 µM 

IAA and 1 µM 3H-IAA (1 µCi/µl). One end of the stem fragment (Apical end for basipetal 

auxin transport; basal end for acropetal auxin transport) was dipping into the assay mixture. 

After six hours incubation at room temperature in the dark in a closed Eppendorf tube, a 5 

mm fragment was cut off from the non-submerged basal end and the radiation was 

measured by scintillation counting. 

2.2.32 IAA quantification 

Col-0 and ugt78d2 plants were grown for 28 days before the inflorescence stems were 

harvested.  Segments of 2.5 cm long were collected from apex, middle and base of 

inflorescence stems. The extraction and quantification of plant IAA were carried out by Petre 

I. Dobrev (Institute of Experimental Botany, Acad. Sci. Czech Rep.,Prague) as previously 

described (Dobrev and Kaminek, 2002). 

2.2.33 Imaging methods 

Plant images were taken using binocular (Olympus SZ-PT), fluorescence microscopy (Zeiss) 

and digital camera (Nikon D300). Some pictures were further processed with Adobe 

Photoshop CS2. 
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3 Chapter 3: FEEDBACK INHIBITION OF 
PHENYLPROPANOID AND FLAVONOL-BIOSYNTHETIC 
PATHWAYS UPON A COMPROMISED FLAVONOL-3-O-
GLYCOSYLATION 

 

3.1 ABSTRACT 

Flavonols, a class of phenylpropanoids, have protective and regulatory functions in plants 

and are important nutritional ingredients. The hydrophobic compounds are glycosylated 

consecutively at their 3-OH and 7-OH positions in Arabidopsis thaliana. UGT78D1 and 

UGT78D2 are the major glycosyltransferases involved in flavonol 3-O-glycosylation in leaves 

of this plant. Accordingly, the ugt78d1 ugt78d2 double mutant was strongly compromised in 

the primary conjugation of flavonol aglycones. Instead of alternative modifications or 

aglycone accumulation, flavonol biosynthesis was repressed in ugt78d1 ugt78d2 retaining 

only one third of the wild-type flavonol level. The reduced flavonol amounts were associated 

with a repressed transcription of many flavonol-biosynthetic key genes including the 

committed step of flavonoid biosynthesis catalyzed by CHALCONE SYNTHASE (TT4). In 

addition, the expression of PHENYLALANINE AMMONIA LYASE (PAL), which constitutes 

the committed step of the general phenylpropanoid pathway, was repressed at the level of 

gene transcription and enzyme activity. However, a strong repression of total flavonol 

biosynthesis in the flavonol synthase 1 mutant did not negatively affect PAL expression nor 

was it repressed by a compromised downstream 7-O-glycosylation. PAL activity was also 

reverted back to wild-type level in tt4 ugt78d1 ugt78d2 lines eliminating flavonoid 

biosynthesis in addition to the repressed 3-O-glycosylation capacity. Chemical 

complementation of tt4 ugt78d1 ugt78d2 plants using naringenin, a flavonoid intermediate, 

could restore the reduction in PAL expression. Thus, these studies revealed a novel 

feedback inhibition of the flavonol-biosynthetic pathway, which was specifically linked to a 

compromised flavonol 3-O-glycosylation, but at the same time dependent on flavonol 

formation itself. 

 

3.2 INTRODUCTION 

Phenylalanine-derived flavonoids are important plant secondary metabolites. In Arabidopsis 

thaliana, flavonoids comprise flavonols, anthocyanins and proanthocyanidins. Among them 

flavonols received intense research interest because they were shown to have diverse roles 
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such as protection from oxidative damage and UV radiation, inhibition of auxin transport, 

control of pollen function and signalling to symbiotic organisms (Li et al., 1993; Mo et al., 

1992; Peer et al., 2004; Peer et al., 2007; Santelia et al., 2008; Harrison et al., 2005; Wasson 

et al., 2006; Taylor et al., 2005; Buer et al., 2010). In addition, flavonols taken in as food and 

feed ingredients have been also implicated as either protective, regulatory or cytotoxic 

molecules in mammals (Lin et al., 2006).  

 

The biosynthesis of flavonols as well as the general phenylpropanoid pathway supplying the 

flavonoid precursor p-coumaroyl-CoA has been well characterized in many plant species 

including A. thaliana (Dixon et al., 1999; Harborne et al., 2000; Harborne et al., 2001) (Fig. 

1). Phenylalanine ammonia-lyase (PAL) catalyzes the committed step of the 

phenylpropanoid pathway and locates at the link of primary and secondary metabolism. 

Different PAL isoforms were proposed to have different metabolic roles in A. thaliana. PAL1 

and PAL2 are important for both flavonoid and lignin biosyntheses, while PAL4 appears to be 

important for lignin biosynthesis (Raes et al., 2003; Rohde et al., 2004). Chalcone synthase 

(CHS) catalyzes the committed step of flavonoid biosynthesis and is encoded by a single 

gene in A. thaliana (Winkel-Shirley 2006). The chs mutant (or transparent testa 4, tt4) is 

completely devoid of flavonoids, which provides a good tool for analyzing the consequences 

of a complete loss of flavonoids in plants. Although six Arabidopsis flavonol synthase (FLS) 

isoforms were identified, only FLS1 considerably contributed to the last step of the formation 

of the flavonol aglycones (Owens et al., 2008; Stracke et al., 2009). FLS3 had a low activity, 

but it might be relevant only under an fls1 background (Preuss et al., 2009). 

 

Flavonol aglycones are further glycosylated in a complex manner in plant cells. Glycosylation 

is frequently involved in the biosynthesis of secondary metabolites to modify their stability, 

solubility or localization and thereby the biological properties of the conjugated molecules (Li 

et al., 2001; Bowles et al., 2006; Meßner et al., 2003). In case of the hydrophobic flavonols, 

glycosylation renders them more water-soluble and less toxic, and it may enable flavonol 

transport and compartmentation (Winkel-Shirley 2006; Bowles et al., 2006; Cos et al., 2001; 

Moreira et al., 2007; Xiao et al., 2009). However, the physiological significance of the 

complex glycosylation pattern found in plants remains unclear. Glycosylation is achieved by 

UDP-carbohydrate dependent glycosyltransferases (UGTs), which transfer sugars to target 

molecules by the formation of a glycosidic bond (Li et al., 2001). Flavonols are usually 

glycosylated at their 3-OH and 7-OH positions in A. thaliana (Veit et al., 1999; Bloor et al., 

2002; Jones et al., 2003; Tohge et al., 2005; Yonekura-Sakakibara et al., 2007; Yonekura-

Sakakibara et al., 2008). Based on the in vitro substrate preferences of recombinant UGT 

proteins and the flavonol glycoside profiles of the Arabidopsis mutants deficient for 
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glycosylation at these two positions, the 3-O-glycosylation is considered to be the first step of 

conjugation followed by 7-O-glycosylation. Five UGTs involved in flavonol glycosylation have 

been identified including UGT78D1, UGT78D2, UGT78D3, UGT73C6, and UGT89C1 (Figure 

1. 4) (Jones et al., 2003; Tohge et al., 2005; Yonekura-Sakakibara et al., 2007; Yonekura-

Sakakibara et al., 2008). In leaves, UGT78D1 and UGT78D2 are the major 3-O-

glycosyltransferases, whereas UGT78D3 has, if any, only a negligible contribution to the 

overall 3-O-glycosylation (Jones et al., 2003; Tohge et al., 2005; Yonekura-Sakakibara et al., 

2008). UGT73C6 has only a minor contribution to 7-O-glycosylation in leaves as only trace 

amount of flavonols are 7-O-glucosylated. Instead, 7-O-rhamnosylation by UGT89C1 is the 

major form of 7-O-conjugation (Yonekura-Sakakibara et al., 2007). 

 

The phenylpropanoid and flavonoid biosynthesis pathways are subject to multiple levels of 

control. They are dependent on developmental stages and tissues as well as on exogenous 

stimuli, in particular on irradiation and temperature (Winkel-Shirley 2006; Kubasek et al., 

1992; Kaffarnik et al., 2006; Götz et al., 2010). Both post-transcriptional modification and 

transcriptional controls have been implicated in these regulations (Winkel-Shirley 2006; 

Franken et al., 1991; Pairoba et al., 2003). In addition, the committed step into 

phenylpropanoid pathway has been shown to be metabolically regulated through negative 

feedback by cinnamic acid on PAL transcription exerted at the level of C4H activity (Blount et 

al., 2000). 

 

Here, an Arabidopsis ugt78d1 ugt78d2 double mutant was characterized that was to lead to 

a compromised initial 3-O-glycosylation of flavonols. However, instead of an accumulation of 

flavonol aglycones or alternative conjugations in this line, the biosynthesis of flavonols was 

repressed. This repression was correlated with a reduced expression of both flavonol 

biosynthetic and PAL genes. A further genetic analysis suggested a novel feedback 

repression of PAL that was directly related to the strongly compromised initial 3-O-

conjugations, yet dependent on flavonol aglycone formation. 

 

3.3 RESULTS 

3.3.1 The ugt78d1 ugt78d2 double mutant has strongly reduced total flavonol 
content in leaves  

Three major flavonol glycosides, kaempferol 3-O-rhamnoside-7-O-rhamnoside (k1), 

kaempferol 3-O-glucoside-7-O-rhamnoside (k2), and kaempferol 3-O-rhamnosyl (1->2) 

glucoside-7-O-rhamnoside (k3), accumulated in leaves of Arabidopsis plants grown in a 

growth chamber under non-stressed conditions (Bloor and Abrahams 2002) (Figure 3. 1 A). 
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In ugt78d1 single mutant leaves k1 was not detectable, whereas k2 and k3 were 

accumulated to higher levels (Jones et al., 2003) (Figure 3. 1 A). However, in ugt78d2 single 

mutant leaves k2 and k3 were strongly decreased while k1 was increased (Tohge et al., 

2005) (Figure 3. 1 A). Although the flavonol glycoside pattern was altered in the ugt78d1 and 

ugt78d2 single mutants, they appeared to maintain wild-type levels of total flavonol 

glycoside. These observations suggest that UGT78D1 and UGT78D2 compete for flavonol 

aglycones as substrates and the loss of flavonol 3-O-glycosylation in either single mutant is 

fully compensated for by the remaining active flavonol 3-O-glycosylatranferases.  

 

However, when studying the flavonol glycoside profile in leaves of the ugt78d1 ugt78d2 

double mutant, k2 and k3 were strongly reduced and k1 was not detectable. Furthermore, no 

other forms of flavonol derivatives or flavonol aglycones were detected (Figure 3. 1 A). LC-

MS analysis could not detect any flavonol aglycone (Table 3. 1). It appeared that total 

flavonol content was reduced in ugt78d1 ugt78d2 double mutant leaves. To precisely 

quantify total flavonol content I hydrolyzed the methanolic leaf extracts and measured the 

flavonol aglycones by HPLC analysys. Consistent with flavonol glycoside observation, both 

the ugt78d1 and ugt78d2 single mutants maintained wild-type total flavonol content (Figure 

3. 1C). In the ugt78d1 ugt78d2 double mutant, kaempferol and quercetin contents were 

reduced to 21% and 18% of the wild-type levels, respectively (Figure 3. 1 B & C). 

Interestingly, isorhamnetin, a low abundant flavonol in wild-type plants, accumulated to about 

3.5-fold in the ugt78d1 ugt78d2 double mutant (Figure 3. 1 B & C). Through both LC-MS and 

FT-ICR-MS analyses, I detected a strongly increased compound corresponding to the 

molecular mass of isorhamnetin-glucoside-rhamnoside, which may at least partly account for 

the increased isorhamnetin in the ugt78d1 ugt78d2 double mutant (Table 3. 1). The total 

amount of flavonols (including the increased isorhamnetin) in leaves of ugt78d1 ugt78d2 

double mutant was reduced to about 32% of the wild-type level. Thus, the drastic loss of 

flavonol 3-O-glycosylation results in a strong reduction of total flavonol content. 
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Figure 3. 1 Determination of flavonols from Col-0, ugt78d1, ugt78d2 and ugt78d1 ugt78d2 by 

HPLC analyses. A. Representative HPLC diagrams of the flavonol glycoside profiles from 

leaves of three-week-old plants. k1, kaempferol 3-O-rhamnoside-7-O-rhamnoside; k2, 

kaempferol 3-O-glucoside-7-O-rhamnoside; k3, kaempferol-3-O-[rhamnosyl (1->2glucoside)]-

7-O-rhamnoside, IS, internal standard (naringenin), SM, sinapoyl malate, SG, sinapoyl 

glucose. Arrows indicate missing glycosides. B. Representative HPLC diagrams of flavonol 

aglycone profiles from leave extracts after acid hydrolysis. Q, quercetin; K, kaempferol; I, 

isorhamnetin, C. Total flavonol aglycone quantification after acid hydrolysis of the methanolic 

extracts from leaves and roots. Each bar represents the mean ± SD determined by three 

independent experiments. FW, fresh weight. 
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Table 3. 1 Detected metabolite levels in ugt78d1 ugt78d2 and Col-0 leaves by LC-MS 

analysis.  

Compounds Col-0   ugt78d1 ugt78d2 

 

Kaempferol 3-O-glucoside 29.92 ± 3.95  11.25 ± 3.05 

Quercetin 3-O-glucoside 22.47 ± 2.55  3.19 ± 0.74 

Isorhamnetin-glucoside-rhamnoside 9.71 ± 4.13   296.15 ± 35.85 

Naringenin-glucoside 2.60 ± 0.64  2.02 ± 0.63 

Sinapic acid 184.38 ± 37.02  125.93 ± 21.59 

p-Coumaroyl-glucoside 1.14 ± 0.56  0.87 ± 0.50 

p-Coumaroyl-glucose-ester 1.61 ± 0.44  2.03 ± 0.43 

Caffeoyl-glucose-ester 6.90 ± 1.58  7.29 ± 1.35 

p-Hydroxybenzoyl-glucose-ester 0.99 ± 0.42  1.04 ± 0.35 

        

 
The flavonol glycosides shown in Figure 3. 1A are not shown here. In particular, no flavonol 

aglycones were detected in this analysis. Rosette leaves of three-week-old plants were used 

for the analysis. The values shown are the means of eight independent biological samples ± 

SD (µg/g dry weight equivalent 4-methyl-umbelliferyl-glucoside). Please note that the 

numbers do indicate relative quantities and cannot be compared to the values given in Figure 

3. 1 and Figure 3. 5. These experiments were done in cooperation with Thomas Hoffmann 

and Wilfried Schwab, TU München.  

 

3.3.2 Expression pattern of UGT78D1 and UGT78D2 matches organ-specific 
reduction in flavonols 

The reduction of total flavonol content was organ-specific and different in inflorescences, 

stems and leaves from roots. Similar to leaves, the total flavonol content was strongly 

reduced in both inflorescences and stems of ugt78d1 ugt78d2 plants as compared to the wild 

type counterpart (Figure 3. 1 C & Figure 4. 3). In roots, however, the total flavonol content of 

double mutants maintained at higher levels similar to ugt78d2 single mutants (Figure 3. 1 C). 

 

To study whether the organ-specific flavonol reduction in the ugt78d1 ugt78d2 double mutant 

was correlated with the expression patterns of UGT78D1 and UGT78D2 in wild-type plants, 

the respective promoter reporter constructs were generated and introduced into wild-type 

Arabidopsis plants. In about two-week-old plants, both UGT78D1 and UGT78D2 were well 

expressed at the basal part of the young leaves (Figure 3. 2 A & B). The expression of 
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UGT78D2 was also observed along the central vein of the leaves as well as in the 

cotyledons (Figure 3. 2 B). In about three-week-old plants, the expression of both UGT78D1 

and UGT78D2 was lower compared to that of two-week-old plants and predominantly at the 

basal part of leaf petioles (Figure 3. 2 C & D). Generally, the expression of both UGT genes 

was very low in roots relative to that in leaves. The expression of UGT78D2 was not 

detectable in roots (Figure 3. 2 F). The expression of UGT78D1 was observed along the root 

stele but was, however, absent in the region close to root tip (Figure 3. 2 E). Interestingly, 

strong expression of UGT78D1 was observed in root tips (Figure 3. 2 E insert). Jones and 

colleagues (Jones et al., 2003) also found that UGT78D1 was well expressed at similar 

levels across leaves, flowers, siliques, and stems, whereas it was detectable only at very low 

levels in roots. These findings were further corroborated by examination of publicly available 

microarray data using the Arabidopsis eFP Browser (bar.utoronto.ca, developmental map) 

(Schmid et al., 2005; Winter et al., 2007), which showed that the expression of both 

UGT78D1 and UGT78D2 in roots was much lower than in leaves (Figure 3. 2 G). Taken 

together, both UGT78D1 and UGT78D2 exhibited a relatively much higher expression in 

plant aerial parts than in roots, which is positively correlated with the organ-dependent 

reduction of total flavonol content in the ugt78d1 ugt78d2 double mutant.  
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Figure 3. 2 Expression pattern of UGT78D1 and UGT78D2. A, B, C, D, E, and F, transgenic 

promoter-GUS fusions were analyzed by histochemical staining with 5-bromo-4-chloro-3-

indolyl-β-D-glucuronide. A and B, two-week-old plants. C and D, three-week-old plants. G, 

data from the public microarray database of both UGT78D1 and UGT78D2 genes obtained 

using the Arabidopsis eFP Browser (bar.utoronto.ca) (Schmid et al., 2005, Winter et al., 

2007).  

3.3.3 Flavonoid biosynthetic genes are transcriptionally down-regulated in 
ugt78d1 ugt78d2 double mutant leaves 

To examine whether the reduced flavonol content in leaves was accompanied by reduced 

transcript levels of the flavonoid biosynthetic genes, their mRNA abundance was assessed 

by quantitative RT-PCR in both ugt78d1 ugt78d2 double mutant and wild-type plants. The 

primers used are listed in (Supplemental Table S1). In ugt78d1 ugt78d2, the transcripts of 

CHS, F3’H, FLS1 and DFR were significantly lowered to about 50% in comparison to the 

wild-type counterpart (Figure 3. 3). However, the transcripts of CHI and F3H were of wild-

type levels. Furthermore, genes in the general phenylpropanoid pathway upstream of the 

flavonoid branch including PAL1, PAL2, PAL3, PAL4, 4CL1, 4CL2, 4CL3 and C4H were also 

analyzed. PAL1 and 4CL3 transcripts were almost reduced to half in the double mutant vs. 

wild type, whereas the reduction of C4H reduction was lower and 4CL1 mRNA levels were 

not altered. The lowly expressed PAL2 showed only a tendency for repression (Figure 3. 3). 
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Eventually, the transcription of PAL3, PAL4, and 4CL2 in leaves was too low to allow and did 

not allow an unambiguous evaluation in both wild type and mutant (see Materials and 

methods). Thus, the committed steps of the phenylpropanoid pathway (PAL1) and of the 

flavonoid biosynthesis (CHS) along with several intermediate steps were suppressed at the 

transcriptional level in ugt78d1 ugt78d2 to about one half of wild-type expression. 

 

 
Figure 3. 3 Transcription of genes involved in phenylpropanoid and flavonoid biosynthetic 

pathways. Quantitative RT-PCR analyses were used to assess transcript levels of the 

indicated genes in the ugt78d1 ugt78d2 double mutant relative to Col-0. Data were obtained 

from three independent experiments. Expression levels were normalized using S16 and 

TUB9 transcripts. The graphics shows the fold changes estimated for each comparison 

individually with 95%-confidence intervals. The R software was used for calculation. Stars 

indicate significance of the difference to Col-0 plants: *p-value < 0.05, **p-value < 0.01. 

3.3.4 PAL Enzyme activity is reduced in the ugt78d1 ugt78d2 double mutant 

The decreased transcript levels of PAL1 in the ugt78d1 ugt78d2 double mutant prompted us 

to examine whether PAL activity was reduced as well. PAL activity was assayed in total 

protein extracts from ugt78d1, ugt78d2, ugt78d1 ugt78d2 and wild-type leaves. Both ugt78d1 

and ugt78d2 single mutants remained wild-type level of PAL activity, whereas the ugt78d1 

ugt78d2 double mutant showed a significant reduction to about 60% (Figure 3. 4).  
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Figure 3. 4 Quantification of PAL activity of ugt78d1, ugt78d2, ugt78d1 ugt78d2, tt4 ugt78d1 

ugt78d2, ugt89c1 ugt73c6, fls1 and wild-type (Col-0, Nö-0) plants. Crude protein extract from 

leaves of three-week-old plants were assayed for PAL activity; CA, cinnamic acid. The mean 

values ± SE of three independent biological samples (pools of 4 to 6 plants per sample) are 

displayed. Multiple comparisons of different mutants with the corresponding wild-type 

background (Col-0) (dark bars) were performed using Dunnett’s t-tests, which showed that 

Col-0 is significantly different only from ugt78d1 ugt78d2 (p < 0.05), but not from the 

remaining genotypes. fls1 was derived from Nö-0 background and compared to this wild 

type. No significant difference was found. The experiment was repeated three times with 

similar results.   

 

3.3.5 The influence of reduced PAL activity on phenylpropanoid metabolism 

In addition to the flavonol pathway the repression of PAL activity in ugt78d1 ugt78d2 might 

also affect other phenylpropanoid-dependent branches, i.e. the biosynthesis of anthocyanins, 

sinapate esters, and lignin. ugt78d1 accumulated essentially wild-type levels of total 

anthocyanins, while anthocyanin accumulation was already strongly suppressed in the 

ugt78d2 single mutant without any inhibitory effect on PAL expression (Figure 3. 4 & Figure 

3. 5A) (Tohge et al., 2003). Since ugt78d1 ugt78d2 had comparably low amounts of 

anthocyanin like ugt78d2 (Figure 3. 5A), the repression of PAL did not further impact this 

downstream branch. However, DFR transcription was slightly down-regulated in ugt78d1 

ugt78d2 in contrast to ugt78d2 single mutant (Figure 3. 3 & Figure 3. 6). 

 

Sinapate esters, particularly sinapoyl malate, are abundantly present in Arabidopsis leaves. 

The reduced PAL expression had a subtle inhibitory effect on sinapate ester accumulation. 
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The double mutant, in contrast to the single mutants, had a slightly, yet significantly reduced 

sinapoyl malate content compared to wild type (Figure 3. 5B).  

 

To test whether lignin biosynthesis was affected, I first used quantitative RT-PCR analysis of 

key genes involved in lignin biosynthesis. The transcript abundance of HCT (encoding 

hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase) was marginally 

reduced. Transcription of CCR1 (encoding cinnamoyl-CoA reductase Class I) and CAD4 

(encoding cinnamyl alcohol dehydrogenase Class II, isoform 4) was not affected in ugt78d1 

ugt78d2 leaves (Figure 3. 3). Thus, the biosynthesis of lignin precursors was essentially not 

affected at the transcriptional level. Secondly, total lignin was examined histochemically 

using phloroglucinol-HCl staining of leaves and stems. The flavonol glycoside content in 

inflorescence stems of ugt78d1 ugt78d2 was also strongly reduced in leaves (Figure 4. 3). 

Lignin deposits in both leaves and stems of ugt78d1 ugt78d2 appeared to be comparable to 

wild-type levels (Figure 3. 5C,D). Finally, LC-MS analysis was performed for the metabolites 

associated with the lignin biosynthesis pathway. No immediate monolignol precursor was 

detected in the leaf extracts. Nevertheless, LC-MS analysis showed that the ugt78d1 

ugt78d2 double mutant accumulated wild-type levels of the monolignol precursor-related 

derivatives p-coumaroyl-glucoside, p-coumaroyl-glucose-ester, and caffeoyl-glucose-ester 

(Table 3. 1). In summary, these results indicated that lignin biosynthesis was not significantly 

affected in ugt78d1 ugt78d2. 
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Figure 3. 5 Phenylpropanoid compounds of ugt78d1 ugt78d2 and Col-0 plants. A, 

photometric determination of the anthocyanin content in acidic methanolic leaf extracts of 

Arabidopsis three-week-old plants: A530, absorption at 530 nm; A657, absorption at 657 nm. 

The mean values ± SD of three independent biological samples (pools of 4-6 plants per 

sample) are displayed. B, quantification of sinapoyl malate from ugt78d1 ugt78d2 and Col-0 

plants. The mean values ± SD of six independent biological samples (pools of 4-6 plants per 

sample) are displayed. **p < 0.01; paired t-tests. This experiment was repeated three times 

with similar results. C and D, phloroglucinol-HCl-stained rosette leaves (C) from three-week-

old plants and hand cross-sections of inflorescence stems (directly below the third internode) 

(D) from five-week-old plants. Bar = 3 mm in C and 100 µm in D. 
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Figure 3. 6 Relative quantification of the expressions of DFR and CHS in ugt78d1 and 

ugt78d2 single mutants compared to wild-type (Col-0) by quantitative RT-PCR analysis. 

Leaves from about three-week-old plants were used for RNA isolation and cDNA synthesis. 

Each bar represents the mean ± SD by three independent experiments. 

 

3.3.6 The reduction of PAL expression of ugt78d1 ugt78d2 is dependent on 
flavonol aglycone formation 

To examine whether flavonoids themselves could play a role in the flavonol-specific 

reduction in PAL expression, the tt4 ugt78d1 ugt78d2 triple mutant was employed. The triple 

mutant tt4 ugt78d1 ugt78d2 was blocked at the committed step into flavonoid biosynthesis in 

the glycosyltransferase double mutant background (Figure 1. 4). In contrast to the ugt78d1 

ugt78d2 line, tt4 ugt78d1 ugt78d2 as well as the parent tt4 had wild-type PAL activity  (Figure 

3. 4) and the transcripts of both PAL1 and PAL2 even showed a tendency of being up-

regulated in the triple mutant (Figure 3. 7). Thus, the suppression of PAL expression in 

ugt78d1 ugt78d2 was released either by the loss of flavonoids or by the loss of CHS activity. 

To distinguish these two possibilities, a chemical complementation approach was employed. 

The feeding of naringenin, an intermediate downstream of CHS/TT4, but upstream of FLS, to 

tt4 ugt78d1 ugt78d2 could re-implement the inhibition of PAL expression. Naringenin feeding 

led to the repression of PAL activity and to the transcriptional down-regulation of PAL1 

similar to the extent observed for the glycosyltransferase double mutant (Figure 3. 8A). The 
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transcription of the much lower expressed PAL2 was not significantly affected under this 

condition (Figure 3. 8B). Flavonols had been formed after administration of naringenin 

confirming the uptake and processing of the compound by tt4 ugt78d1 ugt78d2 (Figure 3. 

8C). Thus, the repression of PAL in the 3-O-glycosylation compromised ugt78d1 ugt78d2 

double mutant was flavonoid-dependent and related to naringenin or downstream 

naringenin-dependent steps. To further narrow down the key regulatory step, additional 

mutants defective in reactions either directly upstream or downstream of 3-O-glycosylation 

were examined for effects on PAL expression. 

 

The fls1 mutant severely blocked flavonol biosynthesis at its final step of the formation of the 

aglycone moiety (Figure 1. 4). However, PAL activity was not reduced, and transcription of 

PAL1 and PAL2 was even enhanced in the fls1 background (Figure 3. 4 & Figure 3. 7), 

although this mutant showed a very strong reduction in flavonols (Stracke et al., 2009). 

Flavonol 3-O-glycosylation is followed by flavonol 7-O-glycosylation. To examine whether a 

compromised flavonol 7-O-glycosylation would also lead to a reduction in flavonol content 

and a concomitant repression of PAL activity, the ugt89c1 ugt73c6 double mutant was 

generated (Figure 1. 4). The flavonol glycoside profile of ugt89c1 ugt73c6 leaves indicated a 

strongly suppressed 7-O-conjugation. The contents of the three abundant, 7-O-conjugated 

wild-type flavonol glycosides (k1, k2 and k3) were strongly decreased, whereas two flavonol 

3-O-monoglycosides, kaempferol 3-O-glucoside and kaempferol 3-O-rhamnoside 

accumulated (Figure 3. 9A & Figure 3. 10). Yet, ugt89c1 ugt73c6 contained wild-type levels 

of total flavonols and had unchanged PAL enzyme activity (Figure 3. 4 & Figure 3. 9B).  

 

 

 
 
Figure 3. 7 Transcription of PAL1 and PAL2 genes in fls1 and tt4 ugt78d1 ugt78d2 mutants 

relative to the wild type. The fls1 mutant was of Nö-0 background; tt4 ugt78d1 ugt78d2 was 

of Col-0 background. The data were collected from three independent quantitative RT-PCR 

analyses. Expression levels were normalized using S16 and TUB9 transcripts. The graphics 

shows the fold changes estimated for each comparison individually with 95%-confidence 
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intervals. The R software was used for calculation. Stars indicate significance of the 

difference to corresponding wild-type plants: *p-value < 0.05, **p-value < 0.01. 

 

                        
                                                       
                                  
Figure 3. 8 Chemical complementation of tt4 ugt78d1 ugt78d2 with naringenin. A, PAL 

activity of tt4 ugt78d1 ugt78d2 with and without feeding of naringenin. The mean values ± SE 

of six independent biological samples (pools of 4-6 plants per sample) are displayed. CA is 

cinnamic acid.  ***p < 0.001; paired t-tests. The experiment was repeated twice with similar 

results. B, expression of PAL1 and PAL2 genes in the tt4 ugt78d1 ugt78d2 triple mutant after 

naringenin feeding relative to non-fed triple mutant by quantitative RT-PCR analysis. 

Expression levels were normalized using S16 and TUB9 transcripts. The graphics shows the 

fold changes estimated for each comparison individually with 95%-confidence intervals. The 

R software was used for calculation. Stars indicate significance of the difference to non-fed 

mutant plants: **p-value < 0.01. Data obtained from six biological samples (pools of 4-5 

seedlings per sample) were shown. The experiment was repeated twice with similar results. 

C, detected flavonols (after acid hydrolysis) from tt4 ugt78d1 ugt78d2 fed with naringenin by 

HPLC analysis. Abbreviations: Q, quercetin; K, kaempferol; I, isorhamnetin.  
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Figure 3. 9 Flavonol determination of ugt89c1 ugt73c6 double mutant and Col-0 leaves. A. 

Representative HPLC diagrams of ugt89c1 ugt73c6 and Col-0 (dashed line). Flavonols were 

extracted from the leaves of three-week-old plants. IS, internal standard (naringenin); SM, 

sinapoyl malate; U, unknown peak; K3G, kaempferol 3-O-monoglucoside; K3R, kaempferol 

3-O-monorhamnoside. B. Total flavonol aglycone quantification after acid hydrolysis of the 

leaf extracts. Each bar represents the mean ± SD as determined by three independent 

experiments. FW, fresh weight.  
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Figure 3. 10 The confirmation of kaempferol 3-O-monoglucoside and kaempferol 3-O-

monorhamnoside by LC-MS analyses. The retention time and MS2 spectra from ugt89c1 

ugt73c6 double mutant leaf extract and corresponding authentic standards (K3G and K3R) 

were identical. 

 
 

3.4 DISCUSSION 

A strongly compromised 3-O-glycosylation of flavonols led to a repression of the 

phenylpropanoid pathway and in particular the flavonol branch through transcriptional down-

regulation of several biosynthetic key genes including PAL1 and CHS. The wild-type PAL 

expression in tt4 ugt78d1 ugt78d2 suggested that this feedback inhibition of PAL was not 

only linked to a suppression of flavonol biosynthesis due to a reduced initial 3-O-

glycosylation, but at the same time dependent on an active flavonol aglycone formation. In 

contrast, no feedback inhibition of PAL expression occurred upon an almost complete loss of 

flavonol biosynthesis in fls1, instead an enhancement of PAL gene transcription was found 

(Figure 3. 4 & Figure 3. 7). Since the ugt89c1 ugt73c6 double mutant, which is severely 

impaired in 7-O-glycosylation of flavonols, maintained wild-type PAL expression and total 

flavonol content, the feedback inhibition was specifically linked to the compromised 3-O-

glycosylation step. 
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PAL1 and PAL2 control flavonol glycoside accumulation and lignin biosynthesis as 

demonstrated by analyzing the double mutant pal1 pal2 (Rohde et al., 2004). I showed that a 

moderate reduction in PAL activity (about 40%) associated with a similar, about 50% 

reduction in PAL1 transcription in ugt78d1 ugt78d2 led to a strong decrease of the flavonol 

glycoside level (about 70%), whereas lignin biosynthesis appeared to be not affected. In 

contrast, the repression of lignin biosynthesis by silencing of hydroxycinnamoyl-CoA 

shikimate/quinate hydroxycinnamoyl transferase indicated a different link of the 

phenylpropanoid branches, since this blocking led to an increased production of flavonoids 

(Besseau et al., 2007). The apparently moderate repression of total PAL activity could still 

reflect a stronger suppression in relation to flavonol biosynthesis. First, even in the loss-of-

function pal1 pal2 line there was a 25% background level of residual PAL activity due to 

additional PAL isoforms (Rohde et al., 2004). In addition, flavonols are present mainly in 

epidermal cell layers, while lignin is more abundant in vascular tissues. Thus, it is 

conceivable that PAL expression in ugt78d1 ugt78d2 was more severely repressed in 

flavonol synthesizing cells than in lignifying cells, which led to differential effects on the 

biosynthesis of flavonols and lignin. Two sinapate esters, sinapoyl malate and sinapoyl 

glucose, were not reduced in pal1 pal2 leaves, but slightly decreased in ugt78d1 ugt78d2 

(Rohde et al., 2004) (Figure 3. 5B). This observation indicated that other genes were also 

affected in the production of sinapate esters in this glycosyltransferase double mutant. 

 

The phenylpropanoid biosynthetic pathway is known to be metabolically regulated by 

phenylpropanoids. The transcription of CHS was shown to be inhibited by cinnamic acid, but 

stimulated by p-coumaric acid (Loake et al., 1991; Loake et al., 1992). PAL activity and 

transcription of PAL genes have been shown to be negatively regulated by its product 

cinnamic acid either via exogenous application of the compound or via blocking the 

downstream, cinnamic acid-metabolizing C4H activity (Bolwell 1986; Lamb 1979; Mavandad 

et al., 1990; Blount et al., 2000) (Figure 1. 4). In contrast to these known control 

mechanisms, a novel regulation was effective in ugt78d1 ugt78d2 to repress PAL activity and 

flavonol biosynthesis. As deduced from the release of PAL repression upon completely 

blocking CHS in tt4 ugt78d1 ugt78d2 and the restoration of inhibition by feeding of 

naringenin, the feedback regulation in ugt78d1 ugt78d2 was rather dependent on flavonoids 

and a strongly compromised 3-O-glycosylation of flavonols. Moreover, this feedback 

inhibition did not only influence the committed steps of the phenylpropanoid and flavonoid 

pathways, but also several genes of the flavonoid branch and of flavonol-related steps of the 

general phenylpropanoid pathway. Within the general phenypropanoid pathway four active 

4CL genes have been identified in the genome of A. thaliana, for which different metabolic 

roles have been proposed. The isoforms 4CL1 and 4CL2 are considered to be important for 
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lignin biosynthesis, whereas 4CL3 is involved in flavonoid biosynthesis (Ehlting et al., 1999; 

Costa et al., 2005). Consistent with the specific repression of flavonoids, only the 

transcription of 4CL3 was down-regulated in ugt78d1 ugt78d2 (Figure 3. 3). 

 

The transcriptional regulation of the phenylpropanoid pathway has been intensely studied. 

Several families of transcription factors, including R2R3-MYB, WD40, BZIP, WRKY, MADS-

box and BHLH proteins, are involved in the control of general phenylpropanoid and 

flavonoid-biosynthetic genes (Stracke et al., 2007; Quattrocchio et al., 2006). The general 

phenypropanoid pathway and flavonoid biosyntheses are widely controlled by the 

PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1/MYB75) transcription factor as well 

as related proteins. PAP1-overexpressing plants showed a coordinated up-regulation of 

PAL1, 4CL-like5, CHS, CHI, F3H, F3´H, DFR, and ANTHOCYANIN SYNTHASE (Tohge et 

al., 2005; Borevitz et al., 2000). There is an additional level of control through flavonol-

specific transcription factors, i.e. MYB11, MYB12 and MYB111, which activate transcription 

of 4CL3, CHS, CHI, F3H, F3’H and FLS1(Stracke et al., 2007). The transcription factor 

MYBL2 on the other hand was found to suppress e.g. CHS, F3H, F3’H, and DFR, but not 

CHI (Dubos et al., 2008). Such a pattern was widely overlapping with the situation found in 

ugt78d1 ugt78d2, which repressed transcription of CHS, F3’H and DFR, but did not affect 

CHI (Figure 3. 3). These MYB transcription factors are also known to interact and depend on 

the other partners like BHLH proteins to generate the eventual readouts via such 

transcriptional networks (Ramsay et al., 2005; Nesi et al., 2001; Zimmermann et al., 2004). 

Thus, it is suggestive to hypothesize that the transcriptional repression of the genes 

observed in ugt78d1 ugt78d2 is involving and is finally mediated by MYB factors and/or their 

combinatorial action with other proteins. 

 

Although transcriptional regulation of PAL genes and CHS plays an import role, an 

additional, direct regulation at the protein level in ugt78d1 ugt78d2 cannot be excluded. 

Although previous in vitro studies showing direct flavonol-protein interaction may not be 

completely transferable to an in vivo situation and may lack in part specificity, these reports 

point to the potential of the hydrophobic flavonols to interfere with enzymatic activities (Cos 

et al., 2001; Attridge et al., 1971; Sato and Sankawa 1983; Shimmyo et al., 2008). Since 

phenylpropanoid and flavonoid-biosynthetic enzymes have been proposed to be organized 

as multienzyme complexes (Winkel-Shirley 2004), any flavonol aglycone formed upon the 

strongly compromised 3-O-glycosylation in ugt78d1 ugt78d2 could interact in situ with and 

inhibit PAL or other flavonoid-biosynthetic enzymes. Such low levels of flavonol aglycones 

could escape detection in leaf extracts (Table 3. 1). Alternatively, low and undetectable levels 

of flavonol aglycones per se or in combination with biosynthetic enzymes could also provide 
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a link to the specific transcriptional feedback regulation observed in ugt78d1 ugt78d2. 

Flavonols are known to bind to proteins including histones, mammalian DNA polymerases 

and nucleic acids and thus have the potential to interfere with gene transcription (Solimani 

1997; Ramadass et al., 2003; Mizushina et al., 2003). In plants, flavonols have been shown 

to directly or indirectly control the transcription of genes encoding auxin transporters (Peer et 

al., 2004). Furthermore, flavonol metabolites as well as the cytosolic CHS and CHI proteins 

have been detected in nuclei of Arabidopsis cells (Saslowsky and Winkel-Shirley 2001; 

Saslowsky et al., 2005). Thus, one could speculate that they were also involved in regulatory 

processes. Nevertheless, CHS being a major player with such a dual function is less likely 

based on the re-establishment of PAL repression in the CHS-lacking tt4 ugt78d1 ugt78d2 

line after feeding of naringenin. Although the molecular mechanism of flavonol-dependent 

feedback inhibition therefore remains obscure, this regulation may serve as a mean to avoid 

the accumulation of hydrophobic and potentially toxic flavonol aglycones. 
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4 Chapter 4: THE OVER-ACCUMULATION OF 
KAEMPFEROL 3-O-RHAMNOSIDE-7-O-RHAMNOSIDE IN 
THE UGT78D2 MUTANT RESULTS IN DECREASED 
BASIPETAL AUXIN TRANSPORT AND PLANT GROWTH 
DEFECTS  

 

4.1 ABSTRACT 

Flavonoids and in particular flavonols have been postulated to modulate auxin transport. 

However, the active flavonoids involved in this process have not yet been identified in plants. 

The ugt78d2 mutant, which is defective in flavonoid 3-O-glucosylation and possesses an 

altered flavonol glycoside pattern, showed severe shoot growth defects including dwarfism 

and loss of apical dominancy. The ugt78d2 growth defects were eliminated by blocking 

flavonoid biosynthesis, suggesting that they were flavonoid-dependent. The modular 

combination of mutants in flavonoid biosynthesis or glycosylation and their flavonol glycoside 

profiles identified kaempferol 3-O-rhamnoside-7-O-rhamnoside (k1) as the ugt78d2 

phenotype-inducing metabolite. Furthermore, basipetal auxin transport was reduced in the 

k1-overaccumulating ugt78d2 mutant. Preliminary data showed that auxin transport was 

almost revered to wild-type level in an ugt78d2 mutant complemented line. The expression of 

UGT78D1, which is required for the synthesis of k1, was detected in all the tissues 

examined, but particularly high in the tissues where the modulation of auxin transport by 

flavonoids occurs. These results suggest that k1 is an endogenous auxin transport inhibitor. 

 

4.2 INTRODUCTION  

The phytohormone auxin, or indole-3-acetic acid (IAA), plays an important role in plant 

growth and development. Auxin needs to be transported from the sites of synthesis mainly in 

the apices to distal parts of the plants to exert its function (Berleth et al. 2007). So far, a 

number of auxin transporters including ABC transporters (ABCB1/PGP1, ABCB4/MDR4, 

ABCB19/PGP19), AUX1/LAX family members (LAX1, LAX2, and LAX3), and PIN proteins 

(PIN1-PIN8) have been well characterized (reviewed in Friml 2003 and Zažímalová et al., 

2010). However, to understand how auxin is transported into different parts of the plant, we 

need to extend our understanding of the regulation of this process. 
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Flavonoids, in particular flavonols, have been suggested to modulate auxin transport, 

because flavonol aglycones were shown to be able to displace binding of synthetic auxin 

transport inhibitors in vitro and the supply of flavonol aglycones to detached zucchini 

hypocotyls or clover roots resulted in decreased polar auxin transport (Jacobs and Rubery, 

1988; Mathesius et al., 1998; Morris 2000). Further in vivo evidence for the modulation of 

auxin transport by flavonoids was obtained mainly by analyzing auxin transport in three 

Arabidopsis transparent testa (tt) mutants, i.e. tt3, tt4 and tt7, which are defective in various 

steps of flavonoid biosynthesis. No flavonoids are synthesized in tt4, as it is lacking chalcone 

synthase catalyzing the committed step of flavonoid biosynthesis. Enhanced level of 

kaempferols, but no quercetins are formed in tt7 devoid of flavonol 3´-hydroxylase. 

Flavonols, but no anthocyanins accumulate in tt3, where dihydroflavonol reductase is 

missing (Figure 4. 1) (Shirley et al., 1995). Auxin transport in the tt4 mutant was elevated 

compared to wild type, while the flavonol-overproducing mutant tt3 exhibited reduced auxin 

transport (Brown et al., 2001; Peer et al., 2004; Buer et al., 2004). Interestingly tt7, which 

accumulates exclusively kaempferol conjugates, exhibited reduced auxin transport, 

suggesting the involvement of kaempferol derivatives in the inhibition of auxin transport (Peer 

et al., 2004). Despite these substantial pieces of evidence supporting a role of flavonols in 

the modulation of auxin transport, specific flavonol aglycones or derivatives being active in 

this process have not been pinpointed in plants so far.  

 

The biosynthesis of flavonoids is tissue specific, developmentally regulated and dependent 

on environmental factors, e.g. light and temperature (Taylor and Grotewold 2005; Shirley 

2006). Arabidopsis plants accumulate different subclasses of flavonoids, i.e. flavonols, 

anthocyanins and proanthocyanins, in a spatiotemporal manner. Virtually all the organs 

contain flavonols. Anthocyanins accumulate in organs such as hypocotyls of emerging 

seedlings, leaves, stems, siliques and seed coats. The accumulation of proanthocyanins is 

confined to the endothelial cell layer of the seed coat.  
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Figure 4. 1 The Arabidopsis flavonoid biosynthesis pathway. 
LDOX, leucoanthocyanidin dioxygenase; TT18, transparent testa 18; UGT75C1, anthocyanin 

5-O-glucosyltransferase; AATs, anthocyanin acyltransferase. Major flavonol glycosides: k1, 

kaempferol 3-O-rhamnoside-7-O-rhamnoside; k2, kaempferol 3-O-glucoside-7-O-

rhamnoside; k3, kaempferol 3-O-rhamnosyl (1->2) glucoside-7-O-rhamnoside; q1, quercetin 

3-O-rhamnoside-7-O-rhamnoside; q2, quercetin 3-O-glucoside-7-O-rhamnoside; q3, 

quercetin 3-O-rhamnosyl (1->2) glucoside-7-O-rhamnoside. 

 

In Arabidopsis cells, flavonols usually are glycosylated. Five UDP-dependent 

glycosyltransferases (UGTs) including UGT78D1, UGT78D2, UGT78D3, UGT73C6 and 

UGT89C1 have been demonstrated to be involved in flavonol glycosylation (Figure 4. 1) 

(Jones et al., 2003; Tohge et al., 2005; Yonekura-Sakakibara et al., 2007; Yonekura-

Sakakibara et al., 2008). The high degree of specificity of these five UGTs and the 

uniqueness of UGT78D1 and UGT89C1 for 3-O-rhamnosylation and 7-O-rhamnosylation, 

respectively, greatly facilitate to genetically manipulate Arabidopsis plants to synthesize or 

deplete specific flavonol glycosides. Recently, a comprehensive flavonol glycoside analysis 

revealed that flavonol glycosides are distributed in an organ-dependent manner (Yonekura-

Sakakibara et al., 2008). In contrast to flowers, the flavonol pattern in leaves and particularly 

in inflorescence stems was rather simple. Only three kaempferol glycosides and three 

structurally equivalent quercetin glycosides were detected in stems (Yonekura-Sakakibara et 

al., 2008).  
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In this work, I showed that the loss of the flavonoid-3-O-glucosyltransferase UGT78D2 led to 

a reduced plant height and increased branching. Blocking flavonoid biosynthesis and/ or 

conjugation at specific positions clearly related the excess accumulation of kaempferol 3-O-

rhamnoside-7-O-rhamnoside (k1) to the growth defects of ugt78d2. Since basipetal auxin 

transport in k1 over-accumulating influorescence stems was repressed, the genetic study 

also proposed that k1 acts as an endogenous auxin transport inhibitor. 

 

4.3 RESULTS  

4.3.1 Height and stature of ugt78d2 plants are altered  

Bolting of the ugt78d2 mutant inflorescence stem was delayed about 2-3 days on average 

relative to wild type. The mutant eventually reached only about 50% of wild-type height 

(Figure 4. 2 A, B, D & E). To elucidate the underlying mechanism of this dwarfism, cellular 

architecture of both the mutant and wild-type inflorescence stem was compared. In ugt78d2, 

cell length was significantly reduced compared to the wild type (Table 4. 1). Its vascular 

system showed no obvious anatomical aberrations, but contained an increased number of 

vascular bundles (Kerstin Schuster, unpublished data) At a later growth stage, ugt78d2 

developed more lateral and axillary branches, indicating that apical dominance was reduced 

(Figure 4. 2D,E & Table 4. 1). The reduction in length of the ugt78d2 lateral branches was 

not as pronounced as that of the primary stem. The silique length of ugt78d2 was similar to 

wild type (Table 4. 1). Complementation of ugt78d2 with a genomic fragment covering the 

complete UGT78D2 gene led to a reversion of the observed ugt78d2 growth phenotype to 

wild-type appearance and reverted the altered flavonol glycosides to a wildtype-like pattern 

(Figure 4. 2 C, F & Figure 4. 3a). Thus, the lesion in UGT78D2 was responsible for the 

observed growth defects of ugt78d2. 
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Figure 4. 2 The growth defects of the ugt78d2 mutant. 
(A-C) The ugt78d2 mutant (B) has partially lost apical dominance and is dwarfed compared 

to wild-type plants (A). The ugt78d2 mutant can be complemented by a genomic fragment 

containing the UGT78D2 gene (C). Pictures were taken after 28 days of growth. Scale bar, 5 

cm. 

(D-F) The ugt78d2 mutant (E) growth defects are more pronounced compared with wild-type 

plants (D) at a later growth stage. (F) depicted here is a genetically complemented plant. 

Pictures were taken after 50 days of growth. Scale bar, 5 cm. 

 

Table 4. 1 Phenotypic analysis of Col-0 and ugt78d2 plants.    

 
      Col-0   ugt78d2               

Length of Primary inflorescence (cm) 

Length of lateral branches (cm)        

Number of lateral branches                              

Number of axillary branches   

Length of siliques (mm)  

Length of parenchyma cells (µm) 

35.3 ± 0.9 

22.3 ± 2.4 

  5.3 ± 0.4 

  0.1 ± 0.1 

12.2 ± 0.3 

 186.1 ± 3.7  

17.7 ± 0.8 ** 

16.2 ± 0.8 ** 

  9.0 ± 0.5 ** 

  3.2 ± 0.6 ** 

12.3 ± 0.3 

158.9 ± 3.3** 

 

C D 

WT A B C 

D E F 
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For the first five traits ten individual 50-day-old plants were analyzed. For parenchyma cell 

length measurement, basal stems from five individual 33-day-old plants of each genotype 

were analyzed by microscopy. About 30 cells of each stem segment were measured. The 

mean values ± SE are displayed. Statistical analyses were performed by a paired t-test for 

uneven variance for each trait between these two genotypes (**p < 0.01). The experiment of 

cell length measurement was repeated three times with similar results. The parenchyma cell 

length measurements were performed by Kerstin Schuster.  

 

4.3.2 The ugt78d2 growth defects are flavonoid-dependent 

As UGT78D2 had been characterized as a flavonoid 3-O-glucosyltransferase (Tohge et al., 

2005; Lee et al., 2005), it was possible that the altered flavonoid glycoside pattern in ugt78d2 

plants caused the ugt78d2 phenotype. To test this possibility, a flavonoid-deficient tt4 

ugt78d2 double mutant was generated (Figure 4. 3A). The growth defects in ugt78d2 were 

eliminated in tt4 ugt78d2, indicating that they were flavonoid-dependent (Figure 4. 4). 

 

4.3.3 Kaempferol 3-O-rhamnoside-7-O-rhamnoside is the ugt78d2 phenotype-
inducing flavonol 

To identify the ugt78d2 phenotype-inducing flavonoid, a genetic approach using various 

mutants defective in flavonol biosynthetic and/or conjugating steps was employed in order to 

link specific flavonol glycoside patterns in stems to growth phenotypes. Similar to the recently 

published data obtained by LC-MS analyses, only six flavonol glycosides were detected in 

wild-type stem extracts (Figure 4. 3A) (Yonekura-Sakakibara et al., 2008). Three kaempferol 

glycosides (k1-k3) were the most abundant flavonols, while three quercetin glycosides (q1-

q3) were present at much lower levels. No flavonol aglycones were detected. The flavonol 

glycoside pattern of ugt78d2 was altered. In accordance with the loss of the 3-O-

glucosyltransferase activity the 3-O-glucoside derivatives (k2, k3, q2 and q3) were strongly 

repressed, whereas the 3-O-rhamnoside derivatives k1 and q1 were elevated compared to 

the wild-type counterpart (Figure 4. 3A). A similar alteration of the flavonol glycoside pattern 

in ugt78d2 was also observed in leaves (Tohge et al., 2005). k1 and q1 were positively 

correlated with the ugt78d2 growth defects, and hence, were good candidates for inducing 

the ugt78d2 phenotype.  

 

Both k1 and q1 contain a 3-O-rhamnosyl and a 7-O-rhamnosyl residue. These features 

offered the opportunity to examine by depletion of either of these two conjugating residues 

whether k1 and q1 were the true ugt78d2 phenotype-inducing flavonol glycosides. The 

attachment of the 3-O- and 7-O-rhamnosyl residues to both k1 and q1 is catalyzed by 
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UGT78D1 and UGT89C1, respectively (Jones et al., 2003; Yonekura-Sakakibara et al. 

2008). Thus, either knock-out of UGT78D1 or UGT89C1 would compromise the biosynthesis 

of k1 and q1 and would allow testing the role of k1 and q1 in the development of the ugt78d2 

growth defects. The effect of the ugt89c1 mutation on the accumulation of k1 and q1 was 

confirmed in the ugt78d2 ugt89c1 double mutant. None of the six flavonol glycosides (k1-k3, 

q1-q3) were detected, yet new ones accumulated in the ugt78d2 ugt89c1 double mutant 

(Figure 4. 3A). It did not develop any ugt78d2-like phenotype (Figure 4. 4).  

 

Likewise, ugt78d1 ugt78d2 double mutant plants did not develop any ugt78d2-like phenotype 

(Figure 4. 4). Among the six common flavonol derivatives only the formation of the 3-O-

rhamnosylated k1 and q1 is dependent on UGT78D1. Accordingly, the ugt78d1 ugt78d2 

double mutant turned out to be devoid of k1 and q1 (Figure 4. 3A). Thus, eliminating either 3-

O- or 7-O-rhamnosylation and thereby depleting both k1 and q1 supported the notion that k1 

and/or q1 were inducing the ugt78d2 growth phenotype. 
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Figure 4. 3 Flavonol analyses in various mutants by HPLC. 

(A) Representative chromatograms of flavonols from Col-0 and various mutants. The scale of 

all chromatograms is the same as in the last one. ugt78d2-com represents an ugt78d2 

mutant genetically complemented line. Kaempferol (k) and quercetin (q) glycosides were 

identified by their retention times as well as UV-spectra. The published flavonol glycoside 

patterns of various mutants are also referred to for flavonol identification (Jones et al., 2003; 

Tohge et al., 2005; Yonekura-Sakakibra et al., 2008). u1-u8 represent unknown flavonoids 

according to their UV spectra. SM represents sinapoyl malate. k2 and q1 were eluted close 

to each other. q1 appears as a shoulder of the k2 peak. 

(B) Quantification of k1. The mean of k1 ± standard deviation from 4 biological samples (a 

pool of 3-5 individual stem segments for one sample) are shown. Basal stems of 28-day-old 

plants were used for flavonol analyses. n.d., not detectable. 

 
To further distinguish whether k1 and/or q1 were the causal metabolites leading to the 

ugt78d2 growth phenotype, a tt7 ugt78d2 double mutant was generated. The conversion of 

kaempferol into quercetin was blocked in tt7, thus kaempferols including k1 were increased, 
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whereas quercetins including q1 were absent (Figure 4. 3A) (Schoenbohm et al., 2000; 

Abrahams et al., 2002). This effect of the tt7 mutation on the accumulation of k1 and q1 was 

maintained in the tt7 ugt78d2 double mutant, which accumulated an even higher amount of 

k1 than the ugt78d2 mutant and was devoid of q1 (Figure 4. 3A,B). tt7 ugt78d2 was more 

severely dwarfed than ugt78d2, indicating that a further enhanced k1 level led to a more 

severe ugt78d2-like phenotype. Interestingly, the lateral branches of tt7 ugt78d2 were 

strikingly shorter than those of ugt78d2. These observations indicated that the development 

of the ugt78d2 growth defects was independent of quercetin derivatives. Together, these 

results demonstrated that k1 was sufficient to induce the ugt78d2 phenotype. 

 

4.3.4 Anthocyanins are not responsible for the ugt78d2 growth defects  

Besides flavonol aglycones, UGT78D2 also recognizes anthocyanidins as substrate (Tohge 

et al., 2005; Lee et al., 2005). Therefore, it was possible that anthocyanins were also 

involved in the development of ugt78d2 growth defects. To test this possibility, an 

anthocyanin-deficient tt18 ugt78d2 double mutant was generated. The anthocyanin-deficient 

tt18 single mutant, devoid of anthocyanidin synthase, did not develop any ugt78d2-like 

growth defects, whereas the growth defects of ugt78d2 were retained in the tt18 ugt78d2 

double mutant (Figure 4. 4). The flavonol glycoside pattern of tt18 ugt78d2 was similar to that 

of ugt78d2 (Figure 4. 3A). These observations indicated that anthocyanins were not 

responsible for the ugt78d2 growth defects.   
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Figure 4. 4 Depicting ugt78d2-like growth defects of various mutants. 

Wild type (Col-0) and various mutant plants were grown under long-day conditions at ~ 230 

µmol m-2 sec-1, and were photographed for shoot morphological phenotype after 28 days of 

growth. Scale bar, 5 cm. 
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4.3.5 Basipetal auxin transport is reduced in inflorescence stem of ugt78d2  

The ugt78d2 growth phenotype resembled to a variable extent pgp1 pgp19 and twd1, which 

are greatly impaired in auxin transport (Noh et al., 2001; Geisler et al., 2003). As flavonols 

have been postulated to be endogenous auxin transport inhibitors, I reasoned that the 

altered flavonol glycoside pattern in ugt78d2 influenced auxin transport in inflorescence 

stems, which led to the growth defects. Therefore, polar transport of [3H]-IAA was compared 

in ugt78d2 and wild-type plants. Basal stem segments were chosen for the experiment, 

because the emergence of side-branches as well as pedicels from stem segments close to 

the inflorescence apex might interfere with the auxin transport assay. The flavonol glycoside 

pattern was examined in adjacent segments along the primary stem. Importantly, the pattern 

was similar for all the segments, but the upper segment accumulated a higher level of 

flavonol glycosides than the lower ones (Figure 4. 5).  

 

Basipetal auxin transport was significantly reduced to about 45% of the wild-type level in 

ugt78d2  (Figure 4. 6). The low levels of acropetal auxin transport did not differ in wild type 

and mutant (Figure 4. 7). The auxin transport inhibitor 1-naphthylphthalamic acid (NPA) 

almost completely blocked basipetal auxin transport in both ugt78d2 and wild-type stems. 

Thus, ugt78d2 exhibited a strongly reduced NPA-sensitive basipetal auxin transport in its 

inflorescence stems.  

 

Preliminary data were also obtained for tt7 ugt78d2 and ugt78d2 genetically complemented 

line. The tt7 ugt78d2 double mutant, which had a further enhanced k1 level, showed a more 

pronounced reduction in basipetal auxin transport activity (Figure 4. 6). Thus, basipetal auxin 

transport activity appeared to be inversely correlated with k1 content. However, whether 

auxin transport could be reverted to wild-type level in the ugt78d2 mutant genetically 

complemented plants need further assays, as preliminary data showed a discrepancy among 

the independed complementation lines. One line can complement, whereas another 

obviously not. This discrepancy might due to the over-complementaion, which can lead to the 

production of excess k2 and k3 (Figure 4. 3). These k2, k3 might inhibit auxin transport. 
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Figure 4. 5 Flavonol glycoside pattern in consecutive primary stem segments of Col-0 plants. 

Primary stems were cut in six segments with each segment approximately 2.5 cm long. 

Flavonol glycosides were analyzed by HPLC. All the chromatograms were adjusted to the 

same scale. k1-k3 represent the three major kaempferol glycosides. q1-q3 are not indicated 

due to low abundance. SM represents sinapoyl malate.   
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Figure 4. 6 Basipetal auxin transport activity in inflorescence stems. 

ugt78d2-com represents a genetically complemented line. Data are presented as mean ± SE 

obtained from ten individual plants without NPA treatment. For NPA treatment, data were 

obtained from two individual plants. All genotypes not treated with NPA were compared 

against each other by a paired t-test. The same letters above the error bars indicate that 

there is no significant difference between genotypes (p>0.05), whereas different letters 

represent a significant difference between genotypes (p<0.05). (These experiments were 

performed together, but mainly by Kerstin Schuster). 

 

 
Figure 4. 7 Acropetal auxin transport activity in inflorescence stems of Col-0 and ugt78d2. 

Mean values are shown by the columns, and the standard deviations are indicated by the 

error bars. Data collected from ten individual plants are shown here. These experiments 

were repeated twice with similar results.  
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4.3.6 Free IAA quantification in WT and ugt78d2 plants 

To examine whether the reduced auxin transport influenced IAA homeostasis in ugt78d2 

stems, the endogenous levels of free IAA in three consecutive stem segments of ugt78d2 

and wild type were compared. The endogenous levels of free IAA in the inflorescence apex 

segments were not different from wild type levels (p > 0.05), whereas the middle and basal 

stems of ugt78d2 contained lower steady-state IAA levels than the wild-type counterparts (p 

< 0.05; Table 4. 2), suggesting that the decreased IAA in the lower parts of the inflorescence 

stem of ugt78d2 was due to reduced basipetal auxin transport.  

 

Table 4. 2 Free IAA quantification in Arabidopsis inflorescence stem segments 

 

 Apical segment Middle segment Basal segment 

WT 

ugt78d2 

207 ± 50 

194 ± 17 

253 ± 23 

118 ± 14 ** 

247 ± 27 

142 ± 18 * 

 

Stem segments of 2.5 cm length from different locations of the inflorescence stems were 

collected for free IAA quantification (pmol/g FW). The mean values ± SE of three 

independent biological samples (one sample is a pool of 4-6 individual stem segments) are 

displayed. Statistical analyses were performed by a paired t-test for uneven variance for 

each part of the stem between these two genotypes (*p < 0.05).  

 

4.3.7 Expression profile of UGT78D1 points to k1 as an endogenous auxin 
transport inhibitor 

In Arabidopsis seedlings, flavonoids were shown to directly modulate auxin transport at the 

sites of auxin synthesis (shoot apex) and redirection (root tip) (Peer et al., 2004). If k1 was an 

endogenous auxin transport inhibitor, then k1 should be localized in those regions. Since the 

expression of UGT78D1 is essential for the formation of k1 (Jones et al., 2003), it was 

interesting to examine its expression pattern in more detail. A survey of publicly available 

microarray data using the Arabidopsis eFP Browser (bar.utoronto.ca) revealed that the 

expression of UGT78D1 was high in the shoot apex during vegetative growth and particularly 

high in the inflorescence shoot apex (Figure 4. 8) (Schmid et al., 2005; Winter et al., 2007). 

This shoot apex specific expression of UGT78D1 was confirmed by analyzing 

promoter::GUS fusions of young seedlings (Figure 4. 9a). Moreover, the expression of 

UGT78D1 was also observed at root tips (Figure 4. 9b). Thus the expression of UGT78D1 

would be in agreement with k1 acting as an endogenous auxin transport modulator.  
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Figure 4. 8 Data from the public microarray database for UGT78D1 gene obtained using the 

Arabidopsis eFP Browser (Schmid et al., 2005; Winter et al., 2007). Particularly high 

expression was observed in shoot apices (black columns).  
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Figure 4. 9 Tissue specific expression of UGT78D1.  

Three-day-old transgenic plants harbouring promoterUGT78D1 :GUS-GFP construct analyzed by 

histochemical staining with 5-bromo-4-chloro-3-indolyl-β-D-glucuronide. The expression of 

UGT78D1 was mainly detected in the shoot apex (a) and root tips (b). Arrow indicates 

expression at the shoot apex. 

 

4.4 DISCUSSION  

4.4.1 The role of k1 in repressing plant growth 

In this work, the growth defects of ugt78d2 could be related to the accumulation of k1, 

kaempferol-3-O-rhamnoside-7-O-rhammoside, by several pieces of evidence. First, the 

accumulation of k1 was positively correlated with the ugt78d2 growth defects. Second, the 

requirement of k1 for the development of ugt78d2-like growth defects was tested by 

depleting either its 3-O-rhamnosyl or 7-O-rhamnosyl residue in ugt78d1 ugt78d2 and 

ugt78d2 ugt89c1, respectively. Last, a further increase of k1 quantity led to more severe 

ugt78d2-like growth defects in the tt7 ugt78d2 double mutant. 

 

The identification of k1 through a genetic approach was greatly facilitated by two features of 

Arabidopsis. The enzymes in the central flavonoid pathway, including CHS, CHI, F3H, F3’H, 

DFR and LDOX, are encoded by single genes with only one exception (FLS), which enables 

to genetically block specific branches of the flavonoid pathway (Lillo et al., 2008; Owens et 

al., 2008). Furthermore, many flavonoid glycosyltransferases have already been identified. 

Since they exhibit strict specificity for the respective sugar donors it is possible to genetically 

manipulate the formation or depletion of specific flavonol glycosides. This genetic approach 

was superior to feeding experiments, where an administered chemical would be metabolized 

by endogenous enzymatic activities. 

 

k1 and q1 are very similar in chemical structure with q1 carrying one additional hydroxyl 

group in its B-ring in comparison to k1. However, by examining tt7 ugt78d2, q1 was shown to 

be dispensable for developing ugt78d2-like growth defects. 

 

In wild-type plants (Columbia accession) k1 is the most abundant flavonol glycoside in 

inflorescence stems (Figure 4. 3). A slight increase of k1 in tt7 did not obviously influence 

plant growth (Figure 4. 3 and Figure 4. 4). However, a stronger increase of k1 as observed in 

ugt78d2 led to obvious growth defects, which were even more severe along with a further 

enhancement of k1 levels in tt7 ugt78d2. Interestingly, the absence of k1 in other mutants, 

e.g. tt4, ugt78d1, or ugt89c1, did not obviously influence plant growth under our growth 
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conditions; in particular it did not have an enhancing effect. These observations suggested 

that wild-type levels of k1 were tolerated without any impact, yet starting from a threshold 

above this level, k1 was related to the repression of plant growth. Flavonol biosynthesis is 

regulated by environmental conditions. In particular, UV-B radiation enhances flavonol 

glycoside accumulation, with a strong increase of quercetin glycosides and a moderate 

increase of kaempferol glycosides including k1 (Götz et al., 2010). Accordingly, a reduced 

plant growth phenotype could be postulated, which is actually a well-known feature of UV-B-

dependent effects (Caldwell, 1971; Tevini et al., 1981).  

 

 

Figure 4. 10 Representative HPLC chromatograms of the root flavonol 
glycoside patterns. Plants were cultured vertically on ½ MS solid medium containing 

1.5% sucrose for about 14 days. The flavonol glycosides were extracted and analyzed 

Col-0 

ugt78d1 
ugt78d2 

ugt78d1 

ugt78d2 

IS 

IS 

IS 

IS 

k2 

k2 

k2 

k2 

k3 

k3 

k3 

k3 

Q 

Q 

Q 

Q 

u 

u 

u 

20 25 30 35 40 (min) 0 

40 

80 

120  
0

40 

80 

120  
     
 
 
 
 
 
 
 
 
 
 
 
  
     
 
 
 
 
 
 
 
 
 
 
 
  

0

40 

80 

120 

0

40 

80 

120 

m
A

U
 (2

80
 n

m
) 

u 

k1 

k1 



Chapter 5: Kaempferol 3, 7-bisrhamnoside influences plant growth  
 

 

70

according to the Experimental Procedures. IS, internal standard (naringenin). Q, quercetin 3-

O-glucoside-7-O-rhamnoside. U, an unknown peak. 

 

The expression of UGT78D1 and UGT78D2 was low in roots (Figure 3. 2). Accordingly, 

flavonol glycoside pattern in roots was not very much altered in the two single mutants or the 

ugt78d1 ugt78d2 double mutant (Figure 4. 10). Therefore, it is less likely that auxin transport 

was significantly altered in roots of these mutants. 

 

Both UGT78D1 and UGT78D2 were expressed in basal part of young leaves and young leaf 

petioles (Figure 3. 2), where auxin biosynthesis and transport are highly active. This 

observation may suggest that flavonoid modulation of auxin transport also occurs at these 

regions. In fact, during vegetative growth it was frequently observed that ugt78d2 leaf 

petioles were shorter than wild type ones (Figure 4. 11), which could be a consequence of 

altered auxin transport in this tissue. 

 

 
 
Figure 4. 11 The morphology of Col-0 and ugt78d2 plants at the rosette stage. 

Leaf petioles in ugt78d2 mutant (b) appear to be shorter than that in Col-0 (a). Pictures were 

taken after 20 days of growth in a growth chamber providing well controlled condition with a 

16/8 hr photoperiod at 200–230 µmol m-2 s-1 and at 22°C.  

4.4.2 Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous auxin 
transport inhibitor 

In an effort to examine the mechanism of the over-accumulation of k1 leading to the ugt78d2 

growth defects, I found that basipetal auxin transport was strongly reduced in ugt78d2 

inflorescence stems. It has been shown that the modulation of auxin transport by flavonoids 

takes place at shoot apex and root tips. According to the expression of UGT78D1, k1 should 

be localized in shoot apex and root tips. These results strongly suggest that k1 is an 

endogenous auxin transport inhibitor. Although q1 has been shown to be dispensable for 

(a) (b) 
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developing ugt78d2-like growth defects, a possible contribution of q1 to the reduction in 

auxin transport can not be ruled out in ugt78d2. Preliminary data already showed that auxin 

transport was almost reverted to wild-type level in one ugt78d2 mutant complemented line. 

At the mean time, together with Kerstin, I am performing more auxin transport experiments 

using ugt78d2 mutant complemented line.  

4.4.3 Are Flavonol aglycones involved in the inhibition of auxin transport in 
ugt78d2? 

Feeding of flavonol aglycones to detached zucchini hypocotyls or clover roots led to a 

reduced polar auxin transport (Jacobs and Rubery, 1988; Mathesius et al., 1998). Based on 

these observations, flavonol aglycones were postulated to be endogenous auxin transport 

inhibitors. However, several independent observations could argue against a direct 

involvement of flavonol aglycones. First, flavonol aglycones applied to plants might be rapidly 

conjugated or metabolized. Thus, such flavonol derivatives could not be excluded as the 

active auxin transport inhibitors. Second, flavonol aglycones were not detected with the up-

to-date liquid chromatography or mass spectrometric approaches in extracts from 

Arabidopsis plants (Böttcher et al., 2008, Yonekura-Sakakibara et al., 2008; Kitamura et al., 

2010) except for one report (Peer et al., 2001). Likewise, flavonol aglycones could not be 

detected in this work as well as by additional approaches employing LC-MS and FT-ICR-MS 

analyses of Arabidopsis extracts (Figure 3. 1 & Table 3. 1). In contrast, flavonol aglycones 

exerted their functions at micromolar concentrations in the cited in vitro experiments (Jacobs 

and Rubery, 1988; Mathesius et al., 1998). Flavonol aglycones would not escape detection, if 

such high concentrations were only roughly reached in plants. Nevertheless, it is still possible 

that the level of flavonol aglycones is below the detection limits of the approaches, but high 

enough to modulate auxin transport in cells.  

 

In wild-type Arabidopsis plants, UGT78D1 and UGT78D2 compete for flavonol aglycones as 

substrates to form flavonol 3-O-monorhamnosides and flavonol-3-O-monoglucosides, 

respectively. The loss of flavonol 3-O-glucosyltransferase in the ugt78d2 mutant leads to an 

increase of flavonol 3-O-rhamnosylation, as evidenced by the increase of flavonol 3-O-

rhamnoside derivatives, i.e. k1 and q1. Therefore, it can be stated that no flavonol aglycones 

could be accumulated in the ugt78d2 mutant, as they are alternatively conjugated. 

4.4.4 Possible mechanisms how flavonols modulate auxin transport 

Although several possibilities were proposed (Buer and Muday 2004), the mechanisms by 

which flavonols modulate auxin transport remain to be elucidated. The site of regulation 

might be at the level of PGP transporters by inhibiting their activity. In fact, PGP proteins 

were shown to be able to bind to kaempferol and quercetin aglycones (Murphy et al., 2002). 
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One striking feature of these PGP proteins is that they can bind structurally unrelated 

substrates. This might facilitate the direct regulation of PGP activity by binding of diverse 

flavonol glycosides. Under our growth conditions, neither pgp1 nor pgp19 single mutant 

exhibited an ugt78d2-like phenotype (data not shown). It is possible that multiple PGP 

proteins involved in auxin transport are affected in ugt78d2, which leads to growth defects. In 

fact, the pgp1 pgp19 double mutant was shown to be dwarf and delayed in bolting time in 

previous studies (Noh et al., 2001; Geisler et al., 2003).  

 

The immunophilin-like FKBP42 TWISTED DWARF1 (TWD1) acts in planta as a positive 

regulator of PGP1- and PGP-19 mediated auxin efflux through protein-protein interaction 

(Geisler et al., 2003; Bouchard et al., 2006; Bailly et al., 2008). TWD1 was shown to mediate 

the modulation of PGP1-mediated auxin transport by flavonols. Importantly, flavonol 

glycosides were shown to be as effective as their aglycones in disrupting PGP1-TWD1 

interaction (Bailly et al., 2008). Even though k1 was not tested in that study, it is tempting to 

speculate that it inhibits auxin transport in the same way, as the reduction in plant height of 

ugt78d2 resembles twd1. 

 

Polar localization of PIN proteins determines the direction of local intercellular auxin transport 

(Wisniewska et al., 2006). The PINOID kinase and PP2A phosphatase act antagonistically 

on the phosphorylation of the central hydrophilic loop of PINs, thereby mediating polar 

targeting of PIN proteins (Michniewicz et al., 2007). Recently, It was found that PINOID-

dependent PIN phosphorylation at one single site is sufficient to change PIN polarity (Zhang 

et al., 2009). Flavonols have long been known as protein kinase inhibitors (Graziani et al., 

1983). Thus, flavonols might regulate the level of phosphorylation of auxin transport proteins 

through their kinase inhibiting function (Garbers et al., 1996; DeLong et al., 2002). PIN1 

localization is responsive to flavonols; it is delocalized from the plasma membrane in the 

flavonoid-deficient tt4 mutant and its localization was extended in tt3, which produces excess 

flavonols (Peer et al, 2004). It would be interesting to examine whether PIN1 localization is 

altered in the ugt78d2 mutant. 

 

In conclusion, the work presented here demonstrates that kaempferol 3-O-rhamnoside-7-O-

rhamnoside (k1) is responsible for the repression of growth in the ugt78d2 mutant. 

Furthermore, k1 has been identified as an endogenous auxin transport inhibitor.  
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5 Chapter 5: ARABIDOPSIS UGT74F1 AND UGT74F2 ARE 
NOT RESPONSIBLE FOR STRESS-RELATED SALICYLIC 
ACID GLUCOSYLATION 

 

5.1 INTRODUCTION 

Previously, recombinant UGT74F1 and UGT74F2 were shown to glucosylate salicylic acid 

(SA) in vitro (Lim et al., 2002). In our laboratory, previous work by Meßner et al. (unpublished 

data) showed that ectopic overexpression of both enzymes in transgenic Arabidopsis 

thaliana resulted in increased SA glucosides with UGT74F1 being more efficient. However, 

single knock-out mutants of either gene did not lead to a reduction in SA glucosides under 

both non-stressed and SA-inducing conditions, i.e. spraying with benzothiadiazol (BTH). 

Since UGT74F1 and UGT74F2 are two close homologues and share a high degree of 

sequence similarity (82% amino acid identity), it is possible that these two 

glycosyltransferases have over-lapping functions in conjugating SA in vivo. The ugt74f1 

ugt74f2 double mutant might have less SA glucosides. However, genetic crossing of two 

single mutants to generate a double mutant is not feasible, because these two genes are 

located on the same chromosome in close proximity, about 5 Kb in distance.  Therefore, I 

generated a ugt74f2 knock-down line with an artificial miRNA approach in the ugt74f1 knock-

out background to yield a plant material, which was almost void of the gene products of both 

UGT74F1 and UGT74F2. For simplicity, this mutant will be referred as the ugt74f1 ugt74f2 

double mutant. I quantified free SA and SA glucosides, including SA glucoside and SA ester. 

However, both, under non-stressed and SA-inducing conditions the ugt74f1 ugt74f2 double 

mutant accumulated wild-type levels of free SA as well as SA glucosides. This work revealed 

that UGT74F1 and UGT74F2 are not responsible for stress-related salicylic acid 

glucosylation in Arabidopsis.  

 

5.2 RESULTS 

5.2.1 UGT74F2 is efficiently silenced by the amiRNA 

Seeds from transgenic plants were selected according to the seed coat specifically 

expressed GFP signal using fluorescence microscopy (Figure 5. 1). Quantitative real time 

PCR analysis showed that the transcript of UGT74F2 was drastically reduced in the rosette 

leaves of the T1 primary transformants (Figure 5. 2). Two of the most strongly silenced 

independent lines, i.e. line 4 and 5, were chosen for further analysis.  The two plants were 
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self-pollinated and homozygous lines selected among individuals. Homozygous transgenic 

T2 plants were used for salicylic acid quantification. The UGT74F2 transcript level in the T2 

plants used for SA quantification was also determined (Figure 5. 3), which showed that the 

silencing efficiency was stably inherited to the T2 generation.  

 

 

 
 
 

 
Figure 5. 1 Selection of transgenic seeds with the aid of  the seed coat specific expression of 

GFP by fluorescence microscopy. The light green seeds are transgenic, whereas the brown 

ones are not (Bensmihen et al., 2004). 
 

 
 

Figure 5. 2 Transcript level of UGT74F2 in amiRNA-UGT74F2 containing transgenic plants 

of the T1 generation. Total RNA was extracted from the rosette leaves (a pool of leaves from 

4-6 plants) of 4-week-old plants and transcript level was determined by quantitative RT-PCR 

analysis. Five independent transgenic lines (1-5) were analyzed. 
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Figure 5. 3 Transcript levels of UGT74F2 in two independent lines of amiRNA-UGT74F2 

containing homozygous transgenic plants of the T2 generation. Total RNA was extracted 

from the rosette leaves (a pool of leaves from 4-6 plants) of 4-week-old plants and transcripts 

levels were determined by the quantitative RT-PCR analysis. Homozygous mutants from line 

4 and line 5 were analyzed. 

 

5.2.2 The ugt74f1 ugt74f2 double mutant has wild-type SA levels 

Free salicylic acid and salicylic acid glucosides analyses were performed with two 

independent ugt74f1 ugt74f2 double mutant lines as well as wild-type plants. The ugt74f1 

ugt74f2 double mutant and wild-type plants contained comparable levels of free SA as well 

as SA glucosides in response to both BTH-sprayed and non-stressed conditions (Figure 5. 4 

& Figure 5. 5), suggesting that UGT74F1 and UGT74F2 are not the true SA 

glucosyltransferases in plants. 
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Figure 5. 4 Contents of free salicylic acid (SA) and salicylic acid glucosides (SAG) in 

unstressed amiRNA-UGT74F2 mediated double mutant lines and wild-type background 

(Wassilewskija, Ws). The mean values ± SD of four independent biological samples in two 

independent experiments are displayed. 

 

 
 

Figure 5. 5 Contents of free salicylic acid (SA) and salicylic acid glucosides (SAG) in BTH-

sprayed amiRNA-UGT74F2 mediated double mutant lines. The mean values ± SD of four 

independent biological samples in two independent experiments are displayed. 
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5.3 DISCUSSION 

In vitro study showed that of ninety tested UGT enzymes only two, i.e. UGT74F1 and 

UGT74F2, were active toward salicylic acid, suggesting that they were the Arabidopsis 

salicylic acid glucosyltransferase (Lim et al., 2002).  However, the wild-type levels of salicylic 

acid and its glucoside in the ugt74f1 ugt74f2 double mutant demonstrated that both 

UGT74F1 and UGT74F2 could not be the salicylic acid glucosyltransferases under non-

stressed and salicylic acid-inducing condition (using BTH) in plants. Although unlikely, I still 

cannot completely rule out the possibility that the remaining activity of UGT74F2 in the 

amiRNA-containing transgenic plants was enough to glucosylate SA to wild-type level.   

 

The key question is to which extent any of these in vitro biochemical studies can suggest 

UGT activity and physiological function in plants (Bowles et al., 2006). Some important 

factors, such as cofactors and metabolite channelling, cannot be addressed in vitro. Another 

important factor is the substrate availability. If the native enzyme has the capability to 

recognize multiple substrates in plants, their availability to act as acceptors will be critical. In 

accordance with the in vitro studies by Lim and colleagues (2002), the increase of salicylic 

acid and salicylic acid glucosides in the ectopic overexpression lines (Meßner et al., 

unpublished data) of both UGT74F1 and UGT74F2 confirmed the ability of these two 

enzymes to glucosylate salicylic acid.  The wild-type levels of salicylic acid and salicylic acid 

glucosides in both single and double mutants may imply that localizations of these two 

proteins do not coincide with those of salicylic acid in plants.  
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7 SUPPPLEMENTAL DATA 
Supplemental Table 1 Primers used in this thesis.  The AGI code of each gene is given in 

the middle of the primer name. 

 
Primer name  

(including AGI code) 

Sequence (5’->3’) 

PAL1-At2g37040-f 

PAL1-At2g37040-r 

PAL2-At3g53260-f 

PAL2-At3g53260-f 

PAL3-At5g04230-f 

PAL3-At5g04230-f 

PAL4-At3g10340-f 

PAL4-At3g10340-r 

4CL1-At1g51680-f 

4CL1-At1g51680-r 

4CL2-At3g21240-f 

4CL2-At3g21240-r 

4CL3-At1g65060-f 

4CL3-At1g65060-r 

C4H-At2g30490-f 

C4H-At2g30490-r  

CHS-At5g13930-f 

CHS-At5g13930-r 

CHI-At3g55120-f 

CHI-At3g55120-r 

F3H-At3g51240-f 

F3H-At3g51240-r 

F3’H-At5g07990-f 

F3’H-At5g07990-r 

FLS1-At5g08640-f 

FLS1-At5g08640-r 

DFR-At5g42800-f 

DFR-At5g42800-r 

TGCAGTGACTTCAATCTTCCA 

TTCGGGATAGCCGATGTT 

GGTTCCACGGAGAGGTAGTG 

CATGCTCGTCAGAGTCAACAC 

TGGAACGAGTCAGGACAGAGT 

TTAGCAACCTCGTCTCGAGTT 

TCCCTGCAGCCTCACTTAC 

GCTCCGATTTTGTGGAAAAC 

GTAGATATGAAACATGGGCAAAAC 

GATGCTGACTCACAAGGGACTA 

AGCTGGAGCCACTTGAAATC 

GATAAAGATGGTTGGCTTCACA 

AGGAGATTTAGGAATGGAAGCA 

GTGCGATCAAATGGAAATGA 

AGGATGTGCAAGCTGAATTG 

TTGGCATTGCCTATTTTGG 

GTCACGTGTTGAGCGAGTATG 

CCCCACTCCAACCCTTCT 

AGCGAAGAGGATCGATGAAC 

CGGAGAATTGTGTGGCTATATG 

CACTGACCCTGGAACCATTAC 

TTGACGACAAACGCTCCTT 

TCGCTCAGCTTCCTTACCTT 

GGGATATGGTAGCCGTTGAT 

TCCTCGGCCGGATTTAG 

GCATCGAACCAGTGATCATC 

GCATTTGGACGACTTATGCA 

GGCCTGAGAAATTTGGAGATAG 
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ABBREVIATIONS 
 
aa amino acid 

bp 

cDNA 

CPM 

DNA 

dNTP 

EDTA 

FW 

g 

GUS 

HPLC 

IAA 

Kb 

LC-MS 

min 

OD 

PAT 

PCR 

RNA 

RNase 

RT 

RT-PCR 

SDS 

TEMED 

Tris 

UDP 

UGT 

UV 

v/v 

X-glc 

base pairs 

complementary DNA 

count per minute 

deoxyribonucleic acid 

deoxyribonucleotide triphosphate 

ethylene diamine tetraacetic acid 

fresh weight 

gram 

β-glucuronidase 

high performance liquid chromatography 

indole-3-acetic acid 

kilo base 

liquid chromatography mass spectrometry 

minute 

optical density 

polar auxin transport 

polymerase chain reaction 

ribonucleic acid 

ribonuclease 

room temperature 

reverse transcriptase-PCR 

sodium dodecyl sulphate 

N,N,N,N-tetramethyl ethylene diamine 

2-amino-2-hydroxymethyl-1,3-propanediol 

uridine 5’-diphosphate 

UDP dependent glycosyltransferase 

ultra violet 

volume per volume 

5-bromo-4-chloro-3-indolyl- β-D-glucuronide
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