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Micro-structure and Lagrangian statistics
of the scalar field with a mean gradient in
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This paper presents an analysis and numerical study of the relations between the
small-scale velocity and scalar fields in fully developed isotropic turbulence with
random forcing of the large scales and with an imposed constant mean scalar
gradient. Simulations have been performed for a range of Reynolds numbers from
Reλ = 22 to 130 and Schmidt numbers from Sc = 1/25 to 144.

The simulations show that for all values of Sc > 0.1 steep scalar gradients are
concentrated in intermittently distributed sheet-like structures with a thickness ap-
proximately equal to the Batchelor length scale η/Sc1/2 with η the Kolmogorov length
scale. We observe that these sheets or cliffs are preferentially aligned perpendicular
to the direction of the mean scalar gradient. Due to this preferential orientation of
the cliffs the small-scale scalar field is anisotropic and this is an example of direct
coupling between the large- and small-scale fluctuations in a turbulent field. The
numerical simulations also show that the steep cliffs are formed by straining motions
that compress the scalar field along the imposed mean scalar gradient in a very short
time period, proportional to the Kolmogorov time scale. This is valid for the whole
range of Sc. The generation of these concentration gradients is amplified by rotation
of the scalar gradient in the direction of compressive strain. The combination of high
strain rate and the alignment results in a large increase of the scalar gradient and
therefore in a large scalar dissipation rate.

These results of our numerical study are discussed in the context of experimental
results (Warhaft 2000) and kinematic simulations (Holzer & Siggia 1994). The theor-
etical arguments developed here follow from earlier work of Batchelor & Townsend
(1956), Betchov (1956) and Dresselhaus & Tabor (1991).

1. Introduction
In predicting and controlling many types of industrial and environmental processes

it is necessary to calculate the intensity of fluctuations, e.g. in the concentration
of scalar species. This involves modelling the key mechanisms of turbulent mixing,
i.e. advective dispersion by large-scale motions and small-scale molecular mixing.

† Present address: Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden,
geert@mech.kth.se
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Further insight into turbulent mixing may also result in a better understanding of the
dynamics of the turbulence itself (Shraiman & Siggia 2000).

It is instructive to distinguish between the large-scale advective transport of a scalar,
the so-called macro-mixing, and the distortion of the scalar field by the small-scale
straining and shearing turbulent motions. As a consequence of a turbulent strain,
scalar gradients can become larger and the area of iso-scalar surfaces can grow
resulting in an intensive molecular diffusion of the scalar and a strong dissipation of
scalar fluctuations. This latter process is called micro-mixing and ultimately it leads
to a homogeneous scalar distribution such as for example in a stirred vessel, such as
a cup of tea and milk. There have been several approaches to investigate macro- and
micro-mixing. Two approaches are particularly relevant to the present work.

The first is the ‘Lagrangian’ approach in which one considers the motion of fluid
particles marked with the scalar. Taylor (1921) was the first to show the connection
between the statistics of a single fluid particle and turbulent dispersion. Following the
work of Richardson (1926) and Batchelor (1952) who both considered the statistics of
pairs of particles, Durbin (1980) and Thomson (1990) developed stochastic Lagrangian
models for the scalar fluctuations in a plume and their probability density functions
(Sawford 2001). These methods have been extended to incorporate a binary chemical
reaction between two species (Komori et al. 1991; van Dop 2001) and have been
verified experimentally. They have also been applied to estimate quite complex aspects
of mixing such as the effect of varying the Reynolds and Schmidt numbers and to
estimate how the macro- and micro-mixing processes depend on the Reynolds number
(Sawford & Hunt 1986; Borgas & Sawford 1996). These stochastic models, however,
depend on unproven concepts about micro-mixing mechanisms. Fung et al. (1992)
investigated the separation of particle pairs in a turbulent-like flow generated by
kinematic simulation and concluded that structures in a turbulent flow field play
an important role in the separation of particle pairs, so that statistical models may
need some correction. In vortical structures particle pairs stay close together whereas
in straining regions pairs can suddenly separate rapidly leading to an intermittent
behaviour of particle-pair separation and hence of the mixing process (Fung &
Vassilicos 1998; Jullien, Paret & Tabeling 1999).

The second approach to the study of turbulent mixing of scalars is to focus on
the small-scale processes and on the evolution of the local velocity and scalar fields.
Batchelor (1959), Kraichnan (1974) and Kerstein (2001) and many other researchers
(see Frisch 1995 and references therein) carried out a theoretical analysis based
on physical assumptions about the statistics of locally homogeneous flow fields.
Detailed numerical simulations (Ashurst et al. 1987) and experiments (Buch & Dahm
1996, 1998; Warhaft 2000) have led to a better understanding of these theoretical
predictions. Kraichnan (1974) has considered the smallest length scales of the scalar
field assuming a Schmidt number Sc > 1 and that the small scales of the scalar
field are subject to a uniform random strain field with a very short correlation
time. Kraichnan’s model predicts a k−1 regime in the scalar spectrum and a scaling
with the Batchelor length scale ηB = η/Sc1/2. According to recent direct numerical
simulations (DNS) (Bogucki, Domaradzki & Yeung 1997; Brethouwer & Nieuwstadt
1999; Brethouwer 2000) the Kraichnan model leads to the best quantitative prediction
of the scalar spectra at high wavenumbers for Sc > 1. When Sc < 1 and molecular
diffusion becomes larger, the scalar spectra at high wavenumbers are still reasonably
described by the Kraichnan model including the scaling by the Batchelor length scale
despite the fact that the theory is apparently outside its range of validity (Brethouwer
& Nieuwstadt 1999; Brethouwer 2000; Orlandi & Antonia 2002).
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In some recent numerical and experimental studies the topology of the scalar field
has been investigated for both low and high Schmidt numbers. Visualizations of the
scalar field show that for Sc� 1 the dominant structure is a thin sheet (Buch & Dahm
1996). Such a sheet-like structure can be expected on the basis of the observation
that the intermediate eigenvalue of the strain tensor is usually positive in a turbulent
flow (Betchov 1956; Ashurst et al. 1987) so that there are usually two extensional
and one compressive principal strain axes (Buch & Dahm 1996; Brethouwer 2000).
The sheets are in fact steep jumps or sharp ‘cliffs’ in the scalar field and they are
observed over a wide range of Schmidt numbers, for Sc � 1 (Buch & Dahm 1996),
Sc ' 1 (Buch & Dahm 1998; Ruetsch & Maxey 1992; Nomura & Elghobashi 1992)
and Sc = 1/8 (Vedula, Yeung & Fox 2001). A sheet-like structure seems therefore
to be a universal characteristic of the micro-structure of a scalar field independent
of the Schmidt number. The sheet-like structures result in a very intermittent scalar
gradient field (Métais & Lesieur 1992; Sreenivasan & Antonia 1997). Buch & Dahm
(1996, 1998) show that a considerable part of the total micro-mixing takes place in
these sheets.

The classical view due to Taylor–Kolmogorov of small-scale velocity and scalar
fields in fully developed turbulence is that the small scales are not directly affected
by large-scale conditions and therefore must be locally isotropic (Monin & Yaglom
1975). However, this view does not agree with measurements of higher moments in
turbulent flows with anisotropic or intermittent large-scale motions or anisotropic
forcing (Frisch 1995; Hunt, Kaimal & Gaynor 1988; Sreenivasan & Antonia 1997).
In the case of an imposed mean scalar gradient, experimental measurements and
numerical simulations show that gradients aligned with the imposed mean gradient
are on average larger than those perpendicular to the mean gradient (Mydlarski
& Warhaft 1998; Pumir 1994; Overholt & Pope 1996; Warhaft 2000). The data do
not indicate that the small scales tend to become isotropic as the Reynolds number
increases although there is some discussion about how to interpret the results (Kurien,
Aivalis & Sreenivasan 2001).

Holzer & Siggia (1994) simulated the mixing of a scalar with an imposed mean
gradient in an isotropic turbulent-like flow field and observed that the scalar field has
a ramp–cliff structure, i.e. regions of well-mixed fluid with a nearly constant scalar
concentration bounded by steep cliffs. These ramp–cliff structures are positioned
approximately perpendicular to the mean gradient. The visualizations of Holzer &
Siggia suggest that the cliffs are generated by large-scale straining motions with the
direction of compression approximately aligned with the mean scalar gradient.

In this paper we study turbulent mixing of a passive scalar with an imposed mean
gradient by isotropic turbulence with the help of DNS and over a wide range of
Schmidt numbers. The goal of our investigation is to find answers to the following
points:

(i) What is the micro-structure of the scalar field and how does it depend on the
Schmidt number? Furthermore, what is the relation between the micro-structure and
the imposed mean scalar gradient?

(ii) How is the scalar gradient field and the formation of cliffs related to the eddy
structure? What is the influence of strain at low and high Schmidt numbers and
what is the role of vorticity? With respect to the role of vorticity, dynamical studies
(Ruetsch & Maxey 1991, 1992) show that scalar sheets may roll up into tube-like
structures but quantitative results presented by Zhou & Antonia (2000) and by Pumir
(1994) suggest that the vorticity has only a minor influence on scalar gradients.

(iii) Is the scalar mixing process also intermittent in a Lagrangian frame and how
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does the scalar gradient field respond to the dynamics of the turbulence? For instance,
the Lagrangian study of Fung et al. (1992) shows that the separation of fluid particle
pairs is a very intermittent process and is related to the eddy structure.

The outline of this paper is as follows: We first present and discuss in § 2 the
governing equations for the scalar gradient. Then we discuss briefly the invariants
of the velocity gradient tensor and their relation to the local flow topology. These
invariants are used later in the paper to study the relation between turbulent structures
and the micro-structure of the scalar field. Then we present our numerical simulations.
We study the micro-structure of the scalar field in the presence of a mean gradient and
some characteristics of the scalar gradient cliffs, in relation to the turbulent structures
using the concepts presented in § 2. We end this paper with the conclusions.

2. Analyses of scalar gradients
To provide the background for the analyses to be presented later we discuss here

some relations and properties of a scalar gradient in a turbulent flow. Let us assume
that the instantaneous passive scalar concentration Θ is given by

Θ = θ + G · x, (2.1)

where G is the mean scalar gradient and θ is the scalar fluctuation which satisfies
〈θ〉 = 0. The angular brackets can be interpreted as an ensemble average which in the
case of the homogeneous turbulence considered here can be computed as the spatial
average over the whole turbulence field. The equation for θ in an incompressible
isothermal flow field then reads

dθ

dt
=
∂θ

∂t
+ u · ∇θ = −G · u+ κ∇2θ, (2.2)

where κ is the diffusivity of the scalar. The term G · u can be interpreted as a source
of scalar fluctuations because in a steady-state situation it balances the destruction
of scalar fluctuations by molecular dissipation as expressed by

0 = −〈θG · u〉 − χ, (2.3)

where χ = κ〈(∇θ)2〉.
The relation between the scalar gradient ∇θ and the straining of the velocity field,

derived by Corrsin (1953) and Batchelor & Townsend (1956), is given by

d∇θ
dt

= −∇θ · S − G · S − 1
2
∇θ × ω − 1

2
G × ω + κ∇2∇θ, (2.4)

which shows that the concentration gradient depends on the rate-of-strain tensor,
Sij = 1

2
(∂ui/∂xj + ∂uj/∂xi) and the vorticity vector ω.

With the help of relation (2.4) we can now analyse in more detail the amplification
and alignment of scalar gradients by using the results of Dresselhaus & Tabor (1991)
for the stretching of line elements and their alignment with the principal axes of strain
in a general flow field. First, it is convenient to give some definitions. Let us assume
that the coordinate system coincides with the principal axes of strain. In that case the
only non-zero terms in the strain-rate tensor are the terms on the diagonal, which are
denoted as principal strain rates,Sα,Sβ,Sγ withSγ 6Sβ 6Sα. For incompressible
flows, as considered here, it follows that Sα +Sβ +Sγ = 0. Consequently, Sγ must
be negative and Sα positive while Sβ can have either sign. The corresponding unit
vectors along the principal axes of strain are denoted by eγ, eβ, eα. Furthermore, we
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introduce the unit vector n = ∇θ/|∇θ| in the direction of the scalar gradient and the
alignment vector λ with components λi = n · ei so that λi is the cosine of the angle
between ∇θ and ei.

Using these definitions and relation (2.4) we can derive the equation for the norm
of the scalar gradient g = (∇θ · ∇θ)1/2:

1

g

dg

dt
= −Siλ

2
i − 1

g2
G · S · ∇θ − 1

2g2
∇θ · (G × ω) +

1

2g2

(
κ∇2g2 − ε∇θ), (2.5)

where Siλ
2
i = Sαλ

2
α +Sβλ

2
β +Sγλ

2
γ = ∇θ · S · ∇θ/g2 and ε∇θ = 2κ∇(∇θ) :∇(∇θ) is

the molecular destruction of scalar gradients. The first three terms on the right-hand
side of equation (2.5) can be regarded as production or amplification terms due to
strain and vorticity. We note that the first and second production terms depend on
the orientation of the scalar gradient with respect to the principal axes of strain.
Below we will find that ∇θ preferentially aligns with eγ (Ashurst et al. 1987). In that
case it follows that the first term is of the order of Sγ and the second term is at most
−Sγ|G|/g. If we assume further that the vorticity is of the same order of magnitude
as the strain rate, the third term is probably of the same order as the second term.
When Re and Sc are high enough, the ratio |G|/g is small and therefore the second
and the third terms on the right-hand side of relation (2.5) can probably be neglected
with respect to the first term. This observation is supported by the simulations of
Vedula et al. (2001).

The equation for the square of the norm of the scalar gradient in one particular
direction g2

` = (∂θ/∂x`)
2 (no summation over the index `) is given by (Gonzalez 2000)

dg2
`

dt
= −2

∂θ

∂x`
S`i
∂θ

∂xi
− ε`ij ∂θ

∂x`

∂θ

∂xi
ωj − 2

∂θ

∂x`

∂ui

∂x`
Gi − 4κ

(
∂2θ

∂xi∂x`

)2

, (2.6)

where ε`ij is the permutation tensor. The first and third terms on the right-hand side
of (2.6) are the production terms of g2

` and are called the amplification and the mean
gradient term respectively in this paper. The second term, called the rotation term,
represents redistribution between the different components of g2

` because it drops out
when the equations for g2

` for all three directions are added together leading to (2.5).
The total scalar dissipation rate χ is simply the sum of κ g2

` in all three directions.
For the alignment vector λ we can derive a separate equation. First we consider the

evolution equations for the vectors n and ei. The equation for n reads

dn

dt
=

d∇θ/g
dt

=
1

g

d∇θ
dt
− ∇θ
g2

dg

dt
= −n · S · (I − nn)− 1

2
n× ω + κ

∇2(∇θ)

g
· (I − nn),

(2.7)

where I is the unit tensor. In the derivation of this equation we have neglected all
terms of order |G|/g.

The equation for ei is given by

dei
dt

= ϕ× ei. (2.8)

The ϕ is the strain rotation vector given by

ϕk = εijk(− 1
4
ωiωj − ∂2p/∂xi∂xj + ν(∇2S)ij)/(Si −Sj), (2.9)

where p is the pressure (Dresselhaus & Tabor 1991).
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With help of (2.7) and (2.8) and by neglecting in the derivation all terms that are
of order |G|/g, we can derive for the evolution of λ:

dλ

dt
= σ · λ+R× λ+ κ

∇2(∇θ)

g
· (I − nn) · e. (2.10)

Here e = (eα, eβ, eγ) and σ is given by

σ =Siλ
2
i I −

 Sα 0 0
0 Sβ 0
0 0 Sγ

 , (2.11)

and the vector R by

R = 1
2
ω − ϕ. (2.12)

Based on the equations derived above we now consider how the development of
the scalar gradient depends on the strain rate and the vorticity. Let us start with the
influence of the strain rate. The first term on the right-hand side of equation (2.5)
shows that the compressive strain Sγ amplifies scalar gradients. This amplification is
maximal when the scalar gradient is aligned with eγ , i.e. λγ = 1. In this case the scalar
gradient grows exponentially fast if molecular diffusion can be neglected. If the scalar
gradient does not align with eγ the production term is much smaller and can even
become negative, for example when ∇θ is aligned with eα.

As shown by (2.10) the alignment depends on the strain itself. It follows for instance
from (2.11) that σα 6 0, σγ > 0 and σγ > σβ > σα for an incompressible flow, so that
the strain increases λγ and decreases λα. Therefore, in the case of a pure straining
motion the scalar gradient will approach full alignment with eγ and this implies
maximal amplification of the scalar gradient.

Let us now consider the effect of vorticity on the scalar gradient. Equation (2.5)
shows that the vorticity in combination with the mean gradient may contribute directly
to the amplification of scalar gradients. This will be negligible because |G| � g. The
vorticity, however, also has an indirect influence on the orientation of the scalar
gradient through the second term on the right-hand side of (2.10), which represents
the combined effect of vorticity and rotation of the principal axes of strain. When R
is non-zero the second term rotates λ about an axis with direction R/|R| and this
leads to misalignment between ∇θ and eγ . Whereas strain tends to align the scalar
gradient with eγ , large values of vorticity or of the rotation of the principal axes can
diminish this alignment. For instance, in the case of a simple shear flow R is non-zero
and therefore the scalar gradient does not fully align with eγ asymptotically. In this
case the scalar gradient grows only algebraically whereas in pure strain flow where
the vorticity is zero, the scalar gradient grows exponentially. A similar effect has been
described by Girimaji & Pope (1990) who found that the mean stretching rate of line
elements in a turbulent flow is much lower than what would follow from a prediction
based on an assumption of persistent straining. As an explanation they mention a
poor alignment between the line element and the direction of the largest stretching
and this misalignment was attributed to vorticity and rotation of the principal strain
axes.

Vortex stretching and scalar-gradient amplification by strain are closely related. In
an inviscid, incompressible flow and for a non-diffusive scalar the following relation
between vorticity and the scalar gradient can be derived (Corrsin 1953; Batchelor &
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Townsend 1956; Ohkitani 1998):

d (∇Θ · ω)

dt
= 0, (2.13)

from which for the fluctuating scalar gradient follows:

d (∇θ · ω)

dt
= −G · S · ω. (2.14)

Let us now estimate how the variation of ∇θ · ω compares to the variation of its
norm, g ω. The equation for g ω is given by

dg ω

dt
= −ω

g
∇θ · S · ∇θ +

g

ω
ω · S · ω, (2.15)

where again terms of order |G|/g have been neglected. Let us now consider the first
term on the right-hand side of (2.15). In the case of alignment between ∇θ and eγ this
term equals −ω gSγ which is of order g/|G| times the right-hand side of equation
(2.14). The variation of ∇θ · ω is thus small compared to the variation of its norm
g ω, especially when Re is large.

To obtain more insight let us consider the behaviour of ∇θ · ω in a special case.
Consider a three-dimensional straining flow, with u = −σx, v = σy/2, w = σz/2
and σ > 0. The vorticity ωx is reduced (∝ σ) while ∇θx is increased by the strain
(∝ σ). On the other hand ωy or ωz are increased by less (∝ σ/2) while ∇θy and
∇θz are decreased. We thus find that those components of the scalar gradient and
the vorticity vector that are perpendicular to each other are increased and, as a
consequence, ∇θ and ω evolve to an orientation normal to each other. Equation
(2.14) leads us then to the following suggestion. If a scalar gradient sheet is generated
by a strong compressive straining deformation, the accompanying extensional strains
stretch the component of the vorticity components in the plane of the sheet at the
same time. This results in the formation of a vortex sheet coinciding with the scalar
gradient sheet.

Analytical and numerical studies (Vincent & Meneguzzi 1994; Passot et al. 1995)
show that when strained vorticity forms sheets, these sheets roll up into vortex tubes
either due to Kelvin–Helmholtz instabilities (Passot et al. 1995) or due to self-induction
caused by the finite width of the sheets (Kevlahan & Hunt 1997). These vortex tubes
can wrap the scalar gradient sheets around them (Ruetsch & Maxey 1992). The
simulations of Ruetsch & Maxey (1992) indicate that this rolling up process is more
efficiently at large Schmidt numbers, for which the thickness of the sheets, ∼ ηB , is
smaller than the size of the vortex tubes which are estimated to be proportional to
the Kolmogorov length scale. When Sc ' 1 or Sc < 1 no rolling up of scalar sheets
is expected.

3. Invariants of the velocity gradient tensor and flow topology
The streamline pattern in a small area around a point, as seen by an observer

moving with the flow, can be described in terms of the invariants of the velocity
gradient tensor Aij = ∂ui/∂xj (Blackburn, Mansour & Cantwell 1996; Chong et al.
1998; Ooi et al. 1999). The invariants are QA = − 1

2
AijAji and RA = − 1

3
AijAjkAki

where QA can be expressed alternatively as QA = 1
4
ω2− 1

2
SijSij . These invariants have

been explained in terms of vortex dynamics by Tsinober (2000). Figure 1 presents an
illustration of the local flow topology in terms of these invariants. The line RA = 0 and
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Stable
focus/stretching

Unstable
focus/contracting

R

Unstable
node/saddle/saddle

Stable
node/saddle/saddle

R= ±2√3
9  (–Q)3/2

Q

Figure 1. Illustrations and terminology of the local flow pattern in terms of the invariants QA and
RA for an observer moving with the flow (from Soria et al. 1994).

the tent-like curve defined by D = 0 with D = (27/4)R2
A + Q3

A divides the (RA, QA)-
plane into four regions. Each region corresponds to a different flow topology as
illustrated in the figure. The terminology for the flow patterns that we have adopted
was proposed by Chong et al. (1998).

4. The direct numerical simulation
To study the process of passive scalar mixing we have performed direct numerical

simulations (DNS) of three-dimensional isotropic and homogeneous turbulence in a
periodic box with equal sides of length 2π. In this box the incompressible Navier–
Stokes equations are solved by means of a pseudo-spectral method. For the time
integration of the equations an explicit second-order Runge–Kutta scheme is applied.
For further details of the numerical code we refer to Debussche, Dubois & Temam
(1995).

A statistically stationary turbulent field is simulated by applying a forcing in the
form of adding kinetic energy to the largest turbulence scales. This forcing term is
only non-zero for |k| 6 kF . We have used two different forcing methods. The first
method is usually referred to as frozen amplitude forcing and has been applied by
Squires & Eaton (1991). The second method is based on a stochastic process and has
been proposed by Yeung & Pope (1989).

Simultaneously with the Navier–Stokes equations the advection–diffusion equation
(2.2) for a passive and conserved scalar is solved. As a result of the linear mean scalar
gradient G which lies in the x-direction, the statistics of the scalar are stationary.

For a DNS the number of modes N per coordinate direction for the velocity
should be chosen large enough so that kmaxη > 1 where η is the Kolmogorov length
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Run A B C D E F G

Reλ 22 46 90 95 130 85 59
N 64 64 128 128 192 192 64

Forcing FA FA FA FA FA UO UO

kF 2
√

2 2
√

2 2
√

2 2
√

2 2
√

2 2.5
√

2
u′ 0.273 0.303 0.315 0.314 0.323 2.007 1.245
ε 0.0130 0.0139 0.0146 0.0142 0.0148 3.940 0.688
` 1.682 1.356 1.198 1.194 1.188 1.135 1.584
η 0.1139 0.0480 0.0191 0.0175 0.0117 0.0197 0.0471

kmaxη 3.64 1.54 1.22 1.12 1.12 1.65 1.40

Table 1. Numerical parameters for the turbulence computations and some Eulerian statistics of the
flow. Reλ = u′λ/ν: Reynolds number based on the Taylor micro-scale λ and the r.m.s. of the velocity
fluctuations u′; N: number of modes per coordinate direction for the turbulence computation;
forcing: FA denotes forcing of the velocity field by the frozen amplitude method and UO denotes a
forcing by the Uhlenbeck–Ornstein method; kF : largest forced wavenumber; ε: energy dissipation
rate; `: integral length scale; η: Kolmogorov length scale; kmax: the largest resolved wavenumber.

scale and kmax is the largest resolved wavenumber (Eswaran & Pope 1988). All our
simulations satisfy this criterion which means that the velocity field is well resolved.
Although there is a clear separation of scales between the large-scale almost inviscid
motions and the smallest dissipative eddies, the value of Re is not large enough for the
existence of a clear inertial subrange (Brethouwer 2000). In flows where Sc > 1 the
micro-scales of the scalar field are smaller than the Kolmogorov scale. The number
of modes N is then not sufficient to obtain a well-resolved scalar field. Therefore, for
Sc > 1 we have used more modes Nθ for the scalar than for the velocity, i.e. Nθ > N.
The value of Nθ is selected based on the criterion that the Batchelor scale ηB = η/Sc1/2

is resolved or kmaxηB > 1. However, we can only solve the advection–diffusion equation
in spectral space when we know the Fourier-coefficients of the velocity for all Nθ

modes. To achieve this we have taken the unknown Fourier coefficients to be zero in
the velocity expansion for wavenumbers above 1− 1

2
N and 1

2
N. This implies a smooth

interpolation of the velocity field on the scalar grid at scales smaller than η.
The turbulent simulations that we have carried out are labelled by the letters A–G

and are listed in table 1. In runs A, B, C , D, E the velocity field is dealiased using
the 2/3-rule whereas the scalar field is not dealiased. In runs F , G the aliasing errors
of both the velocity and scalar are reduced by using the phase shifting technique in
combination with truncation (Canuto et al. 1988).

After the start-up of the simulations the variances of the velocity and scalar
fluctuations change from their initial state to a statistical steady state. From this
point on, complete three-dimensional data fields of the velocity and the scalar are
stored at constant time intervals for post-processing.

The Eulerian statistics that we show in the next sections are volume- and time-
averaged over about ten eddy-turnover time scales. In addition to Eulerian statistics
of the scalar mixing process, Lagrangian statistics have been computed by calculating
the paths of 27 000 fluid particles in the computational domain. These paths are
obtained from

dx+

dt
= u(x+, t), (4.1)

where x+ is the position of the fluid particle at time t. For the time integration
of the particle equation we have used a second-order Runge–Kutta scheme. An
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Run Sc Nθ Reλ kmaxηB Sχ Kχ

〈(∇‖θ)2〉
〈(∇⊥θ)2〉 S∇‖θ K∇‖θ K∇⊥θ

〈(∇‖θ)2〉1/2
|G|

A 144 256 22 1.22
B1 1 96 46 2.30 6.7 75 1.03 1.9 12.9 10.7 5.2
B2 7 192 46 1.76 7.7 108 1.05 1.4 14.8 12.6 12.8
B3 25 324 46 1.56 7.6 104 1.01 0.9 14.1 12.9 24.5
C 3 288 90 1.59 8.0 116 1.04 1.3 16.1 13.6 16.2
D1 0.7 128 95 1.34 7.5 97 1.09 1.8 15.3 12.0 8.0
D2 0.1 128 95 3.54 7.2 98 1.10 2.0 13.0 9.3 2.9
E1 0.5 192 130 1.58 8.4 123 1.05 1.8 16.9 14.5 9.1
E2 0.04 192 130 5.61 6.3 69 1.02 1.7 10.5 8.6 2.4
F 0.7 192 85 1.97 7.9 116 1.11 1.7 14.5 12.0 6.8
G 0.7 64 59 1.68 6.0 62 1.07 1.6 10.6 8.6 4.5

Table 2. Numerical parameters for the scalar computations. Sc: Schmidt number; Nθ: number of
modes per coordinate direction for the scalar computation; Reλ = u′λ/ν: as in table 1; kmax: as in
table 1; ηB the Batchelor lengths scale; Sχ: skewness of the scalar dissipation χ; Kχ: kurtosis of
the scalar dissipation χ; 〈(∇‖θ)2〉/〈(∇⊥θ)2〉: the ratio of the variance of the scalar gradient parallel
and perpendicular to the mean gradient; S∇‖θ: skewness of the scalar gradient parallel to the mean

gradient; K∇‖θ: kurtosis of the scalar gradient parallel to the mean gradient; K∇⊥θ: kurtosis of the

scalar gradient perpendicular to the mean gradient; 〈(∇‖θ)2〉1/2/|G| the r.m.s. of scalar gradient
parallel to the mean gradient normalized with the imposed mean scalar gradient G.

interpolation routine is needed to obtain the velocity u(x+, t) at the position x+

of the fluid particles. We have used the accurate and well-tested partial Hermite
interpolation scheme developed by Balachandar & Maxey (1989) for this purpose.
The same interpolation scheme has been used to determine the scalar and velocity
gradients at the positions of the fluid particles. The Lagrangian statistics have been
collected and stored at small constant time intervals for post-processing.

Some parameters of the simulations and some Eulerian statistics of the flow field
are also summarized in table 1. The velocity spectra obtained from the DNS results
agree very well with spectra obtained from other DNS (Brethouwer 2000). In table 2
we summarize the basic parameters of the simulations of scalar mixing that we have
carried out. The notation of the runs A,B,C ,D,E,F ,G corresponds to the runs listed
in table 1. The subscripts are used to distinguish between runs with the same flow
parameters but different Schmidt numbers.

5. Analyses of the numerical results
In this section we present the results of our DNS of passive scalar mixing in the

presence of a mean gradient. In § 5.1 the micro-structure of the scalar field and the
influence of the mean scalar gradient on the micro-structure is investigated for a wide
range of Schmidt numbers. In § 5.2 the relation between the turbulent velocity field
and the micro-structure of the scalar field is studied using the relations and analyses
presented in section § 2. Finally in § 5.3 we present the Lagrangian statistics which
allow us to study the dynamics of turbulent passive scalar mixing.

5.1. The micro-structure of the scalar field

Figure 2(a–d ) shows the instantaneous scalar field on a two-dimensional plane through
the computational domain. In figure 2(a–c) ηB is approximately equal, between 0.0095
an 0.011 with η largest in figure 2(a) and smallest in figure 2(c). In figure 2(d ) ηB
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(a) (b)

(c) (d)

Figure 2. The scalar distribution on a two-dimensional plane for (a) run A with Sc = 144 and
Reλ = 22, (b) run B3 with Sc = 25 and Reλ = 46, (c) run C with Sc = 3 and Reλ = 90 and (d ) run
F with Sc = 0.7 Reλ = 85.

is approximately 2.3 times as large as in the other figures. In figure 2(a, b) Sc � 1
and we observe at these high Schmidt numbers thin, elongated structures. Most likely
these are cross-sections of sheet-like structures in the scalar field. The existence of
sheet-like structures is confirmed in figure 3 where we present a three-dimensional
view of the scalar field for Sc = 25. Such structures were also observed at Sc = 2×103

by Buch & Dahm (1996). Figures 2 and 3 show that some of these sheet-like structures
are very close and almost parallel to each other. In addition they are more or less
flat but at some places they are twisted and folded or even rolled up. The rolling up
seems to occur at the end of the scalar sheets. When the Schmidt number decreases
we see in figure 2 that it becomes more difficult to distinguish sheet-like structures.
We also see that the ratio of their length to their thickness seems to decrease. At
Sc = 3 some of these sheet-like structures can still be observed, but at Sc = 0.7
the existence of scalar sheets is hardly noticeable anymore. At Sc = 0.7, however,
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Figure 3. A three-dimensional plot of the iso-scalar surface obtained from run B3

with Sc = 25 and Reλ = 46.

we observe lumps of almost uniform scalar concentration bounded by sharp edges.
This suggests relatively large jumps of the scalar concentration or a large scalar
gradient. This is supported by figure 4(a–d ) where we show the norm of the scalar
gradient on a two-dimensional plane across the computational domain for different
Schmidt numbers. At all Schmidt numbers large scalar gradients are apparent, which
are clearly concentrated in elongated regions. Similarly as in figure 2, these can be
considered as the cross-sections of sheet-like structures. Note that they have a finite
width and are often rolled-up at their ends. As expected the thickness of the sheets
increases when Sc decreases. It is, however, remarkable that even when Sc is as small
as 0.1, for which ηB is considerably larger than η, the dominating structure in the
scalar gradient field is still a sheet (figure 4d ). This observation is in agreement with
the studies mentioned in the introduction, e.g. Vedula et al. (2001). These sheet-like
structures in the scalar gradient field have been found by Holzer & Siggia (1994) who
called them cliffs. We shall come back to these structures in more detail later in this
paper.

The sharp cliffs give raise to a high intermittency of the scalar gradient field or
alternatively of the scalar dissipation. In other studies it has been revealed that the
scalar gradient field is more intermittent than the velocity gradient field (Métais &
Lesieur 1992; Sreenivasan & Antonia 1997; Mydlarski & Warhaft 1998; Vedula et
al. 2001; Brethouwer 2000). Values of the kurtosis and the skewness of the scalar
dissipation rate and of fluctuations in the scalar gradient parallel to the mean gradient
as obtained from our DNS are listed in table 2. The strong intermittency of the scalar
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(a) (b)

(c) (d)

Figure 4. The norm of the scalar gradient on a two-dimensional plane for (a) run B3 with Sc = 25
and Reλ = 46, (b) run C with Sc = 3 and Reλ = 90, (c) run F with Sc = 0.7 and Reλ = 85 and
(d ) run D2 with Sc = 0.1 and Reλ = 95. The mean gradient is in the horizontal direction. A dark
colour corresponds to a steep scalar gradient.

gradient field is reflected by the high values of the kurtosis. Even at the lowest value
of Sc the kurtosis is still considerable. Consistent with other studies (Pumir 1994;
Warhaft 2000), we find that the skewness of the scalar gradient parallel to the mean
gradient has a non-zero value for Sc ' 1 and Sc < 1. At Sc = 25 the skewness is still
non-zero. This non-zero skewness implies that the micro-structure of the scalar field
is anisotropic, which, as we shall see below, is caused by a direct coupling between
the small scales and the mean scalar gradient.

In order to investigate the influence of the Schmidt number on this small-scale
anisotropy we show in figure 5(a, b) the probability density function (PDF) of the
normalized scalar gradient parallel to the mean gradient for different Schmidt num-
bers. We have selected cases for which the Reynolds numbers are approximately
equal, i.e. runs D1, D2, C with Reλ = 90 to 95 (figure 5a) and runs B1, B2, B3 with
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Figure 5. The PDF of the scalar gradient parallel to the mean gradient at (a) Sc = 0.1, 0.7, 3, and
(b) Sc = 1, 7, 25. The scalar gradients are normalized by their standard deviation σ.
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imposed mean gradient G conditioned on g/〈g〉 obtained from run F . When the mean conditioned
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gradient has an isotropic orientation.

Reλ = 46 (figure 5b), so that Reynolds number effects can be neglected. The PDF for
positive gradients (∂θ/∂x > 0) does not seem to be affected by changing the Schmidt
number. The probability of large negative gradients, however, increases when Sc
becomes larger. Consequently, the PDF becomes more symmetric, which is consistent
with the decreasing skewness shown in table 2. Combination of this result with the
visualizations shown in figure 2(a, b) and figure 3 where we have seen that for Sc� 1
scalar interfaces roll up into sheets, explains why the micro-structure becomes more
isotropic as the diffusivity of the scalar decreases.

Further evidence for the anisotropic distribution of the scalar gradient sheets is
given in figure 6. This figure shows that especially large values of g or alternatively
large scalar gradients have a preference for an orientation in the same direction as
the mean gradient G. However, for small values, i.e. g/〈g〉 ≈ 0.1, the gradients tend
to be isotropic, 〈∇θ · G|g〉 ' 0 or even tend to be opposite to the mean gradient.
These results show that the sheet-like regions of steep scalar gradient or the so-called
cliffs have a preferred direction normal to the mean gradient. Furthermore, we have
observed that the jump in θ across the cliffs is of the order of |G| times the integral
length scale ` for all Reynolds and Schmidt numbers, consistent with the simulations
of Holzer & Siggia (1994) and Pumir (1994).
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Figure 7. The spatial correlation function ρ = 〈∇θ(x) · ∇θ(x+ r)〉/〈∇θ · ∇θ〉. To compute this spatial
correlation only points in the domain have been considered where |∇θ(x)| > 5〈g〉. The vector r is
parallel to the scalar gradient at r = 0, r is scaled with the Batchelor scale ηB .

Next we study the spatial dimensions of the cliffs. In figure 7 we show the correlation
function 〈∇θ(x) · ∇θ(x + r)〉/〈∇θ · ∇θ〉 with r parallel to ∇θ(x), obtained for a large
range of Reynolds and Schmidt numbers. The correlation function is conditionally
determined by taking points in the computational domain where the scalar gradient
is large, i.e. g > cth〈g〉 with cth = 5, so that these points are likely to be representative
for the cliffs. (The correlation function appears not to be very sensitive for the precise
value of the threshold constant cth.) We have normalized the spatial distance r with
ηB in figure 7 (Orlandi & Antonia 2002; Brethouwer & Nieuwstadt 1999). It follows
that the variation of the scaled spatial correlation function is small despite the wide
range of Reynolds and Schmidt numbers. The correlation drops off very fast and
is close to zero beyond r = 4ηB for all Schmidt and Reynolds numbers. Thus 4ηB
provides a reasonable estimate for the thickness of the sheets, `θ , about which there
has been some uncertainty in the literature. Tong & Warhaft (1994) presented some
evidence that the strain rate acting on the cliffs is proportional to u′/` and therefore
the thickness of the cliffs should scale with λ. Moisy et al. (2001) on the other hand
found on the basis of experimental measurements for varying Reλ and constant Sc
that the thickness of the cliffs probably scales with η rather than with λ. This latter
result is consistent with our result. Batchelor’s estimate (Batchelor 1959; Tennekes &
Lumley 1972) that the thickness of the scalar sheets `θ ' ηB seems thus to be valid
even for Sc < 1.

5.2. The relation between the micro-structure of the scalar field and the structure of
turbulence

In this section we try to answer the following question: what is the influence of the
turbulent structures on the formation of the cliffs that have been observed in the
previous section? For this we will make use of the relations and analyses presented
in § 2.

In figure 8(a, b) we present the norm of the scalar gradient g conditioned on the
strain rate s = (SijSij)

1/2 and conditioned on the norm of the vorticity ω = |ω|. We see
that the conditional value of g increases when the strain rate increases for all values of
Sc (figure 8a). For values Sc > 1 this result could be expected from the analysis given
in § 2 and it has also been observed by Vedula et al. (2001). However, the same result
is also found for Sc as small as 0.04. Batchelor, Howells & Townsend (1959) have
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Figure 9. 〈g|Siλ
2
i /Sγ〉: the scalar gradient conditioned on its alignment with the direction of

compressive strain. The statistics are obtained from runs B3, F , D2 and E2.

argued that the influence of the strain rate on the scalar gradients should disappear
when Sc < 1 but Gibson, Ashurst & Kerstein (1988) and Kerr (1985) have observed
in the results of their computations that there is still a correlation between strain rate
and scalar gradients for Sc < 1, consistent with our observations. As argued in § 2,
the vorticity does not have a direct influence on the magnitude of the scalar gradient.
This agrees with the results of figure 8(b) where it is demonstrated that the correlation
between the magnitude of the vorticity and the scalar gradient is weak and does not
show a trend as a function of Sc. An equivalent result has been found by Zhou &
Antonia (2000) and Pumir (1994).

In § 2 we have also seen that the amplification of scalar gradients is not only
determined by the strain rate but also by the alignment between ∇θ and the direction
of compressive strain eγ . In figure 9 the scalar gradient conditioned on Siλ

2
i /Sγ

is shown. This latter ratio is proportional to the alignment between ∇θ and eγ
because its value becomes larger when the alignment becomes better, i.e. λγ = ∇θ · eγ/g
approaches the value one. A negative value implies a negative production rate or
reduction of the scalar gradient. According to figure 9 large scalar gradients are
clearly related to high values of Siλ

2
i /Sγ . This result is in agreement with Ashurst et

al. (1987) who found that steep scalar gradients are aligned with eγ for Sc ∼ 1. Our
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results, however, show that this conclusion can be extended to Sc > 1 and Sc < 1.
The alignment between ∇θ and eγ for Sc < 1 has been also predicted by Gibson et
al. (1988) and observed in their two-dimensional simulations.

Figure 10 presents the PDF of Siλ
2
i /s = −∇θ · S · ∇θ/(g2s) with s = (SijSij)

1/2. It

follows that the maximal and minimal values of this ratio are
√

2/3 and −√2/3, re-
spectively. These values occur when the strain tensor is given bySα:Sβ:Sγ = 1: 1:−2
and if ∇θ is fully aligned with eγ . In a turbulent flow the variations of s are large
(Métais & Lesieur 1992; Brethouwer 2000; Vedula et al. 2001) but figure 10 shows
that the variation of Siλ

2
i normalized with s is large as well, which is a consequence

of the large variation of the orientation of ∇θ with respect to the principal axes of
strain. The peak of the PDF is close to its maximal value, revealing the preferential
alignment of ∇θ with eγ (Vedula et al. 2001) but figure 10 also shows that there is a
considerable proportion of negative production. This means that in a significant part
of the flow the scalar gradient ∇θ is not aligned with the compressive strain direction
but is aligned with a direction of stretching which implies a reduction of scalar gradi-
ents. In the same figure the PDF of ω · S ·ω/(ω2s) is plotted which is the normalized
production rate of enstrophy (Tsinober, Ortenberg & Shtilman 1999). This ratio has
its maximal value if the strain rate tensor is given by Sα:Sβ:Sγ = 2:−1:−1 and if
the vorticity is aligned with eα. The figure shows that for this enstrophy production
rate large positive and large negative values are more rare than for the production rate
of the scalar gradient. This might provide an explanation for the larger intermittency
of the scalar gradient field in comparison with the intermittency of the vorticity field
(Brethouwer 2000). Moreover, the peak of the PDF is not close to the maximal value
but lies at a much smaller value. The explanation for this observation is that the
vorticity has the tendency to align with eβ (Ashurst et al. 1987; Ohkitani 1998), and
the strain rate in the direction of eβ is much smaller than in the eγ-direction (Vedula
et al. 2001).

After this discussion on the alignment between ∇θ and eγ we now study how
this alignment is related to turbulent structures. In our discussion following (2.10) we
argued that the strain itself aligns the scalar gradient with the direction of compressive
strain and thus increases the normalized production rate. We also argued that vorticity
or rotation of the principal axes of strain counteracts this alignment. The results of our
DNS presented in figure 11(a, b) are consistent with these arguments. We observe that
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scaled with 〈ω2〉/4. The statistics are obtained from runs B3, F , D2 and E2.

the normalized production term increases when s increases for all Sc (figure 11a), at
least for s < 2〈s〉. For larger strain rates the normalized production term stays almost
constant or decreases somewhat. The vorticity has an opposite effect (figure 11b).
The normalized production term in this case increases when the vorticity decreases,
with the maximal value when the vorticity is zero. The normalized production rate
becomes very small at large values of the vorticity. Furthermore, we observe that the
influence of the strain rate and the vorticity are quite similar for all values of Sc.

The interpretation of the results given above is that the probability of alignment
of ∇θ with eγ is high if the strain rate is large and the vorticity is small. This can be
illustrated further with help of the invariants of the velocity gradient tensor which
have been discussed in § 3, and which allow us to study in more detail the connection
between the turbulence and the topology of the scalar micro-structure.

The effect of straining and vorticity is confirmed by figure 12(a, b) where we present
the normalized production rate of the scalar gradient and the scalar gradient itself
conditioned on the invariant QA of the velocity gradient tensor. When the vorticity is
larger than the strain rate, so that −QA < 0, the normalized production rate is very
small (figure 12b). In the opposite case, when the strain dominates and −QA > 0, the
normalized production increases with increasing values of QA. The same conclusions
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apply to the scalar gradient (figure 12a) where we also see a clear difference between
QA > 0 and QA < 0. In this case we see again the same trends independent of the
values of Sc, which implies that vorticity and strain rate have a similar influence on
the micro-structure of the scalar field for small and large Sc.

Next we show in figure 13 the scalar gradient conditioned on QA and RA as obtained
from our DNS results. The value of the conditioned scalar gradient is indicated by
the shades of grey. In the white region outside the pear-shaped contour the number of
samples is too small to determine an accurate value of the conditioned scalar gradient.
In agreement with figure 12(a) we see that the mean value of g is small for positive QA
(vorticity dominated) and large for negative QA (strain dominated). More precisely, we
observe with help of figure 1 that in regions with a stable focus/stretching topology
and positive QA and in regions with an unstable focus/contracting topology the g/〈g〉
is on average smaller than one. The smallest conditional values of g appear in regions
with an unstable focus/contracting topology. Large conditional values of g can be
found in regions with an unstable node/saddle/saddle topology, in particular at the
points with large negative values of QA, RA > 0 and D < 0 and at the points close to
the tent-like curve D = 0. This means that the steepest scalar gradients can be found
in regions that are strongly dominated by a strain with one direction of compression
and two directions of stretching.

Let us now turn to the alignment properties and the production rate of scalar
gradients in terms of the invariants QA and RA to investigate why the steepest
scalar gradients are formed in regions with an unstable node/saddle/saddle top-
ology. Figure 14 presents the scalar gradient production rate −Siλ

2
i normalized with

s = (SijSij)
1/2 and conditioned on QA and RA. We observe that negative conditional

values of the scalar gradient production rate are found in regions with either a stable
focus/stretching or an unstable focus/contracting topology. The largest negative
conditional values are found in regions with a positive QA (vorticity dominated)
and an unstable focus/contracting topology. In these regions scalar gradients are
reduced by strain because of alignment of the scalar gradient with a direction of
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stretching, which can be either eα or eβ if Sβ > 0. The scalar gradient shows the
best alignment with the direction of compressive strain at the points with large
negative values of QA, RA > 0 and D < 0, especially at points that are close to the
tent-like D = 0 curve. At the same points figure 15 shows the highest averaged pro-
duction rate of scalar gradients because of a combination of a large strain rate
and a good alignment between ∇θ and eγ . This leads to the formation of large
scalar gradients as observed in figure 13. Production rates are, however, signifi-
cantly lower in regions with with either a stable focus/stretching or an unstable
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Figure 16. 〈−Siλ
2
i |s, ω〉: the mean value of the production rate of g conditioned on the strain rate

s and the vorticity ω obtained from run F . The scalar gradient, strain rate and vorticity are scaled
with their mean values, the production rate is scaled with the mean strain rate.

focus/contracting topology and are even negative in regions where QA and RA are
positive.

Figure 16 shows the production rate of scalar gradients conditioned on the strain
rate and the vorticity. The influence of the vorticity on the scalar gradient production
rate is rather large as we can observe in figure 16. We see that the production rate
increases when for constant vorticity the strain rate increases. On the other hand
the production rate decreases when for constant strain rate the vorticity increases.
This latter occurs because the alignment of the scalar gradient with the direction
of compressive strain is destroyed when the vorticity increases. On the whole the
production rate is small for a high vorticity, even for a strain rate much larger than
its average value.

Our simulations prove that straining motions play an important role in the gener-
ation of steep scalar gradients or cliffs which, as we have seen, have a preferential
orientation perpendicular to the mean scalar gradient. According to the visualizations
of Holzer & Siggia (1994) it seems that the direction of contraction of the straining
motions is along the mean gradient during the formation of the cliffs. This observation
is supported by figure 17 where we show the absolute value of the cosine of the angle
between eγ and the mean gradient G conditioned on g. This result should not be
interpreted as that the strain rate itself is anisotropic. Namely, the result for the mean
unconditional value 〈|eγ ·G|〉/|G|, i.e. the absolute value of the cosine of the angle
between eγ and the mean gradient G, is found to be equal to 0.500 which implies a
perfect isotropic orientation of the compressive strain direction. Figure 17 shows that
at the places in the scalar field where the scalar gradients are steep, the compressive
strain direction and the mean gradient more or less coincide. This means that a
significant part of the steep scalar gradients or the cliffs is formed by those straining
motions, the direction of contraction of which is along the mean gradient.

Figure 18 presents the scalar gradient production rate conditioned on the cosine of
the angle between ∇θ and the mean gradient. We see that the production rate increases
considerably when the alignment between ∇θ and the mean gradient increases. The
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Run G F

Reλ 59 59 59 85 85 85
Sc 0.7 0.7 0.7 0.7 0.7 0.7
Direction x1 x2 x3 x1 x2 x3

Amplification 0.368 0.277 0.291 0.369 0.299 0.304
Rotation −0.0187 0.0123 0.0063 −0.0126 0.0012 0.0114
Mean gradient 0.0120 0.0259 0.0260 0.0054 0.0106 0.0112
Total production 0.361 0.316 0.323 0.362 0.311 0.327

Table 3. The average values of the first three terms, i.e. the amplification, the rotation and the mean
gradient term, on the right-hand side of the equation for g2

` (2.6) obtained from two simulations.
When the direction is x1 the scalar gradient ∂θ/∂x` is parallel to the mean gradient, otherwise it
is normal to the mean gradient. The total production (last row of the table) is the sum of all three
terms, i.e. amplification, rotation and the mean gradient term. All the terms are scaled with the sum
of all three terms in all three directions.
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Figure 17. 〈(|eγ ·G|/|G|) | (g/〈g〉)〉: the mean value of the cosine of the angle between the direction
of compressive strain eγ and the imposed mean gradient G conditioned on g/〈g〉. In case there is
no preferential alignment between eγ and G the conditional value equals a half.

anisotropy that is observed in the moments of the scalar gradients is thus even more
strongly present in the correlation of the scalar gradient with the velocity gradient.
Additional data are given in table 3. The average values of the amplification term,
the rotation term and the mean gradient term on the right-hand side of equation
(2.6) for g2

` , are presented for all three directions in the same table. Here, x1 is here
parallel and x2 and x3 are normal to the mean scalar gradient. The difference between
the terms computed for the x2- and the x3-directions is a consequence of statistical
uncertainty, so that the values can be considered as being equal. The table shows that
the amplification term is much larger than the mean gradient term and the rotation
term because the scalar gradient is mainly normal to the vorticity (Pumir 1994). Also,
we see that the amplification term is larger for the x1- than for the x2- and x3-directions
in agreement with figure 17. The statistics of the rotation term are not well-converged,
reflected by the large difference between the rotation term for the x2- and the x3-
directions. It seems, however, that it redistributes scalar gradient fluctuations parallel
to the mean scalar gradient to the directions normal to this gradient. The relative
importance of the mean gradient term decreases with increasing Reynolds number,
although the range of Reynolds numbers is rather limited. Nevertheless, this is in
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T/Te ∆t/τ h/τ TL/τ TL/Te Tε/TL Tω2/TL Tε/τ Tω2/τ Tθ/TL Tχ/TL Tχ/τ
12.0 0.017 0.20 9.34 0.728 0.458 0.757 4.28 7.06 2.08 0.370 3.46

Table 4. Lagrangian time scales of the flow and the scalar. T/Te: the duration of the run in terms of
the eddy-turnover time Te; τ: the Kolmogorov time scale; ∆t: the time step of the time integration;
h: the time interval of sampling of the Lagrangian statistics; TL: Lagrangian integral time scale of
the velocity; Tε: integral time scale of ε; Tω2 : integral time scale of the enstrophy ω2; Tθ: integral
time scale of the scalar concentration; Tχ: integral time scale of the scalar dissipation rate.
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Figure 18. 〈−Siλ
2
i |∇θ ·G/(g|G|)〉: the mean value of the production term of g conditioned on the

cosine of the angle between the scalar gradient and the imposed mean gradient. The statistics are
obtained from run F .

agreement with the arguments given in § 2 and with the results of Vedula et al. (2001).
Moreover, the mean gradient term for the x1-direction is about half that for the x2-
and the x3-directions. We see thus that the rotation and the mean gradient term
partly compensate the anisotropy of the amplification term. Consequently, the total
production, i.e. the sum of the amplification, rotation and the mean gradient term, is
more isotropic than the amplification term alone. Nonetheless, the total production
for the direction parallel to the mean scalar gradient remains larger than the total
production for the direction normal to the mean gradient with an anisotropy quite
similar for the two Reynolds numbers. It would be interesting to see if this extends
to a wider range of Reynolds numbers.

5.3. Lagrangian statistics of mixing

Fung & Vassilicos (1998) have observed that particle pairs separate very rapidly
in straining regions. Here we have observed that straining regions are also very
important for the mixing process because they lead to a rapid formation of cliffs. Cliff
formation occurs when two particles with different concentrations are brought close
together. These seemingly opposite results are nevertheless consistent because in the
saddle-point topology of the velocity field in which cliffs are formed, particles first
approach each other before they separate quickly. The concept of rapid cliff formation
in straining regions is tested here by tracking 27 000 fluid particles in run F (Sc = 0.7
and Reλ = 85). The Lagrangian time scales obtained from this run are listed in table 4.

To obtain a first impression of the mixing and the related turbulence processes
in a Lagrangian frame we have plotted in figure 19 time series of the norm of the
vorticity, the strain rate and the scalar gradient observed along the path of a fluid
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Figure 19. Time series of (a) the vorticity, (b) strain and (c) scalar gradient.

particle. The time is normalized with the Kolmogorov time scale. The time series show
that the vorticity, strain rate and the scalar gradient are very intermittent. Moreover,
figure 19 also suggests that the scalar gradient is more intermittent than the vorticity
and the strain rate. Lagrangian auto-correlation functions obtained from DNS show
that the correlation time of the scalar dissipation rate is shorter than the correlation
time of the kinetic energy dissipation and the enstrophy (Brethouwer 2000; Yeung
2001). The time series of the scalar gradient g show short events of very large values,
implying steep gradients or rapid molecular mixing. The duration of these events is
at most a few Kolmogorov time scales. For instance, at t/τ = 120 we see a sudden
strong increase of the scalar gradient with a peak value several times the mean value,
after which the gradient decreases again very rapidly.

Let us study these extreme events in more detail. For this purpose, we define an
ensemble of events. In the Lagrangian time series for the 27 000 fluid particles we
define an event when the instantaneous scalar gradient exceeds the mean gradient 〈g〉
by a given threshold. Each event is labelled by the time instant at which the scalar
gradient g reaches its maximum value and this moment is considered to be the point
of reference where we set t = 0. We then compute the scalar and velocity parameters
in the short period of time before and after t = 0. Finally, we calculate the ensemble
average of all detected events with each event centred at t = 0. For the value of the
threshold we have taken either 4 or 6 times the mean value 〈g〉. For g > 4〈g〉 we have
detected 16 262 events during the entire simulation period. In this case the number of
events detected per particle and per eddy-turnover time Te is on average 0.07 which
corresponds to 0.10 detected events per integral time scale TL. In the following figures
we present the ensemble-averaged results for both threshold values in order to show
the trend of the statistics if we consider more extreme events.
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Figure 21. The time evolution of s = (SijSij)
1/2 (solid line) and ω = |ω| (dashed line) before and

after g reaches its highest value at t = 0. The time is normalized with the Kolmogorov time scale
and s and ω with their mean value. This time evolution is an ensemble average of all events which
satisfy g > 4〈g〉 (the thick lines) or g > 6〈g〉 (the thinner lines).

In figure 20 we present the Lagrangian evolution of the ensemble-averaged norm
of the scalar gradient normalized by its mean value. The figure shows a cycle in
which the gradient grows within a few Kolmogorov time scales to a maximum which
is larger than the mean value by several factors, after which it decreases again to a
value close to the mean, i.e. g/〈g〉 ' 1. It is also interesting to investigate the evolution
of the strain rate and the norm of the vorticity during the detected events. These are
presented in figure 21 where the absolute value of the strain rate and the vorticity are
shown, both normalized with their mean values. Here t = 0 is again the time instant
when g reaches its maximum value. Similar to the scalar gradient the strain rate
shows also a short moment of a relatively high value. The strain rate peaks slightly
before t = 0. Figure 21 shows that the strain rate increases by a factor of 1.7 to 1.9,
which is considerably smaller than the factor of 5 to 7 which we found for g. The
Lagrangian evolution of the vorticity is quite different. Figure 21 shows that after a
slight decrease the vorticity starts to increase around t = −5τ. The relative increase
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Figure 22. The ensemble-averaged trajectory in the (RA, QA)-plane during the event where
g > 6〈g〉, at t = 0 (shown with the arrow in the plot) the scalar gradient has its maximal value.

of the vorticity is, however, much smaller than the increase of the strain rate and the
scalar gradient. In the neighbourhood of t = 0 the strain rate is much larger than
the vorticity, implying that the fluid particles are in a strain-dominated region, i.e.
QA < 0. This is confirmed by figure 22 which shows the ensemble-averaged trajectory
in the (RA, QA)-plane during the period when g becomes large. The trajectory starts
near the origin of the (RA, QA) plot and just before t = 0 it moves down quickly along
the D = 0 line. After t = 0 the trajectory returns again to the origin. The steep scalar
gradients are thus formed by turbulent structures with a short lifetime and with an
unstable node/saddle/saddle topology.

Next we investigate the Lagrangian evolution of the production rate of the scalar
gradient, normalized with its maximal value and unnormalized. This is shown in
figure 23(a, b). Recalling figure 11 we know that the mean normalized production
rate increases when the strain increases but decreases when the vorticity increases.
Because the strain rate increases considerably before t = 0 while for the same fluid
element the vorticity hardly changes, we expect a strong increase of the normalized
production rate. This is consistent with figure 23(a). Just before t = 0 the normalized
production rapidly increases, which implies that the scalar gradient rapidly rotates
to the direction of the compressive strain. After t = 0 the production very rapidly
decreases again. The maximum value reached by the normalized production rate is
about 0.75, showing that the scalar gradient is close to being completely aligned with
the direction of the compressive strain at t = 0. The combined effects of increasing
strain rate and rotation of ∇θ to the direction of compressive strain result in a
large increase of the production term of the scalar gradient, −gSiλ

2
i as shown by

figure 23(b). This result confirms our argument presented in § 2 that the production
rate of the scalar gradient is a nonlinear function of the strain rate.

As we have already seen, the presence of a mean gradient has a direct influence
on the generation of steep scalar gradients because a significant part of the steep
scalar gradients is generated by a convergence of the flow along the mean gradient.
In figure 24(a) the Lagrangian evolution of the absolute value of the cosine of the
angle between eγ and the mean gradient is presented during the period when g
reaches a high value. When t < −15τ and t > 15τ the averaged value of the angle
is around 0.5 which means that the orientation of eγ has an isotropic distribution.
However, just before t = 0 the average value of the angle shows a peak. This peak
is small for the events with g > 4〈g〉 but it becomes considerable for the events with
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a high value. At t = 0, g has its peak value. The time is normalized with the Kolmogorov time scale.
This time evolution is an ensemble average of all events which satisfy g > 4〈g〉 (the thick lines) or
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g > 6〈g〉. Thus at least in a part of the recorded events the formation of the steep
scalar gradients is a consequence of a convergence of the flow field approximately
along the mean gradient. This implies the direct production of a small-scale gradient
where molecular mixing is dominant, from the mean gradient without intervention
of a cascade process. This direct relation between ∇θ and G is further illustrated in
figure 24(b).

Because of the rotation of ∇θ to the mean gradient and the additional alignment
between ∇θ and eγ we can expect that the second and third terms on right-hand
side of (2.5), which are related to the mean gradient, will increase. In figure 25 the
Lagrangian evolution of these terms is shown. Both these terms indeed show a peak.
However, if we compare the magnitude of these production terms with the peak value
of the first term on the right-hand side of (2.5) shown in figure as 23(b), we can
conclude that their contribution to the creation of scalar gradients is insignificant.
This result was already predicted in § 2 and it has also been observed by Vedula
et al. (2001).
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ensemble average of all events which satisfy g > 4〈g〉 (the thick line) or g > 6〈g〉 (the thinner line).

Tsinober et al. (1999) have demonstrated that regions dominated by strain are also
regions of the strongest interaction between vorticity and strain. In figure 26 the
ensemble average of the production rate of enstrophy, i.e. ω · S · ω, is presented. We
observe that this production rate shows a peak at about the same time that the
production rate of g has a peak. This implies that the vorticity vector experiences
stretching at t = 0 and it follows thus that the development of steep scalar gradient
sheets coincides with an increased interaction between the strain rate and the vorticity.

Finally, we present in figure 27 a Lagrangian time series of ∇θ ·ω and its norm g ω.
In § 2 we have argued that the variation of ∇θ ·ω will be small in comparison with the
variation of its norm g ω. This is confirmed by the computed Lagrangian time series,
shown in figure 27. The fluctuations in ∇θ · ω are indeed very small in comparison
with the fluctuations of g ω. A small value of ∇θ ·ω when g ω is large implies that ∇θ
and ω are nearly perpendicular to each other at the instant when both the vorticity
and the scalar gradient are amplified by strain. Other time series of ∇θ ·ω and of g ω
that we have computed show a similar behaviour. It means that the stretching of the
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vorticity and the amplification of the scalar gradient by strain happens in directions
perpendicular to each other as argued in § 2. It is thus likely that the generation of
the scalar gradient sheet is accompanied by the generation of a weak vortex sheet
with the vorticity vector lying in the plane of the sheet. The subsequent roll-up of this
sheet into a vortex is then the next step. This process may lead to the strong vortices
which have been identified in simulations by Jiménez et al. (1993) and which have
been called ‘worms’.

6. Conclusion
By means of direct numerical simulations of isotropic turbulence together with a

scalar with a linear mean gradient, we have studied the micro-scales of the scalar
fluctuation field in terms of the structures of the turbulence velocity field and of
the Eulerian and Lagrangian statistics for a wide range of Schmidt numbers. First,
we have reviewed in § 2 the well-established concepts about turbulent straining in
combination with vortex stretching and roll-up and their effect on the scalar field.
This leads to a picture of the generation of steep scalar gradients or cliffs by strong
and short-lived straining deformations. The deformation tensor in this case has only
one negative or compressive eigenvalue and two positive or expansive eigenvalues so
that scalar cliffs are deformed into thin sheet-like structures which can be relatively
flat or folded.

In view of the three questions formulated at the end of the introduction, we state
the following conclusions.

(i) Visualizations of our simulation data confirm the existence of spatially in-
termittent sheet-like structures of the scalar gradient field and we have found that
these occur for the whole range of the Schmidt numbers between 0.04 < Sc < 144.
Conditional statistics demonstrate that over the full range of Reynolds and Schmidt
numbers of our simulations the steepest scalar gradients are preferentially aligned with
the imposed mean scalar gradient. This implies that the micro-structure of the scalar
field is directly influenced by the large-scale mean concentration gradient and this
leads to a small-scale anisotropy. Other studies show that this direct coupling between
micro- and macro-scales persists at larger Reynolds numbers than those that we have
considered here (Hunt et al. 1988; Vedula et al. 2001; Mydlarski & Warhaft 1998).
Furthermore, we have observed that the scalar gradient–velocity gradient correlation
is influenced by the mean scalar gradient.

(ii) The structures with large scalar gradient are created in a strain-dominated
region which persists for a short period of the order of several Kolmogorov time
scales. The result is a sheet-like structure. The thickness of the sheet is of the order of
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the Batchelor scale. The direct coupling with large scales causes the straining regions
to have lateral dimensions considerably larger than the Kolmogorov scale. The scalar
gradients are relatively weak in vorticity-dominated regions because in these regions
the scalar gradients experience much less stretching than in strain-dominated regions
due to misalignment between the scalar gradient and the direction of the compressive
strain. Scalar gradients can even be reduced in vorticity-dominated regions.

(iii) Based on Lagrangian statistics taken along trajectories of fluid particles, we
found that the extreme events that generate steep scalar cliffs coincide with strong
straining motions. Because the jumps of the scalar across these cliffs are of the order
of the integral length scale times the mean scalar gradient, we argue that the large-
scale straining motions have an unstable node/saddle/saddle topology of the velocity
field. This is confirmed by an analysis based on the invariants of the velocity gradient
tensor. In such a velocity field the separation between fluid particles reduces very
rapidly from being proportional to the integral length scale to the order of the
Batchelor length scale after which particles again separate. This confirms the physical
validity of the Lagrangian stochastic two-particle models where mixing occurs only
when particle pairs meet due to strain.

The rapid generation of cliffs is accompanied by an increased production rate of
enstrophy. Although the increase of vorticity is relative small our simulations suggest
that the same straining motions that generate the cliffs also form weak vortex sheets.
These vortex sheets are unstable and roll up as shown by Kevlahan & Hunt (1997)
leading to concentrated vortex tubes. Our visualizations at large Schmidt numbers
suggest that these vortex tubes then cause a roll-up of the scalar gradient sheets. Such
roll-up does not occur at Schmidt numbers 6 1.

Most of the molecular mixing takes place in these sheet-like cliffs of strong gradients.
In addition we have found that the mixing events in the Lagrangian frame are strongly
intermittent, consistent with the Eulerian view.
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Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified
turbulence. J. Fluid Mech. 239, 157–194.

Moisy, F., Willaime, H., Andersen, J. S. & Tabeling, P. 2001 Passive scalar intermittency in low
temperature helium flows. Phys. Rev. Lett. 86, 4827–4830.

Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. II (ed. J. L. Lumley). MIT
Press.

Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high-Péclet-number grid turbulence.
J. Fluid Mech. 358, 135–175.

Nomura, K. K. & Elghobashi, S. E. 1992 Mixing characteristics of an inhomogeneous scalar in
isotropic and sheared turbulence. Phys. Fluids A 4, 606–625.

Ohkitani, K. 1998 Stretching of vorticity and passive vectors in isotropic turbulence. J. Phys. Soc.
Japan 67, 3668–3671.

Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics
of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381,
141–174.

Orlandi, P. & Antonia, R. A. 2002 Dependence of the non-stationary form of Yaglom’s equation
on the Schmidt number. J. Fluid Mech. 451, 99–108.

Overholt, M. R. & Pope, S. B. 1996 Direct numerical simulation of a passive scalar with imposed
mean gradient in isotropic turbulence. Phys. Fluids 8, 3128–3148.

Passot, T., Politano, H., Sulem, P. L., Angilella, J. R. & Meneguzzi, M. 1995 Instability of
strained vortex layers and vortex tube formation in homogeneous turbulence. J. Fluid Mech.
282, 313–338.

Pumir, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the
presence of a mean gradient. Phys. Fluids 6, 2118–2132.

Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc.
Lond. A 110, 709–737.

Ruetsch, G. R. & Maxey, M. R. 1991 Small-scale features of vorticity and passive scalar fields in
homogeneous isotropic turbulence. Phys. Fluids A 3, 1587–1597.

Ruetsch, G. R. & Maxey, M. R. 1992 The evolution of small-scale structures in homogeneous
isotropic turbulence. Phys. Fluids A 4, 2747–2760.

Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289–317.

Sawford, B. L. & Hunt, J. C. R. 1986 Effects of turbulence structure, molecular diffusion and
source size on scalar fluctuations in homogeneous turbulence. J. Fluid Mech. 165, 373–400.

Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405, 639–646.

Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of
fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6, 871–884.

Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu.
Rev. Fluid Mech. 29, 435–472.

Squires, K. D. & Eaton, J. K. 1991 Measurements of particle dispersion obtained form direct
numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 1–35.

Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–211.

Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.

Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-
number turbulence, and its application to the problem of concentration variance. J. Fluid
Mech. 210, 113–153.

Tong, C. & Warhaft, Z. 1994 On passive scalar derivative statistics in grid turbulence. Phys. Fluids
6, 2165–2176.



Micro-structure and Lagrangian statistics of the scalar field 225

Tsinober, A. 2000 Vortex stretching versus production of strain/dissipation. In Vortex Dynamics
and Turbulence Structure (ed. J. C. R. Hunt & J. C. Vassilicos). Cambridge University Press.

Tsinober, A., Ortenberg, M. & Shtilman, L. 1999 On depression of nonlinearity in turbulence.
Phys. Fluids 11, 2291–2297.

Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence:
a numerical and modelling study. J. Fluid Mech. 433, 29–60.

Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence.
J. Fluid Mech. 258, 245–254.

Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203–240.

Yeung, P. K. 2001 Lagrangian characteristics of turbulence and scalar transport in direct numerical
simulations. J. Fluid Mech. 427, 241–274.

Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic
turbulence. J. Fluid Mech. 207, 531–586.

Zhou, T. & Antonia, R. A. 2000 Approximations for turbulent kinetic energy and temperature
variance dissipation rates in grid turbulence. Phys. Fluids 12, 335–344.


