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Background and Objectives. Given the prognostic rel-
evance that the identification of mutated and germline
subgroups of chronic lymphocytic leukemia (CLL) has
recently acquired we set out to analyze in depth individ-
ual VH gene usage rearrangements in patients with mutat-
ed and germline CLL.

Design and Methods. Using sequence analysis of
FR1/JH polymerase chain reaction products, the VH

immunoglobulin gene configuration was analyzed in 159
rearranged IgH alleles from 154 CLL patients. Having pre-
viously identified a spatial relationship between VH gene
usage and JH proximity in patients with acute lymphocyt-
ic leukemia (ALL), we performed linear and Poisson
regression analysis on patients with germline and mutat-
ed CLL against VH rearrangements from normal peripher-
al blood. 

Results. Sequence analysis showed that 102 patients
(64%) had mutated sequences (>2% DNA base pair
changes) while 57 (36%) had germline sequences. The
germline CLL group showed JH proximal overusage simi-
lar to that reported in ALL patients, while the mutated
CLL group showed a pattern comparable to that of the
control group (peripheral blood rearranged VH sequences).
The CDR3 region was statistically longer in the patients
with germline CLL than in those with mutated CLL.

Interpretation and Conclusions. This study highlights
differences in the VDJ profile in mutated and germline
CLL, consistent with the suggestion that CLL comprises
two subgroups. The interpretation of these differences is
that the B-cell of CLL, particularly in the germline group,
may derive from a pool that has been unable to follow or
complete the normal pathway of B-cell differentiation.
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VH gene usage differs in germline and mutated B-cell chronic lymphocytic
leukemia
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LETIZIA FORONI

B-cell chronic lymphocytic leukemia (CLL) is charac-
terized by the clonal expansion of CD5+ B cells but
its etiology is, as yet, unknown. The cytogenetic fea-

tures that have a prognostic significance within CLL are
heterogeneous. The most frequently observed chromoso-
mal abnormalities in CLL are trisomy 12 and deletions of
11q23 or 17p11, associated with poorer prognosis, and
deletion of 13q14, which correlates with a more favorable
clinical outcome.1,2

Further evidence for heterogeneity within CLL has
emerged recently from investigations of the mutational
status of immunoglobulin genes.3-6 Patients with germline
VH genes (<2% mutations at the DNA level) show short-
er survival than do patients with mutated VH genes (>2%
mutations).4,5,7 Germline VH genes, high CD38 expression
and poor prognostic cytogenetic features can be used to
define patients with CLL and an unfavorable progno-
sis.2,3,8–10 There are 123 VH segments,11,12 26 D segments12,13

and 6 JH segments14 organized in a telomeric to cen-
tromeric orientation on chromosome 14 band q32.11 Fifty-
five (44.7%) of the 123 VH segments are capable of under-
going rearrangement but only 42 are potentially func-
tional.12 VH segments are classified into seven families
(VH1- VH7) on the basis of amino acid sequence homolo-
gy in the framework (FR1) region.15 VH3 is the largest fam-
ily, followed by VH4 and VH1 (64, 32, and 19 members,
respectively), whereas VH2, VH5 and VH6 contain only four,
two and one member(s), respectively.

As the production of functional IgH genes encoding
high affinity antibodies is an ongoing process during B-
cell development, normal B cells analyzed at different
stages of differentiation show differences in IgH gene
rearrangement patterns. This is reflected in their leukemic
counterparts. For instance, analysis of VH genes has sug-
gested in some studies that mammalian fetal VH-(D)-JH

repertoires are highly restricted. Only a few rearranged
VH3 or VH5 genes and mostly VH6 JH proximal gene dom-
inate16-18 in agreement with murine studies.19-22 Other
studies, however, have failed to confirm these find-
ings.23–25

The final repertoire in mature, adult B cells is thought
to be unrestricted and unbiased, as shown by studies in
peripheral blood, spleen or tonsil B cells.26-29 Furthermore,
adult life, particularly beyond 50 years of age, is associ-
ated with a reduction of VH gene mutation frequencies,
compared to those of cord blood B cells and of younger
adults (aged 29-49 years).30 This indicates a decrease in
the ability to generate and maintain a heterogeneous B-
cell population in older individuals. This may lead to the
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emergence of the more immature B-cell disorders
seen in adults than in children,  in whom the type of
rearrangement is indicative of a more mature B cell
being involved.31

We and others32-35 have demonstrated that VH gene
usage in acute lymphoblastic leukemia (ALL) follows
a pattern that differs from that mathematically pre-
dicted by the normal VH gene repertoire. In ALL, the
pattern reflects the early stage of B-cell differentia-
tion, resulting in an over-usage of the JH-proximal
genes as observed in immature mouse B cells.

Studies have been conducted in a variety of other
B-cell disorders to investigate the relationship
between IgH rearrangement and B-cell malignan-
cies. In multiple myeloma36 despite a VH family usage
largely reflecting the germline complexity, individual
VH genes were reported to be over-represented (VH1-
69, VH3-9, VH3-23 and VH3-30) while others were
totally absent (VH3-49, VH3-53 and VH4-34).

No apparent restriction was detected among 87
B-cell lymphomas (follicular, lymphoplasmacytoid or
large B cell)37 while in prolymphocytic leukemia (PLL)
cells a skewed repertoire is observed with predomi-
nant use of the VH3 family (73%) and VH3-23 (50%).
The frequency of somatic mutations in PLL is high
and indicates a post-germinal center origin of the
PLL cell.38

In CLL over-representation of VH1-69, VH3-23, VH5,
VH6 and VH4-34 (associated with auto-immune
symptoms) has been extensively reported.3,37,39-44 The
IgH repertoire in IgM+ and IgM-CLL populations was
found to deviate statistically from those observed in
CD5+ cells, considered the normal CLL counterpart.

Given the relevance that the identification of
mutated and germline CLL subgroups has recently
acquired we set out to analyze in depth individual VH

gene rearrangements in our cohort of patients.
We report here on the analysis of the IgH gene in

154 B-CLL patients (159 alleles) using polymerase
chain reaction (PCR) and sequencing of rearranged VH

genes. We investigated the mutation status, the posi-
tion of individual mutations (within the CDR or FR
region) and the pattern of VH, JH and DH gene usage
and compared them to those of IgH rearranged alle-
les of normal B cells as described in peripheral blood
B cells. We analyzed the frequency of VH gene usage
as a function of distance along the chromosomal
locus.

Design and Methods

Patients’ materials
The mononuclear cell suspensions from peripheral

blood of 154 CLL patients were used as the source of
DNA or RNA for investigation. The diagnosis of CLL
was based on clinical history, lymphocyte morphol-
ogy and immunophenotypic criteria. Twenty milli-
liters of peripheral blood were diluted 1:1 with ster-

ile Hanks media and the mononuclear layer was sep-
arated using Ficoll-Hypaque gradient centrifugation.
B-lymphocytes were then harvested as previously
described,45 and DNA was prepared from the
mononuclear cell pellet (in 84 of 154 cases) using the
Puregene DNA extraction kit (Gentra Systems, Lich-
field, UK) following the manufacturer’s instructions.
RNA was extracted from CLL cells (in 70 of 154 cas-
es) using Triazol reagent (Invitrogen, Paisley, UK) and
1 µg aliquots were reverse transcribed with M-MLV
reverse transcriptase enzyme (Promega, Southamp-
ton, UK) and an oligo (dT) 15 primer.

Previously published data on the use of VH genes
in peripheral B cells are used as the controls in this
study.26

PCR for VH family assignment
For amplification from DNA, six PCR reactions were

set up for each patient, using one each of six sense
family-specific (VH1-VH6) leader or FR1 primers in
combination with an antisense JH primer,  as previ-
ously described.34,46,47 The VH1 forward primer was
designed to co-amplify also VH7 sequences. The PCR
reactions were performed using the following cycling
conditions; one cycle of denaturing at 94°C for 5
mins followed by 30 cycles of denaturation at 94°C
for 1 min, annealing at 66°C for 1 min and extension
at 72°C for 2 mins with a final extension step at 72°C
for 5 mins. PCR products were then analyzed by gel
electrophoresis on a 1.5% agarose gel and individu-
ally positive reactions selected for further analysis. A
similar approach was used for amplification from
RNA, except that a combination of three antisense
primers derived from constant region sequences was
used.

Cloning and DNA sequencing
Positive PCR products from DNA templates were

purified through GFX columns (Amersham Pharma-
cia Biotech, Buckinghamshire, UK), following the
manufacturer’s recommendations, prior to their
direct sequencing or cloning46 using Bluescript plas-
mid KS+ as a cloning vector (Stratagene Ltd., Cam-
bridge, UK). DNA from recombinant colonies was pre-
pared using the QIAprep Spin Plasmid Kit (Qiagen,
West Sussex, UK) and the relevant DNA fragments
were sequenced using an automated DNA Sequencer
(ABI PRISM 377) both following the manufacturers’
specifications (Applied Biosystems, Warrington, UK).

Sequence analysis
The VH-(D)-JH sequences were submitted to the

ImMunoGeneTics (IMGT),48 and Ig BLAST databases
for analysis (http://www.ncbi.nlm.nih.gov/BLAST/), to
identify the closest match with germline functional
VH, JH and DH segments. Mutations were measured by
comparing the CLL and germline IgH gene at the DNA
and protein levels. However, the assignment of a
patient to the germline or mutated group was final-
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ly based on the DNA changes. The human VH locus,
as published by Matsuda and colleagues,12 was tak-
en to be the main reference for comparison of
sequences, their position and relative distances from
each other and the JH region.

Statistical analysis
Standard statistical tests were carried out using

the statistical package STATA including χ2 tests. To
investigate the relationship between frequency of
each VH gene used and the distance along the locus
from JH, linear and Poisson regression analyses were
carried out for normal and CLL subjects separately
and then compared with results from ALL patients.
The same analyses were performed for the use of D
segments. 

Results

VH gene and mutation analysis
One hundred and fifty-nine alleles from 154 CLL

patients were sequenced and compared to the IMGT
and Ig BLAST databases, which identified the closest
matching functional germline VH, D and JH segment
as well as providing information on the incidence of
IgH mutations (Table 1, see Appendix).

Based on DNA analysis, 102 of the 159 alleles
(64%) were found to carry >2% mutations and were
classified as mutated. The remaining 57 alleles (36%)
showed <2% mutations and were classified as
germline (Table 1, see Appendix). One IgH rearrange-
ment was identified in all patients except five. All
sequences were in frame. 

Mutations were assessed in the FR1, 2 and 3 and
CDR1 and 2 regions. These were more frequent in
the CDR1 and CDR2 than in the FR3 and less frequent
in the FR1 and FR2 regions. Overall CDR regions
accumulated larger numbers of mutations than the
FR regions (data not shown) in keeping with muta-
tions being predominantly antigen driven.

The mutated and germline groups were compared,
when available, for various clinical or biological char-
acteristics. In our cohort of patients we found no dif-
ferences in sex (male to female ratio; 2:1), or age
(median 66.8 years) between the two groups. How-
ever, a difference was noted between the mutated
and germline groups when considering white blood
cell count (median 55 and 75.16, respectively)
although this difference did not reach statistical  sig-
nificance (p=0.094). It is also noteworthy that in the
mutated group the patients predominantly had stage
A disease (32/45, 71%), while in the germline group
stage C disease was most prevalent (7/13, 54%).

VH family usage
We compared the mutated and germline groups to

a previously published normal control data set (Fig-
ures 1A, 2A-D).26 There was little variation in the

overall VH usage profile with a few exceptions (Fig-
ure 1A). As expected, the majority of VH gene
rearrangements involved members of the VH3 family
(77 of 159 clones; 48%), followed by VH1 (40 of 159
clones; 25%) and VH4 (25 of 159 clones; 16%). We
observed that, if VH1-69 (the most frequently used
VH1 gene in its family) was removed, VH1 usage
accounted for 14% (22 alleles) of overall gene usage,
in line with the mathematical prediction12 and pre-
vious observations.49 Only VH family usage which
showed differences from the mathematically expect-
ed frequencies will be discussed below.

VH1 gene usage 
Differences in VH gene usage were almost entirely

restricted to the VH1-69 overusage in the germline
CLL (13 cases; 68%) compared to normal (one case;
6%; p=0.0326) and mutated CLL (five patients; 26%).
The overusage of VH1-69 in the germline group was
statistically significant and consistent with previous
observations.37,41,50

VH3 gene usage
The most commonly used genes in the mutated

groups were VH3-7, VH3-30, and VH3-23 (Figure 2C).
The VH3-23 was used in only one (4%) patient in the
germline group compared to 12 (44%) in the mutat-
ed group and 14 (52%) in the controls (p=0.0415).
There appeared to be significant overusage of both
VH3-48 and VH3-21 among CLL patients compared to
the control group (p=0.0025 and p=0.0267, respec-
tively). The multiple significance tests performed
comparing VH3-48 to the rest of the VH3 family
showed statistically significant differences between
the germline and control groups (p=0.001) and the
germline and mutated groups (p=0.015). Differences
were also observed in the use of VH3-21 between the
germline and the control groups (p=0.0059).

VH4 gene usage
VH4-34 usage was predominant in the mutated

group (9 patients; 64%) while only 3 patients (21%)
in the control group and two patients (14%) in the
germline group used these genes. The overusage in
the mutated group was statistically significant
p=0.0120 (Figure 2D) compared to in the control
group.

DH segment usage 
DH segments were identified in 95% of sequenced

alleles. The largest number of segments identified
were DH3 (52 of 159 clones; 33%), DH2 (31 of 159
clones; 20%) and DH6 (21 of 159 clones; 13%) (Table
1; Figure 1B) The DH3-3-segment was found to be the
most frequently used gene in the DH3 subfamily
(18/52)(p=0.0035) followed by DH 3-22 (15/52). The
DH 3.3-segment showed underusage in the mutated
group (17%) compared to the germline CLL (43%)
(p=0.0008) and normal controls (40%)(p=0.011).

VH gene usage in germline and mutated CLL
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Conversely, DH3-22 showed overusage in the mutat-
ed group (48%) compared to in germline CLL
(7%)(p=0.0502) while its usage was comparable to
that in normal controls (44%). Finally, there appeared
to be a statistically significant (p=0.0089) under-
usage of DH4-11 in the CLL group compared to con-
trols.

JH segment usage
JH4, JH5 and JH6 were greatly used in the  CLL group

(Figure 1C). There was a statistically significant
overusage of JH4 and JH6 (p=0.0017 and p= 0.0004,
respectively) when compared to the rest of the JH

genes used. There was a particularly striking

overusage of JH4 in the mutated CLL patients (53%)
compared to the germline patients (19%) (p=0.0047).

Spatial relationship of VH genes
in the IgH locus

We and other investigators had previously identi-
fied a spatial relationship between the frequency of
individual VH genes used and the JH locus in ALL
patients.16,34 We performed the same linear and Pois-
son regression analyses on the control, mutated and
germline groups of patients (Figure 3A-C). This analy-
sis failed to identify any significant relationship
between gene usage and distance along the JH locus
for the CLL group as a whole. However, when the

Figure 1. VH gene profile in CLL patients. (A)
Comparison of VH gene segment usage profile
between CLL mutated patients (black bars),
germline patients (white bars) and normal
controls (gray bars). Only gene segments
found rearranged in any of the subgroup are
illustrated here, for graphical reasons. (B) DH

segment usage in mutated and germline CLL
patients compared to normal controls. All DH

elements are illustrated. (C) JH usage profile
in mutated and germline CLL compared to nor-
mal controls. All JH elements are illustrated.
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germline CLL group was analyzed separately a neg-
ative relationship between frequency of gene usage
and distance from the JH segments was observed
(p=0.026), particularly when VH1-69 positive cases
were removed from the analysis (Figure 3D). This was
done since the VH1-69 usage is clearly skewed in CLL
patients, as previously reported,41,50,51 most signifi-
cantly in the germline CLL. Similarly to the VH genes,
the frequency of DH usage as a function of distance
along its locus revealed a positive relationship in the
mutated CLL and control groups (p=0.004 and
p=0.006, respectively) due to the high usage of DH3-
22, but not in the germline group, further highlight-
ing differences in IgH gene rearrangements in the
CLL subgroups.

Complementarity determining region size
(CDR3) 

The size of the CDR3 region has been previously
described to reflect the stage of maturity of the B cell
analyzed.30,52 We found that the CDR3 region was
significantly shorter in our cohort of patients, as a
whole, than in the control group (p<0.0001) (Figure
4A). When analyzed separately, however, the CLL
mutated group had significantly shorter CDR3
regions than the germline group (p=0.0035)(Figure
4B). This difference was not due to selection of
germline DH elements since, for instance, DH3-3
(overused in the germline group) and DH3-22 (over
used in the mutated group) are both 31 nucleotides
long. Furthermore, in the germline group rearrange-

ments involving the overused VH1-69 gene were
associated with a longer CDR3 region (average 37.9
bp) than those of the VH1-69 gene used in the CLL
mutated group (25.4 bp) and this difference was sta-
tistically significant (p=0.0332).

We also examined CDR3 length in association with
VH gene usage. We found that the average CDR3
length in VH4 and VH1 expressing cells was  identical
(30.2 bp) but we confirm that it is shortest in VH3
expressing cells (26.9 bp), as previously described.

These data are in keeping with the more immature
nature of the VH gene rearrangements occurring in
the germline CLL patients than in the mutated CLL
patients.

Discussion

The results of this study show that, when the much
overused VH 1-69 gene is excluded, there is a signif-
icant negative relationship between VH usage and
distance from the JH locus (p=0.026) in the group of
patients with germline IgH genes. This is reflected in
the linear regression analysis giving a plot (Figure 3D)
similar to that seen in ALL patients and in immature
normal B cells.16,17,27,49,53-56 In B-precursor ALL, VH

rearrangement progresses from JH-proximal VH genes
to distal genes via VH-VH replacement as observed in
oligoclonal B lineage ALL cases57 or normal B cells58

and in agreement with observations in the normal
repertoire in human mice and rabbit.17,22,59–61 In sup-
port of this finding, the size of CDR3 region differs
between the two groups of patients. CDR3 length is

Figure 2. Individual VH gene family members usage. A) VH1 family; B) VH2 family; C) VH3 family; D) VH4-7 families.
Comparison of normal controls (gray bars) mutated (black bars) and germline (white bars) individual VH gene fam-
ilies.
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known to vary according to age and hypermutation
status of the VH gene. The length of the CDR3 region
increases continuously during fetal life until birth in
mice and humans. This increase does not continue
into adult life. CDR3s of old people are the same size
as those of young adults.62,63 However, mutation sta-
tus has been shown to influence CDR3 length. Mutat-
ed antibodies have shorter CDR3 regions than non-
mutated antibodies. The length of VH heavy chains in
mice and humans decreases as the B cell matures.64

In our cohort of patients the CDR3 regions were
found to be longer in germline CLL than in mutated.

This was also observed in the CDR3 regions of
germline VH1-69 rearrangements but not their
mutated counterparts (p=0.0332). These data sup-
port the concept that the germline CLL cell derives
from a more immature B cell than the B cell of
mutated CLL. Our study also reveals a significant
underusage of various genes in the unmutated group
compared to the mutated CLL group and normal sub-
jects (VH3-30, VH3-7, VH3-23 and VH4-34) with VH3-
48 and VH3-21 significantly overused in CLL as a
whole compared to normal. We found overrepresen-

Figure 3. VH gene usage and distance from JH seg-
ments. Interaction effect i.e. the relationship of
frequency of gene usage to distance (Kb) along
the locus in (A) control group: PB from published
data;3 (B) mutated; (C) germline; (D) germline
patients with VH1-69 removed; and (E) acute lym-
phoblastic leukemia patients. Distance from JH is
measured in kilobases.
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tation of VH1-69 usage (p=0.0326) in the germline
group as previously described by some3,41,65 but not all
investigators.66 We could, however, confirm the asso-
ciation of VH1-69 with the use of JH6, DH3-3, DH3-10
or DH2-2 genes as reported by others.62,67

It is noteworthy that VH4-34 together with VH3-07
had previously been described as being the most fre-
quently encountered gene in CLL patients, in addition
to VH1-69. Our study fails to corroborate these find-
ings.3 VH4-34 was significantly overused in the
mutated group as observed by Kraj et al.66 in normal
adult human peripheral blood B cells. We and oth-
ers,2,3,5,68 failed to confirm the overusage of VH3-21 in
mutated CLL patients,44 although this segment was
highly used in CLL patients, as a whole.

The mutation frequency has been found to vary
according to which VH family is utilized. For example
77% of all VH3 genes expressed in our cohort of
patients were mutated, as opposed to only 38% of all
VH1 genes. This is in agreement with another study3

although the mechanism for this imbalance remains
unclear. In the VH1 family the lack of mutations is
clearly skewed by the heavy usage of the VH1-69 in
the germline group, as described above.

In our cohort of patients we found no differences
in the male to female ratio in the mutated and unmu-
tated groups. This differs from the findings of others4,7

who report a much higher proportion of males in the
unmutated CLL group. They suggest that gender may
indirectly influence B-cell maturation, differentiation
and clinical outcome.

This study highlights differences in the VDJ profile

in CLL patients with mutated and unmutated IgH
rearrangements, consistent with the suggestion that
CLL comprises two subgroups. Our study substantial-
ly expands on data previously presented on smaller
cohorts of patients.3 These differences underlie the
fact that leukemic cells in CLL patients, particularly
in the germline group, may derive from a pool of B
cells that have been unable to follow or complete the
normal pathway of B-cell differentiation. On the oth-
er hand, the better outcome of the group with mutat-
ed IgH rearrangements could be due to somatic
mutations which can trigger a cytotoxic T-cell
response, as recently demonstrated by some human
and mouse models.69-72 This may result in the
leukemic cells being killed unless an additional event
(such as a deletion on chromosome 6q21, 11q23,
13q14 or 17p13) provides a growth advantage. This
mechanism underlies novel therapeutic approaches
for the treatment of lymphomas73,74 and myelomas.75

Finally, a link between germline sequences and
inability to generate somatic mutations due to
defects in the DNA repair machinery has been pro-
posed. The lack of somatic mutations would then be
just a phenotypic marker of some other event with
biological consequences on clinical outcome as
demonstrated in other disorders carrying DNA repair
genes defects.76,77 In this scenario IgH gene status
may have no intrinsic pathogenetic role but its muta-
tion versus germline status would be a marker for
the presence or absence of another abnormality with
major clinical consequences.

Figure 4. CDR3 size. (A) CDR3 size in bp in CLL and controls; (B) CDR3 size in bp in germline and mutated B-CLL
patients.
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Table 1. Properties of sequenced VDJ rearrangements from 159 B-CLL clones. 

Pat. no. Mutated/ VH family VH Distance of VH JH DH CDR3
Germline gene from JH (kb) segment segment (bp)

26 M VH6 V6-1 74.31 JH5 2.15 18
Ps35 M VH6 V6-1 74.31 JH4 6.25 19
AB G VH1 V1-2 121.36 JH4 3.10 72
K M VH1 V1-2 121.36 JH4 3.10 28
20 M VH1 V1-2 121.36 JH4 2.21 32
23 G VH1 V1-2 121.36 JH3 4.17 32
27 G VH1 V1-2 121.36 JH4 5.24 41
39 G VH1 V1-2 121.36 JH5 4.17 30
N64 G VH1 V1-2 121.36 JH4 6.19 17
Ps30 G VH1 V1-2 121.36 JH4 6.19 25
Ps37 M VH1 V1-2 121.36 JH5 2.8 33
Ps52 G VH1 V1-2 121.36 JH6 3.16 16
7 G VH1 V1-3 139.94 JH5 2.2 21
33 M VH1 V1-3 139.94 JH5 2.2in 33
Ps74 M VH1 V1-3 139.94 JH4 3.22 18
LG M VH4 V4-4 146.79 JH5 2.15 31
RB G VH4 V4-4 146.79 JH4 6.13 13
Ps6 M VH4 V4-4 146.79 JH4 2.21 15
41 M VH2 V2-5 162.83 JH4 7.27 26
L67 G VH2 V2-5 162.83 JH4 6.19 37
Ps13 M VH2 V2-5 162.83 JH4 5.24 34
Ps25 G VH2 V2-5 162.83 JH5 3.3 37
Ps26 M VH2 V2-5 162.83 JH6 2.21 54
Ps44 G VH2 V2-5 162.83 JH6 5.18 25
Ps59 M VH2 V2-5 162.83 JH4 1.26 32
Ps66 M VH2 V2-5 162.83 JH4 4.17 24
RS M VH3 V3-7 187.11 JH4 2.21 23
Ze M VH3 V3-7 187.11 JH4 2.8 22
16 M VH3 V3-7 187.11 JH5 2.15 31
35 M VH3 V3-7 187.11 JH4 4.23in 26
47 M VH3 V3-7 187.11 JH5 2.2 29
49 M VH3 V3-7 187.11 JH5 1.26 27
I6 M VH3 V3-7 187.11 JH4 noDH 8
Ps69 G VH3 V3-7 187.11 JH5 3.3 36
Ps72 G VH1 V1-8 207.77 JH6 1.26 28
AB G VH3 V3-11 241.93 JH4 6.13 18
MW M VH3 V3-11 241.93 JH4 6.6 33
BC M VH3 V3-15 279.03 JH4 2.21 22
Ps10 M VH3 V3-15 279.03 JH4 2.15 29
Ps31 M VH3 V3-15 279.03 JH4 3.22 25
Ps60 M VH3 V3-15 279.03 JH4 4.23 25
Ps24 M VH1 V1-18 310.25 JH4 noDH 2
Ps79 G VH1 V1-18 310.25 JH4 6.13in 18
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21 G VH3 V3-21 360.38 JH4 3.3 12
25 G VH3 V3-21 360.38 JH4 3.3 55
I2 M VH3 V3-21 360.38 JH6 3.21 9
Ps7 G VH3 V3-21 360.38 JH6 3.22 43
Ps8 G VH3 V3-21 360.38 JH6 5 5
Ps33 M VH3 V3-21 360.38 JH6 noDH 7
Ps49 M VH3 V3-21 360.38 JH6 3.3 37
Ps50 M VH3 V3-21 360.38 JH4 4.17 37
Ps78 M VH3 V3-21 360.38 JH4 3.10 38
12 M VH3 V3-23 393.91 JH4 5.18in 12
13 M VH3 V3-23 393.91 JH4 5.18in 12
19 M VH3 V3-23 393.91 JH4 4.23in 14
32 G VH3 V3-23 393.91 JH5 2.21 34
I3 M VH3 V3-23 393.91 JH4 7.27 28
46 M VH3 V3-23 393.91 JH1 3.22 41
50 M VH3 V3-23 393.91 JH1 3.22 38
52 M VH3 V3-23 393.91 JH4 7.27 13
Ps1 M VH3 V3-23 393.91 JH4 3.22 21
Ps5 M VH3 V3-23 393.91 JH3 1.26 25
Ps29 M VH3 V3-23 393.91 JH6 3.22 32
Ps47 M VH3 V3-23 393.91 JH4 2.2 36
Ps73 M VH3 V3-23 393.91 JH6 5.18 30
LD M VH1 V1-24 401.83 JH5 3.10 24
HD M VH3 V3-30 459.71 JH4 5.12 21
EM G VH3 V3-30 459.71 JH6 3.3 31
11 M VH3 V3-30 459.71 JH4 2.8 31
30 M VH3 V3-30 459.71 JH2 1.14in 16
38 M VH3 V3-30 459.71 JH4 4.23 31
I1 M VH3 V3-30 459.71 JH5 4.17 58
51 M VH3 V3-30 459.71 JH4 5.12 40
L66 M VH3 V3-30 459.71 JH4 4.23 30
Ps16 G VH3 V3-30 459.71 JH3 5.24 29
Ps28 M VH3 V3-30 459.71 JH3 1.2 9
Ps42 G VH3 V3-30 459.71 JH6 5.18 29
Ps53 M VH3 V3-30 459.71 JH3 3.9 39
Ps63 M VH3 V3-30 459.71 JH4 6.13 61
Ps71 M VH3 V3-30 459.71 JH3 2.8 54
PO M VH4 V4-31 473.9 JH5 3.10 48
Ps9 G VH4 V4-31 473.9 JH5 2.15 46
Ps51 M VH4 V4-30.4 467.1 JH4 6.19 18
10 M VH3 V3-33 484.42 JH6 noDH
54 M VH3 V3-33 484.42 JH4 2.8 26
N58 M VH3 V3-33 484.42 JH4 2.15 27
N63 M VH3 V3-33 484.42 JH4 6.19 31
Ps38 G VH3 V3-33 484.42 JH6 5.18 29
Sh G VH4 V4-34 498.28 JH4 3.22 43
JB M VH4 V4-34 498.28 JH6 2.21 28
17 M VH4 V4-34 498.28 JH4 2.15in 54
Ps17 M VH4 V4-34 498.28 JH5 3.22 24
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Ps22 G VH4 V4-34 498.28 JH4 5.24 40
Ps48 M VH4 V4-34 498.28 JH4 4.17 33
Ps57 M VH4 V4-34 498.28 JH4 3.22in 8
Ps61 M VH4 V4-34 498.28 JH5 6.19 18
Ps62 M VH4 V4-34 498.28 JH3 2.15 34
Ps64 M VH4 V4-34 498.28 JH4 6.25 33
Ps65 M VH4 V4-34 498.28 JH6 2.8 29
L65 M VH4 V4-39 546.31 JH5 noDH 15
Ps12 G VH4 V4-39 546.31 JH3 3.3 36
Ps23 M VH4 V4-39 546.31 JH4 6.19 31
Ps43 G VH4 V4-39 546.31 JH4 3.10 20
Ps54 G VH4 V4-39 546.31 JH4 2.2 41
2 G VH4 V3-43 594.9 JH4 5.18 27
Th M VH1 V1-46 635.74 JH4 2.15 39
Ps36 G VH1 V1-46 635.74 JH5 noDH 19
Ps75 G VH1 V1-46 635.74 JH6 5.18 18
MR G VH3 V3-47 643.21 JH6 1.26 40
LM M VH3 V3-48 662.52 JH6 6
I5 M VH3 V3-48 662.52 JH4 3.10 17
Ps2 G VH3 V3-48 662.52 JH5 1.26 27
Ps32 G VH3 V3-48 662.52 JH5 2.8 55
Ps34 G VH3 V3-48 662.52 JH5 1.14in 32
Ps39 G VH3 V3-48 662.52 JH6 3.3 28
Ps46 M VH3 V3-48 662.52 JH4 1.26 32
Ps55 G VH3 V3-48 662.52 JH6 2.15 30
Ps58 M VH3 V3-48 662.52 JH4 3.1 38
6 M VH3 V3-49 681.65 JH4 2.21 34
Ps56 M VH3 V3-49 681.65 JH6 5.12 23
GS M VH5 V5-51 703.42 JH4 3.10 31
1 M VH5 V5-51 703.42 JH4 8.2 36
9 G VH5 V5-51 703.42 JH4 6.19 27
N59 M VH5 V5-51 703.42 JH4 2.8 32
RB M VH5 V5-51 703.42 JH4 3.16 26
LD M VH3 V3-53 717.38 JH5 3.3
I7 M VH3 V3-53 717.38 JH5 3.9in 13
Ps77 M VH3 V3-53 717.38 JH6 3.10in 24
CT M VH1 V1-58 747.06 JH4 1.26 20
HD M VH1 V1-58 747.06 JH4 1.26
Ps21 G VH4 V4-59 751.94 JH4 3.16 35
Ps11 M VH4 V4-61 763.82 JH4 3.22in 32
Ps27 G VH4 V4-61 763.82 JH6 3.3 31
MR G VH1 V1-69 838.62 JH5 4.11 40
RM G VH1 V1-69 838.62 JH3 3.16 49
3 G VH1 V1-69 838.62 JH4 6.19 16
14 M VH1 V1-69 838.62 JH4 6.25 22
15 G VH1 V1-69 838.62 JH4 6.19 22
24 G VH1 V1-69 838.62 JH6 3.3 49
40 G VH1 V1-69 838.62 JH4 7.27 32
I4 G VH1 V1-69 838.62
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What is already known on this topic
Recent studies suggest that there are two types of

B–cell chronic lymphocytic leukemia according to
the mutational pattern of IgVH genes: a) one arises
from relatively less differentiated (immunologically
naive) B-cells with unmutated heavy chain genes
and has a poor prognosis; b) the other evolves from
more differentiated B cells (memory B cells) with
somatically mutated heavy chain genes and has a
good prognosis.

What this study adds
This study highlights differences in the VDJ profile

in mutated and germline CLL, consistent with the
suggestion that CLL does indeed comprise two sub-
groups.




