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Phosphorylation-deficient G-protein-biased μ-
opioid receptors improve analgesia and diminish
tolerance but worsen opioid side effects
A. Kliewer1, F. Schmiedel1, S. Sianati2, A. Bailey3, J.T. Bateman4, E.S. Levitt4, J.T. Williams5, M.J. Christie 2 &

S. Schulz 1

Opioid analgesics are powerful pain relievers; however, over time, pain control diminishes as

analgesic tolerance develops. The molecular mechanisms initiating tolerance have remained

unresolved to date. We have previously shown that desensitization of the μ-opioid receptor

and interaction with β-arrestins is controlled by carboxyl-terminal phosphorylation. Here we

created knockin mice with a series of serine- and threonine-to-alanine mutations that render

the receptor increasingly unable to recruit β-arrestins. Desensitization is inhibited in locus

coeruleus neurons of mutant mice. Opioid-induced analgesia is strongly enhanced and

analgesic tolerance is greatly diminished. Surprisingly, respiratory depression, constipation,

and opioid withdrawal signs are unchanged or exacerbated, indicating that β-arrestin
recruitment does not contribute to the severity of opioid side effects and, hence, predicting

that G-protein-biased µ-agonists are still likely to elicit severe adverse effects. In conclusion,

our findings identify carboxyl-terminal multisite phosphorylation as key step that drives acute

μ-opioid receptor desensitization and long-term tolerance.
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Opioid analgesics continue to be the most effective drugs
for managing severe pain, but their clinical utility is
limited by life-threatening respiratory depression, and the

development of analgesic tolerance and addiction after repeated
administration1. These adverse effects underlie the alarming
increase in morbidity and mortality associated with the recent
escalation of abuse of prescription and potent illicit opioids.
Potential mechanisms of tolerance development that drive dose
escalation include agonist-induced desensitization of the µ-opioid
receptor (MOP), driven by agonist-induced phosphorylation of S/
T residues in the receptor carboxyl-terminal with subsequent
recruitment of regulatory proteins including β-arrestins1.
Agonist-induced desensitization and internalization of MOP
occurs within seconds to minutes, whereas analgesic tolerance
develops over days to weeks, because during chronic opioid
exposure a number of adaptive biochemical processes occur,
including upregulation of adenylyl cyclases, that may also criti-
cally support opioid tolerance1–3. However, the individual con-
tributions of MOP desensitization and cellular adaptation, and
the molecular mechanisms initiating analgesic tolerance remain
unresolved.

MOP desensitization is thought to be initiated by the phos-
phorylation of S and T residues on the cytoplasmic loops and
carboxyl-terminal tail following receptor activation. The
carboxyl-terminal tail of MOP contains 11S/T sites. Two-specific
cassettes of MOP residues that undergo rapid agonist-induced
phosphorylation, 354TSST357 and 370TREHPSTANT379, have
been identified in cultured cells in vitro and in mouse brain
in vivo using phosphosite-specific antibodies and quantitative
mass spectrometry4–9. Within the 354TSST357 cassette, S356 and
T357 are phosphorylated in an agonist-dependent manner4,9,10,
however, complete alanine mutation of the TSST motif does not
affect desensitization or internalization of MOP in HEK293
cells7,9. Within the 370TREHPSTANT379 cassette, S375 in the
middle of this sequence is the primary site of phosphorylation
in vitro in HEK293 and AtT20 cells6,8 as well as in mouse brain
in vivo11. Agonists having low-efficacy for phosphorylation and
β-arrestin recruitment such as morphine induce a selective
phosphorylation at S375 that does not facilitate receptor inter-
nalization either in HEK293 cells6,8 or mouse brain11. After
overexpression of GRK2 or GRK3 in cultured cells, morphine is
able to promote multisite phosphorylation and internalization of
MOP8,12. By contrast, high-efficacy opioids such as DAMGO and
fentanyl not only induce phosphorylation of S375 but also drive
higher-order phosphorylation on the flanking residues T370,
T376 and T379 in a hierarchical phosphorylation cascade that
specifically requires G-protein-coupled receptor kinases (GRK) 2
and 3 in HEK293 cells12 and in mouse brain11. This multisite
phosphorylation in turn promotes both β-arrestin recruitment
and robust receptor internalization in HEK293 cells6,13. In fact,
mutation studies have revealed that mutations comprising all four
S/T-residues within the 370TREHPSTANT379 cluster are neces-
sary and sufficient to abolish β-arrestin recruitment and receptor
internalization in HEK293 cells6,9,13. By contrast, the same
mutations do not prevent rapid desensitization of MOP-coupling
to G-protein-coupled inwardly rectifying potassium (GIRK)
channels in the AtT20 cell line9. For complete inhibition of MOP
desensitization induced by agonists having low efficacy for
phosphorylation and β-arrestin recruitment, mutation of all 11
carboxyl-terminal S/T-residues to A (11S/T-A) is required9.

To study the contribution of MOP phosphorylation for toler-
ance and analgesia in vivo, we created suitable mutant mouse
models. Our results suggest that carboxy-terminal MOP phos-
phorylation is critically required for analgesic tolerance devel-
opment in vivo. Phosphorylation-deficient MOP confers
enhanced opioid analgesia but also increased opioid-related side

effects in the absence of arrestin recruitment, suggesting that G-
protein-biased opioid agonists may still possess abuse liability.

Results
Creation of knock-in mouse lines. To assess the contribution of
phosphorylation to MOP signalling in vivo, we created novel
knock-in mice with 11S/T-A mutations (Oprm1tm3.1Shlz,
MGI:6117673, 11S/T-A). Ten of the 11S/T sites are encoded by
exon 4. T394 is encoded by exon 5. Exons 4 and 5 are separated
by >19 kb of intronic sequence; therefore, simultaneous muta-
genesis of all 11S/T sites required knock-in of a fusion of the two
exons. To produce a graded deficit in S/T phosphorylation and β-
arrestin recruitment, we created another knock-in mouse line
(Oprm1tm2.1Shlz, MGI:6117668, 10S/T-A) with mutations in all
10 exon 4-encoded carboxyl-terminal S/T-residues except T394,
and a third line with a single mutation of S375 to A (S375A)
(Oprm1tm1Shlz, MGI:5000465)14 (Fig. 1a). All three transgenic
lines are viable without gross phenotypic abnormalities. Auto-
radiographic binding assays revealed that MOP density in brains
from all three knock-in lines is not significantly different from
that observed in brains from C57BL/6 wild-type animals (WT)
(Fig. 1b, Supplementary Fig. 1). Furthermore no differences are
found in ß-arrestin-1 and GRK2 protein levels from brain lysates
(Supplementary Fig. 2). In addition, MOP coupling to GIRK
channels in locus coeruleus and respiratory-related Kölliker-Fuse
(KF) neurons is not significantly different between WT and 10S/
T-A knock-in mice (Supplementary Fig. 3).

Lack of acute MOP desensitization. First, we assessed the rapid
desensitization of MOP coupling to GIRK channels in locus
coeruleus neurons from horizontal brain sections of mice from all
four genotypes. In all experiments, outward currents peak and
decline during the 10 min application period of a saturating
concentration of the endogenous opioid peptide [Met5]enke-
phaline (ME) (Fig. 1c). The decline from the peak values varies
with genotype. In slices from WT and S375A animals, currents
decrease to 50–60% of peak values, whereas the decline is much
smaller in slices from 10S/T-A and 11S/T-A animals (Fig. 1c, d).
Following washout of ME, effects of 1 µM ME are reduced by
~50% in slices from WT and S375A animals, but remain almost
unchanged in 10S/T-A and 11S/T-A animals (Fig. 1c, d) com-
pared to controls. Application of ME (1 µM) at various times
following washout of the saturating ME concentration establishes
that recovery from the smaller desensitization in slices from 10S/
T-A and 11S/T-A animals is rapid, occurring within 5–10 min
(Fig. 1c, d). Thus, mutation of S/T sites on the carboxyl-terminus
of MOP results in a profound reduction, but not elimination, of
two measures of acute desensitization. The small residual
desensitization in 10S/T-A and 11S/T-A neurons resembles the
heterologous desensitization that has been reported between
MOP and the alpha-2-adrenoceptor upon activation of the same
potassium conductance15. The observation that 11S/T-A and 10S/
T-A mice have very similar phenotypes indicates that phos-
phorylation of T394 is not involved in rapid MOP desensitization.

Enhanced opioid analgesia. We then compared acute anti-
nociceptive responses in S375A, 10S/T-A, 11S/T-A and WT mice
in the hot-plate test. Basal pain responses do not differ between
genotypes (Supplementary Fig. 4). Mice were given repeated
cumulative doses of fentanyl or morphine to generate dose-
response curves. Homozygous 10S/T-A and 11S/T-A animals
show greater antinociception than their WT littermates (Fig. 2a).
Such robust responses to fentanyl are absent in WT littermates.
Interestingly, heterozygous 10S/T-A mice also exhibit sig-
nificantly greater antinociception than WT mice, suggesting a
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dominant phenotype of the mutant receptor (Supplementary
Fig. 5). In 10S/T-A and 11S/T-A mice, the maximum possible
analgesic effect (30-s cutoff) is reached after administration of
0.2 mg/kg fentanyl (Fig. 2a). In contrast, in WT mice, adminis-
tration of 0.3 mg/kg fentanyl is required to achieve the maximum
possible effect (Fig. 2a). The 50% effective dose (ED50) values
determined in the hot-plate test strongly depend on the

temperature, which was set at 56 °C, and cutoff for analgesia
testing, which was set at 30 s. Under these conditions, the ED50

value for fentanyl is twofold lower in 10S/T-A and 11S/T-A mice
than in WT mice, indicating that the analgesic potency of fen-
tanyl is increased when carboxyl-terminal phosphorylation and
β-arrestin recruitment are abolished (Table 1, Fig. 2a). The
duration of action of fentanyl is also prolonged (Fig. 2c,
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Fig. 1 Inhibition of desensitization in phosphorylation-deficient MOP knock-in mice. a Schematic representation of the carboxy-terminal tail of
phosphorylation-deficient MOP constructs compared to WT MOP, showing potential phosphorylation sites (black: confirmed agonist-dependent site; dark
grey: confirmed constitutive site; light grey: possible site). b [3H]DAMGO binding to MOP as quantified in autoradiograms of coronal brain sections from
WT, S375A, 10S/T-A and 11S/T-A mice at the level of the thalamus (bregma−1.46) (n= 4–6). The colour bar represents a pseudo-colour interpretation of
black and white film images in fmol mg−1 tissue. c Representative recordings showing acute desensitization and recovery from desensitization in locus
coeruleus neurons in WT, S375A, 10S/T-A and 11S/T-A knock-in mice. [Met5]enkephalin (ME, 1 µM) was applied before and 5, 10 and 20min after
desensitization with a saturating concentration of ME (30 µM, 10min). d Left panel: decline from peak current induced by 30 µM ME over 10min; middle:
decrease in current induced by 1 µM ME was calculated as the ratio of the current after and before desensitization (I-post/I-pre); right: recovery from
desensitization measured 5, 10 and 20min following desensitization. Data are the means ± s.e.m.; * indicates statistically significant differences compared
to WT; one-way (d, left and middle panel) and two-way (d, right panel) ANOVA with Dunnett’s post hoc test
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Supplementary Fig. 6). Furthermore 10S/T-A and 11S/T-A mice
also display significantly greater and prolonged duration of
antinociceptive responses to acute administration of morphine
compared to WT mice (Table 1, Fig. 2b, d). Interestingly, S375A
mice display greater antinociception than WT after fentanyl (but
only during the first 30 min) but not after morphine (Table 1,
Fig. 2). Significantly enhanced morphine analgesia in S375A mice

was only observed in time course studies at 60 min (Fig. 2d).
Overall, these observations suggest that in the absence of rapid
MOP desensitization, 10S/T-A and 11S/T-A receptors continue
to signal for extended periods leading to increased sensitivity to
both fentanyl and morphine. Thus, carboxyl-terminal multisite
phosphorylation is a key determinant of MOP responsiveness
in vivo.
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Fig. 2 Enhanced opioid-mediated analgesia in phosphorylation-deficient MOP knock-in mice. a–d Acute antinociceptive response measured in the mouse
hot-plate test 15 min (fentanyl) or 30min (morphine) after drug administration. Nociceptive latencies were defined by paw withdrawal and are reported as
percent maximum possible effect (% MPE) with a 30-s cutoff. a, b Cumulative dose-response curves in S375A, 10S/T-A and 11S/T-A compared to those in
WT mice (n= 9–12) after a, fentanyl (Fgenotype(3, 44)= 62.32, P < 0.0001; Fdose(4, 176)= 1490, P < 0.0001) or b, morphine (Fgenotype(3, 39)= 95.24, P <
0.0001; Fdose(3, 117)= 1363, P < 0.0001). c, d Analgesic time course of acutely administered fentanyl c, (Fgenotype(3, 21)= 71.28, P < 0.0001; Ftime(6, 126)=
463.9, P < 0.0001) or morphine d, (Fgenotype(3, 21)= 66.14, P < 0.0001; Ftime(6, 126)= 336.1, P < 0.0001) was repeated after fentanyl and morphine
administration, respectively, for the indicated times (n= 6–7). Data are the means ± s.e.m. * indicates statistically significant differences compared to WT;
two-way ANOVA with Bonferroni post hoc test

Table 1 Analgesic potency before and after chronic treatment

Fentanyl (mg kg-1) Morphine (mg kg-1)

Day −1 Day 7 Fold shift Day −1 Day 7 Fold shift

WT 0.21 ± 0.005 2.35 ± 0.234$ 11.11 ± 1.108 26.64 ± 1.498 65.11 ± 3.587$ 2.49 ± 0.126
S375A 0.15 ± 0.008* 0.22 ± 0.009 1.53 ± 0.080# 25.09 ± 1.477 67.27 ± 5.690$ 2.75 ± 0.257
10S/T-A 0.12 ± 0.004* 0.16 ± 0.009 1.35 ± 0.066# 12.72 ± 0.222* 22.01 ± 1.093$ 1.74 ± 0.094#

11S/T-A 0.12 ± 0.006* 0.21 ± 0.009 1.80 ± 0.121# 11.76 ± 0.277* 22.83 ± 1.243$ 1.95 ± 0.108#

Summary of pED50 values (mg kg−1) for hot-plate cumulative analgesic dose-response curves before (day –1) and after (day 7) chronic treatment with osmotic pumps delivering fentanyl (2 mg/kg/day)
or morphine (17mg/kg/day) (n= 9–12). Data are the means ± s.e.m.
* indicates statistically significant differences in the comparison of pED50 values on day −1 to those values in WT (for fentanyl: F(3, 44)= 56.47, P < 0.0001; for morphine: F(3, 39)= 52.16, P < 0.0001)
$ indicates statistically significant differences in the comparison of pED50 values between days −1 and 7 (fentanyl: F(7, 88)= 86.14, P < 0.0001; morphine: F(7, 78)= 75.56, P < 0.0001)
# indicates statistically significant differences in the comparison of the fold shift to that in WT (fentanyl: F(3, 44)= 72.97, P < 0.0001; morphine: F(3, 39)= 9.103, P= 0.0001). One-way ANOVA with
Bonferroni post hoc test
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Exacerbated opioid side effects. Respiratory depression and
constipation are serious dose-limiting side effects of classical
opioids. Previous genetic studies with β-arrestin-2 knockout mice
and suggestions from some studies of biased agonists16–20 indi-
cate that MOP signalling through the β-arrestin pathway may
contribute to these potentially lethal side effects, whereas MOP
signalling via G proteins is thought to confer analgesia. However,
there is no direct evidence that the severity of these adverse effects
involves recruitment of the β-arrestin pathway. Because recruit-
ment of β-arrestin proteins and MOP internalization are reduced
in S375A MOP in vitro5,8,13 and abolished in 10S/T-A and 11S/T-
A mutants6,9,13, we anticipated that total phosphorylation-
deficient mice would experience significantly reduced opioid
side effects. To compare the side effects across genotypes, we
administered nearly equianalgesic doses of fentanyl or morphine
and monitored respiration frequency, defecation and locomotor
activity over time. Under these conditions, both fentanyl and
morphine induce profound respiratory depression, constipation
and hyperlocomotion and in all genotypes (Fig. 3, Supplementary
Fig. 7a). The effects observed are almost indistinguishable
between genotypes (Fig. 3, Supplementary Fig. 7a, 8). We then
determined respiratory depression and constipation over a broad
dose range of fentanyl or morphine and calculated ED50 values
(Supplementary Fig. 7b, c, Supplementary Table 1). Notably, we
observed that 10S/T-A and 11S/T-A mice exhibit significantly
greater respiratory depression than WT mice. When we plotted
the ED50 values for morphine analgesia in WT, S375A, 10S/T-A
and 11S/T-A mice against their respective ED50 values for
respiratory depression and constipation we found highly sig-
nificant correlations (Fig. 4, Supplementary Table 1), suggesting
that both opioid effects cannot be uncoupled. KF neurons are
known to contribute to opioid-induced respiratory depres-
sion21,22. However, MOP-mediated GIRK currents in KF neurons
from 10S/T-A mice are similar to those in WT mice (Supple-
mentary Fig. 3). Taken together, our findings suggest that the
sustained G-protein signalling observed in total phosphorylation-
deficient MOP knock-in mice leads to enhanced analgesia and to
a proportional increase in opioid side effects that does not sup-
port a role for β-arrestin signalling in severity of respiratory
depression or constipation. Conditioned place preference was also
assessed after fentanyl and morphine treatment. Both WT and
11S/T-A mice clearly developed conditioned place preference
(Supplementary Fig. 8a, b). However, there was no significant
difference between genotypes (Supplementary Fig. 8c, d).

Loss-of-analgesic tolerance. In the clinical setting, analgesic
tolerance usually develops with continued use of moderate levels
of a drug. Given that the duration of action of fentanyl or mor-
phine is limited to 3 or 6 h, respectively, in mice (Fig. 2c, d),
chronic-treatment regimens with once- or twice-daily injections
result in extended drug-free intervals. In the absence of the drug,
dephosphorylation of MOP occurs within minutes12. To prevent
MOP dephosphorylation during opioid-free intervals, we used
subcutaneously implanted osmotic pumps to deliver opioids at a
constant rate. This approach is a powerful means of assessing
both tolerance and dependence in rodents23. Cumulative dose-
response curves were obtained on the day before pump implan-
tation (day −1) and 7 days after pump implantation (day 7).
Tolerance was tested after a week of constant infusion of fentanyl
or morphine, to eliminate potential pharmacokinetic complica-
tions. Withdrawal was precipitated with naloxone on day 8
(Fig. 5a). After chronic fentanyl treatment, WT mice show a
marked rightward shift (11-fold) in potency (Table 1, Fig. 5b).
Under identical conditions, S375A, 10S/T-A and 11S/T-A mice
do not exhibit a significant shift in their sensitivity to fentanyl,

suggesting that tolerance to fentanyl is abrogated in these animals
(Table 1, Fig. 5b). With chronic morphine treatment, mice of all
four genotypes show a marked decline in response over 7 days of
uninterrupted exposure (Table 1, Fig. 5c). However, the rightward
potency shift observed in 10S/T-A and 11S/T-A mice is sig-
nificantly less pronounced than that observed in WT and S375A
mice (Table 1, Fig. 5c). There are no significant changes in MOP
density levels across genotypes following chronic fentanyl or
morphine treatment (Supplementary Fig. 1). These results
demonstrate that tolerance to both fentanyl and morphine is
profoundly blunted in 10S/T-A and 11S/T-A mice, although a
modest level of tolerance to morphine remains in total
phosphorylation-deficient MOP knock-in mice.

Retained signs of physical dependence. Prolonged exposure to
opioids leads to the development of physical dependence on the
drug. As tolerance is strongly diminished in phosphorylation-
deficient mice, we investigated whether they would still become
dependent by assessing withdrawal responses after administration
of the opioid antagonist naloxone on day 8 after pump implan-
tation. Notably, although these mouse lines differ markedly in
their development of tolerance, they still display typical signs of
withdrawal including jumping, wet-dog shakes and grooming.
Quantitative analysis of these behaviours using a global with-
drawal score24 did not reveal significant differences between the
genotypes (Fig. 5b, c, Supplementary Fig. 9). However, S375A,
10S/T-A and 11S/T-A mice display significantly greater
withdrawal-associated weight loss, which is not included in the
calculation of the global withdrawal score24 (Fig. 5b, c). Although
total phosphorylation-deficient mice do not become tolerant to
opioids, they clearly become dependent on them.

Discussion
By constructing mice exclusively expressing MOP receptors with
carboxyl-terminal regions that progressively evade phosphoryla-
tion by GRKs6,12 and other serine/threonine kinases (10S/T-A
and 11S/T-A)25, we have established here that carboxyl-terminal
multisite phosphorylation is the proximal molecular event driving
MOP desensitization and the development of long-term opioid
analgesic tolerance, but not side effects or withdrawal. Although
previous studies in transfected HEK293 and AtT20 cells have
implicated phosphorylation by GRK2 and GRK3 and binding of
the scaffolding proteins β-arrestin-1 and β-arrestin-2 in MOP
desensitization6,7,9,13,26, until now the contribution of carboxyl-
terminal S/T phosphorylation to the physiological regulation of
MOP has not been directly tested in vivo.

MOP desensitization in LC neurons by ME (which stimulates
MOP phosphorylation and β-arrestin-2 recruitment with a
similarly high efficacy to fentanyl) is not significantly affected by
the S375A mutation, which had an intermediate effect on
enhancing the magnitude and duration of analgesia induced by
fentanyl and almost no effect on the response to morphine
in vivo. It is widely established that the S375A mutation reduces
overall phosphorylation of proximal residues by GRKs and
strongly impairs β-arrestin-2 recruitment6,8,11,13, without greatly
affecting G-protein signalling. The increase in potency of fenta-
nyl, but not morphine in S375A suggests that GRK/β-arrestin
mechanisms contribute to limiting the acute effects of these
opioids in vivo11,14,27. More importantly, the mutation had no
differential effects on the potency of either fentanyl or morphine
to induce respiratory depression or constipation, strongly sug-
gesting that opioid side effects are mediated by a mechanism
independent of β-arrestin recruitment to MOP and, therefore,
pharmacological or other approaches aimed at reducing β-
arrestin recruitment to MOP might not improve the safety profile
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of opioids. Complete or near complete removal of carboxyl-
terminal phosphorylation sites (10S/T-A and 11S/T-A, respec-
tively) reinforced this view, with both mutations greatly attenu-
ating desensitization in neurons and further enhancing fentanyl
and morphine potency and duration of action but without any
ameliorations of the side effects. The hypothesis that β-arrestin
signalling may be responsible and required for side effects such as
respiratory depression is also refuted by our finding that

physiological actions of ME in KF neurons were unaffected or
even enhanced in the nearly complete phosphorylation-deficient
10S/T-A mice. The lack of change in MOP density across geno-
types in naive and chronic fentanyl or morphine-treated mice
indicates that any phenotypic alterations observed were not due
to alterations in opioid receptor levels.

The novel pharmacological concept of functional selectivity or
biased agonism is based on the observation that structurally
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Fig. 3 Exacerbated side effects in phosphorylation-deficient MOP knock-in mice. Mice were treated with equally effective analgesia-producing doses
of fentanyl (0.1 mg kg−1 for 10S/T-A and 11S/T-A; 0.2 mg kg−1 for WT and S375A) or morphine (15 mg kg−1 for 10S/T-A and 11S/T-A; 22.5 mg kg−1

for WT and S375A). a Respiratory rate measured by plethysmography 15 min (fentanyl) or 30min (morphine) after drug administration (for fentanyl: F(7,
5272)= 8794, P < 0.0001; for morphine: F(7, 5272)= 10,154, P < 0.0001) (n= 6). b Accumulated faecal boli weight in the constipation test (for fentanyl: F(7,
91)= 16.63, P < 0.0001; for morphine: F(7, 79)= 26.36, P < 0.0001) (n= 6–16). c Time course of locomotor activity in the open field test (fentanyl: Ftime(29,

1044)= 53.26, P < 0.0001, Fgenotype(3, 36)= 2.684, P= 0.0612; morphine: Ftime(29, 1044)= 44.28, P < 0.0001, Fgenotype(3, 36)= 0.6293, P= 0.06008) (n=
10). a–c Equally effective doses of fentanyl or morphine were administered to specific mutant strains (see Methods). Data are the means ± s.e.m.; *
indicates statistically significant differences between b, drug (+) and vehicle (−) or a, c untreated (baseline). a, b One-way and c two-way ANOVA with
Bonferroni post hoc test
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distinct G-protein-coupled receptor (GPCR) ligands can stabilize
alternative receptor conformations upon binding, with each dis-
playing a unique pattern of activation of intracellular signalling
cascades28,29. Biased agonism has been proposed as a means to
separate desirable from adverse drug responses downstream of a
GPCR target28,30. Genetic studies with global β-arrestin-2
knockout mice31 indicate that opioid side effects such as
respiratory depression and constipation primarily may engage the
β-arrestin-2-signalling pathway, whereas analgesia is thought to
primarily engage the G-protein-signalling pathway downstream
of MOP. By generating phosphorylation-deficient knock-in mice,
we have created a model that allows precise genetic dissection of
signalling bias at the MOP level. As 10S/T-A and 11S/T-A
mutants signal via G proteins for prolonged periods without
apparent desensitization but at the same time fail to recruit β-
arrestin proteins, these mutants can be viewed as completely G-
protein-biased MOP receptors that—contrary to prediction—do
not show improved side effect profiles. This finding seems to be at
odds with some observations in β-arrestin-2 knockout mice, but
compensatory recruitment of β-arrestin-1 might explain the dif-
ferences. We also suggest that the modest improvement in safety
profile of some strongly G-protein-biased agonists may be attri-
butable to pharmacological properties other than the loss of β-
arrestin signalling. Identifying such properties may provide
valuable clues for the development of safer opioids.

The profound long-term tolerance induced by fentanyl was
nearly abolished in the phosphorylation-deficient mutants, but
although morphine tolerance was significantly diminished, it was
not completely eliminated even in mice with MOP that lacked all

possible S/T phosphorylation sites from the carboxyl-terminus.
This suggests that additional mechanisms may contribute speci-
fically to the morphine-dependent regulation of MOP. Such
additional regulatory elements may include GRK511,12, β-
arrestin-223 and protein kinase C (PKC)32 or c-Jun N-terminal
kinase 2 (JNK2)33,34. Previous studies have shown that morphine-
activated MOP receptors are predominantly phosphorylated
by GRK5 and preferentially recruit β-arrestin-2 but not
β-arrestin-111–13. While genetic inactivation of GRK5 does not
affect morphine tolerance11, global knockout of β-arrestin-2 leads
to a selective attenuation of antinociceptive tolerance to mor-
phine23. However, in as far as phosphorylation-deficient MOP
fails to efficiently recruit β-arrestin proteins13, β-arrestin-2 is
unlikely to contribute to the residual morphine tolerance
observed in 10S/T-A and 11S/T-A mice. PKC activity seems to be
specifically required for morphine-dependent desensitization of
MOP in LC neurons32. In AtT20 cells, morphine-induced
desensitization was reduced by PKC inhibition in WT MOP
receptors and abolished in the 11S/T-A mutant9. Thus, morphine
may induce analgesic tolerance in 10S/T-A and 11S/T-A mice by
a PKC activity-dependent mechanism that may involve phos-
phorylation of S/T residues in cytoplasmic loops of MOP or
phosphorylation of other signalling molecules4,35.

Superactivation of the cAMP-signalling pathway in response to
chronic opioid treatment is often viewed as a cellular hallmark of
opioid withdrawal2,3,36. Our observation that 10S/T-A and 11S/
T-A mice do not become tolerant but experience all behavioural
signs of withdrawal, which are mostly unchanged except for
enhanced weight loss, indicates that phosphorylation-deficient
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mice develop the same biochemical adaptations as WT mice in
the absence of tolerance. Again this observation suggests that G-
protein-biased opioids may not reduce the development of opioid
dependence or withdrawal after long-term treatment. The adap-
tive responses associated with cAMP superactivation, most
notably increased expression of adenylyl cyclases36,37, are also
thought to oppose chronic opioid action, which may in turn be a
source of diminished pain control1,38. Moreover, the RAVE
(relative activity versus endocytosis) hypothesis predicts that
aberrantly prolonged MOP-signalling would facilitate the devel-
opment of tolerance38. Our findings of loss of tolerance to fen-
tanyl and morphine but retention or enhancement of withdrawal
behaviour in the phosphorylation-deficient mutants do not sup-
port the view that this type of opponent process greatly con-
tributes to analgesic tolerance. Thus, tolerance and dependence
are two dissociable phenomena and the total phosphorylation-
deficient mice we have developed represent a powerful means of

dissecting the molecular pathways leading to physical dependence
and addiction in a non-tolerant animal model (Fig. 6).

Finally, we indeed observed functional selectivity in these
animals, in that different opioid agonists can engage different
mechanisms to induce tolerance. Several recent studies have
discovered novel-biased opioids with reduced side effects in
animal models compared to classical opioids18–20. Signalling bias
at opioid receptors can be envisioned at the level of Gi versus G0

or other G-proteins, GRK2/3 versus GRK5 or PKC, and β-
arrestin-1 versus β-arrestin-2 proteins. Thus, our results indicate
that the biased agonism hypothesis needs to be extended to all
potential levels of bias, while simultaneously interrogating
other pharmacological properties of improved opioids.
Finally, our results suggest that novel chemotypes require detailed
evaluation of beneficial signalling bias to allow for a precise
prediction of their therapeutic window in our search for safer
opioids.
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Fig. 5 Loss of tolerance and retained signs of dependence in phosphorylation-deficient MOP knock-in mice. a Schematic representation of the tolerance
paradigm. Acute antinociceptive response measured in the mouse hot-plate test after fentanyl (15 min) or morphine (30min) using a cumulative dosing
regimen prior (day −1) and after (day 7) to osmotic pump implantation. Withdrawal was precipitated on day 8 by naloxone injection. b, c Cumulative
analgesic dose-response curves before (day −1) and after (day 7) chronic treatment with osmotic pumps delivering b, fentanyl (2 mg kg−1 day-1) or c,
morphine (17 mg kg−1 day−1) measured in the hot-plate test (n= 9−12). Responses are reported as percent maximum possible effect (% MPE). The
cumulative analgesic dose-response curves of WT mice before and after treatment are shown as black and grey dotted lines, respectively, in the graphs of
the transgenic mice for easier comparison. The bar graphs show the global withdrawal and weight loss after 2 mg kg−1 naloxone on day 8 (n= 9–12). Data
are the means ± s.e.m.; # indicates statistically significant differences from comparisons of the fold shift in agonist efficacy to that in WT (fentanyl:
F(3, 44)= 72.97, P < 0.0001; morphine: F(3, 39)= 9.103, P= 0.0001), one-way ANOVA with Bonferroni post hoc test.; * indicates statistically significant
differences compared to WT, unpaired, two-tailed t-test
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Methods
Animals. Knock-in mice expressing the 10S/T-A (Oprm1tm2.1Shlz, MGI:6117668)
and 11S/T-A (Oprm1tm3.1Shlz, MGI:6117673) mutant MOP gene were generated by
Genoway (Lyon, FRA) and Ozgene (Bentley, AUS), respectively. Mice were gen-
otyped by PCR analysis of genomic tail DNA using the following primers: 10S/T-A:
5′-TTACTATCCTCAGAGCCTTGTCTCCTTTGC-3′ and 5′-TGGGAA-
TATCTTGTACCTATGACCACATTGG-3′, 11S/T-A: 5′-TTAATGTGATC-
CAAGTGGGCAG-3′, 5′-TTTTGAGCAGGTTCTCCCAGTAC-3′, 5′-
TTCTATCGCCTTCTTGACGAGTTC-3′ and 5′-TTAGGGCAATGGAG
CAGCTTC-3′. Knock-in mice expressing the S375A MOP mutant (Oprm1tm1Shlz,
MGI:5000465) were generated and characterized as previously described14. All
MOP mutants were backcrossed to WT control JAXTM C57BL/6J mice from
Charles River Laboratories (DE), which were also used for the breeding of mutant
strains and as controls in all experiments. WT littermates from all three MOP
mutants did not differ significantly in any of the behavioural tests. For electro-
physiology studies, male and female WT C57BL/6J mice (Jackson Laboratory,
Sacramento, CA) were used together with all mutant strains. Animals were housed
2–5 per cage under a 12-h light–dark cycle with ad libitum access to food and
water. In all behavioural experiments, we used male mice aged 8–16 weeks and
weighing 25–30 g. To increase statistical power, we used 6–16 mice per genotype
for each behavioural experiment group. Studies were performed in parallel such
that age-matched mice received the same drug treatment at the same time. To
avoid daytime effects, studies were carried out in small cohorts of mice (n= 6) at a
time. The animal experiments conducted at Jena University Hospital were per-
formed in accordance with the Thuringian state authorities, complied with the
European Commission regulations for the care and use of laboratory animals, were
in accordance with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals. The animal experiments conducted at University of Oregon
were approved by Oregon Health and Science Institutional Animal Care and Use
Committee. The animal experiments conducted at University of Sydney were
performed under the guidelines of the Australian code of practice for the care and
use of animals for scientific purposes (National Health and Medical Research
Council, Australia, 7th Edition) and were approved by the University of Sydney
Animal Ethics Committee. Our study is reported in accordance with the ARRIVE
(Animal Research: Reporting of In Vivo Experiments) guidelines39.

Drugs and routes of administration. All drug doses were calculated according to
the active component of the salt. All drugs [morphine sulphate (3.75–120 mg kg−1;
Hameln Inc., Hameln, Germany), fentanyl citrate (0.2–4 mg kg−1; Rotexmedica,
Trittau, Germany), and naloxone hydrochloride (2 mg kg−1; Ratiopharm, Ulm,
Germany), used to precipitate withdrawal] were freshly prepared prior to use and
were injected subcutaneously in lightly restrained, unanaesthetized mice at a
volume of 10 μl g−1 body weight. For chronic infusion with Alzet osmotic mini-
pumps (1007D), fentanyl citrate salt (2 mg kg−1 day−1) and morphine sulphate salt
pentahydrate (17 mg kg−1 day−1) were obtained from Sigma-Aldrich (St. Louis,
MO). Drugs were diluted in phosphate-buffered saline for acute injections or
dissolved in sterile water and then diluted in phosphate-buffered saline for osmotic
pump delivery. For electrophysiology studies, MK-801 was obtained from HelloBio
(Princeton, NJ). [Met5]enkephalin (ME), bestatin and thiorphan were from Sigma-
Aldrich.

Autoradiographic binding assay. Following decapitation, intact brains were
removed, snap frozen at −20 °C in isopentane and stored at −80 °C. Adjacent
sections from WT, S375A, 10S/T-A and 11S/T-A brains were cut at 300-μm
intervals from fore- to hindbrain in a cryostat (Leica CM1900, UK) at −21 °C for
determination of total and non-specific binding. Sections were stored at −20 °C for
MOP radioligand binding as described previously40. Slides were pre-incubated for
30 min in 50 mM Tris-HCl, 0.9% w/v NaCl, pH 7.4, at room temperature. Slides
were incubated in 50 mM Tris-HCl buffer, pH 7.4, at room temperature in the
presence of 4 nM [3H]DAMGO for 60 min. Non-specific binding was determined
in adjacent sections in the presence of 1 µM naloxone. Incubation was terminated
by rapid rinses (3 × 5 min) in ice-cold 50 mM Tris-HCl buffer, pH 7.4, at room
temperature. Slides were then rapidly cool-air-dried for 2 h and dried for up to
7 days over anhydrous calcium sulphate (BDH Chemicals, Poole, UK). Adjacent
total binding and non-specific sections were opposed to Kodak BioMax MR-1 film
alongside 3H microscale standards for a period of 10 weeks for the detection of
opioid receptors. Films were analysed by video-based densitometry using an MCID
image analyser (Imaging Research, Canada) as previously described41. For each
region quantified, measures were taken from both left and right hemispheres;
therefore, receptor binding represents a duplicate determination for each brain
region, and n values refer to the number of animals analysed. The following
structures were analysed by sampling 5–20 times with a box tool: cortex
(8 × 8 mm), and cingulate cortex (8 × 8 mm). All other regions were analysed by
freehand drawing. Brain structures were identified by reference to the mouse brain
atlas42. Specific binding in each brain region fromWT, S375A, 10S/T-A and 11S/T-
A brains was compared by two-way ANOVA with Bonferroni post hoc tests.

Brain slice preparation for electrophysiology. Mice were anaesthetized using
isoflurane (Patterson Veterinary, Devens, MA) and killed by decapitation, and
brains were extracted and sectioned into 250-µm-thick horizontal slices containing
the locus coeruleus (Leica VT1000S, Vashaw Scientific, Norcross, GA). Slices were
cut at 32 °C in oxygenated (95% O2/5% CO2) artificial cerebrospinal fluid con-
sisting of NaCl (126 mM), KCl (2.5 mM), NaH2PO4 (1.2 mM), MgCl2 (1.2 mM),
NaHCO3 (21.4 mM) and D-glucose (11 mM). The cutting solution contained
MK801 (0.01 mM; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-
hepten-5,10-imine; Abcam, Cambridge, UK) for blockade of NMDA glutamate
receptors. Slices were transferred to a superfusion chamber maintained at 34 °C,
and whole-cell recordings were made with an internal solution containing K-
methanesulfonate (126 mM), NaCl (20 mM), MgCl2 (1.2 mM), K-HEPES (5 mM),
BAPTA (10 mM), Mg-ATP (2 mM), Na-GTP (0.25 mM) and phosphocreatine
(10 mM). Cells were voltage-clamped at −55 mV and currents were recorded
continuously (200/s) throughout each experiment. After establishing whole-cell
recording mode, neurons were allowed to stabilize for 5–10 min prior to ME
application (1 µM in the presence of 10 µM bestatin and 1 µM thiorphan to
inhibit peptidase activity). Outward currents induced by ME (1 µM) ranged from
30 to 70 pA, rose to steady state within 2 min and decayed to control levels within
5 min. Following the test application of ME (1 µM), a saturating concentration of
ME (30 µM) was applied for 10 min and then washed out. The decline from the
peak was calculated by measuring the current at the end of a 10 min application of
ME (30 µM) divided by peak current-induced shortly after (within 2 min) the
application of ME (30 µM). The post/pre-measure is the amplitude of the current
induced by ME (1 µM) 5min following the washout of ME 30 µM divided by the
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initial current induced by ME (1 µM). The recovery from the desensitization
induced by ME (30 µM, 10 min) was measured at 5, 10 and 20 min following the
washout of the high concentration of ME. The amplitude of the current induced by
ME (1 µM) was measured at each time point and normalized to the amplitude of
the current induced by ME prior to the application of the high concentration of
ME. Significant differences between groups were determined by unpaired two-
tailed t-tests or by two-way ANOVA with Bonferroni or Dunnett’s post hoc tests.
Values are given as the means ± s.e.m. and n= number of cells.

Osmotic pump implantation. A single 1007D Alzet osmotic minipump (Charles
River Laboratories, DE) was subcutaneously implanted on the left limb of each mouse
under light isoflurane anaesthesia and meloxicam analgesia 7 days before behavioural
experiments. A small incision was made in the skin on the mouse’s left flank with a
scalpel, a small pocket was formed just beneath the skin, and the minipump was
inserted. The incision was closed using 7-mm wound clips (Charles River Laboratories).

Behaviour studies. For consistency, one experimenter and a dedicated assistant
performed all in vivo drug administrations and behavioural testing. All testing was
conducted between 7 a.m. and 4 p.m. in an isolated, temperature- and light-
controlled room. Mice were acclimated for at least 2 weeks before testing. Only the
experimenter and assistant had free access to the room and entered the room 30
min before commencement of testing to eliminate potential olfactory-induced
changes in nociception. Animals were assigned to groups randomly before testing.
Mice were excluded from the study if they displayed any bodily injuries from
aggressions with cage mates. The experimenter was blinded to treatment and/or
genotype throughout the course of behavioural testing. All drugs were given to the
experimenter in coded vials and decoded after completion of the experiment.

Hot-plate test. Opiate effects on paw withdrawal latencies were assessed as the
time to response (licking or flicking fore or hind paw(s)) after placement on a hot-
plate maintained at 56 °C (Ugo Basile SRL, IT)11,14. To avoid tissue damage, we
used a 30-s cutoff. The hot-plate test was carried out 15 min (fentanyl) or 30 min
(morphine) after drug administration and expressed as percent maximum possible
effect (% MPE), calculated as follows: 100 × [(drug response latency–basal response
latency)/(30 s–basal response latency)]. For time courses antinociception was
determined at various time points after treatment.

Acute analgesia and tolerance paradigms. For acute analgesia testing in the hot-
plate test, dose-response curves were generated after repeated subcutaneous
administration of cumulative doses of fentanyl or morphine. Mice were injected at
15 min intervals with 0.02, 0.03, 0.05, 0.1 and 0.1 mg kg−1 fentanyl to yield final
cumulative doses of 0.02, 0.5, 0.1, 0.2 and 0.3 mg kg−1 fentanyl, and latencies were
measured 15 min after drug administration, immediately followed by additional
drug except for the last dose. For morphine dose-responses, mice were injected at
30 min intervals with 3.75, 3.75, 15 and 30 mg kg−1 morphine resulting in final
cumulative doses of 3.75, 7.5, 22.5 and 52.5 mg kg−1 morphine. Hot-plate latencies
were always measured 30 min after morphine administration, immediately
followed by the next dose. Dose-response curves generated using repeated
cumulative dosing regimen are shown in Fig. 2a, b. These curves were used to
calculate ED50 values for analgesia shown in Table 1 and Fig. 4. To induce opioid
tolerance, mice were implanted one day later with Alzet osmotic minipumps
containing the same drug that was used in the cumulative dosing. Osmotic
minipumps delivered total daily doses of 2 mg kg−1 fentanyl or 17 mg kg−1

morphine at a rate of 0.5 µl/h. Thus, in the tolerance paradigm dose-response
curves from acute analgesia testing are depicted as day −1 in Fig. 5 and served as
reference for the development of tolerance. On day 7, mice were again treated using
a repeated cumulative dosing regimen with fentanyl (0.05, 0.05, 0.1, 0.1 mg kg−1

for 10S/T-A and 11S/T-A and 0.05, 0.15, 0.1, 0.1 mg kg−1 for S375A and 0.5, 0.5, 1,
2 mg kg−1 for WT) or morphine (7.5, 15, 15 mg kg−1 for 10S/T-A and 11S/T-A
and 22.5, 37.5, 60 mg kg−1 for S375A and WT), and hot-plate response latencies
were assessed at the same time points as on day −1. ED50 values calculated from
day −1 and day 7 dose-response curves were used to calculate the fold rightward
shift given in Table 1 as a measure of tolerance.”

Physical dependence studies. After induction of chronic tolerance, withdrawal
was precipitated on day 8 by 2mg kg−1 naloxone HCl injection. Mice were
individually placed in small Plexiglas boxes (26.5 cm × 20.5 cm × 28 cm) lined with
filter paper, and observed and scored for 20min for manifestation of different
withdrawal signs, including jumping, grooming and wet-dog shakes. Weight loss
was determined by subtracting the measured body weight after withdrawal
precipitation from that prior to withdrawal23. A global withdrawal score, excluding
weight loss, was calculated as previously described23,24. Withdrawal signs were
weighted as follows: jumps, 0.8; wet-dog shakes, 1, and grooming 0.35. The sum of
all weighted signs produced a global withdrawal score for each mouse23,24,42.

Mouse plethysmography. Respiratory rates were recorded with a nose-out
plethysmography system (Hugo Sachs Elektronik–Harvard Apparatus GmbH, DE).
Individual unanaesthetized mice were placed in a restrainer with their nose
exposed through a close-fitting hole in the membrane. A pneumotachograph was
connected to the chamber equipped with a differential low-pressure transducer
(transducer DLP2.5, Hugo Sachs Elektronik–Harvard Apparatus GmbH)43.
Volume changes were calibrated by injecting known amounts of air into the
chamber. Analogue pressure signals were digitized for later analysis44. Mice were
acclimated to the test chamber, and baseline respiratory parameters were recorded

for 30 min. The 30-min test was then repeated 15 min (fentanyl) or 30 min
(morphine) after injection of equally effective doses of fentanyl (0.1 mg kg−1 for
10S/T-A and 11S/T-A; 0.2 mg kg−1 for WT and S375A) or morphine (15 mg kg−1

for 10S/T-A and 11S/T-A; 22.5 mg kg−1 for WT and S375A) or as indicated. Data
were analysed in Pulmodyn® W Software (HSE – Harvard Apparatus GmbH, DE).
For dose-response curves, percent maximum possible effect (% MPE) were
calculated as follows: 100 × [(drug response–average baseline)/(maximal response
cutoff–average baseline)]. The maximum response cutoff for respiratory rate was
set at 60 breaths per min.

Accumulated faecal boli quantification. Mice were subcutaneously injected with
vehicle or equally effective doses of fentanyl (0.1 mg kg−1 for 10S/T-A and 11S/T-
A, and 0.2 mg kg−1 for WT and S375A) or morphine (15 mg kg−1 for 10S/T-A and
11S/T-A, and 22.5 mg kg−1 for WT and S375A) or as indicated and individually
placed into small Plexiglas boxes (26.5 cm × 20.5 cm × 14 cm) lined with filter
paper. Faecal boli were collected and weighed every hour for 3 (fentanyl) or 5
(morphine) hours31. For dose-response curves, percent maximum possible effect
(% MPE) were calculated as follows: 100 × [(drug response–average baseline)/
(maximal response cutoff–average baseline)]. The maximum response cutoff was
set at 0 g faecal boli.

Open field locomotion test. The locomotor activity of mice was monitored
individually in open-field boxes (50 cm × 50 cm × 50 cm) using a TSE Videomot
system (TSE Systems, Bad Homburg, DE). Mice were habituated for 30 min,
removed, injected with equally effective doses of fentanyl (0.1 mg kg−1 for 10S/T-A
and 11S/T-A and 0.2 mg kg−1 for WT and S375A) or morphine (15 mg kg−1 for
10S/T-A and 11S/T-A and 22.5 mg kg−1 for WT and S375A) and immediately
placed back into the box for 120 min of monitoring31.

Data and statistical analysis. All experiments were randomized, performed by a
blinded researcher, and then unblinded before statistical analysis. The results for
each experiment were expressed as the means ± s.e.m. For ED50 values of dose-
response curves, the best-fit line was generated following nonlinear regression
analysis based on the % MPE, as described in each behavioural method section
above. Fold shift in effect was calculated by dividing values for day −1 by those for
day 7. Area under the curve was calculated for each animal with the baseline defined
as zero. Normal distribution of the data was verified before performing parametric
statistical analysis. Wherever appropriate, data were analysed using one-way or two-
way ANOVA, followed by Bonferroni’s or Dunnett’s post hoc tests or unpaired,
two-tailed t-test with significance set at P < 0.05. Pearson correlation was used for
analysis of R2 with significance set at P < 0.05. All calculations were performed using
GraphPad Prism 6 software (GraphPad Software, Inc., San Diego, CA).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available
within the paper and its supplementary information files. The source data
underlying all figures are provided as a Source Data file. The data that support the
findings of this study are available from the authors upon reasonable request.
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