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IDENTITIES IN UPPER TRIANGULAR TROPICAL

MATRIX SEMIGROUPS AND THE BICYCLIC MONOID

LAURE DAVIAUD1, MARIANNE JOHNSON2 and MARK KAMBITES3

Abstract. We establish necessary and sufficient conditions for a semi-
group identity to hold in the monoid of n× n upper triangular tropical
matrices, in terms of equivalence of certain tropical polynomials. This
leads to an algorithm for checking whether such an identity holds, in
time polynomial in the length of the identity and size of the alphabet.
It also allows us to answer a question of Izhakian and Margolis, by show-
ing that the identities which hold in the monoid of 2×2 upper triangular
tropical matrices are exactly the same as those which hold in the bicyclic
monoid. Our results extend to a broader class of “chain structured trop-
ical matrix semigroups”; we exhibit a faithful representation of the free
monogenic inverse semigroup within such a semigroup, which leads also
to a representation by 3× 3 upper triangular matrix semigroups, and a
new proof of the fact that this semigroup satisfies the same identities as
the bicyclic monoid.

1. Introduction

Over the last few years there has been considerable interest in the struc-
ture of the monoid Mn(T) of tropical (max-plus) matrices under multipli-
cation, with lines of investigation including characterisations of Green’s re-
lations [10, 13, 21, 22], structural properties of subsemigroups and maximal
subgroups [7, 9, 19], as well as connections between the algebraic proper-
ties of elements (or indeed subsemigroups) and their actions upon tropically
convex sets [18, 24, 34].

A natural question, especially in view of d’Alessandro and Pasku’s proof
that finitely generated subsemigroups of Mn(T) have polynomial growth [7],
is whether Mn(T) satisfies a semigroup identity. Izhakian and Margolis [20]
were the first to consider this question, in the 2× 2 case; they showed that
M2(T) does indeed satisfy an identity. A key step of their proof was estab-
lishing an identity for the upper triangular submonoid UT2(T), which is also
of interest in its own right. Specifically, they showed that UT2(T) satisfies
the celebrated identity AB2A2BAB2A = AB2ABA2B2A, which was shown
by Adjan [1] to hold in the bicyclic monoid B. Since B embeds in UT2(T),
every identity satisfied in the latter must also hold in the former. In view
of this and their results, Izhakian and Margolis posed the natural question
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2 IDENTITIES IN TROPICAL MATRIX SEMIGROUPS

of whether the converse holds, that is, whether UT2(T) and B satisfy ex-
actly the same identities, or equivalently (by Birkhoff’s HSP theorem [3]),
whether they generate the same variety. Further evidence that this might be
the case was recently provided by Chen, Hu, Luo and Sapir [6], who showed
that the variety generated by UT2(T) shares with that generated by B the
property of not admitting a finite basis of identities.

In Section 3 we develop an exact characterisation of identities which hold
in UT2(T), by associating k tropical polynomial equations in k variables to
each identity on k letters. This gives a simple and algorithmically efficient
(as we shall see in Section 8) method to check whether any given identity
holds. In Section 4, by considering the embedding of B into UT2(T), we use
this to show that an identity which fails to hold in UT2(T) must also fail in
B, thus answering the above-mentioned question of Izhakian and Margolis
[20] and establishing that the bicyclic monoid B and the upper triangular
tropical matrix monoid UT2(T) satisfy exactly the same semigroup identities
(Theorem 4.1).

It follows by Birkhoff’s HSP Theorem, of course, that B and UT2(T)
generate the same variety, and hence share all properties of monoids which
are visible in the variety generated. For example, by a theorem of Shneerson
[32], B has infinite axiomatic rank, so UT2(T) must also have. (In particular,
since infinite axiomatic rank implies the non-existence of a finite basis, we
can deduce the results of [6] from our theorem plus [32].)

There is an interesting relationship between these results and work of
Pastijn [26], which studies identities in the bicyclic monoid by reduction to
checking linear inequalities or, equivalently, properties of certain polyhedral
complexes. Once we have established that identities in B are equivalent to
identities in UT2(T), it becomes evident that our methods (for identities in
UT2(T)) are related to Pastijn’s (for identities in B). However, since our
methods are used to establish the correlation in the first place, we cannot
hope to deduce our results from Pastijn’s work.

In higher dimensions, understanding identities seems to be hard. Izhakian
and Margolis have conjectured that Mn(T) satisfies an identity for every
n; evidence supporting this includes their own results on M2(T), and the
proof by d’Alessandro and Pasku that finitely generated subsemigroups of
Mn(T) all have polynomial growth. More recently Shitov [30] has produced
an identity for M3(T), over a 2-letter alphabet and with 1,795,308 letters
on each side. Identities satisfied by semigroups of matrices satisfying non-
singularity conditions were considered in [17, 30]. In [15] Izhakian claimed
a family of identities for UTn(T) for each n; in fact the proof contains a
technical error and at least some of the claimed identities do not hold, but
they can be corrected [16, 35] to give examples of identities which do hold
in these semigroups. Further examples of identities for the upper triangular
case have been constructed by Okninski [25] and by Cain et al [5]; the
latter work provides an additional motivation for studying upper triangular
tropical matrices by exhibiting an embedding of the plactic monoid of rank
3 into the direct product UT3(T)× UT3(T).

In Section 5 we extend the ideas of Section 3 to characterise identities
which hold in UTn(T), and indeed in a more general class of chain structured
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tropical matrix semigroups (to be defined below), in terms of equivalence of
certain tropical polynomial functions. Section 6 establishes some structural
results about chain structured tropical matrix semigroups. Section 7 consid-
ers the free monogenic inverse semigroup I; we exhibit a natural embedding
of I into a chain structured tropical matrix semigroup which in turn embeds
in UT3(T). By combining with the results of Section 5 we recover an alterna-
tive proof that I satisfies the same identities as UT2(T) (which via Theorem
4.1, is equivalent to the known fact that it satisfies the same identities as
the bicyclic monoid).

Finally, Section 8 applies the results of Sections 3 and 5 to the algorithmic
problem of deciding whether a given identity holds in UTn(T). These results
allow us to reduce the problem to (real) linear programming, and hence to
show that, for a fixed n, it can be solved in time polynomial in the size
of the identity and the alphabet over which it is defined. In particular, by
the results of Section 4, this gives a polynomial-time algorithm to check
whether a given identity holds in the bicyclic monoid. (The work of Pastijn
[26] also yields an algorithm for this problem in the bicyclic monoid, which
also amounts to a reduction to linear programming; although Pastijn does
not analyse the complexity of his algorithm, we believe it is similar to ours.)

Semigroups of tropical matrices are closely related to max-plus automata,
a computational model defined as a quantitative extension of finite au-
tomata. (Weighted automata more generally were introduced by Schützen-
berger in [29]; these machines perform an automatic computation on words
over a finite alphabet, associating with each word a value or ‘weight’ in a
given semiring.) Semigroups of tropical matrices and max-plus automata
provide two perspectives on the same underlying mathematical structures;
the questions raised about them by algebraists and computer scientists are
often different, but the study of identities is natural from both points of view;
from a computational perspective it addresses the question of which pairs of
distinct inputs can be distinguished by a computational model. This com-
mon ground has fruitfully been explored in the case of finite (unweighted)
automata, leading to the equational and topological development of profinite
theory [27, 11]. In a companion article [8] the first two authors investigate
the computational power of two-state max-plus automata, and use the ideas
developed there to construct minimal length identities for M2(T). A full
understanding of all identities in Mn(T) for n ≥ 3 seems still quite distant.

2. Preliminaries

2.1. Tropical polynomials. The tropical semiring T is the commutative
idempotent semiring whose elements are drawn from the set R∪{−∞}, and
whose binary operations are defined by a⊕ b = max(a, b) and a⊗ b = a+ b,
where −∞ should be thought of as the “zero” element of the semiring,
satisfying −∞⊕ a = a and −∞ ⊗ a = −∞ for all a ∈ T. Often it will be
convenient to work without this zero element; in order to distinguish this
algebraic structure from the field R we shall write FT to denote the “finitary
tropical semiring”, namely the set R, under the operations ⊕ and ⊗. There
is an obvious total order on T in which −∞ is the least element. We denote
the supremum of a bounded-above set of elements X ⊂ T by

⊕

x∈X x.
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By a formal tropical polynomial in variables from a (countable) set X we
mean an element of the commutative polynomial semiring T[X], that is, a
finite formal sum in which each term is a formal product of a coefficient from
FT and formal powers of finitely many of the variables of X, considered up
to the commutative and distributive laws and the idempotent addition in
T. The order on T induces a partial order on T[X], in which g � f if and
only if each term of g appears as a term of f with coefficient greater than or
equal to the corresponding coefficient in g. A set of polynomials is bounded
if it is bounded above in this order; any bounded set of polynomials has
a supremum which is a polynomial. We note that evaluation at any fixed
values of the variables gives a supremum-preserving semiring morphism from
T[X] to T.

Each formal tropical polynomial naturally defines a function from TX to
T, by interpreting all formal products and formal sums tropically. Unlike
with classical polynomials over a field, however, two distinct formal tropical
polynomials may define the same function. For example, x⊗2 ⊕ x ⊕ 1 and
x⊗2⊕1 are distinct formal polynomials but define the same function because
x can never exceed both x⊗2 and 1. We say that two formal polynomials
are equivalent if they represent the same function. We note that it is easy
to see that two tropical polynomials f, g : TX → T will be equivalent if and
only if they agree on FTX .

We say that a tropical polynomial f is 0-flat if it is a sum of products of
variables (without coefficients). An elementary but important property of
0-flat polynomials is the following relationship with classical scaling:

Lemma 2.1. If f ∈ T[x1, . . . , xk] is 0-flat and λ ∈ R is non-negative then
f(λx1, . . . , λxk) = λf(x1, . . . , xk) for all evaluations of x1, . . . , xk in T.

Proof. This is immediate from the fact that scaling by a non-negative value
distributes over both maximum and classical addition. �

2.2. Tropical semigroups. It is easy to see that the set of all n×nmatrices
with entries in T (respectively FT) forms a monoid (respectively semigroup)
under the matrix multiplication induced from the operations ⊕ and ⊗. We
denote these semigroups by Mn(T) and Mn(FT). We also write UTn(T)
(respectively UTn(FT)) to denote the subsemigroup of Mn(T) consisting of
those upper-triangular matrices in Mn(T) whose entries on and above the
main diagonal lie in T (respectively FT).

More generally, let (Γ, ρ) be a (not necessarily finite) set equipped with
a reflexive, transitive binary relation. Consider the set TΓ×Γ of functions
from Γ×Γ to T; we think of its elements as matrices with rows and columns
indexed by Γ, and use the notation Mi,j for M(i, j). We define

Γ(T) = {A ∈ TΓ×Γ | A is bounded above and Ai,j 6= −∞ =⇒ iρj},

Γ(FT) = {A ∈ TΓ×Γ | A is bounded above and Ai,j 6= −∞ ⇐⇒ iρj}.

We define a multiplication on Γ(T) (and on Γ(FT)) as for matrices by:

(M ⊗N)i,j =
⊕

k∈Γ

Mi,k ⊗Nk,j.
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The boundedness of M and N ensures the product is defined and bounded,
while the transitivity of Γ ensures that appropriate entries of the product
are −∞. The operation is also easily seen to be associative, so it gives Γ(T)
and Γ(FT) the structure of semigroups.

Notice that taking Γ = {1, . . . , n} with the complete binary relation [re-
spectively, the obvious partial order] we have Γ(T) = Mn(T) and Γ(FT) =
Mn(FT) [respectively, Γ(T) = UTn(T) and Γ(FT) = UTn(FT)]. More gen-
erally, if Γ is finite then fixing a bijection with a set {1, . . . , n} yields an
embedding of Γ(T) into Mn(T). If Γ is a finite partial order then an appro-
priate choice of bijection embeds Γ(T) in some UTn(T).

2.3. Semigroup identities. We write N0 and N respectively for the natural
numbers with and without 0. If Σ is a finite alphabet, then Σ+ will denote
the free semigroup on Σ, that is, the set of finite, non-empty words over Σ
under the operation of concatenation. For w ∈ Σ+ and s ∈ Σ we write |w|
for the length of w and |w|s for the number of occurrences of the letter s in
w. For 1 ≤ i ≤ |w| we write wi to denote the ith letter of w. The content
of w is the map Σ → N0, s 7→ |w|s.

Recall that a (semigroup) identity is a pair of words, usually written
“u = v”, in the free semigroup Σ+ on an alphabet Σ. We say that the
identity holds in a semigroup S (or that S satisfies the identity) if every
morphism from Σ+ to S maps u and v to the same element of S. If a
morphism maps u and v to the same element we say that it satisfies the
given identity in S; otherwise it falsifies it. (Monoid identities are defined
similarly using the free monoid Σ∗ in place of Σ+; we shall work primarily
with semigroup identities, but it is easy to deduce corresponding results
about monoid identities from these.)

For some purposes it is easier to work with matrices over T, while for
others it is easier to work with matrices over FT. The following proposition
ensures that we can choose to work with whichever is easier at each stage.

Proposition 2.2. Let (Γ, ρ) be a set equipped with a reflexive, transitive
binary relation. Then Γ(T) and Γ(FT) satisfy exactly the same semigroup
identities.

Proof. Since Γ(FT) is a subsemigroup of Γ(T), any identity satisfied in the
latter is also satisfied in the former. To prove the converse we shall work
with a semigroup Γ(T[x]), which is constructed by exactly the same process
as Γ(T) but using the formal polynomial semiring T[x] in place of T; its
elements are thus bounded-above functions Γ × Γ → T[x], with respect to
the order � defined on T[x]. For any evaluation of x in T, we obtain a
supremum-preserving semiring morphism from T[x] to T, which in turn it
induces a semigroup morphism from Γ(T[x]) to Γ(T).

Returning to the proof of the converse, suppose an identity u = v over
alphabet Σ is not satisfied in Γ(T). Let φ : Σ+ → Γ(T) be a morphism
falsifying the identity, and choose i and j with φ(u)i,j 6= φ(v)i,j .
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Define a morphism ψ : Σ+ → Γ(T[x]) by for each a ∈ Σ setting

ψ(a)k,l =











φ(a)k,l if φ(a)k,l 6= −∞

x if kρl but φ(a)k,l = −∞

−∞ otherwise.

For any x ∈ T, because evaluation at x induces a semigroup morphism from
Γ(T[x]) to Γ(T), we may define a semigroup morphism ψx : Σ+ → Γ(T)
by ψx(w)i,j = [ψ(w)i,j ](x). If x ∈ FT then the image of ψx is contained in
Γ(FT), while if x = −∞ we recover the original morphism φ.

Consider now the polynomials ψ(u)i,j and ψ(v)i,j . Since at x = −∞ they
evaluate to φ(u)i,j and φ(v)i,j respectively, which are different, they must
have different constant terms. It follows that for x small enough but finite,
they evaluate to different values. Thus, for small enough x, ψx is a morphism
to Γ(FT) falsifying the identity u = v. �

Proposition 2.2 has the following immediate consequence:

Corollary 2.3. For all n ∈ N,

(i) Mn(T) and Mn(FT) satisfy exactly the same semigroup identities;
and

(ii) UTn(T) and UTn(FT) satisfy exactly the same semigroup identities.

The following two elementary results will allow us at various points to
simplify the structure of and number of parameters in the matrices we must
consider.

Lemma 2.4. Let φ : Σ+ →Mn(T) be a morphism, µs ∈ FT for each s ∈ Σ,
and define a new morphism ψ : Σ+ → Mn(T) by ψ(s) = µs ⊗ φ(s) for all
s ∈ Σ. If u and v are words with the same content and φ(u) = φ(v), then
ψ(u) = ψ(v).

Proof. Since tropical scaling commutes with matrix multiplication it is easy
to see that

ψ(u) =

(

⊗

s∈Σ

µ|u|ss

)

⊗ φ(u) =

(

⊗

s∈Σ

µ|v|ss

)

⊗ φ(v) = ψ(v),

where the powers are to be interpreted tropically, and the middle equality
holds because φ(u) = φ(v) and u and v have the same content. �

Lemma 2.5. Suppose an identity u = v over alphabet Σ is satisfied by all
morphisms φ : Σ+ → UTn(FT) with the property that φ(s)n,n = 0 for all
s ∈ Σ. If u and v have the same content then the identity u = v holds in
UTn(T).

Proof. Every morphism to UTn(FT) can clearly be obtained from one of the
given form by the construction in Lemma 2.4, which since u and v have the
same content means it satisfies the identity. So UTn(FT) and hence also (by
Corollary 2.3) UTn(T) satisfy the identity. �
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3. Identities in UT2(T).

In this section we shall give an elementary but powerful characterisation
of the identities which hold in UT2(T) (or equivalently, by Corollary 2.3, in
UT2(FT)).

Let w be a word over an alphabet Σ. For s ∈ Σ and 0 ≤ i ≤ |w| we write
λws (i) for the number of occurrences of the letter s within the first i letters
of the word w (so in particular λws (0) = 0 for all s ∈ Σ). For each t ∈ Σ we
define a 0-flat formal tropical polynomial having variables xs for each s ∈ Σ
as follows:

fwt =
⊕

wi=t

⊗

s∈Σ

xλ
w
s (i−1)

s ,

where of course the powers are to be interpreted tropically, and a maximum
over the empty set is taken to be −∞. By a slight abuse of notation, given
x ∈ FTΣ we shall also write xs to denote the image of s under x, and fwt (x)
to denote the corresponding evaluation of fwt at the variables xs ∈ FT.

We shall see shortly (Theorem 3.3) that the values of the polynomials
fwt exactly characterise the identities which hold in UT2(T). The following
lemma explains how they arise from the multiplication in UT2(FT):

Lemma 3.1. Suppose a morphism φ : Σ+ → UT2(T) is such that φ(s)1,1 ∈
FT and φ(s)2,2 = 0 for all s ∈ Σ, say

φ(s) =

(

xs x′s
−∞ 0

)

, where xs, x
′
s ∈ T with xs 6= −∞.

Then for any word w ∈ Σ+,

φ(w)1,2 =
⊕

s∈Σ

x′s ⊗ fws (x)

Proof. This is a straightforward calculation, using the definitions of matrix
multiplication and of the polynomial functions fws . �

The next lemma says that the polynomial functions fwt are together suf-
ficient to characterise the content of the word w.

Lemma 3.2. If fwt (x) = f vt (x) for all t ∈ Σ and x ∈ FTΣ then w and v
have the same content.

Proof. It is easy to see that fwt is the constant −∞ function if and only if w
does not contain any occurrences of the letter t. Thus, we may assume that
exactly the same letters from Σ occur in w and v.

Let z ∈ Σ, and suppose that z occurs in both w and v. Define x ∈ FTΣ

by xz = 1 and xs = 0 for s ∈ Σ \ {z}. Then

fwz (x) =
⊕

wi=z

⊗

s∈Σ

xλ
w
s (i−1)

s =
⊕

wi=z

λwz (i− 1)

where the last equality is because of the values of x. Since for fixed z and
w the function λwz (i) is non-decreasing with i, it is clear that the maximum
on the right is attained when i is the position of the final z in w. With
this value of i, we see that fwz (x) = λwz (i − 1) = |w|z − 1. By the same
argument, f vz (x) = |v|z − 1. But by assumption fwz (x) = f vz (x), so we must
have |w|z = |v|z. �
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We are now ready to prove the main theorem of this section.

Theorem 3.3. The identity w = v over alphabet Σ is satisfied in UT2(T) if
and only if the tropical polynomials fwt and f vt are equivalent for all t ∈ Σ.

Proof. Suppose first that we can choose x ∈ FTΣ and t ∈ Σ, such that
fwt (x) 6= f vt (x). Define a morphism

φ : Σ+ → UT2(T), a 7→

(

xa x′a
−∞ 0

)

where x′t = 0 and x′s = −∞ for each s 6= t. Then by Lemma 3.1,

φ(w)1,2 =
⊕

s∈Σ

x′s ⊗ fws (x) = fwt (x)

and similarly

φ(v)1,2 =
⊕

s∈Σ

x′s ⊗ f vs (x) = f vt (x) 6= φ(w)1,2

so the morphism φ falsifies the identity in UT2(T).
Conversely, suppose that fwt (x) = f vt (x) for all t ∈ Σ and all x ∈ FTΣ. By

Lemma 3.2, w and v have the same content. Hence, by Lemma 2.5 it suffices
to show that the identity w = v is satisfied by morphisms φ : Σ+ → UT2(FT)
such that φ(s)2,2 = 0 for all s ∈ S. Let φ be such a morphism, and for each
s ∈ Σ write xs = φ(s)1,1 and x′s = φ(s)1,2.

It is immediate from the properties of φ that φ(w)2,2 = 0 = φ(v)2,2. It is
also easy to see that for any word u,

φ(u)1,1 =

|u|
⊗

i=1

φ(ui)1,1 =
∑

s∈Σ

|u|sφ(s)1,1.

Since w and v have the same content, it follows that φ(w)1,1 = φ(v)1,1.
Finally, Lemma 3.1 gives

φ(w)1,2 =
⊕

t∈Σ

x′t ⊗ fwt (x) =
⊕

t∈Σ

x′t ⊗ f vt (x) = φ(v)1,2

so that φ(w) = φ(v) as required. �

We conclude this section by noting that checking whether a pair of words
on an alphabet containing just two letters defines an identity on UT2(T)
amounts to a comparison of four pairs of tropical polynomials in just one
variable.

Corollary 3.4. Let Σ be a two-letter alphabet and w, v ∈ Σ+. Then the
identity w = v holds in UT2(T) if and only if fwz (x, 1) = f vz (x, 1) and
fwz (x,−1) = f vz (x,−1) for all x ∈ FT, and all z ∈ Σ.

Proof. The direct implication follows immediately from Theorem 3.3. Con-
versely, suppose that fwz (x, 1) = f vz (x, 1) and fwz (x,−1) = f vz (x,−1) for all
z ∈ Σ and all x ∈ FT. Since the polynomials fwz and f vz are 0-flat, for any
c, d ∈ R with d 6= 0 applying Lemma 2.1 we have

fwz (c, d) = |d|fwz

(

c

|d|
,
d

|d|

)

= |d|f vz

(

c

|d|
,
d

|d|

)

= f vz (c, d)
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where |d| denotes the absolute value of d so that d/|d| is 1 or −1. Since the
functions of the form fwz (c,−), f vz (c,−) : R → R are continuous it follows
also that fwz (c, 0) = f vz (c, 0) for all c ∈ R, so by Theorem 3.3 the identity
w = v holds in UT2(T). �

4. The Bicyclic Monoid

The bicyclic monoid B = 〈p, q | pq = 1〉 is an inverse monoid which is ubiq-
uitous in almost all areas of infinite semigroup theory, and indeed in many
other areas of mathematics. Identities in the bicyclic monoid have been ex-
tensively studied; Adjan [1] established that the identity AB2A2BAB2A =
AB2ABA2B2A is a minimal length identity for this monoid. Shleifer [31]
has shown (with computer assistance) that there is just one other identity
of minimal length. Jones [23] has shown that a semigroup variety contains
a simple semigroup that is not bisimple if and only if it contains the bicyclic
semigroup. Motivated by this work, Pastijn [26] gave an elegant geometric
characterisation of the identities which hold in the bicyclic monoid in terms
of the properties of associated polyhedral complexes. Most recently Shneer-
son [33] has provided a family of interesting examples of semigroups of cubic
growth which satisfy the same identities as the bicyclic monoid.

In this section we apply Theorem 3.3 to prove that the identities satisfied
by UT2(T) are precisely those satisfied by the bicyclic monoid, thus estab-
lishing that UT2(T) and several other associated semigroups all generate the
same variety as B.

Theorem 4.1. The bicyclic monoid B and the upper triangular tropical
matrix monoid UT2(T) satisfy exactly the same semigroup identities.

Proof. It is well known and easy to see that every element of the bicyclic
monoid can be written uniquely in the form qipj for some i, j ∈ N0. Izhakian
and Margolis [20] noted that the map:

ρ : B → UT2(T), qipj 7→

(

i− j i+ j
−∞ j − i

)

is a semigroup embedding of B into UT2(T); of course, it also gives an
embedding into UT2(FT).

It is immediate from the existence of this embedding that any identity
which holds in UT2(T) must hold in B. It remains to show that any identity
which holds in B must also hold in UT2(T). We shall show the contrapositive.
To this end, suppose that a semigroup identity w = v over finite alphabet
Σ does not hold in UT2(T). Clearly we may assume that w and v have the
same content; indeed if z ∈ Σ is such that |w|z 6= |v|z then the identity is
falsified in B by (for example) the morphism sending z to p and every other
letter to the identity element.

By Theorem 3.3 there exists x ∈ FTΣ and t ∈ Σ such that fwt (x) 6=
f vt (x). Suppose without loss of generality that fwt (x) > f vt (x). Since both
functions are piecewise linear in the components of x, there is an open
neighbourhood (in the usual Euclidean topology on FTΣ considered as a set
of finite dimensional vectors over R) of x in which every vector satisfies the
given inequality. This neighbourhood must contain a vector in QΣ so by
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replacing x with such a vector, we may assume without loss of generality
that the components of x are all rational.

Let d denote the least common multiple of the denominators in the lowest
forms of the entries xs for s ∈ Σ. Since fwt and f vt are 0-flat, it follows from
Lemma 2.1 that fwt (2dx) > f vt (2dx). Hence, by replacing x with 2dx, we
may further assume, again without loss of generality, that the components
of x are even integers.

Now for each s ∈ Σ, choose a non-negative even integer x′s greater than
xs, in such a way that x′t is very large relative to all other x′s. Define a
morphism ψ : Σ+ → UT2(FT) by

ψ(s) =

(

xs x′s
−∞ 0

)

for all s ∈ Σ.

By Lemma 3.1 we have

ψ(w)1,2 =
⊕

s∈Σ

x′s ⊗ fws (x) = x′t ⊗ fwt (x),

provided x′t was chosen sufficiently large, and similarly

ψ(v)1,2 =
⊕

s∈Σ

x′s ⊗ f vs (x) = x′t ⊗ f vt (x) 6= ψ(w)1,2,

where the inequality is because fwt (x) 6= f vt (x). So the morphism ψ falsifies
the identity in UT2(FT).

Next for each s ∈ Σ let is = 1
2x

′
s, and js = 1

2(x
′
s − xs). Then is is

non-negative (because x′s is non-negative) and integer (because x′s is even),
while js is non-negative (because x′s > xs) and integer (because x′s and xs
are even). Define a morphism φ : Σ+ → im ρ ⊆ UT2(T) by

φ(s) = ρ(qispjs) =

(

is − js is + js
−∞ js − is

)

= (js − is)⊗

(

xs x′s
−∞ 0

)

where the last equality follows from the definitions of is and js. Because of
the last equality, we see that ψ can be obtained from φ by the construction
in Lemma 2.4, with µs = is − js for each s. Hence, by the contrapositive of
Lemma 2.4, φ falsifies the identity.

But imφ ⊆ im ρ which is isomorphic to B, so the identity cannot hold in
B. �

Corollary 4.2. The subsemigroups of UT2(T) obtained by restricting the
on-and-above diagonal entries to be respectively in Q, Z, N0, Q ∪ {−∞},
Z ∪ {−∞} and N0 ∪ {−∞} all satisfy exactly the same identities as B and
UT2(T).

Proof. Write UT2(X) for the given semigroups, where X = Q, Z, N0, Q ∪
{−∞}, Z∪{−∞} or N0∪{−∞}. The semigroups UT2(Q), UT2(Z), UT2(Q∪
{−∞}) and UT2(Z ∪ {−∞}) are all contained in UT2(T) and contain the
image of the embedding ρ, which is isomorphic to B.

The semigroups UT2(N0) and UT2(N0 ∪ {−∞}) are again contained in
UT2(T), and so satisfy all of the given identities. Conversely, notice that
every matrix in UT2(Z) is a tropical scaling of a matrix in UT2(N0). By the
previous paragraph, any identity which does not hold in UT2(T) is falsified
by some morphism to UT2(Z), and now the contrapositive of Lemma 2.4
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yields a morphism falsifying the identity with image contained in UT2(N0),
and hence also in UT2(N0 ∪ {−∞}). �

The bicyclic monoid is well known (see for example [14, Section 1.6]) to
be isomorphic to N0 × N0 under the multiplication

(a, b)(c, d) = (a− b+max(b, c), d − c+max(b, c)).

Several natural extensions of this construction have been considered (see for
example [12, 36, 35]). We write BZ := Z×Z, BQ := Q×Q and BR = R×R

to denote the semigroups with completely analogous multiplication, noting
the obvious embeddings B ⊆ BZ ⊆ BQ ⊆ BR.

Corollary 4.3. The semigroups BZ,BQand BR satisfy exactly the same
semigroup identities as B and UT2(T).

Proof. It is straightforward to check that the map

φ : BR → UT2(T), (a, b) 7→

(

a− b a+ b
−∞ b− a

)

is an embedding. Thus we have embeddings

B →֒ BZ →֒ BQ →֒ BR →֒ UT2(T).

Since B and UT2(T) satisfy the same identities, the result follows. �

5. UTn(T) and Chain-Structured Tropical Matrix Semigroups

In this section we extend the results of Section 3 to a more general class of
semigroups Γ(T) and Γ(FT) (including UTn(T) and UTn(FT) for n > 2). We
say that Γ(T) and Γ(FT) are chain-structured tropical matrix semigroups if
Γ is a partial order with an upper bound on the length of chains. For the rest
of this section, we assume that Γ has these properties, and let n be the length
of the longest chain in Γ. (Thus there exists a sequence v1 ≤ v2 ≤ · · · ≤ vk
of k distinct elements of Γ if and only if k ≤ n.)

By a k-vertex walk (or walk of vertex length k) in Γ we mean a k-tuple
(v1, . . . , vk) such that v1 ≤ v2 ≤ · · · ≤ vk. A k-vertex path (or path of vertex
length k) is a k-vertex walk in which consecutive vertices (and hence all
vertices) are distinct.

Let w be a word over the alphabet Σ. For 0 ≤ p < q ≤ |w|+1 and s ∈ Σ
we define

βws (p, q) = |{i ∈ N | p < i < q,wi = s}|

to be the number of occurrences of s lying strictly between wp and wq.
For each u ∈ Σ∗ with |u| ≤ n − 1 and each (|u| + 1)-vertex path ρ =
(ρ0, ρ1, . . . , ρ|u|) in Γ, we define a (0-flat) formal tropical polynomial having
variables x(s, i) for each letter s ∈ Σ and vertex i ∈ Γ as follows:

fwu,ρ =
⊕⊗

s∈Σ

|u|
⊗

k=0

x(s, ρk)
βw
s (αk ,αk+1),

where the sum ranges over all 0 = α0 < α1 < · · · < α|u| < α|u|+1 = |w| + 1
such that wαk

= uk for k = 1, . . . , |u|. Here the powers are to be interpreted
tropically, and a maximum taken over the empty set is taken to be −∞.
Thus it is easy to see that fwu,ρ 6= −∞ if and only if u is a scattered subword
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of w of length equal to the path ρ. Note that taking u to be the empty word
forces ρ = (ρ0) for some ρ0 ∈ Γ and hence fwu,ρ =

⊗

s∈Σ x(s, ρ0)
|w|s , which is

completely determined by the content of w.
In general, it is clear that the number of choices for the αi’s is bounded

above by |w||u|, which in turn is bounded above by |w|n−1. Thus, fixing
Γ (and hence n), it is easy to verify that the number of terms in the for-
mal tropical polynomial fwu,ρ is polynomial in |w|; this will be important in
Section 8.

Lemma 5.1. Let φ : Σ+ → Γ(T) be a morphism, and define x ∈ TΣ×Γ by

x(s, i) = φ(s)i,i.

Then for any word w ∈ Σ+ and vertices i, j ∈ Γ we have

φ(w)i,j =
⊕

u∈Σ∗,
|u|≤n−1

⊕

ρ∈Γ
|u|
i,j





|u|
⊗

k=1

φ(uk)ρk−1,ρk



⊗ fwu,ρ(x), (1)

where Γ
|u|
i,j denotes the set of all (|u| + 1)-vertex paths from i to j in Γ.

Proof. Let i and j be vertices. Using the definition of the functions fwu,ρ, the
value given to x and the distributivity of multiplication ⊗ over addition

⊕

,
the right-hand-side of (1) is equal to

⊕

u∈Σ∗,
|u|≤n−1

⊕ ⊕

ρ∈Γ
|u|
i,j





|u|
⊗

k=1

φ(uk)ρk−1,ρk



⊗





⊗

s∈Σ

|u|
⊗

k=0

(φ(s)ρk ,ρk)
βw
s (αk,αk+1)





where the unlabelled sum ranges over all 0 = α0 < α1 < · · · < α|u| <
α|u|+1 = |w| + 1 such that wαk

= uk for k = 1, . . . , |u|. Notice that we are
summing over all possible words u of length less than n, and then over all
scattered subwords of w equal to u. Thus, we are simply summing over all
scattered subwords of w of length less than n, so the above is equal to:

⊕ ⊕

ρ∈Γl
i,j

(

l
⊗

k=1

φ(wαk
)ρk−1,ρk

)

⊗

(

⊗

s∈Σ

l
⊗

k=0

(φ(s)ρk ,ρk)
βw
s (αk ,αk+1)

)

where the unlabelled sum is over all 0 = α0 < α1 < · · · < αl+1 = |w|+ 1 for
some l ≤ n− 1 and we set u = wα0

. . . wαl
.

Now to each term in the above sum, defined by a choice of αi’s and a
ρ ∈ Γl

i,j, we can associate a (|w| + 1)-vertex walk (σ0 = i, . . . , σ|w| = j) in
Γ whose underlying path is ρ and which transitions to vertex ρk after αk

steps. Clearly every (|w| + 1)-vertex walk from i to j arises exactly once
in this way, and so effectively we are summing over all such walks. In each
term, the content of the left-hand parentheses gives a factor φ(wq)σq−1,σq

when q = αk for some k, while from the definition of the functions βws , the
content of the right-hand parentheses gives a factor φ(wq)σq−1,σq for each q
not of this form. Thus, the above is simply equal to:

⊕

|w|
⊗

q=1

φ(wq)σq−1,σq
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where the supremum is taken over all (|w|+1)-vertex walks (i = σ0, σ1, . . . , σ|w| =
j) in Γ. But by the definition of multiplication in Γ(T), this is easily seen
to be equal to

(

φ(w1)⊗ · · · ⊗ φ(w|w|)
)

i,j
= φ(w)i,j . �

We are now ready to prove the main theorem of this section.

Theorem 5.2. Let Γ be a partial order with maximum chain length n.
Then the identity w = v over alphabet Σ is satisfied in Γ(T) if and only if
for every u ∈ Σ∗ with |u| ≤ n − 1 and every path ρ of length |u| in Γ the
tropical polynomials fwu,ρ and f vu,ρ are equivalent.

Proof. Suppose first that fwu,ρ(x) 6= f vu,ρ(x) for some choice of u ∈ Σ+, ρ

(from i to j) and x ∈ FTΣ×Γ. Define a morphism φ : Σ+ → Γ(T) by

φ(s)p,p = x(s, p) ∈ FT, for all p ∈ Γ and s ∈ Σ; and

φ(s)p,q =

{

0 if s = ui, p = ρi−1, q = ρi

−∞ otherwise.

Then by Lemma 5.1,

φ(v)i,j = f vu,ρ(x) 6= fwu,ρ(x) = φ(w)i,j ,

and so the morphism φ falsifies the identity in Γ(T).
Conversely, suppose that fwu,ρ and f vu,ρ are equivalent for all u, ρ with

u ∈ Σ∗, and ρ a path of length |u| through Γ. By Proposition 2.2 it suffices to
show that the identity w = v is satisfied by every morphism φ : Σ+ → Γ(FT),
so let φ be such a morphism. Define x ∈ FTΣ×Γ by x(s, i) = φ(s)i,i.

Since φ is a morphism to Γ(FT), we know that φ(w)i,j = −∞ = φ(v)i,j
whenever i 6≤ j.

On the other hand, if i ≤ j then Lemma 5.1 gives

φ(w)i,j =
⊕

u∈Σ∗,
|u|≤n−1

⊕

ρ∈Γ
|u|
i,j





|u|
⊗

k=1

φ(uk)ρk−1,ρk



⊗ fwu,ρ(x) = φ(v)i,j .

�

Theorem 5.3. Let Γ be a partial order with maximum chain length n. Then
Γ(T) satisfies exactly the same semigroup identities as UTn(T).

Proof. Let ρ = (ρ1, . . . , ρn) be a maximal length path in Γ, and let τi =
(ρ1, . . . , ρi) for i = 1, . . . , n. We note that if ρ′ and ρ′′ are paths of the same
length, then fwu,ρ′′ can be obtained from fwu,ρ′ by the change of variables

x(s, ρ′i) 7→ x(s, ρ′′i ). Thus fwu,ρ′ = f vu,ρ′ if and only if fwu,ρ′′ = f vu,ρ′′ . It follows

from this observation together with Theorem 5.2 that w = v in Γ(T) if and
only if fwu,τi = f vu,τi for all words u ∈ Σ∗ of length i for all i = 0, . . . , n−1. In
particular, we note that w = v in Γ(T) if and only if w = v in UTn(T). �

We remark that Theorem 5.3 can also be deduced as a corollary of Theo-
rem 6.1 below (the proof of which is independent) together with Birkhoff’s
HSP Theorem [3].
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6. Chain-Structured Semigroups as Divisors of UTn(T)

As in the previous section, let Γ be a partial order with finite maximum
chain length n. Theorem 5.3 says that the chain-structured tropical matrix
semigroup Γ(T) satisfies exactly the same identities as the upper triangular
tropical matrix semigroup UTn(T). By Birkhoff’s HSP Theorem [3], this
means that Γ(T) must be realisable as a homomorphic image of a subsemi-
group of a direct power of UTn(T). In this section we show how to construct
an explicit realisation of Γ(T) in this way.

For each k = 1, . . . , n and each k-vertex path ρ in Γ, let ∆ρ be an isomor-
phic copy of the semigroup UTk(T) but with rows and columns indexed by
the vertices occuring in ρ, and the order of vertices in ρ used to determine
the upper triangular structure in the obvious way (so that for any M ∈ ∆ρ

we have Mi,j = −∞ if j comes strictly before i in ρ).
Let ∆ be the direct product of the semigroups ∆ρ as ρ varies over all

directed paths in Γ. Given D ∈ ∆ we write Dρ for projection of D onto the
ρ-coordinate (so Dρ ∈ ∆ρ). For i, j ∈ ρ we write Dρ,i,j for the (i, j) entry of
Dρ.

Notice that since each ∆ρ is isomorphic to UTk(T) for some k ≤ n, ∆
embeds naturally in a direct power of UTn(T).

We define a function (which we do not claim to be morphism)

ψ : Γ(T) → ∆, ψ(M)ρ,i,j =Mij ,

which is not surjective; indeed its image need not even be a subsemigroup
of ∆. Let Ψ be the subsemigroup of ∆ generated by the image of ψ and let

ϕ : Ψ → Γ(T), ϕ(D)i,j = sup{Dρ,i,j : i, j ∈ ρ}.

It is immediate from the definitions that ψ is an injective function, and that
ϕ(ψ(M)) = M for all M ∈ Γ(T). Moreover, the boundedness conditions
on Γ(T) ensure that ϕ is well-defined on Ψ. We show that ϕ is a surjective
semigroup morphism.

Theorem 6.1. With notation as above, ϕ is a surjective semigroup mor-
phism from Ψ (which is a subsemigroup of ∆ and hence embeds naturally in
a direct power of UTn(T)) onto Γ(T).

Proof. Since every element of Ψ has the form ψ(M1) · · ·ψ(Mk) for some
M1, . . . ,Mk ∈ Γ(T) and we know that ϕ(ψ(M)) = M for all M ∈ Γ(T), it
suffices to take M1, . . . ,Mk ∈ Γ(T) and show that

ϕ(ψ(M1) · · ·ψ(Mk)) = M1 ⊗ · · · ⊗Mk.

Consider the (i, j) entry of the left-hand side. By definition, this is
the supremum over all paths ρ containing i and j of the (i, j) entry of
(ψ(M1) . . . ψ(Mk))ρ ∈ ∆ρ. Since ∆ is a direct product, we have

(ψ(M1) · · ·ψ(Mk))ρ = (ψ(M1)ρ)⊗ · · · ⊗ (ψ(Mk))ρ

in ∆ρ. By definition of matrix multiplication, the (i, j) entry of this is the
supremum over all (k+1)-vertex walks (i = w0, w1, . . . , wk−1, wk = j) within
the vertex set of ρ of

(M1)w0w1
⊗ · · · ⊗ (Mk)wk−1wk

.
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But since every (k + 1)-vertex walk is contained in the vertex set of some
path ρ, this means that the (i, j) entry of the left-hand-side is the supremum
over all (k + 1)-vertex walks (i = w0, w1, . . . , wk−1, wk = j) in Γ of

(M1)w0w1
⊗ · · · ⊗ (Mk)wk−1wk

.

But by the definition of matrix multiplication in Γ(T), this is exactly the
(i, j) entry of the right-hand side. �

As mentioned above, the proof of Theorem 6.1 is entirely independent of
Theorem 5.3, and in fact the latter can (as an alternative proof strategy) be
deduced from the former.

7. The Free Monogenic Inverse Monoid

In this section we consider tropical representations of the free one-generated
object in the category of inverse monoids, which we denote I. This monoid
admits several representations, but most conveniently for our purposes, it
is isomorphic (see for example [14, Chapter 5, Exercise 42]) to the set of
triples of integers:

{(i, j, k) ∈ Z3 : i, j ≥ 0, −j ≤ k ≤ i}

with multiplication given by:

(i, j, k)(i′, j′, k′) = (max(i, i′ + k), max(j, j′ − k), k + k′).

Consider now the set Γ = {1, 2, 3} equipped with the partial order � in
which 1, 2 � 3 but 2 and 3 are incomparable. It is easy to see, from the
above representation, that there is an embedding of semigroups

I →֒ Γ(FT) ⊆ UT3(T), (i, j, k) 7→





k −∞ i
−∞ −k j
−∞ −∞ 0



 .

Since Γ has maximum chain length 2, we can deduce by Theorem 5.3 that
I satisfies all the identities satisfied by UT2(T), and hence by Theorem 4.1,
all identities satisfied in B. (In fact this was known as a consequence of work
of Scheiblich [28] which showed that I can be embedded in a direct product
of copies of B.) The converse also holds: since B is itself a monogenic inverse
monoid, it is a homomorphic image of I, and hence satisfies all identities
satisfied in the latter.

The above representation of I in Γ(FT) is of course also a representation
in UT3(T). In view of the preceding remarks it is natural to ask if one can
go one step better and find a faithful representation of I in UT2(FT). It
transpires that this cannot be done.

Proposition 7.1. The free monogenic inverse monoid I embeds in UTn(T)
if and only if n ≥ 3.

Proof. We have seen that I embeds into UT3(T) which in turn embeds in
UTn(T) for all n ≥ 3. To see that I does not embed into UT2(T) we
consider the structure formed by the idempotents of each semigroup under
the natural partial order given by e ≤ f if and only if e = ef = fe.
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It follows from the results of [21] that every idempotent in UT2(T) takes
one of the following four forms:

Z =

(

−∞ −∞
−∞ −∞

)

, Gx =

(

0 x
−∞ 0

)

,

Ex =

(

0 x
−∞ −∞

)

, Fx =

(

−∞ x
−∞ 0

)

,

where x ∈ T. It is straightforward to verify that:

(i) Z ≤ X ≤ G−∞ for all idempotent elements X;
(ii) Gx ≤ Gy if and only if y ≤ x; and
(iii) idempotents of the form Ex and Fx are incomparable with all idem-

potents except Z and G−∞;

In particular it is not possible within UT2(T) to find two incomparable
idempotents and two other idempotents which lie above both of them.

On the other hand, it is readily verified that the idempotents of I are
exactly the elements of form (i, j, 0), and that (i, j, 0) ≤ (i′, j′, 0) if and only
if i ≥ i′ and j ≥ j′. Thus, for example, (2, 3, 0) and (3, 2, 0) are incomparable
idempotents which both lie below the idempotents (2, 2, 0) and (1, 1, 0). �

8. Complexity of Checking Identities

In this section we show how our results can be used to derive efficient al-
gorithms for checking whether a given identity holds in UTn(T), and hence
(by Theorem 5.3) in chain-structured matrix semigroups in general. To be
precise, the results above (Theorem 3.3, Corollary 3.4 and Theorem 5.2)
allow us to reduce the problem to checking whether formal tropical polyno-
mials define the same function, and in this section we show how the latter
problem can be reduced to (real) linear programming. For a fixed n the
resulting algorithms run in time polynomial in the size of the alphabet and
the length of the identity, although the degree of the polynomial rises (and
hence the complexity increases exponentially) as n grows.

One special case is of particular importance: our Main Theorem implies
that the algorithm for UT2(T) can also be used to check (in polynomial
time) whether a given identity holds in the bicyclic monoid (and hence also
the free monogenic inverse monoid). Another algorithm for this problem
was given by Pastijn [26]; in fact although this algorithm arose from a dif-
ferent approach to an ostensibly different problem, it is very closely related
to our own. No complexity analysis is given in [26], Pastijn’s algorithm
also essentially reduces to linear programming, and hence should also be
implementable in polynomial time.

We begin by establishing some basic properties of many-variable tropical
polynomials. The ideas concerned are well-known to max-plus algebraists
in the one-variable case (see [4, Section 5.1]) and are increasingly studied
by algebraic geometers in the many-variable case. However, we have not
been able to locate the precise statements we require in the literature, so we
present (without any particular claim of originality) a concise self-contained
exposition.

A term in a formal tropical polynomial is called essential if there is some
value of the variables for which it is the only term to attain the maximum,



IDENTITIES IN TROPICAL MATRIX SEMIGROUPS 17

and inessential otherwise. For example, x is an inessential term in x⊗2⊕x⊕1.
We shall need the following observation, which follows from [20, Proposition
1.5 and Lemma 1.6]:

Lemma 8.1. Every formal tropical polynomial is equivalent to a unique
essential polynomial.

Lemma 8.2. There is an algorithm which, given a formal tropical poly-
nomial in k variables with m terms with one distinguished term, decides
whether the distinguished term is essential in time polynomial in k and m.

Proof. It suffices to check if there are real values of the variables which make
the distinguished term simultaneously exceed each of the other m−1 terms.
Since each term of a tropical polynomial is a classical linear function, this is
just a (classical) linear programming problem of checking the solvability of
m− 1 linear inequalities in k real variables, which is solvable in polynomial
time (see for example [2]). �

Theorem 8.3. Let n ∈ N be a fixed positive integer. Then there is an
algorithm which, given an identity v = w over a finite alphabet Σ, decides in
time polynomial in |v|+ |w| and |Σ| whether the identity holds in UTn(T).

Proof. Suppose we are given an identity v = w where v and w are words
over a k-letter alphabet Σ and |v|+ |w| = m. By Theorem 5.2 it suffices to
compute the formal polynomials f vu,ρ and fwu,ρ for u ∈ Σ∗ with |u| < n and
ρ a (|u|+1)-vertex path in the partially ordered set {1, . . . , n}, and check
whether each f vu,ρ is equivalent to the corresponding fwu,ρ. The number of
pairs of polynomials to consider is bounded above by the number of ways to
choose u (which since n is fixed is a polynomial function of k = |Σ|) times
the number of paths of length n or less in {1, . . . , n} (which since n is fixed is
a constant). Moreover, it is easy to see from the definition that each tropical
polynomial fws can be computed in time polynomial in |Σ| and |w|, and so
in particular has polynomially many terms.

Now by Lemma 8.2 we may check in polynomial time which terms in
our functions are essential; by discarding the inessential terms we obtain,
again in polynomial time, essential formal polynomials representing the same
functions. By Lemma 8.1 it suffices to check if these are the same as formal
polynomials, which again can clearly be done in polynomial time. �

We emphasise that the algorithm runs in polynomial time only for a fixed
semigroup UTn(T); allowing n to grow results in exponential growth in the
number of the pairs of formal polynomials which must be compared, so time
complexity as a function of n is exponential.

In the case n = 2 we may slightly reduce the number of polynomials
to be considered by using Theorem 3.3 in place of Theorem 5.2. In the
special case that n = 2 and |Σ| = 2 (hence for two-letter identities over the
bicyclic monoid) Corollary 3.4 allows us to reduce the problem to checking
equivalence of four pairs of single-variable polynomial equations, each of size
linear in |v| + |w|. Equivalence of single-variable tropical polynomials can
be checked even more efficiently: in linear time, presuming a random access
model of computation with unit time arithmetic and comparison of numbers
[4, Algorithm 5.1.11]). Hence, 2-letter identities in UT2(T) (and hence by
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Theorem 4.1, in B) can be checked in linear time given in such a model of
computation.
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