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Abstract

In this paper, we study the lattice and the Boolean algebra, possibly closed
under quotient, generated by the languages of the form u∗, where u is a word.
We provide effective equational characterisations of these classes, i.e. one can
decide using our descriptions whether a given regular language belongs or not
to each of them.
Keywords: automata theory, regular languages, profinite equations, Kleene
star, decidability

1. Introduction

The use of equational descriptions of regular languages is a successful and
long-standing approach to obtain characterisations of classes of regular lan-
guages. One of the first results, following Schützenberger’s theorem [14], is
the characterization of star-free languages by ultimately equational descriptions
given by McNaughton and Papert [8, chapter 4] and later by Eilenberg and
Schützenberger [4]. In the case of a variety of regular languages, Reiterman’s
theorem [13] guarantees the existence of a characteristic set of profinite equa-
tions. This theorem has been extended to several kinds of classes of languages,
including lattices and Boolean algebras. The reader could refer to [5, 10] for a
more detailed presentation. Let U be the class of all languages of the form u∗,
where u is a word. The aim of this paper is to study the four classes of regular
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ANR-14-CE25-0005 and by ANR Project RECRE ANR-11-BS02-0010 (ENS Lyon, France)
and the second author by Warsaw Center of Mathematics and Computer Science (WCMCS)
(Poland).
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languages L, B, Lq and Bq obtained respectively as the closure of U under the
following operations: finite union and finite intersection (lattice operations) for
L, finite union, finite intersection and complement (Boolean operations) for B,
lattice operations and quotients for Lq and Boolean operations and quotients
for Bq.

Our main result is an equational characterisation for each of these four
classes. These equational characterisations being effective, they give as a coun-
terpart the decidability of the membership problem: One can decide whether
a given regular language belongs to L, B, Lq and Bq respectively. In addition
to describing L, B, Lq and Bq in terms of equations, our results also provide a
general form for the languages belonging to each of these classes.

Motivations. Our motivation for the study of these classes is threefold. First,
a few years ago, Restivo proposed the problem of characterising the variety of
languages generated by the languages of the form u∗, where u is a word1. Given
that a variety of languages is a class of regular languages closed under Boolean
operations, quotients and inverses of morphisms, our result can be viewed as a
first step towards the solution of Restivo’s problem.

Our second reason for studying these classes was to provide non trivial ap-
plications of the equational theory of regular languages as defined by Gehrke,
Grigorieff and Pin in [5, 10]. There are indeed plenty of examples of known equa-
tional characterisations of varieties of languages, but not so many of classes of
languages that are not closed under inverses of morphisms or under quotients.
As far as we know, the only other studied examples are the ones given in [5]
(about languages with a zero and slender languages - see related work below).

Our third motivation is rather a long term perspective since it has to do with
the (generalised) star-height problem, a long standing open problem on regular
languages [11]. It appears that a key step towards the solution of this problem
would be to characterise the Boolean algebra generated by the languages of the
form F ∗, where F is a finite language. The case F = {u} studied in this paper
is certainly a very special case, but it gives an insight into the difficulty of the
general problem.

Related work. A related class is the class of slender languages [6, 15], which
can be written as finite unions of languages of the form xu∗y, where x, u, y ∈ A∗.
The class of slender or full languages is a lattice closed under quotients that is
therefore characterised by a set of equations [5]. These equations correspond in
fact to patterns that cannot be found in any minimal automaton that computes
a slender language. In our case, equations provided to characterise classes L,
B, Lq and Bq can also be seen as forbidden patterns in automata. Then, we
deduce normal forms for the languages in L, B, Lq and Bq.

Organisation of the paper. Section 2 gives classical definitions and prop-
erties about algebraic automata theory and profinite semigroups. Section 3 is

1Personal communication to J-É. Pin
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dedicated to the study of the syntactic monoid of u∗ for a given word u. In
particular, we present useful algebraic properties of the syntactic monoid of u∗.
Section 4 presents the equational theory of regular languages: it first gives clas-
sical results, then presents the equations satisfied by u∗, and finally gives the
characterisations of L, Lq and Bq. The study of B is much more intricate and
involves specific tools that are given in Section 5. Finally, Section 6 presents
decidability issues. Sections 2 to 6 deal with alphabet with at least two letters.
The case of a unary alphabet derives from the two-letter case. It is treated in
Section 7.

Notations. We denote by A a finite alphabet with at least two letters, by A∗
the set of words on A, by 1 the empty word and by |u| the length of a word u.

This paper is a long version of the paper [3], that was published in MFCS’15,
containing all the proofs that were missing in the short version and a complete
description of the unary case.

2. Recognisability and the profinite monoid

In this section, we introduce the definitions of recognisability by monoids
and of profinite monoid. For more details, the reader could refer to [2].

Monoids and recognisability. A monoid M is a set equipped with a binary
associative operation with a neutral element denoted by 1. The product of x
and y is denoted by xy. An element e of M is idempotent if e2 = e. An element
0 ∈ M is a zero of M if for all x ∈ M , 0x = x0 = 0. Given two monoids M
and N , ϕ : M → N is a morphism if for all x, y ∈ M , ϕ(xy) = ϕ(x)ϕ(y) and
ϕ(1) = 1.

In a finite monoid, every element has an idempotent power: for all x ∈ M ,
there is nx ∈ N − {0} such that xnx is idempotent. The smallest nx satisfying
this property is called the index of x. Moreover, there is an integer n 6= 0 such
that for all x ∈M , xn is idempotent. For instance, one could take the product
of the nx. The smallest integer satisfying this property is called the index of
the monoid and is denoted by ω. Thus, xω is the unique idempotent in the
subsemigroup generated by x.

Given a monoid M and a morphism ϕ : A∗ → M , a language L is said
to be recognised by (M,ϕ) if there is P ⊆ M such that L = ϕ−1(P ). The
language L is said to be recognised byM if there is ϕ such that (M,ϕ) recognises
L. A language is regular if and only if it is recognised by a finite monoid.
Moreover, the smallest monoid that recognises a regular language L is unique
up to isomorphism and is called the syntactic monoid of L. The associated
morphism ϕ is called the syntactic morphism and ϕ(L) is called the syntactic
image of L. Furthermore, for each word u, we call ϕ(u) the syntactic image of u
with respect to L. The syntactic monoid of a regular language can be computed
as it is the transition monoid of the minimal (deterministic) automaton of L.

Free profinite monoid. Given two words u and v, a monoid M separates u
and v if there is a morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v). If u 6= v,
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there is a finite monoid that separates u and v. A distance d can be defined on
A∗ as follows: d(u, u) = 0 and if u 6= v, d(u, v) = 2−n where n is the smallest
size of a monoid that separates u and v.

Every finite monoid is seen as a metric space equipped with the distance
d(x, y) = 1 if x 6= y and d(x, y) = 0 otherwise. This implies that every morphism
from A∗ to a finite monoid is a uniformly continuous function.

We briefly recall some useful definitions and results on the free profinite
monoid. We refer to [2] for an extended presentation of this subject. The free
profinite monoid of A∗, denoted by Â∗ can be defined as the completion for the
distance d of A∗. It is a compact space such that A∗ is a dense subset of Â∗.
Its elements are called profinite words. It is known that a language L is regular
if and only if L is open and closed in Â∗, where L is the topological closure of
L in Â∗.

Finally, every morphism from A∗ to some finite monoid M can be uniquely
extended to a uniformly continuous morphism from Â∗ toM . Given a morphism
ϕ from A∗ to M , we will denote by ϕ̂ its unique extension. Moreover, in the
rest of the paper, we will use the convention of denoting morphisms from Â∗

with a ̂.
The two following examples are profinite words that are not finite words and

that will be intensively used in the remainder of the paper.

Example 1 (Idempotent power). Given a word u ∈ A∗, the sequence (un!)n
converges in Â∗. Its limit is denoted by uω. Given a finite monoid M and a
morphism ϕ̂ : Â∗ →M , ϕ̂(uω) = ϕ̂(u)ω.

Example 2 (Zero [1, 12]). Let A be an alphabet with at least two letters and fix
a total order on it. Let (un)n be the sequence of all words ordered by the induced
shortlex order (a word u is smaller than a word v for the shortlex order if
|u| < |v| or |u| = |v| and u is smaller than v for the lexicographic order induced
by the order on the alphabet). We set: v0 = u0 and for all n ∈ N, vn+1 =
(vnun+1vn)(n+1)!. The sequence (vn)n converges in Â∗ and we denote by ρA its
limit. Given a finite monoid M and a morphism ϕ̂ : Â∗ →M , if M has a zero
then ϕ̂(ρA) = 0.

3. The languages u∗

As mentioned in the introduction, our goal is to describe classes generated by
the languages u∗. We will see in Section 4 that proving the correctness of such
characterisations requires a precise description of the structure of the syntactic
monoid of a given language u∗ and particularly of its idempotents.

Therefore, this section addresses this study by exhibiting some properties of
the syntactic monoid of u∗. Let us introduce two notions useful to study the
languages of this form. A word u is said to be primitive if for all words v and all
integers n, the condition u = vn implies n = 1 and v = u. A word v is said to
be a conjugate of u if there are words u1, u2 such that u = u1u2 and v = u2u1.
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Every language v∗ can thus be written as (um)∗ where u is a primitive word
and m a positive integer. We consider now a primitive word u and a positive
integer m.

We will prove that in the syntactic monoid of (um)∗, there is a zero that is
the syntactic image of words that cannot be completed into a word of (um)∗.
Idempotent elements are exactly this zero, the neutral element and the syntactic
images of the conjugates of um. Thus there are |u|+ 2 idempotents. Moreover,
if the idempotent power of a syntactic image of a word is not zero, then this
word has to be a power of a conjugate of u. Finally, the index of the syntactic
images of u and of its conjugates is m. All these properties are instantiated in
Example 3 and stated in the following propositions.

Example 3. We show in Figure 1 the minimal deterministic automaton and
monoid representation of the language (aab)∗. The elements in boxes are the
elements of the syntactic monoid of (aab)∗. An element has a star in its box
if it is idempotent. The conjugates of aab are aab, aba and baa. Finally, the
syntactic image of b2 is a zero of the monoid.

1 2

3

0

a

ab

b b

a

a, b

∗ 1

a

∗
ba2 ba b

aba2 ∗
aba ab

a2 a2ba
∗
a2b

∗
b2

Figure 1: Minimal deterministic automaton and monoid representation of (aab)∗

We now introduce some preliminary results about the structure of the syn-
tactic monoid of languages of the form (um)∗. In what follows, M will denote
the syntactic monoid of (um)∗ and ϕ its syntactic morphism.

Proposition 1. The index of u and of its conjugates is m.

Proof. First of all, for 1 6 k < m let us prove that ϕ(u)k 6= ϕ(u)2k.

ukum−k = um ∈ (um)∗ and u2kum−k = um+k /∈ (um)∗.
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Finally let us prove that ϕ(u)m = ϕ(u)2m. Given two words s and t, sumt ∈
(um)∗ if and only if su2mt ∈ (um)∗. The same proof holds for the conjugates of
u.

Recall that the alphabet is supposed to contain at least two letters (the
following propositions do not hold in the unary case).

Proposition 2. The monoid M has a zero which is the image of a word that
does not belong to (um)∗.

Proof. Consider a word v such that |v| = |u| and v is not a factor of u2. First of
all, such a word exists, since u2 has at most |u| factors of length |u| and there
are at least 2|u| words of length |u| and n < 2n for all positive integer n. Finally,
ϕ(v) = 0. Indeed, for all words s, t we have svt /∈ (um)∗. Otherwise v would be
a factor of u2.

Proposition 3. The profinite word ρA does not belong to (um)∗.

Proof. By Proposition 2, the syntactic monoid of (um)∗ has a zero that is the
image of a word that does not belong to (um)∗. Thus 0 is not in the syntactic
image of (um)∗, and since ϕ̂(ρA) = 0 then ρA /∈ (um)∗.

The following proposition can be found for example in [7, Proposition 1.3.3].

Proposition 4. The word um has exactly |u| conjugates that are the words of
the form vm where v is a conjugate of u.

Proposition 5. Non-zero idempotents in M are either the neutral element of
M or the syntactic images of the conjugates of um. Thus there are exactly |u|+2
idempotents in the syntactic monoid of (um)∗.

Proof. First of all, given a conjugate v of um and two words s and t, svt ∈ (um)∗
if and only if sv2t ∈ (um)∗. Conversely, consider a word v such that for all s,
t, svt ∈ (um)∗ if and only if sv2t ∈ (um)∗. Then, if ϕ(v) 6= 0 then there is s
and t such that both svt ∈ (um)∗ and sv2t ∈ (um)∗. Thus there is k such that
v is a conjugate of ukm, that means that v = v′km where v′ is a conjugate of
u. By Proposition 1, we have: ϕ(v) = ϕ(v′)km = ϕ(v′m). Thus, a non-zero
idempotent in M is the syntactic image of a conjugate of um.

Proposition 6. For all words v, if ϕ(v)ω 6= 0 then v is a power of a conjugate
of u.

Proof. Assume that ϕ(v)ω 6= 0 and let k be an integer such that ϕ(v)k = ϕ(v)ω.
By Propositions 4 and 5, there exist two words s, t such that u = st and ϕ(vk) =
ϕ((ts)m). Moreover,

u2m = (st)2m = s(ts)m(ts)m−1t

Therefore, there exists k′ such that:

svk(ts)m−1t = (st)k
′m
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and so:
vk = (ts)(k′−1)m

4. Equational characterisations of L, Lq and Bq

This section covers the equational theory of regular languages. First, Section
4.1 presents known results about equations. Then Section 4.2 applies this theory
to the study of L, Lq and Bq, by giving equations that characterise them.

4.1. Equational characterisations of algebraic structures of regular languages
A lattice (resp. a Boolean algebra) of languages of A∗ is a class of languages

containing the empty language ∅, the full language A∗ and which is closed under
finite union and finite intersection (resp. finite union, finite intersection and
complement). A class of languages L is closed under quotients if for all L ∈ L, for
all w ∈ A∗, w−1L and Lw−1 belong to L. Recall that w−1L = {w′ | ww′ ∈ L}
and Lw−1 = {w′ | w′w ∈ L}. Let u and v be two profinite words. A language
L ⊆ A∗ satisfies the equation u → v if the condition u ∈ L implies v ∈ L. It
satisfies u 6 v if for all words x, y, xuy ∈ L implies xvy ∈ L. The notation
u ↔ v is shorthand for u → v and v → u and similarly u = v is shorthand for
u 6 v and v 6 u. Observe that given a regular language L and its syntactic
morphism ϕ : A∗ →M , the language L satisfies u = v if and only if ϕ̂(u) = ϕ̂(v)
in M . A class of languages L is defined by a set of equations E if the following
equivalence holds: L ∈ L if and only if L satisfies all the equations in E.

The kind of equations used to describe a class of languages is strongly re-
lated to its closure operations. The two following propositions formalise this
statement.

Proposition 7 (Theorem 5.2 [5]). A class of regular languages is defined by a
set of equations of the form u → v (resp. u ↔ v) if and only if it is a lattice
(resp. a Boolean algebra) of regular languages.

Proposition 8 (Theorem 7.2 [5]). A class of regular languages is defined by a
set of equations of the form u 6 v (resp. u = v) if and only if it is a lattice
(resp. a Boolean algebra) of regular languages closed under quotients.

Equations with zero. The existence of a zero in a syntactic monoid is given
by the equations:

ρAx = xρA = ρA

If these equations are satisfied, we will use the notation 0 instead of ρA. For
example the set of equations:{

ρA 6 x

ρAx = xρA = ρA
is replaced by 0 6 x
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The zero has been used to describe several classes of languages. For in-
stance, the equations 0 6 x for x ∈ A∗ describe exactly the so called nondense
languages. Another example is the class of slender or full languages defined
in the introduction [6, 15]. This class of languages is a lattice closed under
quotients; it is described by the following equations:

0 6 x for x ∈ A∗

xωuyω = 0 for x, y ∈ A+, u ∈ A∗ and i(uy) 6= i(x)

where i(v) is the first letter of v for any v ∈ A+ [9].

4.2. Characterisations of L, Lq and Bq
We give here a list of equations used in the study of L, Lq, Bq and B. The

proofs of the characterisations of these classes by sets of equations are made in
two steps.

We first verify that the equations are correct and then check for their com-
pleteness. For the first step, it is sufficient to prove that for all words u, the
language u∗ satisfies the set of equations. From the nature of the equations (→,
↔, 6, =), we then obtain directly that the whole lattice, Boolean algebra and
their closure under quotients satisfy the given set of equations. This step of
correctness can be derived from the structure of the languages of the form u∗,
presented in Section 3.

The second step is to prove that only the languages in the desired structures
satisfy the set of equations. This step is more intricate since it requires a full
understanding of the combinatorics of the classes we consider.

First we define the following two languages:

Pu =
⋃

p prefix of u
u∗p and Su =

⋃
s suffix of u

su∗

The equations:

xωyω = 0 for x, y ∈ A∗ such that xy 6= yx (E1)
xωy = 0 for x, y ∈ A∗ such that y /∈ Px (E2)
yxω = 0 for x, y ∈ A∗ such that y /∈ Sx (E3)
xω 6 1 for x ∈ A∗ (E4)
0 6 1 (E5)
x` ↔ xω+` for x ∈ A∗, ` > 0 (E6)
xω → 1 for x ∈ A∗ (E7)
x→ x` for x ∈ A∗, ` > 0 (E8)

Some equations are clearly satisfied by u∗ such as equations (E8) and (E7).
Indeed, if v ∈ u∗ then for all `, v` is also a power of u and belongs to u∗ (E8).
Similarly, 1 always belongs to u∗ (E7).
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Proving that u∗ satisfies the other equations is more difficult and requires
to analyse the structure of its syntactic monoid. In particular, the role of the
idempotents is important. These proofs are given in the following propositions.
In particular, we first give some implications between these sets of equations.

Proposition 9.

1. The sets of equations (E1) and (E6) imply the set of equations (E2).

2. The sets of equations (E1) and (E6) imply the set of equations (E3).

3. The sets of equations (E1) and (E4) imply the set of equations (E5).

4. The set of equations (E4) implies the set of equations (E7).

5. The sets of equations (E4) and (E8) imply the set of equations (E6).

Proof. 1. Let L be a regular language satisfying the sets of equations (E1) and
(E6). Let us denote by ϕ its syntactic morphism, m the index of its syntactic
monoid and P its syntactic image. Either 0 ∈ P or not. If 0 ∈ P , then we
can argue on Lc. Indeed, Lc has the same syntactic monoid and its syntactic
image is P c. Thus 0 /∈ P c, and since the sets of equations (E1) and (E6) are
symmetric (= and ↔), then Lc also satisfies them. Finally, since (E2) is also
symmetric, we have that if Lc satisfies it, then L will also satisfy it. So, we can
suppose that 0 /∈ P .

Assume now that ϕ̂(xωy) 6= 0 for some words x and y. Then this implies
that there are words u and v such that uxωyv ∈ L. By (E6), (uxωyv)ω+1 ∈ L.
Moreover:

(uxωyv)ω+1 = uxω(yvuxω)ωyv ∈ L
Since 0 /∈ P then ϕ̂(xω(yvuxω)ω) 6= 0 or equivalently ϕ̂(xω(yvuxm)ω) 6= 0. So
by (E1), xyvuxm = yvuxmx. Then, there is a word t and two integers ` 6 k
such that x = t` and yvuxm = tk. Finally y is a prefix of tk so a prefix of tk`
and so a prefix of xk. We have proved that if ϕ̂(xωy) 6= 0 then y ∈ Px which
proves (E2).

2. The proof is symmetric to the previous one.
3. The set of equations (E1) is only used to prove the existence of a zero

in the monoid. Then it is sufficient to observe that (E5) is a particular case of
equations in (E4) where x is such that xω = 0.

4. For all words x and y, x 6 y implies by definition that x→ y.
5. Let ` > 0 and x ∈ A∗. The set of equations (E4) implies that for all words

u and v, uxωv → uv. By taking u = 1 and v = x`, we obtain that xω+` → x`.
Conversely, let L be a regular language satisfying the set of equations (E8),
and m the index of its syntactic monoid. Suppose that x` ∈ L. Then by
(E8), (x`)m+1 = x`m+` ∈ L. Finally this implies that xω+` ∈ L, which proves
x` → xω+`.

Proposition 10. For all words u, the language u∗ satisfies the sets of equations
(E1), (E2), (E3), (E4), (E6) and (E8).

9



Proof. (E1): Let x, y ∈ A∗ such that xy 6= yx, and u = vm with v primitive.
Let us denote by ϕ the syntactic morphism of u∗. First of all, if ϕ(x)ω = 0 or
ϕ(y)ω = 0, then the equation is satisfied. Otherwise, by Proposition 6, x and y
are powers of conjugates of v. But since xy 6= yx, these conjugates are different
and thus ϕ(x)ωϕ(y)ω = 0.

(E4): Let x ∈ A∗ and k its idempotent power. Let u = vm where v is
primitive. First assume that ϕ̂(xω) 6= 0. By Proposition 6, there exist two
words s and t such that st = v and an integer k′ such that xk = (ts)k′m. Let p
and q be two words such that pxkq ∈ u∗. There is an integer ` such that:

pxkq = p(ts)k
′mq = (st)`m

Thus, there exists a prefix s′ of st and an integer α such that p = (st)αs′
and a suffix t′ and an integer β such that q = t′(st)β . Therefore,

pxkq = (st)αs′(ts)k
′mt′(st)β = (st)`m

Necessarily, s′ = s and t′ = t. Finally,

pq = (st)α+β+1 = (st)(`−k′)m ∈ u∗

So pxωq ∈ u∗ implies that pq ∈ u∗ and thus xω 6 1. Finally, if ϕ̂(xω) = 0 then
xω 6 1 since 0 /∈ u∗.

(E8): If x ∈ u∗, then x = uk for some integer k. Then for all ` > 0,
x` = uk` ∈ u∗.

(E6): By Proposition 9.5 and by (E4) and (E8).
(E2): By Proposition 9.1 and by (E1) and (E6).
(E3): By Proposition 9.2 and by (E1) and (E6).

We will prove now that the languages of the form (um)∗ur satisfy some of
the sets of equations given in Section 4.2.

Proposition 11. Given a word u and two positive integers m and r, languages
(um)∗ and (um)∗ur are mutually quotients of one another. Thus they have the
same syntactic monoid and verify the same equations of the form 6 and =.

Proof. The following two equations prove that languages (um)∗ and (um)∗ur
are mutually quotients of one another.

(um)∗ = ((um)∗ur)(ur)−1 and (um)∗ur = (um)∗(um−r)−1

Proposition 12. For all words u, integers m and r, the language (um)∗ur
satisfies the sets of equations (E5), (E6) and (E7).
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Proof. (E5): By Proposition 10, the language (um)∗ satisfies (E1) and (E4).
Thus by Proposition 9.3, it also satisfies (E5). Finally, by Proposition 11,
(um)∗ur satisfies the same equations of the form 6 and =. So it satisfies (E5).

(E6): Let x be a word in A∗ and assume that x` = (um)kur for k ∈ N. Since
x is a power of u, its idempotent power, xm, is syntactically equivalent to um.
Thus:

ϕ̂(xωx`) = ϕ(umx`) = ϕ((um)k+1ur) ∈ ϕ(L)

By Proposition 11, the language (um)∗ur satisfies xω 6 1 since (E4) is satisfied
by (um)r. In particular, xωx` → x` is satisfied. Finally xωx` ↔ x` (E6) is
satisfied by the language (um)∗ur.

(E7): By Proposition 10, the language (um)∗ satisfies (E4). By Proposition
11, the language (um)∗ur also satisfies (E4). Finally, by Proposition 9.4 it also
satisfies (E7).

The following theorem gives the equational characterisations of Bq, Lq and L.

Theorem 1. Over a finite alphabet with at least two letters:

1. The class Bq is defined by equations (E1), (E2) and (E3).

2. The class Lq is defined by equations (E1), (E2), (E3) and (E4).

3. The class L is defined by equations (E1), (E4) and (E8).

To prove these characterisations we introduce a normal form for the lan-
guages in Bq, Lq and L. More precisely, we prove that a language which satisfies
the sets of equations can be written in a normal form. Finally, normal forms
imply membership in the classes Bq, Lq or L.

Remark 1. The proof is constructive: assuming that a language L satisfies the
set of equations, one can compute the words and the integers given in the normal
form.

We start with the most general class Bq and then we restrict to the classes
Lq and L by adding sets of equations in the equational characterisation. Hence,
let us start with Bq.

The case of Bq

First, we observe that the finite languages are in Bq, as for instance, the
language {aab}. Indeed, {aab} = a−1(aaab)∗ ∩ (aab)∗. Given a word u, and a
non-negative integer r, we denote by u>r the language u∗ur. Since this language
can be rewritten as u∗ − {1, u, . . . , ur−1}, it belongs to Bq. Similarly, by using
the closure by quotient we capture the languages u>rp and su>r where p (resp.
s) is a prefix (resp. a suffix) of u.

11



Finally, the following normal form fully characterises the class Bq: if L is a
language in Bq different from A∗, then L can be written as(

k⋃
i=1

u>ri

i pi

)
∪ F or

((
k⋃
i=1

u>ri

i pi

)
∪ F

)c
where (ui)i=1...k and F are finite sets of words, pi is a prefix of ui and (ri)i=1...k
are integers. We have sketched the proof that all the languages that can be
written in this normal form are in Bq. The difficult part is to prove that every
regular language that satisfies the equations can be written in the normal form.
Let us now give the complete and formal proof. In the following two proposi-
tions, recall that U denote the set of all the languages of the form u∗, where u
is a word.

Proposition 13. The class Lq and thus Bq contains all finite languages.

Proof. Let u be a word, let us prove that {u} is generated by quotient and
intersection of languages in U . Let a be a letter distinct from the first letter of
u. Then a−1(au)∗ ∩ u∗ = {u}. Indeed,

a−1(au)∗ ∩ u∗ = u(au)∗ ∩ ({1, u} ∪ uu∗) = {u}

since the first letter of u is different from a. Finally finite languages are finite
unions of singletons.

Proposition 14. For all words u and p a prefix of u different from u, the
language u∗p is generated by a quotient of languages in U .

Proof. Let u be a word and p be a prefix of u. Let s be the word such that
u = ps. Then u∗p = u∗s−1.

Proposition 15. For all words u, p a prefix of u and r a non-negative integer,
u>rp ∈ Bq.

Proof. Let u be a word, p be a prefix of u and r be a non-negative integer. If
p = u then u>rp = u>r+1. Hence we can suppose that p is different from u.
The language {unp | 0 6 n < r} is finite and thus by Proposition 13 it belongs
to Bq. Finally u>rp = u∗p − {unp | 0 6 n < r} belongs to Bq since u∗p ∈ Bq
thanks to Proposition 14.

Theorem 2 gives two characterisations of Bq, the first one in terms of profinite
equations and the second one providing a normal form for the languages in Bq.
The following proposition is needed in the proof of Theorem 2.

Proposition 16 (folklore). Let u be a word. Let M be a monoid and ϕ : A∗ →
M be a morphism. If |u| > |M |+ 1 then there are three words u1, u2, u3 such
that u = u1u2u3 and for all k ∈ N, ϕ(u) = ϕ(u1u

k
2u3).

Theorem 2. Let L be a regular language and m be the index of its syntactic
monoid. The following properties are equivalent:

12



1. L ∈ Bq.

2. L satisfies the sets of equations (E1), (E2) and (E3).

3. If L 6= A∗ then there are:

� a finite set of words (ui)i=1...k,
� for all i = 1, . . . , k, a prefix of ui denoted by pi,
� a finite set of non negative integers (ri)i=1...k, such that for all i,
ri < 2m,
� a finite set of words F ,

such that:

L = (
k⋃
i=1

u>ri

i pi) ∪ F or L = ((
k⋃
i=1

u>ri

i pi) ∪ F )c

Proof of Theorem 2

We prove Theorem 2 by proving the following sequence of implications 1⇒
2⇒ 3⇒ 1.

1 implies 2: By Proposition 10, u∗ satisfies equations (E1), (E2) and (E3).
3 implies 1: Thanks to Propositions 13 and 15, finite languages and lan-

guages of the form u>rp for p a prefix of u belong to Bq. Hence, by finite union
and complement, languages of the form given in point 3 of the proposition belong
to Bq.

2 implies 3: Let L be a language different from A∗ which satisfies (E1),
(E2) and (E3). Let ϕ be its syntactic morphism, m be the index of its syntactic
monoid and P be its syntactic image. Without loss of generality , we can assume
that 0 /∈ P . Otherwise we can argue on Lc since it satisfies the same symmetric
equations. We now set a total order on A and consider the induced shortlex
order. We construct sequences of pairs of words (un, pn)n>1 and integers (rn)n>1
satisfying the following conditions: for an integer i > 1, ui is the smallest word
for the shortlex order, pi is the smallest prefix of ui and ri is the smallest integer
such that:

� ri < 2m,

� u>ri

i pi ⊆ L,

� u>ri

i pi *
(
∪j<i u

>rj

j pj

)
.

First observe that for a given ui, there is a finite set of possible pi. Moreover,
for given ui and pi, there is at most one possible ri. Consider now the language:

L′ = (
⋃
i>1

u>ri

i pi) ∪ {u ∈ L | |u| 6 N}

13



where N is the size of the syntactic monoid of L. To conclude the proof we
prove now that:

1. L = L′,

2. and the sequence of (ui) is finite.

First we deal with the equality L = L′.

Lemma 1. L = L′

Proof. By construction L′ ⊆ L. Let us now prove the converse direction. Let
v ∈ L. If |v| 6 N then v ∈ L′ and we can conclude. Otherwise, by Proposition
16, v = v1v2v3 such that for all n ∈ N, ϕ(v) = ϕ(v1v

n
2 v3). Since v ∈ L then for

all integer n, v1v
n
2 v3 ∈ L and v1v

ω
2 v3 ∈ L. Recall that we assume 0 not to be in

L. Therefore we have ϕ̂(v1v
ω
2 v3) 6= 0 and by equations (E2) and (E3) we have

v1 ∈ Sv2 and v3 ∈ Pv2 . We set the following notations:{
v′1 is the prefix of v2

v′′1 is the suffix of v2
such that v1 = v′′1 v

k
2 for some integer k and v′1v′′1 = v2.{

v′3 is the suffix of v2

v′′3 is the prefix of v2
such that v3 = v`2v

′′
3 for some integer ` and v′′3 v′3 = v2.

Therefore we have:

v1v
n
2 v3 = v′′1 v

k
2v
n
2 v

`
2v
′′
3 = v′′1 (v′1v′′1 )k+1+`+nv′′3 = (v′′1 v′1)k+1+`+nv′′1 v

′′
3

Both words v′1 and v′′3 are prefixes of v2. If |v′′3 | 6 |v′1| then v′′1 v
′′
3 is a prefix

of v′′1 v′1. Otherwise, v′′1 v′′3 = v′′1 v
′
1p(v′′1 ) where p(v′′1 ) is a prefix of v′′1 . In any

case, for all n, v1v
n
2 v3 can be written as ur+np for some word u, p a prefix of

u and some integer r. Since for all n, ϕ(v) = ϕ(v1v
n
2 v3), then u>rp ⊆ L (and

v = ur+1p). Moreover, by definition of the index m, if r = qm + s with s < m
then ϕ(ur+n) = ϕ(um+s+n). Thus we can choose r < 2m. Finally, either u has
been chosen in the sequence (since it satisfies the two first conditions) and thus
v belongs to L′, or u>rp ⊆ (∪j<iu

>rj

j pj) for some i and thus v also belongs to
L′. We have proved that L = L′.

Let us prove now that the sequence (ui)i is finite.

Lemma 2. The sequence (ui)i is finite.

Proof. By contradiction, suppose that we can construct an infinite sequence of
words (ui)i. Then there is an infinite sub-sequence of (ui)i, denoted by (vi)i
such that for all i, j, ϕ(vi) = ϕ(vj). Suppose that the sequence of (vi)i is
maximal, that is to say we consider all the words in the sequence (ui)i having
the same given image by ϕ. Recall that for all i, there is a prefix pi of vi and
an integer ri such that:

(vi)>ripi ⊆ L and (vi)>ripi *
⋃
j<i

(vj)>rjpj

14



First of all, if there is i 6= j such that vivj 6= vjvi then:

ϕ̂(vωi ) = ϕ(vi)ωϕ(vj)ω = 0 (by (E1))

Then, ϕ̂(vωi pi) = 0 and 0 ∈ P , which contradicts the hypothesis. Hence, for all
i, j, vivj = vjvi. Thus there is word v, and a sequence of positive integers (ki)i
such that vi = vki . Nevertheless, one can choose ki 6 2m, since ϕ(v2m+n) =
ϕ(vm+n). Thus finally, the sub-sequence (vi)i is finite, which contradicts the
hypothesis, and concludes the proof.

Example 4. The language A∗aaA∗ is not in Bq. Indeed, the first equation is
not satisfied since the syntactic image of the words ab and b are idempotents, but
the syntactic image of abb is not syntactically equal to 0. However, the language
A∗(aa+ bb)A∗ satisfies the three sets of equations and is therefore in Bq but not
in Lq since the set of equations (E4) is not satisfied: the syntactic image of aa
is 0, and by equation (E4), 0 6 1, so 1 should be in the language but that is not
the case. We can even give the normal form of this language:

A∗(aa+ bb)A∗ = ((ab)∗ ∪ (ab)∗a ∪ (ba)∗ ∪ (ba)∗b)c

The case of Lq

We can now achieve the reduction from Bq to Lq, that is removing the
closure by complement, by adding the set of equations (E4) in the equational
characterisation. Furthermore, we obtain that the normal form is a restriction
of the previous one: if L ∈ Lq is different from A∗, then

L =
(

k⋃
i=1

u∗i pi

)
∪ F

Theorem 3. Let L be a regular language. The following properties are equiva-
lent:

1. L ∈ Lq.

2. L satisfies the set of equations (E1), (E2), (E3) and (E4).

3. If L 6= A∗ then there are:

� a finite set of words (ui)i=1...k,
� for all i = 1, . . . , k, a prefix of ui denoted by pi different from ui,
� a finite set of words F ,

such that:

L = (
k⋃
i=1

u∗i pi) ∪ F
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Proof. 1 implies 2: By Proposition 10, u∗ satisfies (E1), (E2), (E3) and (E4).
3 implies 1: By Proposition 13, finite languages belong to Lq and by Proposi-

tion 14, languages of the form u∗p for p a prefix of u different from u, also belong
to Lq. Finally, since languages given in point 3 are finite union of languages in
Lq, they also belong to Lq.

2 implies 3: Let L be a language different from A∗ satisfying (E1), (E2),
(E3) and (E4). Let us denote bym the index of the syntactic monoid of L. First
of all, by Theorem 2, since L satisfies (E1), (E2) and (E3) then there exists:

� a finite set of words (ui)i=1...k,

� for all i = 1, . . . , k, a prefix of ui denoted by pi,

� a finite set of integers (ri)i=1...k such that for all i, ri < 2m,

� a finite set of words F ,

such that:

L = (
k⋃
i=1

u>ri

i pi) ∪ F or L = ((
k⋃
i=1

u>ri

i pi) ∪ F )c

A particular case of (E4) is 0 > 1, which means that if 0 ∈ L then L = A∗.
Indeed, for all words u, 0u = 0 ∈ L ⇒ 1u = u ∈ L. Furthermore, either 0 ∈ L
and L = A∗ or 0 6∈ L. Therefore, we have:

L 6= ((
k⋃
i=1

u>ri

i pi) ∪ F )c

Let i = 1, . . . , k, since u>ri

i pi ⊆ L then for all `, um+`
i pi ∈ L and thus uω+`

i pi ∈
L. By (E4), this implies that for all `, u`ipi ∈ L. Thus u∗i pi ⊆ L. Finally, we
obtained that:

L = (
k⋃
i=1

u∗i pi) ∪ F

The case of B̃ and L̃

In order to study L and B, we have to remove the “closure under quotients”
from the characterisations above. We deal with these cases by introducing an
intermediate Boolean algebra (resp. lattice) denoted by B̃ (resp. L̃). The latter
classes are generated by the following languages, which correspond to a certain
form of quotients:

Ũ = {(um)∗ur | u ∈ A∗, m > 0, 0 6 r < m}

The study of these two classes is an intermediate step since:

B ⊆ B̃ ⊆ Bq and L ⊆ L̃ ⊆ Lq
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Proposition 17. Over a finite alphabet with at least two letters:

1. The class B̃ is defined by equations (E1) and (E6).

2. The class L̃ is defined by equations (E1), (E6), (E5) and (E7).

From this proposition, we can see that the language presented in Example 4
A∗(aa + bb)A∗ is not in B̃, and therefore it is neither in L nor in B, since the
equation (E6) is not satisfied. Indeed, it is sufficient to consider the word aba,
and to observe that (aba)2aba ∈ A∗(aa+ bb)A∗ but aba 6∈ A∗(aa+ bb)A∗.

As for the preceding cases, the languages in B̃ and L̃ can be written in a
normal form: if L is a language in B̃ different from A∗, then

L ∪ {1} =
k⋃
i=1

(umi )∗uri
i or L− {1} =

(
k⋃
i=1

(umi )∗uri
i

)c

Similarly, if L is a language in L̃ different from A∗, then

L =
k⋃
i=1

(umi )∗uri
i

where (ui)i=1,...,k are words and m, (ri)i=1,...,k are integers.

Proposition 18. Let L be a regular language and m be the index of its syntactic
monoid. The following properties are equivalent:

1. L ∈ B̃.

2. L satisfies the set of equations (E1) and (E6).

3. If L 6= A∗ then there are:

� a finite set of words (ui)i=1...k,
� a finite set of integers (ri)i=1...k such that for all i, 0 6 ri < m

such that:

L ∪ {1} =
k⋃
i=1

(umi )∗uri
i or L− {1} = (

k⋃
i=1

(umi )∗uri
i )c

Proof. 1 implies 2: By Proposition 12, (um)∗ur satisfies (E6). Moreover,

(um)∗ur = (um)∗(um−r)−1

thus (um)∗ur ∈ Bq and thus by Theorem 2, it satisfies (E1).
3 implies 1: The language {1} belongs to B̃ since it is the intersection of

a∗ ∩ b∗, a and b two different lettters. Let L be a language such that

L ∪ {1} =
k⋃
i=1

(umi )∗uri
i or L− {1} = (

k⋃
i=1

(umi )∗uri
i )c
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as given in point 3. By definition, the languages of the form (um)∗ur are in B̃.
Finally, thanks to the closure by complement and by union we have L ∈ B̃.

2 implies 3: By Proposition 9.1 and 9.2, if a language L satisfies (E1) and
(E6) then it also satisfies (E2) and (E3). Hence, by Theorem 2, L belongs to
Bq. Therefore, if we denote by m the index of its syntactic monoid, there are:

� a finite set of words (ui)i=1...k,

� for all i = 1, . . . , k, a prefix of ui denoted by pi,

� a finite set of integers (ri)i=1...k such that for all i, ri < 2m,

� a finite set of words F ,

such that:

L = (
k⋃
i=1

u>ri

i pi) ∪ F or L = ((
k⋃
i=1

u>ri

i pi) ∪ F )c

Since B̃ is closed under complement, without loss of generality, we assume that:

L = (
k⋃
i=1

u>ri

i pi) ∪ F

in the other case, we can argue on Lc. First, let u ∈ F . Then, u ∈ L, and
by (E6), we have uω+1 ∈ L. Therefore, (um)∗u ∈ L. For this reason, we can
assume that:

L = (
k⋃
i=1

u>ri

i pi) ∪
⋃
u∈F

(um)∗u (?)

Moreover, assume we have a language of the form u>rp included in L. Then we
have uωp ∈ L. Furthermore, by (E6), (uωp)ω+1 ∈ L and we have:

(uωp)ω+1 = uω(puω)ωp

Because 0 /∈ L and because uω(pum)ω ∈ L, we have uω(pum)ω 6= 0. By the
equation (E1), there are a word t and two integers ` and k such that u = tk and
pum = t`. Therefore, we have p = t`−km. Since p is a prefix of u, we necessarily
have that `− km 6 k. Let s = `− km. Finally we have:

u>rp = (tk)>rts ⊆ L

We define the following set:

R = {r ∈ Z/mZ | there is n congruent to r modulo m such that tn ∈ (tk)>rts}

Let ` ∈ R be different from 0. By definition, there exists an integer a such that
tam+` ∈ L. Since m is the idempotent power of L, we have tω+` ∈ L and by
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equation (E6), we have (tm)∗t` ⊆ L. If 0 ∈ R then we have (tm)∗ ⊆ L ∪ {1}.
Finally, we have that for each word ui, there exist a word ti, integers ki, si and
a set Ri ⊆ Z/mZ such that

u>ri

i pi = (tki
i )>ritsi

i ⊆
⋃
`∈Ri

(tmi )∗t`i ⊆ L ∪ {1} .

By using equation (?), we obtain that:

L =
⋃
u∈F

(um)∗u ∪
k⋃
i=1

u>ri

i pi

⊆
⋃
u∈F

(um)∗u ∪
k⋃
i=1

⋃
`∈Ri

(tmi )∗t`i

⊆ L ∪ {1}

Finally, L has the form given in the proposition.

Proposition 19. Let L be a regular language and m be the index of its syntactic
monoid. The following properties are equivalent:

1. L ∈ L̃.

2. L satisfies the set of equations (E1), (E6), (E5) and (E7).

3. If L 6= A∗ then there are:

� a finite set of words (ui)i=1...k,
� a finite set of integers (ri)i=1...k such that for all i, 0 6 ri < m

such that:

L =
k⋃
i=1

(umi )∗uri
i

Proof. 1 implies 2: By Proposition 12, (um)∗ur satisfies (E5) and (E7). More-
over, (um)∗ur ∈ B̃, thus by Proposition 18, it satisfies (E1) and (E6).

3 implies 1: By definition of L̃.
2 implies 3: Let L be a language different from A∗ satisfying (E1), (E6) and

(E5). Let us denote by m the index of the syntactic monoid of L. First of all,
by Proposition 18, since L satisfies (E1) and (E6) then there are:

� a finite set of words (ui)i=1...k,

� a finite set of integers (ri)i=1...k such that for all i, 0 6 ri < m,
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such that:

L ∪ {1} =
k⋃
i=1

(umi )∗uri
i or L− {1} = (

k⋃
i=1

(umi )∗uri
i )c

The set of equations (E5) means that if 0 ∈ L then L = A∗. Indeed, for all
words u, 0u = 0 ∈ L ⇒ 1u = u ∈ L. So 0 /∈ L and thus we are in the case
where:

L ∪ {1} =
k⋃
i=1

(umi )∗uri
i

If 1 ∈ L then L =
⋃k
i=1(umi )∗uri

i . Otherwise, there are two possibilities for 1 to
be in

⋃k
i=1(umi )∗uri

i . First, if for some i, ri = 0, then (umi )>1 ⊆ L and by (E7),
1 also belongs to L which is a contradiction. Secondly, if for some i, ui = 1 we
can just remove (umi )∗uri

i = {1} from the second language to obtain the correct
form:

L =
k⋃
i=1

(umi )∗uri
i

The case of L
Finally, we can characterise the classes L and B by restricting the set of

integers ri that can be obtained in the normal form of L̃ and B̃. Regarding
L, one can prove that the only possible choice for ri is 0. Thus, a language L
different from A∗ in L is of the form L =

⋃k
i=1 u

∗
i .

Unlike the class L, the case of B can not be deduced directly from the case
of B̃ and it is much more complicated. It is the subject of the next section.

Theorem 4. Let L be a regular language. The following properties are equiva-
lent:

1. L ∈ L.

2. L satisfies the set of equations (E1), (E4) and (E8).

3. If L 6= A∗ then there is a finite set of words (ui)i=1...k such that:

L =
k⋃
i=1

u∗i

Proof. 1 implies 2: By Proposition 10, u∗ satisfies (E1), (E4), and (E8).
3 implies 1: By definition of Lq.
2 implies 3: Let L be a language different from A∗ satisfying (E1), (E4)

and (E8). Let us denote by m the index of its syntactic monoid and by ϕ its
syntactic morphism. By Propositions 9.3, 9.4 and 9.5, L also satisfies equations
(E5), (E6) and (E7). By Proposition 19, since L satisfies (E1), (E5), (E6) and
(E7) then there are:
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� a finite set of words (ui)i=1...k,

� a finite set of integers (ri)i=1...k such that for all i, 0 6 ri < m,

such that:

L =
k⋃
i=1

(umi )∗uri
i

Consider i ∈ {1, . . . , k} and let di = gcd(m, ri). Since uri
i belongs to L we have,

by equation (E8), that (uri
i )∗ ⊆ L. There exists a positive integer b such that

bri is congruent to di modulom. Becausem is the index of the syntactic monoid
of L, we have:

ϕ(ubri
i ) = ϕ(um+di

i ) = ϕ̂(uω+di
i )

Thus, uωi u
di
i ∈ L and, by equation (E4), udi

i ∈ L. By applying equation (E8),
we have that (udi

i )∗ ⊆ L, and finally we can conclude since:

L =
k⋃
i=1

(umi )∗uri
i ⊆

k⋃
i=1

(udi
i )∗ ⊆ L

5. The case of the Boolean algebra B

We enter here the most intricate part of the description of the classes gen-
erated by the languages of the form u∗. The idea is to restrict the possible
integers ri we can obtain in the description of B̃. For that, we will define equiv-
alence relations over the integers. Once this will be done, the main difficulty
will be to translate properties over integers into profinite equations. In order to
do that, we will introduce profinite numbers. This issue is addressed in Section
5.1 which first defines which sets of integers are allowed for the ri and then
translates it into equations. Finally, Section 5.2 aggregates all these notions to
give the characterisation of B.

5.1. Equivalence classes over N and profinite numbers
Let m be an integer, and r and s be in {0, . . . ,m−1}, let us define r ≡m s if

and only if gcd(r,m) = gcd(s,m). Observe that ≡m is an equivalence relation.
Intuitively, a language in B with m as the index of its syntactic monoid, will not
be able to separate two integers that are equivalent with respect to ≡m. More
precisely, let L be a language in B with m as the index of its syntactic monoid
and r ≡m s. Then for all words u and for all k, k′, we have ukm+r ∈ L if and
only if uk′m+s ∈ L.

Example 5. We introduce the language L = (a2)∗ − (a6)∗. This language is,
by definition, in B. The index of its syntactic monoid is 6. Classes for ≡6 are
{1, 5}, {2, 4}, {3} and {0}. Thus, L cannot separate a word in (a6)∗a2 from a
word in (a6)∗a4. Therefore, since (a6)∗a2 is in L, (a6)∗a4 is also in L. Since L
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belongs to B, it also belongs to B̃ and we have a convenient normal form given
by Proposition 17:

L = (a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4

The equivalence relation ≡m allows us to give the form of the languages in
B. The next step is to translate it in terms of equations. The difficulty comes
from the fact that ≡m depends on the parameter m that represents the index of
the syntactic monoid of a given language. So, this cannot be directly translated
into a set of equations that are supposed to not depend on a specific language.
Profinite numbers. Consider a one-letter alphabet B = {a} and the profinite
monoid B̂∗. There is an isomorphism from B∗ to N that associates a word to
its length. Then there is a unique set N̂ and a unique isomorphism ψ : B̂∗ → N̂
such that N ⊆ N̂ and ψ̂ coincides with ψ on N. Elements of N̂ are called profinite
numbers. They are limits of sequences of integers, in the sense of the topology
of the set of words on a one-letter alphabet. Given a word u, and a profinite
number α, uα corresponds to the profinite word that is the limit of the words
uαn where (αn)n is a sequence of integers converging to α.

Let P = {p1 < p2 < . . . < pn < . . .} be a cofinite sequence of prime
numbers. That is, a sequence of prime numbers such that only a finite number
of prime numbers are not used in the sequence. Consider the sequence defined
by zPn = (p1 · · · pn)n!. The sequence (zPn )n>0 is converging in N̂ and we denote
by zP its limit.

We can give now the last set of equations needed to characterise B and that
conveys the notion of equivalence over N defined above. Denote by Γ the set of
pairs of profinite numbers (dzP , dpzP) satisfying the three following conditions:
� P is a cofinite sequence of prime numbers,

� p ∈ P,

� if q divides d then q /∈ P.
Let us define the set of equations (E9) by:

xα ↔ xβ for all (α, β) ∈ Γ (E9)
We first prove that a language u∗ satisfies this set of equations. Let us denote

by dm the equivalence class of d for ≡m.
Proposition 20. Let u be a primitive word and m be an integer, then (um)∗
satisfies the set of equations (E9).
Proof. Let (dzP , dpzP) be in Γ and x be a word. Let L = (um)∗. We suppose
that xdzP ∈ L. Then, there is k such that x = uk and moreover for all n large
enough, kdzPn is a multiple of m. Thus kdpzPn is also a multiple of m, and
thus xdpzP ∈ L. Conversely, suppose that xdpzP ∈ L, then there is k such that
x = uk and moreover for all n large enough, kdpzPn is a multiple of m. Finally,
kdzPn+1 is a multiple of kdzPn pn+1 since p ∈ P, that is a multiple of kdpzPn that
is a multiple of m. Thus, for n large enough, kdzPn+1 is a multiple of m, and
xdpz

P ∈ L.
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5.2. Characterisation of B
The following result combines the notions given in Section 5.1 and charac-

terises the class B.

Theorem 5. Over a finite alphabet with at least two letters, the class B is
defined by equations (E1), (E6) and (E9).

Let us first give a sketch of the proof. First, we have proven that u∗ satisfies
(E1), (E6) and (E9).

The reverse implication is proved in two steps. First, we prove that if a
language L is different from A∗ and satisfies (E1), (E6) and (E9), then just like
for the other classes, it has a normal form:

L ∪ {1} =
k⋃
i=1

⋃
r∈Si

(umi )∗uri or
(
L− {1}

)c =
k⋃
i=1

⋃
r∈Si

(umi )∗uri

wherem is an integer, (ui)i=1,...,k is a finite set of words, and Si is an equivalence
class of ≡m. We start by using the first part of Proposition 17 to prove that L
belongs to B̃. So L can be written as:

L ∪ {1} =
k⋃
i=1

(umi )∗uri
i or L− {1} = (

k⋃
i=1

(umi )∗uri
i )c

We prove that for all t ≡m r, ur belongs to L if and only if ut belongs to L. The
idea is the following: Let ϕ be the syntactic morphism of L, consider any cofinite
sequence of prime numbers P. If all the prime divisors of m are in P, then for
all n large enough, m divides zPn and thus for all words x, ϕ̂(xdzP ) = ϕ̂(xω) =
ϕ̂(xdpzP ). If none of the prime divisors of m is in P, then for all n large enough,
zPn is of the form km+ 1. Then ϕ̂(xdzP ) = ϕ̂(xω+d) and ϕ̂(xdpzP ) = ϕ̂(xω+dp).
Finally, d and dp under the conditions that define the set Γ, represent integers
in the same equivalence class with respect to m that are then linked by (E9).
Other situations are combinations of these two.

Once we have the normal form for L, what is left is to prove that a language
that can be written in this normal form belongs to B. This is done by proving
that: ⋃

p∈rm

(um)∗up = (ud)∗ −
⋃
k s.t.

06k6m
gcd(k,m

d ) 6=1

(ukd)∗

where rm is the equivalence class of r for ≡m and d = gcd(m, r).
Now let us give the complete proof.

Proposition 21. Let L be a language and m be the index of its syntactic
monoid. Suppose that there are an integer k and pairwise distinct words u1, . . . , uk
such that:

L =
k⋃
i=1

⋃
r∈Si

(umi )∗uri
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where for all i, Si ⊆ {0, . . .m− 1}. Moreover suppose that L satisfies (E6) and
(E9). Then, for all i and all r ∈ Si, one has rm ⊆ Si.

Proof. Let i ∈ {1, . . . , k} and r ∈ Si, let us prove that rm ⊆ Si. First, if r = 0
then rm = {0} ⊆ Si. Otherwise, let d = gcd (r,m). By definition,

rm = {d` | 0 < ` <
m

d
, gcd(`, m

d
) = 1}

Let 0 < ` < m
d be such that gcd(`, md ) = 1. We will use the following theorem:

Theorem 6 (Dirichlet’s theorem on arithmetic progressions). For all positive
integers a, b such that gcd(a, b) = 1, there are infinitely many prime numbers
congruent to a modulo b.

By this theorem, there is a prime number p > m such that p is congruent to
` modulo m

d . Consequently, dp is congruent to d` modulo m. Let us consider
P the cofinite sequence of prime numbers that do not divide m. In particular,
p ∈ P and for all q that divide d, q does not belong to P. Moreover, for n large
enough, zPn is congruent to 1 modulo m. Indeed, by definition, a prime number
p ∈ P does not divide m and thus gcd(m, p) = 1. Then there exist n′ < m such
that pn′ is congruent to 1 modulo m (n′ is the order of the cyclic group formed
by the elements t modulo m, such that gcd(t,m) = 1). Consider n > m! then
for all p ∈ P, pn is congruent to 1 modulo m and so is zPn . Then one gets:

udi ↔ uω+d
i (by equation E6)

↔ udz
P

i

↔ udpz
P

i (by equation E9)
↔ uω+d`

i

↔ ud`i (by equation E6)

Hence, since r ∈ Si then d ∈ Si and finally rm ⊆ Si.

Proposition 22. Let u be a word and r < m be integers. Then:⋃
p∈rm

(um)∗up ∈ B

Proof. By definition, there is d such that for all p ∈ rm, gcd(p,m) = d. Let us
show that: ⋃

p∈rm

(um)∗up = (ud)∗ −
⋃
k s.t.

06k6m
gcd(k,m

d ) 6=1

(ukd)∗

which will conclude the proof. For the first inclusion, let p ∈ rm, and let ` be
an integer. We have the following:

� the integer d divides `m+ p. Thus u`m+p ∈ (ud)∗,
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� let k be an integer such that gcd(k, md ) = c 6= 1. The integer c divides
both k and m

d . If k divides `md + p
d then necessarily c divides also p

d . But
gcd(md ,

p
d ) = 1. Hence this is impossible. So k does not divide `md + p

d ,
and so kd does not divide `m+ p and finally

u`m+p /∈
⋃
k s.t.

06k6m
gcd(k,m

d )6=1

(ukd)∗

That is why:
u`m+p ∈ (ud)∗ −

⋃
k s.t.

06k6m
gcd(k,m

d )6=1

(ukd)∗

As for the reverse inclusion, let ` be an integer such that:

ud` ∈ (ud)∗ −
⋃
k s.t.

06k6m
gcd(k,m

d ) 6=1

(ukd)∗ (?)

One has `d = qm + p for some 0 6 p < m (euclidean division). It remains to
prove that this p belongs to rm that is to say that gcd(p,m) = d. First d divides
m and then p. Then one gets ` = qmd + p

d . So, a divisor of pd and m
d divides `.

Let k be such an integer then by (?), either k > m or gcd(k, md ) = 1 and then
k = 1. So the only divisor of p

d and m
d is 1, and so we get gcd(p,m) = d and

then
ud` ∈

⋃
p∈rm

(um)∗up

Theorem 7. Let L be a regular language and m be the index of its syntactic
monoid. The following properties are equivalent:

1. L ∈ B.

2. L satisfies the sets of equations (E1), (E6) and (E9).

3. If L 6= A∗ then there are:

� a finite set of pairwise distinct words (ui)i=1...k,
� for each i, a finite set of integers Si that is a finite union of equiva-
lence classes of ≡m,

such that:

L ∪ {1} =
k⋃
i=1

⋃
r∈Si

(umi )∗uri or L− {1} = (
k⋃
i=1

⋃
r∈Si

(umi )∗uri )c
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Proof. 1 implies 2: By Proposition 10, u∗ satisfies the sets of equations (E1),
(E6) and (E9).

2 implies 3: Suppose that L satisfies (E1), (E6) and (E9) and is different
from A∗. By Theorem 2, there are an integer k > 1 and for all i ∈ {1, . . . , k}, a
word ui and a non-negative integer ri 6 m such that:

L =
k⋃
i=1

(umi )∗uri
i or L = (

k⋃
i=1

(umi )∗uri
i )c

where m is the index of the syntactic monoid of L. Suppose that we are in
the first case and that L =

⋃k
i=1(umi )∗uri

i , otherwise we can argue on Lc that
satisfies the same equations. One can reformulate: there are an integer k > 1,
a finite sequence of pairwise distinct words (ui)i=1,...,k and sets of integers Si ⊆
{1, . . . ,m} such that: L =

⋃k
i=1
⋃
r∈Si

(umi )∗uri . Since L satisfies (E6) and (E9)
then by Proposition 21, for all i and all r ∈ Si, rm ⊆ Si. Thus each Si is a finite
union of equivalence classes which concludes the proof.

3 implies 1: By Proposition 22 and the fact that B is closed under union.

6. Decidability

The characterisations that are given in Theorems 1 and 5 yield as a counter-
part the decidability of the classes Bq, Lq, L and B: given a regular language L,
one can decide if L belongs to said classes. Every single equation is effectively
testable. The main issue is to test an infinite set of equations in finite time. The
idea is to test the equations in the syntactic monoid of L that is finite and thus
test a finite number of equations. The first step is to compute M , the syntactic
monoid of L, m its index, ϕ the syntactic morphism and P , the syntactic image
of L. They are all computable from the minimal automaton of L. Then, it is
sufficient to check if the sets of equations are satisfied directly in M and P ,
which are finite. More precisely:
(E4): for all x, y, z ∈M , yxmz ∈ P ⇒ yz ∈ P
(E5): particular case of (E4)
(E6): for all x ∈M , for all 0 < ` < m, x` ∈ P ⇔ xm+` ∈ P
(E7): particular case of (E4)
(E8): for all x ∈M , for all 0 < ` 6 2m, x ∈ P ⇒ x` ∈ P
(E9): thanks to the notion of equivalence classes given in Section 5.1, testing
equations in (E9) is the same as testing that for all x ∈M , for all 0 6 r, s < m
such that r ≡m s, xr ∈ P ⇔ xs ∈ P .

It is much more difficult to translate sets of equations (E1), (E2) and (E3)
in M since conditions “xy 6= yx”, “y /∈ Px” and “y /∈ Sx” cannot be translated
directly in M .
(E1): consider x, y ∈ M such that xmym 6= 0. One has to check that for all
words u ∈ ϕ−1(x), v ∈ ϕ−1(y), uv = vu.
(E2): consider x, y ∈M such that xmy 6= 0. One has to check that for all words
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u ∈ ϕ−1(x), v ∈ ϕ−1(y), v ∈ Pu.
(E3): same as (E2)

Let us now prove the decidability of the sets of equations (E1) and (E2). We
are going to prove that one can decide if a given language L satisfies these sets of
equations. Consider a non empty regular language L, its syntactic monoid M ,
its syntactic morphism ϕ and its syntactic image P . We will use the following
basic lemma, which can be found for example in [7]:

Lemma 3. For all words u, v ∈ A∗, if uv = vu then there is a primitive word
w ∈ A∗ such that u ∈ t∗ and v ∈ t∗.

First let us remind (E1):

xωyω = 0 for x, y ∈ A∗ such that xy 6= yx (E1)

The language L satisfies (E1) if and only if for all x, y ∈M such that xωyω 6= 0,
for all words u ∈ ϕ−1(x), v ∈ ϕ−1(y), one has uv = vu. For proving the decid-
ability of this problem, it is sufficient to prove the decidability of the following
one:

Given two non empty regular languages L and K, for all words u ∈ L and
v ∈ K, are uv and vu equal?

Moreover, as shown by the following lemma, this problem is equivalent to
checking if for all words u ∈ L ∪K and v ∈ L ∪K, uv = vu.

Lemma 4. For all words u, v, w with w 6= 1, if uw = wu and vw = wv then
uv = vu.

Proof. Suppose that uw = wu and vw = wv. Then, by using Lemma 3, there
are two primitive words t, s ∈ A∗ such that u, w ∈ t∗ and v, w ∈ s∗. Thus
w ∈ t∗ ∩ s∗. But since s and t are primitive, necessarily s = t. Finally,
u, v, w ∈ t∗ = s∗ and uv = vu.

Thus, it is sufficient to consider the problem:
Given a regular language L, for all words u, v ∈ L, uv = vu?

Finally, we prove that a language satisfies this property if and only if it is a
subset of a language t∗ for a word t. This property is decidable: consider the
smallest word s ∈ L with respect to the shortlex order and t the (unique)
primitive word such that s ∈ t∗. It is sufficient to check that L ⊆ t∗.

Lemma 5. Let L be a regular language. For all u, v ∈ L, uv = vu if and only
if there is t ∈ A∗ such that L ⊆ t∗.

Proof. ⇐: clear
⇒: Let u ∈ L − {1}, denote by tu the (unique) primitive word such that

u ∈ t∗u. Let v ∈ L, since uv = vu then, thanks to Lemma 3, there is a primitive
word t such that u, v ∈ t∗. Necessarily, t = tu = tv. Thus, L ⊆ t∗.
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Let us now remind the equation (E2):

xωy = 0 for x, y ∈ A∗ such that y /∈ Px (E2)

The language L satisfies (E2) if and only if for all x, y ∈M such that xωy 6= 0, for
all words u ∈ ϕ−1(x), v ∈ ϕ−1(y), one has v ∈ Pu. For proving the decidability
of this problem, it is sufficient to prove the decidability of the following one:

Given two regular languages L and K, for all words u ∈ L and v ∈ K, does
v belong to Pu?
We prove that this problem is decidable by distinguishing two cases. First, we
deal with the case where K is finite. Let v ∈ K. For all u ∈ L such that
|u| 6 |v|, check that v ∈ Pu. Otherwise, if |u| > |v|, the condition v ∈ Pu means
that v is a prefix of u. So, one can just test if {u ∈ L | |u| > |v|} is a subset of
vA∗. Second, we assume that K is infinite. Then, as shown in the next lemma,
L satisfies that for every u,w ∈ L we have uw = wu.

Lemma 6. Let u, v, w words such that v ∈ Pu, v ∈ Pw and |v| > 2 max(|u|, |w|).
Then, uw = wu.

Proof. Let v ∈ Pu ∩ Pw. Then there are two non negative integers `, k, a
prefix of u, pu and a prefix of w, pw such that v = u`pu = wkpw (?). Since
|v| > 2 max(|u|, |w|) then min(`, k) > 2. Let us suppose that ` 6 k (and thus
|w| 6 |u|). By (?) and since ` > 2, there are two words w1, w2 and a non
negative integer p such that:

� w = w1w2,

� u = (w1w2)pw1,

� w2w1 is a prefix of u.

Then, w1w2 = w2w1, and uw = wu.

Moreover, thanks to Lemma 5, a language L satisfies for every u,w ∈ L,
uw = wu if and only if it is a subset of a language t∗ for a word t. The first
step is to check that L ⊆ t∗ and to compute such a word t. Finally, if L ⊆ t∗,
the two following conditions are clearly equivalent:

1. For all words u ∈ L and v ∈ K, v ∈ Pu.

2. For all words v ∈ K, v ∈ Pt.

Thus, it is now sufficient to check that K ⊆ Pt, which is decidable.

7. The case of a unary alphabet

This section summarises results for a unary alphabet. In this case, the
syntactic monoid of a language of the form (ak)∗ has no zero and moreover the
construction of ρA, given in [1, 12] for larger alphabets, does not make any sense
for a singleton alphabet. To extend the proof of the two-letter case, we will use
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the fact that a regular language over the alphabet A = {a} is a finite union of
languages of the form (aq)∗ap for non negative integers p and q. Observe that
finite languages are those with q = 0. We can derive from proofs made for the
general case the form of languages and the equations characterising Bq, Lq, L
and B. The one letter case Bq, Lq, L and B could be adapted from the proof but
is not, unfortunately, a straightforward consequence. In particular, it is needed
to redo some of the proof.

The major difference with the two-letter case is that Bq can no longer capture
the finite languages (except the empty language and the language containing
only the empty word). We will show in Theorem 8 that it is characterised by
the equations:

xω+1 = x (E10)

Moreover it contains languages that are a finite union of languages of the
form (aq)∗ap for q > 0 and 0 6 p 6 q (plus the language {1}).

Classes Lq, L and B are restrictions of Bq in the same way as in the two-letter
case. In Theorem 8, we will prove the following characterisations.

• Languages in Lq are a finite union of languages of the form (aq)∗ap for
q > 0 and 0 6 p < q (plus the language {1}). The class Lq is characterised
by equations (E4) and (E10).

• Languages in L are a finite union of languages of the form (aq)∗ for a non
negative integer q, and L is characterised by equations (E4), (E8) and
(E10).

• Languages in B are a finite union of languages of the form ∪p∈S(aq)∗ap
for a positive integer q and S an equivalence class of ≡q and languages of
the form (aq)>1 for a non negative integer q. The class B is characterised
by equations (E9) and (E10).

The syntactic monoid of (aq)∗, for a positive integer q, is the cyclic group Z/qZ.
We will use the multiplicative notations: 1, a, . . . aq−1. The syntactic morphism
associates a word ap to ap mod q. Thus the only idempotent in the syntactic
monoid of (aq)∗ is the image of the empty word 1 whose preimage is the language
(aq)∗.

The syntactic monoid of {1} contains two elements, 1 and 0, both idempo-
tent. The element 1 is the image of the empty word, while 0 is a zero and is the
image of all non empty words.

Proposition 23. For all non negative integers q, the language (aq)∗ satisfies
the sets of equations (E4), (E8), (E9), (E10).

Proof. (E4): It is the same proof as in the two-letter case given in Proposi-
tion 10.

(E8): By definition. It is the same proof as in the two-letter case given in
Proposition 10.
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(E9): It is the same proof as in the two-letter case given in Proposition 20.
(E10): If q = 0, that is to say if we consider the language {1}, the two

elements of the syntactic monoid satisfy the equation since 0ω+1 = 0 and 1ω+1 =
1. If q 6= 0, then the syntactic monoid of (aq)∗ contains only one idempotent (the
image of 1, or aq). If x is an element of the cyclic group, then xω+1 = 1x = x.

Proposition 24. For all q > 0, 0 6 p 6 q, the language (aq)∗ap belongs to Bq.

Proof. If 0 6 p < q, then (aq)∗ap = (aq)∗(aq−p)−1, thus belongs to Bq. If p = q,
then (aq)∗ap = (aq)+ = (aq)∗ − {1} ∈ Bq.

Theorem 8. Over a unary alphabet:

1. The class Bq is defined by equations (E10).

2. The class Lq is defined by equations (E4) and (E10).

3. The class L is defined by equations (E4), (E8) and (E10).

4. The class B is defined by equations (E9) and (E10).

Proof. By Proposition 23, the languages that generate respectively Bq, Lq, L
and B satisfy (E4), (E8), (E9), (E10). What remains to be done is to prove that
a regular language that satisfy (E10) (resp. plus (E4), (E8), (E9)) belongs to
Bq (resp. Lq, L, B).

1. We will use the well-known form of regular languages over a one-letter
alphabet, given in the following Lemma.

Lemma 7 (Folklore). A regular language over the alphabet {a} is a finite union
of languages of the form (aq)∗ap for two non negative integers q and p.

Let L be a regular language satisfying (E10). Let m denote the index of the
syntactic monoid of L. First, for p > 0, if ap ∈ L then (am)∗ap ∈ L thanks to
(E10). Then by using Lemma 7, L is a finite union of languages of the form
(aq)∗ap for q > 0 and p > 0 and of the language {1}. Now, suppose that
(aq)∗ap ⊆ L for some q > 0 and p > q, then a2mqap−q ∈ L and by (E10),
ap−q ∈ L. Thus, (aq)∗ap−q ⊆ L. Thus, finally L is a finite union of languages
of the form (aq)∗ap for q > 0 and 0 6 p 6 q and of the language {1}. We can
now conclude by using Proposition 24 that L ∈ Bq.

2. Let L be a regular language satisfying (E10) and (E4). By the previous
item, L ∈ Bq, thus is a finite union of languages of the form (aq)∗ap for q > 0
and 0 6 p 6 q and of the language {1}. Let q > 0. Suppose that (aq)>1 ⊆ L.
Then by (E4), 1 ∈ L, and thus (aq)∗ ⊆ L. So, finally, L is a finite union of
languages of the form (aq)∗ap for q > 0 and 0 6 p < q and of the language {1}.
And for all q > 0 and 0 6 p < q, (aq)∗ap = (aq)∗(aq−p)−1 ∈ Lq. Thus L ∈ Lq.

3. and 4. The proofs of these two items are similar to their generic case.
The proof of item 3. is the same as the one given in Theorem 4. As for the
proof of item 4., it is similar to the one given in Theorem 7 in the two-letter
case.
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8. Conclusion

This paper gives an equational description of the lattice and Boolean alge-
bra generated by languages of the form u∗; as well as of their closures under
quotients. These descriptions illustrate the power of the topological framework
introduced by [5]. In particular, it gives us tools to describe in an effective way
these classes of languages.

The next step could be to investigate either the case of the classes of lan-
guages generated by F ∗ where F is a finite set of words, or the case of the classes
generated by u∗1u

∗
2 . . . u

∗
k where u1, . . . , uk are words. An answer to either of

these questions will help us gain a better understanding of the phenomena that
appear in the study of the variety generated by the languages u∗ and of the
generalised star-height problem.
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