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Abstract

We describe an expert system to monitor the stability of insurance markets. It consists

of two components: an agent-based simulation component and a temporal data mining

component. Like other financial markets, insurance markets experience destabilizing cycles

and suffer episodic crises. The expert system assists market regulators by monitoring

the financial position of individual insurers and of the overall market, and by forecasting

cycles and impending insolvencies. The agent-based simulation component runs a forward

simulation allowing for interaction among insurers in a competitive market, and between

insurers and customers. The temporal data mining component extracts useful information

for market regulators from the simulations. A prototype of the system is applied to the

automobile insurance market. We show how the system may be used to forecast cycles,

investigate stability, and analyze insurers’ herding behavior on the market. A practical

policy conclusion is that regulators should monitor individual insurers’ pricing pattern

because aggressive price undercutting creates a “winner’s curse”, with subsequent losses

and market instability.
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1. Introduction

The financial crisis of 2008 and the ensuing recession have been the latest illustration of

the unstable nature of financial markets. Insurance markets experience similar turbulence,

much of it endogenously generated and unrelated to other financial markets. Insurance

suffers from cycles in prices, in coverage for customers, and in profitability for insurers.

Crises occur when there are deep troughs in the cycles, with exorbitant insurance prices,

unavailability of insurance cover, and slow recovery thereafter (Dionne, 2013). Market

regulators face a difficult task in attempting to forestall potential problems by acting

countercyclically to stabilize markets. In this article, we describe an expert system which

can assist insurance market regulators in this task. This is, to the best of our knowledge,

the only expert system of its kind to help regulators monitor insurance markets.

The expert system that we propose consists of two components: an agent-based sim-

ulation component and a temporal (or time series) data mining component. The expert

system can assist any national or state-wide insurance market regulator, such as the Fed-

eral Insurance Office in the U.S. Department of Treasury or the Prudential Regulation

Authority at the Bank of England. The agent-based sub-system constitutes the knowledge

base of the expert system, in that it takes information about the structure of the market

with up-to-date statistics about insurers and customers, and projects this forward. It has a

visualization tool to help regulators understand how the market is evolving. The regulator

can monitor and forecast the performance of individual insurers and of the market as a

whole. Simulations can be re-run using different parameter values to determine the effect

of policy actions taken by the regulator.

The temporal data mining component of the expert system is the inference engine of

the expert system. It takes the information generated within the agent-based component

and uncovers patterns about market behavior. This can assist the regulator in detecting

insurer insolvency and systemic instability, and in formulating policy to mitigate risks.

Agent-based models create bottom-up simulations, starting at an individual agent level,

but enabling interactions between heterogeneous agents. Because of this, considerable
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amounts of simulated data are generated in the form of time series about individual in-

surers’ prices, losses, sales, capital, customer base, underwriting results etc. The data

mining component makes sense of streaming time series simulated data from the agent-

based simulation component. It can detect anomalies in the pricing or reserving of any of

the insurers. For example, insurers may loosen underwriting standards dangerously and cut

prices excessively to attract customers, leading to subsequent insurance insolvencies, from

which customers lose out. The data mining component can also keep track of the overall

market, detecting cycles (periodicities) in various insurance metrics. Since the simulation

component is running forward in time, the data mining component is in effect forecasting

anomalous insurer behavior and cyclical activity in the market.

There are a number of expert systems which share features with ours. The one which

is closest, in terms of motivation, is the agent-based expert system of Streit & Borenstein

(2009, 2012). Their system is concerned with the regulation or governance of the overall

financial system, particularly the banking sector. By contrast, our system is concerned

with the insurance sector only. Their system consists of two components: an agent-based

component at the micro level, and a traditional econometric model to capture macroeco-

nomic variables. The system that we describe in this paper also consists of an agent-based

component, but we combine it with a temporal data mining component to visualize and

analyze the simulation output from the agent-based simulation model. The financial gov-

ernance system of Streit & Borenstein (2009, 2012) incorporates the monetary authority

(central bank) as an agent and seeks to predict interest rate decisions, whereas our sys-

tem takes the viewpoint of an external market regulator who has oversight of insurance

firms for macro-prudential stability and for customer protection. The agents in Streit &

Borenstein’s (2009) system use a set of if-then fuzzy logic rules, whereas ours behave in

accordance with microfoundations in insurance.

Two other systems related to ours are the premium rating expert systems of Lin (2009)

and Imriyas (2009). Lin’s (2009) decision support tool, based on a back-propagation neural

network, helps insurance underwriters set premiums for fire insurance policies. Imriyas’s

(2009) system uses fuzzy logic to calculate rates for workers’ compensation insurance in
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replacement of traditional insurance rating systems based on the claims experience of

individuals working in the construction industry. Neither of these systems looks at the

insurance market as a whole, however. Underwriting and actuarial rate-making are part

of insurance pricing and hence are central to our system too, since the stability of an

insurance market comes down to supply and demand for insurance products.

Also related to insurance pricing is the work of Guelman & Guillén (2014) who develop

a causal-inference framework to measure the price-elasticity of demand for automobile in-

surance. This is designed to supplement actuarial rate-making and help insurers determine

the impact on sales of a change in premium rates. In our system, demand-based pricing is

also combined with actuarial cost-based pricing. Our insurer-agents use an optimization

heuristic for this purpose, as might be realistically employed by insurance underwriters.

Expert systems are also widely used in marketing to insurance customers. Hsu (2011)

uses a neural network to classify insurance policyholders by financial risk attitude, and

Kaishev et al. (2013) use actuarial credibility-related techniques to cross-sell products to

insurance customers. Lin (2010) trains a nonlinear fuzzy neural network on data about

insurance customers’ personality and emotional traits to capture the relationship between

customers and insurers, and predict customers’ inclination to switch to another insurer.

To the best of our knowledge, our paper is the first to apply data mining to discover

patterns and extract knowledge from agent-based simulations. Data mining algorithms

and predictive models are of course used in several other areas of insurance, notably fraud

detection and marketing. In marketing, decision trees are used by Wu et al. (2005) and

clustering analysis is applied to customers’ financial lifecycle decisions by Liao et al. (2009).

To detect insurance fraud, Shin et al. (2012) employ a scoring model whereas Šubelj et al.

(2011) use social network analysis. Kuo et al. (2007) use association rules mining and

clustering analysis on health insurance data. Guelman (2012) proposes a statistical learning

technique, gradient boosting trees, to predict insurance claims.

Unlike the earlier literature, this paper is concerned with the stability of insurance

markets from the viewpoint of an official market regulator. (Financial stability in general is

discussed by Tsomocos (2003), Samitas et al. (2018) and others, but we restrict ourselves to
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insurance here.) Insurance markets suffer from destabilizing cycles and crises so an expert

system that can assist market regulators has the potential to ameliorate the operation of

these markets, benefiting customers and the economy generally. In the next two sections,

we describe our agent-based simulation of the insurance market and the associated data

mining tools. We then validate the system on the automobile insurance market and we

show how an insurance regulator can use the system to forecast cycles on the market, to

investigate market stability, and to analyze herding behavior of insurers.

2. Agent-Based Simulation Component

2.1. System Structure

The system is executed by first running the agent-based simulation component, which

comprises current data about the market and generates multiple simulation sample paths.

The simulation data is then fed through to the data mining sub-system which performs

pattern discovery. In this section, we provide a step-wise description of the agent-based

simulations. The data mining part is described later in section 3.

2.2. Agents and Simulation Landscape

The agent-based system simulates an insurance market, such as the automobile insur-

ance market. Automobile insurance is compulsory in many jurisdictions, so we assume

that there is a number M of customers who have to buy insurance at the beginning of

every year. There are N insurers who sell automobile insurance policies. Insurers are het-

erogeneous in the sense that they have different business attributes. Customers are also

heterogeneous because they have different preferences, or affinities, over the attributes of

their insurance provider. Expert systems used for marketing to insurance customers, such

as the ones of Kaishev et al. (2013), Hsu (2011) and Lin (2010), exploit this very hetero-

geneity. Customers and insurers are self-directing and interacting agents and they live on

an n-dimensional simulation landscape, given n relevant business attributes. An example

of a 2-d business attribute space is shown in Figure 1. The location of an insurer in this
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Figure 1: A simulation landscape, or business attribute space, in the agent-based system. Insurers and

customers are represented by larger dots and smaller circles respectively. The insurer’s business attributes

determines its location on the space. The proximity of a customer to an insurer signifies greater affinity

by the customer for the insurer’s business attributes.

space is determined by its attributes. The proximity of a customer to an insurer on the

space measures the affinity that the customer has for the insurer’s attributes.

Business attributes may be quantifiable, or they may be non-measurable. Examples of

the former include expenditure on advertising, expenditure on internet advertising, number

of followers on Twitter, median age of insurer’s policyholders, median market value of car

or other property insured with the insurer, customer retention rate, number of customer

complaints filed with regulator or ombudsman etc. These variables define whether the

insurer is targeting customers in a particular demographic, or targeting them using a

particular channel (for example, direct selling or use of an aggregator website). These

quantities may be normalized and represented as a coordinate of the simulation landscape,

so that every insurer can be located directly on the space. Customers may be also be
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directly located on the space if the coordinate relates to a customer attribute, for example

age, otherwise they are randomly distributed on the relevant dimension in the simulation

space (following a normal or uniform distribution depending on the relevant characteristic).

On the other hand, business attributes may also be non-measurable, for example, per-

ceived reputation, branding, and image. Such attributes are distinct from product qual-

ity: all rational customers prefer better quality, but their response to attributes such as

corporate image is more subjective. If business attributes are non-measurable, then the

relevant coordinate of the simulation landscape can be purely abstract. Both insurers and

customers may then be located randomly on the business attribute space. This has the

benefit of allowing for insurer heterogeneity in respect of these business characteristics, and

also customer heterogeneity in respect of response to these characteristics.

2.3. Outline of Execution of Agent-Based Market System

The steps in the execution of the market system are outlined in Figure 2. The discrete

time unit in the system is a policy year, which is assumed to be the same for all customers.

Every insurer offers a price to every customer at the beginning of the year: insurer i offers

a price Pit, at the start of year (t, t+1).(The price Pit can be viewed as a price per unit of

risk, as in the simplified insurance simulation model of Taylor (2008).) An N×M array

is constructed containing the total cost TCijt, for every customer j, of buying insurance

from insurer i, where the total cost is a linear combination of price and customer-insurer

distance. (The precise specifications for Pit and TCijt are given below in sections 2.4 and

2.5 respectively.) Customers buy the least-cost available policy, based on a ranking by

total cost.

During the year, insurance claims are randomly generated. Insurers pay out at the end

of the year. Their financial position is then evaluated. Insurers decide on their pricing for

the following year based on their claims experience during the preceding year as well as

experience on the overall market. Insurers also revise their business strategy by changing

location on the simulation landscape and moving in the direction of the most financially

successful insurer within their local peer group of competitors, if they are not the most
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Figure 2: An outline of the execution of the agent-based market system.
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successful themselves. The market process then resumes again at the start of the next

policy year.

2.4. Pricing by Insurers

In order to price the insurance policies that they sell, insurers in the agent-based system

closely replicate actual insurance pricing methods, as described by insurance experts such as

Kaas et al. (2008), Hart et al. (2007) and Booth et al. (2005). A pure or statistical premium

rate P̃it is first calculated based on historic average claim amounts. (The specification for

P̃it is given below in section 2.7.) Two adjustments are then made.

The first adjustment allows for the riskiness or volatility of claims. A risk or safety

loading is added to the pure premium based on the standard deviation Fit of claim amounts

made against insurer i by time t. An actuarial premium rate is then calculated as P̃it+αFit,

where α > 0 is a safety (risk) loading factor. An insurer therefore charges a higher premium

if claims are volatile and the insurer is exposed to greater risk. The safety loading factor α

determines how much weight is given to the volatility or riskiness of claims when calculating

premiums. See Kaas et al. (2008) for comprehensive details about safety loading and risk

measures other than the standard deviation.

The second adjustment is a commercial adjustment to the premium rate, made by

underwriters when they sell insurance policies, which gives the price Pit offered by insurer i.

This depends on demand from customers and market pressure from competitors. In the

agent-based system, this is implemented through a mark-up to the actuarial premium. The

price offered by insurer i at time t is

Pit =
(
P̃it + αFit

)
emit , (1)

where mit is a log mark-up. The mark-up depends on the price-elasticity of demand that

the insurer estimates for its product. Insurer i estimates this by calculating an arc-elasticity

of demand at time t over the previous two periods (Petersen & Lewis, 1999, p. 82):

ε̂it =
(Qi,t−1 −Qi,t−2)/(Qi,t−1 +Qi,t−2)

(Pi,t−1 − Pi,t−2)/(Pi,t−1 + Pi,t−2)
, (2)
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where Qi,t denotes the number of insurance policies sold by insurer i at time t and Pi,t

denotes the price of these policies. Standard economic theory states that a firm will

maximize its profit if it charges a price P ∗ = MC × (1 + ε−1)−1, where ε is the price-

elasticity of demand and MC is marginal cost Petersen & Lewis (1999, p. 429). Comparing

P ∗ with Pit in equation (1), and noting that ε−1 is typically small in a highly competitive

market such as automobile insurance, suggests that insurers in the agent-based system use

a first-order approximation for the mark-up as follows:

m̂it ≈ −
1

ε̂it
= −(Pi,t−1 − Pi,t−2)(Qi,t−1 +Qi,t−2)

(Qi,t−1 −Qi,t−2)(Pi,t−1 + Pi,t−2)
, (3)

and then estimate the profit-maximizing mark-up by using exponential smoothing (with

0 < β ≤ 1):

mit = βm̂it + (1− β)mi,t−1. (4)

(There is a small probability that, purely by chance in the course of a stochastic simulation,

Qi,t−1 = Qi,t−2 in equation (3), which would lead to an infinite value of m̂it. In this case,

the insurer does not update his estimate in equation (4) and sets m̂it = mi,t−1.)

The first-order approximation in equation (3) is justified because demand is typically

very sensitive to an individual insurer’s offered price in a highly competitive market such

as automobile insurance (so that −ε̂−1
it is typically small in equation (3)). The exponential

weighted moving average in equation (4) is also a pragmatic choice because insurance

prices offered to individual customers are changed gradually by insurers. Furthermore,

exponential smoothing is often an effective business forecasting tool (Hyndman et al.,

2008).

In practice, it is difficult to evaluate an insurer’s price-elasticity of demand precisely.

It varies with time, with the changing customer base of the insurer, and with the dynamic

competition experienced by the insurer. In the agent-based simulation, as in the real world,

customers and insurers are interacting inter-temporally: customers move dynamically from

one insurer to another, and insurers dynamically react to this by adjusting their prices to

maximize profit. Some insurance analysts, such as Warthen & Somner (1996), refer to the

elasticity of demand faced by individual insurers as a variable that cannot be estimated.
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Expert systems based on causal inference have been developed recently to measure such

price sensitivity: see Guelman & Guillén (2014). The premium rating expert systems

of Lin (2009) and Imriyas (2009) are also noteworthy, as they remove imprecision and

subjective judgment from the pricing process, but they do not incorporate a response to

market competition.

2.5. Purchasing Decision by Customers

The agent-based simulation system provides for realistic behavior of customers. Clearly,

customers respond to price but are also influenced by various characteristics of the insurer,

for example its advertising methods, branding, reputation, perceived quality of service

etc. Large amounts are spent on advertising and marketing precisely because of this.

The simulation space, as exemplified in Figure 1, captures the fact that these non-price

attributes matter. Location models such as this have been successfully used in a number

of agent-based models, for example by Ladley (2013) in his model of contagion in banking.

The customer-agents in the insurance market simulation seek an insurance policy with

a low price but also an insurer whose business attributes they prefer. At the start of year

(t, t+1), customer j chooses insurer i based on the lowest total cost TCijt, defined as

TCijt = Pit + γ∆ij, (5)

where ∆ij is the shortest Euclidean distance between insurer-agent i and customer-agent

j on the business attribute space. Here, γ is a cost per unit of distance, and it penalizes

distance relative to price.

2.6. Insurers’ Capital and Customers’ Claims

During the policy year, random claims against insurance policies are generated. For

every insurance policy sold, the timing of insurance claims follows a Bernoulli distribution

with parameter b, whereas the amount of the claim follows a Gamma distribution with

mean µG and standard deviation σG. We assume that claims occur as an independent

and identically distributed process. If catastrophic events occur, such as natural disasters,
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then this assumption is clearly violated as many policyholders will claim at the same time

and for the same kind of damage. As a first approximation, however, it is reasonable to

disregard catastrophic events.

Insurers are endowed with capital from the outset. Their capital decreases as they

pay out claims and increases as they earn premium income. Insurers endeavor to remain

solvent by holding capital against every insurance policy that they sell. (This loosely

mirrors solvency regulations. Insurers are required to hold capital so that they can pay

out claims as and when the claims arise.) If they exhaust their capital, and cannot sell

more policies, then some customers will not receive the least-cost policy. In this case, a

random selection of customers buy from the insurer, while the remaining customers buy

from their second-ranking insurer, and so forth, until all customers are insured. Finally,

we note some implicit, simplifying assumptions in the agent-based simulation: customers

cannot cancel their policies mid-year; there is no fraudulent insurance claim; there is zero

inflation, administration expense, and tax on insurance premium for customers and on

corporate profit for insurers.

2.7. Updating Prices

The agent-based simulation component of our expert system also enables insurer-agents

to learn from their experience and from the market. At the end of every policy year, the

pure premium P̃it in equation (1) is calculated by every insurer as a credibility-weighted

estimate based on its claim history and the market-collected average claim. This mirrors

standard actuarial costing methods, as detailed by Kaas et al. (2008, p. 203–227) for

example, as well as the claims information pooling activity of insurance rating bureaus or

advisory organizations such as the Insurance Services Office in the U.S. or the Claims and

Underwriting Exchange in the U.K. Note that credibility is also proposed by Kaishev et al.

(2013) and Thuring et al. (2012) as a technique to market products to insurance customers.

Insurer i computes the pure premium

P̃it = zX it + (1− z)λµ, (6)
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where X it is the average annual insurance loss of insurer i at time t. Also, λ and µ represent

the average claim frequency per unit risk exposure and the average claim size respectively,

as collected across all insurers during one simulation run, and z ∈ [0, 1] is a credibility

factor which weights the insurer’s own claims experience against the market experience as

a whole. Further, X it is calculated as a weighted average:

X it = wXi,t−1 + (1− w)X i,t−1, (7)

where Xi,t−1 is the insurance loss made by insurer i in the year to time t− 1. The weight

w ∈ [0, 1] determines how much weight should be given to past claims history.

2.8. Updating Business Strategy

The insurer-agents in the agent-based simulation do not have to be static on the simu-

lation landscape or business attribute space. At the end of the year, insurers may change

their business strategy, by directly modifying their attributes. For example, they can

choose to increase expenditure on customer complaints handling, or they may devote more

resources to augment their social media presence, or they may choose to focus on a partic-

ular demographic of the population (for example, older customers with luxury vehicles).

Changing business strategy means that insurers move on the simulation space. We

define a speed parameter array Θ = {θi ∈ [0, 1] : i = 1, . . . , N}, where θi is the speed with

which insurer i can move. We also define a scope parameter array Φ = {φi ∈ [0, 1] : i =

1, . . . , N}, where φi is the scope of insurer i’s peer group.

More specifically, θi ∈ [0, 1] is the normalized Euclidean distance on the simulation space

over which insurer i moves at the end of every year. The agent-based system assumes that

insurers move towards strategies which are successful, by comparing themselves to their

peers. Peer membership is determined as follows. At the end of the year, the underwriting

result for every insurer is calculated in the form of the insurer’s loss ratio, which is the

insurance loss (total claims) for the year divided by premium income for the year. An N×N

symmetric array containing the shortest Euclidean distance between every pair of insurers

is updated. For every insurer i, we sort through this array to determine a proportion
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φi ∈ [0, 1] of insurers who are close to the insurer on the simulation landscape. These

insurers form the peer group. Insurer i then searches for the best-performing insurer in

the peer group, this being the insurer with the lowest loss ratio in the past year. At the

beginning of the next policy year, insurer i will then change its location to move over a

distance of θi in the direction of the best-performing insurer. The peer group of insurer i

includes insurer i, so insurer i does not move if it is the best-performing insurer in the

group.

The fact that insurers compare themselves with some, and not necessarily all, of their

competitors is also captured in the insurance model of Taylor (2008), where insurers com-

pare themselves with insurers of about the same size as themselves. Depending on the

attribute represented on a given axis of the simulation landscape, the landscape may be

assumed to wrap around itself, to avoid boundary effects as the insurer-agents move about

the simulation space.

2.9. Simulation Outputs

For every insurer-agent, the agent-based simulation system outputs a multivariate time

series containing: the price charged by every insurer, the number of policies that it sells, the

insurance loss faced by every insurer at the end of the year, and the location coordinates

of the insurer on the simulation space. The insurer’s premium income for the year is the

price multiplied by the number of sales. Insurance analysts are usually concerned with

the insurer’s loss ratio, which is the annual insurance loss expressed as a proportion of

the annual premium income. The insurance market regulator will also be concerned with

the overall market loss ratio, computed by summing premium income and losses over all

insurers in the market.

2.10. Visualization

The agent-based system incorporates simple visualization tools enabling the user to

observe the evolution of the market in aggregate. Customers are fixed on the simulation

space, but their distribution (possibly randomly allocated) can be visualized as in Figure 3.
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Figure 3: Visualization of customer distribution in the simulation space of the agent-based system.

The movement of insurers can also be followed, with the amount of capital held by the

insurers (their financial ‘size’) and the network of peers against which insurers compare

themselves being highlighted: see Figure 4. This can help the insurance market regulator

observe market dominance and clustering or herding behavior by the insurers.

3. Temporal Data Mining Component

3.1. Data Mining Tools

The agent-based simulation component simulates the insurance market using a bottom-

up approach. That is, every agent in the market, whether an insurer or customer, is mod-

eled individually. Agents are also heterogeneous and they interact. Simulations therefore

produce a large amount of data in every run. A user such as an insurance market reg-

ulator may run different simulations under different scenarios, for example to stress-test

the market in the event of a major loss. Monte Carlo simulations may also be generated,

by repeating simulations thousands of times, and then computing the probability that a

particular event occurs (for example, the probability that the market average insurance

premium rises by more than 25% in a year).
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Figure 4: Visualization of insurers in the simulation space of the agent-based system. The radius of the

circle drawn around the insurers represents their level of capital. The lines between the insurers show the

peer group against which insurers are comparing themselves. Local clustering of the insurers is apparent.

There are two kinds of patterns that we may wish to uncover about the insurance

market from the large amounts of simulated time series: motifs or repeated subsequences,

and anomalies or unusual subsequences. Motifs indicate periodicity, which can help the

insurance market regulator to forecast cycles in the market. Anomalies indicate unusual

events such as a market crash, excessive volatility, or potential insurer insolvency.

The temporal data mining component of the system is used to uncover patterns in sim-

ulated data from the agent-based component. It consists of three tools: SAX, a time series

discretization algorithm; Sequitur, a grammar induction algorithm; and GrammarViz, a

motif and anomaly discovery tool.

3.2. Symbolic Representation with SAX

The simulated time series from the agent-based simulation system exhibit high dimen-

sionality, high autocorrelation, and are also noisy. The SAX algorithm (Symbolic Aggregate

ApproXimation) is an effective method to represent or approximate such data: it performs
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Figure 5: Symbolic Aggregate Approximation (SAX) discretizes a real-valued time series C resulting in the

piecewise approximation C (top panel). The discrete values are then converted to a string of symbols, such

that every symbol is equally likely to occur according to the standard Normal distribution, resulting in

the symbolic sequence baabccbc (bottom panel). Source: Eamonn Keogh (reproduced with permission).

discretization and symbolic representation on real-valued data such as simulated market

insurance data. SAX was developed by Lin et al. (2003).

The procedure within SAX is depicted in a simplified way in Figure 5. A real-valued

time series is first z -normalized, then split into several equal-length subsequences. A piece-

wise linear approximation of the original time series is then created. The heights of the

linear segments in the piecewise approximation equal the mean values of the subsequences

that they are replacing. The heights are also approximately Normally distributed, and

every segment is then mapped to a symbol in such a way that probabilistic bias is avoided

and every symbol occurs with the same probability under the Normal distribution. Real-

valued data are therefore converted to symbolic sequences. See Lin et al. (2003) for more

details.
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SAX is fast, allows lower bounding with various measures of dissimilarity and performs

dimensionality and numerosity reduction. Although some information in the data is lost

by discretization, it has been shown that SAX preserves and highlights important features

such as cycles and anomalies (Ratanamahatana et al., 2010). The summarization that

is achieved with SAX facilitates and speeds up data mining tasks such as classification,

clustering, anomaly detection and periodicity mining.

3.3. Grammar Induction with Sequitur

Sequitur is an algorithm which performs grammar induction, or syntactic pattern recog-

nition, on symbolic sequences. It was developed by Nevill-Manning & Witten (1997). Sim-

ulated time series data from the agent-based system are converted to symbolic sequences

using SAX by first extracting subsequences via a sliding window. Grammar induction

is then performed on these sequences by Sequitur in an incremental fashion as each new

symbol arrives. The context-free grammar that is inferred is a compact generative represen-

tation of the symbolic sequence and Sequitur is, in effect, a string compression algorithm.

Sequitur takes every word generated by SAX as an input token and recursively reduces

every digram, or consecutive pair of tokens which repeat themselves, to a new symbol.

Sequitur performs grammar inference under two constraints: a utility constraint which

guarantees that all of the new symbols created correspond to recurring patterns in the

SAX-generated symbolic sequence, and a digram uniqueness constraint which ensures that

the digrams that are reduced to a new symbol do not repeat themselves.

The grammar rules that Sequitur generates therefore exploit recurring subsequences in

the data, and hence highlight motifs (repeated patterns). The following example is given

by Li et al. (2012). Consider the string S1 = abcd abcd eab. Sequitur performs grammar

induction and converts this into three grammar rules:

S1 → R1R1eR2 R1 → R2cd R2 → ab

Observing the repetition of the rule R1 in S1 → R1R1eR2, we can tell that the sub-sequence

abcd is a motif and is periodic in the data.
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Figure 6: Screenshot of GrammarViz detecting motifs (recurring patterns) on test data.

The converse problem of detecting patterns which recur the least (or do not recur)

is also of interest. Such patterns are indicative of structural irregularities or anomalies.

The following example is given by Senin et al. (2015). Let S2 = abc abc cba xxx abc abc cba.

Sequitur converts this into three other grammar rules:

S2 → R3xxxR3 R3 → R4cba R4 → abcabc

The subsequence xxx is non-repeated and is an anomaly which stands out in the rule

S2 → R3xxxR3.

3.4. Motif and Anomaly Discovery with GrammarViz

GrammarViz is a software tool which leverages SAX and Sequitur and implements

algorithms to discover anomalies and motifs from time series data (Li et al., 2012; Senin

et al., 2015). A screenshot of GrammarViz appears in Figure 6. Details of the motif and

anomaly detection algorithms in GrammarViz are given by Li et al. (2012), Otunba et al.

(2014) and Senin et al. (2015). We provide only a brief sketch of the algorithms here.
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Figure 7: A motif or recurring pattern which repeats three times, in positions A, B and C, in test data.

Source: Eamonn Keogh (reproduced with permission).

A simulated time series (for example containing insurer loss ratios) from the agent-based

simulated market is passed to GrammarViz, which calls on SAX and Sequitur to convert

the time series to a symbolic sequence and perform grammar inference. GrammarViz maps

all grammar rules back on to the original simulated time series data. Rules can be ranked

by their length and frequency, and may be visualized in a time plot of the data.

The motif-based periodicity detection algorithm in GrammarViz works as follows. For

a motif to be regarded as valid, it must occur at least three times in the data. Suppose that

GrammarViz detects m valid motifs in the simulated data. Three such motifs are shown

in Figure 7. For the ith motif, GrammarViz records the intervals between each occurrence

of the motif, and calculates the mean τ i and standard deviation si of the inter-motif time

intervals. GrammarViz then estimates the periodicity in the data to be equal to τ j where

j = arg infi si. That is, the periodicity is the average inter-motif interval for the motif

which recurs with the least variability. If there is no valid motif, then GrammarViz will

indicate that no periodicity is detectable in the output from the agent-based simulations.

GrammarViz also implements two anomaly detection algorithms (see Senin et al., 2015),

and we describe one of them here. Suppose that the simulated time series input to Gram-

marViz from the agent-based simulation system contains n data points. Since GrammarViz

maps all grammar rules created by Sequitur back on the simulated time series, every data

point is encompassed by one or more grammar rule. GrammarViz creates an array of

length n where each element contains a count of the grammar rules which span the corre-

sponding data point. The array sequence is then plotted to give a rule density curve. This
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Figure 8: Top panel: test data containing anomalous or unusual subsequences. Bottom panel: the grammar

rule density curve attains minima at the location of the anomalies. Source: Senin et al. (2015) (reproduced

with permission).

is illustrated in Figure 8. Data points which are spanned by only a few grammar rules

are unusual or anomalous, and merit further investigation. GrammarViz outputs the time

points at which these anomalies occur.

4. Application to Automobile Insurance Market

4.1. Parameterization and Validation

In this section, we consider an application of our system to the automobile insurance

market in the U.K. In order to parameterize and validate our system, we use data from

the Association of British Insurers (ABI) from 1983 to 2011. We also consider a simplified

agent-based market where the simulation space consists of an abstract circle with insurers

located equidistantly, and customers located uniformly, on the circle. Based on the data,

we obtain baseline parameter values as shown in Table 1.

Most of the parameter values are chosen to give a reasonable representation of the

U.K. automobile insurance market, whilst avoiding long simulation runtimes. For example,

about 97% of market share in the automobile insurance business was held by 20 insurers in
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Parameter Value Definition

α 0.001 Safety loading factor in insurers’ premium calculation, eq. (1)

β 0.3 Weight in insurers’ mark-up calculation, eq. (4)

γ 0.05 Weight in customers’ total cost calculation, eq. (5)

M 1000 Number of customers

N 20 Number of insurers

T 1000 Time horizon of simulation

µG 100 Mean of Gamma-distributed i.i.d. claims

σG 10 Standard deviation of Gamma-distributed i.i.d. claims

b 1 Parameter of claim frequency distribution

w 0.2 Weight in estimation of insurer’s average claim size, eq. (7)

z 0.2 Credibility factor in pure risk premium, eq. (6)

Θ 0N Speed of insurers’ movement on business attribute space

Φ 0N Scope of insurers’ peer group

Table 1: Baseline parameter values in the agent-based simulation system. In the baseline case, insurers do

not move in the business attribute space, so Θ = Φ = 0N , an N -long vector of zeros.
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2011, so we set the number of insurers N = 20. Numerical experimentation shows that the

size of M , the number of customers, relative to N is more important than the absolute size

of M , so we select M = 1000, to represent the fact that there are far more customer-agents

than insurer-agents. The random claims process parameters µG, σG, and b are consistent

with the simulation study of Taylor (2008), and experiments indicate that their only effect

is on the scale and volatility of simulation results. The values that we use for w and z are

based on parameters used by insurance experts on European insurance markets: see Kaas

et al. (2008) and Booth et al. (2005). Since this is a baseline model, we also ignore business

strategy evolution and populate the parameter arrays Θ and Φ with zeros, so that insurers

do not move on the simulation landscape.

The key parameters which have the greatest influence on simulation results are the

behavioral parameters α, β and γ related to the pricing of insurance by insurers and to

customers’ affinity to insurers’ business attributes. We do not have micro-data of sufficient

granularity on insurers and customers to estimate these parameters, so we estimate them

by means of the method of moments combined with repeated Monte Carlo simulations on

a grid of values of α, β and γ. The grid is searched for the parameter values which match

the mean and standard deviation of the simulated market loss ratios to the corresponding

statistics from the actual market data, and which minimize the squared difference between

the lag-1 autocorrelation in the simulated loss ratio and the lag-1 autocorrelation in the

actual loss ratio. Successive refinement and search are performed, with spot checks on

surrounding grid values to verify that a globally optimal set of parameter values is obtained.

In order to validate the model, we test whether the distribution of loss ratios in the

simulated agent-based market is the same as in the actual market. Before this, we test

for stationarity in the loss ratios. The Augmented Dickey-Fuller (ADF) test comfort-

ably rejects the null hypothesis of non-stationarity (unit root) at 5% in both the actual

and simulated loss ratios (actual data: ADF test statistic = −6.075, 1% critical value

= −3.696; simulated: ADF test statistic = −3.504, 5% critical value = 2.975). Testing

the distributions, we find that the two-sample Kolmogorov-Smirnov test fails to reject the

null hypothesis that the actual market loss ratios and the simulated agent-based market
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loss ratios have the same continuous probability distribution at the 5% significance level

(p-value = 0.1997).

4.2. Cycles

An issue of great interest to insurance market regulators is whether the insurance market

is cyclical or whether it performs a “random walk”. Basic theory indicates that markets

should move purely randomly, but market cycles are a stylized fact in insurance and in

finance more generally. Cycles are defined here as a more or less regular succession of peaks

and troughs in the overall profitability of insurers (see Dionne, 2013). Our agent-based

simulation system can be used by a market regulator to determine the conditions under

which cycles are present. The temporal data mining component of the system can be used

to measure, and hence help the regulator forecast, these cycles.

Figure 9 shows the results of one simulation run of the agent-based insurance market

system, with the baseline parameters in Table 1. The top panel of Figure 9 shows one

sample path of loss ratios for a randomly selected individual insurer. The bottom panel

of Figure 9 shows one sample path of loss ratios for all insurers combined, i.e. for the

entire market. The central limit theorem might lead one to expect that, aggregated over

the entire market, loss ratios would be noisy but stable and unstructured. However, the

bottom panel of Figure 9 does appear to exhibit a cyclical pattern. This may be compared

with Figure 10 which shows actual ratios from the U.K. automobile insurance market,

which also appears cyclical. (The combined ratio is also shown on Figure 10 and allows

for expenses, which are relatively stable here, so it is an upward shifted version of the loss

ratio.)

The temporal data mining component can be used to measure cyclicality. On 10 sim-

ulation runs, GrammarViz returns an average periodicity of 6.6 years. This is consistent

with the cycle lengths of 6–8 years estimated in econometric studies (Dionne, 2013; Boyer

& Owadally, 2015). Interestingly, on the actual market data shown in Figure 10, Gram-

marViz returns a periodicity of 8 years in the loss ratio and 6 years in the combined

ratio. This cycle length estimate enables market regulators effectively to forecast turning
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Figure 9: Sample paths of simulated loss ratios for one insurer (top panel) and for overall market (bottom

panel).
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Figure 10: Loss ratios and combined ratios for the U.K. automobile (or ‘motor’) insurance market. Source:

Association of British Insurers.

points in insurance market cycles, and recommend timely and appropriate policy action in

response.

4.3. Volatility

Another issue of interest to insurance market regulators is how to dampen excessive

volatility on the market and avoid a crash, known in the industry as an insurance crisis.

When crises occur, insurers pull out of the market in a bid to stem accelerating losses, and

insurance coverage for customers becomes either unavailable or very expensive.

It might be anticipated that, if insurance regulations encourage insurers to use a slightly

higher safety loading factor α when they price insurance (see equation (1)), then customers

might face slightly higher insurance bills, but would gain from a more stable market and

would avoid steep premium rises or unavailable insurance during crisis episodes. The

results from stochastic simulations show that, beyond a certain value, increasing the safety

loading is counterproductive: loss ratios increase and become more volatile. This is shown

in Figure 11.

This would appear to be an instance of the “winner’s curse” phenomenon, whereby

26



Figure 11: Mean loss ratios (left panel) and volatility of loss ratios (right panel) across the simulated

agent-based market as safety loading α varies.

the highest bidder wins business but eventually incurs losses (Harrington et al., 2008).

If insurers price risk too highly by applying a high safety loading, then this encourages

customers to switch to other insurers as customers search for lower prices. Insurers which

are under-pricing, possibly because of an initial favorable claims experience or because of

low customer base, then acquire more and more customers. (Harrington et al. (2008) also

suggest that insurers with poor forecasting ability may initiate price-undercutting.) This

triggers a “price war” dragging other insurers into unaffordable price cuts in a bid to retain

their customers. Unsustainably large losses eventually occur, hence the ‘curse’. Losses are

persistently higher and more volatile across the market, as shown graphically in Figure 11.

This result also shows that market regulators should monitor not just the capital held by

insurers but also the level and dispersion of prices that they offer. Significant price under-

cutting should be a cause for concern by market regulators. Our expert system should

enable market regulators to monitor the overall market as well as individual insurers and

forestall potential crises.
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4.4. Herding

The expert system can also help a market regulator observe how insurers’ business

strategies evolve over time. Experimentation is feasible within agent-based systems, so we

adjust the baseline case, summarized in Table 1, by changing Θ = {θi} and Φ = {φi} to

allow a proportion of the insurers to move on the business attribute space. Fixed insurers

are insurers who do not change their business attributes. We set their speed and peer

group scope parameters, respectively, to be θi = φi = 0 if i denotes a fixed insurer. Mobile

insurers are insurers whose business strategy evolves as they move on the business attribute

space towards financially successful insurers. We set φi = 0.2 and θi = 0.01 if i denotes a

mobile insurer. Every mobile insurer compares itself to a peer group of insurers nearest to

it, the peer group size being 20% of all insurers. The insurer then moves in the direction of

the most financially successful insurer in the group (unless it is itself the most successful)

by traversing 1% of the business attribute space every year.

Figure 12 shows the location of insurers over time, as the proportion of mobile insurers

varies from 20% to 100%. Insurers with fixed strategies do not move and appear as the

horizontal lines in Figure 12. Insurers with variable strategies evidently herd together:

they either cluster around the same strategies followed by fixed insurers (visible in the

50% and 80% cases), or converge to the same strategy if there is no fixed insurer (100%

case). This is consistent with Hotelling’s Law, or the principle of minimum differentiation

(see e.g. Petersen & Lewis, 1999, p. 574), which states that firms will seek to produce

goods which are as similar as possible, under certain conditions. Further analysis of the

output from the agent-based simulations show that customers benefit from lower insurance

prices on average when herding occurs, thanks to insurers’ aggressive competition on price.

However, price under-cutting occurs as insurers compete on price only. This leads to large

losses by individual insurers and destabilizes the insurance market.

4.5. Discussion and Practical Implications

The validity of the results that we obtain here depends of course on the modelling

approach underpinning the expert system. A significant strength of our approach is that
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Figure 12: Evolution over time of business strategy of insurers. Vertical axes: position in business attribute

space, horizontal axes: time (years). The proportion of ‘mobile’ insurers who can change strategy is 20%

(top left panel), 50% (top right), 80% (bottom left), 100% (bottom right).
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we do not make any assumption of linearity or Gaussianity. One or both of these is

usually made in insurance econometric models. See Dionne (2013), Boyer & Owadally

(2015) and Wang et al. (2011) for examples of ARIMA, cointegration, and regime-switching

models. Nevertheless, the data mining sub-system makes subtle assumptions about the

structure of market data, for example about its ergodicity. These assumptions deserve

further investigation. Another strength is that the model is calibrated to actual market

data, with a realistic representation of heterogeneous insurers interacting on the market.

On the other hand, standard models, such as described by Dionne (2013) are theory-driven

with a single representative insurer within the rational expectations framework. Dynamical

simulation models, such as in Taylor (2008) and Warthen & Somner (1996), comprise a

number of explicit difference equations and are therefore transparent. Our expert system

is based on a market model which is constructed in a bottom-up fashion with implicit

behavioral rules governing insurers and customers. This is a ‘black box’ approach, albeit

closer to the industry models described by Mills (2010) and Ingram & Underwood (2010).

Notwithstanding the above, our expert system has multiple potential benefits for a

market regulator whose chief concern is the stability and smooth operation of the insurance

market. The regulator can input the latest data on insurers and customers, with as much

granularity as possible to maintain a close fit to the actual market, and project tens of

thousands of Monte-Carlo scenarios about individual insurers over the next few years.

The data mining component then detects anomalies in price and profitability, both at

an individual insurer and a collective market level, in the generated sample paths. The

regulator can therefore obtain a probabilistic forecast of variables such as insurer loss

ratio, default rate, and price dispersion. Patterns such as significant price-undercutting

by one or more insurers can be uncovered, as these can can trigger a “winner’s curse”

(section 4.3). The regulator can then warn individual insurers (and their shareholders and

customers), similar to a bank stress test. The regulator can also estimate the probability

of systemic instability, such as during prolonged troughs in the insurance market, as well

as the incidence and timing of turning points in the cycle (section 4.2). Such instability

can be costly for both corporate and retail customers leaving them uninsured or with
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unpaid insurance claims. The regulator can therefore enforce stricter capital reserves

counter-cyclically and in advance to mitigate the risk of such events.

5. Conclusion

Insurance markets are unstable, experiencing cycles and crises regularly. We propose

an agent-based system with temporal data mining to assist regulators in monitoring in-

surance markets. The agent-based simulation component runs a bottom-up simulation of

every insurer and customer on the market. Agents employ simple optimization heuris-

tics grounded in the microfoundations of the insurance business. Agent-based simulations

generate a lot of data particularly when stochastic simulations are performed. The data

mining component, powered by SAX, Sequitur and GrammarViz, enables market regu-

lators to analyze the output of the agent-based simulation component. A prototype of

the system is validated on an automobile insurance market. We show how it can be used

to forecast the turning points of market cycles. We find that market regulators should

be attentive to the level and dispersion of prices offered by insurers as price-undercutting

can cause a “winner’s curse”, leading to unsustainably large losses and market instability.

Finally, we show how regulators can use the system to analyze the evolution of insurers’

business strategies, and to determine whether there are anti-competitive or destabilizing

effects resulting from insurers’ tendency to behave like a herd and converge upon the same

strategies.

The research undertaken here will be extended in several directions. The expert system

can be calibrated to insurance markets other than the automobile one. Specialist insurance

markets, such as aviation or marine, may have specific features that can be captured.

The business attribute space can be parameterized using different variables and with

different topologies. Finally, a detailed comparison with econometric forecasts should also

be illuminating.
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