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Abstract

Animal African trypanosomiasis (AAT) is a significant socioeconomic burden for sub-Saharan Africa 

due to its huge impact on livestock health. Existing therapies including those based upon Minor 

Groove Binders (MGBs), such as the diamidines, which have been used for decades, have now lost 

efficacy in some places due to the emergence of resistant parasites. Consequently, the need for new 
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chemotherapies is urgent. Here, we describe a structurally distinct class of MGBs, Strathclyde MGBs 

(S-MGBs), which display excellent in vitro activities against the principal causative organisms of 

AAT, Trypanosoma congolense and T. vivax. We also show the cure of T. congolense-infected mice 

by a number of these compounds. In particular, we identify S-MGB-234, compound 7, as curative 

using 2 applications of 50 mg/kg intraperitoneally. Crucially, we demonstrate that S-MGBs do not 

show cross-resistance with the current diamidine drugs and are not internalised via the transporters 

used by diamidines. This study demonstrates that S-MGBs have significant potential as novel 

therapeutic agents for animal African trypanosomiasis. 
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Introduction

African animal trypanosomiasis (AAT), or nagana, is a major obstacle to livestock production and, 

therefore, to the development of rural areas of sub-Saharan Africa. AAT is a complex of diseases 

mainly caused by three tsetse-transmissible trypanosome species: Trypanosoma congolense, T. vivax 

and, to a lesser extent, T. brucei spp. Although all domesticated animals can be infected by 

trypanosomes, cattle are the main economically and clinically relevant host (1). Most AAT cases are 

chronic, with animals presenting with anaemia, weight loss, weakness, immunosuppression, sterility 

and decrease in milk production. Death of susceptible animals is a common outcome. Thus, AAT 

significantly limits agricultural development and food production and, consequently, socioeconomic 

growth. It is a considerable cause of poverty in African rural communities, with total losses estimated 

at US$ 4.75 billion per year (2).

Control of AAT relies heavily on chemotherapy or chemoprophylaxis (3). Only two compounds are 

widely used, irrespective of the infecting species (Fig. 1): diminazene diaceturate, 1, a diamidine and 

DNA minor groove binder used for cure, and isometamidium chloride, 2, a hybrid molecule of 

ethidium and diminazene used for both cure and prophylaxis. In addition, the DNA intercalator 

ethidium bromide, 3, is available for treatment and also gives some short-term prophylaxis (3). All 

these compounds have toxic effects on animals and their efficacy is undermined by increasing drug 

resistance (4-8). Despite the high usage levels (at least 35 million doses/year), pharmaceutical 

companies are disengaged from this area due to the lack of commercial incentive. Consequently, since 

the introduction of diminazene and isometamidium more than 50 years ago, no progress has been 

made towards new AAT chemotherapy. However, a renewed interest in alternative veterinary 

trypanocides has emerged due to the disease's impact on food security, and the engagement of a 

Product Development partnership, the Global Alliance for Livestock Veterinary Medicines 

(GALVmed), has provided new coordination in tackling the problem.
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Figure 1. Chemical structures of the three main compounds used for treatment and prophylaxis of 

AAT and of the arylamidines pentamidine, DB75 and DB289.

Minor groove binders (MGBs) comprise several classes of compounds that bind to the minor 

groove of DNA and have been used as therapies for both human and animal infections (9-11). 

Diminazene, 1, is an example of the diamidine class of MGBs, which also includes pentamidine, 4, 

(Fig. 1), a compound with a broad antimicrobial activity (11). Pentamidine has been used most 

notably as a treatment for human African trypanosomiasis (HAT); however, it suffers from toxicity 

issues and poor oral availability, requiring parenteral administration for systemic infections (11). The 

di-arylamidines were used as the basis of a synthesis campaign by Boykin and co-workers, which led 

to the discovery of DB75, 5, (furamidine, Fig. 1), a highly active antitrypanosomal drug in animal 

studies, and its orally available prodrug DB289, 6, (pafuramidine, Fig. 1) (12, 13). Pafuramidine, 6, 

concluded Phase II/III clinical trials against early-stage HAT before renal toxicity in a retrospective 

phase I safety trial led to its development being discontinued (14). Yet, this trial once again 

underscored the clinical efficacy of MGBs (with the toxicity attributable to the pro-drug strategy (14), 

and the enormous impact of diminazene and pentamidine as the most essential trypanocides to date 

serves as a reminder of the potential of MGBs as antiparasitic therapies (11). Crucially, cross-
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resistance with existing diamidine drugs does not occur if the diamidine transport mechanisms are 

avoided (15).

Strathclyde minor groove binders (S-MGBs) are a distinct family of DNA-binding compounds 

derived from the structure of the natural product distamycin (16). S-MGBs include a diverse array of 

structural features allowing for extensive coverage of structural and property space within the same 

DNA-binding template (17). The main sites where variation is introduced in S-MGBs are the head 

groups and the specific linker moiety used to connect to the rest of the molecule (amidine, amide or 

alkene), the particular heterocycle, the alkyl substituents on the heterocycle, and the basicity of the C-

terminal tail group (18). Through altering these structural features, potent antibacterial compounds 

have been discovered, one of which, MGB-BP-3, is about to enter a Phase IIa clinical trial against 

Clostridium difficile infections (19). A variety of MGB-BP-3 analogues have been shown to be active 

against T. brucei and Plasmodium falciparum (20, 21), both in cell-based studies and in in vivo 

disease models, and against Leishmania major and L. donovani in culture (unpublished results). A 

potential benefit of targeting DNA is that it is to be expected that many binding sites will be occupied 

by S-MGBs, leading to complex cellular perturbations, which could mitigate the risk of rapidly 

developing resistance. Conversely, the ubiquity of DNA makes species selectivity critical and this has 

been a challenge for some previous generations of MGBs. In the context of S-MGBs, selectivity can 

be obtained between different infectious organisms and mammalian cells giving rise to therapeutic 

ratios indicative of selective drug candidates (16 - 19, 22).

In this paper we describe the activity of S-MGBs against the animal infective parasites T. 

congolense and T. vivax, from which an initial SAR was developed. Three S-MGBs were advanced to 

in vivo proof of concept evaluation in a mouse model of T. congolense infection. Two of these were 

curative and, crucially, displayed no cross-resistance with currently used trypanocides. Furthermore, 

we present the results of an initial investigation into the mechanism of action of the lead compound, 

S-MGB-234, 7.

Results
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Structure-activity relationship revealed. A substantial and representative collection of S-MGBs was 

screened for activity against T. congolense and T. vivax, and in parallel against L6 rat myoblast cells 

as an indicator for mammalian cell toxicity. S-MGBs were selected in order for the collection to 

explore a large chemical space from our entire S-MGB library. Those compounds of interest to SAR 

discussions are presented in Table 1 (full data set in Table S1). Most of the compounds studied have 

been previously described (16, 17, 18, 21), but several are novel. Details of the synthesis of novel 

compounds from Table 1 are outlined in Scheme 1 below. Briefly, the appropriate nitro pyrrole dimer 

was converted to the corresponding amine by reduction with hydrogen gas over palladium on carbon. 

This amine was then coupled to the appropriate carboxylic acid using HBTU to form the final S-

MGB. Syntheses of the specific nitro pyrrole dimers and carboxylic acids have been previously 

reported, and are referenced in the experimental section.
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Scheme 1. Synthesis of novel MGBs from Table 1. (i) H2, Pd/C, MeOH, not isolated (ii) Carboxylic 

acid, HBTU, DMF.
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The full data set presented in Table S1 identify several structural features that appear to improve 

activity against T. congolense and/or T. vivax. The following discussion summarises the principal 

observations, with Table 1 summarising the activities and structures of the compounds of interest, but 

Table S1 should be referred to for the full data set. 

Table 1. Activity of a collection of S-MGBs against T. congolense, T. vivax and L6 cells

EC50 (µM) SI

Compound S-MGB Structure
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0.09±0.01 0.45±0.24 20.39±3.3 232.8 45.0

8
N

N
O

H

O

N
H

N

O

N
H
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HN

O

0.08±0.00 1.15±0.65 28.56±3.57 343.8 24.8

9

N O
N
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N
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N
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N

N

0.79±0.05 0.15±0.08 1.98±0.19 2.5 13.6
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N O
N

O
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N

HN
O

H
N

O

1.27±0.43 0.54±0.29 8.86±3.46 7.0 16.6

11

N O
N

O

HN

N

HN

N

O

H
N

0.07±0.01 0.13±0.02 4.23±1.41 61.8 33.4
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1217

N O
N

O

HN

N
O

HN
O

H
N

MeO

1.85±0.58 1.27±0.05 20.22±2.18 10.9 15.9

1317

N O
N

O

HN

N
O

HN

N

MeO

O

H
N 2.96±1.19 1.67±0.06 3.76±2.18 1.3 2.3

1420

N O
N

O

HN

N

HN

N

O

H
N

O

0.18±0.06 0.01±0.00 0.26±0.02 1.4 26

1520

N O
N

O

HN

N

HN

N

O

H
N

O

0.06±0.02 0.02±0.01 0.04±0.01 0.7 1.9

Data are reported as a mean of 3 experiments ± standard deviation, reported to two decimal places; SI, 

selectivity index calculated by division of the indicated mean values, reported to one decimal place.

Several compounds displayed EC50 values against T. congolense below 100 nM (15, 8, 7) and two of 

these contained the 3-quinolylalkenyl head group. Against T. vivax, compounds active at 100 nM or 

less also contained the 3-quinolylalkenyl head group (14, 15, 11). Indeed, alkenyl head groups, 

especially those containing the 3-quinolyl group, led to the strongest activity against both species; 

other aryl alkenes and related fused heterocyclic alkenes were in general much more weakly active. 

Although some 3-quinolyl alkenes were toxic to rat L6 cells, the selectivity index (SI) of one of these 

(11) was >30 fold. The structure of the tail group also affected the differential activity. Both the 

amidinylethyl and dimethylaminoethyl/propyl series included active compounds with very good SI 

values, especially relative to T. congolense (7, 8, 11). Further, as shown by the L6 cell-based assay, 

the effect of a number of substructures on cytotoxicity could be identified. Compounds that contained 

amidine-linked head groups, trifluoromethylphenyl, or benzoxazole head groups, or long side chains 

were predominantly inactive In general, compounds containing amide-linked head groups were poorly 

active as well as non-toxic to L6 cells (Table S1). However, bearing in mind the variations in 
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trypanocidal activity of amidine- and alkene-containing head groups, it may simply be that active 

amide head groups have not yet been identified. On the basis of their intrinsic antitrypanosomal 

activity and favourable SIs, a small subset of S-MGBs (7, 8 and 11) was selected for further in vitro 

evaluation, along with some additional compounds for comparison purposes (12, 13, 9 and 10). 

Absence of cross-resistance to diamidines. As noted above, the diamidine class of MGBs, which has 

been in use for over 60 years against trypanosomiasis, has suffered from the emergence of resistance 

by the parasites (23 - 25). It was important, therefore, to establish whether the S-MGBs here identified 

as trypanotoxic retained activity in diamidine-resistant trypanosomes. To assess this, a small subset of 

S-MGBs from the initial screen, including the most therapeutically relevant, was tested against two 

diminazene-resistant T. congolense lines generated in vitro. Our results revealed no decrease in 

activity of the S-MGBs against the diminazene-resistant lines, which instead showed a modest but 

significant hypersensitivity to some of the compounds (Fig. 2a and Table S2 for all data).

In T. brucei, resistance to diamidines including diminazene and furamidine is linked to loss of activity 

of specific plasma membrane transporters TbAT1/P2 (26-28) and, in the case of pentamidine, also of 

HAPT/AQP2 (29, 30), that mediate their uptake into this parasite. TbAT1/P2 impairment also causes 

cross-resistance to compounds which contain the same TbAT1/P2 recognition motifs, including the 

melaminophenyl arsenicals melarsoprol and cymelarsan (26, 31). In order to determine the potential 

for cross-resistance developing as a result of sharing the same route of cellular entry, the S-MGBs 

were evaluated as substrates for these known MGB transporters. The same subset of compounds listed 

above was tested against T. b. brucei lines lacking only TbAT1/P2 (tbat1-/- line (26)) or both 

TbAT1/P2 and HAPT/AQP2 (B48 line (29). The experiments showed that trypanosomes not 

expressing these drug transporters, and therefore resistant to diminazene, generally retained sensitivity 

to the S-MGBs (Fig. 2b and Table S3 for all data), with only a minor increase in EC50 (1.5 fold) for 9 

against the tbat1-/- and B48 lines and for 7 against the B48 line. These data confirmed that the activity 

of S-MGBs is not (principally) dependent on the expression of T. brucei TbAT1/P2 or HAPT/AQP2 

and that the S-MGBs are not cross-resistant with current diamidines. This is an important further 
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indication of the differences between S-MGBs and other classes of MGBs such as the diamidines. Of 

note, T. congolense lacks a functional equivalent of TbAT1/P2 (32), and HAPT/AQP2 (unpublished 

data), although other T. brucei group trypanosomes (incl. T. equiperdum, T. evansi, T. b. gambiense, 

T. b. rhodesiense (33-36)) most likely do. We conclude that diamidines and S-MGBs must enter via 

other, as yet unidentified, routes in T. congolense and, based on the absence of cross-resistance 

(Figure 2 and Tables S2 and S3), that S-MGBs do not share uptake routes with diamidines in either T. 

brucei or T. congolense.

Figure 2. S-MGBs retain trypanocidal activity in vitro against diminazene-resistant T. congolense and 

T. b. brucei lines. a T. congolense diminazene-resistant lines DimR and EMS MUT DimR. The EC50 

values against T. congolense presented in this figure were obtained using a different protocol from 

that of the initial compound screen (data in Table 1 and Table S1), hence the difference in absolute 

values between the two datasets. b T. b. brucei tbat1-/- lacks the P2 amino-purine transporter 

TbAT1/P2 (26) and line B48 lacks both TbAT1 and HAPT/AQP2 activity (29). (Mean ± SEM, n≥3). 

Statistical significance to untreated wild type (WT) line was assessed by unpaired t-test: * p<0.05; ** 

p<0.01; **** p<0.0001.
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In vivo efficacy of S-MGBs in an experimental model of T. congolense infection. Compounds 7, 8 

and 11 were further progressed for in vivo efficacy studies in a mouse model of infection with T. 

congolense STIB 736/IL1180. Mice were infected intraperitoneally (i.p.) with T. congolense and 

parasitaemia was allowed to develop before treatment with the three selected compounds. At the end 

of a 2-month monitoring period, aparasitaemic mice were considered cured (37). The therapeutic 

effect of each compound is shown in Table 2.

Table 2. In vivo efficacy of selected S-MGBs in the T. congolense (STIB 736/IL1180) experimental 

mouse model of infection.

S-MGB-ID

Dose

(mg/kg/day × number 

of treatment days)

Cured/

infected

MRD

(days)

MSD

(days)

7a 50 × 4 toxic n/a n/a

50 × 2 4/4 n/a >60

10 × 4 1/4 19.3 34.75

10 × 2 0/4 12.5 19.5

8a 50 × 4 toxic n/a n/a

50 × 2 toxic n/a n/a

10 × 4 4/4 n/a >60

10 × 2 4/4 n/a >60

10 × 1 3/4 7 >51

5 × 2 3/4 4 >50.25

11a 50 × 4 toxic n/a n/a

50 × 2 1/4 11 >29.25

10 × 4 0/4 5.5 15
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10 × 2 0/4 4 11

Untreated n/a 0/4 n/a 11

a Vehicle 10% DMSO in water solution; MRD, mean day of relapse; MSD, mean day of survival; n/a, 

not applicable.

7 provided total cure and no relapses in mice (4/4), when treated with 2 applications of 50 mg/kg i.p. 

Partial cure (1/4) was seen in mice treated with 4 daily applications of 10 mg/kg i.p., whilst only 2 

applications of 7 at 10 mg/kg i.p. gave no cure but prolonged survival relative to the untreated control.

8 was fully curative (4/4) when administered as either 4 or 2 applications at the lower dose of 10 

mg/kg i.p. At a total dose of 10 mg/kg, given as a single treatment i.p., or as 2 applications of 5 mg/kg 

i.p. 24 hours apart, a similar curative efficacy (3/4) was seen for both administrative regimens. 

Only a partial cure (1/4) was achieved with 11 in mice treated with 2 applications of 50 mg/kg i.p., 

with average relapse and survival days of 11 and >29.25, respectively. No cure was seen at 10 mg/kg 

i.p., at either 2 or 4 daily administrations, with marginal effects on survival. Full cure with 11, e. g. at 

50 × 4 mg/kg was attempted but could not be achieved due to apparent toxicity at the higher dosages. 

These data show efficacious treatment of a T. congolense mouse model of infection for two out of 

three S-MGBs at non-toxic dosage regimens. Although 8 performed slightly better in the T. 

congolense mouse model of infection, 7 was selected as our lead compound for further investigative 

studies due to its higher activity in the in vitro T. vivax assay, together with two fluorescent S-MGBs 

with less activity. 

Intracellular distribution into trypanosomes. The intrinsic fluorescence of some S-MGBs makes it 

possible to investigate their intracellular distribution in trypanosomes following incubation. As 

previously shown for T. b. brucei (21), experiments with the highly fluorescent 9 confirmed 

internalisation in T. congolense (Fig. 3a). The main visible cellular targets, clearly detectable using 

the FITC filter, were the nucleic acids (nucleus and kinetoplast), as expected for these MGBs, many 

of which have been shown to bind strongly to AT sites of DNA by footprinting and biophysical 
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methods (22). DAPI colocalisation with both 9 and another fluorescent S-MGB, 16, confirmed 

organelle identification, and showed that DAPI staining of the kinetoplast abolished S-MGBs 

fluorescence in this organelle (Fig. S1). Despite thorough washing of T. brucei labelled with 16 and 9, 

the fluorophores were retained in both DNA-containing organelles (data not shown). Together with 

the main fluorescent emission observed under the green channel, 9 (and the other fluorescent S-

MGBs) also emitted at longer wavelength, labelling other subcellular structures visible under DsRed 

filter. In particular, a bright vesicle posterior to the nucleus was clearly visible under the DsRed filter. 

The accumulation of S-MGBs in organelles other than the nucleus and kinetoplast adds complications 

to the understanding of their mechanism of action. Binding to the DNA double helix or interference 

with DNA-protein interactions are obvious targets for S-MGBs but there may be others as yet 

unidentified. 

Metabolomics analysis. An untargeted metabolomics analysis was performed using 7 to assess the 

effects of S-MGBs on the metabolism of T. b. brucei (Fig. 3b). Results showed an accumulation of 15 

putatively identified metabolites (p <0.05, >2 fold change) in treated parasites (Fig. 3b and Table S4), 

with a preponderance of metabolites involved in nucleotide metabolism, particularly pyrimidine 

metabolism. Among these, the pyrimidine nucleoside deoxyuridine showed the largest increase (> 7 

fold compared to DMSO control), followed by other pyrimidines: cytosine, cytidine, dCTP, uridine, 

dUMP, dAMP and dihydrouridine. The accumulation of the purine derivative hypoxanthine was also 

recorded.

Among the other putative metabolites emerging from the analysis, creatinine is believed to be 

irrelevant to trypanosome metabolism and probably accumulated from serum present in the medium.  

The observed changes in levels of various cofactors (including pyridoxine, pyridoxamine, 

dethiobiotin) are intriguing, but so far their significance remains elusive. 

Taken together, the metabolomics data seems to indicate that the S-MGBs interfere with the integrity 

and /or functions of nucleic acids, with the most notable perturbations in nucleotide metabolism, 

while most of the metabolome remained unaffected following 8 hours of treatment,.
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Figure 3. S-MGBs target the nucleic acids in trypanosomes. a Accumulation and intracellular 

distribution of highly fluorescent 9 (incubation with 2 × EC50 for 2 h or 48 h) in T. congolense. N, 

nucleus; K, kinetoplast; arrow = other stained subcellular structures. Bar = 10 µm. b Volcano plot of 

metabolic changes in T. b. brucei following treatment with 7 (5×EC50, 8 hours). The time point was 

chosen based on 7 growth inhibition curve (Fig. 5a), allowing time for metabolic perturbations to 

emerge but avoiding cidal effects on cells. Red dots indicate putative metabolites significantly up-

regulated as compared to untreated DMSO control; blue dots indicate metabolites significantly down-

regulated as compared to control. Differentially abundant metabolites were identified by p <0.05 (t-

test) statistical significance and 2 fold-change cut-off. 1) 5-6-Dihydrouridine; 2) Creatinine; 3) 

Cytidine; 4) Cytosine; 5) dAMP; 6) dCTP; 7) Deoxyuridine; 8) Dethiobiotin; 9) L-Lysine; 10) dUMP; 

11) Hypoxanthine; 12) N6-Acetyl-L-lysine; 13) NG,NG-Dimethyl-L-arginine; 14) Pyridoxine; 15) 

Uridine; 16) Pyridoxamine.

Mitochondrial DNA is not the main S-MGB target. The kinetoplast (trypanosome mitochondrial 

DNA) has long being considered as the main subcellular target of diamidines, phenanthridines and 

other cationic MGBs and intercalators. Upon binding to AT-rich sites in the minor groove, diamidines 

cause inhibition of replication of the kDNA and its disintegration, with consequent cell death (11). 

Trypanosomes can adapt to survive without a (complete) mitochondrial genome, as do T. evansi and 
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T. equiperdum, but it was found that the viability of such cells depends on a compensating mutation in 

a nuclear-encoded F1Fo ATPase subunit, which allows mitochondrial membrane potential to be 

maintained (38). These akinetoplastic parasites are less sensitive to diamidines than trypanosomes 

depending on an intact kinetoplast and are also more resistant to the phenanthridine class of drugs, 

which also target nucleic acids (39, 40). To assess whether the presence of a functional kinetoplast 

was equally important for the action of our S-MGBs, 7 was tested against a T. b. brucei line (ISMR1) 

where the kinetoplast has been lost following in vitro selection for resistance to the phenanthridine 

isometamidium chloride (39). 7 was equally active against the akinetoplastic line ISMR1 and the wild 

type line that possesses a normal kinetoplast (Fig. 4, Table S5). These results were confirmed by tests 

on a kinetoplast-independent T. b. brucei line engineered to express an F1 ATPase subunit with 

mutation L262P (40), which rapidly loses its normal kinetoplast under kinetoplast-targeting drug 

pressure because it is no longer dependent on it (Table S5). 7 activity was comparable across all these 

lines, suggesting that its trypanocidal activity is independent from the presence of a functional 

kinetoplast. These data are in sharp contrast to those obtained for the diamidine diminazene and the 

phenanthridines isometamidium and ethidium, to which the akinetoplastic cell lines are highly 

resistant (39, 40). Importantly, these data seem to preclude the emergence of cross-resistance between 

S-MGBs and the phenanthridine trypanocides (isometamidium chloride and ethidium bromide) 

currently used against AAT as the sole alternatives to diminazene aceturate.

Page 15 of 51

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 4. The kinetoplast is not required for S-MGBs trypanocidal activity. The EC50 value of 7 did 

not significantly change when the compound was tested against T. b. brucei ISMR1, an akinetoplastic 

line selected in vitro for resistance to isometamidium and highly cross-resistant to ethidium bromide 

and to diminazene. 

S-MGBs affect trypanosome growth and cell cycle progression. Continuous exposure to 7 resulted 

in cell growth arrest of T. b. brucei cultures within 48 h when incubated with concentrations ≥1 × 

EC50 (i.e. 0.16 µM), with complete clearance at 10 × EC50 (Fig. 5a, left). Similarly, 5 × EC50 of 7 

(2.55 µM), sterilised T. congolense cultures within 72 h, or after 96 h at 2 × EC50  (Fig. 5a right). 

Wash-out experiments showed that 7 has irreversible effects on trypanosome survival, indicating that 

this compound is cytocidal and not cytostatic (Table S6). Treated T. congolense were committed to 

death after 10 – 24 h of incubation with 7 at 5 × EC50. In order to produce irreversible effects on T. 

brucei survival, higher concentrations of the compounds had to be used: exposure to 10 × EC50 for 10 

h committed all parasites to death, possibly reflecting the need for a higher concentration gradient to 

achieve a lethal concentration at the intracellular site of action within this time frame. These kinetics 

and concentrations were comparable to those obtained for the slow acting veterinary drug diminazene 

(Table S6).

Page 16 of 51

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



An analysis of the cell cycle progression of trypanosomes exposed to 7 was performed by monitoring 

the replication and segregation of the nuclear (N) and kinetoplast (K) genomes, which in these 

parasites occur in sequential, tightly regulated phases (41). This process is similar in T. brucei and T. 

congolense, but for our analysis we used only the former due to the tendency of T. congolense to 

clump together in vitro, making it difficult to distinguish individual cells.

DNA analysis of asynchronous T. b. brucei populations treated with 7 revealed a profound effect of 

the compound on normal cell cycle progression (Fig. 5b). 7 caused an accumulation of parasites with 

multiple kinetoplasts and nuclei (MKMN cells), seemingly cells that have started a new cell cycle 

without having undergone cytokinesis. At 48 h of treatment with 2 × EC50, the MKMN trypanosomes 

constituted more than half of the cell population (Fig. 5b), but the effect was already evident when 

using 1 × EC50 (Fig. S2). The phenotype of these abnormal parasites appeared heterogeneous: along 

with 3K1N and 1K3N cells, trypanosomes with a much higher number of either K or N, or both, were 

observed. 

This experiment implies that, at least for a period, the S phase is not inhibited by S-MGBs and that, 

while exposed to 7, trypanosomes maintain their ability to synthesise new DNA. This was confirmed 

by an EdU assay, which allows monitoring of DNA synthesis by visualising the incorporation of the 

thymidine analogue 5-ethynyl-2´-deoxyuridine (EdU) into newly formed DNA (Fig. S3). Although a 

dose-dependent inhibition of DNA synthesis in T. b. brucei treated with 7 was observed within 8 h of 

incubation, this occurred only when using high concentrations of the compound (5 × EC50 and 10 × 

EC50) and the inhibition was much less pronounced than that caused by the eukaryotic nuclear DNA 

polymerase inhibitor aphidicolin (42) (26% and 40% inhibition for 5 × EC50 and 10 × EC50, 

respectively, versus 90% with aphidicolin) (Fig. S3).

It thus appears that during the first 12-24 hours of incubation at least, DNA synthesis continues, but 

cytokinesis is progressively affected, leading to apparent growth arrest; after this, further DNA 

synthesis may also be affected (cell cycle arrest), as the percentage of 1N1K cells remains largely 

unchanged between 24 and 48 h. The period leading into this seems to correspond to the incubation 

time before the cells are irreversibly committed to death, i.e. the cell cycle arrest is the point where the 

damage becomes irreversible. 
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S-MGBs-treated trypanosomes present with an abnormal phenotype. T. b. brucei parasites from 

the experiment described above often presented with nuclei abnormal in morphology, position and 

integrity and, in extreme cases, completely fragmented (Fig. 5c). The increase in the number of 

nuclei/nuclear fragments and kinetoplasts was accompanied by an increase in cell size and in the 

number of flagella, features typical of a block preventing cytokinesis (43). 

Transmission electron micrographs of 7-treated T. b. brucei parasites showed a number of cellular 

aberrations at 8 h of exposure, before the appearance of the conspicuous abnormal phenotype 

observed by light and fluorescence microscopy at longer time points. TEM revealed treated parasites 

with irregular, elongated nuclei (Fig. 5d panel I), and some with abnormal flagella lacking a 

paraflagellar rod (Fig. 5d panel II). Others revealed unusual cytoplasmic axonemes, enlarged rough 

endoplasmic reticulum (Fig. 5d panel III) and an increase in multi-vesicular bodies (Fig. 5d panel II) 

when compared to DMSO-treated control parasites. These results suggest that, upon treatment with 7, 

trypanosomes encounter problems with cytokinesis, mitosis and flagellar pocket biogenesis, 

consistent with the subsequent cell cycle defects observed, in particular the accumulation of multi-

nucleated and multi-flagellated cells.
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Figure 5. S-MGBs affect cell division and cell cycle progression. a Growth inhibition curves of 

cultures of T. b. brucei (left) and T. congolense (right) continuously exposed to different doses of 7 

(mean ± SEM, n≥3). b Left: quantification of the proportion of different cell types (based on the 

nucleus -N- and kinetoplast -K- configuration) of T. b. brucei exposed to 7 (2 × EC50). Cells with 

1K1N are in G1 or S phase; the kinetoplast S phase starts before nuclear S phase and is shorter than 

the latter, resulting in 2K1N cells in G2/M phase; the nucleus then divides during mitosis, generating 

2K2N post-mitotic cells, which undergo cytokinesis. The values for the untreated sample refer to the 

12 h time point. Right: quantification of the proportion of different cell types over time; more than 
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200 cells were analysed per sample (mean ± SEM, n=3). c DAPI-stained and corresponding DIC 

images of treated T. b. brucei (2 × EC50 of 7) from the same experiment; bar = 10 µm. d 

Representative transmission electron microscopy images of T. b. brucei treated with 7 (2 × EC50, 8 h) 

(panels I-III), and with DMSO as a control (panel IV). N, nucleus; M, mitochondrion;  F, flagellum; 

PFR, paraflagellar rod; MVB, multivesicular bodies; ER, rough endoplasmic reticulum; *F, flagellum 

without paraflagellar rod; *Ax, cytoplasmic axoneme. The EC50 values used for these experiments 

refer to those presented for the wild type  in Table S2 and Table S3.
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Discussion and Conclusion

Structure-activity relationships of anti-trypanosomal S-MGBs. Antimicrobial MGBs are generally 

active if they can reach target DNA and bind to it, thereby disrupting DNA function (44, 45).  S-

MGBs show a relative lack of activity against Gram-negative bacteria compared with Gram-positive 

bacteria (46) apparently because they penetrate the Gram-negative membrane poorly if at all. Access 

to DNA is also important in mammalian cell toxicity. With the current state of knowledge it is not yet 

possible to design compounds with the required species selectivity for minor groove binders and it is 

necessary to proceed empirically. Fortunately, each trypanosome species studied here shows a similar 

S-MGB SAR, probably reflecting a similar mechanism of cellular uptake, from which selective 

activity of MGBs commonly arises (47).

The possibility of developing a single compound with potent activity against both T. congolense and 

T. vivax is examined in Figure 6a, which shows a modest general correlation. The best compounds in 

this regard, 14 and 15, being found towards the lower left hand corner. However, both are essentially 

equitoxic to L6 cells and T. congolense / T. vivax, and it is evident that selectivity must outweigh 

trypanocidal activity. Thus, high activity against both species together with an acceptable selectivity 

index to mammalian cells is required for further development of compounds beyond this initial study 

and Figure 6b allows all three parameters to be visualized (Figs. S4 and S5 show this data in two 

separate plots). From this analysis 11 is a better starting point for further development than more 

active compounds in their proximity in Figure 6a, based on their moderate toxicity to L6 cells. The 

even lower toxicities associated with the amidine-containing tail groups in compounds 7 and 8 are 

also clearly evident. This high pKa tail group is a major determinant in the physicochemical properties 

of the S-MGBs leading to compounds protonated at physiological pH and is expected to be 

particularly important with respect to cellular uptake, intracellular distribution and efflux (46). 
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Figure 6. S-MGBs SAR revealed. a Comparative activities against T. vivax and T. congolense. The 

compounds with best activity against both trypanosome species are found towards the lower left hand 

corner of the plot. b Same data as a, but with additional L6 cytotoxicity represented as bubble plot – 

the lower the EC50 against L6, the smaller the bubble.

Of the three compounds evaluated in vivo, 11 had the poorest selectivity index (64) when comparing 

the activity against T. congolense in vitro with the cytotoxicity against L6 cells. Both 7 and 8 had 

selectivity indices greater than 200 and, unlike 11, were able to elicit complete cure at non-toxic 

doses. 

Differentiating S-MGBs from other anti-trypanosomal MGBs. Our results on diminazene-resistant 

T. congolense strains gave no indication of cross-resistance with the diamidine class of compounds, 

which is a factor of crucial importance for the future development of the S-MGBs as trypanocidal 

agents for AAT. Although both groups of molecules target the minor groove of DNA, preferences for 

different sequences might result in non-overlapping activities, although both are believed to 

preferentially bind A/T-rich sequences. A more probable explanation for this lack of cross-resistance, 

however, is the separate MGB classes entering trypanosomes by different routes, i.e. the S-MGBs do 

not enter trypanosomes via the same transporters that take up diamidines. Indeed, we observed no 

differences in S-MGB activity when tested on T. b. brucei lines lacking either TbAT1/P2 or both 
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TbAT1/P2 and HAPT/AQP2 transporters. Moreover, T. congolense does not have a syntenic 

equivalent to TbAT1, and its P1-type purine nucleoside transporter TcoAT1, inaccurately reported as 

being equivalent to TbAT1, does not recognise diminazene as a substrate (32). The transporters for the 

phenanthridines, ethidium and isometamidium have not yet been identified but their accumulation 

appears to be a balance between uptake and efflux across the plasma membrane with the driving force 

being the mitochondrial membrane potential segregating the drug in the mitochondrion (39, 48).

Distamycin A, the prototype MGB, has well-known affinity for AT-rich regions of DNA. It binds to 

regions with 4 or 5 AT base pairs, altering the double helix conformation and interfering with the 

binding of nuclear proteins (49). Derivatives of distamycin A, such as S-MGBs, are likewise expected 

to have a direct or indirect action on nucleic acid functions and/or replication, resulting in their 

trypanocidal activity. Evidence here shows that S-MGBs do indeed concentrate in the kinetoplast and 

nucleus. This is different from what is seen with the diamidines, which accumulate predominantly in 

the mitochondrion and have high affinity for the kinetoplast DNA. This explains why the absence of 

an intact kinetoplast is not linked to resistance to the S-MGBs, ruling it out as a main target. This does 

not mean S-MGBs do no damage the kinetoplast; rather, they also target the nucleus and the 

uncharged compound of the series will likely achieve the highest concentration initially in the 

cytoplasm.

Interestingly, the fluorescent S-MGBs were detected in cellular compartments other than the nucleus 

and kinetoplast, although it is unclear whether this might contribute to their trypanocidal activity or 

only represents a storage sink for the compounds. The brightly stained vesicle observed in treated T. 

congolense cells could correspond to what Vickerman defined as the "sac of secretion" (50), later 

called the "digestive vacuole", which is part of the endocytic apparatus of this parasite (51). Further 

work is needed to clarify if this is linked to the mechanism of internalisation of S-MGBs but 

endocytosis after binding to surface proteins could indeed be a route of entry for these relatively large 

compounds, as is the case for suramin (52).

Our data, showing an obvious cell cycle defect after treatment, with parasites becoming unable to 

correctly complete cell division and accumulating supernumerary kinetoplasts and nuclei and 

displaying an apparent fragmentation of nuclear material, are consistent with targeting of nuclear 
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DNA. This phenotype becomes manifest after a period of 12 to 24 hours, when it appears that the 

parasites in G1 phase (1K1N) are no longer able to enter the cell cycle. The exact causes of the 

cytokinesis block are still unclear but the combined evidence from the cell cycle experiments and the 

cellular distribution of the S-MGBs point to a potential multi-factorial mechanism of action, which 

would further delay the onset of resistance.

Metabolomics identified a significant accumulation of pyrimidines, particularly deoxyuridine, after 8 

hours of treatment, hence supporting the hypothesis of S-MGBs interference with nucleic acids 

functions.  In trypanosomes deoxyuridine is part of the pyrimidine salvage pathway: it is converted to 

dUMP (also significantly accumulating in treated cells), which is then converted into dTMP and the 

nucleoside triphosphate TTP used for DNA synthesis. From our results we could speculate that dUMP 

could accumulate as a result of downregulation of thymidylate synthase activity when DNA synthesis 

slows down, an hypothesis consistent with the absence of an accumulation of thymidine nucleotides 

despite an accumulation of other deoxynucleotides (dCTP, dAMP). This could generate high levels of 

dUTP, and its misincorporation into DNA, with consequent DNA damage. Previous work in T. brucei 

procyclic form found that addition of exogenous thymidine could alter the dTTP/dUTP ratio, 

reverting the inhibition of dUTPase (deoxyuridine triphosphate nucleotidohydrolase), the enzyme that 

provides the substrate for the thymidylate synthase and responsible for keeping the intracellular levels 

of dUTP low (53). However, we could not rescue bloodstream T. brucei grown in medium lacking 

thymidine and treated with 7 after addition of 10-20 mM of thymidine (data not shown). 

Existing MGB drugs, such as diminazene, have been of enormous value for the treatment and control 

of trypanosomiasis since their introduction more than half a century ago, but are now failing as anti-

parasitic therapeutics due to the significant rise of resistance. This study has demonstrated both the 

excellent in vitro activity and in vivo cure of parasitaemia by S-MGBs that are structurally distinct 

from existing MGB-based drugs. Specifically, in an in vivo model of infection of T. congolense, cures 

were demonstrate with either two applications of 50 mg/kg of 7 or two applications of 10 mg/kg of 8. 

Moreover, S-MGBs have been shown to be unaffected by existing MGB-resistance mechanisms, both 
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in T. congolense and in T. b. brucei; in the latter this is due to a different mechanism of uptake in T. 

brucei. Furthermore, we found no indication of potential cross-resistance to the other class of 

veterinary trypanocides currently used in Africa: the phenanthridines isometamidium and ethidium. 

Finally, despite numerous efforts, selection of resistance to the S-MGBs in vitro proved unsuccessful, 

a result that could indicate a degree of refractoriness to resistance mechanisms of these compounds, 

likely linked to non-specific uptake and multifactorial trypanocidal actions. Together these 

observations provide proof of concept of S-MGBs as potential novel therapeutic agents for animal 

African trypanosomiasis.

Experimental Section

Trypanosomes and cell culture. Bloodstream form T. congolense strain IL3000 and derived 

diminazene-resistant lines were cultured at the University of Glasgow as described in (54), at 34 °C in 

a humidified, 5% CO2 environment, in MEM medium (Sigma-Aldrich) supplemented with 25 mM 

HEPES, 26 mM NaHCO3, 5.6 mM D-glucose, 1 mM sodium pyruvate, 40 µM adenosine, 100 µM 

hypoxanthine, 16.5 µM thymidine and 25 µM bathocuproinedisulfonic acid disodium salt. To this 

basal medium were added freshly prepared β-mercaptoethanol (0.0014% v/v), 1.6 mM glutamine, 100 

units/ml penicillin, 0.1 mg/ml streptomycin, 20% goat serum (Gibco) and 5% Serum Plus (SAFC 

Biosciences). Bloodstream form T. b. brucei wild type (strain Lister 427) and derived lines were 

cultured at 37 °C in a humidified, 5% CO2 environment in HMI-11 (Gibco), containing 10% FBS 

(Gibco). Kinetoplast-independent F1-L262P)-expressing trypanosomes were kindly provided by Dr 

Achim Schnaufer (University of Edinburgh) and grown in the presence of 2 µg/ml G418. The 

akinetoplastic version of L262P, L262P(AK), was obtained by exposure to 10 nM ethidium bromide 

for several passages. Loss of kinetoplast was verified by fluorescence microscopy of DAPI-stained 

cells. The origins of the trypanosome stocks (T. congolense IL3000 and STIB 736/IL1180 and T. 

vivax STIB 719/ILRAD 560 strains) and their respective culture media used at the Swiss TPH 

Institute, have been previously described in reference 37.

Generation of diminazene-resistant T. congolense lines. Bloodstream form T. congolense strain 

IL3000 was selected for diminazene resistance by subculturing cells in vitro in the continuous 
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presence of increasing concentration of diminazene. To enhance the chances of obtaining a resistant 

phenotype, some lines were mutagenized with 0.001% EMS for 90 min prior to selection with the 

drug. After two years, clones DimR (not mutagenized) and EMS MUT DimR (mutagenized with 

EMS) were generated, both growing in the presence of 800 nM diminazene, being 10- and 12-fold 

resistant, respectively relative to wild type.

In vitro and ex vivo trypanocidal activity and L6 toxicity. The initial S-MGBs library screen 

against T. congolense, T. vivax and L6 cells (data presented in Table 1) was performed at the Swiss 

TPH Institute. To determine the EC50 values for the two trypanosome species specific modifications 

of the Alamar Blue assay (55) and the 3H-hypoxanthine incorporation assay (56) were used, as 

previously described in (37). All experiments were performed in three independent assay runs for 

each compound.

To ascertain the cytotoxicity of each compound tested, the Alamar Blue assay (56) was followed, 

using an L6 (rat skeletal myoblast) cell line, but with minor modifications. The cell density was 

calculated using a Neubauer counting chamber and then diluted accordingly with culture medium, to 

obtain a seeding density of 2×104 cells/ml. The microtitre plates were then incubated overnight at 37 

ºC and 5% CO2, to enable the cells to adhere to the plates. The following day, the test compounds 

were added to the plates, using a three-fold serial dilution step across each plate, before being placed 

back into the incubator for 69 h under the same conditions. Thereafter, the plates were removed from 

the incubator and 10 µl of resazurin dye were placed into each well. The plates were incubated for a 

further 3 h, under the same conditions. After a total of 72 h incubation, the plates were removed and 

read using a fluorescence reader (SpectraMax, Gemini XS, Bucher Biotec, Basel, Switzerland) at an 

excitation wavelength of 536 nm and an emission wavelength of 588 nm. The EC50 values were 

determined using SOFTmax Pro 5.2 analysis software.

A modified Alamar Blue assay protocol was used to study S-MGBs cross-resistance in diminazene 

resistant T. congolense and T. b. brucei at the University of Glasgow. T. b. brucei (2×104 cell/ml) or 

T. congolense (2.5×105 cell/ml) cells were seeded into 96-well plates containing serial 2-fold dilutions 
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of test compounds. After 48 h incubation at (37 °C for T. b. brucei and 34 °C for T. congolense; 5% 

CO2), 20 µl of resazurin dye solution (0.49 mM in PBS, Sigma-Aldrich) was added, and cells were 

incubated for a further 24 h before fluorescence was determined. Akinetoplastic T. b. brucei lines 

(ISMR1 and L262P (AK)) were incubated with test compounds for 69 h, before addition of 10 µl of 

resazurin dye and readout after a further 3 h incubation. Resazurin reduction was measured with a 

fluorimeter (FLUOstar Optima, BMG Labtech) using 544 nm excitation and 590 nm emission 

wavelengths. Data were plotted to an equation for a sigmoid curve with variable slope in GraphPad 

Prism 5 software. All experiments were carried out on at least three independent occasions. 

In vivo trypanocidal activity. Pathogen-free (SPF) NMRI female mice (21-23 g) were used for all in 

vivo mouse trials within this study. Mice were housed in standard Macrolon Type II cages and were 

kept at a room temperature of 22 ºC and a relative humidity of 60-70%, receiving pelleted food and 

water ad libitum. All in vivo mouse trials were conducted in accordance with the regulations and 

guidelines set out by the Swiss Federal Veterinary Office, under License Number RB-739. For the in 

vivo mouse trials, a 50 mg/kg stock solution was prepared for each of the S-MGB test compounds, 

dissolved in sterile distilled water and containing no more than 10% DMSO. From these stock 

solutions, further dilutions were made depending on the dose being tested. All stock solutions and 

dilutions were made fresh on the day of administration and for each separate mouse trial. Mice were 

randomly selected and arranged into groups of four, before being independently infected 

intraperitoneally (i.p.) with 105 parasites in 0.25 ml of (6:4) phosphate buffered saline with glucose 

(PSG), using a drug-sensitive strain of T. congolense (STIB 736/IL1180). Infection of all in vivo 

mouse trials was performed from stabilated infected blood, stored frozen in liquid nitrogen, held 

within the cryobank of the Swiss TPH Institute. For all T. congolense mouse trials, a parasitaemia of 

106 per ml blood was allowed to develop over 7 days, before compound treatment was administered 

(i.p.) on days 7 and 8 post infection (p.i.) (for 2 application regimens, 24 h apart) or days 7 to 10 p.i. 

(for 4 application regimens, 24 h apart). For single bolus dose applications, compound treatment (i.p.) 

was initiated on day 7 p.i. only. Subsequently, parasitaemia in mice was monitored using a tail blood 

examination technique, until day 60 post treatment to check for any possible relapses. Parasitaemia 
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was checked twice a week for the first 30 days and then once per week thereafter. At the end of the in 

vivo mouse trials, any surviving and aparasitaemic mice were considered cured. Untreated control 

mice survive, on average, 11 days p.i. using this infection protocol.

Fluorescence microscopy. T. congolense cells (5×105 cells/ml) were treated with highly fluorescent 9 

or 16 (2 × EC50) for 2 - 48 h at 34 °C in a humidified 5% CO2 atmosphere. For DAPI co-localisation, 

20 µM of DAPI in water solution was added to the cultures 15 min before slide preparation. At set 

time points, cells were washed in PBS, and an aliquot of parasites was mixed with an equal volume of 

2% w/v low melting point agarose (Sigma-Aldrich) and spread onto a slide by addition of a coverslip. 

Slides were viewed using a Zeiss Axioplan 2 Imaging epifluorescence microscope, equipped with a 

digital CCD camera (Hammatsu Photonics) and a PlanNEUFLUAR 100× oil-immersion NA 1.4 

objective (Carl Zeiss). Standard  FITC, GFP , DsRed and DAPI filters were used, and images were 

acquired using Volocity imaging software (Improvision). Images were merged using GIMP 2.10.4 

software to overlay for co-localisation. 

Time-to-kill assay. Killing kinetics curves for 7 were obtained by continuously exposing T. b. brucei 

(2×104 cell/ml) or T. congolense (1.25×105 cell/ml) to different doses of the compound. Cell densities 

were counted at set timepoints using a Neubauer haemocytometer. Three independent measurements 

were obtained for each condition. 

Reversibility of trypanocidal effect. To determine the time required for 7 to cause irreversible 

effects on trypanosomes, an adaptation of a protocol published by Kaminsky et al. (57) was adopted. 

T. b. brucei (2×104 cell/ml) and T. congolense (2.5×105 cell/ml) were exposed to different doses of the 

compound, for set periods, under standard culture conditions. A pulse timepoint, where parasites were 

exposed to the compound and washed immediately after, was also included. Drug concentrations 

sufficient to kill at least 99.9% of cells determined from the EC50 curves were chosen for this 

experiment, but these had to be further increased to 10 and 20 fold EC50 to obtain cidal effect on T. b. 

brucei. At the designated times, cells were collected and washed twice in ice-cold medium to remove 

test compound. Parasites were finally resuspended in 1 ml of warm medium and cultivated in 24-well 
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plates. Parasites were then monitored daily for 15 days by light microscopy, to assess their ability to 

recover from transient exposure to the compound. All sets of conditions were assessed in triplicate. 

The veterinary drug diminazene was examined in parallel for comparison.

EdU incorporation assay. Direct measurement of DNA synthesis was performed using the Click-iT® 

EdU assay (Thermo Fisher Scientific) following manufacturers' instructions with some modifications. 

T. b. brucei (5 × 105 cell/ml), maintained in thymidine-free HMI-11 medium, were seeded in 24-well 

plates and treated with different concentrations of 7, for 8 h under standard culture conditions. 5-

ethynyl-2´-deoxyuridine (EdU) was added at a final concentration of 150 µM to each well, 4 h before 

the end of the treatment with test compound. Cells were then placed onto each well of a 12-spot 

microscope slide (Thermo Scientific) coated with poly-L-lysine, and allowed to adhere for 15 min at 

room temperature. After careful removal of the medium, trypanosomes were fixed with a 3.7% 

formaldehyde solution. After fixative removal, cells were washed with 1× PBS and then 

permeabilised for 30 min with a 0.1% Triton X-100 solution in 1× PBS. This was removed and the 

cells were washed twice with 1× PBS prior to the addition of 25 µl of a freshly prepared Click-iT® 

EdU detection mix (Thermo Fisher Scientific), containing the fluorophore Alexa Fluor 555 Azide. 

The mix was incubated with the cells for 1 h at room temperature, in a humidity chamber, protected 

from light. At the end of the incubation time, cells were washed 6 times with 1× PBS and finally 

counterstained with 4 µM DAPI and covered with a coverslip. Incorporation of the nucleoside 

analogue of thymidine, EdU, into newly synthesized DNA was visualised using a Zeiss Axioplan 2 

imaging epifluorescence microscope, equipped with a digital CCD camera (Hammatsu Photonics) and 

a PlanNEUFLUAR 100× oil-immersion NA 1.4 objective (Carl Zeiss) using RHOD filter set. DMSO 

samples were prepared as negative controls, and aphidicolin (an inhibitor of eukaryotic nuclear DNA 

replication) (Sigma-Aldrich) was used as positive control at a dose of 1 µg/ml. All conditions were 

assessed in at least four independent occasions. 

Cell cycle analysis. Nuclei/kinetoplast (N/K) configurations of 7-treated T. b. brucei were monitored 

to assess effects on cell cycle progression. Trypanosomes (2×104 cell/ml) were treated either with 

different doses of test compound or DMSO as negative control and kept under standard culture 
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conditions in 24-well plates. At set timepoints (12, 24, 48 and 72 h), trypanosomes were collected, 

applied to a slide and allowed to dry. Slides were fixed overnight in cold methanol and kept at 4 °C 

after drying. Fixed cells were then rehydrated by adding 1-2 ml of PBS and, after eliminating the 

excess buffer, stained with 4 µM DAPI. A Zeiss Axioplan 2 Imaging epifluorescence microscope, 

equipped with a digital CCD camera (Hammatsu Photonics) and a PlanNEUFLUAR 100× oil-

immersion NA 1.4 objective (Carl Zeiss) was used to view cells, using a standard DAPI filter set. 

Volocity imaging software (Improvision) was used for image acquisition. For each condition, the N/K 

configuration of at least 200 cells was recorded. Trypanosomes with configurations 3K1N, 1K3N (in 

which at least the N or the K had undergone two rounds of division in absence of cytokinesis), as well 

as cells with highly fragmented DNA-containing organelles were all included in the MKMN category. 

The experiment was carried out on three independent occasions.

Metabolomics analysis. Following treatment with test compound 7 at 2 × EC50 for 8 h under standard 

culture conditions (or to a corresponding volume of DMSO for the negative controls), T. b. brucei 

metabolites were extracted for untargeted metabolomics analysis. For each sample, 1 × 108 cells were 

collected and rapidly cooled to 4 °C by submersion of the tube in a dry ice-ethanol bath, to quench 

metabolism and denature proteins. Samples were kept at this temperature for all of the subsequent 

steps. Following centrifugation (1250 × g, 10 min), the supernatant was removed and the cell pellet 

was washed in 1 × PBS. The PBS was then removed and the cells lysed by resuspending in 200 µl of 

extraction solvent (chloroform:methanol:water 1:3:1). Metabolite extraction was obtained by vigorous 

shaking for 1 h at 4 °C. Extract mixture was then centrifuged at maximum speed and the supernatant 

collected and frozen at -80 °C under argon until LC-MS analysis. Four biological replicates were 

prepared for each condition.

Samples were analysed at the Glasgow Polyomics Metabolomics Facility using an Exactive Orbitrap 

mass spectrometer (Thermo Fisher) in both positive and negative modes (switching mode) and 

coupled to a HPLC system (Dionex) with a ZIC-pHILIC column (Merck SeQuant), as described 

before. Exactive data were acquired as previously described (58). Untargeted peak-picking and peak 

matching from raw LC-MS data were obtained using XCMS and mzMatch respectively. Metabolite 
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identification and relative quantitation was performed using the IDEOM interface (59), by matching 

accurate masses and retention times of authentic standards or, when standards were not available, by 

using predicted retention times. The putative metabolite list obtained by IDEOM was manually 

checked and filtered based on peak intensity and shape. Statistical analysis of the resulting list was 

performed using MetaboAnalyst 3.0 following log transformation of the data. Fragmentation patterns 

were integrated in the analysis using the Polyomics integrated Metabolomics Pipeline (PiMP) (60).

Transmission electron microscopy. T. b. brucei parasites (1 × 106 cells/ml) were treated with 7 (2 × 

EC50) for 8 h. Parasites were then collected, washed once in 1× PBS, and resuspended in fixative 

(2.5% glutaraldehyde plus 4% paraformaldehyde in 0.1 M PIPES, pH 7.3). After washing in 0.1 M 

sodium cacodylate buffer, cells were post-fixed in 1% osmium tetroxide for 1 h in the dark, washed in 

distilled water and stained with 0.5% aqueous uranyl acetate solution for 30 min in the dark. Parasites 

were then washed in distilled water and dehydrated in acetone solutions (30, 50, 70, 90, 100%). Cell 

were then embedded in epoxy resin (TAAB Laboratories Equipment Ltd). Ultrathin sections (50 nm) 

were sectioned using a Leica EM UC7 ultramicrotome, collected in Formvar-coated grids and 

visualised on a Jeol 1200 transmission electron microscope operating at 80 kV.

Compound synthesis. The details of previously published compounds can be found in the 

Supplementary Information. The following describes the synthesis of novel compounds.

Chemical reagents were obtained from Aldrich Chemical (Saint Louis, Missouri), Acros Organics, 

abcr GmBh (Karlsruhe, Germany), ACB Blocks (Toronto, Canada) and Chembridge, and were used 

without further purification. 1H spectra were measured on a Bruker DPX-400 MHz 

spectrometer with chemical shifts given in ppm (δ-values), relative to proton and carbon 

traces in solvent. Coupling constants are reported in Hz. 13C NMR are not reported due to 

synthesis of insufficient material and our experience of 13C NMR spectra being uninformative 

in S-MGB characterisation due to significantly overlapping signals. IR spectra were recorded 

on a Perkin Elmer, 1 FT-IR spectrometer. Mass spectra were obtained on a Jeol JMS AX505. 

Anhydrous solvents were obtained from a Puresolv purification system, from Innovative 
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Technologies, or purchased as such from Aldrich. Chromatography was carried out using 

200-400 mesh silica gels, or using reverse-phase HPLC on a waters system using a C18 Luna 

column. All final MGBs were of  >95% purity as determined by HPLC.

HPLC method used for the purification of final MGBs:

Time (mins) Flow rate (mL/min) %Water (0.1%TFA) %Acetonitrile (0.1%TFA)

0 6 90 10

25 6 60 40

35 6 50 50

40 6 30 70

44 6 90 10

5-{[(5-{[(5-{[(3-amino-3-iminiopropyl)amino]carbonyl}-1-methyl-1H-pyrrol-3-

yl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)amino]carbonyl}-2-[(E)-2-(4-

methoxyphenyl)ethenyl]pyridinium bis(trifluoroacetate) 7

N-(5-{[(3-Amino-3-iminopropyl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)-1-methyl-4-

nitro-1H-pyrrole-2-carboxamide (61) (30 mg, 0.083 mmol) was dissolved in MeOH (3 mL) 

to which was added Pd/C-10 % (30 mg) and this was subjected to hydrogenation for 2 h at 

atmospheric pressure. After this, the reaction mixture was filtered through keisulghur and the 

solvent removed by rotary evaporation. The resulting residue was dissolved in dry DMF (1 

mL) and to this was added 6-[(E)-2-(4-hydroxyphenyl)ethenyl]nicotinic acid (17) (21 mg, 

0.083 mmol) and HBTU (64 mg, 0.17 mmol). The reaction mixture was left to stir overnight 

at room temperature and subjected to HPLC purification directly to yield the desired material 

as an off-white solid (21 mg, 32 %).

IR: 3295, 3094, 2935, 1677, 1655, 1640, 1612, 1578, 1558, 1543, 1530, 1472, 1433, 1408, 

1386, 1261, 1196, 1183, 1134, 1064, 1013, 965 cm-1

δH NMR (DMSO-d6): 10.35 (1H, s), 9.95 (1H, s), 9.26 (1H, d, J = 2.0), 8.89 (2H, s), 8.54 

(1H, m),  8.43 (2H, s), 8.19 (1H, m), 7.99-8.03 (4H, m), 7.59-7.82 (6H, m), 7.34 (1H, d, J = 
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1.5), 7.18 (1H, d, J = 1.5), 7.12 (1H, d, J = 1.5), 6.97 (1H, d, J = 1.5), 3.88 (3H, s), 3.82 (6H, 

s), 3.48-3.51 (2H, m), 2.58-2.62 (2H, m).

HR-MS-FAB: Found 569.2618 calculated for C30H33O4N8
+ (M+H) 569.2619.

1-amino-3-({[4-({[4-({4-[(E)-2-(3-methoxyphenyl)ethenyl]benzoyl}amino)-1-methyl-1H-

pyrrol-2-yl]carbonyl}amino)-1-methyl-1H-pyrrol-2-yl]carbonyl}amino)-1-

propaniminium trifluoroacetate 8

N-(5-{[(3-Amino-3-iminopropyl)amino]carbonyl}-1-methyl-1H-pyrrol-3-yl)-1-methyl-4-

nitro-1H-pyrrole-2-carboxamide (61) (30 mg, 0.083 mmol) was dissolved in MeOH (3 mL) 

to which was added Pd/C-10 % (30 mg) and this was subjected to hydrogenation for 2 h at 

atmospheric pressure. After this, the reaction mixture was filtered through keisulghur and the 

solvent removed by rotary evaporation. The resulting residue was dissolved in dry DMF (1 

mL) and to this was added 4-[(E)-2-(3-methoxyphenyl)ethenyl]benzoic acid (17) (21 mg, 

0.083 mmol) and HBTU (64 mg, 0.17 mmol). The reaction mixture was left to stir overnight 

at room temperature and subjected to HPLC purification directly to yield the desired material 

as an off-white solid (22 mg, 39 %).

IR: 3295, 3068, 2948, 2824, 1703, 1673, 1655, 1632, 1614, 1582, 1561, 1546, 1532, 1513, 

1502, 1489, 1470, 1436, 1403, 1390, 1276, 1198, 1174, 1121, 1051, 1008 cm-1

δH NMR (DMSO-d6): 10.31 (1H, s), 9.94 (1H, s), 8.89 (2H, s), 8.48 (2H, s), 8.19 (1H, t, J = 

5.5), 7.95 (2H, d, J = 8.5), 7.73 (2H, d, J = 8.5), 7.29-8.37 (4H, m), 7.21-7.23 (2H, m), 7.18 

(1H, d, J = 1.5), 7.10 (1H, d, J = 1.5), 6.95 (1H, d, J = 1.5), 6.88 (1H, m), 3.87 (3H, s), 3.81 

(3H, s), 3.80 (3H, s), 3.48-3.51 (2H, m), 2.58-2.62 (2H, m).

HR-MS-FAB: Found 568.2672 calculated for C31H34O4N7
+ (M+H) 568.2667.
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N-[5-({[5-({[2-(Dimethylamino)ethyl]amino}carbonyl)-1-methyl-1H-pyrrol-3-

yl]amino}carbonyl)-1-methyl-1H-pyrrol-3-yl]-6-{(E)-2-[4-

(dimethylamino)phenyl]ethenyl}nicotinamide 9

N-[2-(Dimethylamino)ethyl]-1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-

yl)carbonyl]amino}-1H-pyrrole-2-carboxamide (62) (0.160 g, 0.147 mmol) was dissolved in 

methanol (25 mL) to which Pd/C-10% (35 mg) was added at room temperature with stirring 

under nitrogen. The reaction mixture was hydrogenated at room temperature and atmospheric 

pressure for 2h. The catalyst was removed over Kieselguhr and methanol was removed under 

reduced pressure to give the amine which was dissolved in dry DMF (2 mL). 6-{(E)-2-[4-

(dimethylamino)phenyl]ethenyl}nicotinic acid (20) (39 mg, 0.147 mmol) and HBTU (102 

mg, 0.147 mmol) were added with stirring at room temperature. The reaction mixture was 

heated at 55oC for 24h. HPLC purification of the reaction mixture gave the required product 

as a red solid material (44 mg, 52%) with no distinct melting point.

IR: 720, 804, 1128, 1175, 1287, 1366, 1435, 1528, 1576, 1668 cm-1

δH NMR (DMSO-d6): 10.45 (1H, s), 9.98 (1H, s), 9.27 (1H, br), 9.04 (1H, s), 8.25 (1H, dd, J 

= 2.85, 13.0), 8.19 (1H, t, J = 8.9), 7.72 (1H, d, J = 16.0), 7.64 (1H, d, J = 8.3), 7.54 (2H, d, J 

= 8.9), 7.34 (1H, d, J = 1.5), 7.21 (1H, d, J = 1.5), 7.10-7.15 (2H, m), 7.01 (1H, d, J = 1.5), 

6.76 (2H, d, J = 8.9), 3.89 (3H, s), 3.84 (3H, s), 3.52 (2H, q, J = 6.0), 3.23 (2H, q, J = 6.0), 

2.99 (6H, s), 2.85 (6H, m).

HR-MS-FAB: found: 583.3144 calculated for C32H38N8O3 583.3145

N-[2-(Dimethylamino)ethyl]-4-({[4-({4-[(E)-2-(3-

methoxyphenyl)ethenyl]benzoyl}amino)-1-methyl-1H-pyrrol-2-yl]carbonyl}amino)-1-

methyl-1H-pyrrole-2-carboxamide 10
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N-[2-(Dimethylamino)ethyl]-1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-

yl)carbonyl]amino}-1H-pyrrole-2-carboxamide (62) (0.160 g, 0.147 mmol) was dissolved in 

methanol (25 mL) to which Pd/C-10% (35 mg) was added at room temperature with stirring 

under nitrogen. The reaction mixture was hydrogenated at room temperature and atmospheric 

pressure for 2h. The catalyst was removed over Kieselguhr and methanol was removed under 

reduced pressure to give the amine which was dissolved in dry DMF (2 mL). 4-[(E)-2-(3-

methoxyphenyl)ethenyl]benzoic acid (17) (38 mg, 0.147 mmol) and HBTU (102 mg, 0.147 

mmol) were added with stirring at room temperature. The reaction mixture was heated at 

55oC for 24h. HPLC purification of the reaction mixture gave the required product as pale 

yellow solid material (30 mg, 36%) with no distinct melting point.

IR: 689, 777, 976, 1134, 1165, 1198, 1262, 1402, 1433, 1464, 1514, 1580, 1641 cm-1

δH NMR (DMSO-d6): 10.32 (1H, s), 9.96 (1H, s), 9.28 (1H, br), 8.183 (1H, t, J = 5.6), 7.96 

(2H, d, J = 8.4), 7.73 (2H, d, J = 8.4), 7.28-7.40 (4H, m), 7.18-7.22 (3H, m), 7.11 (1H, d, J = 

1.5), 7.00 (1H, d, J = 1.5), 6.88 (1H, dd, J = 3.7, J = 1.5), 3.87 (3H, s), 3.83 (3H, s), 3.81 

(3H, s), 3.51 (2H, q, J = 6.0), 3.21 (2H, q, J = 6.0), 2.84 (6H, m).

HR-MS-FAB: found: 569.2880 calculated for C32H36N6O4 569.2876

N-[2-(Dimethylamino)ethyl]-1-methyl-4-({[1-methyl-4-({4-[(E)-2-(3-

quinolinyl)ethenyl]benzoyl}amino)-1H-pyrrol-2-yl]carbonyl}amino)-1H-pyrrole-2-

carboxamide 11

N-[2-(Dimethylamino)ethyl]-1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-

yl)carbonyl]amino}-1H-pyrrole-2-carboxamide (62) (0.160 g, 0.147 mmol) was dissolved in 

methanol (25 mL) to which Pd/C-10% (35 mg) was added at room temperature with stirring 

under nitrogen. The reaction mixture was hydrogenated at room temperature and atmospheric 

pressure for 2h. The catalyst was removed over Kieselguhr and methanol was removed under 
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reduced pressure to give the amine which was dissolved in dry DMF (2 mL). 4-[(E)-2-(3-

quinolinyl)ethenyl]benzoic acid (17) (41 mg, 0.147 mmol) and HBTU (102 mg, 0.147 mmol) 

were added with stirring at room temperature. The reaction mixture was left stirring at room 

temperature for 24h. HPLC purification of the reaction mixture gave the required product as 

yellow solid material (14 mg, 14%) with no distinct melting point.

IR: 720, 831, 972, 1061, 1128, 1196, 1267, 1414, 1431, 1495, 1539, 1624, 1674 cm-1

δH NMR (DMSO-d6): 10.35 (1H, s), 9.97 (1H, s), 9.26 (2H, b), 8.56 (1H, d, J = 2.0), 8.18 

(1H, t, J = 6.0), 7.98-8.04 (4H, m), 7.81 (2H, d, J = 9.0), 7.76 (1H, t, J = 6.5), 7.6-7.7 (3H, 

m), 7.33 (1H, d, J = 2.0), 7.20 (1H, d, J = 2.0), 7.12 (1H, d, J = 2.0), 7.00 (1H, d, J = 2.0), 

3.88 (3H, s), 3.83 (3H, s), 3.51 (2H, q, J = 6.0), 3.23 (2H, q, J = 6.0), 2.84 (6H, m).

HR-MS-FAB: found: 590.2882 calculated for C34H35N7O3 590.2880

5,6-Dichloro-N-[5-({[5-({[4-({[3-(dimethylamino)propyl]amino}carbonyl)-5-isopropyl-

1,3-thiazol-2-yl]amino}carbonyl)-1-methyl-1H-pyrrol-3-yl]amino}carbonyl)-1-methyl-

1H-pyrrol-3-yl]nicotinamide 17

N-[3-(Dimethylamino)propyl]-5-isopropyl-2-{[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-

yl)carbonyl]amino}-1H-pyrrol-2-yl)carbonyl]amino}-1,3-thiazole-4-carboxamide (90 mg, 

0.165 mmol) was dissolved in methanol (25), then it was cooled to 0oC and Pd/C-10% (82 

mg) was added portionwise under N2 with stirring. The reaction mixture was hydrogenated at 

room temperature and atmospheric pressure for 6h. The catalyst was removed over 

Kieselguhr and the solvent was removed under reduced pressure. 5,6-Dichloronicotinic acid 

(32 mg, 0.165 mmol) was dissolved in thionyl chloride (2 mL) and heated under reflux for 

2h. Excess thionyl chloride was removed under reduced pressure and the residue was 

dissolved in dry DCM (5 mL). The amine was dissolved in dry DCM (5mL) to which NMM 

(0.5 mL) was added followed by the acid chloride solution. The stirring was continued at 
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room temperature overnight. The volatile material was removed under reduced pressure and 

the crude product was purified by HPLC. Fractions containing the required material were 

collected and freeze dried to give the pure product as light brown solid (66 mg, 50%) with no 

distinct melting point. 

IR: 1660, 1548, 1466, 1284, 1201, 1129, 774, 721 cm-1. 

δH NMR (DMSO-d6):  12.05(1H, s), 10.68(1H, s), 10.11(1H, s), 9.32(1H, br), 8.89(1H, d, 

J=2.4Hz), 8.59(1H, d, J=2.5Hz), 7.96(1H, t, unresolved), 7.45(1H, d, J=1.6Hz), 7.40(1H, d, 

J=1.6Hz), 7.36(1H, d, J=1.6Hz), 7.13(1H, d, J=1.6Hz), 4.20(1H, quintet, J=6.8Hz), 3.89(6H, 

s), 3.35(2H, q, J=6.4Hz), 3.06(2H, m), 2.79(6H, d, J=4.7Hz), 1.87(2H, q, unresolved), 

1.29(6H, d, J=6.8Hz). 

HR-MS-FAB: found: 688.2017 calculated for C30H36N9O4S35Cl2 688.1988.

4-(Ethanimidoylamino)-1-methyl-N-[1-methyl-5-({[1-methyl-5-({[2-(4-

morpholinyl)ethyl]amino}carbonyl)-1H-pyrrol-3-yl]amino}carbonyl)-1H-pyrrol-3-yl]-

1H-pyrrole-2-carboxamide 18

1-Methyl-N-[1-methyl-5-({[1-methyl-5-({[2-(4-morpholinyl)ethyl]amino}carbonyl)-1H-

pyrrol-3-yl]amino}carbonyl)-1H-pyrrol-3-yl]-4-nitro-1H-pyrrole-2-carboxamide (56 mg, 

0.106 mmol) was dissolved in methanol (25 mL) to which Pd/C-10% (29 mg) was added at 

0oC under N2 with stirring. The reaction mixture was hydrogenated for 6h at room 

temperature and atmospheric pressure. The catalyst was removed over Kieselguhr. To the 

methanolic solution of the amine, methyl ethanimidothioate hydroiodide (23 mg, 0.106 

mmol) was added at room temperature with stirring. The solution was left standing at room 

temperature for 48h. HPLC purification gave the product as white solid (32 mg, 39%) with 

no distinct melting point. 

IR: 1665, 1550, 1290, 1200, 1131 cm.-1 
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δH NMR (DMSO-d6): 10.84(1H, s), 9.97(1H, s), 9.93(1H, s), 9.72(1H, br), 9.42(1H, s), 

8.35(1H, s), 8.22(1H, s), 7.24(1H, d, J=1.7Hz), 7.19(1H, d, J=1.7Hz), 7.16(1H, d, J=1.7Hz), 

7.06(1H, d, J=1.7Hz), 5.99(1H, d, J=1.7Hz), 6.92(1H, d, J=1.7Hz), 3.98(2H, m), 3.91(3H, s), 

3.85(3H, s), 3.82(3H, s), 3.71-3.13(10H, m), 2.29(3H, s). 

HR-MS-FAB: found: 538.2881 calculated for C26H36N9O4 538.2890

N-[5-({[5-({[5-Isopropyl-4-({[2-(4-morpholinyl)ethyl]amino}carbonyl)-1,3-thiazol-2-

yl]amino}carbonyl)-1-methyl-1H-pyrrol-3-yl]amino}carbonyl)-1-methyl-1H-pyrrol-3-

yl]-3-isoquinolinecarboxamide 19

5-isopropyl-2-{[(1-methyl-4-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-1H-pyrrol-

2-yl)carbonyl]amino}-N-[2-(4-morpholinyl)ethyl]-1,3-thiazole-4-carboxamide (38 mg, 0.066 

mmol) was dissolved in methanol (25 mL) to which Pd/C-10% (40 mg) was added at 0oC 

under N2 with stirring. The reaction mixture was hydrogenated for 5h at room temperature 

and atmospheric pressure. The catalyst was removed over Kieselguhr. Methanol was 

removed under reduced pressure at 50oC and the amine so formed was dissolved in dry DMF 

(1 mL) to which NMM (40 μL) was added at room temperature with stirring followed by 3-

isoquinolinecarboxylic acid (12 mg, 0.070) and HBTU (52 mg, 0.140 mmol). The stirring 

was continued at room temperature overnight. The product was obtained as white solid (25 

mg, 36%) with no distinct melting point (after the purification by HPLC). 

IR: 1662, 1545, 1276, 1200 cm.-1 

δH NMR (DMSO-d6): 12.00(1H, s), 10.83(1H, s), 10.08(1H, s), 9.60(1H, br), 9.45(1H, s), 

8.64(1H, s), 8.30(1H, d, J=7.7Hz), 8.24(1H, d, J=7.7Hz), 8.10(1H, t, J=6.0Hz), 7.92(1H, dt, 

J=1.6Hz & 7.0Hz), 7.85(1H, dt, J=1.6Hz & 7.0Hz), 7.45(2H, d, J=1.7Hz), 7.41(1H, d, 

J=1.7Hz), 7.33(1H, d, J=1.7Hz), 4.20(1H, septet, J=6.9Hz), 3.99-3.93(2H, m), 3.905(3H, s), 

3.901(3H, s), 3.66-3.12(10H, m), 1.30(6H, d, J=6.9Hz). 
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HR-MS-FAB: found: 698.2867 calculated for C35H40O5N9S 698.2873.

4-[(4-{(E)-2-[2-(1H-1,2,3-Benzotriazol-1-yloxy)-3-quinolinyl]ethenyl}benzoyl)amino]-1-

methyl-N-[1-methyl-5-({[2-(4-morpholinyl)ethyl]amino}carbonyl)-1H-pyrrol-3-yl]-1H-

pyrrole-2-carboxamide 20

1-Methyl-N-[1-methyl-5-({[2-(4-morpholinyl)ethyl]amino}carbonyl)-1H-pyrrol-3-yl]-4-

nitro-1H-pyrrole-2-carboxamide (50 mg, 0.124 mmol) was dissolved in methanol (25 mL) to 

which was added Pd/C-10% (50 mg) at 0oC (under N2) with stirring. The reaction mixture 

was hydrogenated for 3h at room temperature and atmospheric pressure. The catalyst was 

removed over Kieselguhr and the methanol was removed under reduced pressure. The amine 

so formed was dissolved in dry DMF (1 mL). To the amine solution the following were 

added: 4-[(E)-2-(2-chloro-3-quinolinyl)ethenyl]benzoic acid (38 mg, 0.124 mmol) and HBTU 

(94 mg, 0.248 mmol) and the reaction mixture was kept stirring overnight. The product was 

purified by HPLC (no work up required) to give the required product as a yellow solid after 

freeze drying (19 mg, 17%) with no distinct melting point.

IR: 1681, 1642, 1581, 1540, 1464, 1435, 1404, 1266, 1202, 1134 cm.-1 

δH NMR (DMSO-d6): 10.39(1H, s), 9.97(1H, s), 9.55(1H, s), 9.03(1H, s), 8.24(2H, d, 

J=8.3Hz), 8.08-8.02(3H, m), 7.93-7.89(2H, m), 7.85-7.77(3H, m), 7.66-7.54(4H, m), 

7.37(1H, d, J=7.8Hz), 7.34(1H, d, J=1.6Hz), 7.21(1H, d, J=1.6Hz), 7.14(1H, d, J=1.6Hz), 

7.01(1H, d, J=1.6Hz), 4.02(2H, m), 3.88(3H, s), 3.86(3H, s), 3.69-3.53(6H, m), 3.27-

3.14(4H, m). 

HR-MS-FAB: Found: 765.3267 calculated for C42H41N10O5 765.3261.
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2-[({4-[(4-{(E)-2-[2-(1H-1,2,3-benzotriazol-1-yloxy)-3-

quinolinyl]ethenyl}benzoyl)amino]-1-methyl-1H-pyrrol-2-yl}carbonyl)amino]-5-

isopentyl-N-[2-(4-morpholinyl)ethyl]-1,3-thiazole-4-carboxamide 21

5-Isopentyl-2-{[(1-methyl-4-nitro-1H-pyrrol-2-yl)carbonyl]amino}-N-[2-(4-

morpholinyl)ethyl]-1,3-thiazole-4-carboxamide: (80 mg, 0.167 mmol) was dissolved in 

methanol (25 mL) to which was added Pd/C-10% (60 mg) at 0oC (under N2) with stirring. 

The reaction mixture was hydrogenated for 4h at room temperature and atmospheric pressure. 

The catalyst was removed over Kieselguhr and the methanol was removed under reduced 

pressure. The amine so formed was dissolved in dry DMF (2 mL). To the amine solution the 

following were added: 4-[(E)-2-(2-chloro-3-quinolinyl)ethenyl]benzoic acid (46 mg, 0.167 

mmol) and HBTU (126 mg, 0.334 mmol) and the reaction mixture was kept stirring at room 

temperature overnight. The product was purified by HPLC (no work up required) to give the 

required product as a yellow solid after freeze drying (19 mg, 12%) with no distinct melting 

point.

IR: 1663, 1551, 1502, 1401, 1288, 1202, 1137, 778, 750 cm.-1 

δH NMR (DMSO-d6): 12.09(1H, s), 10.49(1H, s), 9.68(1H, br), 9.03(1H, s), 8.93(1H, s), 

8.23(1H, d, J=8.4Hz), 8.09-7.95(6H, m), 7.90-7.77(6H, m), 7.70(1H, t, J=7.0Hz), 7.65-

7.57(4H, m), 7.55(1H, d, J=1.6Hz), 7.46(1H, d, J=1.6Hz), 7.37(1H, d, J=9.1Hz), 12.08(1H, 

s), 10.49(1H, s), 9.72(1H, br), 9.03(1H, s), 8.24(1H, d, J=8.4Hz), 8.08-7.99(3H, m), 7.94-

7.88(1H, m), 7.85-7.79(2H, m), 7.66-7.56(3H, m), 7.54(1H, d, J=1.6Hz), 7.46(1H, d, 

J=1.6Hz), 7.37(1H, d, J=7.9Hz), 4.02(2H, m), 3.93(3H, s), 3.70-3.54(6H, m), 3.31-3.15(6H, 

m), 1.64-1.51(3H, m), 0.93(6H, d, J=6.3Hz). 

HR-MS-FAB: Found: 839.3455 calculated for C45H47O5N10S 839.3452.
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S-MGB Strathclyde-minor groove binder

MKMN multiple kinetoplasts and nuclei

EdU 5-ethynyl-2´-deoxyuridine 
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