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Abstract—Remote, non-contact recognition of human motion
and activities is central to health monitoring in assisted living
facilities, but current systems face the problems of training
compatibility, minimal training data sets and a lack of inter-
operability between radar sensors at different frequencies. This
paper represents a first work to consider the efficacy of deep
neural networks (DNNs) and transfer learning to bridge the gap
in phenomenology that results when multiple types of radars
simultaneously observe human activity. Six different human
activities are recorded indoors simultaneously with 5.8 GHz and
25 GHz radars. Firstly, the bottleneck feature performance of the
DNNs show that a baseline of 76% is achieved. On models trained
only with 25 GHz data when 5.8 GHz data is used for testing 81%
accuracy is achieved. in absence of a large dataset for radar at a
certain frequency, we demonstrate information from a different
frequency radar is better suited for generating the classification
models than optical images and by using time-velocity diagrams
(TVD), a degree of interoperability can be achieved.

Keywords: Micro-Doppler, Assisted living, Transfer learn-
ing

I. INTRODUCTION

Indoor monitoring of motions and activities through a non-
contact paradigm is becoming necessary to face the need
for ambient care of the increasingly elderly population of
the world. As we are getting older and living longer, the
need for quality care and quick response times in cases of
accidents has increased importance in this environment where
multi-morbidity conditions are present. The key aim is to
maintain user autonomy while keeping their independence.
Typical technologies to address this gap have been sensors,
including but not limited to wearable inertial measuring units
[1], RGB and stereoscopic camera systems, passive acoustic
sensors and radar [2] .

Micro-Doppler(mD) signatures, which are rotational, trans-
lational or vibrational components of a body moving in the
line of sight of a electromagnetic detector, can be utilised
to identify dynamic objects or movements [3]. As the sensor
is capable of distinguishing changes in the environment in
addition to the composing entities, there is an expansive array
of applications which mD use is suggested for, including
but not limited to: detecting armed people [4]; differentiating
between pedestrian, cyclists and automotive cars [5]; human
activity classification [6] and general in-home monitoring of
elderly persons with focus on fall detection [7]. Radar is

suitable for indoor monitoring due to its contactless nature
since there is no need for the users to wear or carry devices
or change their behaviour. It is more suitable than other
technologies which may be either forgotten by the user or
unused due to the negative connotations associated with the
devices. It is insensitive to luminescence levels which means
it can record throughout the day and because it does not
capture digital images, it is more privacy oriented than other
technologies. The radiated power level from a radar sensor
is comparable or less than that of other radio sources such as
WiFi or smartphones meaning it is safe for prolonged exposure
[2].

Deep learning [8] has brought a new revolution in cognitive
computing and attempts are being made to utilise these tech-
nologies with radar [5] [9] [10]. Previously the focus has been
on generating handcrafted features which exploit spectral and
temporal properties which are then classified with the use of
support vector machines [7] [6] [11]. A further improvement
on this method relies on extracting salient features to improve
accuracy [11]. Multistatic and multimodal sensor fusion have
also been shown to improve the recognition of activities. To
better generalise the extraction of the features and increase
the automation of the classification process, neural networks
are being used increasingly. In this paper we continue this
trend where we use a selection of convolutional neural network
(CNN) architectures, specifically: AlexNet [12], GoogleNet
[13] and a simple 3 unit CNN with emphasis on batch
normalisation.

Cross-frequency compatibility is a key aspect sensing that
has seen limited discussion in the literature, as most works
focus on single frequency systems. In preliminary work,
Vishwakarma [14] proposed a dictionary learning approach for
classification across multiple frequency, motivated by cogni-
tive radar applications. However, only four easily discernable
classes were considered for transmit frequencies varying by
just 2.5 GHz; therefore, the methods ability to deal with
the interoperability of transmitters with large difference in
frequency, in realistic environments, to classify numerous
signatures for similar activities is an outstanding research
challenge. In this work, we consider the ability of deep neural
networks and transfer learning to aide in the classification
of 6 human activities using radar systems whose transmit



Fig. 1. Radar and antenna setup. The 25 GHz and 5.8 GHz radars are
connected to two different laptops, which are connected via a local network.

frequencies differ by 20 GHz.
The paper is organised as follows: in Section II, the hard-

ware setup and the experimental design is discussed, this is
followed by the data processing. Then, in Section III results
from the use of bottlenecked features from the classifiers
transfer learning on our subset of activities are presented in
Section IV and finally, the use of transfer learning and TVD
from the secondary radar is shown to establish compatibility.

II. EXPERIMENTAL DESIGN

A. Hardware Setup

Simultaneous measurements from frequency modulated
continuous wave (FMCW) radars at 5.8 GHz and 25 GHz
were taken in a 4 m by 4 m square space in the Radar Signal
Processing Laboratory (RSPL) of the University of Alabama,
Tuscaloosa. The bandwidth of the two systems shown in Fig.1
were set at 400 mHz and 750 mHz, while the pulse repetition
frequency of both radars was set at 1 kHz. The systems were
aligned at waist height (1 m) to ensure the torso returns were
focused upon as the rest of the body has narrow radar cross
section. Physically, the radars were separated by 0.2m for
the beam to effectively have the same area however, as they
were transmitting in two different frequency bands, no cross
interference was expected to occur.

The 5.8 GHz C-band system used patched antennas and the
25 GHz K-band system utilised horn antennas. The transmitted
power settings were 16 dBm and 19 dBm respectively.

B. Data collection

The dataset in this experiment was collected from seven
participants with variations in build, age, height and weight.
The range of motions performed were typical of an assisted
living scenario where gait movements and the bending of the
torso is common. These activities are useful for monitoring
purposes as they require macro movements of large segments
of the body where degradation of mobility becomes more
easily identifiable. Six activities were performed by the par-
ticipants of which five seconds were recorded from, with at
least ten repetitions of each activity. The aspect angle was

Fig. 2. The recording environment with a participant. Aspect angle was varied
therefore the participant was not directly in line of sight.

varied from 0 to 15 onto 30 degrees as to simulate an indoor
environment, as shown in Fig 2. and also increase the variation
and the classification challenge.

The six activities were:

1 : Walking forwards
2 : Walking away from the sensor
3 : Bowing forwards
4 : Picking up an object
5 : Foot drag
6 : Walking with short steps

1009 independent observations were taken with each radar,
in total 2018 files were generated through this experiment.

III. DATA PROCESSING

Using the radar returns from the system, a Short Time
Fourier Transform (STFT) was performed on each recording
to generate the spectrogram. STFT visualises the intrinsic
instantaneous frequency components of the signal spectrum
which allows the micro-Doppler signal to be visible. With it,
the movement of limbs and rotation of torso can be seen.

The generated spectrograms had a Hamming window with
an duration of 0.2 seconds for both systems. The overlap
between the windows was set at 95%.

As a large proportion of data has been taken at an off
aspect angle the returns would be attenuated by the cosine
relationship. Contrast enhancing methods are used therefore
to improve classification accuracy and generalise performance
[12]. Methods like Naka-Rushton constrast enhancement and
principle component based methods have been suggested, but
in this paper we use a simplified z-score based threshold where
the mean amplitude of the spectrogram is subtracted from each
bin then normalised by the standard deviation of the bins.



Fig. 3. Image inputs to the neural networks. The higher resolution images
above the Acitivity number are from 25 GHz radar in rows 1 and 3. The 5.8
GHz inputs are below the number in rows 2 and 4.

After generation of the spectrograms, the time velocity
diagrams are taken using the Doppler relationship:

v =
cfd
2f0

(1)

where fd is the Doppler frequency and f0 is the carrier
frequency of the radar. The time velocity diagrams generated
with limits at 5 m/s are passed through the contrast threshold
then converted to RGB images. These images, as shown in
Fig 3., are then used as inputs to the neural networks.

IV. TRANSFER LEARNING

Transfer learning (TL) utilises the weights generated by a
deep neural network trained on a large dataset [15], which
allows the detection of edges, curves and other image patterns/
properties. This then is ported to a application specific problem
set with a smaller set of labelled data and identifiable classes.
This approach mitigates two general issues with Deep Convo-
lutional Neural Networks: the size of the training dataset and
the training time required to train the classifier. Fig 4. shows
the layer decompositon of one of the architectures used in the
design and shows the layers removed in the transfer learning
process.

From the collected dataset of the K-band radar, 50% of the
data was used for training the classifiers, 25% for validation
and 25% for testing. The segmentation of the dataset was
stratified therefore class ratios were preserved despite the
random selection of the data points. The pretrained models
used for transfer learning are AlexNet and GoogLeNet, both
trained with the ImageNet database prior to their modification.

Fig. 4. Alexnet network architecture [12]. For transfer learning, after training
on the ImageNet database, the end fully connected, softmax and output layer
are replaced and the network is retrained with the target dataset to make it
specific to our application.

A convolutional neural network has been included for compar-
ison between the intensive deep learning methods and simpler
classifiers. These three networks differentiate in three general
properties: depth, presence of a batch normalisation layer and
network architecture.

All neural networks are tuned with an initial learning rate of
0.0001 and Stochastic Gradient Descent method. The software
package used for this work was MATLAB with graphics
processing unit (GPU) acceleration utilised for a faster training
process. Three Nvidia GTX 1080ti are utilised here and the
learning rate has been scaled according to the number of
GPUs.

AlexNet was famously used in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012. It consists
of three convolutional units (5 convolutional layers and 3
max pooling layers). For better generalisation and to prevent
overfitting, it contains dropout layers towards the top of the
structure [12].

Two years later, GoogLeNet won ILSVRC [16] due to its
new inception module and hierarchical decision design. The
module performs dimensionality reduction by performing 1x1,
3x3 and 5x5 convolutions implicitly and filter concatenating.
This means it has increased depth compared to AlexNet.

The third neural network is a simple design which relies
on a number of batch normalisation layers as this improves
generalisation by reducing the covariant shifts between the
layers [17]. This, in practice, would benefit training with two
radar systems as the compatibility of the model is reliant on
the fitting of the spectrograms. The entire design consists of
three convolutional units, each with a convolutional layer; a
batch normalisation layer; a rectified linear unit layer and
a max pooling layer, in this specific sequence. Three units
are cascaded with the relu layer in the third convolutional
unit connected to a fully connected and a softmax layer for
classification.

A. DNN Initialization with Optical Imagery

To establish a baseline for the results, within the challenging
classification environment where the age, body type and aspect
angles varied, prior to removal of the fully connected layers,
bottleneck features from the pre-trained networks were gener-
ated and classified with a multi-class support vector machine.
We compare bottleneck features as these reflect the efficacy of



different source domains in initializing the network weights.
Bottlenecked features are generated by using the weights of
the DNNs’ end connected layers then using data unknown to
the classifier to generate features which give indications of
how suited the current weights are for mD classification. In
this section, we present the bottleneck feature performance
when the ImageNet database is used as the source domain.

Table I shows the bottlenecked feature performance of
the deeper network is significantly improved. Features from
AlexNet find it difficult to correctly identify activities 3,4
and 6 while maintaining a 80-91% classification rate for the
remaining activities.

TABLE I
CLASSIFICATION RESULTS OF TRANSFER LEARNING ON MODELS TRAINED

ON IMAGENET WITHOUT ANY RADAR DATA

Classifier\Class 1 2 3 4 5 6 Mean

AlexNet 80.6 96.3 55 36.6 90 29.2 64.7
GoogLeNet 87.8 92.6 94.3 44.7 86.1 55.1 76.8

GoogLeNet derived features performs better with the excep-
tion of 2 and 5 where the accuracy is 5% lower for these two
activities compared to AlexNet. In Fig 5. the main incidents
of confusion are between the similar classes as expected.
As activity 6 is a variant of activity 1 it is normal that a
degree of confusion occurs between these classes. The central
component of activities 3 and 4 also have the same motion
where the forward bend of the torso is detected by the radar,
since radial movements are detected more easily than traversal
perpendicular to the radar.

Fig. 5. Confusion matrix for the SVM with bottlenecked features from
GoogLeNet

Bottleneck accuracy of approximately 64-76% means that
the models have room for improvement with fine tuning. At
this point we removed the classification layers from these
classifiers for fine tuning and tested with the C-band radar data,
to assess if the models can be generalised to radars operating
at significantly different frequencies and if training with a set
of spectrograms results in improvements compared to having
a training set of optical images.

V. CROSS FREQUENCY TRAINING RESULTS

This model was was then tested with independent data from
the C-band only. There is no fine tuning of the model with C-
band data in this stage to simulate a scenario where a large
number of training data for the radar is not available allow-
ing an assessment of compatibility to be made. Key image
attributes such as sharpness and pixel intensity can change
markedly when carrier frequencies which are 20 GHz wide
apart are considered.The degree to which the classification
accuracy attenuates as a result of this and use of machine
learning to approach this problem has not been fully assessed
in literature.

TABLE II
CLASSIFICATION RESULTS OF CROSS-FREQUENCY TESTING WITH 5.8

GHZ DATA TUNED ON 25 GHZ DATA

Classifier\Class 1 2 3 4 5 6 Mean

AlexNet 99.4 99.4 87.9 16.7 100 59.86 77.3
GoogLeNet 100 100 80.3 31.8 100 57.2 78.2
3- CNN 92.8 99.4 66.5 52.8 96.2 82.9 81.7

Table II shows the parity in performance of the pre-trained
classifier is present. Both networks identify the classes at 77-
78% accuracy which is an improvement from the case in
Section IV by 12% for AlexNet but a similar measure for
GoogLeNet. Classification rates of some activities are reduced
and new minimum rates of 16% for AlexNet and 31% for
GoogLeNet for activity 4 and performance of the 3 unit CNN
is at 53% which is an improvement on the other architectures
which is 20% more than the nearest pre-trained classifier .

Fig. 6. Confusion matrix for the best performing learning method for cross
frequency data: 3-CNN

The best performing architecture here is the 3 unit CNN
which maintains an accuracy of approximately 81%, an im-
provement from the 76% shown in Table I. The confusion for
class 4 is due to the smaller Doppler shift which occurs when
’bending’ relative to the mass movement of the whole body.

Fig. 6 shows the distribution of the misclassification is
different when radar data is introduced into the models. There
is less widespread misclassification as a number of activities,



including 1: walking, is recognised as the other activities
at low incident rates. Significant confusion, however occurs
between the classes identified earlier which are expected to be
confused (i.e. 3,4 and 1,5,6) but activity 4 has alarming rates
of misclassification as it is identified as a gait at times. Activity
4 and 3 are very similar in terms of bowing and bowing with
picking up an object. In other words, it is a challenging task
to classify.

1

4

Fig. 7. Activation map for the third convolutional layer for activity 4 for
X-band radar and C-band radar.

Towards the top layers of the CNN, the information from
the micro-motions appear to be ignored and only the strong
Doppler signals remain with spurious, weaker components
being filtered out. The weights are reliant on edges as shown
in Fig. 7 and it explains the challenging results for activity 4,
as the inferential information required to accurately classify
the activity is different for the two systems.

VI. CONCLUSION

In this paper, we compare bottleneck performance for DNNs
which are trained with image data as well as performance
comparisons for a two-stage training process, where a small
amount of measured data is used to fine-tune the weights
initialized with data from the other domain (e.g. ImageNet
or data at another frequency).

Despite variation due to physical decomposition, gender and
age of the participants and variable aspect angles, bottleneck
feature performance of 76% is reached when no mD data is
made available to the classifiers. When the models generated
are trained with 25 GHz data then tested with 5.8 GHz data,
accuracy of about 81% is achieved. This indicates that in
absence of a large dataset for radar at a certain frequency,
data from another frequency is better suited for generating the
classification models than general images.

These initial results show that the radar sensors can be com-
patible with the caveat that signatures with lower intensities
can be misclassified to a great degree. To continue on this
topic, use of high resolution time frequency techniques such
hyperbolically wrapped cepstral coefficients and more intricate

model design as in convolutional auto-encoders [18] will be
investigated. A refined fine tuning method where a small
amount of measured data is used to tune the weights initialized
with data from the other sensor will be evaluated. The different
algorithmic pre-processing steps for image enhancement will
be explored.
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