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ABSTRACT: Organic semiconductor lasers are a sensitive
biosensing platform that respond to specific biomolecule
binding events. So far, such biosensors have utilized protein-
based interactions for surface functionalization but a nucleic
acid−based strategy would considerably widen their utility as
a general biodiagnostic platform. This manuscript reports two
important advances for DNA-based sensing using an organic
semiconductor (OS) distributed feedback (DFB) laser. First,
the immobilization of alkyne-tagged 12/18-mer oligodeoxyr-
ibonucleotide (ODN) probes by Cu-catalyzed azide alkyne
cycloaddition (CuAAC) or “click-chemistry” onto an 80 nm
thick OS laser film modified with an azide-presenting polyelectrolyte monolayer is presented. Second, sequence-selective
binding to these immobilized probes with complementary ODN-functionalized silver nanoparticles, is detected. As binding
occurs, the nanoparticles increase the optical losses of the laser mode through plasmonic scattering and absorption, and this
causes a rise in the threshold pump energy required for laser action that is proportional to the analyte concentration. By
monitoring this threshold, detection of the complementary ODN target down to 11.5 pM is achieved. This complementary
binding on the laser surface is independently confirmed through surface-enhanced Raman spectroscopy (SERS).

■ INTRODUCTION

A range of biological materials such as circulating micro-
RNA,1−4 DNA,5−7 and proteins,8−11 which are found in the
blood, plasma, or other biological fluids, can be used as
biomarkers for patient diagnosis, identifying disease patholo-
gies and risk groups.12,13 While standard biomarker detection is
carried out in centralized laboratories, approaches to medicine
for early disease prevention,14 triaging, and chronic disease
management15 necessitate the development of point-of-care
diagnostic technologies to provide rapid results in non-
laboratory settings.16,17 There are several promising optical
technologies for this need in point-of-care diagnostics,18−21

some of them combining evanescent sensing platforms with
antibody protein or nucleic acid (DNA sensing) biorecognition
approaches. The current technologies are subject to
limitations, discussed here in more detail, which the new
paradigm presented in this text hopes to address.
Most evanescent wave sensors are based on passive, optically

resonant structures such as dielectric microresonators,21−23

photonic crystals,24−26 or surface plasmon resonators.27,28

However, they necessitate precise injection of an external light
source to the resonator, which complicates their miniatur-

ization and further leads to a trade-off between sensitivity and
detection resolution.29 Organic distributed feedback (DFB)
laser sensors offer a viable alternative to these passive
evanescent wave devices. They mitigate the sensitivity/
resolution trade-off issue, and their facile implementation is
attractive for miniaturization.29−32 Organic DFB laser sensors
are fabricated by imprinting a nanofilm of lasing material with a
Bragg grating structure. Their emission properties are
responsive to changes in the refractive index at the surface of
the nanofilm.19,32 The laser material is either a transparent
polymeric matrix doped with dyes33−36 or an organic
semiconductor (OS) as we previously reported.37−39

Biosensing with organic DFB lasers has so far exclusively
relied on antibodies or antigens for biomarker capture and on
measuring the shift of the laser wavelength for transduction.
Demonstrating a nucleic acid strategy for biomarker capture is
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of interest because DNA probes are more robust, less costly to
produce and they can be flexibly designed to target particular
biomarkers and tailored for reuse.40,41 Furthermore, devices
have been shown to specifically detect IgG with a limit of
detection (LOD) of 60 ng/mL,42 TNF-α at a LOD of 0.625
μg/mL,43 and ErbB2 protein biomarkers at a LOD of 14 ng/
mL.32 While these are within the diagnostic ranges of a few
medically relevant biomarkers, such LODs are still too large for
many disease biomarkers where a LOD in the range of pg/mL
or pM is often needed.44 Therefore, there is a distinct need to
lower the LOD, which can be achieved using plasmonic
nanoparticles to amplify the change in complex refractive index
upon biomarker binding to the laser surface and monitoring
laser characteristics other than the wavelength.
We describe herein the preparation of an OS DFB laser

functionalized with 12/18-mer oligodeoxyribonucleotides
(ODNs). Using the Cu-catalyzed alkyne−azide cycloaddition
(CuAAC) reaction or “click-chemistry”, DNA immobiliza-
tion45−48 is achieved by the formation of a 1,4-triazole on the
surface by the reaction of a 5′-modified ODN sequence with
an azide-modified OS surface. This enables the detection of the
sequence-selective binding of silver nanoparticle (AgNP)
functionalized with complementary ODN sequences. AgNPs
allow confirmation of surface immobilization through SERS
measurements,49 but they also significantly increase, via
localized surface plasmons, the effect on the laser character-
istics. In this paper, we demonstrate sequence-selective
detection of ODN analytes using a hybrid DNA/organic
laser in conjunction with SERS active AgNPs, which is a recent
evanescent sensor platform.

■ EXPERIMENTAL METHODS
DFB Laser Fabrication. The DFB lasers are made of a thin layer

of gain material deposited on top of an epoxy grating. The grating
enables feedback for laser oscillation but also provides outcoupling of
the emission perpendicular to the gain material film for a vertical
emission. Epoxy gratings, with a periodicity of Λ = 276 nm and a 5
mm by 5 mm surface area,37 were fabricated by imprinting a Norland
NOA65 epoxy, dropped onto an acetate mount, with a silica master
grating (made by e-beam lithography) and UV curing it for 50 s under
a UV lamp for a dosage of 300 J·cm−2 and further postcuring for 1 h
to stabilize the structure after removal from the master grating.
Vertically emitting DFB lasers were then obtained by forming a ≈80
nm thick nanofilm of neat T3 oligofluorene−truxene star-shaped
macromolecules, consisting of truxene core and three terfluorene
arms50−52 (Tr), onto an epoxy grating. The film was deposited by
spin-coating 15 mL of a 20 mg·mL−1 Tr in toluene solution onto an
acetate mounted grating taped to a glass support at 3.2 krpm. The
DFB lasers were transferred and taped into the bottom of a well in a
well plate as schematized in Figure 1. This arrangement enabled easy
immersion of the lasers for the different steps of surface
functionalization, biohybridization, and characterization, as detailed
below.

Surface Functionalization/Probe Immobilization. Azide-
modified laser surfaces were prepared by exposing the amine
presenting poly(phenyl-lysine) (PPL) monolayer coated OS surface
to a 200 μL droplet of a 2 mg·mL−1 azido-PEG4-NHS ester (Figure 1)
solution for 15 min. This enables subsequent “click” immobilization of
alkyne labeled ODNs.

For this, the OS laser surface is first washed with a 10 mM
phosphate buffer solution (PBS). The laser is then coated with PPL (a
polyelectrolyte containing lysine with amine ligation sites) by
immersion for 10 min in PPL suspended in PBS. The laser surface

Figure 1. Stepwise functionalization of an organic DFB laser with ODN probes for the capture of matching ODN sequences (not to scale).
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is washed with PBS again to remove any loose material before azide
modification of the adsorbed PPL layer.
For the probes, ODN sequences (ODNxp, where x = 1, 2, or 3,

corresponds to different sequences as identified in Figure 2) were

purchased with an alkyne group at the 5′ end to enable click
immobilization on the azide presenting laser surface. To immobilize
these probes on the lasers, 17.5 nmol of an ODNxp in deionized water
with copper(II) sulfate, 35 nmol of sodium ascorbate, and 35 nmol of
THPTA were incubated for 30 min. The surface was then washed
with PBS.
Biohybridization for Target Detection. For the targets, ODN

sequences (ODNyt, where y = 1 or 2, corresponds to two different
sequences; see Figure 2) were purchased with a terminal thiol at the
5′ end. These were used to functionalize AgNPs49 (approximately
40−45 nm in diameter) labeled with malachite green isothiocyanate
(MGITC) dye that was used for SERS detection. DNA/MGITC:NP
ratios of 5000:1 in excess were used for AgNP functionalization.53

ODN1t, a 12-mer consisting solely of adenines was matched to the
probe ODN1p, a 12-mer of the base thymine; these were used in initial
experiments to confirm the anchoring of the ODN probes via click-
chemistry. ODN2t is the complementary 18-mer to the mixed
sequence probe ODN2p. ODN3p is mismatched to ODN2t with bases
8 and 9 reversed from ODN2p. These 18-mer ODNs were used in
experiments to assess the specificity of the ODN target/analyte
hybridization at the functionalized DFB surface.
For ODN analyte detection, the ODNxp-functionalized DFB lasers

were incubated with target ODNyt bound AgNPs in solution (PBS
with 0.3 M NaCl) for 30 min (10 min for threshold comparison).
Surface-Enhanced Raman Spectroscopy 2D Mapping.

Mapping was carried out using a Raman microscope (Gloucestershire,
U.K.) equipped with an excitation wavelength of 514.5 nm. Light was
focused on the samples using a 20× objective, and the Raman shift
was calibrated using a Si standard peak fixed at 520.5 cm−1. Spectra of
each sample were collected for 0.5 s in a 680−6080 cm−1 spectral
range. The SERS peak present close to 1171 cm−1 corresponding to
the in-plane C−H bending of MGITC was used to track the AgNP
distribution across the surface.49 The SERS data was baseline
corrected, and the intensity of the signature of MGITC, indicative
of the presence of AgNPs, was used to generate surface maps with
0.01 μm spatial resolution.

Optical Pumping and Laser Characterization. The lasers were
fixed in the wells with Kapton tape and optically pumped through the
bottom of the well, perpendicular to the plane of the DFB laser
surface, so the functionalized surface would not affect the incident
pump laser beam. The pump laser emitted 355 nm wavelength pulses
of 5 ns duration at a 10 Hz repetition rate. The DFB vertical laser
emission was collected from the same side as the pump injection (i.e.,
from the bottom of the well) using a dichroic filter. It was coupled
into a 50 μm core fiber plugged into a CCD spectrometer (Avantes,
0.13 nm resolution) for spectra and intensity acquisition. The ODN-
functionalized DFB laser typically emits at 430 nm for a line width
below 0.3 nm and has a threshold of 0.06 μJ (±7%) when measured
in PBS with a pump spot of ≈140 μm in diameter (using the e−2 of
the intensity maximum). More details on the PL and amplified
spontaneous emission spectra of the Tr gain material can be found in
the literature.38 Figure 3 plots a typical Tr DFB laser emission

spectrum in PBS alongside the extinction spectrum of ODN coated
AgNPs. The laser transfer function, which is obtained by plotting the
integrated spectral intensity of the laser versus the pump energy, was
characterized for different target concentrations. This analysis allowed
the effect of the AgNP hybridization on the DFB laser performance to
be determined. The DFB laser output in the presence of AgNPs is
discussed later in the text and Supporting Information. SEM images of
DFBs exposed to target AgNPs in solution can be seen in SI1, SEM
Imaging.

■ RESULTS AND DISCUSSION

Initially, we studied the effectiveness of our laser surface
functionalization strategy using the poly-T probes ODN1P. We
did this by capturing a 2D SERS map of laser devices
functionalized with ODN1p probes, different samples prepared
with and without an intermediate PPL monolayer, and
nonfunctionalized lasers consisting of only the neat Tr OS film.
Figure 4a represents the SERS spectrum of a particular point

on the surface of a functionalized DFB laser before and after
ODN1t coated AgNPs have hybridized to the ODN1p probes
bound to the DFB surface. A 130 × 130 μm2 2D SERS map is
generated by laser excitation of the DFB laser surface under
study, and it is utilized in the following to validate the laser
surface functionalization and capabilities for complementary
strand detection. The peak present at 1615 cm−1 and amplified
in the samples where MGITC labeled AgNPs have bound to
the surface is due to N−Ph ring vibration and C−C stretch;
these features can be found in the OS layer, and 1170 cm−1 is a
signature peak of MGITC. In Figure 4b, as evidenced by the
SERS signal intensity shown in the SERS maps, it can clearly
be seen that the AgNPs bound with ODN1t have hybridized to
the fully functionalized laser (when functionalization includes
the PPL layer as described in Experimental Methods) with
much greater affinity than any of the other two samples.

Figure 2. ODN probe/target sequences shown with (t) thiol
modification for NP labeling and (p) alkyne modification for click-
chemistry.

Figure 3. Normalized extinction spectrum for AgNPs coated with
ODN targets with overlay of typical DFB laser output in green.
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The neat DFB laser surface displays a higher MGITC signal
than the partially functionalized sample; this suggests that
some nonspecific adsorption (NSA) of ODN1t coated AgNPs
directly onto the Tr film is taking place. We suspect that the
ODNs adsorb onto Tr through their hydrophobic bases leaving
the hydrophilic backbone facing up. The lower level of NSA on
partially functionalized samples (where PPL is omitted) is
indicative of ODN probes nonspecifically adsorbed to the Tr
film. The adsorbed probes cannot easily react with the targets
but are impeding NSA of the latter on the laser surface.

Samples functionalized with ODN2p mixed sequence probes,
i.e., mismatched to ODN1t, show a much lower intensity 1171
cm−1 signature peak for MGITC in Figure 4b demonstrating
specificity in the binding. The ODN1t−ODN1p binding used to
assess the CuAAC protocol is useful due to the high binding
affinity between poly-A and poly-T ODN sequences. However,
in a second set of experiments, to verify the practicality and
specificity of this protocol for biosensing, we replaced these
with mixed sequence ODNs. ODN2t is a mixed sequence 18-
mer ODN while ODN2p and ODN3p are the complementary
and mutated sequences (two reversed base sequences),

Figure 4. (a) SERS spectra of a DFB laser before (red) and after (blue) ODN1t incubation. (b) SERS mapping of OS-DFB surfaces demonstrating
the effects of including a PPL layer on the target bound AgNP hybridization and the specificity of NP absorption. All samples were exposed to
ODN1t.

Figure 5. SERS mapping used in specificity testing of samples when exposed to mixed sequence ODN2T comparing samples coated with the
targeted probe ODN2P to (a) ODN1P, a poly-A chain, and (b) ODN3P, a chain with nucleotides 8 and 9 reversed. (c) Mean intensity of samples
exposed to solution containing ODN2T, which is complementary to ODN2P, normalized to the intensity value of the ODN2P sample.
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respectively. The use of 18-mer rather than the 12-mer ODN
sequences is also closer to the ≈20-mer ODN sequences
usually attributed to micro-RNA.4

ODN1p-functionalized, ODN2p-functionalized, and ODN3p-
functionalized lasers were exposed to ODN2t labeled AgNPs.
Results for both experiments are shown in Figure 5. The
ODN2p-functionalized sample demonstrates a far greater
binding affinity with the target ODN2t labeled NPs. In fact,
the sample with ODN3p probes shows very little binding to the
target NPs. In Figure 5b, the sample surface was also mapped
over an increased area, 300 × 300 μm2, to give a more
complete picture of the binding homogeneity across the laser
surface, but this decreases the accuracy in the presence of
localized regions of high intensity as a wider range of values are
represented by the same 256 color scale through normal-
ization.
Figure 5c shows the normalized comparison of the average

pixel heatmap for surfaces prepared with different ODN probes

across the inspected area. As can be seen, the ODN3p-
functionalized lasers show almost no binding while the poly-T
ODN1t probe does show some signs of AgNP capture; this is
thought to be due to a lower specificity exhibited by the
mononucleotide as opposed to mixed sequence ODN probes.
After confirmation by SERS of the immobilization of ODN

probes and of the specificity of target hybridization, we
characterized the effect of such hybridization on the DFB laser
output using ODN1t targets and ODN1p surface probes. The
AgNPs of bound target ODNs are immobilized at an average
distance of 10−15 nm from the laser surface (added length of
the PPL layer, the azido-PEG4-NHS ester, and the ODN
probe), and therefore, the laser mode is able to couple to them
by evanescence.37 Because the AgNPs absorb at the laser
wavelength (the laser emission is on the red side of the
localized plasmon resonance as can be seen in Figure 3), the
laser threshold is seen to increase upon target binding (Figure
6a); meanwhile, the output intensity at a given pump level

Figure 6. (a) Laser transfer function fitted curves before and after AgNP hybridization. The threshold energy after (Ea) hybridization has increased
compared to that before (Eb) hybridization. (b) The ratio between the lasing threshold after (Ea) and before (Eb) incubation of a Tr DFB laser
functionalized with ODN1p probes exposed to varying concentrations of ODN1t with a standard deviation of 7% measured in the pump beam. (c)
SERS maps of the corresponding laser surfaces.
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drops (Figure 6a). The presence of AgNPs also leads to a
reduction of the slope of the laser transfer function. We
surmise that the observed threshold increasing (and slope
decreasing) effect of the AgNP on the DFB platform is due to
the optical losses following a binding-dependent modal loss
caused by immobilization of the target ODNs (see SI2,
Nanoparticle Theory). In summary, the modal gain needed for
laser oscillation must match the overall losses and therefore the
pump intensity at threshold Ipth is proportional to these losses,

ν
α

α α
στ

=
+ Γ
Γ

I
h

pth
p

p

l NP

a 32 (1)

where α is the modal loss of the initial laser, αNP is the loss due
to bound AgNPs, Γl is a parameter representing the overlap of
the laser mode intensity with the AgNPs, αp is the absorption
at the pump wavelength, and hνp is the energy of the pump
photons. The ratio of the threshold pump energy before, Eb,
and after, Ea, functionalization is then simply

α
α

∝ = Γ +_

_

E
E

I

I
1a

b

pth a

pth b
l

NP

(2)

Ipth_b and Ipth_a are the pump intensities at threshold before and
after functionalization, respectively. At low analyte concen-
tration, αNP is expected to be linear with the concentration x.
Under these conditions the laser threshold increases linearly
with x as given by (see SI2, Nanoparticle Theory)

= +
E
E

Cx 1a

b (3)

C is a constant linked to the binding affinity and to α.
The transfer functions for lasers were measured before and

after incubation at different analyte concentrations (0, 11.5, 23,
and 48.5 pM). Figure 6a shows the example of the laser
transfer functions before and after incubation with 23 pM. The
thresholds Eb and Ea, identified by arrows, were calculated from
energy readings taken at the same pump spot; the pump laser
was blocked during incubation periods and between readings.
While we focus here on laser intensity measurements and
threshold, we note that no significant changes to the central
emission wavelength (see SI3, NP Spectral Effects) of the laser
upon target binding were detected (within a ±0.13 nm
resolution); minor changes in wavelength and line width were
accounted for during threshold calculations fitting the DFB
laser output with a Gaussian curve.54 The ratio E

E
a

b
, which

increases with the concentration, is plotted in Figure 6b along
with the linear fit using eq 3 with C = 0.039 pM−1. The LOD
by threshold monitoring is 11.5 pM by observation; a lower
limit may be obtained by increasing the resolution of AgNP
concentrations that are tested. Altering the incubation time
could be attempted to lower the LOD, as a longer incubation
time might allow more hybridization to occur. Bringing the
laser emission in alignment with the NP resonance would
increase absorption and therefore should lower the LOD as
well. At a concentration of 48.5 pM, the Ea value was
unobtainable as the laser could not reach the threshold. The
reason for this is that for a given DFB laser structure (i.e., a
given Tr thickness), the modal gain has a maximum, called the
saturated gain, which cannot be exceeded. Once the modal
gain is saturated, increasing the pump energy does not increase
the gain as the population of Tr molecules is fully inverted. If

the added loss due to analyte hybridization makes the gain at a
threshold higher than this saturated gain, then laser oscillation
cannot be obtained. This effect limits the dynamic range of
sensing by laser threshold monitoring. The dynamic range
could be increased, however, by increasing the thickness of the
Tr film, which would raise the saturated gain value.
Figure 6c shows the corresponding SERS map of the laser

surface after incubation, clearly confirming the increased
bound analytes for increasing concentration.

■ CONCLUSION
Our approach demonstrates the feasibility of DNA-based
sensing with an organic semiconductor DFB laser. A successful,
effective immobilization strategy for ODN probes on an OS
surface has been identified. With silver NP-functionalized
analytes, the laser threshold has been shown to respond to
binding events for concentration at and above 11.5 pM;
alterations to incubation time could lower this. With the use of
OSs with different emission frequencies and NPs with different
absorption spectra and by tuning the gain material thickness, it
is expected that the sensitivity and dynamic range could be
tailored for specific applications. Not only have we confirmed a
polyelectrolyte-anchored, click-chemistry protocol as a viable
method of DFB laser surface functionalization, but also we
have demonstrated the capture of matching ODN sequences
and the specificity of the protocol. With the current trends
toward ODN Aptamer probes55−57 in biosensing and the
reduced complexity in comparison to traditional antibody-
based sensing protocols, the novel ODN approach outlined
here demonstrated with OS DFB lasers is an important
stepping stone to specific, low cost optical biosensing
applications.
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