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Abstract
Aim: Mangrove forests are among the most threatened and rapidly vanishing, but 
poorly understood ecosystems. We aim to uncover the variables driving mangrove 
biodiversity and produce baseline biodiversity maps for the Sundarbans world herit-
age site—the Earth's largest contiguous mangrove ecosystem.
Location: The Bangladesh Sundarbans, South Asia.
Methods: We collected species abundance, environmental and disturbance data 
from 110 permanent sample plots (PSPs) covering the entire Bangladesh Sundarbans 
(6,017 km2). We applied generalized additive models to determine the key variables 
shaping the spatial distributions of mangrove diversity and community composition. 
Biodiversity maps were constructed using covariate‐driven habitat models, and their 
predictive performances were compared with covariate‐free (i.e., direct interpola-
tion) approaches to see whether the inclusion of habitat variables bolster spatial pre-
dictions of biodiversity or whether we can rely on direct interpolation approaches 
when environmental data are not available.
Results: Historical forest exploitation, disease, siltation and soil alkalinity were the 
key stressors causing loss of alpha and gamma diversity in mangrove communities. 
Both alpha and gamma diversity increased along the downstream‐to‐upstream and 
riverbank‐to‐forest interior gradients. Mangrove communities subjected to intensive 
past tree harvesting, disease outbreaks and siltation were more homogeneous in 
species composition (beta diversity). In contrast, heterogeneity in species composi-
tion increased along decreasing salinity and downstream‐to‐upstream gradients. We 
find that the surviving biodiversity hotspots (comprising many globally endangered 
tree species) are located outside the established protected area network and hence 
open to human exploitation. We therefore suggest bringing them immediately under 
protected area management.
Main conclusions: We provide the first habitat‐based modelling and mapping of 
alpha, beta and gamma diversity in threatened mangrove communities. In general, 
habitat‐based models showed better predictive ability than the covariate‐free ap-
proach. Nevertheless, the small margin of differences between the approaches 
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1  | INTRODUC TION

Tropical and subtropical mangrove forests (between 30° N and 30° 
S) provide numerous ecosystem services and support coastal live-
lihoods worldwide (Lee et al., 2014). However, they are among the 
most threatened and rapidly vanishing habitats on Earth (Polidoro et 
al., 2010; Richards & Friess, 2016). The mangrove biome has already 
lost about 50% of its coverage since the 1950s (Feller et al., 2010), 
and IUCN has listed 40% of mangrove tree species as threatened 
(Polidoro et al., 2010). Increasing anthropogenic pressures and antic-
ipated sea level rise are likely to alter the structure and functions of 
the remaining endangered mangrove forests (Duke et al., 2007), in 
particular, the Sundarbans UNESCO world heritage site—the Earth's 
largest contiguous mangrove ecosystem.

Making spatial predictions of biodiversity is important for pin-
pointing the locations or communities requiring immediate or long‐
term protection and conservation actions, in evaluating threats to 
those communities and in monitoring spatial distributions and tem-
poral dynamics in biodiversity (Socolar, Gilroy, Kunin, & Edwards, 
2015). A variety of biodiversity modelling approaches (e.g., stacked 
species distribution models, macroecological models, ordination 
and stochastic models—Ferrier & Guisan, 2006; Mateo, Mokany, 
& Guisan, 2017) have been applied to understand the spatial pat-
terns of species richness and composition in different forest eco-
systems (e.g., neotropical, boreal and temperate forests). However, 
their application to mangrove forests is limited (but see Record, 
Charney, Zakaria, & Ellison, 2013) due to the scarcity of field data 
(Ellison, 2001), thus resulting in poor understanding of mangrove 
biogeography.

Each of the three established components of biodiversity (alpha, 
beta and gamma—Whittaker, 1960) characterizes different funda-
mental attributes of natural communities, and therefore has specific 
conservation implications. For example, spatial maps of alpha diver-
sity can help in specifying the most species‐rich habitats while beta 
diversity maps can determine the most heterogeneous communi-
ties, where protecting larger areas will encompass more biodiversity. 
Similarly, gamma diversity measures can identify the overall areas 
with the highest biodiversity. Thus far, mangrove biodiversity studies 
have mostly relied on alpha diversity, and in particular species rich-
ness (Ellison, 2001; Osland et al., 2017; Record et al., 2013) which, 
by ignoring the variability in species relative abundances, has known 
weaknesses in identifying areas for prioritization (Veach, Minin, 
Pouzols, & Moilanen, 2017). At a regional scale, mangrove plant com-
munities may look spatially homogeneous because mangrove forests 

are relatively species‐poor compared to the upland tropical forests. 
However, at finer scales, considerable heterogeneity in vegetation 
structure becomes apparent (Farnsworth, 1998). Therefore, looking 
at how the components of biodiversity respond to biotic and abiotic 
variables is important for constructing more informative and practi-
cally useful biodiversity maps.

Mapping biodiversity indices is important in order to investigate 
spatio‐temporal variations in natural communities, to locate habitats 
or communities or species that require immediate protection and 
to support spatially explicit conservation planning (Devictor et al., 
2010). Both habitat‐based and covariate‐free (direct interpolation 
methods such as Kriging) approaches have been used for mapping 
biodiversity indices. Although covariate‐free approaches have been 
criticized for low predictive ability (Granger et al., 2015), the relative 
performance of the approaches has rarely been tested using field 
data.

Testing the “zonation” hypothesis (i.e., the distinct ordering of 
tree species along the shore‐to‐inland gradient, Ellison, Mukherjee, 
& Karim, 2000) and explaining the “biodiversity anomaly” (i.e., why 
mangrove plant species richness drops along the latitudinal gradient, 
Ricklefs, Schwarzbach, & Renner, 2006) have been the key agendas 
dominating the mangrove biodiversity literature in the last two de-
cades. While such studies have substantially improved our insight 
into species sorting and richness, limited attention has been paid to 
understanding how abiotic, biotic and historical anthropogenic pres-
sures have contributed to spatial variations in mangrove diversity 
and composition. Such knowledge gaps have obstructed the success 
of conservation initiatives in many tropical coastal regions (Lewis, 
2005) such as the Sundarbans.

This study focused on the threatened mangrove plant commu-
nities of the Sundarbans which are under severe threat from his-
torical forest exploitation, habitat degradation and future climate 
change impacts (Sarker, Reeve, Thompson, Paul, & Matthiopoulos, 
2016). Using a newly introduced abundance‐based framework for 
biodiversity partitioning (Reeve et al., 2016) and a habitat‐based bio-
diversity modelling approach, our overarching goal was to uncover 
the influences of fine‐scale habitat conditions and historical events 
in shaping the current spatial distributions of alpha, beta and gamma 
diversity. Our more specific questions include the following: What 
are the key drivers of mangrove biodiversity? How do the predictive 
abilities of covariate‐driven habitat models compare with those of 
covariate‐free direct interpolation approaches? Where are the bio-
diversity hotspots in the Sundarbans currently located? Are these 
hotspots well protected? Finally, we demonstrate and discuss the 

demonstrates the utility of direct interpolation approaches when environmental data 
are unavailable.
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potential applications of these novel insights and biodiversity maps 
for future mangrove research, biodiversity protection, monitoring 
and spatial conservation planning.

2  | METHODS

2.1 | Study area

The Sundarbans (10,017 km2), a part of Earth's largest delta, the 
Ganges–Brahmaputra, is distributed in Bangladesh and India. Due 
to its outstanding universal ecological and economic value, the 
Bangladesh part of the Sundarbans (21°30′–22°30′N, 89° 00′–
89°55′E, 6,017 km2) was declared a UNESCO world heritage site in 
1997 (Gopal & Chauhan, 2006). It was also declared a Ramsar wet-
land ecosystem under the Ramsar Convention in 1992 (Chowdhury, 
Kitin, Ridder, Delvaux, & Beeckman, 2016). The Sundarbans is 
washed by the tide twice a day, and freshwater flowing from the 
Ganges and the opposing saltwater influx from the Bay of Bengal 
together control its hydrology (Wahid, Babel, & Bhuiyan, 2007). 
The climate is humid tropical with four main seasons as follows: 
pre‐monsoon (March–May), monsoon (June–September), post‐mon-
soon (October–November) and the dry winter season (December–
February). The average annual precipitation is 1700 mm, and the 

mean temperatures in pre‐monsoon, monsoon, post‐monsoon, and 
dry winter are 29, 30, 26 and 20°C, respectively (Chowdhury, Ridder, 
& Beeckman, 2016).

2.2 | Tree and environmental data collection

We collected tree data from the 110 permanent sample plots 
(PSPs, 100 × 20 m, divided into 5 20 × 20 m subplots) covering all 
salinity zones (i.e., hypo‐, meso‐ and hypersaline zones) and forest 
types (see Iftekhar & Saenger, 2008) in the Bangladesh Sundarbans. 
The Bangladesh Forest Department (BFD) established these PSPs 
(Figure 1) in 1986. As part of the 2008–2014 surveys, our team to-
gether with the BFD tagged every tree with stem diameter ≥4.6 cm 
(because mangroves grow very slowly, this threshold value has been 
used in all previous forest inventories in the Sundarbans since the 
19th century, Iftekhar & Saenger, 2008), at 1.3 m from the ground 
with a unique tree number and recorded tree counts for the PSPs. 
In total, we recorded 49,409 trees from 20 mangrove species (see 
Appendix S1 in Supporting Information).

In 2014 (January–June), we collected nine soil samples from 
each PSP (soil depth = 15 cm) adopting a soil sampling design (see 
Appendix S1 in Supporting Information) to account for the within‐
plot variations in soil variables. We then determined soil sand, silt 

F I G U R E  1  Sampling sites (triangles) in the Sundarbans, Bangladesh. Blue areas represent water bodies
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and clay percentages, salinity, pH, oxidation reduction potential, 
NH4, P, K, Mg, Fe, Zn, Cu and sulphide concentrations. For determin-
ing sand, slit and clay percentages, we used the hydrometer method 
(Gee & Bauder, 1986). We measured soil salinity (as electrical con-
ductivity) in a 1:5 distilled water:soil dilution (Hardie & Doyle, 2012) 
using a conductivity metre. Soil pH and oxidation reduction poten-
tial were measured in the field using soil pH and oxidation reduc-
tion potential metres. We followed the Kjeldahl method (Bremner & 
Breitenbeck, 1983) to determine soil NH4 and the molybdovanadate 
method (Ueda & Wada, 1970) to determine total P concentrations. 
Soil K, Mg, Fe and Zn concentrations were measured using an atomic 
absorption spectrophotometer. For each soil variable, we recorded 
the average reading from nine soil samples.

We retrieved five elevation readings (above‐average sea level) 
from each PSP using the available digital elevation model (accuracy 
at pixel level = ±1 m) (IWM, 2003) and then averaged them to ac-
count for sampling error. We also calculated the “upriver position” 
(URP), the straight‐line distance of each PSP from the river–sea in-
terface (Duke, Ball, & Ellison, 1998) and classified their position as (i) 
“downstream,” representing the lower third (0%–33% upriver from 
the sea—Bay of Bengal), (ii) “intermediate,” representing the middle 
third (34%–66% upriver from the sea) and (iii) “upstream,” represent-
ing the upper third (67%–100% upriver from the sea) of the estuarine 
system. This classification system is useful for understanding vari-
ability in diversity and species compositions along the downstream 
(saltwater‐dominated river system)–upstream (freshwater‐domi-
nated river system) gradient.

2.3 | Covariate selection

We followed Twilley and Rivera‐Monroy's (2005) mangrove‐centric 
conceptual framework to construct a biologically informative vari-
able set for our mangrove biodiversity models. This framework inte-
grates abiotic and biotic constraints to explain vegetation structure 
and productivity at local and regional scales. The abiotic constraints 
comprise resources, regulators and hydroperiod. Resources (i.e., nu-
trients) are assimilated by trees. Here, we selected three essential 
plant macro‐nutrients—soil NH4, P and K—for their critical roles in 
mangrove growth and development (Reef, Feller, & Lovelock, 2010). 
Regulators are non‐resource variables that control tree eco‐physi-
ology (Guisan & Thuiller, 2005). Here, we selected soil salinity, pH 
and silt. Hydroperiod (i.e., inundation frequency, duration and depth) 
controls the regional and local hydrology that in turn influence spe-
cies distributions in coastal environments (Crase, Liedloff, Vesk, 
Burgman, & Wintle, 2013). PSP‐level hydroperiod data were unavail-
able, so we used elevation as a proxy of the likely variation in hydro-
period across the region.

Biotic interactions (e.g., competition or facilitation) between 
plants can influence species composition at a local scale (Howard 
et al., 2015). Competitive exclusion of weak competitors in stressed 
mangrove habitats may lead to species‐poor mangrove communi-
ties dominated by a single or few opportunistic species (Saenger, 
2002). To account for such influences, initially, we considered two 

candidate biotic variables: (i) “community size” (CS)—total number of 
individuals in each PSP, and (ii) total basal area in each PSP. Diversity 
models using basal area as a covariate had lower explanatory pow-
ers, compared to models with “CS.” Therefore, we selected CS as a 
proxy of biotic interactions.

We incorporated URP of each PSP in our covariate set to account 
for the influence of the river systems on species composition along 
the downstream–upstream gradient. In riverine estuaries, tidal inun-
dation levels, soil physical and chemical properties can significantly 
vary along the riverbank—inner forest gradient, which influences 
colonization success and survival of mangrove plants (Berger, 2008). 
To account for such variations, we included the straight‐line distance 
of each PSP from the nearest riverbank (henceforth DR).

Tropical coastal ecosystems are prone to both natural and an-
thropogenic disturbances (Feller, Friess, Krauss, & Lewis, 2017). 
Natural disturbances (such as tree disease and mortality) and an-
thropogenic disturbances (such as tree harvesting) offer opportu-
nities for tree recruitment through gap creation, thus influencing 
vegetation composition (Duke, 2001). To account for the influences 
of natural and human disturbances on current diversity and species 
composition, we incorporated historical harvesting (HH) and disease 
prevalence (DP) as covariates in our models. Here, HH and DP repre-
sent the total number of illegally harvested and diseased (e.g., “top‐
dying” disease of Heritiera fomes) trees in each PSP from historical 
records (1986–2014). Finally, using Variance Inflation Factors (VIF, 
Robinson & Schumacker, 2009), we checked for multicollinearity in 
our covariates (see Appendix S2) and removed covariates leading to 
VIF greater than 2.5. This led to the removal of oxidation reduction 
potential from our covariate set (see Appendix S2).

2.4 | Biodiversity partitioning

For partitioning biodiversity, we used Rényi's generalized relative 
entropy (Rényi, 1961), an extension of Hill (1973), Jost (2006, 2007) 
and Leinster and Cobbold's (2012) notions of ecosystem diversity. 
Implemented in Reeve et al.'s (2016) framework, this allows us to 
partition the alpha, beta and gamma diversity of an ecosystem (called 
a metacommunity [MC]) into its subcommunity (SC) components, thus 
allowing comprehensive and consistent quantification and modelling 
of all biodiversity components in a spatial context.

In this study, each PSP represents a SC, and the combined PSPs 
form the MC. This approach allows us to understand and easily com-
pare the species diversity and composition in every single SC in re-
lation to the MC (the whole Sundarbans ecosystem). We measured 
SC alpha, beta and gamma diversity. Here, the normalized alpha 
diversity index (denoted 𝛼̄) represents the diversity of a single SC 
(PSP) in isolation. The normalized beta diversity index (denoted 𝜌̄) 
measures representativeness and assesses how well a SC represents 
the species composition of its MC. It is maximized (1) when the MC 
is homogenous, and a SC's species composition is identical to that of 
the MC and therefore represents it perfectly. Low 𝜌̄ therefore sug-
gests high spatial heterogeneity in species composition within the 
MC, and high 𝜌̄ suggests spatial homogeneity.
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The gamma diversity (denoted γ) is the conventional gamma di-
versity (Hill, 1973; Jost, 2006; Leinster & Cobbold, 2012) at the MC 
level that reflects the total species diversity in an unpartitioned eco-
system. Reeve et al.'s (2016) framework partitions the MC gamma 
diversity into SC gamma diversity that measures each PSP's average 
contribution to (or influence on) the MC diversity per tree. This di-
versity measure combines the alpha diversity of a SC with its beta 
diversity to form an assessment of the overall contribution of the 
PSP to the MC.

Following Hill (1973), Jost (2006, 2007) and Leinster and 
Cobbold's (2012), the values of all the biodiversity measures are 
moderated by a viewpoint parameter, q, taking a value between 0 
and ∞ representing how conservative the measure is in accounting 
for species abundance. For 𝛼̄ and �, the diversity at q = 0 measures 
species richness; at q = 1 measures the exponential of Shannon 
entropy (Shannon, 1948); and at q = 2 measures the inverse of 
Simpson's concentration index (Simpson, 1948). For all analyses, we 
present the results using the above three q values (0, 1, and 2), writ-
ing them as 0𝛼̄, 1𝜌̄, 2𝛾, etc.

2.5 | Biodiversity modelling

We constructed generalized additive models (GAMs, Wood, 2011) 
to quantify how the different biodiversity components responded 
to different variables. Guided by data and using nonparametric 
smoothing functions, GAMs can capture response‐predictors rela-
tionships without a priori knowledge of the functional form of these 
relationships (Guisan & Thuiller, 2005). These advantageous features 
of GAMs are well suited for uncovering unknown biodiversity–en-
vironment linkages in dynamic ecosystems such as the Sundarbans 
where multiple environmental gradients have interactive effects on 
species distributions (Sarker et al., 2016). All analyses were done in 
R version 3.2.3 (R Core Team, 2016). Biodiversity GAMs were built 
using cubic basis splines with the Gamma error distribution using 
the “mgcv” package version 1.8 ‐ 7 (Wood, 2011). Model selection 
and model averaging were carried out using the “MuMIn” package 
version 1.15.1 (Barton, 2015). Biodiversity measures were calculated 
using the “rdiversity” package version 1.0 (Mitchell & Reeve, 2017).

We exhaustively fitted GAMs for each diversity index with 
all possible combinations of covariates. Then, we ranked the fit-
ted GAMs using the second‐order AIC (AICc) because the ratio 
between sample size and the number of covariates was <40 
(Burnham & Anderson, 2002). Models whose AICc had values less 
than 2 units from the best model (∆AICc < 2) were retained as 
competing models (Burnham & Anderson, 2002). The relative sup-
port for each of the competing models was then determined using 
their Akaike weights (AICcw vary between 0 and 1, and the sum of 
all AICcw across the competing models is 1). To reduce model se-
lection uncertainty and bias, we then conducted model averaging 
to predict the diversity indices. To determine the strength of the 
covariates, we ranked them based on their relative importance (RI) 
values. RI of each covariate was calculated by totalling the AICcw 
of the models in which the covariate was included. RI values vary 

between 0 and 1, where 0 specifies that the target covariate is 
not included in any of the competing models while 1 means that 
the covariate is included in all competing models. We measured 
goodness of fit of the biodiversity models using the R2 (coefficient 
of determination) statistic between the observed and estimated 
values of the diversity indices.

2.6 | Biodiversity mapping

We applied two different approaches to make spatial biodiversity 
predictions. First, we used our habitat‐based models (GAMs) and 
interpolated covariate surfaces to produce model‐averaged pre-
dictions. Second, we used a direct interpolation method—ordinary 
kriging—to make purely spatial predictions. We compared these two 
approaches because environmental data collection is challenging, 
whereas tree surveys are conducted annually at the PSPs. Hence, 
it is useful to know how close the predictions of the habitat‐based 
biodiversity models were compared to direct interpolation methods. 
The size of each grid cell of the interpolated surfaces was 625 m2. 
We compared the predictive abilities of GAMs with ordinary kriging, 
using the normalized root mean square error (NRMSE) statistic de-
rived from a leave‐one‐out cross‐validation procedure. For normali-
zation, the root mean square error statistic was divided by the range 
of the actual diversity values. Ordinary kriging was performed using 
the “gstat” package version 1.0 ‐ 26 (Pebesma, 2004) in R.

A protected area network comprising three Wildlife Sanctuaries 
has been operational in the Sundarbans since the 1970s. To evaluate 
its capacity to support the remaining biodiversity hotspots in the 
Sundarbans, we superimposed this onto our biodiversity maps. All 
the biodiversity maps were constructed using the “raster” package 
version 2.4 ‐ 18 (Hijmans, 2017) in R.

3  | RESULTS

3.1 | Habitat‐based biodiversity models

The explanatory power and the goodness of fit of the alpha, beta and 
gamma diversity GAMs varied when we increased weight on species 
relative abundances (q = 0, 1 and 2) in the subcommunities (SCs). 1𝛼̄ 
(Shannon entropy) GAM explained more deviance (DE = 71%) and 
showed a better fit to the data (Adj. R2 = 0.71) compared to those 
for 0𝛼̄ (species richness) and 2𝛼̄ (Simpson's concentration) (Table 1), 
suggesting that, for alpha diversity, the model with a moderate focus 
on species relative abundances in the SCs (i.e., q = 1) could capture 
more signal compared to the models that only considered species 
presence–absence (q = 0) or offered more importance to the more 
dominant species (q = 2) in the SCs. Like 1𝛼̄, the 1𝛾̄ GAM could cap-
ture more signal than 0𝛾̄ and 2𝛾̄ GAMs. In contrast, for beta diversity, 
with DE = 65% and Adj. R2 = 0.70, the 2𝜌̄ GAM captured more signal 
than the 0𝜌̄ and 1𝜌̄ GAMs, implying that our covariates could more 
successfully explain the variability in species composition across the 
SCs when the variability was mostly contributed by more dominant 
species.
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3.2 | Drivers and responses of 
biodiversity components

The RI of the covariates in influencing biodiversity indices also 
varied when we changed weight on species relative abundances 
in the SCs. For example, while HH had no influence on 0𝜌̄ (possibly 
due to high number of shared species between SCs or HH did not 
lead to species extirpation), it had stronger effects on 1𝜌̄ and 2𝜌̄, 
indicating that the influence of past tree harvesting in shaping cur-
rent community composition becomes clearer when we account 
for the variability in species relative abundances across the SCs. 
In general, several abiotic and biotic drivers had combined effects 
on the spatial distributions of the biodiversity indices. SC alpha 
diversity (1𝛼̄) was mainly influenced by community size (CS, RI = 1), 
upriver position (URP, RI = 1), distance to river (DR, RI = 1), and 
silt (RI = 1) (Table 1, Appendix S3). CS (RI = 1), URP (RI = 1), HH 

(RI = 0.93), disease prevalence (DP, RI = 1) and salinity (RI = 0.86) 
were the predominant drivers for spatial variations in SC beta di-
versity (1𝜌̄). SC gamma diversity (1�) was mostly influenced by CS 
(RI = 1), URP (RI = 1), salinity (RI = 1), DR (RI = 1), HH (RI = 1), pH 
(RI = 1) and silt (RI = 1).

The partial response plots of the best alpha, beta and gamma 
diversity GAMs (for q = 0, 1 and 2) showed similar relationships 
across the models (Figure 2, Appendix S3). While alpha diversity 
(for 1𝛼̄) increased with increasing DR (>1,500 m) and URP (>80%), it 
decreased with increasing HH (>175 tree cuts/0.2 ha), silt (>20%), 
CS (>450 trees/0.2 ha) and pH (>7.25). The response of alpha di-
versity varied for different nutrients. The K concentration that 
maximized 1𝛼̄ was 5.5 gm/Kg while increasing soil P (>35 mg/Kg) 
was related to decreasing 1𝛼̄. Mangrove communities showed in-
creasing representativeness (for 2𝜌̄), that is, homogeneity in spe-
cies composition with increasing HH (>150 tree cuts/0.2 ha), silt 

TA B L E  1  Results of generalized additive models (GAMs) for nine diversity measures. Summaries of model fit in rightmost three columns 
are only shown for the best model (DE = deviance explained). Numbers in the main part of the table (enclosed in box) represent the Relative 
Importance (RI) of each covariate. Dark‐shaded cells highlight covariates that were retained in the best model for each biodiversity index. 
Light‐shaded cells represent covariates retained in other models within the candidate set. Dashed boxes indicate no participation of that 
covariate in any of the candidate models. The covariate shorthands are community size (CS), upriver position (URP), salinity, distance to 
riverbank (DR), historical harvesting (HH), acidity (pH), silt concentration, disease prevalence (DP), soil total phosphorus (P), soil potassium 
(K), elevation above‐average sea level (ELE) and soil NH4.
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F I G U R E  2  Effects of covariates inferred from 
our best generalized additive models fitted to 
the biodiversity indices for q = 1. The solid line in 
each plot is the estimated spline function (on the 
scale of the linear predictor), and shaded areas 
represent the 95% confidence intervals. Estimated 
degrees of freedom are provided for each smooth 
following the covariate names. Zero on the y‐axis 
indicates no effect of the covariate on diversity 
index values. Covariate units: CS = total number 
of individuals in each plot, URP = % upriver, 
soil salinity = dS/m, DR = distance (m) of each 
PSP from the riverbank, historical harvesting 
(HH) = total number of harvested trees in each plot 
since 1986, silt (%), disease prevalence (DP) = total 
number of diseased trees in each plot since 1986, 
P = mg/Kg and K = gm/Kg
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(>20%), DP (>25 diseased trees/0.2 ha) and CS (>450 trees/0.2 ha). 
In contrast, communities showed decreasing representativeness, 
that is, increasing heterogeneity in species composition with in-
creasing salinity (>6.5 dS/m) and URP (>70%). Gamma diversity (for 

1�) showed strong positive responses to increasing DR (>1,000 m), 
salinity (>8 dS/m) and URP (>70%), and negative responses to 
increasing HH (>175 tree cuts/0.2 ha), silt (>20%), CS (>500 
trees/0.2 ha) and pH (>7.25).

F I G U R E  3  Spatial distributions of SC alpha, beta and gamma diversities (for q = 0–2) over the entire Sundarbans generated through 
generalized additive models. Higher values of 𝛼̄ and γ indicate greater species diversity and community contribution to the overall 
diversity of the ecosystem. Lower values of 𝜌̄ indicate greater heterogeneity in species composition (i.e., community distinctness from the 
metacommunity), and higher values of 𝜌̄ represent greater representativeness (i.e., homogeneity) in species composition. The black contours 
represent the three protected areas
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3.3 | Biodiversity maps

Spatial diversity maps are presented in Figure 3. Alpha diversity 
maps (first row) uncovered that hotspots in species richness (q = 0), 
Shannon entropy (q = 1) and Simpson's concentration (q = 2) were 
restricted to the northern (specifically, the Kalabogi region) and 
eastern (specifically the Sharankhola region) Sundarbans. Beta (sec-
ond row) and gamma (third row) diversity maps revealed that the 
entire Sundarbans looks homogeneous when we only looked at spe-
cies presence or absence (q = 0), that is, not accounting for the be-
tween‐species variability in relative abundances. Allowing increasing 
weight on species abundance (q = 1 and 2) revealed that the most 
heterogeneous mangrove communities and the communities that 
contributed most to the overall biodiversity of the ecosystem were 
restricted to the northern upstream habitat. Additionally, our maps 
indicated that the most diverse (i.e., biodiversity hotspots) and het-
erogeneous mangrove communities are situated outside the estab-
lished protected area network. Prediction error was always reduced 
by the use of environmental covariates, but particularly for predic-
tions of alpha and gamma diversity. In case of beta diversity, while 
the predictive ability of the GAM was better than that of kriging for 
0𝜌̄ and 1𝜌̄, both approaches had almost similar prediction error for 2𝜌̄ 
(Table 2).

4  | DISCUSSION

This study provides a baseline quantification and habitat‐based mod-
elling of alpha, beta and gamma diversity of threatened mangrove 
communities. Contrary to the common assumption that one or two 
straightforward environmental gradients (salinity and inundation) 
control mangrove biodiversity (Ellison, 2001), our results revealed 
that several environmental drivers, biotic interactions and historical 

events contribute to the emergence of observed spatial patterns of 
mangrove biodiversity. The high explanatory power and predictive 
power of our biodiversity models confirm their usefulness in making 
spatially explicit predictions of species diversity and composition in 
dynamic mangrove ecosystem. The ability of the models to reveal 
previously unknown linkages between the biodiversity components 
and abiotic, biotic and disturbance variables have yielded novel bio-
logical insights and thus now prompt many ecological questions for 
future studies.

4.1 | Drivers and responses of biodiversity  
components

Inclusion of URP in the best biodiversity GAMs suggest a strong 
influence of the downstream/upstream gradient in shaping spatial 
distributions of all aspects of biodiversity in the Sundarbans. Alpha 
diversity, SC contribution to the overall diversity of the ecosystem 
(gamma), and heterogeneity of the communities (beta) increased 
along the downstream/upstream gradient (URP > 65%), suggesting 
downstream and intermediate‐stream areas are no more suitable for 
many salt‐intolerant species (e.g., H. fomes) that were abundant in 
the past (Gopal & Chauhan, 2006). Instead, the late‐successional up-
stream areas are currently the most suitable habitats for widespread 
coexistence of salt‐intolerant, salt‐tolerant and many rare species, 
corroborating the previous findings of Sarker et al. (2016).

Inclusion of CS in all the best GAMs demonstrates the impor-
tance of including at least proxies of biotic variables in habitat‐based 
biodiversity models. Increasing CS significantly contributed to de-
creasing SC alpha and gamma diversity, and increasing homogeneity 
in species composition (beta), providing a strong signal for biotic fil-
tering in harsh estuarine settings. From the response plots (Figures 
2, S2 & S3), it appears that this pattern arises when SCs have >450 
trees. These SCs are, indeed, distributed in the north‐western and 
south‐western hypersaline habitats and Sarker et al. (2016) re-
ported super‐dominance of small‐diameter and early successional 
generalists (Excoecaria agallocha and Ceriops decandra) there. On the 
other extreme, northern hyposaline mangrove communities which 
are dominated by large‐diameter, late‐successional specialists (e.g., 
H. fomes and Xylocarpus mekongensis) are usually less populated 
and support many associated rare endemics, thus are more diverse 
and distinct than the densely populated hypersaline communities 
(Figure 3).

Our analyses uncovered a strong impact of HH and DP in shap-
ing current distributions of the biodiversity components in the 
Sundarbans, implying the importance of integrating past disturbance 
events in habitat‐based models for more accurate predictions. We 
detect a significant negative effect of HH on alpha and gamma di-
versities, although DP has no visible effect. This discrepancy may 
be related to local extinction of many rare endemics during past 
formal and informal logging activities and high DP (top‐dying and 
heart rot diseases) in the specialists (i.e., H. fomes and X. mekongen‐
sis) (Banerjee, Gatti, & Mitra, 2017) that might not lead to their ex-
tirpation but reduced their relative abundances in a higher amount 

TA B L E  2  Comparison of predictive accuracy (through leave‐
one‐out cross‐validation) of the habitat‐based (GAMs) and Kriged 
diversity models using normalized root mean square error (NRMSE) 
of the predicted versus the actual diversity values. NRMSE is 
expressed here as a percentage, where lower values indicate less 
residual variance.

Diversity types

GAMs Kriging

NRMSE (%)

Alpha 0𝛼̄ 16.52 18.40
1𝛼̄ 14.41 16.03
2𝛼̄ 14.44 16.22

Beta 0𝜌̄ 20.95 24.66
1𝜌̄ 19.21 21.69
2𝜌̄ 23.83 23.44

Gamma 0� 12.99 17.05
1� 9.90 11.33
2� 10.75 13.15
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compared to the generalists. However, for beta diversity, both HH 
and DP contributed to increasing homogeneity in species composi-
tion across the SCs (Figure 2). This again indicates that the diseases 
have not infected all trees equally rather, they have only infected 
and removed a few specialists such as H. fomes and X. mekongen‐
sis which have resulted in increasing homogeneity in the mangrove 
communities. Therefore, by using the approach of Reeve et al. (2016) 
to look at how DP simultaneously affects alpha, beta and gamma 
diversity, we are now able to get indications of the pathogenicity of 
the disease (i.e., whether it is a generalist and infects and removes all 
species equally or it is specialized on specific host species).

Mangrove habitats with past logging history are commonly nu-
trient‐poor, absorb higher amounts of heavy metals, and are prone 
to species invasion (Ngole‐Jeme, Fonge, Tabot, & Mumbang, 2016). 
Harvesting‐ and disease‐induced tree mortalities have created many 
large as well as small forest gaps in the Sundarbans. Intriguingly, the 
large diameter tree species (i.e., H. fomes and X. mekongensis) that 
still dominate the less saline habitats, recruit poorly in the forest 
gaps (Iftekhar & Islam, 2004). Instead, these forest gaps are in-
creasingly colonized by the disturbance specialists (e.g., C. decandra) 
(Mukhopadhyay et al., 2015). Therefore, increasing colonization and 
dominance of disturbance specialists in the historically disturbed 
SCs are the possible mechanisms responsible for increasing similar-
ity among mangrove communities.

Highly silted mangrove communities in the Sundarbans are not 
only poor in alpha and gamma diversities but also almost similar 
in species composition (Figure 2). These results are in agreement 
with Mitra and Zaman (2016), reporting limited growth and regen-
eration of many mangroves due to sediment burial of aerial roots 
in the Sundarbans. Sediment burial of aerial roots (inhibits root 
aeration) is a major reason for worldwide mangrove mortality (De 
Deurwaerder, Okello, Koedam, Schmitz, & Steppe, 2016). However, 
at species level, sensitivity of individual species to sediment burial 
can vary substantially. For example, Thampanya, Vermaat, and 
Terrados (2002), in their experimental work on Thailand man-
groves, observed 100% mortality in Avicennia officinalis, 70% in 
Rhizophora mucronata and 40% in Sonneratia caseolaris under ex-
treme sediment accretion level (32 cm). The Sundarbans is an ac-
tive delta where the river network annually transports about 2.4 
billion tons of sediments (Mitra & Zaman, 2016). Therefore, future 
research is required to understand species‐specific sensitivities 
and adaptations (e.g., modified rooting architecture) to siltation 
because this will help to forecast which species may colonize the 
newly formed islands and which are compatible for replanting 
under future siltation scenarios.

In their pioneering work, Ellison et al. (2000) found no evidence 
for “zonation” in the Sundarbans. In contrast, we detect a clear pat-
tern of increasing alpha and gamma diversities along the riverbank/
forest interior gradient. Communities that are at least 1,500 m away 
from the riverbank have higher alpha diversity and 800 m away have 
higher gamma diversity compared to the near‐bank communities 
(Figure 2), implying late‐successional forest interior communities are 
more diverse than the early successional riverbank communities.

Salinity has been considered a key constraint limiting species 
richness in coastal ecosystems (Feller et al., 2010). It appears from 
our analyses that salinity has no effect on species richness although 
the importance of salinity slightly increased for Shannon entropy and 
Simpson concentration, implying the role of salinity becomes clearer 
when we account for between‐species variability in relative abun-
dance. Considering beta diversity, increasing salinity contributes to 
increasing compositional heterogeneity among the SCs (Figure 2). 
This pattern suggests high plot‐to‐plot variation in composition in 
the degraded saline soils for population declines and range contrac-
tion of many salt‐intolerant specialists (e.g., H. fomes) and increasing 
colonization success of the salt‐tolerant generalists such as E. agallo‐
cha and C. decandra (Aziz & Paul, 2015; Iftekhar & Saenger, 2008; 
Mukhopadhyay et al., 2015).

Nitrogen, phosphorus and potassium were found to be the im-
portant soil nutrients limiting mangrove forest structure in coastal 
areas in Brazil, Florida and South Africa (Da Cruz et al., 2013; 
Lovelock, Ball, Feller, Engelbrecht, & Ling, 2006; Naidoo, 2009). 
Interestingly, these resource variables received less support in our 
biodiversity models, reconfirming the high importance of regulators 
and historical disturbances in structuring mangrove communities 
(Twilley & Rivera‐Monroy, 2005).

4.2 | Mangrove biodiversity maps

Our biodiversity maps for the Sundarbans (Figure 3) reveal that 
currently the most species‐rich (0𝛼̄) mangrove communities are 
confined to the northern (specifically, Kalabogi) and eastern (spe-
cifically, Sarankhola) regions. Due to the proximity of Baleshwar 
and Posur rivers, these areas receive greater amount of freshwater 
than the rest of the ecosystem, thus securing suitable conditions 
for many salt‐intolerant and rare plant species. The remaining eco-
system is relatively species‐poor. 1𝛼̄ and 2𝛼̄ maps not only show 
similar patterns but also pinpoint the areas—the north‐western and 
south‐western Sundarbans—where the super‐dominance of gener-
alists has resulted in lower alpha diversity. These areas are prone 
to regular saltwater flooding and high salinity fluctuation which 
together were found to inhibit regeneration and growth of many 
species (Ghosh, Kumar, & Roy, 2016). Spatial variability in beta di-
versity becomes clearer when more weight was put on the dominant  
species (1𝜌̄, 2𝜌̄), compared to the rare species (0𝜌̄). In general, the most  
heterogenous communities and the communities that contribute 
most to the overall biodiversity of the whole ecosystem (0�,1�, 2�) 
are currently restricted to the northern upstream habitats support-
ing tree species facing the risk of local (X. mekongensis) and global 
(H. fomes) extinction (Sarker et al., 2016).

Restricted distributions of diverse and distinct mangrove com-
munities in a few specific areas clearly indicate for historical pres-
sures on Sundarbans's floral composition, as reported by many 
(Aziz & Paul, 2015; Ghosh et al., 2016; Gopal & Chauhan, 2006). 
The freshwater supply from the transboundary rivers into the 
Sundarbans has substantially declined (3,700 m3/s to 364 m3/s) 
since the construction of the Farakka dam (1974) in India (Mirza, 



     |  739SARKER et al.

1998). The average soil salinity has already increased by 60% since 
1980 (Aziz & Paul, 2015). Opportunistic harvesting of trees and 
heavy siltation in the internal channels are ongoing (Rahaman et 
al., 2015). Therefore, our findings lead us to conclude that addi-
tional harvesting, siltation, cuts in freshwater supply and range 
expansions of the generalists under projected sea level rise (Karim 
& Mimura, 2008) may convert the whole Sundarbans into a spe-
cies‐poor homogeneous ecosystem.

The existing approaches for biodiversity mapping without in-
cluding environmental data are shown to produce inaccurate spa-
tial predictions of diversity indices (Granger et al., 2015). In this 
study, in general, the environmental data‐driven GAMs showed 
better predictive ability than the covariate‐free direct interpola-
tion method (Table 2), thus, supporting the inclusion of fine‐scale 
environmental, biotic and historical disturbance data for more 
accurate mapping of biodiversity indices when these data are 
available. However, similar performances of these approaches in 
predicting 2𝜌̄, and small differences in prediction error for 0𝛼̄ and 
0�, indicates the utility of direct interpolation methods when envi-
ronmental data are not available.

4.3 | Conservation applications

Sea level rise is likely to have drastic impacts on mangrove forests 
worldwide, particularly, the Sundarbans. Under the projected range 
of sea level rise by 2,100 (30–100 cm) (Karim & Mimura, 2008), the 
Sundarbans is likely to lose 10%–23% of its present area (Payo et al., 
2016) with alteration to soil biogeochemistry (Banerjee et al., 2017) 
and estuarine hydrology (Wahid et al., 2007). Given the severity of 
these future environmental impacts on Sundarbans, identifying the 
existing and future environmental stressors of mangrove biodiversity 
is important. We detect siltation, salinity and pH as the dominant en-
vironmental stressors responsible for decreasing mangrove diversity 
(Table 1, Figure 2 & Appendix S3). These novel habitat insights can 
guide the forest managers about deciding which mangrove commu-
nities or which stressors to target for future mangrove enhancement 
(reducing abiotic stresses that caused biodiversity loss), restoration 
and reforestation initiatives in the Sundarbans.

Our biodiversity maps (Figure 3) reveal that the surviving biodi-
versity hotspots are located outside the legislated protected area 
network. These hotspots are very close to local communities and 
vulnerable to opportunistic tree harvesting (Iftekhar & Islam, 2004), 
so we suggest bringing them under protected area management 
for their immediate protection and long‐term conservation of the 
threatened species living there.

Bangladesh have recently developed the “Biodiversity National 
Assessment and Program of Action 2020” to assess and monitor its 
forest resources and to enforce appropriate actions to reduce fur-
ther exploitation of these resources. Bangladesh has also formulated 
National Conservation Strategy (2016–2031) to foster development 
through the conservation and enhancement of natural resources 
within the framework of sustainable development, particularly as 
envisioned under the Sustainable Development Goals (MoEF, 2016). 

The country has also ratified the “Bangladesh Biodiversity Act 2017” 
to stop illegal trade of forest flora and fauna. It has also adopted a 
SMART (Spatial Monitoring and Reporting Tool) patrol management 
system since 2015 to expand the scope of its current mangrove 
protection efforts. Our baseline biodiversity maps can guide these 
valuable biodiversity protection and conservation initiatives. In ad-
dition, these maps can contribute to successful implementation of 
the REDD+ (Gardner et al., 2012) initiatives for enhancing carbon 
stock (through biodiversity conservation) as well as financial returns.

5  | CONCLUSIONS

This study provides the first comprehensive and coherent quan-
tification and habitat‐based modelling of alpha, beta and gamma 
diversity in threatened mangrove communities of the Sundarbans. 
We find that several environmental drivers, biotic interactions and 
historical events have combined effects on the biodiversity compo-
nents. Specifically, salinity intrusion, HH, increasing CS, siltation, 
disease and soil alkalinity are the dominant stressors responsible 
for reducing mangrove diversity. Although habitat‐based models 
showed better predictive ability than the covariate‐free approach, 
the small margin of differences between the approaches demon-
strates the utility of direct interpolation approaches when environ-
mental data are unavailable. Our biodiversity maps uncover that 
the most diverse and distinct mangrove communities (biodiversity 
hotspots) have restricted distributions in the freshwater‐dominated 
northern and eastern regions. Although these biodiversity hotspots 
are susceptible to human exploitation, they are not included in the 
existing protected area network, thus suggesting for an immediate 
reconfiguration of the protected area network. We believe details 
on the environmental stressors, and our biodiversity maps, collec-
tively, will contribute to designing and implementing climate‐smart 
mangrove enhancement, restoration and reforestation initiatives. 
In addition, our maps can guide the existing and future mangrove 
biodiversity protection, monitoring and REDD+ initiatives.
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