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Abstract 

The nucleoside antibiotic tubercidin displays strong activity against different target organisms, but it is 

notoriously toxic to mammalian cells. However, the effects of tubercidin against T. brucei parasites 

inspired us to synthesize several C7 substituted analogs for in vitro evaluation, in order to find suitable 

hit compounds. C7 Deazaadenosines substituted with electron-poor phenyl groups were found to have 

micromolar activity against T. brucei in vitro. Replacement of the phenyl for a pyridine ring gave 

compound 13 with submicromolar potency and much-attenuated cytotoxicity compared to tubercidin. 

The veterinary pathogen T. congolense was equally affected by 13 in vitro. Transporter studies in T. b. 

brucei indicated that 13 is taken up efficiently by both the P1 and P2 adenosine transporters, making the 

occurrence of transporter-related resistance and cross-resistance with diamidine drugs such as 

diminazene aceturate and pentamidine as well as with melaminophenyl arsenicals unlikely. Evaluation 

of the in vitro metabolic stability of analog 13 indicated that this analog was significantly metabolized 

in mouse microsomal fractions, precluding further in vivo evaluation in mouse models of HAT. 
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Introduction 

Human African Trypanosomiasis (HAT) is a deadly infectious disease that is prevalent in the African 

continent and caused by the parasites Trypanosoma brucei rhodesiense (East- and Southern Africa) and 

Trypanosoma brucei gambiense (West- and Central Africa) and transmitted by bites of infected tsetse 

flies. HAT exhibits two characteristic disease stages that are linked to parasite distribution in the body. 

Initially, parasites reside in the hemolymphatic system and cause rather non-specific symptoms (e.g. 

general malaise and fever) often leading to incorrect diagnosis. The second phase consists of parasites 

invading the central nervous system, causing severe neurological symptoms, including altered 

sleep/wake cycles, hence the name ‘sleeping sickness’. If left untreated, HAT is almost invariably fatal.1  

Treatment of HAT is cumbersome and extremely ineffective at present. Some of the approved drugs are 

only effective in stage I (suramin and pentamidine against rhodesiense and gambiense HAT, 

respectively), necessitating stage diagnosis via a risky lumbar puncture. For stage II disease, currently 

three drugs/drug combinations are approved: melarsoprol, eflornithine and nifurtimox/eflornithine, but 

eflonithine mono-therapy has been superseded by the nifurtimox combination. Melarsoprol suffers from 

a high toxicity burden and from high levels of drug resistance across Africa.2 Recently, two novel 

entities, fexinidazole3-4 and oxaborole SCYX-7158, have reached phase II/III clinical trials and could 

greatly improve treatment options if approved.5-6 However, fexinidazole resistance is easily induced and 

shows cross-resistance with nifurtimox,7 as both nitro drugs exhibit a similar mode-of-action.6 These 

findings highlight the ever-pressing need for novel therapies, especially from other structural classes, of 

which a few examples were published in recent years.8-12  

Nucleoside analogs have received considerable interest over the past six decades, with respect to many 

therapeutic areas but particularly as antiviral and anti-tumor agents.13-14 Because most protozoan 

parasites lack the enzymes for de novo purine synthesis, they depend on purine salvage and may be 

especially vulnerable to the effects of purine nucleoside analogs. In this regard, potential inhibitors for 

enzymes of the salvage pathway (e.g. UAMC-00363),15-17 as well as so-called ‘subversive’ substrates18-

21 (that are activated by the parasite’s salvage pathway enzyme(s) before exerting their toxic effect), 

bearing a nucleoside structure have been conceived or discovered by screening efforts (Figure 1).22 One 



such subversive analog is the naturally occurring nucleoside antibiotic tubercidin (1).22-24 Being a close 

mimic of adenosine, this analog was found to exert a plethora of biological effects,25-27 but it is also 

overtly toxic to mammalian cells and hence of little practical value.  

 

 

Figure 1: Examples of nucleoside analogs with activity against T. brucei.  

 

Inspired by recent work of Hocek and colleagues,28-29 in which it was found that selected C7 substituted 

7-deazaadenosines [in the body of the text, purine numbering will be used; while in the experimental 

section IUPAC pyrrolo[2,3-d]pyrimidine numbering will be employed] are at most mildly cytotoxic to 

both tumor and fibroblast cells, we decided to prepare a small subset of C7 phenyl-substituted 7-

deazaadenosines and evaluate their in vitro effect against T. brucei. In this work, we describe our efforts 

to optimize the in vitro potency from the initial hits to arrive at a new lead compound, 13. An overview 

of all prepared nucleoside analogs in this study is presented in Figure 2. 



 

Figure 2: Overview of prepared substituted tubercidin nucleoside analogs. 

 

Results and discussion 

Chemistry 

The synthesis is depicted in scheme 1-5. For the preparation of C7 substituted phenyl analogs 4-12 and 

27 (Scheme 1), an aqueous Suzuki reaction with the known nucleoside bromide 31,30 was employed. 

Conditions reported previously29 for the C7 iodo-nucleoside were perfectly translatable to the bromide 

31, as was recently reported by our group.31 The synthesis of the 3-pyridyl analog 14, which employed 

the corresponding pinacol boronic ester, required a prolonged reaction time. Application of these 

reaction conditions afforded the 4-pyridyl isomer 15 and 5-pyrimidyl derivative 18 in low yields only 

(< 5%), consistent with inherent pyridine/pyrimidine reactivity. Isolated yields could be improved by 

using the catalytic system reported by Fu,32 affording 15 and 18 in moderate yields (Scheme 1).   



 

Scheme 1: Reagents and conditions: a) aryl-B(OH)2 or aryl-B pinacol ester, Na2CO3, Pd(OAc)2, TPPTS, 

MeCN/H2O (1/2 ratio), 100 °C, argon, 1–3 h (4–12, 27), 20 h (14), 22–65 %; b) aryl-B(OH)2, K3PO4, 

Pd2(dba)3, P(c-Hex)3, H2O/dioxane (1/2 ratio), 100 °C, argon, 20 h (15), 38 h (18), 26 % (15), 35 % (18). 

 

For certain heterocycles for which the boronic acid or corresponding ester derivative are not 

commercially available or notoriously unstable (e.g. 2-subsituted pyridine),33 a Stille coupling was 

envisioned (Scheme 3). The nucleoside coupling partner 36 (Scheme 2) could be obtained by 

nucleophilic aromatic displacement with sodium azide on the known nucleoside 3230, giving rise to the 

corresponding tetrazolo[1,5-c]pyrimidine 34. The tetrazole tautomer of 34 predominates as was 

observed from the downfield shift of the H-2 proton in 1H-NMR. In CDCl3,  the presence of both 

tautomers gave rise to a ‘mixed’ spectrum (data not shown), whereas in DMSO-d6, the tetrazole form is 

found exclusively, which is in line with literature findings.34 Next, 36 could be obtained by means of 

Staudinger reaction on 34 and subsequent iminophosphorane hydrolysis.35-36 The iodonucleoside 37 was 

obtained analogously. 

 

 

Scheme 2: Reagents and conditions: a) NaN3, DMF, 65 °C, 30 min, 90% (34), 86% (35); b) i. PMe3 

(1M in THF), THF, rt., 30 min; ii. aq. HOAc (1M), MeCN, 65 °C, 1 h, 81% (36), 93% (37). 

 



With protected nucleoside 36 in hand, Stille couplings were performed using either commercial (2-

pyridyl, 2-pyrazinyl and 2-pyrimidinyl) or prepared (methyl-imidazolyl)37-39 organostannanes, 

employing literature conditions.29 In all cases except one (38), protected intermediates were immediately 

deprotected after Stille coupling, using 7N NH3 in MeOH (Scheme 3). 

 

 

Scheme 3: Reagents and conditions: a) Ar-Sn(nBu)3, Pd(Ph3P)2Cl2, DMF, 100 °C, argon, overnight, 82 

% (38); b) 7N NH3 in MeOH, rt, overnight, 36 % (16, 2 steps), 29 % (17, 2 steps), 84 % (19), 25 % (20, 

2 steps). 

 

To obtain substituted pyridine analogs 21–26 and quinoline derivatives 28–30, a different synthetic 

strategy was devised. Initially, we intended to use a Suzuki reaction with altered coupling partner 

polarity. Therefore, the synthesis of pinacol boronic ester40-41 nucleoside 39 was envisioned (Scheme 4), 

starting from the corresponding iodo-nucleoside 37 (Scheme 2). However, only after multiple failed 

attempts (catalyst source, temperature and solvent exploration), it was found that with PdCl2dppf.DCM 

as the catalyst, DMSO as the solvent and a reaction temperature of 100 °C, the desired product 39 could 

be obtained, albeit in moderate yield. All other tested conditions resulted in either no reaction at all or 

dehydrohalogenation (data no shown).  

 

 



 

Scheme 4: Reagents and conditions: a) B2pin2, KOAc, PdCl2dppf.DCM, DMSO, 100 °C, argon, 3 h, 

37%. 

 

Given the rather disappointing yield of the borylation reaction, we changed to a Negishi coupling 

strategy (Scheme 5).42 The nucleoside zinc derivative was prepared by magnesium-iodine exchange on 

35 with Knochel’s Turbo Grignard reagent,43-44 followed by transmetallation with ZnCl2 and subsequent 

Negishi coupling using Pd2(dba)3 and RuPhos.45 It was found that for 2-bromopyridine and 2-bromo-4-

chloropyridine, Negishi coupling was successful at ambient temperature, whereas with other 4-

substituted-2-pyridine-bromides, virtually no product was formed. Elevating the temperature to 60 °C 

allowed to obtain all the desired coupling products. Control experiments, performed with 2-

bromopyridine showed the importance of the Pd-source, the ligand and Pd and ligand combination (data 

not shown). Interestingly, the tetrazole tautomer of the C6 azide protected this functionality against the 

iodine/Mg exchange conditions, as no reduction products could be observed. Final compounds 13, 21-

26 and 28-30 were obtained by employing the above-mentioned sequence of Staudinger reduction, 

iminophosphorane hydrolysis and immediate deprotection using NaOMe/MeOH. 

 

Scheme 5: Reagents and conditions: a) i. i-PrMgCl.LiCl (1.3 M in THF), THF, -65 °C, argon, 30 min; 

ii. ZnCl2 (0.5 M in THF), -65 °C to rt, 25 min; iii. appropriate bromopyridine or bromo(iso)quinoline, 



Pd2(dba)3, RuPhos, THF, 60 °C, overnight, 16–51 %; b) i. PMe3 (1M in THF), THF, rt, overnight; ii. aq. 

HOAc (1M), MeCN, 65 °C, 1 h; iii. NaOMe, MeOH, rt, 30 min–1 h, 22–66 %. 

 

 

Biological evaluation 

In vitro evaluation 

All synthesized nucleosides were tested in vitro against T. b. brucei Squib 427 and T. b. rhodesiense 

STIB-900 parasites. Cytotoxicity was assayed against MRC-5 fibroblasts. Results are depicted in Table 

1.  

 

 

 



Cpd. 
T. b. brucei 

EC50 (µM) 

T. b. rhod. 

EC50 (µM) 

MRC-5 

EC50 (µM) 

SI 

T.b. 

brucei 

SI 

T.b. 

rhod. 

Cpd. 
T. b. brucei 

EC50 (µM) 

T. b. rhod. 

EC50 (µM) 

MRC-5 

EC50 (µM) 

SI T.b. 

brucei 

SI 

T.b. rhod. 

1 0.48 ± 0.1 N.D. 
2.23 ± 

0.68 
4.6 N.D. 17 2.26 ± 0.17 N.D. 14.3 ± 6.3 6.3 N.D. 

4 32.3 ± 1.7 4.10 ± 0.39 56.2 ± 5.1 1.7 14 18 52.4 ± 11.6 N.D. >64.0 >1.2 N.D. 

5 29.1 ± 2.9 N.D. 26.2 ± 1.4 0.9 N.D. 19 33.3 ± 0.13 N.D. >64.0 >1.9 N.D. 

6 41.6 ± 7.3 N.D. 28.0 ± 3.4 0.67 N.D. 20 4.76 ± 0.39 N.D. 23.4 ± 1.4 4.9 N.D. 

7 9.90 ± 1.18 6.88 ± 0.13 32.8 ± 1.7 3.3 4.8 21 38.2 ± 1.7 25.1 ± 2.6 >64.0 >1.7 >2.5 

8 7.58 ± 0.51 N.D. 27.0 ± 2.5 3.6 N.D. 22 25.5 ± 7.7 8.15 ± 0.02 
7.59 ± 

2.08 
0.3 0.9 

9 3.07 ± 1.08 0.32 ± 0.18 14.7 ± 3.7 4.8 46 23 1.75 ± 0.32 0.62 ± 0.28 >64.0 >37 >103 

10 8.17 ± 0.06 3.66 ± 0.46 >64.0 >7.8 >17 24 8.97 ± 0.40 4.60 ± 2.51 >64.0 >7.1 >13 

11 33.3 ± 0.4 26.3 ± 1.4 61.0 ± 3.0 1.8 2.3 25 8.92 ± 0.49 6.88 ± 0.40 27.3 ± 3.4 3.1 4.0 

12 8.81 ± 0.32 14.7 ± 0.42 >64.0 >7.3 >4.4 26 4.77 ± 1.91 1.69 ± 0.87 >64.0 >13 >38 

13 0.31 ± 0.06 0.031 ± 0.005 15.1 ± 4.1 49 487 27 7.83 ± 0.60 6.79 ± 0.25 
7.53 ± 

0.57 
0.96 1.2 

14 >64.0 N.D. >64.0 N.D. N.D. 28 6.45 ± 1.20 3.72 ± 1.46 >64.0 >9.9 >17 

15 >64.0 N.D. 55.8 ± 8.2 N.D. N.D. 29 14.7 ± 7.2 6.16 ± 2.16 >64.0 >4.4 >10 

16 1.95 ± 0.35 N.D. 
0.55 ± 

0.15 
0.28 N.D. 30 >64.0 55.6 ± 8.4 >64.0 N.D. >1.2 

Suramin 0.05 0.04 >64.0 >1280 >1600       

 

Table 1: In vitro anti-trypanosomal activity of prepared nucleosides analogs. EC50 values are given in µM and are average and SEM of 2–6 independent 

determinations. N.D.: not determined. SI: Selectivity Index: (EC50 MRC-5) / (EC50 T. b. brucei) or (EC50 MRC-5) / (EC50 T. b. rhodesiense). 

 



Our initial subset, comprising of tubercidin 1 and the C7 phenyl-substituted derivatives 4–6 and 8, 

delivered weakly active analogs, with 8 being the most active one (low µM EC50). Further derivatization 

focused on electron-poor and/or lipophilic phenyl analogs (7, 9, 10, 12 and 27), which all displayed EC50 

values <10 µM against T. b. brucei. The 3,4-dichloro analog 9 exerted the most potent anti-trypanosomal 

activity (EC50 = 3.07 ± 1.08 µM), with about tenfold better in vitro activity against T. b. rhodesiense 

(EC50 = 0.32 ± 0.18 µM). However, these modifications resulted only in moderately active analogs for 

which cytotoxicity was often equally increased (9 has a SI of less than 5), therefore a bio-isosteric 

replacement for the phenyl group was considered. The observed preference for electron-poor 

substituents led us to explore pyridine substituents.46 Of the three possible isomers, the 2-substituted 

pyridine 13 emerged as the most potent anti-trypanosomal agent with reasonable selectivity indices, i.e. 

50 for T. b. brucei and ~500 for T. b. rhodesiense, whereas the 3- and 4-pyridines 14 and 15 displayed 

no discernible trypanocidal activity. Continued investigation into electron deficient 6-membered 

heteroaromatics led to the preparation of pyrazine (16) and pyrimidine (17 and 18) derivatives, which 

failed to show improved activity. A switch to N-methyl imidazole analogs (19 and 20) learned that only 

N-methyl-imidazol-4-yl derivative 20 exhibits low micromolar activity, about tenfold less potent than 

that of 13. To mimic the position of the pyridine-N electron density, ortho-F phenyl analog 11 was 

synthetized, again with poor activity. Strikingly, from the present set of hetero-aromatic 7-substituted 

tubercidin analogs, only derivatives that feature an ortho-N atom proved to be active against the T. b. 

brucei parasite (compare pairs 13, 14 & 15; 17 & 18; 19 & 20). Examination of the 1H-NMR spectrum 

of 13 clearly showed the splitting of the C6 NH2 signal into two broad signals (one at δ = 7.29 ppm and 

one at δ = 9.88 ppm). This splitting pattern, as well as the significant downfield shift of one of the NH2-

protons, are indicative of the formation of an intramolecular H-bond.47 Crystallization from water and 

subsequent single crystal X-ray analysis confirmed the presence of this H-bond (Figure 3 & Supporting 

Information). Recently, researchers from Merck used this H-bonding idea as a key design strategy in 

search of HCV NS5B polymerase inhibitors.48          



 

Figure 3: Asymmetric unit of the crystal structure of 13, showing thermal displacement ellipsoids at the 

50 % probability level. The presence of an intramolecular H-bond is highlighted, leading to the 

formation of a 7-membered pseudoring.  

 

Further substitution of the pyridine ring (21–26, 28-30), failed to improve the anti-trypanosomal activity 

of 13. The virtual inactivity of the 1-isoquinolyl derivative 30, which is unable to form the H-bond 

because of steric clashing between H8 of the purine and H8 of the isoquinoline, confirms the importance 

of the H-bond for activity. However, the better activity observed with analogs having electron 

withdrawing rather than donating substituents makes a clear conclusion regarding the importance of the 

H-bond difficult.  

 

Subsequently, 13 was further evaluated in three drug resistant T. b. brucei cell lines (Table 2). Drug 

resistance in African trypanosomes has mostly been attributed to altered transport activities.49-52 This is 

of particular importance for nucleoside analogs. Their polar nature generally precludes passive diffusion 

across the cell membrane and some have been shown to rely completely on uptake by the TbAT1/P2 

transporter.19, 53-55 This transporter is encoded by a single gene, which is non-essential,56 and is therefore 



likely to yield drug-resistant mutants. Indeed, resistance of T. brucei spp. to the veterinary trypanocide 

diminazene has been clearly linked to loss of TbAT1/P2,57-59 as well as to reduced sensitivity to the HAT 

treatments pentamidine and melarsoprol.56, 60-62 From the data presented in Table 2, it is clear that 13 is 

much less dependent on the P2 transporter than tubercidin (1). Deletion of the P2 transporter (TbAT1-

KO strain) results in a modest (2.4-fold) loss of sensitivity to 13, while a 17-fold increase in resistance 

is observed for 1. The advantage of a nucleoside analog recognized by more than one transporter (see 

also next section) is even more evident when comparing sensitivities between the wild-type (Lister 427) 

strain and the multi-drug resistant strain B48, which displayed resistance factors (RF) of 28.7 and 1.6 

for 1 and 13, respectively. The trend further held for the isometamidium-resistant cell line ISMR1 (Table 

2). Prompted by the results seen on the ISMR1 cell-line, we also investigated the effects of 13 on the 

veterinary parasite, T. congolense, which represents the main causative agent of animal trypanosomiasis 

(Table 2). As T. congolense drug resistance against the animal trypanocides diminazene and 

isometamidium is high,63  we were pleased to find that not only does 13 exhibits statistically identical 

activity against T. congolense as to T. b. brucei, it also is at least as potent as the standard treatment for 

T. congolense, diminazene aceturate.  

 

Compound 

Lister-

427  

EC50 

(µM) 

TbAT1-

KO  

EC50 

(µM) 

RF 

B48 

EC50 

(µM) 

RF 
ISMR1 

EC50 (µM) 
RF 

T. 

congolensea 

EC50 (µM) 

Tubercidin 1 
0.15 ± 

0.03 
2.61 ± 0.7 17.2 4.3 ± 1.3 28.7 1.7 ± 0.5 11.1 N.D. 

13 
0.17 ± 

0.04 

0.40 ± 

0.09 
2.4 

0.27 ± 

0.04 
1.6 

0.43 ± 

0.07 
2.5 0.20 ± 0.01 

Pentamidine 
0.011 ± 

0.001 

0.018 ± 

0.002 
1.8 

0.99 ± 

0.16 
94.6 

0.14 ± 

0.04 
13.8 1.9 ± 0.20 

Diminazene 
0.42 ± 

0.064 
4.5 ± 0.9 10.6 7.2 ± 1.6 16.9 2.9 ± 0.4 6.9 0.22 ± 0.003 

Isometamidium 
0.65 ± 

0.085 

0.75 ± 

0.14 
1.2 

0.56 ± 

0.13 
0.85 3.1 ± 0.5 4.8 N.D. 

 

Table 2: In vitro anti-trypanosomal evaluation against three drug-resistant T. b. brucei cell lines; and T. 

congolense. EC50 values are given in µM; and are mean and SEM of three independent determinations.  



RF = Resistance factor: ratio of EC50 between resistant and reference (Lister-427) cell line. TbAT1-KO: 

T. brucei cell line lacking the TbAT1/P2 transporter gene. B48: pentamidine, diminazene and 

melaminophenyl arsenical resistant cell line. ISMR1: isometamidium resistant cell line. a 

Trypomastigotes of T. congolense IL3000.  

 

Transporter (P1 / P2) studies of 13 

It has previously been reported that uptake of tubercidin (1) is mostly dependent on T. brucei’s 

P2/TbAT1 transporter and loses most of its activity against the TbAT1-KO strain,53 as confirmed above. 

This is explained by the fact that, in contrast to adenosine, which is salvaged by both high-affinity 

nucleoside transporters in bloodstream trypanosomes (P1 and P2),61 tubercidin is a poor substrate for 

P1, being transported with just 1% of the efficiency of adenosine (expressed as Vmax/Km).64 This is 

because the translocation of purines by the P1 transporter partially depends on an interaction with the 

N7 of the purine ring.55, 64 In contrast, N-7 is not part of the main recognition motif of the P2 transporter65 

as this moiety does not form a significant interactions with the P2 binding pocket.62 Competition 

experiments with [3H]-adenosine for both the P1 and the P2 transporter were performed to gain insights 

into the preferences of the regioisomeric pyridine analogs 13–15 for either transporter (Figure 4 and 

Table 3). 

 

Figure 4: Transport of [3H]-Adenosine via P1 and P2 transporters in the presence of increasing 

concentrations of nucleoside analogs 13, 14 and 15. Transport via P1 was measured in B48 cells (lacking 

P2), while transport via P2 was evaluated in the same cells but transfected with a construct 



overexpressing the TbAT1/P2 transporter, in the presence of 100 µM inosine to block P1.62 The graphs 

show one representative of three independent experiments in triplicate. Error bars are SEM, when not 

shown, they fall within the symbol. 

 

None of the three pyridine derivatives show a pronounced P2 transporter-type preference, which could 

lead to uptake-based resistance. Note that P1 activity is encoded by multiple genes54, 64, 66 and P1-based 

resistance has never been reported. Analogs 13 and 15 give a 10- to 20-fold increase in binding inhibition 

constant for P2, while this is a 100-fold increase for 14, possibly due to a non-favorable interaction 

between the basic meta nitrogen and the transporter’s binding pocket.  

In comparison to tubercidin (1), all pyridine analogs but 13, show increased binding affinity for the P1 

transporter.  Considering the vast amount of literature data21, 53-55, 64 that point to a crucial interaction of 

the N7 nitrogen with the P1 binding pocket, this result is surprising. Although 13 is unable to form this 

H-bond (loss of 6.9 kJ/mol in binding), the loss in Gibbs free energy is less than half that of 1, indicating 

that this additional ring is well-accommodated in the binding pocket and that its restricted rotation 

enables an energetically favorable binding orientation. Similar to P2, the P1 transporter appears to 

disfavor a meta-pyridine ring. These results corroborate the drug sensitivity profile of 13 against the 

TbAT1-KO and B48 strains, in that reasonable binding to the P1 transporter allows efficient delivery of 

this analog inside the parasite cell, showing that these analogs do not just inhibit binding of adenosine 

to the transporter but are substrates themselves. 

Taken together, it seems that uptake of these three pyridine-substituted tubercidin analogs is mediated 

by both the P1 and P2 transporters and greatly dependent on the N-position (ortho>para>meta) in the 

pyridine ring and accounts, in part, for the observed difference in activity against the parasite in vitro. 

Nevertheless, other factors, such as engagement with the (to be elucidated) intracellular target are also 

important and that transporter studies alone are unlikely to completely explain the substantial difference 

in trypanocidal activity. 

 



  P1 transporter P2 transporter 

Compound Km or Ki ΔG0 δ(ΔG0) Km or Ki ΔG0 δ(ΔG0) 

Adenosine 0.16 ± 0.03 -38.8   0.53 ± 0.02 -35.8   

Tubercidin, 1 78 ± 6.41 -23.4 15.4 3.8 ± 0.71 -30.9 4.9 

13 2.54 ± 0.3 -31.9 6.9 4.57 ± 0.25 -30.4 5.4 

14 21.7 ± 1.9 -26.6 12.2 49.3 ± 3.4 -24.6 11.2 

15 12.5 ± 0.9 -28 10.8 9.34 ± 1.0 -28.7 7.1 

 

Table 3: Kinetic parameters of adenosine and C7 modified analogs for the nucleoside transporters of 

bloodstream T. brucei. Km (highlighted in bold) and Ki values are in µM and ΔG0 is in kJ/mol. δ(ΔG0) 

was calculated in comparison to adenosine. 1The Ki for tubercidin was taken from reference 55. 

 

Metabolic stability of 13 in mouse, rat and human microsomes 

In order to assess in vitro metabolic stability, compound 13 was exposed to mouse, rat and pooled human 

liver S9 microsomal fractions. The percentages of parent compound 13 remaining after incubation with 

the various microsomes with NADPH-dependent and UGT enzymes are presented in Table 4. The 

results indicate that compound 13 is susceptible to extensive Phase-I metabolism in mouse liver 

microsomes with only about 12.6% of parent drug remaining after 30 minutes, with an acceptable cut-

off being set at >50%. After 60 min, metabolic degradation in mouse liver microsomes was almost 

complete. Analysis of the LS/MS chromatograms showed increasing amounts of a metabolite with a 

mass corresponding to [M+16], consistent with pyridine-N-oxide / pyridone formation (data not shown). 

Some Phase-I decay was observed in rat liver microsomes. Phase I metabolism in human microsomes 

was absent and Phase II metabolism could not be demonstrated in any of the three species. The data 

obtained from the mouse microsomal stability study preclude the further in vivo evaluation of 13 in a 

mouse model of T. brucei. 

 

 



    MOUSE RAT HUMAN 

Phase I / 

II Time 

% 13  

remaining 

% 13  

remaining 

% 13  

remaining 

    Mean STDEV Mean STDEV Mean STDEV 

CYP - 

NADPH 

0 100 - 100 - 100 - 

15 36.5 6.4 89 20.4 96 1.8 

30 12.6 1.7 77 10.9 102 2.9 

60 1.9 0.3 31 3.2 82 20.3 

UGT 

Enzymes 

0 100 - 100 - 100 - 

15 112 14.7 115 3.5 123 5.4 

30 102 28.1 125 6.3 121 14.4 

60 122 3.9 122 1.3 92 8.2 

 

Table 4: Assessment of in vitro Phase I and Phase II metabolic stability of 13 using mouse, rat and 

human S9 microsomal fractions. Indicated are the percentage parent remaining compound in two 

replicates at various time points of incubation (0-15-30-60 min). Proper functioning of the in vitro assay 

was confirmed with the reference drug diclofenac (susceptible to Phase-I and Phase-II metabolism) and 

fluconazole (metabolically stable through Phase-I) (data not shown). 

 

Evaluation against other protozoa 

Trypanosoma cruzi, the etiological agent of Chagas disease and Leishmania spp., which causes 

leishmaniasis, are kinetoplastid parasites related to T. brucei. Therefore, the nucleosides synthesized in 

this study were also assayed against these pathogens. In vitro evaluation against Leishmania infantum 

intracellular amastigotes failed to deliver any suitable hit compounds, although tubercidin 1 displayed 

an EC50 value of 0.13 µM, in close agreement with previous reports of the antileishmanial potency. As 

expected, there was no selectivity compared to the host cell (primary mouse macrophage) cytotoxicity 

(data not shown). Tubercidin is transported by the Leishmania NT1 transporters and resistance was 

associated with reduced purine uptake in several Leishmania species, including L. donovani and L. 

mexicana.67-68 Yet, the 7-substituted tubercidin analogs displayed very low activity against intra-

macrophage L. infantum amastigotes, with only analog 9 displaying a low micromolar EC50 (1.67 ± 0.35 

µM), with only modest selectivity towards the host cell (EC50 = 20.0 ± 12.0 µM).  We therefore speculate 



that the aromatic substitutions at position 7 of tubercidin are poorly tolerated by the L. infantum NT1 

adenosine/pyrimidine transporters, which are highly conserved between Leishmania spp, and their only 

mechanism for uptake of adenosine and its analogs.69 The well-documented substrate-selectivity 

difference between the T. brucei and the Leishmania nucleoside transporters54, 64-65, 69 probably drives 

major differences in anti-trypanosomal and anti-leishmanial activity of the nucleoside analogs. 

In contrast, in vitro evaluation against T. cruzi revealed three analogs (8, 9 and 12) with an up to 10-fold 

higher level of activity as compared to the reference drug benznidazole (table 5). All other nucleoside 

analogs did not display significant anti-T. cruzi activity or were non-selective (data not shown). Similar 

to Leishmania spp., T. cruzi has previously been shown to be susceptible to tubercidin and resistance 

was linked to reduced uptake of the drug.70 Candidate genes of the Equilibrative Nucleoside Transporter 

family can be readily identified in the T. cruzi genome,71 and a recent study72 uncovered the substrate 

profile of several of them, but adenosine transporter activity has yet to be demonstrated.  

 

Compound 
T. cruzi  

EC50 (µM) 

MRC-5  

EC50 (µM) 
SI 

Tubercidin, 1 0.34 ± 0.17 2.23 ± 0.68 6.5 

8 0.47 ± 0.25 27.0 ± 2.5 57.4 

9 0.19 ± 0.07 14.7 ± 3.7 77.4 

12 0.49 ± 0.10 >64.0 >130 

Benznidazole 2.73 ± 0.09  >64.0 >23 

Table 5: In vitro activity of selected analogs against Trypanosoma cruzi. EC50 values are given in µM 

as average and SEM of 2–4 independent replicates. SI = (EC50 MRC-5 / EC50 T. cruzi). 

 

Conclusion 

In the present publication, we have described the reinvestigation of 7-deazaadenosine (tubercidin) 

against African trypanosomes, which led to the discovery of low micromolar in vitro active C7 phenyl 

analogs, with a preference for electron-poor rings. Bio-isosteric replacement with a pyridine led to 



analog 13, with nM potency against the T. brucei parasite. Only the 2-pyridine isomer, engaging in an 

intramolecular H-bond with the C6 NH2, resulted in submicromolar in vitro activity and additional 

substitution of the ring was found not to be tolerated. 13 was found to be equally potent in vitro against 

the veterinary parasite T. congolense. Further investigation showed a mixed P1/P2 transporter profile 

for the compounds assayed, which is highly advantageous considering uptake-related resistance as 

shown in the absence of cross-resistance with first-line trypanocidal drugs. The advantage is also neatly 

illustrated by the susceptibility of T. congolense, which lacks the P2 transporter altogether, but does 

express a P1-type adenosine transporter.58, 71 Unfortunately, analog 13 displayed poor metabolic stability 

when assayed in the presence of mouse microsomal fractions, precluding further in vivo evaluation in 

relevant (mouse) animal models of HAT. Additionally, several substituted phenyl 7-deazapurine 

nucleoside analogs displayed potent activity against intracellular T. cruzi amastigotes, which warrants 

further investigation. 

 

 

Experimental section 

Chemistry 

All reagents and solvents were obtained from standard commercial sources and were of analytical grade. 

Unless otherwise specified, they were used as received. Compounds 3130, 3230, 3330, 173,  1-methyl-5-

(tributylstannyl)-1H-imidazole37, 1-methyl-4-(tributylstannyl)-1H-imidazole38-39 were prepared as 

described in literature. All moisture sensitive reactions were carried out under argon atmosphere. 

Reactions were carried out at ambient temperature, unless otherwise indicated. Analytical TLC was 

performed on Machery-Nagel® precoated F254 aluminum plates and were visualized by UV followed 

by staining with basic aq. KMnO4, Cerium-Molybdate, or sulfuric acid-anisaldehyde spray. Column 

chromatography was performed using Davisil® (40-63 µm) or on a Reveleris X2 (Grace/Büchi) 

automated Flash unit employing pre-packed silica columns. Exact mass measurements were performed 

on a Waters LCT Premier XE™ Time of Flight (ToF) mass spectrometer equipped with a standard 



electrospray (ESI) and modular Lockspray™ interface. Samples were infused in a MeCN / water (1:1) 

+ 0.1 % formic acid mixture at 100 µL / min. NMR spectra were recorded on a Varian Mercury 300 

MHz spectrometer. Chemical shifts (δ) are given in ppm and spectra are referenced to the residual 

solvent peak. Coupling constants are given in Hz. In 19F-NMR, signals were referenced to CDCl3 or 

DMSO-d6 lock resonance frequency according to IUPAC referencing with CFCl3 set to 0 ppm. Melting 

points were determined on a Büchi-545 apparatus and are uncorrected. Purity was assessed by means of 

analytical LC-MS employing either 

(1) Waters Alliance 2695 XE separation Module using a Phenomenex Luna® reversed-phase C18 

(2) column (3 μm, 100x2.00 mm) and a gradient system of HCOOH in H2O (0.1 %, 

v/v)/HCOOH in MeCN (0.1 %, v/v) at a flow rate of 0.4 mL/min, 10:90 to 0:100 in 9 minutes. 

High-resolution MS spectra were recorded on a Waters LCT Premier XE Mass spectrometer. 

(2) Waters AutoPurification system (equipped with ACQUITY QDa (mass; 100–1000 amu)) and 

2998 Photodiode Array (220 – 400 nm)) using a Waters Cortecs® C18 (2.7 µm 100x4.6mm) 

column and a gradient system of HCOOH in H2O (0.2 %, v/v) / MeCN at a flow rate of 1.44 

mL/min, 95:05 to 00:100 in 6.5 minutes. 

All obtained final compounds had purity > 95 %, as assayed by analytical HPLC (UV); unless otherwise 

indicated.  

 

General procedure A (Suzuki coupling; adapted from ref. 29): 

31 (1 eq.), boronic acid (1.5 eq.) or pinacol ester [for compound 14 (1.5 eq.)], Na2CO3 (9 eq.), Pd(OAc)2 

(0.05 eq.) and TPPTS (0.15 eq.) were added to a 10 mL round-bottom flask, equipped with a stir bar. 

Next, the flask was evacuated and refilled with argon. This procedure was repeated three times in total. 

Next, degassed MeCN (2 mL/mmol SM) and H2O (4 mL/mmol SM) were added to the solids under 

argon. After 5 min of stirring, the mixture was heated to 100 °C in a pre-heated oil bath. When the 

starting material was fully consumed (usually 1–3 hours), the mixture was cooled to ambient 

temperature, and neutralized (pH ~ 7) with 0.5 M aq. HCl. The mixture was evaporated till dryness, 

resuspended in MeOH and evaporated (three times). Next, the mixture was adsorbed onto Celite® (from 



MeOH) and eluted over a short silica pad (~ 5 cm) with 20 % MeOH/DCM. The liquid was evaporated 

in vacuo and purified by column chromatography. 

General procedure B (Stille coupling; adapted from ref. 29):  

36 (1 eq.) and Pd(Ph3P)2Cl2 (0.10 eq.) were added to a flame-dried 5 mL round bottom flask, equipped 

with a stir bar, under argon. Next, the flask was evacuated and refilled with argon. This procedure was 

repeated three times in total. Next, degassed anhydrous DMF (4 mL/mmol SM) was added under argon. 

The resulting solution was stirred at for ~5 min after which the organostannane (2 eq.) was added via 

syringe. The mixture was then heated to 100 °C in a pre-heated oil bath overnight. Next, the mixture 

was cooled to ambient temperature and evaporated to dryness. The resulting oil was partitioned between 

MeCN/hexane. The MeCN-layer was extracted twice more with hexane, and then evaporated. The 

resulting mixture was purified by column chromatography. In most cases, the obtained product was 

immediately used in the next step (deprotection). 

General procedure C (Negishi Coupling): 

35 was dissolved in anhydrous toluene (10 mL) and evaporated till dryness. This procedure was repeated 

3 times. Next, the residue was dissolved in anhydrous THF (8.5 mL/mmol SM) under argon. The 

solution was cooled to -65 °C. i-PrMgCl.LiCl solution (1.3M in THF; 1.1 eq.) was added in one portion. 

The resulting solution was stirred at -65 °C for 30 min, after which a small sample was quenched with 

sat. NH4Cl solution and used for TLC analysis. Generally, full conversion was then observed. Next, 

ZnCl2 solution (0.5M in THF, 1.2 eq.) was added in one portion, and the mixture stirred for another 5 – 

10 min at -65 °C. Then, the cooling was removed, and the mixture stirred at ambient temperature for 20 

min. Next, to a flame-dried Schlenk-tube (5 mL) containing a stir bar, were added Pd2(dba)3 (0.02 eq.), 

RuPhos (0.08 eq.) and the appropriate bromopyridine or bromo(iso-)quinoline (1.4 eq.) (when solid) 

under argon. The tube was evacuated and refilled with argon three times. Then, anhydrous THF (3 

mL/mmol SM) was added as well as the pyridine-Br or (iso-)quinoline-Br (1.4 eq.) (when liquid). The 

mixture was stirred for approximately 5 min and the resulting solution was then transferred via syringe 

to the flask containing the nucleoside-zinc reagent. An additional 0.5 – 1 mL of anhydrous THF was 



used to rinse the Schlenk tube and added to the mixture as well. The resulting solution was stirred at 60 

°C overnight. After cooling to ambient temperature, the mixture was then quenched by adding water (~ 

5 mL) and transferred to a separatory funnel. EA and aq. 1M EDTA (pH=8) solution were added. The 

layers were separated, and the water layer was extracted with EA two more times. The organic layers 

were combined, dried over Na2SO4, filtered and evaporated in vacuo. The resulting mixture was purified 

by column chromatography.  

General procedure D (Staudinger reduction / iminophosphorane hydrolysis and subsequent 

deprotection of 7-deaza-7-pyridinyl / (iso-)quinolinyl derivatives): 

The appropriate 6-azido-nucleoside (1 eq.) was dissolved in THF (10 mL/mmol). Then, PMe3 solution 

(1M in THF; 2 eq.) was added and the mixture stirred at ambient temperature until TLC analysis showed 

full conversion of starting material (generally overnight). Next, the solution was evaporated till dryness, 

and subsequently re-dissolved in MeCN (10 mL/mmol). To this solution was added a 1M aq. HOAc 

solution (3.33 eq.), and the mixture heated in a pre-heated oil bath at 65 °C for 1 h. Next, the mixture 

was cooled to ambient temperature and poured into sat. aq. NaHCO3 solution. DCM was added, layers 

were separated, and the water layer extracted two more times with DCM. The organic layers were 

combined, dried over Na2SO4, filtered and evaporated till dryness. Purification by column 

chromatography gave rise to the intermediate purine-amine derivative, which was used directly 

(deprotection). To a solution of the purine-amine derivative in MeOH (15 mL/mmol) was added 

NaOMe/MeOH solution (5.4 M, 0.2 eq.), and the mixture was stirred at ambient temperature until TLC 

analysis showed full conversion (generally between 30 min to 1 h). Next, the mixture was neutralized 

(pH ~ 7) with 0.5 M aq. HCl and evaporated till dryness. The residue was taken up in MeOH, and co-

evaporated with Celite®, and subjected to column chromatography. 

 

4-amino-5-phenyl-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (4) 4 was prepared according 

to General Procedure A (reaction time: 2 h). 31 (0.17 g, 0.50 mmol) gave rise to 4 as a white solid (0.11 

g, 0.31 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 62 %. 1H NMR (300 MHz, 



DMSO-d6) δ: 3.53 (ddd, J = 12.0, 6.3, 3.9 Hz, 1H, H-5’’), 3.63 (dt, J = 12.0, 4.5 Hz, 1H, H-5’), 3.91 (q, 

J = 3.6 Hz, 1H, H-4’), 4.08 – 4.13 (m, 1H, H-3’), 4.46 (q, J = 6.0 Hz, 1H, H-2’), 5.11 (d, J = 4.8 Hz, 

1H, OH-3’), 5.18 (dd, J = 6.0, 5.1 Hz, 1H, OH-5’), 5.32 (d, J = 6.6 Hz, 1H, OH-2’), 6.10 (br. s, 2H, 

NH2), 6.12 (d, J = 6.0 Hz, 1H, H-1’), 7.35 – 7.52 (m, 5H, HPhe), 7.54 (s, 1H, H-6), 8.15 (s, 1H, H-2). 

HRMS (ESI): calculated for C17H19N4O4 ([M+H]+): 343.1401, found: 343.1418. Spectral data are in 

accordance with literature values.29 

4-amino-5-(4-methylphenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (5) 5 was prepared 

according to General Procedure A (reaction time: 2 h). 31 (0.17 g, 0.50 mmol) gave rise to 5 as a white 

solid (0.080 g, 0.22 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 45 %. Melting 

point: 165 °C. 1H NMR (300 MHz, DMSO-d6) δ: 2.36 (s, 3H, CH3), 3.50 – 3.57 (m, 1H, H-5’’), 3.61 – 

3.66 (m, 1H, H-5’), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 4.10 (br. s, 1H, H-3’), 4.46 (br. s, 1H, H-2’), 5.12 

(br. s, 1H, OH-3’), 5.18 (t, J = 5.4 Hz, 1H, OH-5’), 5.31 (br. s, 1H, OH-2’), 6.10 (br. s, 2H, NH2), 6.11 

(d, J = 6.3 Hz, 1H, H-1’), 7.28 – 7.31 (m, 2H, HPhe), 7.35 – 7.38 (m, 2H, HPhe), 7.49 (s, 1H, H-6), 8.14 

(s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 20.7 (CH3), 61.7 (C-5’), 70.6 (C-3’), 73.8 (C-2’), 85.1 

(C-4’), 87.0 (C-1’), 100.6 (C-4a), 116.2 (C-5), 120.8 (C-6), 128.4 (2CPhe), 129.6 (2CPhe), 131.5 (C-1Phe), 

136.1 (C-4Phe), 150.7 (C-7a), 151.6 (C-2), 157.3 (C-4). HRMS (ESI): calculated for C18H21N4O4 

([M+H]+): 357.1557, found: 357.1575.  

4-amino-5-(4-methoxyphenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (6) 6 was 

prepared according to General Procedure A (reaction time: 1 h). 31 (0.17 g, 0.50 mmol) gave rise to 6 

as a white solid (0.087 g, 0.23 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 47 

%. 1H NMR (300 MHz, DMSO-d6) δ: 3.53 (ddd, J = 11.7, 6.0, 3.6 Hz, 1H, H-5’’), 3.60 – 3.66 (m, 1H, 

H-5’), 3.80 (s, 3H, OCH3), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 4.08 – 4.25 (m, 1H, H-3’), 4.42 – 4.48 (m, 

1H, H-2’), 5.10 (d, J = 4.5 Hz, 1H, OH-3’), 5.18 (dd, J = 6.0, 5.4 Hz, 1H, OH-5’), 5.30 (d, J = 6.3 Hz, 

1H, OH-2’), 6.08 (br. s, 2H, NH2), 6.10 (d, J = 6.3 Hz, 1H, H-1’), 7.03 – 7.08 (m, 2H, HPhe), 7.36 – 7.41 

(m, 2H, HPhe), 7.45 (s, 1H, H-6), 8.13 (s, 1H, H-2). HRMS (ESI): calculated for C18H21N4O5 ([M+H]+): 

373.1506, found: 373.1525. Spectral data are in accordance with literature values.29 



4-amino-5-(3-chlorophenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (7) 7 was prepared 

according to General Procedure A (reaction time: 1 h). 31 (0.24 g, 0.70 mmol) gave rise to 7 as a white 

solid (0.056 g, 0.15 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 22 %. Melting 

point: 135 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.53 (ddd, J = 12.0, 6.0, 4.2 Hz, 1H, H-5’’), 3.64 (ddd, 

J = 12.0, 4.8, 4.2 Hz, 1H, H-5’), 3.90 (q, J  = 3.6 Hz, 1H, H-4’), 4.09 – 4.13 (m, 1H, H-3’), 4.45 (q, J = 

6.0 Hz, 1H, H-2’), 5.11 (d, J = 4.8 Hz, 1H, OH-3’), 5.15 (dd, J = 6.0, 5.1 Hz, 1H, OH-5’), 5.32 (d, J = 

6.6 Hz, 1H, OH-2’), 6.12 (d, J = 6.3 Hz, 1H, H-1’), 6.24 (br. s, 2H, NH2), 7.39 – 7.45 (m, 2H, H-5Phe, 

H-6Phe), 7.49 (d, J = 7.8 Hz, 1H, H-4Phe), 7.52 (t, J = 1.8 Hz, 1H, H-2Phe), 7.64 (s, 1H, H-6), 8.16 (s, 1H, 

H-2). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.5 (C-3’), 73.8 (C-2’), 85.1 (C-4’), 87.0 (C-1’), 

100.2 (C-4a), 115.0 (C-5), 121.9 (C-6), 126.5 (CPhe), 126.9 (CPhe), 127.9 (C-2Phe), 130.7 (C-4Phe), 133.5 

(C-3Phe), 136.6 (C-1Phe), 151.1 (C-7a), 151.8 (C-2), 157.3 (C-4). HRMS (ESI): calculated for 

C17H18ClN4O4 ([M+H]+): 377.1011, found: 377.0993.  

4-amino-5-(4-chlorophenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (8) 8 was prepared 

according to the General Procedure A (reaction time: 3 h). 31 (0.17 g, 0.50 mmol) gave rise to 8 as a 

white solid (0.084 g, 0.22 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 45 %. 

Melting point: 130 – 132 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.53 (ddd, J = 11.7, 6.0, 3.9 Hz, 1H, H-

5’’), 3.60 – 3.67 (m, 1H, H-5’), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 4.08 – 4.13 (m, 1H, H-4’), 4.42 – 4.48 

(m, 1H, H-2’), 5.11 (d, J = 4.8 Hz, 1H, OH-3’), 5.17 (t, J = 5.7 Hz, 1H, OH-5’), 5.32 (d, J = 6.6 Hz, 1H, 

OH-2’), 6.12 (d, J = 6.0 Hz, 1H, H-1’), 6.21 (br. s, 2H, NH2), 7.46 – 7.49 (m, 2H, HPhe), 7.52 – 7.55 (m, 

2H, HPhe), 7.58 (s, 1H, H-6), 8.15 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.6 (C-

3’), 73.8 (C-2’), 85.1 (C-4’), 87.0 (C-1’), 100.3 (C-4a), 115.1 (C-5), 121.5 (C-6), 128.9 (2CPhe), 130.1 

(2CPhe), 131.5 (CPhe), 133.3 (CPhe), 151.0 (C-7a), 151.7 (C-2), 157.3 (C-4). HRMS (ESI): calculated for 

C17H18ClN4O4 ([M+H]+): 377.1011, found: 377.1028.  

4-amino-5-(3,4-dichlorophenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (9) 9 was 

prepared according to General Procedure A (reaction time: 3 h). 31 (0.17 g, 0.50 mmol) gave rise to 9 

as a white solid (0.060 g, 0.15 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 29 

%. Melting point: 221 – 223 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.53 (dd, J = 11.7, 3.3 Hz, 1H, H-



5’’), 3.64 (dd, J = 11.7, 3.6 Hz, 1H, H-5’), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 4.42 – 4.47 (m, 1H, H-2’), 

5.13 (br. s, 2H, OH-3’, OH-5’), 5.33 (d, J = 6.0 Hz, 1H, OH-2’), 6.12 (d, J = 6.3 Hz, 1H, H-1’), 6.41 

(br. s, 2H, NH2), 7.43 (dd, J = 8.4, 2.1 Hz, 1H, H-6Phe), 7.68 – 7.72 (m, 3H, H-6, H-2Phe, H-5Phe), 8.17 

(s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.5 (C-3’), 73.8 (C-2’), 85.1 (C-4’), 87.0 

(C-1’), 100.0 (C-4a), 114.2 (C-5), 122.2 (C-6), 128.5 (CPhe), 129.2 (CPhe), 129.9 (CPhe), 130.8 (CPhe), 

131.3 (CPhe), 135.0 (CPhe), 151.1 (C-7a), 151.6 (C-2), 157.2 (C-4). HRMS (ESI): calculated for 

C17H17Cl2N4O4 ([M+H]+): 411.0621, found: 411.0627.  

4-amino-5-(3,5-dichlorophenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (10) 10 was 

prepared according to General Procedure A (reaction time: 3 h). 31 (0.24 g, 0.70 mmol) gave rise to 10 

as a white solid (0.080 g, 0.20 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 28 

%. Melting point: 219 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.53 (ddd, J = 12.0, 6.0, 4.2 Hz, 1H, H-

5’’), 3.64 (ddd, J = 12.0, 5.1, 4.2 Hz, 1H, H-5’), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 4.09 – 4.13 (m, 1H, H-

3’), 4.44 (q, J = 5.7 Hz, 1 H, H-2’), 5.12 – 5.16 (m, 2H, OH-5’, OH-3’), 5.33 (d, J = 6.3 Hz, 1H, OH-

2’), 6.12 (d, J = 6.3 Hz, 1H, H-1’), 6.40 (br. s, 2H, NH2), 7.48 (d, J = 2.1 Hz, 2H, H-2Phe, H-6Phe), 7.54 

(t, J = 2.1 Hz, 1H, H-4Phe), 7.73 (s, 1H, H-6), 8.17 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 

(C-5’), 70.5 (C-3’), 73.8 (C-2’), 85.1 (C-4’), 86.9 (C-1’), 99.9 (C-4a), 113.9 (C-5), 122.6 (C-6), 125.9 

(C-4Phe), 126.8 (2C, C-2Phe, C-6Phe), 134.2 (2C, C-3Phe, C-5PHe), 137.9 (C-1Phe), 151.3 (C-7a), 151.9 (C-

2), 157.4 (C-4). HRMS (ESI): calculated for C17H17Cl2N4O4 ([M+H]+): 411.0621, found: 411.0625.  

4-amino-5-(2-fluorophenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (11) 11 was 

prepared according to General Procedure A (reaction time: 1.5 h). 31 (0.24 g, 0.70 mmol) gave rise to 

11 as a white solid (0.095 g, 0.27 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 

40 %. Melting point: 130 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.32 – 3.66 (m, 2H, H-5’, H-5’’), 3.91 

(dd, J = 6.9, 3.6 Hz, 1H, H-4’), 4.10 – 4.12 (m, 1H, H-3’), 4.46 (q, J = 6.3 Hz, 1H, H-2’), 5.12 (d, J = 

4.8 Hz, 1H, OH-3’), 5.19 (dd, J = 6.0, 5.1 Hz, 1H, OH-5’), 5.33 (d, J = 6.6 Hz, 1H, OH-2’), 6.07 (br. s, 

2H, NH2), 6.12 (d, J = 6.3 Hz, 1H, H-1’), 7.29 – 7.37 (m, 2H, HPhe), 7.41 – 7.47 (m, 2H, HPhe), 7.57 (s, 

1H, H-6), 8.15 (s, 1H, H-2). 19F-NMR (282 MHz, DMSO-d6) δ: -115.56 –  -115.48 (m). 13C NMR (75 

MHz, DMSO-d6) δ: 61.7 (C-5’), 70.6 (C-3’), 73.8 (C-2’), 85.2 (C-4’), 87.2 (C-1’), 101.4 (C-4a), 108.5 



(C-5), 116.1 (d, J = 21.8 Hz, 1C, CPhe), 121.8 (d, J = 14.9 Hz, 1C, CPhe), 122.4 (C-6), 124.8 (d, J = 3.5 

Hz, 1C, CPhe), 129.4 (d, J = 8.0 Hz, 1C, CPhe), 131.9 (d, J = 2.2 Hz, 1C, CPhe), 150.6 (C-7a), 151.7 (C-2), 

157.3 (C-4), 159.4 (d, J = 242.8 Hz, 1C, C-F). HRMS (ESI): calculated for C17H18FN4O4 ([M+H]+): 

361.1307, found: 361.1311.  

4-amino-5-(4-fluorophenyl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (12) 12 was 

prepared according to General Procedure A (reaction time: 1.5 h). 31 (0.24 g, 0.70 mmol) gave rise to 

12 as a white solid (0.075 g, 0.21 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 

30 %. Melting point: 145 – 148 °C (decomposed). 1H NMR (300 MHz, DMSO-d6) δ: 3.53 (ddd, J = 

12.0, 6.0, 3.9 Hz, 1H, H-5’’), 3.63 (ddd, J = 12.0, 5.1, 4.2 Hz, 1H, H-5’), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 

4.11 (dd, J = 3.9, 5.1 Hz, 1H, H-3’), 4.42 – 4.48 (m, 1H, H-2’), 5.11 (d, J = 4.8 Hz, 1H, OH-3’), 5.17 (t, 

J = 5.7 Hz, 1H, OH-5’), 5.31 (d, J = 6.3 Hz, 1H, OH-2’), 6.11 (d, J = 6.3 Hz, 1H, H-1’), 6.15 (br. s, 2H, 

NH2), 7.27 – 7.35 (m, 2H, HPhe), 7.46 – 7.51 (m, 2H, HPhe), 7.53 (s, 1H, H-6), 8.15 (s, 1H, H-2). 19F-

NMR (282 MHz, DMSO-d6) δ: -116.01 (ddd, J = 13.8, 9.0, 5.9 Hz, 1F). 13C NMR (75 MHz, DMSO-d6) 

δ: 61.7 (C-5’), 70.6 (C-3’), 73.8 (C-2’), 85.1 (C-4’), 87.1 (C-1’), 100.5 (C-4a), 115.5 (d, J = 26.3 Hz, 

2C, C-3Phe, C-5Phe), 116.0 (C-5), 121.2 (C-6), 130,4 (d, J = 8.0 Hz, 2C, C-2Phe, C-6Phe), 130.8 (d, J = 3.5 

Hz, 1C, C-1Phe), 150.9 (C-7a), 151.7 (C-2), 157.4 (C-4), 161.5 (d, J = 241.6 Hz, 1C, C-4Phe). HRMS 

(ESI): calculated for C17H18FN4O4 ([M+H]+): 361.1307, found: 361.1291.  

4-amino-5-(pyridin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (13) 13 was prepared 

according to General Procedure D. 40 (0.585 g, 0.858 mmol) gave rise to 13 as a white solid (0.140 g, 

0.408 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 48 %. Melting point: 238 °C. 

1H NMR (300 MHz, DMSO-d6) δ: 3.57 (ddd, J = 11.7, 6.6, 4.2 Hz, 1H, H-5’’), 3.69 (ddd, J = 12.0, 5.1, 

4.2 Hz, 1H, H-5’), 3.92 (q, J = 3.9 Hz, 1H, H-4’), 4.14 (dd, J = 8.7, 5.1 Hz, 1H, H-3’), 4.48 (q, J = 5.7 

Hz, 1H, H-2’), 5.28 (dd, J = 6.3, 5.4 Hz, 1H, OH-5’), 5.36 (d, J = 6.0 Hz, 1H, OH-2’), 6.09 (d, J = 5.7 

Hz, 1H, H-1’), 7.25 (ddd, J = 7.2, 5.1, 0.9 Hz, 1H, H-5Pyr), 7.29 (br. s, 1H, NH), 7.85 (ddd, J = 8.1, 7.5, 

1.8 Hz, 1H, H-4Pyr), 7.98 (dt, J = 8.1, 0.9 Hz, 1H, H-3Pyr), 8.07 (s, 1H, H-2), 8.26 (s, 1H, H-6), 8.55 (ddd, 

J = 5.1, 1.8, 0.9 Hz, 1H, H-6Pyr), 9.88 (br. s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 

70.4 (C-3’), 73.7 (C-2’), 85.1 (C-4’), 87.3 (C-1’), 100.6 (C-4a), 116.0 (C-5), 120.3 (C-3Pyr), 121.1 (C-



5Pyr), 123.3 (C-6), 137.7 (C-4Pyr), 147.9 (C-6Pyr), 151.5 (C-7a), 152.5 (C-2), 153.1 (C-2Pyr), 158.7 (C-4). 

HRMS (ESI): calculated for C16H18N5O4 ([M+H]+): 344.1353, found: 344.1370.  

4-amino-5-(pyridin-3-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (14) 14 was prepared 

according to General Procedure A (reaction time: 20 h), with the use of 3-pyridinylboronic acid pinacol 

ester. 31 (0.17 g, 0.50 mmol) gave rise to 14 as a white solid (0.060 g, 0.18 mmol). Column 

chromatography: 1 → 20 % MeOH/DCM. Yield = 35 %. Melting point: 220 °C (decomposed). 1H NMR 

(300 MHz, DMSO-d6) δ: 3.50 – 3.57 (m, 1H, H-5’’), 3.60 – 3.67 (m, 1H, H-5’), 3.91 (dd, J = 7.2, 3.9 

Hz, 1H, H-4’), 4.09 – 4.14 (m, 1H, H-3’), 4.46 (dd, J = 11.4, 6.3 Hz, 1H, H-2’), 5.13 (d, J = 4.8 Hz, 1H, 

OH-3’), 5.17 (t, J = 5.7 Hz, 1H, OH-5’), 5.33 (d, J = 6.3 Hz, 1H, OH-2’), 6.13 (d, J = 6.0 Hz, 1H, H-

1’), 6.26 (br. s, 2H, NH2), 7.48 (ddd, J = 8.1, 5.1, 0.9 Hz, 1H, H-4Pyr), 7.67 (s, 1H, H-6), 7.85 (dt, J = 

8.1, 2.1 Hz, 1H, H-5Pyr), 8.17 (s, 1H, H-2), 8.55 (dd, J = 4.8, 1.8 Hz, 1H, H-6Pyr), 8.70 (dd, J = 2.4, 0.9 

Hz, 1H, H-2Pyr). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.6 (C-3’), 73.8 (C-2’), 85.1 (C-4’), 

87.1 (C-1’), 100.4 (C-4a), 112.8 (C-5), 122.0 (C-6), 123.8 (C-5Pyr), 130.3 (C-3Pyr), 135.6 (C-4Pyr), 147.7 

(C-6Pyr), 148.8 (C-2Pyr), 151.2 (C-7a), 151.8 (C-2), 157.5 (C-4). HRMS (ESI): calculated for 

C16H18N5O4: 344.1353 ([M+H]+), found: 344.1353.  

4-amino-5-(pyridin-4-yl)-N7-β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (15) 31 (0.172 g, 0.5 

mmol, 1 eq.), 4-pyridinylboronic acid (0.092 g, 0.75 mmol, 1.5 eq.), Pd2(dba)3 (0.023 g, 0.025 mmol, 

0.05 eq.) and P(c-hexyl)3 (0.017 g, 0.06 mmol, 0.12 eq.) were added to a 10 mL round-bottom flask, 

containing a stir bar. Next, the flask was evacuated and refilled with argon three times. Then, 1,4-

dioxane was added (1.33 mL, 2.67 mL/mmol SM) together with 1.27 M aq. K3PO4 solution (0.67 mL, 

1.33 mL/mmol SM). The flask was stirred at ambient temperature for ~ 5 min and then transferred to a 

pre-heated oil bath at 100 °C. Heating was continued for 20 h, after which the mixture was cooled to 

ambient temperature. The mixture was neutralized (pH ~ 7) with 0.5 M aq. HCl. The mixture was 

evaporated till dryness and re-suspended in MeOH and evaporated (three times). Next, the mixture was 

adsorbed onto Celite® (from MeOH) and eluted over a short silica pad (~ 5 cm) with 20 % MeOH/DCM. 

The liquid was evaporated in vacuo and purified by column chromatography 5 → 20 % MeOH/EA. 15 

was isolated as a yellow solid (0.06 g, 0.175 mmol). Yield = 35 %. Melting point: 260 – 261 °C. 1H 



NMR (300 MHz, DMSO-d6) δ: 3.51 – 3.58 (m, 1H, H-5’’), 3.61 – 3.68 (m, 1H, H-5’), 3.91 (q, J = 3.6 

Hz, 1H, H-4’), 4.12 (br. s, 1H, H-3’), 4.45 (br. s, 1H, H-2’), 5.13 – 5.20 (m, 2H, OH-3’, OH-5’), 5.36 

(br. s, 1H, OH-2’), 6.13 (d, J = 6.3 Hz, 1H, H-1’), 6.38 (br. s, 2H, NH2), 7.47 (dd, J = 4.5, 1.8 Hz, 2H, 

H-3Pyr, H-5Pyr), 7.79 (s, 1H, H-6), 8.18 (s, 1H, H-2), 8.61 (dd, J = 4.5, 1.8 Hz, 2H, H-2Pyr, H-6Pyr). 13C 

NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.5 (C-3’), 73.8 (C-2’), 85.2 (C-4’), 87.1 (C-1’), 99.9 (C-

4a), 114.0 (C-5), 122.8 (2C, C-3Pyr, C-5Pyr), 123.0 (C-6), 141.9 (C-4Pyr), 149.9 (2C, C-2Pyr, C-6Pyr), 151.5 

(C-7a), 152.0 (C-2), 157.4 (C-4). HRMS (ESI): calculated for C16H18N5O4: 344.1353 ([M+H]+), found: 

344.1350.  

4-amino-5-(pyrazin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (16) 16 was prepared 

according to General Procedure B. The mixture was purified by column chromatography 25 → 100 % 

EA / Hex. Product containing fractions were pooled and evaporated (still containing some impurities). 

The resulting solid was dissolved in 15 mL 7N NH3 / MeOH and stirred at ambient temperature 

overnight. Next, the mixture was evaporated till dryness. Purification by column chromatography (8 → 

15 % MeOH/DCM). Product containing fractions were pooled and evaporated till near-dryness, after 

which the product precipitated out of the solution. 36 (0.40 g, 0.60 mmol) gave rise to 16 (0.075 g, 0.22 

mmol) as a white solid. Yield = 36 %. Melting point: 257 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.54 – 

3.62 (m, 1H, H-5’’), 3.67 – 3.74 (m, 1H, H-5’), 3.93 (dd, J = 7.5, 3.9 Hz, 1H, H-4’), 4.15 (dd, J = 9.0, 

5.1 Hz, 1H, H-3’), 4.47 (q, J = 5.7 Hz, 1H, H-4’), 5.15 (d, J = 5.1 Hz, 1H, OH-3’), 5.25 (t, J = 5.7 Hz, 

1H, OH-5’), 5.39 (d, J = 6.0 Hz, 1H, OH-2’), 6.11 (d, J = 6.0 Hz, 1H, H-1’), 7.43 (br. s, 1H, NH), 8.11 

(s, 1H, H-2), 8.45 (d, J = 2.7 Hz, 1H, H-6Pyra), 8.49 (s, 1H, H-6), 8.59 (dd, J = 2.7, 1.5 Hz, 1H, H-5Pyra), 

9.14 (br. s, 1H, NH), 9.30 (d, J = 1.2 Hz, 1H, H-3Pyra). 13C NMR (75 MHz, DMSO-d6) δ: 61.5 (C-5’), 

70.3 (C-3’), 73.8 (C-2’), 85.2 (C-4’), 87.3 (C-1’), 100.5 (C-4a), 113.1 (C-5), 124.2 (C-6), 141.1 (C-

6Pyra), 142.3 (C-5Pyra), 142.9 (C-3Pyra), 148.9 (C-2Pyra), 151.8 (C-7a), 152.8 (C-2), 158.5 (C-4). HRMS 

(ESI): calculated for C15H17N6O4 ([M+H]+): 345.1306, found: 345.1291.  

4-amino-5-(pyrimidin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (17) 17 was prepared 

according to General Procedure B. The mixture was purified by column chromatography 25 → 100 % 

EA/Hex. Product containing fractions were pooled and evaporated (still containing some impurities). 



The resulting solid was dissolved in MeOH (10 mL) to which was added 0.1 mL NaOMe solution (5.4 

M in MeOH). The mixture was stirred at ambient temperature for 1 hour, and neutralized (pH ~ 7) with 

0.5 M aq. HCl. Next, the mixture was evaporated till dryness. Purification by column chromatography 

(2 → 15 % MeOH/DCM). 36 (0.33 g, 0.50 mmol) gave rise to 17 (0.050 g, 0.15 mmol) as a white solid. 

Yield = 29 %. Melting point: 200 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.54 – 3.69 (m, 2H, H-5’, H-

5’’), 3.94 (dd, J = 6.0, 3.3 Hz, 1H, H-4’), 4.09 – 4.12 (m, 1H, H-3’), 4.46 (dd, J = 11.7, 6.0 Hz, 1H, H-

2’), 5.16 (d, J = 4.2 Hz, 1H, OH-3’), 5.27 (t, J = 5.4 Hz, 1H, OH-5’), 5.36 (d, J = 6.3 Hz, 1H, OH-2’), 

6.13 (d, J = 6.3 Hz, 1H, H-1’), 7.32 (t, J = 4.8 Hz, 1H, H-5Pyrim), 7.39 (br. s, 1H, N-H), 8.10 (s, 1H, H-

2), 8.37 (s, 1H, H-6), 8.80 (d, J = 4.8 Hz, 2H, H-4Pyrim, H-6Pyrim), 9.56 (br. s, 1H, NH). 13C NMR (75 

MHz, DMSO-d6) δ: 61.6 (C-5’), 70.6 (C-3’), 74.0 (C-2’), 85.4 (C-4’), 87.1 (C-1’), 100.3 (C-4a), 115.4 

(C-5), 118.2 (C-5Pyrim), 126.9 (C-6), 151.7 (C-7a), 152.7 (C-2), 157.4 (C-4Pyrim, C-6Pyrim), 158.5 (C-4), 

161.4 (C-2Pyrim).  HRMS (ESI): calculated for C15H17N6O4 ([M+H]+): 345.1306, found: 345.1316.  

4-amino-5-(pyrimidin-5-yl)-N7-β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (18) 31 (0.17 g, 0.50 

mmol, 1 eq.), pyrimidin-5-yl-boronic acid (0.092 g, 0.75 mmol, 1.5 eq.), Pd2(dba)3 (0.005 g, 0.005 

mmol, 0.01 eq.) and P(c-hexyl)3 (0.0035 g, 0.012 mmol, 0.024 eq.) were added to a 10 mL round-bottom 

flask containing a stir bar. Next, the flask was evacuated and refilled with argon three times. Then, 1,4-

dioxane was added (1.33 mL, 2.67 mL/mmol SM) together with 1.27 M aq. K3PO4 solution (0.67 mL, 

1.3 mL/mmol). The flask was stirred at ambient temperature for ~ 5 min and then transferred to a pre-

heated oil bath at 100 °C. Heating was continued for 38 h, after which the mixture was cooled to ambient 

temperature. The mixture was neutralized (pH ~ 7) with 0.5 M aq. HCl. The mixture was evaporated till 

dryness re-suspended in MeOH and evaporated (three times). Next, the mixture was adsorbed onto 

Celite® (from MeOH) and eluted over a short silica pad (~ 5 cm) with 20 % MeOH/DCM. The liquid 

was evaporated in vacuo and purified by column chromatography 5 → 20 % MeOH/EA. 18 was isolated 

as a yellow solid (0.045 g, 0.13 mmol). Yield = 26 %. Melting point: 275 °C (decomposed). 1H NMR 

(300 MHz, DMSO-d6) δ: 3.50 – 3.57 (m, 1H, H-5’’), 3.60 – 3.67 (m, 1H, H-5’), 3.91 (q, J = 3.6 Hz, 1H, 

H-4’), 4.09 – 4.14 (m, 1H, H-3’), 4.45 (dd, J = 11.1, 5.7 Hz, 1H, H-2’), 5.14 – 5.18 (m, 2H, OH-3’, OH-

5’), 5.36 (d, J = 6.0 Hz, 1H, OH-2’), 6.13 (d, J = 6.0 Hz, 1H, H-1’), 6.51 (br. s, 2H, NH2), 7.77 (s, 1H, 



H-6), 8.18 (s, 1H, H-2), 8.86 (s, 2H, H-4Pyrim, H-6Pyrim), 9.13 (s, 1H, H-2Pyrim). 13C NMR (75 MHz, 

DMSO-d6) δ: 61.6 (C-5’), 70.5 (C-3’), 73.8 (C-2’), 85.2 (C-4’), 87.1 (C-1’), 100.3 (C-4a), 109.3 (C-5), 

122.8 (C-6), 128.5 (C-5Pyrim), 151.4 (C-7a), 152.0 (C-2), 155.5 (2C, C-4Pyrim, C-6Pyrim), 156.2 (C-2Pyrim), 

157.6 (C-4). HRMS (ESI): calculated for C15H17N6O4 ([M+H]+): 345.1306, found: 345.1329.  

4-amino-5-(1-methyl-1H-imidazol-5-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (19) 38 

(0.407 g, 0.618 mmol) was dissolved in 7N NH3 / MeOH (15 mL) and stirred at ambient temperature 

overnight. The resulting mixture was evaporated till dryness and purified by column chromatography 

10 → 17.5 % MeOH/DCM. 19 was obtained as a white solid (0.18 g, 0.52 mmol). Yield = 84 %. Melting 

point: 170 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.50 – 3.57 (m, 1H, H-5’’), 3.53 (s, 3H, CH3), 3.61 – 

3.68 (m, 1H, H-5’’), 3.91 (q, J = 3.6 Hz, 1H, H-4’), 4.07 – 4.14 (m, 1H, H-3’), 4.45 (dd, J = 11.4, 6.3 

Hz, 1H, H-2’), 5.13 (d, J = 4.8 Hz, 1H, OH-3’), 5.21 (dd, J = 6.3, 5.4 Hz, 1H, OH-5’), 5.36 (d, J = 6.3 

Hz, 1H, OH-2’), 6.10 (d, J = 6.0 Hz, 1H, H-1’), 6.16 (br. s, 2H, NH2), 6.98 (s, 1H, H-4Imid), 7.61 (s, 1H, 

H-6), 7.76 (s, 1H, H-2Imid), 8.15 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 31.5 (CH3), 61.6 (C-

5’), 70.5 (C-3’), 73.9 (C-2’), 85.1 (C-4’), 87.4 (C-1’), 101.7 (C-4a), 102.3 (C-5), 123.0 (C-6), 125.1 (C-

5Imid), 128.3 (C-4Imid), 139.4 (C-2Imid), 150.3 (C-7a), 152.0 (C-2), 157.3 (C-4).  HRMS (ESI): calculated 

for C15H19N6O4 ([M+H]+): 347.1462, found: 347.1481.  

4-amino-5-(1-methyl-1H-imidazol-4-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (20) 20 

was prepared according to General Procedure B, employing 1-methyl-4-(tributylstannyl)-1H-

imidazole38-39 as the coupling partner. The mixture was purified by column chromatography 0 → 3.5 % 

MeOH / DCM. Product containing fractions were pooled and evaporated (still containing some 

impurities). The resulting solid was dissolved in 20 mL 7N NH3/MeOH and stirred at ambient 

temperature overnight. Next, the mixture was evaporated till dryness. Purification by column 

chromatography (10 % MeOH/DCM). 36 (0.40 g, 0.60 mmol) gave rise to 20 (0.025 g, 0.072 mmol) as 

a white solid. Yield = 25 %. Melting point: 162 – 164 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.50 – 3.57 

(m, 1H, H-5’’), 3.61 – 3.69 (m, 1H, H-5’), 3.70 (s, 3H, CH3), 3.90 (q, J = 3.6 Hz, 1H, H-4’), 4.07 – 4.12 

(m, 1H, H-3’), 4.41 (dd, J = 11.1, 6.0 Hz, 1H, H-2’), 5.10 (d, J = 4.5 Hz, 1H, OH-3’), 5.25 (t, J = 5.7 

Hz, 1H, OH-5’), 5.30 (d, J = 6.3 Hz, 1H, OH-2’), 6.03 (d, J = 6.3 Hz, 1H, H-1’), 7.10 (br. s, 1H, NH), 



7.47 (d, J = 1.2 Hz, 1H, H-5Imid), 7.64 (s, 1H, H-6), 7.74 (d, J = 0.9 Hz, 1H, H-2Imid), 8.01 (s, 1H, H-2). 

9.81 (br. s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 33.2 (CH3), 61.9 (C-5’), 70.7 (C-3’), 73.6 (C-

2’), 85.0 (C-4’), 87.1 (C-1’), 100.5 (C-4a), 110.4 (C-5), 116.0 (C-5Imid), 117.7 (C-6), 135.6 (C-4Imid), 

137.1 (C-2Imid), 150.4 (C-7a), 151.9 (C-2), 158.3 (C-4). HRMS (ESI): calculated for C15H19N6O4 

([M+H]+): 347.1462, found: 347.1462. Purity: 92% 

4-amino-5-(4-methylpyridin-2-yl)-N7-β-(D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (21) 21 was 

prepared according to General Procedure D. Purification by column chromatography 5 → 15 % 

MeOH/DCM. 41 (0.13 g, 0.18 mmol) gave rise to 21 (0.023 g, 0.064 mmol) as a white solid. Yield = 

36 %. Melting point: 230 – 234 °C. 1H NMR (300 MHz, MeOH-d4) δ: 2.40 (s, 3H, CH3), 3.78 (dd, J = 

12.6, 3.0 Hz, 1H, H-5’’), 3.91 (dd, J = 12.6, 2.7 Hz, 1H, H-5’), 4.14 (q, J = 3.0 Hz, 1H, H-4’), 4.33 (dd, 

J = 5.4, 3.3 Hz, 1H, H-3’), 4.66 (dd, J = 6.0, 5.4 Hz, 1H, H-2’), 6.08 (d, J = 6.3 Hz, 1H, H-1’), 7.05 (dd, 

J = 5.4, 0.9 Hz, 1H, H-5Pyr), 7.75 (br. s, 1H, H-3Pyr), 8.04 (s, 1H, H-2), 8.10 (s, 1H, H-6), 8.35 (d, J = 3.9 

Hz, 1H, H-6pyr). 13C NMR (75 MHz, MeOH-d4) δ: 21.2 (CH3), 63.3 (C-5’), 72.3 (C-3’), 75.6 (C-2’), 

87.3 (C-4’), 91.3 (C-1’), 103.2 (C-4a), 118.4 (C-5), 122.0 (C-3Pyr), 123.5 (C-5Pyr), 124.9 (C-6), 148.6 

(C-6Pyr), 150.3 (C-4Pyr), 151.7 (C-7a), 152.6 (C-2Pyr), 154.2 (C-2), 160.4 (C-4). HRMS (ESI): calculated 

for C17H20N5O4 ([M+H]+): 358.1510, found: 358.1490.  

4-amino-5-(4-methoxypyridin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (22) 22 was 

prepared according to General Procedure D. Purification by column chromatography 5 → 10 % 

MeOH/DCM. 42 (0.12 g, 0.17 mmol) gave rise to 22 (0.014 g, 0.037 mmol) as a white solid. Yield = 

22 %. Melting point: 135 – 140 °C / 225 °C. 1H NMR (300 MHz, MeOH-d4) δ: 3.78 (dd, J = 12.6, 3.0 

Hz, 1H, H-5’’), 3.92 (dd, J = 12.6, 2.7 Hz, 1H, H-5’), 3.94 (s, 3H, OCH3), 4.14 (q, J = 3.0 Hz, 1H, H-

4’), 4.34 (dd, J = 5.1, 3.3 Hz, 1H, H-3’), 4.65 (t, J = 5.7 Hz, 1H, H-2’), 6.08 (d, J = 6.0 Hz, 1H, H-1’), 

6.82 (dd, J = 6.0, 2.4 Hz, 1H, H-5Pyr), 7.42 (d, J = 2.1 Hz, 1H, H-3Pyr), 8.05 (s, 1H, H-2), 8.15 (s, 1H, H-

6), 8.34 (dd, J = 6.0, 0.6 Hz, 1H, H-6Pyr). 13C NMR (75 MHz, MeOH-d4) δ: 56.0 (OCH3), 63.2 (C-5’), 

72.2 (C-3’), 75.5 (C-2’), 87.3 (C-4’), 91.4 (C-1’), 103.2* (C-4a), 106.35 (C-3Pyr), 109.5 (C-5Pyr), 118.4 

(C-5), 125.0 (C-6), 150.2 (C-6Pyr), 151.6 (C-7a), 152.7 (C-2), 156.0 (C-2Pyr), 160.4 (C-4), 168.4 (C-4Pyr). 



HRMS (ESI): calculated for C17H20N5O5 ([M+H]+): 374.1459, found: 374.1437. *This value was 

obtained from the gHMBC spectrum; and could not be observed from the 13C-NMR. 

4-amino-5-(6-chloro-pyridin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (23) 23 was 

prepared according to General Procedure D. After evaporation, the resulting mixture was taken up in 

MeOH and the precipitate collected by filtration to yield pure 23, which did not require column 

chromatography. 43 (0.14 g, 0.20 mmol) gave rise to 23 (0.045 g, 0.12 mmol) as a white solid. Yield = 

59 %. Melting point: 214 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.51 – 3.60 (m, 1H, H-5’’), 3.62 – 3.72 

(m, 1H, H-5’), 3.92 (q, J = 3.9 Hz, 1H, H-4’), 4.14 (t, J = 4.2 Hz, 1H, H-3’), 4.46 (t, J = 5.4 Hz, 1H, H-

2’), 5.17 (br. s, 1H, OH-3’), 5.27 (br. s, 1H, OH-5’), 5.40 (br. s, 1H, OH-2’), 6.10 (d, J = 6.0 Hz, 1H, H-

1’), 7.36 (dd, J = 7.8, 0.9 Hz, 1H, H-5Pyr), 7.47 (br. s, 1H, NH), 7.91 (t, J = 7.8 Hz, 1H, H-4Pyr), 7.99 (d, 

J = 7.8 Hz, 1H, H-3Pyr), 8.09 (s, 1H, H-2), 8.37 (s, 1H, H-6), 9.15 (br. s, 1H, NH). 13C NMR (75 MHz, 

DMSO-d6) δ: 61.5 (C-5’), 70.3 (C-3’), 73.7 (C-2’), 85.2 (C-4’), 87.2 (C-1’), 100.2 (C-4a), 114.7 (C-5), 

119.2 (C-3Pyr), 120.8 (C-5Pyr), 124.6 (C-6), 141.0 (C-4Pyr), 148.4 (C-6Pyr), 151.7 (C-7a), 152.6 (C-2), 

154.1 (C-2Pyr), 158.6 (C-4). HRMS (ESI): calculated for C16H17ClN5O4 ([M+H]+): 378.0964, found: 

378.0964.  

4-amino-5-(5-chloro-pyridin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (24) 24 was 

prepared according to General Procedure D. After evaporation, the resulting mixture was taken up in 

MeOH and the precipitate collected by filtration to yield pure 24, which did not require column 

chromatography. 44 (0.20 g, 0.28 mmol) gave rise to 24 (0.051 g, 0.14 mmol) as a white solid. Yield = 

49 %. Melting point: 203 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.53 – 3.61 (m, 1H, H-5’’), 3.69 (dt, J 

= 12.3, 4.5 Hz, 1H, H-5’), 3.92 (q, J = 3.6 Hz, 1H, H-4’), 4.14 (br. s, 1H, H-3’), 4.60 (br. s, 1H, H-2’), 

5.14 (d, J = 3.0 Hz, 1H, OH-3’), 5.25 (t, J = 5.4 Hz, 1H, OH-5’), 5.38 (d, J = 4.5 Hz, 1H, OH-2’), 6.10 

(d, J = 6.0 Hz, 1H, H-1’), 7.34 (br. s, 1H, NH), 7.98 (dd, J = 8.7, 2.4 Hz, 1H, H-4Pyr), 8.02 (dd, J = 9.0, 

0.9 Hz, 1H, H-3Pyr), 8.08 (s, 1H, H-2), 8.30 (s, 1H, H-6), 8.63 (dd, J = 2.4, 0.9 Hz, 1H, H-6Pyr), 9.38 (br. 

s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.4 (C-3’), 73.7 (C-2’), 85.2 (C-4’), 87.2 

(C-1’), 100.3 (C-4a), 115.1 (C-5), 121.7 (C-3Pyr), 124.0 (C-6), 127.9 (C-5Pyr), 137.5 (C-4Pyr), 146.5 (C-



6Pyr), 151.6 (C-7a), 151.8 (C-2Pyr), 152.6 (C-2), 158.6 (C-4). HRMS (ESI): calculated for C16H17ClN5O4 

([M+H]+): 378.0964, found: 378.0961.  

4-amino-5-(4-chloro-pyridin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (25) 25 was 

prepared according to General Procedure D. Purification by column chromatography 5 → 15 % 

MeOH/DCM. 45 (0.11 g, 0.16 mmol) gave rise to 25 (0.019 g, 0.050 mmol) as a white solid. Yield = 

32 %. Melting point: 258 – 261 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.52 – 3.60 (m, 1H, H-5’’), 3.65 

– 3.72 (m, 1H, H-5’), 3.96 (q, J = 3.9 Hz, 1H, H-4’), 4.12 – 4.16 (m, 1H, H-3’), 4.48 (q, J = 6.0 Hz, 1H, 

H-2’), 5.13 (d, J = 4.8 Hz, 1H, OH-3’), 5.20 (t, J = 5.7 Hz, 1H, OH-5’), 5.37 (d, J = 6.3 Hz, 1H, OH-

2’), 6.10 (d, J = 6.0 Hz, 1H, H-1’), 7.33 (br. s, 1H, NH), 7.38 (dd, J = 5.7, 1.8 Hz, 1H, H-5Pyr), 8.09 (s, 

1H, H-6), 8.17 (d, J = 1.5 Hz, 1H, H-3Pyr), 8.38 (s, 1H, H-2), 8.54 (d, J = 5.4 Hz, 1H, H-6Pyr), 9.62 (br. 

s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.3 (C-3’), 73.5 (C-2’), 85.1 (C-4’), 87.0 

(C-1’), 100.4 (C-4a), 115.0 (C-5), 120.0 (C-3Pyr), 121.0 (C-5Pyr), 124.3 (C-6), 144.3 (C-4Pyr), 149.5 (C-

6Pyr), 151.70 (C-7a), 152.7 (C-2), 154.8 (C-2Pyr), 158.6 (C-4). HRMS (ESI): calculated for C16H17ClN5O4 

([M+H]+): 378.0964, found: 378.0976.  

4-amino-5-(5-fluoro-pyridin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (26) 26 was 

prepared according to General Procedure D. After evaporation, the resulting mixture was taken up in 

MeOH and the precipitate collected by filtration to yield 26, which did not require column 

chromatography. 46 (0.15 g, 0.22 mmol) gave rise to 26 (0.046 g, 0.13 mmol) as a white solid. Yield = 

59 %. Melting point: 220 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.50 – 3.60 (m, 1H, H-5’’), 3.62 – 3.72 

(m, 1H, H-5’), 3.92 (q, J = 3.9 Hz, 1H, H-4’), 4.13 – 4.15 (m, 1H, H-3’), 4.47 (t, J = 5.7 Hz, 1H, H-2’), 

5.19 (br. s, 1H, OH-3’), 5.27 (br. s, 1H, OH-5’), 5.39 (br. s, 1H, OH-2’), 6.09 (d, J = 6.0 Hz, 1H, H-1’), 

7.28 (br. s, 1H, NH), 8.07 (dt, J = 8.7, 3.0 Hz, 1H, H-4Pyr), 8.07 (s, 1H, H-2), 8.07 (dd, J = 8.7, 4.5 Hz, 

1H, H-3Pyr), 8.24 (s, 1H, H-6), 8.59 (dd, J = 3.0 Hz, 1H, H-6Pyr), 9.37 (br. s, 1H, NH). 19F-NMR (282 

MHz, DMSO-d6) δ: -130.99 (dd, J = 8.5, 4.8 Hz). 13C NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.4 

(C-3’), 73.7 (C-2’), 85.1 (C-4’), 87.1 (C-1’), 100.4 (C-4a), 115.2 (C-5), 122.1 (C-3Pyr), 123.3 (C-6), 

125.35 (d, J = 19.43 Hz, 1C, C-4Pyr), 135.56 (d, J = 24.0 Hz, 1C, C-6Pyr), 150.1 (C-2Pyr), 151.6 (C-7a), 



152.5 (C-2), 157.4 (d, J = 250.7 Hz, 1C, C-5Pyr), 158.6 (C-4). HRMS (ESI): calculated for C16H17FN5O4 

([M+H]+): 362.1259, found: 362.1263.  

4-amino-5-(naphthalen-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (27) 27 was 

prepared according to General Procedure A (reaction time: 1.5 h). 31 (0.24 g, 0.70 mmol) gave rise to 

27 as a white solid (0.17 g, 0.43 mmol). Column chromatography: 1 → 10 % MeOH/DCM. Yield = 62 

%. 1H NMR (300 MHz, DMSO-d6) δ: 3.55 (ddd, J = 12.0, 6.3, 3.9 Hz, 1H, H-5’’), 3.65 (ddd, J = 12.0, 

5.1, 3.9 Hz, 1H, H-5’), 3.93 (q, J = 3.6 Hz, 1H, H-4’), 4.11 – 4.15 (m, 1H, H-3’), 4.49 (q, J = 6.0 Hz, 

1H, H-2’), 5.13 (d, J = 4.8 Hz, 1H, OH-3’), 5.19 (dd, J = 6.0, 5.1 Hz, 1H, OH-5’), 5.34 (d, J = 6.3 Hz, 

1H, OH-2’), 6.16 (d, J = 6.3 Hz, 1H, H-1’), 6.21 (br. s, 2H, NH2), 7.50 – 7.59 (m, 2HNaf), 7.64 (dd, J = 

8.1, 1.8 Hz, 1H, H-3Naf), 7.67 (s, 1H, H-6), 7.96 – 7.99 (m, 3HNaf), 8.03 (d, J = 8.7 Hz, 1H, H-4Naf), 8.18 

(s, 1H, H-2). HRMS (ESI): calculated for C21H21N4O4 ([M+H]+): 393.1557, found: 393.1557. Spectral 

data are in accordance to literature values.29 

4-amino-5-(quinolin-2-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (28) 28 was prepared 

according to the General Procedure D. Column chromatography 0 → 20 % MeOH/DCM. 47 (0.15 g, 

0.20 mmol) gave rise to 28 (0.025 g, 0.064 mmol) as a white solid. Yield = 31 %. Melting point: 231 – 

234 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.58 – 3.62 (m, 1H, H-5’’), 3.71 – 3.75 (m, 1H, H-5’), 3.95 

(q, J = 3.6 Hz, 1H, H-4’), 4.17 (q, J = 4.2 Hz, 1H, H-3’), 4.52 (q, J = 5.4 Hz, 1H, H-2’), 5.16 (d, J = 4.8 

Hz, 1H, OH-3’), 5.30 (s, 1H, OH-5’), 5.41 (d, J = 5.7 Hz, 1H, OH-2’), 6.13 (d, J = 6.0 Hz, 1H, H-1’), 

7.45 (br. s, 1H, NH), 7.58 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H, H-6Quin), 7.79 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H, 

H-7Quin), 7.89 (d, J = 8.4 Hz, 1H, H-8Quin), 7.97 (d, J = 8.1 Hz, 1H, H-5Quin), 8.13 (s, 1H, H-2), 8.15 (J = 

8.7 Hz, 1H, H-3Quin), 8.41 (d, J = 8.7 Hz, 1H, H-4Quin), 8.52 (s, 1H, H-6), 10.64 (br.s, 1H, NH).  13C 

NMR (75 MHz, DMSO-d6) δ: 61.6 (C-5’), 70.4 (C-3’), 73.7 (C-2’), 85.2 (C-4’), 87.3 (C-1’), 100.7 (C-

4a), 116.6 (C-5), 119.3 (C-3Quin), 125.5 (C-6), 126.1 (C-6Quin / C-4aQuin), 126.8 (C-8 Quin), 127.9 (C-5Quin), 

130.3 (C-7Quin), 137.2 (C-4Quin), 146.1 (C-8aQuin), 151.8 (C-7a), 152.6 (C-2), 153.2 (C-2Quin), 158.7 (C-

4). HRMS (ESI): calculated for C20H20N5O4 ([M+H]+): 394.1510, found: 394.1497.   

4-amino-5-(isoquinolin-3-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (29) 29 was 

prepared according to General Procedure D. After evaporation, the resulting mixture was taken up in 



MeOH and the precipitate collected by filtration to yield 29, which did not require column 

chromatography. 48 (0.17 g, 0.23 mmol) gave rise to 29 (0.060 g, 0.15 mmol) as a white solid. Yield = 

66 %. Melting point: 258 – 264 °C. 1H NMR (300 MHz, DMSO-d6) δ: 3.60 (dd, J = 11.7, 4.2 Hz, 1H, 

H-5’’), 3.72 (dd, J = 11.7, 3.9 Hz, 1H, H-5’), 3.95 (q, J = 3.6 Hz, 1H, H-4’), 4.18 (dd, J = 4.8, 3.9 Hz, 

1H, H-3’), 4.51 (t, J = 5.7 Hz, 1H, H-2’), 5.18 – 5.50 (m, 3H, OH-2’, OH-3’, OH-5’), 6.14 (d, J = 6.0 

Hz, 1H, H-1’), 7.34 (br. s, 1H, NH), 7.63 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H, H-7Isoq), 7.79 (ddd, J = 8.1, 6.9, 

1.2 Hz, 1H, H-6Isoq), 7.93 (dd, J = 8.4, 0.9 Hz, 1H, H-5Isoq), 8.10 (s, 1H, H-2), 8.12 (dd, J = 8.4, 0.9 Hz, 

1H, H-8Isoq), 8.30 (s, 1H, H-6), 8.40 (s, 1H, H-4Isoq), 9.38 (s, 1H, H-1Isoq), 9.78 (br. s, 1H, NH). 13C NMR 

(75 MHz, DMSO-d6) δ: 61.7 (C-5’), 70.4 (C-3’), 73.7 (C-2’), 85.1 (C-4’), 87.1 (C-1’), 100.8 (C-4a), 

115.6 (C-4Isoq), 116.2 (C-4a), 122.3 (C-6), 126.3 (C-5Isoq), 126.5 (C-8aIsoq), 126.9 (C-7Isoq), 127.9 (C-

8Isoq), 131.4 (C-6Isoq), 136.7 (C-4aIsoq), 146.8 (C-3Isoq), 151.2 (C-1Isoq), 151.4 (C-7a), 152.2 (C-2), 158.6 

(C-4). HRMS (ESI): calculated for C20H20N5O4 ([M+H]+): 394.1510, found: 394.1503.  

4-amino-5-(isoquinol-1-yl)-N7-(β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (30) 30 was prepared 

according to General Procedure D. Column chromatography 5 → 10 % MeOH/DCM. 49 (0.13 g, 0.17 

mmol) gave rise to 30 (0.035 g, 0.089 mmol) as a white solid. Yield = 51 %. Melting point: 130 – 135 

°C. 1H NMR (300 MHz, DMSO-d6) δ: 3.57 (ddd, J = 11.7, 6.3, 3.3 Hz, 1H, H-5’’), 3.68 (ddd, J = 12.0, 

4.8, 3.6 Hz, 1H, H-5’), 3.96 (q, J = 3.6 Hz, 1H, H-4’), 4.16 – 4.20 (m, 1H, H-3’), 4.53 (q, J = 5.4 Hz, 

1H, H-2’), 5.12 (d, J = 5.1 Hz, 1H, OH-3’), 5.25 (dd, J = 6.3, 4.8 Hz, 1H, OH-5’), 5.46 (d, J = 6.0 Hz, 

1H, OH-2’), 6.20 (d, J = 5.4 Hz, 1H, H-1’), 7.54 (br. s, 2H, NH2), 7.72 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H, 

H-7Isoq), 7.78 (d, J = 5.4 Hz, 1H, H-4Isoq), 7.84 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H, H-6Isoq), 8.05 (d, J = 8.7 

Hz, 1H, H-5Isoq), 8.08 (s, 1H, H-6), 8.19 (s, 1H, H-2), 8.53 (d, J = 8.7 Hz, 1H, H-8Isoq), 8.57 (d, J = 5.7 

Hz, 1H, H-3Isoq). 13C NMR (75 MHz, DMSO-d6) δ: 61.2 (C-5’), 70.4 (C-3’), 74.1 (C-2’), 85.1 (C-4’), 

87.73 (C-1’), 101.6 (C-4a), 113.6 (C-5), 119.1 (C-4Isoq), 126.3 (C-6), 126.4 (C-5Isoq), 127.3 (C-8Isoq), 

127.3 (C-7Isoq), 128.2 (C-8aIsoq), 130.7 (C-6Isoq), 137.0 (C4aIsoq), 141.1 (C-3Isoq), 150.9 (C-7a), 152.3 (C-

2), 154.2 (C-1Isoq), 158.6 (C-4). HRMS (ESI): calculated for C20H20N5O4 ([M+H]+): 394.1510, found: 

394.1506.   



4-azido-5-bromo-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (34) 

3230 (1.0 g, 1.5 mmol) was dissolved in anhydrous DMF (15 mL, 10 mL/mmol SM). Next, NaN3 (0.20 

g, 3.1 mmol, 2.05 eq.) was added. The resulting mixture was heated in a pre-heated oil bath at 65 °C for 

30 min. Next, the mixture was cooled to ambient temperature. Then, it was poured into half-saturated 

NaHCO3 solution (75 mL) and EA (75 mL). The layers were separated, and the water layer extracted 

two more times with EA. The organic layers were combined, dried over Na2SO4, filtered and evaporated 

till dryness. The residue was purified by column chromatography (30 % EA/Hex) to yield 34 as a white 

foam (0.93 g, 1.4 mmol). Yield = 90 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.72 (dd, J = 12.3, 5.1 Hz, 

1H, H-5’’), 4.83 (dd, J = 12.0, 3.9 Hz, 1H, H-5’), 4.90 – 4.95 (m, 1H, H-4’), 6.10 – 6.14 (m, 1H, H-3’), 

6.26 – 6.30 (m, 1H, H-2’), 6.85 (d, J = 5.1 Hz, 1H, H-1’), 7.41 – 7.53 (m, 6H, OBz), 7.61 – 7.70 (m, 

3H, OBz), 7.86 – 7.89 (m, 2H, OBz), 7.93 – 7.97 (m, 2H, OBz), 7.98 – 8.01 (m, 2H, OBz), 8.30 (s, 1H, 

H-6), 9.94 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 63.5 (C-5’), 70.7 (C-3’), 74.0 (C-2’), 79.5 

(C-4’), 88.9 (C-1’), 90.0, 103.9, 125.8 (C-6), 128.2, 128.5, 128.8, 129.2, 129.2, 129.4, 133.5, 133.9, 

134.0, 135.1 (C-2), 140.6 (C-7a), 145.4 (C-4), 164.4 (C=O), 164.6 (C=O), 165.4 (C=O). HRMS (ESI): 

calculated for C32H24BrN6O7 ([M+H]+): 683.0884, found: 683.0917. 

4-azido-5-iodo-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (35) 35 

was prepared according to the procedure as described for 34. 3330 (3.56 g, 4.91 mmol) gave rise to 35 

as a white foam (3.1 g, 4.2 mmol) in 86 % yield. Column chromatography 35 % EA/Hex. 1H NMR (300 

MHz, DMSO-d6) δ: 4.72 (dd, J = 12.0, 5.1 Hz, 1H, H-5’’), 4.83 (dd, J = 12.0, 4.2 Hz, 1H, H-5’), 4.90 – 

4.94 (m, 1H, H-4’), 6.12 (t, J = 6.0 Hz, 1H, H-3’), 6.27 (dd, J = 6.0, 5.1 Hz, 1H, H-2’), 6.83 (d, J = 5.1 

Hz, 1H, H-1’), 7.43 – 7.53 (m, 6H, OBz), 7.60 – 7.70 (m, 3H, OBz), 7.85 – 7.88 (m, 2H, OBz), 7.93 – 

8.01 (m, 4H, OBz), 8.27 (s, 1H, H-6), 9.90 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 55.9 (C-5), 

63.6 (C-5’), 70.7 (C-3’), 74.0 (C-2’), 79.5 (C-4’), 86.7 (C-1’), 107.2 (C-4a), 128.2, 128.5, 128.8, 129.1, 

129.2, 129.4, 130.6 (C-6), 133.6, 134.0, 134.02, 134.9 (C-2), 141.5 (C-7a), 146.0 (C-4), 164.4 (C=O), 

164.7 (C=O), 165.4 (C=O). HRMS (ESI): calculated for C32H24IN6O7 ([M+H]+): 731.0746, found: 

731.0796.  



4-amino-5-bromo-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl-pyrrolo[2,3-d]pyrimidine (36) 34 

(0.52 g, 0.75 mmol) was dissolved in THF (7.5 mL, 10 mL / mmol). Then, PMe3 solution (1M in THF; 

1.5 mL, 1.5 mmol, 2 eq.) was added and the mixture stirred at ambient temperature for 30 min. Next, 

the solution was evaporated till dryness, and subsequently re-dissolved in MeCN (7.5 mL, 10 

mL/mmol). To this solution was added a 1M aq. HOAc solution (2.5 mL, 3.33 eq.), and the mixture 

heated in a pre-heated oil bath at 65 °C for 1 h. Next, the mixture was cooled to ambient temperature 

and poured into sat. aq. NaHCO3 solution. DCM was added, the layers were separated, and the water 

layer extracted two more times with DCM. The organic layers were combined, dried over Na2SO4, 

filtered and evaporated till dryness. Purification by column chromatography 62.5 % EA/Hex gave 36 as 

a white foam (0.40 g, 0.61 mmol). Yield = 81 %. 1H NMR (300 MHz, CDCl3) δ: 4.67 (dd, J = 12.3, 3.9 

Hz, 1H, H-5’’), 4.76 (q, J = 3.6 Hz, 1H, H-4’), 4.86 (dd, J = 12.3, 3.3 Hz, 1H, H-5’), 5.61 (br. s, 2H, 

NH2), 6.07 – 6.13 (m, 2H, H-2’, H-3’), 6.66 (d, J = 5.1 Hz, 1H, H-1’), 7.11 (s, 1H, H-6), 7.33 – 7.41 (m, 

4H, OBz), 7.47 – 7.64 (m, 5H, OBz), 7.92 – 7.99 (m, 4H, OBz), 8.11 – 8.14 (m, 2H, OBz), 8.26 (s, 1H, 

H-2). 13C NMR (75 MHz, CDCl3) δ: 63.7 (C-5’), 71.6 (C-3’), 74.2 (C-2’), 80.4 (C-2’), 86.1 (C-1’), 89.3 

(C-5), 102.8 (C-4a) 121.0 (C-6), 128.6, 128.7, 128.7, 128.9, 128.9, 129.6, 129.9, 129.99, 130.04, 133.6, 

133.8, 150.7 (C-7a), 153.3 (C-2), 157.0 (C-4), 165.3 (C=O), 165.5 (C=O), 166.3 (C=O). HRMS (ESI): 

calculated for C32H26BrN4O7 ([M+H]+): 657.0979, found: 657.0970. 

4-amino-5-iodo-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (37) 37 

was prepared according to the procedure as described for 36. 35 (2.10 g, 2.87 mmol) gave rise to 37 as 

a slight yellow foam (1.89 g, 2.68 mmol) in 93 % yield. Column chromatography 62.5 % EA/Hex. 1H 

NMR (300 MHz, CDCl3) δ: 4.67 (dd, J = 12.3, 3.9 Hz, 1H, H-5’’), 4.74 – 4.78 (m, 1H, H-4’), 4.87 (dd, 

J = 12.0, 3.3 Hz, 1H, H-5’), 5.77 (br. s, 2H, NH2), 6.09 – 6.14 (m, 2H, H-3’, H-2’), 6.66 (dd, J = 3.0, 

1.8 Hz, 1H, H-1’), 7.20 (s, 1H, H-6), 7.33 – 7.40 (m, 4H, OBz), 7.47 – 7.64 (m, 5H, OBz), 7.92 – 7.99 

(m, 4H, OBz), 8.14 – 8.15 (m, 2H, OBz), 8.26 (s, 1H, H-2). 13C NMR (75 MHz, CDCl3) δ: 52.4 (C-5), 

63.9 (C-5’), 71.6 (C-3’), 74.2 (C-2’), 80.4 (C-4’), 86.2 (C-1’), 104.7 (C-4a), 126.3 (C-6), 128.6, 128.6, 

128.7, 128.9, 129.5, 129.9, 129.95, 130.01, 133.6, 133.8, 150.8 (C-7a), 152.7 (C-2), 157.1 (C-4), 165.2 



(C=O), 165.5 (C=O), 166.3 (C=O). HRMS (ESI): calculated for C32H26IN4O7: 705.0841 ([M+H]+), 

found: 705.0822. 

4-amino-5-(1-methyl-1H-imidazol-5-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-

pyrrolo[2,3-d]pyrimidine (38) 38 was prepared according to General Procedure B.  36 (0.49 g, 0.75 

mmol) and 1-methyl-5-(tributylstannyl)-1H-imidazole37 (0.56 g, 0.46 mL, 1.5 mmol) gave rise to 38 as 

a white foam (0.41 g, 0.62 mmol). Purification by column chromatography: 7.5 % MeOH/DCM. Yield 

= 82 %. 1H NMR (300 MHz, CDCl3) δ:  3.37 (s, 3H, CH3), 4.65 (dd, J = 12.3, 3.6 Hz, 1H, H-5’’), 4.78 

(q, J = 3.6 Hz, 1H, H-4’), 4.92 (dd, J = 12.3, 3.3 Hz, 1H, H-5’), 5.27 (br. s, 2H, NH2), 6.13 (dd, J = 6.0, 

4.2 Hz, 1H, H-3’), 6.18 (t, J = 5.7 Hz, 1H, H-2’), 6.75 (d, J = 5.4 Hz, 1H, H-1’), 7.05 (s, 1H, H-4Imid), 

7.08 (s, 1H, H-6), 7.33 – 7.42 (m, 6H, OBz), 7.50 – 7.59 (4H (3+1), OBz (3H), H-2Imid(1H)), 7.93 – 8.00 

(m, 4H, OBz), 8.07 – 8.10 (m, 2H, OBz), 8.30 (s, 1H, H-2). 13C NMR (75 MHz, CDCl3) δ: 31.9 (CH3), 

63.8 (C-5’), 71.7 (C-3’), 74.1 (C-2’), 80.4 (C-4’), 86.1 (C-1’), 103.1, 104.0, 121.7 (C-6), 124.9 (C-5Imid), 

128.58, 128.62, 128.7, 128.9, 129.5, 129.60 (C-4Imid), 129.67, 129.72, 129.9, 130.0, 133.5, 133.8, 139.3 

(C-2Imid), 151.3 (C-7a), 153.1 (C-2), 157.3 (C-4), 165.2 (C=O), 165.5 (C=O), 166.2 (C=O). HRMS 

(ESI): calculated for C36H31N6O7 ([M+H]+): 659.2249, found: 659.2277. 

4-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-

ribofuranosyl-pyrrolo[2,3-d]pyrimidine (39) To a flame-dried 5 mL Schlenk tube, equipped with a 

stir bar were added 37 (0.35 g, 0.50 mmol, 1 eq.), B2pin2 (0.19 g, 0.75 mmol, 1.5 eq.), KOAc (0.15 g, 

1.5 mmol, 3 eq.) and PdCl2dppf.DCM (0.021 g, 0.025 mmol, 0.05 eq.) under argon. Next, the flask was 

evacuated and refilled with argon. This procedure was repeated three times, in total. Then, 2.5 mL (5 

mL/mmol SM) anhydrous and degassed DMSO was added, under argon. The mixture was stirred at 

ambient temperature for ~ 5 min after which it was heated to 100 °C in a pre-heated oil bath. After three 

hours, the mixture was cooled to ambient temperature and poured into water/EA. The water layer was 

extracted two more times with EA. The organic layers were combined, dried over Na2SO4, filtered and 

evaporated till dryness. Purification by column chromatography 25 → 75 % EA/Hex gave 39 as an oil 

(0.12 g, 0.18 mmol). Yield = 37 %. 1H NMR (300 MHz, CDCl3) δ: 1.33 (s, 12H, CH3), 4.70 (dd, J = 

11.4, 3.9 Hz, 1H, H-5’’), 4.74 – 4.78 (m, 1H, H-4’), 4.79 – 4.84 (dd, J = 11.1, 3.0 Hz, 1H, H-5’), 6.12 – 



6.21 (m, 3H, H-2’, H-3’, NH), 6.65 (d, J = 5.4 Hz, 1H, H-1’), 7.32 – 7.48 (m, 6H, OBz), 7.50 – 7.60 (m, 

3H, OBz), 7.63 (s, 1H, H-6), 7.92 – 7.98 (m, 4H, OBz), 8.09 – 8.13 (m, 2H, OBz), 8.28 (s, 1H, H-2). 

HRMS (ESI): calculated for C38H38BN4O9 ([M+H]+): 705.2726, found: 705.2742. [note: the NH2 signal 

did only integrate for 1H, instead of two] 

4-azido-5-(pyridin-2-yl)-N7-(2’-3’-5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[3,2-d]pyrimidine 

(40) 40 was prepared according to General Procedure C [reaction temperature = 60 °C]. 35 (0.73 g, 1.1 

mmol) gave rise to 40 as a yellowish foam (0.35 g, 0.51 mmol). Column chromatography: 0 → 35 % 

EA/PET. Yield = 51 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.77 (dd, J = 12.0, 5.10 Hz, 1H, H-5’’), 4.87 

(dd, J = 12.3, 3.6 Hz, 1H, H-5’), 4.94 – 4.99 (m, 1H, H-4’), 6.14 – 6.18 (m, 1H, H-3’), 6.39 (t, J = 6.0 

Hz, 1H, H-2’), 6.98 (d, J = 5.4 Hz, 1H, H-1’), 7.36 (ddd, J = 7.5, 4.8, 0.9 Hz, 1H, H-5Pyr), 7.40 – 7.53 

(m, 6H, OBz), 7.60 – 7.71 (m, 3H, OBz), 7.84 – 7.88 (m, 2H, OBz), 7.97 – 8.06 (m, 5H (4+1H), OBz, 

H-4Pyr), 8.62 (ddd, J = 4.8, 2.1, 0.9 Hz, 1H, H-6Pyr), 8.77 (s, 1H, H-6), 9.05 (dt, J = 7.8, 0.9 Hz, 1H, H-

3Pyr), 9.98 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 63.6 (C-5’), 70.9 (C-3’), 73.9 (C-2’), 79.6 (C-

4’), 86.9 (C-1’), 100.7 (C-4a), 119.1 (C-5), 121.4 (C-3Pyr), 122.3 (C-5Pyr), 125.8 (C-6), 128.2, 128.6, 

128.7, 128.77, 128.80, 129.1, 129.3, 129.3, 129.4, 133.5, 133.9, 134.0, 134.6 (C-2), 137.4 (C-4Pyr), 141.9 

(C-7a), 146.7 (C-4), 149.6 (C-6Pyr), 150.6 (C-2Pyr), 164.4 (C=O), 164.7 (C=O), 165.5 (C=O). HRMS 

(ESI): calculated for C37H28N7O7 ([M+H]+): 682.2045, found: 682.2097. 

4-azido-5-(4-methyl-pyridin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (41) 41 was prepared according to General Procedure C [reaction temperature = 60 °C]. 

35 (0.51 g, 0.70 mmol) gave rise to 41 as a yellow foam (0.13 g, 0.19 mmol). Column chromatography: 

0 → 10 % EA/Toluene. Yield = 27 %. 1H NMR (300 MHz, DMSO-d6) δ: 2.48 (s, 1H, CH3), 4.77 (dd, J 

= 12.3, 5.1 Hz, 1H, H-5’’), 4.86 (dd, J = 12.3, 3.9 Hz, 1H, H-5’), 4.94 – 4.98 (m, 1H, H-4’), 6.16 (t, J = 

5.7 Hz, 1H, H-3’), 6.39 (t, J = 6.0 Hz, 1H, H-2’), 6.97 (d, J = 5.4 Hz, 1H, H-1’), 7.20 (d, J = 4.5 Hz, 1H, 

H-5Pyr), 7.40 – 7.53 (m, 6H, OBz), 7.60 – 7.70 (m, 3H, OBz), 7.84 – 7.87 (m, 2H, OBz), 7.94 – 8.03 (m, 

4H, OBz), 8.47 (d, J = 4.8 Hz, 1H, H-6Pyr), 8.75 (s, 1H, H-6), 8.89 (br. s, 1H, H-3Pyr), 9.98 (s, 1H, H-2). 

13C NMR (75 MHz, DMSO-d6) δ: 20.9 (CH3), 63.7 (C-5’), 70.9 (C-3’), 73.9 (C-2’), 79.6 (C-4’), 86.9 

(C-1’), 100.7 (C-4a), 119.2 (C-5), 122.2 (C-5Pyr), 123.1 (C-3Pyr), 125.9 (C-6), 128.2, 128.6, 128.72, 



127.78, 128.8, 129.16, 129.28, 129.36, 129.42, 133.5, 133.95, 134.03, 134.5 (C-2), 141.9 (C-7a), 146.8 

(C-4), 147.9 (C-4Pyr), 149.3 (C-6Pyr), 150.5 (C-2Pyr), 164.5 (C=O), 164.7 (C=O), 165.5 (C=O). HRMS 

(ESI): calculated for C38H30N7O7 ([M+H]+): 696.2201, found: 696.2231. 

4-azido-5-(4-methoxy-pyridin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-N7-β-D-ribofuranosyl)-

pyrrolo[2,3-d]pyrimidine (42) 42 was prepared according to General Procedure C [reaction 

temperature = 60 °C]. 35 (0.51 g, 0.70 mmol) gave rise to 42 as a yellow foam (0.080 g, 0.11 mmol). 

Column chromatography: 0 → 10 % EA/Toluene. Yield = 16 %. 1H NMR (300 MHz, DMSO-d6) δ: 

4.01 (s, 3H, OCH3), 4.77 (dd, J = 12.0, 5.1 Hz, 1H, H-5’’), 4.86 (dd, J = 12.0, 3.6 Hz, 1H, H-5’), 4.94 – 

4.98 (m, 1H, H-4’), 6.15 (dd, J = 6.3, 5.1 Hz, 1H, H-3’), 6.38 (t, J = 6.0 Hz, 1H, H-2’), 6.96 (dd, J = 5.7, 

2.4 Hz, 1H, H-5Pyr), 6.97 (d, J = 5.1 Hz, 1H, H-1’), 7.40 – 7.53 (m, 6H, OBz), 7.60 – 7.71 (m, 3H, OBz), 

7.84 – 7.95 (m, 2H, OBz), 7.95 – 8.07 (m, 4H, OBz), 8.43 (d, J = 5.7 Hz, 1H, H-6Pyr), 8.77 (s, 1H, H-8), 

8.80 (d, J = 2.7 Hz, 1H, H-3Pyr), 9.98 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 55.6 (OCH3), 63.7 

(C-5’), 70.9 (C-3’), 73.9 (C-2’), 86.9 (C-1’), 100.6 (C-4a), 108.0 (C-3Pyr), 108.2 (C-5Pyr), 119.1 (C-5), 

126.1 (C-6), 128.6, 128.72, 128.78, 128.81, 129.1, 129.27, 129.36, 129.40, 133.5, 133.9, 134.0, 134.6 

(C-2), 141.9 (C-7a), 146.8 (C-4), 150.8 (C-6Pyr), 152.0 (C-2Pyr), 164.4 (C=O), 164.7 (C=O), 165.5 

(C=O), 166.4 (C-4Pyr). HRMS (ESI): calculated for C38H30N7O8 ([M+H]+): 712.2150, found: 712.2186. 

4-azido-5-(6-chloro-pyridin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (43) 43 was prepared according to General Procedure C [reaction temperature = 60 °C]. 

35 (0.51 g, 0.70 mmol) gave rise to 43 as a yellow foam (0.14 g, 0.20 mmol). Column chromatography: 

0 → 20 % EA/PET. Yield = 29 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.77 (dd, J = 12.0, 5.4 Hz, 1H, 

H-5’’), 4.88 (dd, J = 12.0, 3.6 Hz, 1H, H-5’), 4.93 – 4.98 (m, 1H, H-4’), 6.16 (t, J = 6.0 Hz, 1H, H-3’), 

6.42 (t, J = 6.0 Hz, 1H, H-2’), 6.98 (d,  J = 5.4 Hz, 1H, H-1’), 7.40 – 7.52 (m, 6H, OBz), 7.44 (d, J = 

7.8 Hz, 1H, H-5Pyr), 7.59 – 7.71 (m, 3H, OBz), 7.85 – 7.88 (m, 2H, OBz), 7.97 – 8.02 (m, 4H, OBz), 

8.12 (t, J = 7.8 Hz, 1H, H-4Pyr), 8.78 (s, 1H, H-6), 9.08 (dd, J = 7.8, 0.6 Hz, 1H, H-3Pyr), 9.99 (s, 1H, H-

2). HRMS (ESI): calculated for C37H27ClN7O7 ([M+H]+): 716.1655, found: 716.1660. 

4-azido-5-(5-chloro-pyridin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (44) 44 was prepared according to General Procedure C [reaction temperature = 60 °C]. 



35 (0.51 g, 0.70 mmol) gave rise to 44 as a yellow foam (0.15 g, 0.21 mmol). Column chromatography: 

0 → 20 % EA/PET. Yield = 30 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.87 (dd, J = 12.3, 3.9 Hz, 1H, 

H-5’’), 4.76 (dd, J = 12.3, 5.1 Hz, 1H, H-5’), 4.94 – 4.99 (m, 1H, H-4’), 6.16 (dd, J = 6.0, 5.4 Hz, 1H, 

H-3’), 6.39 (dd, J = 6.3, 5.4 Hz, 1H, H-2’), 6.97 (d, J = 5.1 Hz, 1H, H-1’), 7.40 – 7.54 (m, 6H, OBz), 

7.60 – 7.72 (m, 3H, OBz), 7.84 – 7.87 (m, 2H, OBz), 7.96 – 8.02 (m, 4H, OBz), 8.21 (dd, J = 8.4, 2.7 

Hz, 1H, H-4Pyr), 8.63 (dd, J = 2.7, 0.6 Hz, 1H, H-6Pyr), 8.77 (s, 1H, H-6), 9.09 (dd, J = 8.4, 0.6 Hz, 1H, 

H-3Pyr), 10.00 (s, 1H, H-2). HRMS (ESI): calculated for C37H27ClN7O7 ([M+H]+): 716.1655, found: 

716.1642. 

4-azido-5-(4-chloro-pyridin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (45) 45 was prepared according to General Procedure C [reaction temperature = ambient 

temperature]. 35 (0.51 g, 0.70 mmol) gave rise to 45 as an orange foam (0.12 g, 0.16 mmol). Column 

chromatography: 0 → 35 % EA/PET. Yield = 23 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.76 (dd, J = 

12.3, 5.1 Hz, 1H, H-5’’), 4.87 (dd, J = 12.3, 3.6 Hz, 1H, H-5’), 4.94 – 4.99 (m, 1H, H-4’), 6.16 (dd, J = 

6.3, 5.1 Hz, 1H, H-3’), 6.39 (t, J = 5.7 Hz, 1H, H-2’), 6.98 (d, J = 5.1 Hz, 1H, H-1’), 7.40 – 7.53 (m, 7H 

(6+1), OBz, H-5Pyr), 7.60 – 7.70 (m, 3H, OBz), 7.71 – 7.88 (m, 2H, OBz), 7.96 – 8.03 (m, 4H, OBz), 

8.59 (dd, J = 5.1, 0.6 Hz, 1H, H-6Pyr), 8.82 (s, 1H, H-6), 9.23 (dd, J = 1.8, 0.6 Hz, 1H, H-3Pyr), 10.01 (s, 

1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 63.6 (C-5’), 70.9 (C-3’), 73.9 (C-2’), 79.7 (C-4’), 87.0 (C-

1’), 100.6, 117.8, 121.1 (C-3Pyr), 122.2 (C-5Pyr), 128.2 (C-6), 128.6, 128.70, 128.78, 128.81, 129.1, 

129.27, 129.36, 129.40, 133.53, 133.94, 134.0, 134.8 (C-2), 142.0 (C-7a), 144.0 (C-4Pyr), 146.6 (C-4), 

151.0 (C-6Pyr), 152.3 (C-2Pyr), 164.4 (C=O), 164.7 (C=O), 165.5 (C=O). HRMS (ESI): calculated for 

C37H27ClN7O7 ([M+H]+): 716.1655, found: 716.1661. 

4-azido-5-(5-fluoro-pyridin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (46) 46 was prepared according to General Procedure C [reaction temperature = 60 °C]. 

35 (0.51 g, 0.70 mmol) gave rise to 46 as a yellow foam (0.15 g, 0.21 mmol). Column chromatography: 

0 → 20 % EA/PET. Yield = 31 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.76 (dd, J = 12.0, 5.1 Hz, 1H, 

H-5’’), 4.87 (dd, J = 12.3, 3.9 Hz, 1H, H-5’), 4.94 – 4.99 (m, 1H, H-4’), 6.16 (t, J = 5.7 Hz, 1H, H-3’), 

6.39 (t, J = 5.7 Hz, 1H, H-2’), 6.97 (d, J = 5.4 Hz, 1H, H-1’), 7.70 – 7.53 (m, 6H, OBz), 7.60 – 7.71 (m, 



3H, OBz), 7.84 – 7.88 (m, 2H, OBz), 7.97 – 8.03 (m, 4H, OBz), 8.03 (dd, J = 5.4, 3.3 Hz, 1H), 8.60 (dt, 

J = 3.3, 0.6 Hz, 1H), 8.70 (s, 1H, H-6), 9.10 (ddd, J = 9.0, 4.5, 0.6 Hz, 1H), 9.99 (s, 1H, H-2). 19F-NMR 

(282 MHz, DMSO-d6) δ: -129.16 (dd, J = 8.5, 4.8 Hz). HRMS (ESI): calculated for C37H27FN7O7 

([M+H]+): 700.1951, found: 700.1985. 

4-azido-5-(quinolin-2-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine 

(47) 47 was prepared according to General Procedure C [reaction temperature = 60 °C]. 35 (0.51 g, 0.70 

mmol) gave rise to 47 as a pink foam (0.15 g, 0.20 mmol). Column chromatography: 0 → 10 % 

EA/Toluene. Yield = 29 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.80 (dd, J = 12.3, 5.4 Hz, 1H, H-5’’), 

4.90 (dd, J = 12.3, 3.6 Hz, 1H, H-5’), 4.97 – 5.02 (m, 1H, H-4’), 6.20 (t, J = 5.7 Hz, 1H, H-3’), 6.45 (t, 

J = 6.0 Hz, 1H, H-2’), 7.04 (d, J = 5.1 Hz, 1H, H-1’), 7.40 – 7.53 (m, 6H, OBz), 7.57 – 7.72 (m, 4H 

(3+1), OBz (3H), HQuin), 7.75 – 7.80 (m, 1H, HQuin), 7.86 – 7.89 (2H, m, OBz), 7.91 (d, J = 8.4 Hz, 1H, 

HQuin), 7.98 – 8.06 (m, 5H (4+1), OBz (4H), HQuin), 8.59 (d, J = 8.7 Hz, 1H, H-4Quin), 8.92 (s, 1H, H-6), 

9.13 (d, J = 8.7 Hz, 1H, H-3quin), 10.00 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 63.8 (C-5’), 71.0 

(C-3’), 74.0 (C-2’), 79.7 (C-4’), 87.1 (C-1’), 101.3 (C-4a), 119.2 (C-5), 120.3 (C-3Quin), 125.3 (CQuin), 

126.2 (CQuin), 126.7 (CQuin), 126.9 (C-6), 128.2 (CQuin), 128.6, 128.72, 128.76, 128.81, 128.89, 129.16, 

129.28, 129.37, 129.4, 130.0 (CQuin), 133.5, 133.95, 134.01, 134.6 (C-2), 137.2 (C-4Quin), 141.9 (C-7a), 

146.8 (C-4), 147.6 (C-8aQuin), 151.0 (C-2Quin), 164.5 (C=O), 164.7 (C=O), 165.5 (C=O). HRMS (ESI): 

calculated for C41H30N7O7 ([M+H]+): 732.2201, found: 732.2239. 

4-azido-5-(isoquinolin-3-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (48) 48 was prepared according to General Procedure C [reaction temperature = 60 °C]. 

35 (0.51 g, 0.70 mmol) gave rise to 48 as a white foam (0.18 g, 0.24 mmol). Column chromatography: 

0 → 5 % EA/DCM. Yield = 34 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.79 (dd, J = 12.0, 5.1 Hz, 1H, 

H-5’’), 4.88 (dd, J = 12.0, 3.6 Hz, 1H, H-5’), 4.96 – 5.00 (m, 1H, H-4’), 6.18 (dd, J = 6.0, 5.4 Hz, 1H, 

H-3’), 6.43 (t, J = 6.0 Hz, 1H, H-2’), 7.01 (d, J = 5.4 Hz, 1H, H-1’), 7.40 – 7.54 (m, 6H, OBz), 7.60 – 

7.71 (m, 4H (3+1), OBz (3H), H-7Isoq (1H)), 7.72 – 7.88 (m, 3H (2+1), OBz (2H), H-6Isoq (1H)), 7.80 – 

8.08 (m, 5H (4+1), OBz (4H), H-5Isoq (1H)), 8.18 (d, J = 8.4 Hz, 1H, H-8Isoq), 8.87 (s, 1H, H-6), 9.36 (s, 

1H, H-1Isoq), 9.51 (s, 1H, H-4Isoq), 10.01 (s, 1H, H-2). 13C NMR (75 MHz, DMSO-d6) δ: 63.7 (C-5’), 



70.9 (C-3’), 73.9 (C-2’), 79.6 (C-4’), 86.9 (C-1’), 100.6 (C-4a), 116.7 (C-4Isoq), 119.5 (C-5), 125.9 (C-

6), 126.8 (C-5Isoq), 127.2 (C-7Isoq // C-8aIsoq), 127.3 (C-7Isoq // C-8aIsoq), 127.9 (C-6Isoq), 128.2, 128.6, 

128.7, 128.76, 128.81, 129.18, 129.28, 129.36, 129.42, 131.2 (C-6Isoq), 133.5, 133.95, 134.01, 134.6 (C-

2), 136.1 (C-4Isoq), 142.1 (C-7a), 144.4 (C-3Isoq), 146.9 (C-4), 152.5 (C-1Isoq), 164.5 (C=O), 164.7 (C=O), 

165.5 (C=O). HRMS (ESI): calculated for C41H30N7O7 ([M+H]+): 732.2201, found: 732.2200. 

4-azido-5-(isoquinolin-1-yl)-N7-(2’,3’,5’-tri-O-benzoyl-β-D-ribofuranosyl)-pyrrolo[2,3-

d]pyrimidine (49) 49 was prepared according to General Procedure C [reaction temperature = 60 °C]. 

35 (0.51 g, 0.70 mmol) gave rise to 49 as a yellow foam (0.14 g, 0.18 mmol). Column chromatography: 

0 → 20 % EA/Toluene. Yield = 26 %. 1H NMR (300 MHz, DMSO-d6) δ: 4.75 (dd, J = 12.3, 5.4 Hz, 

1H, H-5’’), 4.87 (dd, J = 12.3, 3.9 Hz, 1H, H-5’), 4.96 – 5.00 (m, 1H, H-4’), 6.21 (t, J = 5.7 Hz, 1H, H-

3’), 6.45 (dd, J = 6.0, 5.1 Hz, 1H, H-2’), 7.01 (d, J = 5.1 Hz, 1H, H-1’), 7.33 – 7.38 (m, 2H, OBz), 7.43 

– 7.56 (m, 6H (5+1), OBz (5H), HIsoq), 7.62 – 7.71 (m, 2H, OBz), 7.82 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H, 

HIsoq), 7.90 – 7.99 (m, 7H (6+1), OBz (6H), H-4Isoq), 8.05 (dd, J = 8.4, 0.6 Hz, 1H, HIsoq), 8.10 (d, J = 

8.4 Hz, 1H, HIsoq), 8.45 (s, 1H, H-6), 8.63 (d, J = 5.7 Hz, 1H, H-3Isoq), 9.99 (s, 1H, H-2). HRMS (ESI): 

calculated for C41H30N7O7 ([M+H]+): 732.2201, found: 732.2220. 

 

Biology 

Strains and cultures of Trypanosoma brucei brucei and T. brucei rhodesiense 

The following clonal strains of T. b. brucei were cultured at the University of Glasgow, all as long-

slender bloodstream trypomastigotes only: Lister 427 (wild-type); TbAT1-KO, derived from 427WT by 

genetic deletion of the TbAT1 gene;56 B48, derived from TbAT1-KO by in vitro exposure to increasing 

concentrations of pentamidine;49 and ISMR1, derived from 427WT by increasing exposure to 

isometamidium in vitro.74 Bloodstream forms of savannah-type T. congolense strain IL3000 were 

cultured exactly as described before.75 At the University of Antwerp, T. brucei Squib 427 (suramin-

sensitive) and T. b. rhodesiense STIB-900 were used for the in vitro susceptibility tests. All trypanosome 

strains were cultured in the standard HMI-9 medium supplemented with 10% fetal bovine serum (FBS) 

at 37 ºC in a 5% CO2 atmosphere, exactly as described before.11 



Drug susceptibility tests 

Trypanosoma brucei 

Drug susceptibility tests with Lister 427WT, TbAT1-KO, B48 and ISMR1 were performed exactly as 

described previously,76 using an assay based on the viability indicator dye resazurin (Alamar blue) in 

96-well plates, each well containing 2×104 cells. The plates were incubated for 48 h with a doubling 

dilution series of the test compounds in HMI-9/FBS at 37 ºC/5% CO2 (23 dilutions starting at 100 µM, 

except for the pentamidine control (50 µM)), after which resazurin was added to each well and the plates 

incubated for another 24 h. Fluorescence was determined using a FLUOstar Optima (BMG Labtech, 

Durham, NC) and the results fitted to a sigmoid curve with variable slope using Prism 5.0 (GraphPad, 

San Diego, Ca). 

Susceptibility assays with T. brucei Squib 427 or T. b. rhodesiense STIB-900 were performed under 

similar conditions as above but using 10 concentrations of a 4-fold compound dilution series starting at 

64 µM. T. brucei Squib 427 was seeded at 1.5×104 parasites/well and T. b. rhodesiense at 4×103 

parasites/well, followed by addition of resazurin after 24 hours (T. brucei) or 6 hours (T. b. rhodesiense). 

Trypanosoma congolense 

The resazurin assay was performed exactly as for T. b. brucei at the University of Glasgow, the only 

difference being the use of 5×104 bloodstream forms for T. congolense instead of 2×104 for T. brucei, 

as described,11 due to their slower growth rate in culture. 

Trypanosoma cruzi  

Drug activity against T. cruzi was tested with the nifurtimox-sensitive Tulahuen CL2  galactosidase 

strain.77 This strain was maintained on MRC-5SV2 (human lung fibroblast) cells in MEM medium, 

supplemented with 200 mM L-glutamine, 16.5 mM NaHCO3 and 5% inactivated fetal calf serum. All 

cultures and assays were conducted at 37 °C/5% CO2. Assays were with 4×103 MRC-5 cells/well and 

4×104 parasites/well. Impact of test compound dilution series (10 concentrations of a 4-fold compound 

dilution series starting at 64 µM) on parasite growth was analyzed after 7 days incubation by adding the 

substrate chlorophenolred β-D-galactopyranoside. The change in color was measured 



spectrophotometrically at 540 nm after 4 hours incubation at 37 °C. The results were expressed as % 

reduction in parasite burdens compared to control wells from which an EC50 was calculated. 

Leishmania infantum  

L. infantum [MHOM/MA(BE)/67] was used for the drug susceptibility assays as described previously.78 

This strain was maintained in golden Syrian hamsters and amastigotes were collected from the spleen 

of an infected donor hamster. Splenic amastigotes were used for infection of primary peritoneal mouse 

macrophages from Swiss mice after a 2-day peritoneal stimulation with a 2 % potato starch suspension. 

The macrophages were infected after 48 hours of adherence. The compound dilution series (10 

concentrations of a 4-fold compound dilution series starting at 64 µM) were added after 2 hours of 

infection. Assays were performed in 96-well microtiter plates with 3×104 macrophages and 4.5×105 

parasites/well in RPMI-1640 medium supplemented with 200 mM L-glutamine, 16.5 mM NaHCO3 and 

5% inactivated fetal calf serum. All cultures and assays were conducted at 37 °C/5% CO2. After 5 days 

incubation, parasite burdens (mean number of amastigotes/macrophage) were microscopically assessed 

after staining the cells with a 10% Giemsa solution. The results were expressed as % reduction in parasite 

burden compared to untreated control wells from which an EC50 was calculated. 

Cytotoxicity on MRC-5 fibroblasts 

Drug cytotoxicity assays were performed in MRC-5SV2 human embryonic lung fibroblasts that were 

cultured in Minimum Essential Medium with Earle’s salts-medium, supplemented with L-glutamine, 

NaHCO3 and 5% inactivated fetal calf serum. All cultures and assays were conducted at 37 °C with 5% 

CO2. 10 µl of the compound dilutions in water were added to 190 µl of MRC-5 SV2 (3 x 104 cells/ml). 

Cell growth was compared to untreated-control wells (100% cell growth) and medium-control wells 

(0% cell growth). After 3 days incubation, cell viability was assessed fluorimetrically after addition of 

50 l resazurin per well. After 4 h at 37 °C, fluorescence was measured (ex 550 nm, em 590 nm). The 

results were expressed as percentage reduction in cell growth / viability compared to control wells and 

an EC50 was determined. Tamoxifen was used as reference compound (data not shown). 

 

 



Transport assays 

Transport via P1 was measured using B48 cells, which lack the P2 transport system49, whereas the 

transport via P2 was assessed in B48 cells transfected with TbAT1/P2 gene (B48 + TbAT1)62 for a 

constant, high level of expression, in presence of 100 µM of inosine to block P1 transporter. The 

transport of [3H]-Adenosine (40 Ci/mmol; American Radiolabeled Chemicals, St Louis, MO) was 

measured using a previously described uptake protocol.21, 79 1×107 cells were incubated with 100 nM 

[3H]-Adenosine in assay buffer79 for 60 seconds and rapid termination by addition of ice-cold 2 mM 

adenosine followed by immediate centrifugation through an oil layer for one minute at maximum speed. 

The incubation times used were well within the linear phase of uptake.80 Inhibition constants (Ki) were 

calculated from 50% inhibition values (IC50) calculated from non-linear regression (sigmoid curve with 

variable slope; GraphPad 5.0) and the Cheng-Prusoff equation, as described.79 The Gibbs Free Energy 

was calculated from ΔG0 = -RTln(Ki) as described,55 in which R is the gas constant and T the absolute 

temperature.  

 

Microsomal stability assays 

Mouse, rat and pooled human liver microsomes were purchased from a commercial source (Corning) 

and stored at -80 °C. NADPH generating system solutions A and B and UGT reaction mix solutions A 

and B (Corning) were kept at -20 °C. The test compound and the reference compounds diclofenac (MW 

296.15) and fluconazole (MW 306.27) were formulated in DMSO at 10 mM. The microsomal stability 

assay was carried out based on the BD Biosciences Guidelines for Use (TF000017 Rev1.0) with minor 

adaptations. The metabolic stability of the compounds was studied through the CYP450 superfamily 

(Phase I metabolism) by fortification with reduced nicotinamide adenine dinucleotide phosphate 

(NADPH) and through uridine glucuronosyl-transferase (UGT) enzymes (Phase II metabolism) by 

fortification with uridine diphosphate glucuronic acid (UDPGA). For the CYP450 and other NADPH 

dependent enzymes, both compounds were incubated at 5 µM together with 0.5 mg/mL liver 

microsomes in potassium phosphate buffer in a reaction started by the addition of 1 mM NADPH and 



stopped at 0, 15, 30 and 60 minutes. At these time points, 20 µl was withdrawn from the reaction mixture 

and 80 µl cold acetonitrile (ACN), containing the internal standard tolbutamide, was added to inactivate 

the enzymes and precipitate the proteins. The mixture was vortexed for 30 s and centrifuged at 4 °C for 

5 min at 15,000 rpm. The supernatant was stored at -80 °C until analysis. For the UGT enzymes, both 

compounds were incubated at 5 µM together with 0.5 mg/mL liver microsomes in a reaction started by 

the addition of 2 mM UDPGA cofactor. The corresponding loss of parent compound was determined 

using liquid chromatography (UPLC) (Waters AquityTM) coupled with tandem quadrupole mass 

spectrometry (MS²) (Waters XevoTM), equipped with an electrospray ionization (ESI) interface and 

operated in multiple reaction monitoring (MRM) mode.  

 

Ancillary information 

Supporting information 

Copies of 1H, 13C and 19F NMR spectra of compounds 5, 7-26, 28-30 can be found in the Supporting 

Information, as well as single crystal X-ray diffraction data of 13. 
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