
Towards human readability of automated unknottedness proofs
Andrew Fish1, Alexei Lisitsa2, Alexei Vernitski3,

1 Centre for Secure, Intelligent and Usable Systems, School of Computing, Engineering & Mathematics,
University of Brighton, Brighton UK

2 Department of Computer Science, University of Liverpool, Liverpool, UK
3 Department of Mathematical Sciences, University of Essex, Essex, UK

andrew.fish@brighton.ac.uk, a.lisitsa@liverpool.ac.uk, asvern@essex.ac.uk

Abstract
When is a knot actually unknotted? How does one
convince a human reader of the correctness of an
answer to this question for a given knot diagram?
For knots with a small number of crossings, hu-
mans can be efficient in spotting a sequence of un-
tangling moves. However, for knot diagrams with
hundreds of crossings, computer assistance is nec-
essary. There have been recent developments in al-
gorithms for both (indirectly) (i) detecting unknot-
edness and (directly) (ii) producing such sequences
of untangling moves.
Automated reasoning can be applied to (i) and, to
some extent, (ii), but the computer output is not
necessarily human-readable.
We report on work in progress towards bridging
the gap between the computer output and human
readability, via generating human-readable visual
proofs of unknottedness.

1 Introduction
We study knot diagrams because this research links alge-
bra, topology and automated reasoning in certain novel ways.
The problem of untangling, which is discussed in this paper,
is an excellent model problem on which to try to represent
computer-generated proofs as human-readable visual proofs.

A knot is a closed curve in the 3-dimensional space; one
can conveniently represent knots by their diagrams in 2 di-
mensions, such as the one in Figure 1. A human can try to
decide if a knot is unknotted (that is, is the trivial knot, also
known as the unknot) by taking a rope and checking if it can
be untangled without cutting the rope. One can present such
an untangling process on paper as a sequence of knot dia-
grams, see Figure 2, taken from [Fish et al., 2018]. When
considering more complicated unknot diagrams, with many
crossings, such as the diagram with 141 crossings known as
Haken’s Gordian knot [Lackenby, 2015], the task of deciding
unknottedness, and if so, of finding an untangling sequence,
requires computer assistance. Our paper presents progress in
presenting computer-generated proofs on unknottedness in a
readable form.

For an arbitrary knot diagrams, deciding whether it is
the unknot is a decidable problem, as was shown in the

early 1960s [Haken, 1961]. It remains unknown whether
a polynomial time algorithm for this decision problem ex-
ists, but it has been shown that the problem belongs to the
complexity class NP ∩ co-NP. Other algorithms have sub-
sequently been proposed and some have been implemented;
see, for example, [Dynnikov, 2003; Burton and Ozlen, 2012;
Lewin et al., 1996]. Whilst they have limitations, algorithms
based on monotone simplifications [Dynnikov, 2003] have
been shown to be efficient in detecting the unknot, while al-
gorithms based on normal surface theory [Burton and Ozlen,
2012] have been shown to be efficient in detecting non-trivial
knots.

As to proving that a given knot is not trivial (for example,
the knot in Figure 1), there are existing methods; these rely on
manipulating algebraic constructions which cannot be easily
visualized; we do not consider this problem in this paper.

The way a human would manipulate a rope is formalised
via three elementary diagram-changing moves, called Reide-
meister moves [Reidemeister, 1927], see Figure 3. Whereas
it is possible to emulate the human untangling process in the
computer1, in practice the number of Reidemeister moves
may be extremely large (see Theorem 1.1 of [Coward and
Lackenby, 2014]), and in general the intermediate diagrams
can be large and hard to inspect. In the sequence of diagrams
in the simple example in Figure 2 each subsequent diagram
is less complicated than the previous one; however, note that
this sequence of diagrams skips some Reidemeister moves;
if we included all diagrams produced by each application of
Reidemeister moves, the sequence would be much longer,
and some intermediate diagrams would be more complicated
than the original diagram.

Recently, generic automated reasoning methods have also
been applied and can be seen to be competitive for the
unknot detection problem. Instead of applying a special-
ized algorithm, the problem of unknot detection is refor-
mulated in terms of properties of certain algebraic struc-
tures associated with knot diagrams, so that the establish-
ment of these properties can be delegated to automated rea-
soning tools or computer algebra systems. Thus, automated
first-order theorem proving have been used to show trivial-
ity of knots [Fish and Lisitsa, 2014], while automated dis-

1For example, one convenient algebraic implementation of Rei-
demeister moves is a construction called a quandle [Joyce, 1982].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/169433691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: An example of a knot (known as 52).

Figure 2: Untangling an unknot.

proving by countermodel building [Fish and Lisitsa, 2014;
Lisitsa and Vernitski, 2017] and SAT solving [Fish et al.,
2015] have be used to show non-triviality of knots efficiently.

In [Fish et al., 2018] we proposed a notion of “visual al-
gebraic proofs” with the intent of combining visual diagram-
matic reasoning with proof automation. We essentially pro-
vide a human readable visual proof representation of alge-
braic deductions that prove unknottedness. Each step of these
proofs can be easily understood and checked for correctness
by humans.

In this paper we present our progress in implementing the
ideas presented in [Fish et al., 2018]. We also reflect upon the
difference between the use of a generic automated first-order
theorem proving as an automation vehicle, as demonstrated
in [Fish et al., 2018], with a newly developed specialized
prover implementing the method of [Fish et al., 2018], and
with a computer algebra system.

2 Background: Visual algebraic proofs
We give background definitions, intuition and an explana-
tion of the use of labelled tangles; more details can be found
in [Fish et al., 2018]. For basic concepts of knot theory
(including technical conditions on knots, omitted for the
sake of simplifying the narrative), see any of the textbooks
[Burde et al., 2013; Livingston, 1993; Kawauchi, 1996;
Lickorish, 2012; Manturov, 2004; Murasugi, 2007].

A tangle diagram T is like a knot diagram, except that its
arcs may have free ends. Our tangle diagrams are labeled,

<-->
<-->

<-->

RM-I RM-II

RM-III

Figure 3: Knot equivalence is captured by the Reidemeister Moves.

that is, each of their arcs is labeled by a letter; from the math-
ematical point of view, this letter is treated as an element of
an algebraic group known as the π-orbifold group of the knot
(one could also interpret labels as elements of some other al-
gebraic system, but we chose this interpretation of labels be-
cause elements of the π-orbifold group are especially easy to
manipulate and to visualize [Lisitsa and Vernitski, 2017; Fish
et al., 2018]). A mathematically minded reader might wish to
see the definition of the group. For a given knot diagram D,
the π-orbifold group OD of the knot is a group generated by
the arc letters with the following relations. For each arc x of
the diagram D, introduce a relation x2 = 1. At every cross-
ing where x and z are the two arcs terminating at the crossing
and y is the arc passing over the crossing, introduce a defining
relation xy = yz. For more discussion, see [Fish et al., 2018;
Lisitsa and Vernitski, 2017].

It is important to note that although a tangle diagram with
two free ends x and y is a visual representation of a proof that
x = y in OD, we do not need to think of equalities or groups
when we inspect the diagram. To ascertain to the proof is
correct, we only need to check that labeling of each crossing
in the tangle diagram matches exactly with one of the labeled
crossings of the original knot diagram.

Theorem 1 ([Fish et al., 2018]) A knot diagram D (with
unique labels) represents the unknot if and only if for each
pair of its labels a, b there is a labeled tangle diagram T
which has exactly 2 free-end arcs labelled a and b, with the
property that each crossing in T is labelled in the same way
as some crossing in D.

These labelled tangle diagrams, taken together, constitute
a visual proof of the fact that the knot diagram is the unknot.
If one wants to look for untangling moves (like in Figure 2),
it is important to stress that the labelled tangle diagrams from
Theorem 1 are not designed to suggest untangling moves, al-
though they may do so (see an example in Section 5).

One way of searching for the labelled tangle diagrams
needed in Theorem 1 is by starting from tangles correspond-
ing to the original knot diagram’s crossings and then combin-
ing copies of these diagrams by the application of the follow-

ing two rules:
1. Given a labelled tangle diagram which has, amongst its

end arcs, two adjacent end arcs labelled with the same
letter, connect these two arcs.

a a
a

2. Given two labelled tangle diagrams T and U such that
both T and U have an end arc labelled with the same
letter, connect these two arcs.

a
a a

3 Automated Theorem proving using generic
first-order provers

Whereas automated theorem prover software is not designed
specifically for building tangle diagrams, it is possible to use
a prover to emulate the process of searching for a tangle di-
agram with given properties. Then a description of tangle
diagrams can be extracted from the output of the prover. The
implementation below is a slight modification of the tangle-
building process described above.

To a given knot diagram D we can associate a first-order
theory TD in a vocabulary which consists of unary predicate
symbol T (the predicate T means that a certain word can be
read around a labeled tangle diagram whose crossings are la-
beled as some crossings in the original knot diagram), binary
functional symbol ∗ (the operation ∗ denotes the multiplica-
tion in the π-orbifold group of the knot) and constants e and
a1, . . . , ak for all of the labels of D (these letters are elements
of π-orbifold group of the knot). The axioms of TD include:
I. Axioms of monoid for (∗, e):

- (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of multipli-
cation)

- x ∗ e = e ∗ x = x (e is a unit of the monoid)
II. - a2i = e for all labels ai (this is a special property of

the π-orbifold group of the knot, and it supersedes
the definition of inverse elements in an algebraic
group)

III. Initial state axioms:
- T (ai ∗aj ∗ak ∗aj) for all crossings in D, where the

over-crossing arc is labelled by aj and the under-
crossing arcs are labelled by ai and ak. (That is,
each crossing of the original knot diagram is added
to the list of labeled tangle diagrams which we use
as building blocks for larger tangle diagrams.)

IV. Transition axioms:
- T (ai ∗ x) → T (x ∗ ai) for all arc labels ai (That

is, the list of letters around a tangle diagram can be
read starting from any point outside a tangle.)

a1

a2

a3

a4

a6

a7

a8

a9 a10

a5

Figure 4: The Culprit unknot.

- T (x) & T (y) → T (x ∗ y). (That is, we can place
two tangle diagrams next to each other and treat
them as one diagram.)

The terms inside the T predicate are built from constants
by the monoid operation, and are meant to represent words
read on the ends of arcs around the tangle diagrams. The in-
tended meaning of T (w) for a word w is that a labeled tangle
diagram with w read on its free ends which can be built fol-
lowing the rules in Section 2. The initial state axioms declare
that the original crossings present us with the initial building
blocks of the tangle diagrams. The transition axioms describe
operations for building new tangles. From the point of view
of the automated theorem proving, Theorem 1 turns into the
following result.

Proposition 1 A knot diagram D with arcs labelled by
a1, . . . , ak is a diagram of the unknot if and only if TD ⊢∧

1≤i≤k−1 T (ai ∗ ai+1), where ⊢ denotes first-order logic
derivability.

4 Examples of knot diagrams
The Culprit in Figure 4 is a frequently used example of a di-
agram of the unknot [Kauffman and Lambropoulou, 2012].
The arcs (that is, the continuous fragments of the curve) of
the Culprit diagram in Figure 4 are labelled; introducing a
labelling enables algebraic methods and automatic reasoning
to work. The interesting property of the Culprit is that if one
transforms it by Reidemeister moves in order to untangle it,
initially one has to make it more complicated (that, one has
to increase the number of crossings in the diagram).

Together with the Culprit, we consider two other examples
of unknot diagrams which have the same property. One is the
smaller knot diagram in Figure 2. The other is a larger dia-
gram shown in Figure 5, which was used as a central example
in [Morton, 1983], and which we call Morton’s diagram.

5 Results: Finding untangling diagrams
In our experiments we used three methods of proving unknot-
tedness of the three diagrams. Firstly, we used an automated
prover Prover9 as described in Section 3. Secondly, we wrote
our own code which explicitly produced all labeled tangle di-
agrams one after another, using exhaustive search, until the
needed tangle diagram is found. Thirdly, we used the GAP

Figure 5: Morton’s unknot.

computer algebra software to prove that the knot is the un-
knot. We compared their output with what we, as humans,
would do to untangle the diagrams.

5.1 The Culprit
To prove unknotedness of Culprit by the method of Section 3
we specify the corresponding theory TD as follows (Prover9
syntax):

(x * y) * z = x * (y *z).
x * e = x.
e * x = x.

a1 * a1 = e.
a2 * a2 = e.
a3 * a3 = e.
a4 * a4 = e.
a5 * a5 = e.
a6 * a6 = e.
a7 * a7 = e.
a8 * a8 = e.
a9 * a9 = e.
a10 * a10 = e.

T(((a6 * a8) * a6) * a7).
T(((a6 * a10) * a7) * a10).
T(((a10 * a7) * a1) * a7).
T(((a1 * a5) * a1) * a6).
T(((a8 * a3) * a8) * a4).
T(((a8 * a3) * a9) * a3).
T(((a10 * a3) * a10) * a2).
T(((a10 * a4) * a10) * a5).
T(((a10 * a2) * a9) * a2).
T(((a2 * a9) * a1) * a9).

T(a1 * x) -> T(x * a1).
T(a2 * x) -> T(x * a2).
T(a3 * x) -> T(x * a3).
T(a4 * x) -> T(x * a4).
T(a5 * x) -> T(x * a5).
T(a6 * x) -> T(x * a6).
T(a7 * x) -> T(x * a7).
T(a8 * x) -> T(x * a8).
T(a9 * x) -> T(x * a9).
T(a10 * x) -> T(x * a10).

T(x) & T(y) -> T(x * y).

The goal to prove is

T(a1 * a2) & T(a2 * a3) & T(a3 * a4) &
T(a4 * a5) & T(a5 * a6) & T(a6 * a7) &
T(a7 * a8) & T(a8 * a9) & T(a9 * a10).

Starting from TD Prover9 successfully proved the goal and
demonstrated that the Culprit is the unknot. The output of
Prover9 is difficult to read; as explained in Section 3, Prover9
produces not explicit descriptions of tangle diagrams, but a
series of abstract algebraic proofs. We have been able to ex-
tract a description of the labeled tangle diagrams manually
from Prover9’s output for the Culprit.

Our exhaustive-search code was successful at building la-
belled tangle diagrams proving that the Culprit is the unknot.

Exactly the same first tangle diagram was produced im-
plicitly by our Prover9 code and explicitly by our exhaustive-
search code for proving that the Culprit is the unknot. Recall
that we expect the computer to find several tangle diagrams:
roughly speaking, one for each pair of letters ai, ai+1; there-
fore, it was interesting to see that such different approaches
as heuristic Prover9 and exhaustive search of tangle diagrams
suggested to start in the same way. The tangle diagram claims
that the arc a3 at the middle of the bottom of the diagram is
equal (in a certain algebraic sense, that is, in the π-orbifold
group of the knot) to the arc a6 in the right-top part of the
diagram. Interestingly, this equality corresponds to what a
human would do if asked to untangle the Culprit: what seems
to be the optimal first simplifying move is concentrating on
the vertical strand passing vertically behind the middle of the
Culprit all the way from the top to the bottom to the diagram
(that is, a3−a4−a5−a6) and passing it behind the diagram
to one side of it.

To go into more detail, we want to present, as an illus-
tration, a short fragment of the output of Prover9. The first
lemma proved by it is presented as follows:

170 T(a10 * (a2 * (a1 * a9))). [hyper(26, a, 44, a, b, 46, a),
rewrite([13(15), 13(14), 13(13), 59(12), 66(9)])].

That is, this is step 170 in the proof, and the fact proved is
(in algebraic terms) that the product a10a2a1a9 is the identity
element in the π-orbifold group of the Culprit diagram, or (in
terms of diagrams) that it is possible to assemble copies of
crossings of the Culprit diagram into a tangle diagram whose
free ends are a10, a2, a1, a9 (read consecutively around the
diagram). Prover9 refers to steps 26, 44 and 46 of the proof.
Inspecting them, we see
26 -T(x) | -T(y) | T(x * y).
44 T(a10 * (a2 * (a9 * a2))).
46 T(a2 * (a9 * (a1 * a9))).

That is, line 26 suggests putting two tangle diagrams next
to each other, and the two diagrams it refers to are, obviously,
the ones named in lines 44 and 46, which are two of the cross-
ings of the Culprit (a9 passing under a2 becomes a10, and a1
passing under a9 becomes a2; you can spot these two cross-
ings in the left-hand side of the labelled diagram in Figure
4).

In this way, reinterpreting Prover9’s output as needed one
lemma after another, we can construct descriptions of tangle
diagrams needed to apply Theorem 1.

In comparison, our exhaustive-search code produces ex-
plicit descriptions of labelled tangle diagrams. At the time
of writing, the kind of data its output contains can be illus-
trated by the following example, which is the description of
the first untangling diagram for the Culprit (which, as we ex-
plained earlier in this section, has two free ends; in the output
below, the vertices corresponding to them are denoted by u0
and v0) and all other vertices are crossings. A drawing of the
diagram is presented in Figure 6. The output was:

edge between u0 and u1 labelled a3; edge between u1 and
u2 labelled a9; edge between u2 and u3 labelled a2; edge be-
tween u2 and u3 labelled a9; edge between u1 and u4 labelled
a3; edge between u3 and u4 labelled a10; edge between u3
and u4 labelled a2; edge between u1 and v1 labelled a8; edge
between u4 and v2 labelled a10; edge between u2 and v3 la-
belled a1; edge between v0 and v1 labelled a6; edge between
v1 and v2 labelled a6; edge between v2 and v3 labelled a7;
edge between v2 and v3 labelled a10; edge between v1 and
v3 labelled a7.

5.2 Other diagrams and GAP
As to Morton’s diagram, which is somewhat larger than the
Culprit, our Prover9 code successfully proved that it is the
unknot. However, Prover9’s output was long and complicated
(the first equality of two arcs is proved in step 23032, com-
pared with step 11566 in Prover9’s solution for the Culprit),
and we were not able to build labeled tangle diagrams from
Prover9’s output. Our exhaustive-search code produced la-
belled tangle diagrams proving that Morton’s diagram is the
unknot; the tangle diagrams are relatively large, containing
up to 40 crossings. As to human reasoning, we find it dif-
ficult to suggest a good first untangling move for Morton’s
diagram. For comparison, in Morton’s paper [Morton, 1983]
the unknottedness of Morton’s diagram is established as an
algebraic result using a completely different algebraic group
(a braid group), not the same as in our Theorem 1. Morton’s
untangling can be transformed into an explicit sequence of
untangling moves, like in Figure 2, but the sequence is longer
(approximately 14 diagrams) and each intermediate knot dia-
gram is larger (10–11 crossings).

As to the knot diagram in Figure 2, which is smaller than
the Culprit, both our Prover9 code and our exhaustive-search
code easily proved that it is the unknot. The first untangling
move suggested by them coincides with what a human would
probably do, that is, pass the arc from the right of the diagram
to the left of the diagram, as indicated by the first move in
Figure 2.

For comparison, the specialized group-theory software
GAP [GAP, 2018] (https://www.gap-system.org/)
proves successfully and very quickly that both the Culprit and
Morton’s diagram are the unknot (to be precise, GAP proves
that the π-orbifold group of the knot is the two-element cyclic
group, which is equivalent to the knot being the unknot [Fish
et al., 2018; Lisitsa and Vernitski, 2017]). However, GAP’s
output is just a statement of the fact; it does not include any
kind of a proof.

a1

a2

a3

a6

a7

a8
a9

a10

Figure 6: A proof that a3 = a6 in the π-orbifold group of the
Culprit.

6 Results: Visualisation
Theorem 1 shows that the proof of two arcs being equal can
always be presented visually as a tangle diagram. However,
transforming a computer-generated proof of the equality of
two arcs (as in the two examples of computer output in Sub-
section 5.1) is not straightforward; off-the-shelf tools cannot
be immediately applied to draw tangles with labelled arcs.

Let us look in more detail at the tangle diagram whose de-
scription was implicitly built in Subsection 5.1. As we have
explained, both our Prover9 code and our exhaustive-search
code found the same tangle diagram when they started prov-
ing that the Culprit is the unknot.

Figure 6 presents this diagram drawn by hand (using the
Inkscape software) from the diagram description produced by
our exhaustive-search code (in the end of Subsection 5.1). In
the future, we would like to see the computer producing such
diagrams automatically. For comparision, Figure 7 presents
the best approximation to Figure 6 which we could produce
by an existing automated drawing tool. The diagram in Figure
7 is produced by KnotPlot software (http://knotplot.
com/) using a tangle code reconstructed from the diagram
in Figure 6; the tangle code used as an input for KnotPlot is
“tangle 2r2r@@#.”.

As you can see, the available tools for drawing knot-like
diagrams automatically have several shortcomings; when it
comes to drawing labelled tangle diagrams, they seem to
struggle with drawing the free ends of tangle diagrams, and
they do not label the arcs. Also, the input code describing
the tangle diagrams for drawing them by KnotPlot is not a
standard code used in knot theory for describing knot-like di-
agrams.

7 Conclusion
In our experiments with the variants of automated reasoning
applied to unknot detection problem we have observed a clear
trade-off between transparency of the proofs (human under-
standability) and their efficiency. For the following methods
we have their transparency increasing, while their efficiency
decreasing when we proceed down the list:

• First-order theorem proving for involutory quandles
(keis) using generic automated prover [Fish and Lisitsa,
2014];

https://www.gap-system.org/
http://knotplot.com/
http://knotplot.com/

Figure 7: An attempt to draw the diagram automatically.

• First-order theorem proving for π-orbifold groups using
generic automated prover [Lisitsa and Vernitski, 2017];

• Visual algebraic proving (tangles building) using generic
automated prover [Fish et al., 2018];

• Visual algebraic proving (tangles building) using spe-
cialised prover (this paper).

As an alternative approach computer algebra system GAP
can be used to solve the group-theoretical problem described
in our previous paper; that is, it solves the word problem (for
each two-letter word) in the π-orbifold group of the knot dia-
gram. Of course, the word problem for groups is unsolvable
in general. As to finding untangling moves, GAP does not
provide any output of the sort. As to GAP, it would be very
interesting to make large scale comparisons of its efficiency
for detecting unknots with an automated theorem proving ap-
proach.

Two aspects of the future work are: Automatically pro-
ducing descriptions (for example, as Gauss codes) of labelled
tangle diagrams; Automatically producing drawings of la-
belled tangle diagrams from their descriptions. For each of
these two aspects, we (and other people) have made some
progress, but more work is needed. There is plenty of scope
for exploration of human produced untangling moves versus
the visual algebraic proofs constructed.

References
[Burde et al., 2013] Gerhard Burde, Michael Heusener, and

Heiner Zieschang. Knots. De Gruyter, 2013.
[Burton and Ozlen, 2012] Benjamin A. Burton and Melih

Ozlen. A fast branching algorithm for unknot recogni-
tion with experimental polynomial-time behaviour. CoRR,
abs/1211.1079, 2012.

[Coward and Lackenby, 2014] Alexander Coward and Marc
Lackenby. An upper bound on reidemeister moves. Amer-
ican Journal of Mathematics, 136(4):1023–1066, 2014.

[Dynnikov, 2003] I.A. Dynnikov. Recognition algorithms in
knot theory. Russian Mathematical Surveys, 58(6):1093–
1139, 2003. cited By 4.

[Fish and Lisitsa, 2014] Andrew Fish and Alexei Lisitsa.
Detecting unknots via equational reasoning, i: Explo-
ration. In International Conference on Intelligent Com-
puter Mathematics, pages 76–91. Springer, 2014.

[Fish et al., 2015] Andrew Fish, Alexei Lisitsa, and David
Stanovský. A combinatorial approach to knot recogni-
tion. In Ross Horne, editor, Embracing Global Comput-
ing in Emerging Economies: First Workshop, EGC 2015,
Almaty, Kazakhstan, February 26-28, 2015. Proceedings,
pages 64–78. Springer International Publishing, 2015.

[Fish et al., 2018] Andrew Fish, Alexei Lisitsa, and Alexei
Vernitski. Visual algebraic proofs for unknot detection. In
Proceedings of the Diagrams Conference. Springer, 2018.

[GAP, 2018] The GAP Group. GAP – Groups, Algorithms,
and Programming, Version 4.8.10, 2018.

[Haken, 1961] Wolfgang Haken. Theorie der normalflchen:
Ein isotopiekriterium fr den kreisknoten. Acta Math.,
105(3-4):245–375, 1961.

[Joyce, 1982] David Joyce. A classifying invariant of knots,
the knot quandle. Journal of Pure and Applied Algebra,
23(1):37 – 65, 1982.

[Kauffman and Lambropoulou, 2012] Louis H Kauffman
and Sofia Lambropoulou. Hard unknots and collaps-
ing tangles. In Introductory Lectures On Knot The-
ory: Selected Lectures Presented at the Advanced School
and Conference on Knot Theory and Its Applications to
Physics and Biology, pages 187–247. World Scientific,
2012.

[Kawauchi, 1996] Akio Kawauchi. A survey of knot theory.
Birkhäuser, 1996.

[Lackenby, 2015] Marc Lackenby. Upper bound on reide-
meister moves. Annals of Mathematics, 182:1–74, 2015.

[Lewin et al., 1996] D. Lewin, O. Gan, and Bruckstein A. M.
Trivial or knot: A software tools and algorithms for knot
simplification, cis report no 9605. , Technion, IIT, Haifa,
1996.

[Lickorish, 2012] WB Raymond Lickorish. An introduction
to knot theory, volume 175. Springer Science & Business
Media, 2012.

[Lisitsa and Vernitski, 2017] Alexei Lisitsa and Alexei Ver-
nitski. Automated reasoning for knot semigroups and π-
orbifold groups of knots. In International Conference on
Mathematical Aspects of Computer and Information Sci-
ences, pages 3–18. Springer, 2017.

[Livingston, 1993] Charles Livingston. Knot theory, vol-
ume 24. Cambridge University Press, 1993.

[Manturov, 2004] Vassily Manturov. Knot theory. CRC
press, 2004.

[Morton, 1983] Hugh R Morton. An irreducible 4-string
braid with unknotted closure. In Mathematical Proceed-
ings of the Cambridge Philosophical Society, volume 93,
pages 259–261. Cambridge University Press, 1983.

[Murasugi, 2007] Kunio Murasugi. Knot theory and its ap-
plications. Springer Science & Business Media, 2007.

[Reidemeister, 1927] Kurt Reidemeister. Elementare
Begründung der Knotentheorie. Abh. Math. Sem. Univ.
Hamburg, 5(1):24–32, 1927.

	Introduction
	Background: Visual algebraic proofs
	Automated Theorem proving using generic first-order provers
	Examples of knot diagrams
	Results: Finding untangling diagrams
	The Culprit
	Other diagrams and GAP

	Results: Visualisation
	Conclusion

