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A numerical study of the transonic flow over the wing of the NASA Common Re-
search Model, specifically addressing the shock-buffet instability via global mode analysis,
is discussed. Reynolds-averaged Navier–Stokes equations (coupled with a one-equation
turbulence model), using an industrial computational fluid dynamics package, are used as
aerodynamic model. The implicitly restarted Arnoldi iteration is applied for eigenmode
computation. Large but sparse linear systems of equations, arising from shift-and-invert
spectral transformation, require a sparse iterative linear equation solver. The results show
how the fluid-only shock-buffet onset flow for three-dimensional wings can be linked to
an absolute instability. The instability’s frequency and spatial structure agree with those
typically reported for similar swept-wing geometries using experimental analysis and data-
based modal identification. The influence of symmetry boundary condition (for the half
model) compared with the full-span configuration is scrutinised. Overall the results sug-
gest that expensive unsteady time-marching simulations can be avoided if interest is in the
incipient shock-buffet dynamics, pertinent to future edge-of-the-envelope wing design.

I. Introduction

Shock buffet on wings is an undesirable phenomenon limiting the flight envelope at high Mach numbers
and load factors. Its study is critical for commercial transonic air transport. The term commonly refers
to an aerodynamic instability with self-sustained shock-wave oscillations and intermittent boundary layer
separation. In an industrial context, quasi-steady empirical data are usually used to decide on and design
for shock-buffet onset, such as the ‘∆α = 0.1◦ offset’ method and divergence of trailing edge pressure.

Shock buffet on wings comes with low amplitude shock motions and is more broadband with Strouhal
numbers in the range St = 0.2 to 0.6 depending e.g. on sweep angle.1 A spanwise outboard propagation of
so-called buffet cells, which is believed to constitute the instability, has been reported both in experimental
and numerical studies.2–5 Recently, modal descriptions of shock buffet on wings has been pursued intensively.
Data-based techniques, such as proper orthogonal decomposition and dynamic mode decomposition, were
applied to solution snapshots of the flow over the 80%-scale Common Research Model well beyond buffet
onset6 and an older wing design close to onset conditions.7 Identified distinct modes agree in their spatial
structure and frequency content with previous observations. Using an operator-based approach instead,
global mode computation on such practical cases with three inhomogeneous spatial dimensions has also been
accomplished for two wing geometries.8, 9 High-Re flow investigation succeeded using the base-flow approach
with the matrix operator of the Reynolds-averaged Navier–Stokes (RANS) equations plus turbulence model
evaluated at a fully converged steady state. Such global mode analysis follows earlier work on aerofoil shock
buffet.10–12 While the flow unsteadiness is self-excited, not requiring structural vibration itself, resulting
unsteady aerodynamic loads excite the wing structure (called buffeting) thus being detrimental to safe
and comfortable flight. Taking a step towards proper aeroelastic analysis in such extreme flow conditions,
forced excitation via flexible structural modes has been pursued,13 too, identifying, besides the shock-buffet
response, also a lower-frequency behaviour, which resembles previously discussed experimental data.1, 14

With the existence of a critical global mode for wing shock buffet established,9 we look into more detail
such as using smaller increments in angle of attack and mesh refinement. The spatial structures of dominant
modes are discussed for two wings, representing different generations of wing design. The paper concludes
with a study of an equivalent full-span geometry with symmetry plane for the half model removed.
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II. Numerical Approach

The asymptotic time evolution of infinitesimal perturbations εũ to a steady base flow ū is sought, with
u containing the conservative variables of the RANS equations plus turbulence model at each grid point and
ε ≪ 1. Interest is in solutions of the form ũ = ûeλt where û is the three-dimensional spatial structure of the
eigenmode (i.e. right/direct eigenvector) and λ = σ + iω describes its temporal behaviour (i.e. eigenvalue)
with σ as the growth rate and ω as the angular frequency. Full linearisation of the spatial discretisation
of the non-linear governing equations (including turbulence model), and substitution of the solution ansatz,
leads to an algebraic system of equations,

Jû = λû (1)

where the fluid Jacobian matrix J (i.e. the linearisation) is evaluated for the base flow. The implicitly
restarted Arnoldi method,15 specifically the ARPACK library,16, 17 is used to approximate a few eigenmodes
of J . This approximation improves with the number of Krylov vectors and restarting is applied in practice.
Hence, an effective restart of the outer iteration is essential and a polynomial approximation of that vector
is used in the implementation. Convergence to wanted parts of the eigenspectrum is enhanced by applying
the shift-and-invert spectral transformation with the Arnoldi iteration operating on (J − ζI)−1 instead. The
shift ζ defines the focus region of the search. It is thus clear that the robust and efficient solution of many
linear systems of equations is desired. For this reason, the ARPACK library has been coupled with the
well-exercised linear harmonic incarnation of the chosen non-linear flow solver,18 outlined next.

The aerodynamics are simulated herein using the industry-grade DLR-TAU software package,19, 20 which
solves the compressible RANS equations with a second-order, vertex-centred, finite-volume scheme. For the
assumed fully turbulent flow simulations, turbulent closure via the Boussinesq eddy-viscosity assumption
is achieved with the negative version of the Spalart–Allmaras model.21 Inviscid fluxes are evaluated with
a central scheme with matrix artificial dissipation, and gradients of flow variables for viscous fluxes and
source terms are computed using the Green–Gauss theorem. Geometric multigrid and local time-stepping
accelerate convergence to steady base-flow solutions, with the backward Euler method with lower-upper
Symmetric–Gauss–Seidel iterations chosen as multigrid smoother. Unless mentioned otherwise, all steady
simulations herein converged by at least 11 orders of magnitude in the density residual norm.

The linearised harmonic flow solver follows a first-discretise-then-linearise, matrix-forming philosophy
with a hand-differentiated Jacobian matrix J . Linear systems arising from the shift-and-invert transformation
are solved with the generalised conjugate residual algorithm with deflated restarting.22, 23 The central idea of
this iterative solver, contrary to a standard restarted Krylov solver such as the generalized minimal residual
algorithm24 which discards most of the available information during restart and is hence prone to stall, is to
extract the dominant vectors responsible for convergence which are found by ranking the interior eigenvalues,
approximated by the Hessenberg matrix. This often results in a more robustly converging inner iteration
combined with lower memory usage due to a smaller required Krylov subspace. Pivotal to an effective Krylov
method is preconditioning; local block incomplete lower-upper factorisation of the shifted Jacobian matrix,
blended between first- and second-order schemes, with zero level of fill-in is selected.25

Details of the numerical settings of the inner-outer Krylov approach, i.e. the inner sparse iterative linear
equation solver and the outer iterative eigenvalue solver, are provided in table 1. All jobs ran on two and
four nodes, respectively, for the half- and full-span configurations of the Common Research Model. Each
node has twin Skylake 6138 processors, 40 hardware cores and 384 GB of memory.

Table 1. Numerical settings of inner-outer iterative solution strategy

Parameter Value

Maximum number of eigenmodes per shift 10− 20

Maximum number of outer iterations 2− 3

Size of Krylov space for outer iterations 100

Convergence criterion on outer iterations 10−6

Size of Krylov space for inner iterations 120

Number of deflation vectors for inner iterations 20

Convergence criterion on inner iterations 10−7
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Figure 1. Surface pressure coefficient Cp at M = 0.85, Re = 5 million and α = 3.75◦ comparing experiment
and steady simulation at five selected non-dimensional spanwise stations η, where flow unsteadiness is centred.

III. NASA Common Research Model

The Common Research Model is a generic wide-body aircraft configuration.26 The wing was designed to
have an aspect ratio of 9, a taper ratio of 0.275 and a 35◦ quarter-chord sweep angle. The mean aerodynamic
chord of the wind tunnel model is 0.189 m with a span and reference area of 1.586 m and 0.280 m2,
respectively. Herein, the wing-body-tail variant with 0◦ tail setting angle, discarding pylon and nacelle,
is analysed. The computational mesh was generated using the SOLAR mesh generator following accepted
industrial practice. The experimental blade sting mounting system is excluded. The half model has about
6.2 million points including roughly 170,000 on solid wall boundaries. A viscous wall spacing of y+ < 1
is ensured. The hemispherical farfield boundary is located approximately 100 semi-spans from the body,
while a symmetry boundary condition is applied along the centre plane. For the full-span simulations, the
half-span mesh is mirrored with respect to the xz-plane with this symmetry plane consequently removed.

Static deformation of the flexible wing at seven angles of attack was measured at certain flow conditions,
specifically a Mach number of M = 0.85 and a Reynolds number of Re = 5 million per reference chord, and,
to improve realism of the numerical campaign,27 the computational mesh was deformed accordingly using a
radial basis function mesh deformation tool. Figure 1 presents the wing’s planform and pressure coefficient
at selected spanwise stations for angle of attack of α = 3.75◦. A clear shock-wave pattern is visible along the
span, and a shock-induced reverse-flow region can be observed in the mid-semi-span sector (just outboard
of the Yehudi break at 37% semi-span), identified through the zero-skin-friction line. Low spatial resolution
in the experimental data was addressed by incorporating related measurements of the 80%-scale Common
Research Model,4 labelled ‘Ames’ and showing two angles of attack bracketing the nominal value.28
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Figure 2. Computed eigenvalues for angles of attack between α = 3.50◦ and 3.85◦ showing Strouhal num-
ber St and angular frequency ω over growth rate σ. The three-dimensional shock-buffet mode with eigenvalue
(σ, ω) = (0.156, 2.371) at α = 3.75◦ is labelled SB.

IV. Results

Details of the global stability computations with three inhomogeneous spatial dimensions, focussing on the
incipient shock-buffet dynamics, are discussed in the following. The converged steady-state non-linear RANS
results presented in previous section are taken as base flow. Appreciating the debate in fluid-stability theory
on the treatment of the Reynolds stresses,29, 30 we follow the argument of a decoupling of scales.11, 31 Whereas
the small scales of turbulence in space and time are accounted for by the turbulence model and resulting eddy
viscosity, the large shock-buffet scales can be integrated in time using the unsteady RANS equations and
are hence accessible for the base-flow stability approach. Previous work suggested the adequacy of unsteady
RANS modelling, concerning the dominant flow features of spatial structures and frequency content, in
simulating shock-buffet flow on wings, when compared to experiment and scale-resolving simulation.5 All
results are presented in non-dimensional units unless otherwise stated.

Figure 2 shows the computed eigenvalues for angles of attack where buffet onset is expected. For each
angle of attack, several shifts were distributed along the imaginary axis in addition to a few shifts with
positive growth rate, enabling a wider search radius albeit with a reduced convergence rate of the shift-and-
invert spectral transformation. Angles of attack below (and including) α = 3.70◦ describe subcritical flow,
whereas angles above (and including) α = 3.75◦ constitute a shock-buffet condition. The small increment in
angle of attack of ∆α = 0.05◦ allows the visualisation of mode traces; this is exemplified for the mode that
kicks off the flow unsteadiness, labelled SB (as in shock buffet) at α = 3.75◦. The results suggest that a
single unstable oscillatory global mode is responsible for shock-buffet onset on this wing similar to what was
reported previously for aerofoils (see for example [10,12]). To be more precise, self-sustained oscillatory flow
unsteadiness starts between angles of attack α = 3.70◦ and 3.75◦ with an angular frequency of approximately
ω = 2.46 (corresponding to a Strouhal number of St = 0.39 where St = ω/(2π)). This value agrees nicely
with the dominant frequency range reported for the 80%-scale Common Research Model in established shock-
buffet condition.6, 32 While approaching the critical point, a group of eigenvalues emerges from a dense band
of eigenvalues migrating towards the imaginary axis. Note that this computed dense band results from shifts
placed along the imaginary axis and the convergence properties of shift-and-invert methods, and a dense
cloud of eigenvalues to the left of the visible band (similar to spectra for small aerofoil cases) is expected.
Specifically, besides the primary rightmost eigenvalue denoted SB, eigenvalues with increased growth rate
can be observed for Strouhal numbers St ≈ 0.3 to 0.7, which is consistent with the accepted broadband-
frequency range reported for wings1 and hints at additional unstable modes for post-onset angles of attack.
Indeed, a second instability is observed at α = 3.85◦ in the same frequency range.

The spatial structure of the unstable global mode SB at α = 3.75◦ is presented in figure 3, visualising
buffet cells. The term buffet cell refers to a local flow arrangement of a ripple along the spanwise shock-wave
combined with a pulsating recirculation bubble, which develops within a restricted sector of the wingspan.
Spatial amplitudes of the shock-buffet mode are concentrated at the shock wave (weakly, presumably due

4 of 12

American Institute of Aeronautics and Astronautics



(a) (b)

Figure 3. Spatial structure of unstable eigenmode SB showing volumetric iso-surfaces for two values (±0.02) of

x-momentum component ρ̂u and in (a) real part of surface pressure coefficient Ĉp calculated from eigenvector
and (b) surface pressure coefficient C̄p and zero-skin-friction line of base flow. Eigenvector has been scaled by
the maximum value in x-momentum, found at approximately (x, y, z) = (1.170,0.546, 0.160).

to mesh coarseness) and its downstream shear layer. In the figure only the real part of the complex-valued
eigenvector, scaled by the maximum value in x-momentum component, is shown since the imaginary part is
90◦ out-of-phase to enable the convection of flow structures.10, 31 The propagation path of these buffet-cell
structures is chordwise downstream and spanwise outboard, while there is wing support in the sector η ≈ 0.6
to 0.73, and then downstream in the wake, reaching beyond the x-location of the horizontal-tail plane. It is
interesting to observe that the spatial structures of the three-dimensional shock-buffet mode originate at the
wing surface near the outermost portion of the reverse flow region, as enclosed by the base-flow zero-skin-
friction line in figure 3(b) just outboard of the Yehudi break. Since the sign of the skin-friction coefficient is
based on the x-velocity component, this suggests that the buffet cells emerge in the vicinity of where reversed
flow is forced to turn back into the main streamwise flow direction. Inspection of the other eigenmodes with
increased growth rate (cf. figure 2 for Strouhal numbers St ≈ 0.3 to 0.7) is presented in figure 5 below.

In figure 4 (together with figure 3(b) for the top view on the medium mesh) a mesh-convergence study
is offered to build confidence in the shock-buffet physics presented herein. A coarser (3.1 million points)
and a finer (8.2 million points) mesh of the same family are investigated. The slices in the right column,
showing the real part of x-momentum component ρ̂u, are taken at constant η = 0.660, which locates them
approximately at the centre of the three-dimensional spatial structure. Gradually converging results with
respect to the mesh density are confirmed; for instance, the features of the spatial structure become more
refined with decreasing mesh spacing. Concerning the corresponding eigenvalues (cf. table 2), it is the
rightmost eigenvalue in the shock-buffet frequency range, identified in either case. Whereas the growth rate
on the coarsest mesh with 3.1 million points still indicates stable conditions, the two finer meshes predict
the instability. Despite a remaining sensitivity in growth rate, the frequencies agree nicely throughout.

Figure 5 shows a portion of the eigenspectrum, where the pure-aerodynamic shock-buffet instability is
found, at three angles of attack around onset together with the spatial structure of a number of physi-
cally dominant eigenvectors at α = 3.75◦. A correlation between the modes’ frequencies and their spatial

Table 2. Mesh convergence of rightmost shock-buffet eigenmode

Mesh points (in million) Eigenvalue (σ, ω)

3.1 −0.163, 2.330

6.2 0.156, 2.371

8.4 0.115, 2.361
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Figure 4. Mesh refinement for spatial structure of rightmost eigenmode showing (left column) volumetric iso-
surfaces for two values (±0.02) of the x-momentum component ρ̂u for coarsest and finest mesh (see figure 3(b)
for medium mesh) and (right column) real part of x-momentum at constant spanwise station η = 0.660. The
sonic line is highlighted by a dash-dotted line. Eigenvectors have been scaled by their respective maximum
value in x-momentum for the purpose of comparing results on different meshes.

structures, represented by volumetric iso-surfaces of the real part of x-momentum ρ̂u at non-dimensional
values of ±0.02, is evident. Eigenvectors have been normalised by their respective x-momentum value at
(x, y, z) = (1.170, 0.546, 0.160), which is the location of the maximum value for mode b in the figure (which
is mode SB; cf. figure 3(b)), to set the phase at this point consistently to zero throughout. The richness
in frequencies and spatial structures could explain the often-reported broadband-frequency nature of shock
buffet on wings, which is in contrast to aerofoil studies.10, 12 Besides the five modes with their spatial struc-
tures shown, there is a large number of modes in this same frequency range, which do not emerge from the
dense band/cloud of eigenvalues but do have a strong contribution from similar coherent structures; yet,
those modes also feature increasingly incoherent contributions between the near- and far-field domain.

For the sake of supporting the statements made herein, stability results, analogous to figure 5, are also
presented for an older (1970s) wing design for which extensive unsteady experimental data from advanced
optical techniques are available3, 7, 14 and various numerical studies have addressed this experiment, too.5, 7, 8

The test case, referred to as RBC12, is a half wing-body configuration scaled to wind tunnel dimensions with
a quarter-chord sweep angle of 25◦, a reference area of 0.296 m2, an aerodynamic mean chord of 0.279 m, a
semi-span of 1.104 m and an aspect ratio of 7.78. Results are presented for the design Mach number of 0.80
and Reynolds number (based on the aerodynamic mean chord) of 3.75 million. Figure 6 shows the same
portion of the eigenspectrum (cf. figure 5), where the pure-aerodynamic shock-buffet instability is suspected.
Specifically, these results have previously been published in [8] and herein we complement those eigenvalues
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Figure 5. Stability results for Common Research Model wing at M = 0.85 and Re = 5 million showing both
eigenvalue spectra at three angles of attack approaching (and beyond) shock-buffet onset and corresponding
spatial structure of representative modes at α = 3.75◦ as two iso-surfaces of real part of x-momentum com-
ponent ρ̂u at non-dimensional values of ±0.02. Eigenvectors have been normalised by the x-momentum value
at (x, y, z) = (1.170,0.546,0.160) to set the phase at this point consistently to zero throughout. Wing-surface
colouring describes steady pressure coefficient C̄p, while solid line is zero skin-friction line.

by corresponding spatial structures. Eigenvalue results at three sub-critical angles of attack are presented.
The clear migration of dominant eigenvalues due to the small increment in angle of attack of a hundredth
degree highlights that the absolute instability is imminent. Note that shock-buffet onset is expected at
angle of attack α ≈ 3.05◦ based on time-marching unsteady RANS simulations.8 Even though the absolute
instability is rightly not computed in the considered angle-of-attack range, due to non-converging steady-state
simulations to obtain the base flow in the vicinity of onset and the currently available matrix-forming non-
time-stepping stability tools, a significant change in the spatial structure of the dominant oscillatory modes
is not expected and hence these give a good indication of the disturbance physics. A similar observation
compared with the Common Research Model wing can be made; coherent structures related to the shock-
buffet instability are centred near the outermost stations of the reverse-flow region in the steady flow field,
albeit it being shifted closer towards the wing tip. Also, a large number of additional modes in this range
exhibit increasingly incoherent features next to having a strong contribution from the described coherent
shock-buffet structures. Frequencies and growth rates of the physically relevant (i.e. non-spurious) modes
approaching the imaginary axis are similar near shock-buffet onset for the two wing designs.

Those additional eigenmodes could play a role in explaining the often-reported (and widely-accepted)
broadband-frequency nature of wing shock buffet beyond onset conditions. Recall that the analysis herein
targets the onset of the alleged Hopf oscillator, called shock buffet, and not established shock-buffet con-
ditions. A second contributing point in this discussion concerns the inherent non-linearity of the dynamics
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Figure 6. Stability results for RBC12 wing at M = 0.80 and Re = 3.75 million showing both eigenvalue spectra
at three angles of attack below shock-buffet onset and corresponding spatial structure of representative modes
at α = 3.00◦ as two iso-surfaces of real part of x-momentum component ρ̂u at non-dimensional values of ±0.02.
Eigenvectors have been normalised by the x-momentum value at (x, y, z) = (0.546,1.010, 0.063) to set the phase
at this point consistently to zero throughout. Wing-surface colouring describes steady pressure coefficient C̄p,
while solid line is zero skin-friction line.

of shock-wave/boundary-layer interaction, which is elucidated below with the help of figure 7(b). Thirdly,
when thoroughly comparing with experimental data, the flexible wing structure must not be ignored at
these high wing-loading conditions, which makes the fluid-only shock-buffet instability and the structural
buffeting response a multidisciplinary challenge indeed. The current RANS results shed light on a pure
aerodynamic instability but at the same time cannot explain everything that is going on in the wind tunnel.
For instance, [14] reported distinct lower-frequency shock dynamics, with an inboard propagation direction
and widely extending along the span. The frequency content is stated to be in the range of aerofoil shock-
buffet frequencies, whether this is coincidental or not. Similar behaviour was mentioned in [1]. Numerically,
small-amplitude forced wing vibration also showed resonant aerodynamic response for St ≈ 0.1, besides the
accepted shock-buffet range with St ≈ 0.3 to 0.7.8, 13 In any case, our computations paid special attention
to this lower-frequency range trying to identify another absolute instability mechanism, without success.
Nevertheless, these findings for transonic flow over wings do not rule out an instability of convective nature
(i.e. a noise amplifier) and pseudo-resonance due to the non-normality of the governing equations.12, 31, 33

It is intriguing to also note a recent biglobal stability analysis in [34] on infinite-span geometries assessing
wing-sweep effects. Biglobal refers to a stability analysis in three-dimensional space with two inhomogeneous
dimensions.35 The third (homogeneous) direction is treated as periodic with spanwise wavenumber β. The
authors contemplate unstable spatial (monotone) modes adding a spanwise three-dimensional structure to a
nominally aerofoil shock-buffet mode for the unswept wing, which turn into propagating oscillatory modes
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(a) (b)

Figure 7. Time histories of lift coefficient around base-flow solution, CL(t) − C̄L, showing (a) initial linear
regime from time-marching unsteady RANS simulations, bracketing onset between α = 3.50◦ and 3.75◦, and
comparison with signal reconstructed from unstable mode at α = 3.75◦ and (b) effect of non-linear saturation.

when wing sweep is imposed. The authors link their co-existing lower- and higher-frequency modes to the
work reported in [1], and that discussion should be expanded in view of results in [7,8,13,14]. Notwithstanding
the triglobal stability analysis on a finite-span (i.e. without periodic boundaries) and swept wing conducted
herein, which cautions juxtaposition, the consensus in salient shock-buffet features is interesting indeed.

To further support the findings, time-marching unsteady RANS results are presented in figure 7. The
governing equations are integrated in time using dual-time stepping, while monitoring convergence with a
Cauchy criterion on the drag coefficient with a relative error tolerance of 10−8. Criteria on iterations and the
chosen time-step size (∆t = 1µs) follow previous studies.5 The figure shows the perturbation of lift coefficient
around the base-flow solution, CL(t)− C̄L, as a function of non-dimensional time t. Specifically, conventional
time-marching results at α = 3.75◦ are compared with the unsteady lift coefficient calculated from the
unstable global mode using the relation C̃L(t) = ĈL eλt + c.c., where c.c. refers to complex conjugate. The
latter equation ensures that a real-valued physical signal is reconstructed from the complex-valued eigenmode,
with the eigenvector prescribing the magnitude and phase at the mesh points and oscillation frequency and
exponential envelope function provided by the eigenvalue. Conveniently, the amplitude of the unsteady lift
coefficient, denoted ĈL, is calculated directly from the eigenvector using the expression ĈL = ∂CL/∂u · û,
which is widely known in the context of (dynamic) derivative and adjoint gradient computations. The partial
derivative with respect to the state variables, computed once and for all for the base flow, generalises to any
integrated aerodynamic load of interest. This makes post-processing very effective without the need otherwise
to feed the computed unsteady field solution of the conservative variables, which can also be reconstructed
from the base flow and eigenmode, back into the non-linear flow solver. Since the linear eigenvector û can
be scaled arbitrarily, and the time-marched solution is integrated in time from an initial condition of white
noise, its magnitude is adjusted manually to align with the time-domain results.

In figure 7(a), time histories of the lift coefficient locate the onset of shock-buffet instability between
α = 3.50◦ and 3.75◦. No attempt is made to refine this bracket further using time-marching simulations.
Agreement between the conventional time-marching simulation and global stability analysis is excellent in
the linear-amplitude range. Since the underlying physics of wing shock buffet is highly non-linear, non-
linear saturation leading to limit-cycle oscillation is expected. This behaviour is presented in figure 7(b).
With a base-flow lift coefficient of C̄L = 0.606, the amplitude non-linearity takes over when the unsteady
perturbation in lift coefficient reaches about 0.1% of its base-flow value. The terminal limit-cycle amplitude
reaches about 0.4% of the base-flow value with its time-averaged mean dropping about 1.2% below the base-
flow lift coefficient. The low limit-cycle amplitude confirms the vicinity to the instability onset for angle of
attack α = 3.75◦. Also observe the rather regular oscillations in the non-linear regime. Recall that stability
analysis of the steady base flow, which is a solution of the discretised non-linear three-dimensional RANS
equations (plus turbulence model), is performed herein. In contrast, the time-averaged mean flow is not such
an equilibrium solution. Subtleties of this distinction have been discussed in the past.31, 36
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Figure 8. Stability results for Common Research Model wing at M = 0.85, Re = 5 million and α = 3.75◦ show-
ing both eigenvalue spectra for half- and full-span computations and corresponding spatial structure of repre-
sentative full-span modes as two iso-surfaces of real part of x-momentum component ρ̂u at non-dimensional
values of ±0.02. Eigenvectors have been scaled by the x-momentum at (x, y, z) = (1.170,0.546, 0.160) to set
the phase at this point consistently to zero throughout. Wing-surface colouring describes steady pressure coef-
ficient C̄p, while solid line is zero skin-friction line. Subscripts s and a indicate symmetric and anti-symmetric
modes, respectively. Symmetric modes correspond to half-model results in figure 5 (modes a, b and c).

The presentation of results concludes with the preliminary study of the impact of (not) enforcing a
symmetry boundary condition at the fuselage centre plane for the Common Research Model configuration.
Figure 8 shows the relevant part of the eigenspectra for the half- and full-span models at angle of attack
α = 3.75◦. Labelling of eigenmodes follows figure 5. We observe pairs of eigenvalues (not referring to the
complex conjugate pairs), labelled with subscripts s and a for symmetric and anti-symmetric, respectively.
The unstable eigenvalue seems to have approximately algebraic multiplicity of 2 (appreciating that we use
iterative solution schemes with approximate linear solves). For the remaining dominant eigenvalues, one
of each pair coincides with the half-span result, while the second is slightly shifted. Note that these pairs
were calculated independent of the chosen shift ζ. Importantly, the corresponding pairs of eigenvectors show
symmetric and anti-symmetric behaviour. Specifically, for the symmetric case, all conservative variables are
mirrored with respect to the fuselage centre plane, e.g. ρ̂uleft = ρ̂uright, except the y-momentum component
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with ρ̂vleft = −ρ̂vright, and vice versa for the anti-symmetric modes. The symmetric full-span modes agree
with the half-span results, as expected, since symmetry boundary condition is enforced in the half-span
simulation. The occurrence of anti-symmetric modes means that the dynamic manifestation of the shock-
buffet instability on port and starboard sides of the aircraft does not have to be synchronised.

V. Conclusions

Eigenmodes of a practical test case with three inhomogeneous spatial dimensions, specifically an aircraft
wing in high-Re turbulent and transonic flow, have been computed. A matrix-forming iterative scheme of
an inner-outer Krylov structure, implemented in an industrial Reynolds-averaged Navier–Stokes flow solver,
succeeds in identifying an absolute instability linked to shock-buffet onset on a wing for the first time. These
fundamental results suggest that the incipient departure of shock-buffet unsteadiness from a non-linear
steady base flow is governed by the dynamics of a single unstable oscillatory eigenmode, which eventually
is superseded by effects of non-linear saturation. Increasing the angle of attack beyond onset condition,
additional modes from a group of modes, exhibiting increased growth rates in the vicinity of instability onset
and lying within the broadband-frequency range typical reported for transport-type wings, become unstable.
Specifically for the wing of the NASA Common Research Model discussed herein, the investigated flow
condition is a Mach number of 0.85 with reference-chord Reynolds number of 5 million. Onset occurs just
above the angle of attack of 3.70◦ with a Strouhal number of approximately 0.39. The spatial structure of the
unstable mode itself confirms what has been coined shock-buffet cells and inferred previously from numerical
and experimental studies on wings. Addressing the symmetric and anti-symmetric characteristics, which is
routinely done in more fundamental fluid-stability studies, the full-span configuration shows that pairs (not
referring to the complex conjugate pairs, which exist, too) of eigenmodes emerge describing complementary
symmetric and anti-symmetric spatial structures.

The numerical findings are surprising in light of the often-used broadband-frequency explanation of three-
dimensional shock buffet and have far-reaching implications, going beyond a mere better understanding of
edge-of-the-envelope flow physics. This study will inform routes to buffet control via eigenvalue sensitiv-
ity and when attempting to establish rapid shock-buffet prediction tools for routine industrial unsteady
aerodynamic analysis, such as reduced order models based on a modal-decomposition-and-projection phi-
losophy. The adapted industrial flow solver paves the way to exploit concepts, established in fundamental
fluid mechanics on mostly canonical test cases, in an applied and practical setting. It is anticipated that
higher-fidelity eddy-resolving simulations, to overcome well-known inherent issues of turbulence modelling,
will reveal the same low-frequency buffet modes albeit a variety of associated feature-rich phenomena. With
an absolute instability confirmed, the role of convective mechanisms in shock-buffet flow physics on wings re-
mains to be scrutinised. In the long-term, fully-coupled fluid-structure analysis is desirable when considering
the innate multidisciplinary nature of such edge-of-the-envelope flight physics.
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