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Abstract 

Infants are adept at learning statistical regularities in artificial language materials, 

suggesting that the ability to learn statistical structure may support language 

development. Indeed, infants who perform better on statistical learning tasks tend 

to be more advanced in parental reports of infants’ language skills. Work with 

adults suggests that one way statistical learning ability affects language 

proficiency is by facilitating real-time language processing. Here we tested 

whether 15-month-olds’ ability to learn sequential statistical structure in artificial 

language materials is related to their ability to encode and interpret native-

language speech. Specifically, we tested their ability to learn sequential structure 

among syllables (Experiment 1) and words (Experiment 2), as well as their ability 

to encode familiar English words in sentences. The results suggest that infants' 

ability to learn sequential structure among syllables is related to their lexical-

processing efficiency, providing continuity with findings from children and adults, 

though effects were modest.  
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Spoken language is a part of virtually all hearing children's daily experience, and 

they clearly learn what they hear. The words that are most prevalent in children's 

language input are learned relatively early (Huttenlocher et al., 1991), and most 

of children's early multi-word utterances are imitations of adult productions 

(Lieven et al., 2003). However, beyond learning specific words and phrases from 

the speech they hear, infants may also be learning about the statistical patterns 

of their language. There are many instances of sequential statistical structure in 

spoken language, such as the fact that syllables that reliably co-occur are likely 

to belong to the same word, while syllables that rarely co-occur are more likely to 

span word boundaries (e.g., Swingley, 2005). Beyond syllable-level statistics, 

words are ordered in highly predictable ways in many languages. For example, in 

English determiners tend to co-occur with nouns, while pronouns and auxiliaries 

tend to co-occur with verbs (e.g., Mintz et al., 2002).  

 

Even very young infants can learn novel sequential statistics in artificial 

languages with just a few minutes of exposure (see Lany & Saffran, 2013, for a 

review). Much work has focused on infants’ ability to learn a form of sequential 

structure referred to as a transitional probability, or TP. The TP between two 

elements, X and Y, is computed by dividing the frequency of XY by the frequency 

of X, yielding the probability that if X occurs, Y will also occur. Transitional 

probabilities between syllables tend to be higher within words than between 

them, and thus provide information that is relevant to segmenting word forms 

within fluent speech. Infants can track TPs between syllables in synthesized and 
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naturally produced speech, suggesting that it may be one mechanism by which 

word forms are segmented (e.g., Aslin et al., 1998; Saffran et al., 1996; Pelucci 

et al, 2009). Furthermore, infants map sequences with high internal TPs to 

referents, but do not do so for sequences that are equally frequent but have low 

internal TPs (Graf Estes et al., 2007; Graf Estes, 2012; Hay et al., 2011). The 

fact that infants selectively treat high TP sequences as labels suggests that 

sequential learning can yield word-like representations, and that such learning is 

potentially relevant to lexical development.  

 

Infants can also track sequential dependencies at higher levels of language 

structure, such as the likelihood that words or word categories will co-occur (e.g., 

determiner-noun and auxiliary-verb co-occurrence relationships). Many studies 

have used an aX bY artificial language, in which as are followed by Xs and bs by 

Ys but not vice versa, to study this sequential structure. Infants learn these co-

occurrence relationships best when Xs and Ys can be distinguished by salient 

perceptual cues, such as differences in their phonological characteristics (Gerken 

et al., 2005; Gómez & Lakusta, 2004; Lany & Gómez, 2008). By 12 months of 

age infants can learn the aX bY structure, even when it is probabilistic (Gómez & 

Lakusta, 2004). Moreover, by 22 months of age infants can use the correlated 

phonological and distributional cues in the aX bY language to help them form 

robust word-referent associations, and to guide their interpretation of novel words 

when reference is ambiguous (Lany & Saffran, 2010). Specifically, infants were 

given auditory experience with an aX bY language as described above (the 
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Experimental Group), or with a version of the language in which distributional and 

phonological cues did not reliably cue category membership (the Control group). 

Both groups were then trained on pairings between the languages’ word-

categories and pictures of animals and vehicles (e.g., aX-phrases labeled 

animals, and bY-phrases labeled vehicles), and tested on trained and novel 

picture-word pairings. Only Experimental infants learned the associations 

between words and pictures they were trained on and generalized the pattern to 

novel pairings, suggesting that statistical cues were extremely important to word 

learning. These findings parallel those from studies of native language 

development, which show that children use distributional cues to help them 

establish whether words refer to objects or actions by 24-onths of age (Waxman 

et al., 2009). 

 

These studies suggest that infants are sensitive to sequential statistical 

information that has potential to be highly informative for acquiring their native 

language. A handful of studies have directly examined	whether infants' ability to 

detect to novel sequential statistics presented in the auditory modality is related 

to native language development, typically their scores on the MacArthur-Bates 

Communicative Development Inventory (MCDI), which is a normed parent-report 

measure of vocabulary size. Some researchers have approached this question 

by testing whether infants' ability to learn phonotactic patterns that are not 

allowed in their native language is related to their native language proficiency.  

For example, 19 month-old infants with larger vocabularies were less likely to 
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learn phonotactic patterns that are illegal in English (i.e., words beginning with 

the sound sequences tl, ps, fw, and shn) than infants who knew fewer English 

words (Graf Estes, Gluck, & Grimm, 2016). Infants with larger vocabularies are 

also less likely to learn words with illegal phonotactic patterns as object labels 

(Graf Estes, Edwards, & Saffran, 2011). These findings suggest that infants who 

know more words in their native language tend to be more entrenched in their 

native language phonotactics, resistant to learning patterns that do not conform 

to them. 

 

Another line of work has investigated the ability to learn statistical regularities in 

nonlinguistic materials, thus avoiding the problem of native language 

interference. For example, Shafto et al. (2012) tested whether 8.5 month-olds’ 

ability to learn a visuo-spatial sequence was related to concurrent and later 

parent-report measures of language development. Infants were presented with 

triplets of shapes, with each triplet occurring in a consistently ordered spatial 

configuration. Infants’ visual sequence learning was related to both gesture use 

and receptive vocabulary size, though the effects were modest and somewhat 

inconsistent across the ages tested (see also Ellis et al., 2013).  

 

In a related study Kidd and Arciuli (2016) tested whether 6-8 years olds' ability to 

learn nonlinguistic visual sequences was related to their performance on a 

sentence comprehension task. The statistical learning task tapped children's 

ability to learn high TP triplets within a series of cartoon-like aliens. The sentence 
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comprehension task involved picking the picture described by a sentence (i.e., 

“Which chicken is being kissed by the mouse?”). Children who exhibited better 

visual sequence learning also demonstrated better comprehension of the most 

challenging sentences, even when controlling for measures of their working 

memory capacity and nonverbal IQ. These findings provide compelling evidence 

that statistical learning ability is related to language proficiency in childhood. The 

work is also notable in its use of a behavioral test to measure specific aspects of 

native-language proficiency, rather than more general language outcome 

measures.  

 

Other studies have approached the task of investigating relations between 

statistical learning and language development by using artificial languages that 

contain statistical regularities that are novel, but that do not directly violate native 

language structures. For example, Lany tested whether infants who are better 

able to capitalize on statistical regularities in an aX bY language, which is 

modeled after determiner-noun and auxiliary-verb co-occurrence relations in 

English, are also more advanced in their native language development (Lany, 

2014; Lany & Safffran, 2011). By 22 months of age infants use the statistical 

structure in the language to help them learn word-referent mappings (Lany & 

Saffran, 2010). Importantly, infants who are better able to use probabilistic 

sequential regularities to learn word-referent mappings in an artificial language 

are more likely to have begun combining words regularly in their own speech 

(Lany, 2014). In addition, even though infants benefit from both distributional and 
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phonological cues in these tasks, infants with larger vocabularies are more likely 

to rely on word-order cues to generalize (i.e., using the determiner-like word to 

help establish reference), while infants with smaller vocabularies are more likely 

to use the phonological properties of the words to do so (Lany & Saffran, 2011).  

 

One advantage to using artificial languages that are constructed to parallel 

natural language is that it allows researchers to test connections between native 

language development and learning statistical regularities that clearly tap 

processes relevant to language learning. For example, by studying how infants 

use statistical regularities to learn words, the studies described above may shed 

light on developmental differences in the accessibility of different kinds of cues in 

word learning tasks (Lany, 2014; and Lany & Saffran, 2011). We note that there 

is convergence across tasks, as the relations observed in studies using artificial 

languages modeled after natural languages are consistent with those from work 

examining relations between tasks assessing statistical learning in the visual 

modality across infancy and childhood (Shafto et al., 2012; Kidd 2016) as well as 

with the relations between infants’ knowledge of native language statistics and 

vocabulary development (Graf Estes et al., 2016).  

 

Altogether, the studies reviewed above provide empirical support for the 

hypothesis that infants’ ability to learn sequential structure plays a role in 

language development. Specifically, they suggest that performance on tasks 

assessing sequential statistical learning are related to parent-report measures of 
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language development, such as vocabulary size and grammatical development. 

They are also consistent with evidence that sensitivity to sequential statistical 

structure is related to real-time language-language processing in adults. For 

example, Farmer et al. (2006) tested how quickly adults recognize nouns as a 

function of their phonological properties. The target words occurred in sentence 

contexts that provided sequential cues that unambiguously suggested the next 

word should be a noun (e.g., "The curious boy saved the ____"). Participants 

were faster to recognize target words when they had phonological characteristics 

that were more typical of nouns (e.g., "marble") than when their phonology was 

more typical of verbs (e.g., "insect"). Likewise, Conway et al. (2010) found that 

adults who were better able to learn novel sequential patterns in artificial 

grammars were more likely to capitalize on sequential structure to recognize 

words in native language speech.  

 

Conway et al. (2010) interpret these findings as evidence that individuals with 

better statistical learning abilities are better able to learn sequential structure in 

their native language, and in turn are able to capitalize on such structure to 

facilitate encoding and interpreting speech. However, we do not know whether 

statistical learning skill is related to speech processing during language 

acquisition. Infants' lexical-processing efficiency, or LPE, can be tested by 

presenting a familiar "target" word (e.g., "Find the doggie!") in conjunction with a 

picture array containing the target referent (i.e., a dog) and a distractor (e.g., a 

baby). Relative to adults, infants and children have poor LPE, recognizing words 
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more slowly and less accurately, but LPE improves substantially across the 

second year of life (Fernald et al., 1998 2001). It is possible that infants’ ability to 

track sequential statistics facilitates gains in LPE. 

 

Thus, in the current work we tested the hypothesis that infants' sequential 

statistical learning ability is related to LPE across two experiments using well-

studied artificial languages that contain sequential structure. In both experiments 

we assessed LPE using the task described above, which has been used 

extensively to study individual differences in real-time processing in infants of the 

ages we tested here (e.g., Fernald et al. 2006; 2008). In Experiment 1 we tested 

whether infants' performance on a word segmentation task is related to their 

performance on the LPE task. In Experiment 2 we tested whether infants’ ability 

to track word-order patterns is related to their LPE.  

 

Experiment 1 

We asked whether infants who are better able to learn sequential structure in 

speech are better able to recognize word forms quickly in real time. We tested 

statistical learning using an artificial language that was composed of a 

continuous stream of syllables. Within the stream there were syllable sequences 

with both High and Low TPs (Graf Estes et al., 2007). We tested whether infants 

were able to track the TPs by asking whether they discriminate between the HTP 

and LTP syllable sequences using the Head-Turn Preference Procedure (HTPP). 

In the HTTP, infants' ability to discriminate between two types of stimuli is 
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assessed through preferential listening. Learning can be expressed both as a 

novelty preference and a familiarity preference, depending on many factors, such 

as the social relevance of the stimuli, and infants’ age and encoding ability 

(Hunter & Ames, 1998; Houston-Price & Nakia, 2004).  

 

The HTPP is the task most commonly used to study infant statistical learning in 

the auditory modality. Thus, there is a great deal of value in using this task to 

measure statistical learning in the current work. The HTPP has predominantly 

been used to test language learning and development by examining group-level 

performance, however it has recently been used to test whether there is a 

connection between individual infants’ speech segmentation ability and 

standardized assessments of their language development (Newman et al, 2006; 

Newman et al, 2016; Singh et al., 2012; see also Graf Estes et al., 2016). Thus, 

the HTPP may also reveal meaningful individual differences in sensitivity to TPs 

relevant for word segmentation in the current experiment.  

 

Furthermore, by examining whether there are individual differences in infants’ 

preference patterns (i.e., novelty versus familiarity, and magnitude of 

preference), this work may shed light on failures to replicate prior findings. In 

developmental research with the HTPP, researchers typically focus on tight age 

ranges in an effort to reduce individual variability, but age is not necessarily the 

best predictor of language development. Thus, including characteristics of the 

sample that pertain to language development (e.g., LPE) may help researchers 
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determine whether differences in results are related to differences in language 

skills across samples, or to create groups based on age and language 

competence rather than on age alone. 

 

To measure LPE, we used a task designed by Fernald and colleagues that 

assesses infants' ability to use spoken language to find matching visual objects 

(see Fernald et al., 2008, for an overview of the method). On a given trial, infants 

might view a picture of a dog and a picture of a baby, and hear "Find the baby!". 

The words selected for testing are highly likely to be known by infants and 

toddlers at this age, and thus our participants were likely to be able to find the 

correct picture. Of primary interest is the speed with which they did so. We chose 

this task because it has been used extensively (e.g., Fernald et al., 1998; Fernald 

et al., 2006), and because infants with larger vocabularies at 15 months tend to 

process speech more rapidly by the time they are about 2 years of age (Fernald 

et al., 2006).  

 

We tested 15-month-old infants because this is the youngest age at which 

Fernald recommends using the LPE task (Fernald et al., 2008).  The artificial 

language we chose had not previously been used with 15-month-olds. Thus, we 

did not have an a priori prediction for the direction of preference that would be 

associated with better statistical learning. Rather, we predicted that the 

magnitude of infants’ preferences would be associated with their performance on 

the LPE task. 
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Methods 

Participants. Participants were 38 English-learning infants between 15.0 and 16.0 

months of age (21 were female; see Table 1 for additional descriptive statistics). 

Infants were free of hearing, vision, or language-development problems based on 

parental report. Infants were not eligible if they were born before 36 weeks 

gestation, weighed less than 5lbs 5oz at birth. An additional 16 infants were 

tested but their data were not included due to failure to contribute sufficient data 

on the LPE (n = 5) or statistical learning tasks (n = 5), due to fussiness or 

inattention, equipment failure or experimenter error (n = 4), falling asleep (n = 1), 

or because their scores on any of the measures were greater than 3 standard 

deviations from the mean (n = 1).1 Parental consent was obtained for all 

participants. Participants were given a children's book or 15 dollars for 

participating in the study.  

 

Materials and Procedure. Infants were first trained and tested on the statistical 

learning task, followed by the LPE task. A parent or caregiver accompanied the 

infant for the duration of the experiment, and they were instructed not to talk 

during that time. Both tasks took place in an 8’	X 8’	sound-attenuated room. A 60”	

LCD screen was mounted on the central wall, and a 20”	monitor with a speaker 

behind it was mounted on each side wall, all at the height of 31”. A chair for the 

parent was located approximately 3 feet away from the central screen. A digital 

																																																								
1 Excluded infants' receptive vocabulary size  (M = 161, range 4 – 383) was 
comparable to that of the infants whose data were included (see Table 1).  
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video camera was mounted flush with the lower edge of the 60”	central screen so 

that infants’	visual attention could be monitored and recorded to a computer hard 

drive when seated on their parents lap. An experimenter administered the tasks 

from outside the room via a PC computer running custom software. The 

experimenter was blind to the experimental stimuli and monitored infant visual 

attention via the digital video feed.  

 

Statistical Learning Task Materials and Procedure. The materials and 

procedure for the statistical learning task were the auditory stimuli used in 

Experiment 2 of Graf Estes et al. (2007). Specifically, during the Auditory 

Familiarization phase, infants listened to a 5.5 minute stream of concatenated 

consonant-vowel syllables while playing quietly on the floor of the sound-

attenuated room. The familiarization stream was composed of 8 unique syllables 

that were combined into 4 statistically-defined disyllabic "words". There were two 

counterbalanced languages; Language 1 and Language 2. Language 1 words 

were timay, dobu, gapi, moku and Language 2 words were pimo, kuga, buti, 

maydo. The materials were generated by a trained female speaker who recorded 

sets of three-syllable sequences. The middle syllables from these sequences 

were spliced into a fluent speech stream (e.g., the sequences timaydo and 

maydobu were spliced to form the sequence maydo). This technique preserved 

appropriate coarticulation contexts for the target syllables, both within and across 

words, but resulted in no pauses or other reliable acoustic cues to word 

boundaries.  
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In each language, two of the words	occurred with relatively high frequency. For 

example, in Language 1 timay and dobu occurred 180 times while gapi and moku 

occurred 90 times. The high frequency words occurred together in sequence 90 

times (e.g., timaydobu; dobutimay), creating “partword” sequences that recurred 

across word boundaries 90 times (e.g., maydo; buti). At Test, we used these 

frequently-occurring partwords, as well as the low-frequency words (e.g., gapi 

and moku), which occurred with equal frequency. Importantly, the test part-words 

had internal TPs of .5, but the test words had internal TPs of 1.0.  

 

Infants’	listening preferences for low-frequency words vs. partwords was 

assessed using the HTPP. On each test trial a word or partword was repeated up 

to 25 times. For example, on the gapi test trial, 4 different tokens of gapi were 

repeated in a random order separated by .5 sec pauses. Each test trial was 

presented twice, for a total of 8 test trials. All infants heard the same set of test 

trials, but the sequences that were words for an individual infant familiarized with 

Language 1 were partwords for infants familiarized with Language 2, and vice 

versa. This allowed us to control for arbitrary listening preferences. 

 

During the test phase, the experimenter used the custom software to control the 

presentation of auditory stimuli and record infants’	listening times. The infant was 

seated on a parent’s lap, and each test trial began with a flashing red circle 

displayed on a monitor located in front of the infant. Once the infant focused on 
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the screen, a GIF animation of a steam train appeared on a monitor 90 degrees 

to the right or left, and the center circle disappeared. When the infant turned his 

or her head at least 30 degrees toward the side stimulus, the experimenter 

signaled the computer to present an auditory stimulus. The auditory stimulus 

continued to play until the infant looked away for at least two consecutive 

seconds, or until 35 seconds had elapsed. To train infants on the contingency 

between their looking behavior and the presentation of auditory stimuli, the test 

phase began with two trials that consisted of music. 

 

Lexical-Processing Efficiency (LPE) Task Materials and Procedure. After 

infants completed the statistical learning task they were given a short break (if 

needed) before we assessed their LPE. The LPE task tested infants’	ability to 

find the referents of several common English words (see Fernald et al., 2008 for 

an overview). On each trial, two realistic color pictures of familiar animals or 

objects appeared in the lower right and left corners of the central monitor. After 3 

seconds, infants heard the phrase “Find the [target word]”	and the trial continued 

for approximately 3 seconds. The phrases were naturally produced in an infant-

directed register by a female speaker. 

 

The	target words were kitty, doggie, birdie, baby, car, and shoe. Infants were 

tested on each target word 4 times, with side of target presentation 

counterbalanced. Each picture occurred equally often as a target and a foil. After 

every 4th trial, infants viewed a reward trial consisting of a colorful image moving 
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across the screen paired with encouraging remarks, such as “Good job!”	and 

“Way to go!”.  Infants' looking behavior during this task was recorded directly to a 

hard drive for coding and analysis. 

 

Vocabulary Size Assessment. After the experiment, parents completed the 

MacArthur-Bates Communicative Development Inventory (MCDI): Words and 

Gestures. This form contains a set of lexical items that are typically learned 

within the first 3 years, and we used a count of the words that parents indicated 

that their child understands (receptive vocabulary).  

 

Results and Discussion 

Data Preparation. Because the minimum time needed to hear a word or part-

word sequence was approximately 1 second, trials on which infants listened for 

less than a second were not included. Infants who did not contribute at least 2 

usable test trials of each type (word and partword) were excluded from analysis. 

We used a proportional preference measure to capture performance on the 

statistical learning task. A preference score for each infant was created by 

dividing her average listening time to word trials by the sum of her average 

listening time to word plus partword trials. Thus, scores above .5 indicate a 

stronger preference for words over partwords, and the higher the number the 

greater their word preference. The proportional preference measure normalizes 

across differences in overall listening time2. While both words and partwords had 

																																																								
2 The results were largely the same when we used a subtraction measure of listening time to 
words minus part-words. 
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been heard equally often during familiarization, the words contained more 

reliable statistical structure, and can therefore be thought of as relatively 

“familiar”. The partwords, because they consisted of less reliable transitions, 

were relatively “novel”.  

 

The recordings of the LPE task were coded frame-by-frame offline by trained 

observers naïve to the content of each trial using iCoder software developed by 

Fernald et al, (2008). Data from 10% of participants were randomly selected to 

be independently coded. Agreement between coders within a single frame was 

greater than 98%. Following Fernald and colleagues (2008), LPE was assessed 

on trials during which infants were looking to the distractor picture at label onset. 

In particular, the time it took to initiate a gaze shift to the correct picture was 

averaged across those trials to obtain a reaction time (RT) score. To increase the 

likelihood that shifts were related to hearing the target word, trials on which 

infants shifted before 367ms had elapsed, the minimum time needed to plan and 

initiate an eye-movement in response to auditory information, or after 2200ms, 

were not included. Using this task, Fernald has found that correlational analyses 

between RT calculated over all 6 words presented and MCDI scores do not yield 

different results from those using RT calculated using only words that parents 

reported their infant to understand (Fernald et al., 2006). Calculating RT over 

more trials is likely to provide a more stable estimate, and thus, we included trials 

testing all 6 words. Data from infants who did not contribute at least 2 usable 

trials over which to calculate a mean RT score were excluded from analysis.  
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Preliminary Analyses. All tests in this experiment were 2-tailed and alpha levels 

were set to .05. Preliminary analyses revealed no effects of artificial language 

version on infants' preferences for words, and no effects of sex for this measure 

or for the LPE and vocabulary size measures. Thus these factors were not 

included in further analyses. A one-sample t-test indicated that infants as a whole 

did not show a preference for either test trial type (M = .5, SE = .02, t (37) = .11, 

p = .92). We will address the implications of this finding in the context of the 

results of the correlational analyses.	

Table 1: Experiment 1 Descriptive Statistics  

  Mean Min Max SD 

Words Understood (raw) 154.4 37 375 95.2 

Words Understood (percentile) 45.06 5 99 31.7 

SL Task Preference .50 .30 .72 .11 

LPE Task RT (ms) 1003.8 533.7 1379.8 229.9 
 
Note: The Words Understood raw and percentile scores came from the MCDI, 
the SL (Statistical Learning) Task Preference score reflects their preference for 
listening to words over partwords (a proportion score), and the LPE Task RT 
reflects the speed with which they used English words to find target pictures. 
 
Relations Between Performance on the Statistical Learning and LPE Tasks. 

Our primary question was whether individual differences in statistical learning are 

related to LPE. We addressed this question by testing how these factors covary. 

We found that they are negatively correlated, such that infants who showed 

stronger familiarity preferences had shorter RTs on the LPE task (See Table 2; 

Figure 1). Infants' preferences can change over the course of testing, and we 
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found that the relation between preferences and LPE was stronger for the first 

test block (r (36) = -.33, p = .04) than in the second block (r (36) = -.25, p = .14). 

However, an ANCOVA indicated that there was no interaction between these 

factors (F (1, 34) = .47, p = .5), and thus, we did not break down the preference 

score by block in subsequent analyses. 

Table 2: Experiment 1 Correlations  

  Age 
Vocabulary 

Size  LPE 

Age          – – – 

Vocabulary Size -.01 – – 

LPE .05 -.33* – 

SL Task Preference -.05 .16 -0.38* 
* p <.05 
 
Note: Infants' receptive vocabulary size (raw) was measured using the MCDI, SL 
(Statistical Learning) Task Preference by the proportion score reflecting their 
preference for words over partwords, and the LPE by the speed with which they 
used spoken words to find target pictures. 
 
Because previous work suggests that infants' LPE scores are related to age and 

vocabulary size (Fernald et al, 1998; 2006), we also wanted to account for 

variance in LPE that was related these factors. To that end, we performed a 

hierarchical regression in which we tested whether statistical learning scores 

account for unique variance in LPE. In the Control Model we entered age and 

vocabulary size as control variables, and performance on the statistical learning 

task was entered in the next block of the analysis to test the SL model. The 

dependent variable was performance on the LPE Task. The Control model 

including age and vocabulary size did not predict variance in SPE; R2  = .11, F (2, 

35) = 2.15, p = .13 (see Table 3). Critically, adding statistical learning to the 
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model (the SL Model in Table 3) accounted for significant additional variance in 

LPE ΔR2 = .12, ΔF (1,34) = 5.02, p = .03 (see also Figure 1).	

Table 3: Regression Models 
Step 1 (Control Model) B SE B β p 
Constant 533.16 1873.55 

 
.76 

Age 36.15 120.89 .05 .77 
Vocabulary Size -.79 .39 -.33 .05 

     Step 2 (SL Model) b SE B β p 
Constant 1080.75 1789.21 

 
.55 

Age 24.96 114.60 .03 .90 
Vocabulary Size -.66 .37 -.27 .08 
Statistical Learning  -725.82 323.94 -.33 .03 

 

These findings suggest that infants’	performance on a test of their ability to learn 

statistical structure in speech was selectively related to their native language 

LPE. Specifically, infants with stronger preferences for word test items were 

faster on the LPE task, but neither preference scores nor LPE were related to 

age. Furthermore, infants' vocabulary size predicted their LPE but performance 

on the statistical learning task accounted for additional variance. 	

 

As can be seen in Figure 1, infants who showed a familiarity preference tended 

to have faster LPE scores, and those with a novelty preference tended to have 

slower LPE scores. However, when the same artificial language was used to test 

TP learning in younger infants using a central fixation auditory preference 

procedure (Graf Estes, 2012), they showed a novelty preference at test. It is 

beyond the scope of the current work to determine why our findings differed from 

those of Graf Estes (2012) (i.e., whether the difference is related to the specific 
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method we used, to the age of our participants, etc.). However, given that we did 

not predict a direction of preference a priori, we note the possibility of a type 1 

error, or that we obtained this correlation by chance. Thus, Experiment 2 was 

designed as a conceptual replication in which we asked if sequential statistical 

learning and LPE are related when using different artificial-language materials 

that incorporate sequential statistics relevant to learning word-order patterns.		

 

Experiment 2 

The goal of Experiment 2 was to test whether infants’ ability to learn sequential 

statistical regularities across words is related to their LPE. To that end, we 

presented 15-month-olds with an artificial language containing aX bY word-order 

relationships. This language incorporates sequential structure modeled after 

determiner-noun and auxiliary-verb co-occurrence relationships. Gómez and 

Lakusta (2004) found that when 12-month-olds were familiarized to a similar aX 

bY language, and then tested on grammatical and ungrammatical strings, most 

infants showed a preference for the grammatical strings. Thus, in the current 

experiment we used the HTPP to assess infants’ ability to learn statistical 

regularities in the aX bY language, and assessed LPE as in Experiment 1. Based 

on the findings of Experiment 1 and the prior work with this artificial language, we 

predicted that infants showing a stronger preference for statistically robust 

structure (i.e., a stronger preference for familiar grammatical strings over 

ungrammatical ones) would also have better LPE. 
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Methods 

Participants. Participants were 30 infants between 15.0 and 15.9 months of age 

(16 female; see Table 3 for additional descriptive statistics). The inclusion criteria 

were the same as in Experiment 1. An additional 14 infants were tested but their 

data were excluded for fussiness (n=8), equipment failure and experimenter error 

(n=4), or failure to contribute sufficient usable data (n=2).3  

 

Materials and Procedure. The entire experiment took place in the sound-

attenuated booth from Experiment 1, and the general structure was parallel, such 

that infants were trained and tested on an artificial language-learning task, then 

tested on the LPE task, and finally caregivers filled out the MCDI: Words and 

Gestures form. 

 

Statistical Learning Task. During the Familiarization phase, infants were seated 

on a parent’s lap as the artificial language was played. There were two a-words 

(ong, erd) and two b-words (alt, ush), and eight each of the X- and Y-words. The 

X-words were disyllabic (coomo, fengle, kicey, loga, paylig, wazil, bevit, meeper), 

while the Y-words were monosyllabic (deech, ghope, jic, skige, vabe, tam, vot, 

rud). Infants were familiarized to one of two versions of the language. In 

Language 1 strings took the form aX and bY (e.g., erd coomo, ong kicey, ush 

																																																								
3 On average, excluded participants' vocabulary size (M = 129, range 22-338), 
which was comparable to that of the infants included in the final data set (See 
Table 3). 
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deech, alt skige). In Language 2 the pairings were switched such that strings 

took the form aY and bX (e.g. erd deech, ong skige, ush coomo, alt kicey).  

 

A key feature of this artificial language is that the X and Y categories were 

distinguished by correlated phonological and distributional cues. Using Language 

1 to illustrate, disyllabic X-words followed a-words in phrases (e.g., ong coomo, 

erd coomo), whereas monosyllabic Y-words followed b-words (e.g., alt deech, 

ush deech). Thus, words that shared phonological properties also shared 

distributional properties. The presence of correlated cues is critical to grouping 

words into categories, and to learning their co-occurrence relationships in this aX 

bY language (Gómez & Lakusta, 2004; Lany & Gómez, 2008). 

 

The materials were spoken by an adult female in an animated voice and digitized 

for editing. One token of each word was selected so that aX and bY phrases (or 

aY and bX phrases in Language 2) could be created by splicing tokens together 

separated by 0.1-sec pauses. Thus, each language contained 32 unique phrases 

(16 aX and 16 bY, or vice versa in Language 2). Each phrase occurred four times 

during the randomized familiarization sequence, which lasted 3.5 minutes.  

 

During Familiarization, infants were also trained on the contingency between 

their looking behavior and the appearance and disappearance of stimuli on the 

center and side monitors. When the infant was attentive, the experimenter used 

custom PC software to initiate the Familiarization stream and to control the 
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presentation of the visual stimuli. At the same time, a flashing light was displayed 

on a monitor located in front of the infant. Once the infant was focused on the 

screen, the experimenter signaled the computer to present the steam train GIF 

on a monitor 90 degrees to the right or left, and the flashing light disappeared. 

The side stimulus was displayed until the infant looked away for more than 2 

consecutive seconds, or more than 45 seconds had elapsed. At that point the 

center stimulus reappeared and the process repeated. The auditory stream 

played continuously while the front and side stimuli appeared contingent on 

infants’ looking behavior. 

 

After Familiarization, infants were tested on their ability to discriminate between 

grammatical and ungrammatical strings. The test included four trials consisting of 

Language 1 strings  (e.g., erd coomo, ush deech, ong fengle, alt ghope) and four 

trials consisting of Version 2 strings (e.g., erd deech, ush coomo, ong ghope, alt 

fengle). Thus, all of the words in the test trials were familiar to infants, but not all 

of the phrases conformed to the familiarization language. For infants familiarized 

to Language 1, the Language 1 strings were Grammatical, and the Language 2 

strings were Ungrammatical, and vice versa for infants familiarized to Language 

2. Critically, infants could only distinguish between Language 1 and 2 strings if 

they had learned the co-occurrence relationships between the words.  

 

Infants were presented with two blocks of test trials, each consisting of two 

Language 1 and two Language 2 trials, for a total of 8 test trials. The custom 
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software was used to control the presentation of the auditory stimuli and to 

record infants’ listening times, as in Experiment 1. Trials lasted until the infant 

looked away for more than 2 consecutive seconds or more than 45 seconds 

elapsed. The order and side of test-trial presentation were randomized.  

 

Results and Discussion 

Data Processing. The HTPP data were processed similarly to Experiment 1, 

with one exception. Because strings were approximately 1.5 seconds in duration, 

trials on which infants’ listening times were less than 1.5 second were not 

included in the calculation of their mean listening times. As in Experiment 1, 

infants who did not contribute at least 2 usable test trials of each type 

(Grammatical and Ungrammatical) were excluded from analysis. Infants' 

preference scores were calculated as in Experiment 1, as were their RTs on the 

LPE task. LPE data from 10% of participants were randomly selected and 

independently coded. Agreement between coders within a single frame was 

greater than 98%. 

 

Preliminary Analyses. Infants’ performance on the LPE and statistical-learning 

tasks did not differ as a function of sex or language version, and thus we 

collapsed across these variables in subsequent analyses. As in Experiment 1, 

infants did not show a significant preference for the familiar test items (M = .51, 

SE = .03; t (29) = .2, p = .4).  
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Relations Between Performance on the Statistical Learning and LPE Tasks. 

Our main question was whether infants' statistical learning ability was related to 

their LPE. We used a 1-tailed correlation for our initial analyses because we 

predicted that infants with greater familiarity preferences would also process 

native language speech more rapidly. Overall, infants’ preferences were 

negatively correlated with their LPE, but the strength of the relation was quite 

weak, and did not reach significance; r (29) = -.13, p > .05. As in Experiment 1, 

the relation was significant in the first block of testing r (29) = -.31, p = .05, but 

not the second r (25) = .21, p > .05 (Table 5). A two-tailed ACOVA revealed an 

interaction between test block (Blocks 1 and 2) and LPE (F (1, 24) = 4.24, p = 

.05. Only Block 1 was related to SPE; B = -14.02, p = .03 (Block 2 B = 4.35, p = 

.39). Thus, we focused on Block 1 performance in subsequent analyses. 

 

Table 4: Experiment 2 Descriptive Statistics  

  Mean Min Max SD 

Words Understood (raw) 140.9 19 343 76.72 

Words Understood (percentile) 40.32 3 97 19.65 

SL Task Preference (Block 1) .48 .09 .93 .24 

LPE RT (ms) 1052.7 533.5 1933.3 320.5 
 

Note: As in Experiment 1, the Words Understood raw and percentile scores 
came from the MCDI, the SL (Statistical Learning) Task score reflects their 
preference for listening to Grammatical over Ungrammatical strings (a proportion 
score), and LPE RT reflects the speed with which they interpreted familiar 
English words.	
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To determine whether LPE was selectively related to statistical learning 

performance, we used a hierarchical regression in which infants’ age and 

receptive vocabulary size were entered in the first step, and statistical learning 

(Block 1) was entered in the second (see Table 4 for descriptives). The Control 

Model including age and vocabulary size did not explain significant variance in 

SPE; R2 = .07, F (2, 27) = .95, p = .4 (see Table 6). However, the adding infants’ 

statistical learning scores (the SL Model in Table 6) increased the model fit, ΔR2 

= .13, ΔF (1, 26) = 4.5, p = .04.4  

 

Table 5: Experiment 2 Correlations 

  Age Vocabulary LPE 

Age – – – 
Vocabulary  0.12 – – 
LPE -0.07 0.24 – 
SL Task Preference -0.38** -0.01 -0.31* 

Note: Receptive vocabulary size (raw) was measured using the MCDI, LPE by 
the speed with which they used English words to find target pictures, and SL 
(Statistical Learning) by their preference for listening to Grammatical over 
Ungrammatical strings in Block 1 (a proportion score). 
* p <.1, **p <.05 
 
Table 6: Regression Models 
Step 1 (Control Model) B SE B β p 
Constant 2853.41 3537.35 

 
.81 

Age -126.00 229.67 -.10 -.55 
Vocabulary Size 1.03 .78 .25 1.32 

     Step 2 (SL Model) b SE B β p 
Constant 6018.74 3649.32 

 
.11 

Age -314.98 233.85 -.26 .19 
Vocabulary Size 1.09 .74 .26 .15 

																																																								
4 As in Experiment 1, the pattern of findings across the analyses was unchanged when we used 
mean listening to Grammatical strings minus listening to Ungrammatical strings, rather than the 
proportional score used here.  
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Statistical Learning  -526.66 248.72 -.40 .04 
 

In sum, we found that 15-month-old infants’ LPE is related to their performance 

on a task assessing learning of word-level co-occurrence statistics in an artificial 

language. Specifically, infants’ preference for familiar grammatical strings vs. 

ungrammatical strings predicted their LPE, such that infants who tended to listen 

longer to familiar, grammatical strings processed familiar native language words 

more rapidly. This relation, while holding only in the first block of testing, was 

significant when including variance related to infants’ age and vocabulary size. 

 

These findings parallel those from Experiment 1, in which infants with better LPE 

showed a preference for highly predictable syllable sequences. Thus, across two 

different tasks, two groups of infants showed the same pattern of performance. 

Infants who encoded native language speech more efficiently tended to listen 

longer to sequences that were consistent with the most robust statistical 

regularities in their familiarization, while infants with slower LPE scores tended to 

listen longer to sequences that were inconsistent with that structure. In both 

experiments we also found relations between native language processing and 

statistical learning when including variance accounted for by age and vocabulary 

size. Nonetheless, the relations we observed are modest, and should be taken 

as a starting point for future research. 

 

General Discussion 
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We tested whether infants’ sequential statistical learning ability is related to their 

ability to encode and interpret native-language speech. We used two classic 

artificial language structures that tap infants' learning of sequential structure: One 

tapped statistical regularities holding across syllables, or TPs (Experiment 1) and 

the other tapped sequential regularities holding across words (Experiment 2). 

Previous work suggested that infants aged 15 months and younger are capable 

of learning the kinds of sequential structure found in both artificial languages 

(Aslin et al., 1998; Gómez & Lakusta, 2004; Graf Estes et al., 2007; Graf Estes, 

2012; Lany & Gómez, 2008). We assessed speech processing using a well-

studied lexical-processing efficiency (LPE) task in which infants heard words that 

were likely to be familiar to them. The words were presented in simple ostensive 

labeling phrases that are common in speech to infants (Cameron Faulkner et al., 

2003). 

 

In Experiment 1, we found that infants who showed stronger preferences for 

word-like units from an artificial language also performed better on the LPE task. 

In Experiment 2, we found that infants who showed stronger preferences for 

attested word-order patterns also had better LPE, though infants' preferences 

faded over the course of testing. The relations we observed were of modest 

strength, but there was consistency in the results. Together, these findings 

suggest that infants’ ability to learn novel sequential regularities is related to their 

ability to encode and interpret fluent speech from their native-language.  
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While we found evidence that sequential statistical learning abilities and LPE are 

related, we should note that we did not predict that better statistical learning 

would be evidenced as a novelty preference; in fact, we did not predict a specific 

direction of preference. Researchers often remain uncommitted about the likely 

the direction of preference that they will obtain in a given HTPP experiment, as 

both familiarity and novelty preferences are common. For example, Gómez and 

Lakusta (2005) found familiarity preferences using an aX bY language similar to 

the one used in Experiment 2, as we did, while other studies using artificial 

language materials have found novelty preferences (e.g., Marcus et al., 1999; 

Saffran et al., 1996). Some studies have also reported both familiarity and 

novelty preferences across related experiments as a function of ages and 

training or testing conditions (e.g., Gómez & Maye, 2005; Thiessen & Saffran, 

2003).  

 

Nonetheless, interpreting our HTPP results requires careful consideration. In two 

recent studies, stronger familiarity preferences on a segmentation task using 

natural language materials were associated with better native language 

development (Singh et al., 2012, Newman et al., 2006; but see Newman et al., 

2016 for a different result). Our finding that stronger familiarity preferences for 

attested structure in artificial-language materials were associated with better LPE 

is consistent with these studies, and with an interpretation in which better 

statistical learning in related to better LPE. While it is possible that greater 

novelty preferences actually reflected better learning, we suggest that this is 
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unlikely: Such an interpretation would mean that infants with better statistical 

learning skills were less proficient with their native language, but this pattern of 

findings is more characteristics in studies in which the novel statistical regularities 

are designed to violate native language phonotactics (e.g., Graf Estes et al., 

2011; 2016). In such studies, the effects tend to become more pronounced with 

age. However, infants older than those we tested persist in tracking the statistical 

regularities in the artificial languages we used here (Graf Estes et al., 2007; Lany 

& Saffran, 2010), and better performance has also been associated with better 

language development (Lany, 2014). The interpretation that greater familiarity 

preferences reflect better statistical learning, and consequently that better 

statistical learning is associated with better LPE, is also consistent with evidence 

that the ability to learn statistical regularities is related to language processing 

skills in adults (Conway et al., 2010; Misyak & Christiansen, 2012) and school 

aged children (Kidd & Arciuli, 2016; Spencer et al., 2015).  

 

In future work it will be important to continue to investigate how statistical 

learning is related to real-time language processing. Interpreting relations 

between HTPP tasks assessing statistical learning and other measures of 

language learning and development would be easier if group-level direction-of-

preference effects were more straightforward and if it were possible to make a 

priori precise direction-of-preference predictions. In principle, the HTPP is well-

positioned to capture both group effects and individual variability (Kemler Nelson 

et al., 1995), but the parameters of the task may need to be more extensively 



Statistical Learning and Real-Time Processing	 33 

tailored to a given set of materials at a specific age or developmental level. Thus, 

it will be valuable to refine tests of infant sequential statistical learning in future 

work.  

 

This issue notwithstanding, our data may have implications for studies using the 

HTPP that yield null results. A common approach taken to facilitate interpretation 

of direction of preference is to test infants in a narrow age-range, or to contrast 

performance across several narrow age ranges. The current data suggest that 

even if a group of infants at a specific age show no statistically-reliable 

preference overall, it may not mean that infants failed to distinguish between 

different types of trials (in this case statistically attested vs. unattested structure). 

Infants' age is good predictor of language learning development at a gross level 

(24-month-olds are generally more advanced than 18-month-olds, and 18-month-

olds more advanced than 12-month-olds), but not necessarily at a month-to-

month level. For example, vocabulary size is better than age at predicting LPE 

and when infants will begin to combine words in their own speech (Borovsky, 

Elman, & Fernald, 2012; Bates et al., 1988). Thus, one potentially promising 

approach in studies employing the HTPP, including efforts to replicate previous 

work, would be to match participant samples on factors other than age, including 

measures of language processing. Such an approach might yield more 

meaningful data, and facilitate replicating previous findings. 
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Another caveat is that the correlational design we used cannot support 

inferences about causation. Our goal was to study the naturally occurring 

covariation between statistical learning ability and speech processing as a means 

of supplementing the extensive body of tightly controlled experimental work on 

statistical learning. However, we cannot rule out the possibility that the observed 

relations were driven by a third underlying factor. For example, it is possible that 

infants who both processed speech efficiently and readily learned statistical 

regularities were simply more advanced across the board. We were able to 

partially address this limitation by building on previous findings that there is a 

relation between measures of infants’ vocabulary size, and measures of their 

LPE (Fernald et al, 1998; 2006; Weisleder & Fernald, 2013). Specifically, we 

found that statistical learning ability is also related to LPE, above and beyond the 

variance related to vocabulary size, providing some evidence for specificity in the 

relation. Nonetheless, it is possible that more advanced language skills like 

phonological encoding drive superior performance in both tasks. Thus, it would 

be valuable to test whether sequential processing in both artificial- and native-

language materials is related to the precision of phoneme representations, as 

well as other aspects of phonological development. For example, it would be 

informative to test the precision of infants' phoneme representations, and the 

speed with which they access them, in conjunction with sequential statistical 

learning and LPE, to determine whether these factors explain additional variance 

in the measures, or in the relation between them. It would also be valuable to test 

relations between sequential statistical learning and LPE tasks that are tailored to 
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tap different kinds of sequential structure. While a small number of studies have 

assessed differences in young children's processing efficiency for predictive vs. 

unpredictive structures or contexts, these tasks have been used minimally, and 

not at all with the younger ages tested here (Borovsky et al., 2016; Mani & 

Huettig, 2012). Thus, testing slightly older infants might provide important 

insights into this question. 

 

Considered together, we suggest that the findings from these two experiments 

provide a platform on which future research on connections between sequential 

statistical learning and language development can build. For example, a critical 

step in understanding the mechanisms of language learning will be to determine 

how speech-processing efficiency and statistical learning ability are related. In 

the Introduction we suggested that statistical learning may support online speech 

processing, and specifically that the ability to detect and use predictive structure 

in speech via statistical learning is what contributes to gains in the ability to 

encode and interpret speech in real time. However, it is also possible that 

speech-processing ability gates the input to statistical learning mechanisms. In 

fact, it is likely that encoding and statistical learning processes influence each 

other across development, perhaps becoming more interdependent as infants 

gain language experience. A potential approach to determining how these 

processes are related would entail examining these relationships as they unfold 

across development (see Arciuli & Torkildson, 2012; Kidd & Arciuli, 2016), 

including measures of phonological processing. 
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In sum, previous studies have linked statistical learning with language outcomes 

(e.g., Graf Estes et al., 2011; Lany, 2014), and the current work builds on such 

findings by demonstrating a link between statistical learning and a specific 

language skill – lexical-processing efficiency. These data suggest that LPE may 

be a good way to test relations between statistical learning ability and language 

development. Furthermore, consistent with findings from work with adults 

(Conway et al., 2010), they suggest that one way that good statistical learning 

skills may affect infants’ language development is by promoting the ability to 

encode speech rapidly.  
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Figure Captions 

 

Figure 1: Infants preference scores are calculated as the proportion of time spent 

listening to syllable sequences that had high TPs divided by total listening time. 

 

Figure 2: Infants preference scores are calculated as the proportion of time spent 

listening to attested word-order patterns divided by total listening time. 
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Figure 2:		 
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