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Abstract. Deficiency in expressive power of the first-order logic has led to devel-
oping its numerous extensions by fixed point operators, suchas Least Fixed-Point
(LFP), inflationary fixed-point (IFP), partial fixed-point (PFP), etc. These logics
have been extensively studied in finite model theory, database theory, descrip-
tive complexity. In this paper we introduce unifying framework, the logic with
iteration operator, in which iteration steps may be accessed by temporal logic
formulae. We show that proposed logic FO+TAI subsumes all mentioned fixed
point extensions as well as many other fixed point logics as natural fragments.
On the other hand we show that over finite structures FO+TAI isno more expres-
sive than FO+PFP. Further we show that adding the same machinery to the logic
of monotone inductions (FO+LFP) does not increase its expressive power either.

1 Introduction

Probably one of the earliest proposals to extend logic with inductive constructs can be
found in the Wittgenstein’s famousTractatus Logico-Philosophicus[20]

4.1273 If we want to express in conceptual notation the general proposition ‘b
is a successor of a’, then we require an expression for the general term of the
series of forms

aRb

(∃x); aRx.XRb
(∃x, y) : aRx.xRy.yRb

. . .

Implicitly Wittgenstein admitted insufficient expressivepower of the (first-order)
predicate logic and proposed an extension which in modern terms we can call first-
order logic augmented with the transitive closure operator(FO+TC). Transitive closure
is a particular case of more general inductive operators, which have extensively studied
in recursion theory and its generalizations [17,16,1].

Special role logics with inductive operators play in foundations of computer sci-
ence. Logic languages with fixed point constructs serve theoretical models of query
languages indatabase theoryand, when considered over linearly ordered finite struc-
tures, are used to characterize computational complexity classes withindescriptive com-
plexity theory[19,12,13]. The relationships between fixed point logics and complexity
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have many interesting aspects - the logics reflect faithfully computations over structures
and this led to formulation of a new notion ofrelational complexity[3]. On the other
hand, tantalizing open problems in computational complexity can be formulated in log-
ical terms, for example PTIME = PSPACE if and only if logics with least fixed point
and partial fixed points have the same expressive power over classes of finite models
[2]. In other direction, modal logic with fixed points,µ-calculus, is one of the unifying
formalisms used in the research on model checking and verification [8]. Not necessar-
ily monotone inductive definitions also appear in the research on semantics of logic
programming[10], in formalization of reasoning [7] and in the revision theory[15].

In this paper we propose a simple mechanism allowing to ”internalize” various vari-
ants of the inductive definitions within a single logic. Semantics of fixed-point operators
is usually defined by using an iteration, more precisely in terms of ”to what iteration
converge”. We suggest to look on the iteration process itself and augment the logic
with an access to the iteration stages via temporal formulae. As a result we get a logic
FO+TAI (temporally accessible iteration) which naturallysubsumes many (virtually all
deterministic variants of ) inductive logics, including logics with least fixed point, infla-
tionary fixed point, variants of partial fixed points, as wellas logics with anti-monotone
and non-monotone inductions.

We present the semantics of FO+TAI for finite structures only. The case of infinite
structures requires consideringtransfinite iterationsand temporal access to the iteration
stages would need a variant of temporal logic over ordinals (e.g. [5]). This case requires
further investigations and will be treated elsewhere.

We show by translations that over finite structures FO+TAI isnot less expressive
than all mentioned inductive logics and at the same time it isno more expressive than
FO+PFP. Further, we show that adding the same machinery to the logic of monotone
inductions (FO+LFP) does not increase its expressive powereither.

The paper is organized as follows. In the next section we introduce classical fixed-
point logics and first-order temporal logics. Based on that in the Section 3 we define
the logic FO+TAI. In Section 4 we demonstrate how to define in FO+TAI classical
inductive constructs. In Section 5 it is shown tha FO+TAI subsusmes the logic of non-
monotone induction FO+ID. In Section 6 we consider expressive power FO+TAI and
its monotone fragment. Section 7 concludes the paper.

2 Preliminaries

2.1 Fixed point extensions of first-order logic

We start with the short review of inductive definability, which will set up a context
in which logics with temporally accessible iteration naturally appear. In this paper we
will mainly deal with definability over (classes of) finite structures, so unless otherwise
stated all structures are assumed to be finite.

Let ϕ(R, x̄) is a first-order formula, whereR is a relation symbol of some arityn
and x̄ is a tuple of individual variables of the lengthn (the same as the arity ofR).
Consider a structureM with the domainM , interpreting all symbols inϕ exceptR and
x̄. Then one can consider a mapΦϕ : 2Mk

→ 2Mk

, i.e mappingk-ary relations overM
to k-ary relations overM defined byϕ(R, x̄) as follows:



Φϕ(P ) = {ā | (M, |= ϕ(P, ā)}

Various fixed-point constructions may then be defined. If operatorΦϕ is monotone
then by classical Knaster-Tarski theorem [18] it has a leastfixed-point, that is the least
relationR, such thatR(x̄)↔ ϕ(R, x̄) holds. This least fixed-pointR∞ can be obtaned
as a limit of the following iteration:

– R0 = ∅
– Ri+1 = Φ(Ri)

Over finite structures this iteration stabilizes on some finite stepn ≥ 0:Rn+1 = Rn.
Simple syntactical property ofϕ(R, x̄) which guarantees monotonicity ofΦϕ is that this
formula ispositivein R.

Inflationary fixed pointof a not necessary monotone operatorΦ is defined as the
limit of the following iteration:

– R0 = ∅
– Ri+1 = Φ(Ri) ∪Ri

The inflationary fixed point exists for an arbitrary operatorand over finite structures
the above iteration reaches it at some finite step.

Partial fixed pointof an operatorΦ defined by an arbitrary formulaϕ(R, x̄) is de-
fined as follows. Consider the iteration:

– R0 = ∅
– Ri+1 = Φ(Ri)

Partial fixed point ofΦ is a fixed point (limit) of the iteration (if it exists) and empty
set otherwise.

Aiming to resolve difficulties in the definition of semanticsof partial fixed point
operator over infinite structures in [14] an alternativegeneralsemantics for such an
operator has been proposed. We will discuss it later in 4.4.

Let IND is one of the above fixed point operators (LFP, IFP, PFPor PFPgen) then the
syntax of logic FO+IND extends the standard syntax of first-order logic with the follow-
ing construct. Letϕ(R, x̄) be a formula with free individual variables̄x = x1, . . . , xk

and free predicate variableR. For the case IND≡ LFP we additionally require that
ϕ(R, x̄) is positive inR. Thenρ := [INDR,x̄ϕ]t̄ is also formula. Free variables ofρ
are free variables occurring inϕ andt other than̄x. Semantics of such formulaρ is read
then as follows: an interpretation of tuple of termst̄ belong to the relation which is a
fixed point of the operatorΦϕ of the corresponding type IND (i.e. least, inflationary,
partial, or generalized partial fixed point, for IND≡ LFP, IFP, PFP, genPFP, respec-
tively.)

Usually the above logics defined in a way allowing also simultaneous inductive
definitions, i.e the formulae of the form[IND Ri : S]t̄ where



S :=















R1(x̄1)← ϕ1(R1, . . . , Rk, x̄1)

...

Rk(x̄k)← ϕ1(R1, . . . , Rk, x̄k)

is a system of formulae. Consider a structureM with the domainM , interpreting all
symbols inϕi exceptRj andx̄. Thenϕi defines a mappingΦϕi

: 2Mr1

× . . . 2Mr
k →

2Mri , where allrj are arities ofRj , as follows:Φ(P1, . . . , Pk) = {ā | (M |= ϕ(P1, . . . , Pk, ā)}.
Definitions of all mentioned fixed points naturally generalize to the case of simultane-
ous iteration

R0
i = ∅

R
j+1
i = Φϕi

(Rj
1, . . . R

j
k).

The formula[IND Ri : S]t̄ is true for a tuple of terms̄t if its interpretation belongs
to i-th componentR∞i of the corresponding simultaneous fixed point. For all mentioned
logics, simultaneous induction can be eliminated and equivalent formulae with simple
induction can be produced [9,14].

2.2 First-order temporal logic

The languageT L of first order temporal logic over the natural numbers is constructed
in the standard way from a classical (non-temporal) first order languageL and a set
of future-time temporal operators ‘♦’ (sometime), ‘ ’ (always), ‘ ❣’ ( in the next mo-
ment), ‘U ’(until).

Formulae inT L are interpreted infirst-order temporal structuresof the formM =
〈D, I〉 , whereD is a non-empty set, thedomainof M, andI is a function associating
with every moment of timen ∈ N an interpretation of predicate, function and constant
symbols ofL overD. First-order (nontemporal) structures corresponding to each point
of time will be denotedMn = 〈D, I(n)〉.

Intuitively, the interpretations ofT L-formulae are sequences of first-order struc-
tures, orstatesof M, such asM0,M1, . . . ,Mn . . . .

An assignmentin D is a functiona from the setLv of individual variables ofL
to D. If P is a predicate symbol thenP I(n) (or simplyPn if I is understood) is the
interpretation ofP in the stateMn.

We require that (individual) variables and constants ofT L are rigid, that is nei-
ther assignments nor interpretations of constants depend on the state in which they are
evaluated.

The satisfactionrelationMn |=a ϕ (or simplyn |=a ϕ, if M is understood ) in
the structureM for the assignmenta is defined inductively in the usual way under the
following semantics of temporal operators:



n |=a ❣ϕ iff n+ 1 |=a ϕ

n |=a ♦ϕ iff there ism ≥ n such thatm |=a ϕ

n |=a ϕ iff m |=a ϕ for all m ≥ n
n |=a ϕUψ iff there ism ≥ n such thatm |=a ψ and

k |=a ϕ for every n ≤ k < m

Let M be a temporal structure andψ(x̄) be a temporal formula with̄x only free
variables and|x̄| = k. Thenψ(x̄) defines ak-ary relationP onM0 as follows:P (ā)↔
M0 |=a ψ(x̄) wherea : x̄ 7→ ā.

3 Logic with temporally accessible iteration

In all variants of inductive logics we have discussed in the previous section, the
semantics of fixed-point construction can be defined in termsof iteration of operators,
associated with some formulae. In this section we describeda logic which generalize
and subsume all these logics. The idea is simple: instead of defining a particular fixed-
point construct we allow arbitrary iterations of operatorsdefined by formulae. These
iterations when evaluated over a structure give rise to the sequences of relations over
that structure. Then we allow first-order temporal logic machinery to access these se-
quences of relations (temporal structures) and define new relations in terms of these
sequences.

The syntax ofFO + TAI (first-order logic with temporally accessible iterations)
extends the standard syntax of first-order logic with the following construct. Letϕ(R, x̄)
be a formula with free individual variables̄x = x1, . . . , xk and free predicate variableR
of arityk. Letψ(z̄) be a first-ordertemporal formula(T L-formula) with free individual
variables̄z = z1, . . . , zm.

Then

τ := [ψ(z̄)][IR,x̄ϕ]t̄

is also formula, wherēt is a tuple of terms of the same length asz̄. The free variables
of τ are the free variables occurring in̄t and the free variables ofψ andϕ other than̄z
andx̄, respectively. The semantics of this construct is defined asfollows.

LetM be the structure with the domainM and interpretations of all predicate and
functional symbols inM , which will denote byPM andfM . Let a be assignment pro-
viding an interpretation of free variables ofϕ andψ im M . Consider the iterationR0 =
∅ andRi+1 = Φϕ(Ri). It gives rise to the temporal structureM = M0, . . . ,Mi, . . .,
where everyMi is a structureM extended by an interpretation ofR byRi. In partic-
ular M0 isM augmented with empty interpretation ofR. Let P is anm-ary relation
defined byψ(z̄) onM0 (i.e on M). Then for any tuplēa ∈ Mm, M |= [ψ(z̄)][IR,x̄ϕ]ā
iff ā ∈ P . As in other fixed point logics, we also allow simultaneous iteration formulae,
i.e. the formulae of the formτ := [ψ(z̄)][I : S]t̄ where



S :=















R1(x̄1)← ϕ1(R1, . . . , Rk, x̄1)

...

Rk(x̄k)← ϕ1(R1, . . . , Rk, x̄k)

is a system of formulae. Simultaneous iteration

R0
i = ∅

R
j+1
i = Φϕi

(Rj
1, . . . R

j
k)

induces a temporal structureM = M0, . . . ,Mi, . . ., where everyMj is a structure
M extended by interpretation ofRi byRj

i .
Let P is anm-ary relation defined byψ(z̄) on M0 (i.e on M). Then for any tuple

ā ∈Mm,M |= [ψ(z̄)][I : S]ā iff ā ∈ P .

Proposition 1. FO+TAI with simultaneous iteration has the same expressivepower as
FO+TAI with singular iteration.

Proof (hint). The proof proceed by standard argument based on faithful modelling
of simultaneous iteration by a single iteration of higher-dimensional joint operator. Full
details of such modelling (for LFP, IFP, PFP) can be found in [9].

4 FO+TAI vs other fixed point logics

In this section we show that FO+TAI subsumes many fixed point logics. We start with
classical fixed point constructs.

4.1 Least Fixed Point

Translation of LFP construct in FO+TAI follows literally a description of the least fixed
point as a limit - least fixed point consists of precisely those tuples whicheventually
appear in approximations:

LFP: [LFPR,x̄ϕ(R, x̄)]t̄ ⇔ [♦R(z̄)][IR,x̄ϕ(R, x̄)]t̄

Here we assume of course thatR is positive inϕ(R, x̄).

4.2 Inflationary Fixed Point

Similarly to the case of LFP we have for Inflationary Fixed Point the following defini-
tion:

IFP: [IFPR,x̄ϕ(R, x̄)]t̄ ⇔ [♦R(z̄)][IR,x̄(R(x̄) ∨ ϕ(R, x̄))]t̄



4.3 Partial Fixed Point

The following definition

PFP: [PFPR,x̄ϕ(R, x̄)]t̄ ⇔ [♦(R(z̄) ∧ ∀v̄(R(v̄)⇔ ❣R(v̄)))][IR,x̄ϕ(R, x̄)]t̄

says that Partial Fixed Point consists of the tuples satisfying two conditions: 1) a tuple
should appear at some stagei of iterations, and furthermore 2) approximations at the
stagesi andi+ 1 should be the same.

4.4 General PFP

In [14] an alternative semantics for PFP has been defined under the name general PFP.
Unlike the standard PFP general PFP generalizes easily to infinite structures and having
the same expressive power as standard PFP over finite structures provides sometimes
with more concise and natural equivalent formulae. As we mentioned in the Introduc-
tion, in this paper we consider only finite structures semantics and for this case defini-
tion of general PFP is as follows. LetΦ is an operator defined by an arbitrary formula
ϕ(R, x̄). Consider the iteration:

– R0 = ∅
– Ri+1 = Φ(Ri)

Thengeneral partial fixed pointof Φ is defined [14] as a set of tuples which occur in
every stage of the first cyclein the sequence of stages. . As noticed in [14], in general,
this definition is not equivalent to saying that the fixed point consists of those tuples
which occur atall stages starting from some stage. Non-equivalence of two definitions
can be established if transfinite iteration is allowed. Since we consider the iteration
over finite structures only, a cycle, that is a sequenceRi, . . . , Rj with Ri = Rj , will
necessarily appear at somefinite stagesi and j. Based in that, for the case of finite
structures we have the following equivalent definition of PFPgen in terms of FO+TAI:

PFPgen: [PFPgenR,x̄ϕ(R, x̄)]t̄ ⇔ [♦ R(z̄)][IR,x̄ϕ(R, x̄)]t̄

The definition says that general PFP consists of those tupleswhich occur at allfinite
stages starting from some stage of iteration.

4.5 Anti-monotone induction

Let Φϕ be an operator associated with a formulaϕ(P, x̄). It may turn out that this op-
erator isanti-monotone, that isP ⊆ P ′ => Φϕ(P ′) ⊆ Φϕ(P ). Syntactical condition
which entails anti-monotonicity is that the predicate variableP has only negative oc-
currences inϕ(P, x̄). As before consider the iterationR0 = ∅,Ri+1 = Φ(Ri).

An interesting analogue of classical Knaster-Tarski result holds [21,10]: the above
iteration of anti-monotone operator converges to a pair of oscillating pointsP andQ
that isQ = Φ(P ) andP = Φ(Q). What is more, one of the oscillating points is a
least fixed pointµ and another is the greatest fixed pointν of the monotone operatorΦ2

(whereΦ2(X) = Φ(Φ(X))).)



One may extend then the first-order logic with suitable oscillating points constructs
[OPµ

R,x̄ϕ(R, x̄)]t̄ and[OP ν
R,x̄ϕ(R, x̄)]t̄ for ϕ(R, x̄) negative inR, with obvious seman-

tics. Because of the definability of oscillating points as the fixed points ofΦ2, first order
logic extended with these constructs is no more expressive than FO+LFP and therefore
than FO+TAI. What is interesting here is that FO+TAI allows to define oscillating points
directly, not referring to LFP construct. Here it goes. For the greater of two oscillating
points we have[OP ν

R,x̄ϕ(R, x̄)]t̄⇔ [ψν(R)][IR,x̄ϕ(R, x̄)]t̄
whereψν(R) is the temporal formula♦(R(z̄)∧∀ȳ(R(ȳ)↔ ❣ ❣R(ȳ))∧ (∃ȳ(R(ȳ)∧
❣¬R(ȳ)) ∨ ∀ȳ(R(ȳ)↔ ❣R(ȳ))))

Similarly, [OPµ
R,x̄ϕ(R, x̄)]t̄⇔ [ψµ(R)][IR,x̄ϕ(R, x̄)]t̄

whereψµ(R) is the temporal formula♦(R(z̄)∧∀ȳ(R(ȳ)↔ ❣ ❣R(ȳ))∧(∃ȳ(¬R(ȳ)∧
❣R(ȳ)) ∨ ∀ȳ(R(ȳ)↔ ❣R(ȳ))))

4.6 Some variations

In the above FO+TAI definition for LFP it is assumed thatϕ(R, x̄) is positive inR. If we
consider the same right-hand side definition[♦R(z̄)][IR,x̄ϕ(R, x̄)]t̄ for not necessarily
positive (and monotone)ϕ(R, x̄) than we get definition of an operator which does not
have direct analogue in standard fixed-point logics and may be considered as a variation
of PFP, which we denote byPFP∪. Similarly, one can define:[PFP∩R,x̄ϕ(R, x̄)]t̄ ⇔
[ R(z̄)][IR,x̄ϕ(R, x̄)]t̄
It has turned out though that bothPFP∪ andPFP∩ are easily definable by simulta-
neous partial fixed-points, for details see Theorem 1.

If in definition of PFPgen we swap temporal operators we get a definition of what
can be called Recurrent Fixed Point (RFP)1:

RFP: [RFPR,x̄ϕ(R, x̄)]t̄ ⇔ [ ♦R(z̄)][IR,x̄ϕ(R, x̄)]t̄

Again it is not difficult to demonstrate thatRFP is definable in terms of either PFP
or PFPgen.

5 ID-logic of non-monotone induction

In [6] a logic of non-monotone definitions has been introduced. Motivated by well
founded semantics for logic programming, ID-logics formalises non-monotone, in gen-
eral, inductive definitions of the formP ← ϕ(P ) where predicate variableP may
have both positive and negative occurrences inϕ(P ). It subsumes and generalizes both
monotone and anti-monotone inductions. The main point in the definition of ID-logic
is a semantics given to non-monotone inductive definition which we present here in

1Notice, than in general, and similarly toPFPgen, neither ofPFP∪, PFP∩, RFP define
fixed points of any natural operators. But we follow [14] and preserve the name “fixed points”
and FP in abbreviations.



a operator form2. Similarly to already discussed fixed point extensions, thesyntax of
ID-logic (this version we call FO+ID) extends the standard syntax of first-order logic
with the following construct. Letϕ(P, x̄) be a formula with free individual variables
x̄ = x1, . . . , xk and free predicate variableP . Thenρ := [IDP,x̄(P (x̄) ← ϕ(P, x̄))]t̄
is also formula. Now we explain semantics of this construct in terms of FO+TAI, show-
ing thereby that FO+ID is also subsumed by FO+TAI. Sinceϕ(P, x̄) may have both
negative and positive occurrences ofP the iteration of the operatorΨϕ applied to the
empty interpretation ofP will not necessary converge to a fixed point. In the semantics
adopted in FO+ID, the extension of defined predicate is obtained as acommon limitof
iteratively computed lower and upper bounds (if it exists).Introduce two new auxiliary
predicate variablesPl andPu, with the intended meaning to belower andnegated up-
per approximations for the defined predicate. Further, denote by ϕ(Pl), respectively,
by ϕ(¬Pu) the result of replacement of all negative occurrences ofP in ϕ(P, x̄) with
Pl, resp. with¬Pu. All positive occurrences ofP remains unaffected in both cases.
Consider then the following definition of the step of simultaneous iteration:

S :=















Pu(ȳ)← ¬[LFPP,x̄(ϕ(Pl))]ȳ

...

Pl(ȳ)← [LFPP,x̄(ϕ(¬Pu))]ȳ

Since bothϕ(Pl) andϕ(¬Pu) are positive inP the least fixed point operators in the
right hand sides of the definitions are well-defined.

Starting withP 0
l = P 0

u = ∅ and iterating this definition one gets a sequences of
lower andnegatedupper approximationsP i

l andP i
u. If the lower and upper approxi-

mations converge to the same limit, i.e.P∞l = ¬P∞u then by definition [6] this limit
is taken as the predicate defined by the above ID-construct. Summing up, the FO+ID
formulaρ shown above is equivalent to the following formula of FO+TAI:

[♦(PL(x̄) ∧ ∀ȳ(Pl(ȳ)↔ ¬Pu(ȳ))][I : S∗]t̄

whereS∗ is obtained of the aboveS by translation of the right hand side parts of S
into FO+TAI.

6 Expressive power

We have seen in previous sections that FO+TAI is very expressive logic and subsumes
many other fixed-point logics, including most expressive (among mentioned) FO+PFP
(and FO+PFPgen). The natural question is whether FO+TAI is more expressive than
FO+PFP? In this section we answer this question negatively and show that for any
formula in FO+TAI one can effectively produce an equivalent(over finite structures)
FO+PFP formula.

2In [6] inductive definitions of ID-logic are presented not byoperators, but by special for-
mulae calleddefinitions. The difference is purely syntactical and insignificant forour discussion
here.



Theorem 1. For every formulaτ := [ψ][IR,x̄ϕ]t̄ of FO+TAI there is an equivalent
formulaτ∗ of FO + PFP

Proof The formulaτ∗ equivalent to aτ is build by induction on the construction of
τ . Correctness of the proposed translationτ 7→ τ∗ is established by induction along the
construction. Correctness of the base case and induction steps follows by routine check
of definitions.

If τ := [ψ(z̄)][IR,x̄ϕ]̄(t) with [ψ] non-temporal formula then

[τ ]∗ := ψ(z̄)|R←∅,z̄←t̄

whereR ← ∅ means substitute all occurrences ofR in ψ with ∃x 6= x andz̄ ← t̄

substitutēt into z̄.
The cases of boolean connectives and quantifiers in the head and body of the for-

mula are straightforward.

– ([ψ1 ∧ ψ2][IR,x̄ϕ]t̄)∗ = ([ψ1][IR,x̄ϕ]t̄)∗ ∧ ([ψ2][IR,x̄ϕ]t̄)∗

– ([ψ1 ∨ ψ2][IR,x̄ϕ]t̄)∗ = ([ψ1][IR,x̄ϕ]t̄)∗ ∨ ([ψ2][IR,x̄ϕ]t̄)∗

– ([¬ψ][IR,x̄ϕ]t̄)∗ = ¬([ψ][IR,x̄ϕ]t̄)∗

– ([∃y.ψ][IR,x̄ϕ]t̄)∗ = ∃y.([ψ][IR,x̄ϕ]t̄)∗

– ([∀y.ψ][IR,x̄ϕ]t̄)∗ = ∀y.([ψ][IR,x̄ϕ]t̄)∗

– (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗
– (¬ϕ)∗ = ¬ϕ∗

– (∀y ϕ)∗ = ∀yϕ∗

– If τ = [♦ψ(z̄)][IR,x̄ϕ(R, x̄)]t̄ thenτ∗ := [PFP Q, v̄ : S]t̄ where

S :=















R(x̄)← (ϕ(R, x̄))
∗

...

Q(v̄)← Q(v̄) ∨ ([ψ(z̄)][IR,x̄ϕ(R, x̄)]v̄)∗

– The case of -modality as the main connective in the head of iteration is reduced
to the case of♦ modality:([ ψ][IR,x̄ϕ(R, x̄)]t̄)∗ = ([¬♦¬ψ][IR,x̄ϕ(R, x̄)]t̄)∗

– If τ = [ ❣ψ(z̄)][IR,x̄ϕ(R, x̄)]t̄ thenτ∗ := [PFP Q, x̄ : S]t̄ where

S :=















R(x̄)← (ϕ(R, x̄))∗

...

Q(x̄)← [(ϕ(R, x̄)∗]2

– If τ = [(ψ1Uψ2)(z̄)][IR,x̄ϕ(R, x̄)]t̄ thenτ∗ := [PFP Qx̄ : S]t̄ where

S :=











R(x̄)← (ϕ(R, x̄))∗

P (z̄)← P (z̄) ∨ ¬ψ1(z̄)

Q(z̄)← Q(z̄) ∨ (¬P (z̄ ∧ ψ2(z̄)



6.1 Temporally accessible monotone induction

What happens if we apply temporal logic based access to the iteration steps of monotone
induction? Will the resulting logic be more expressive thanthe logic of the monotone
induction? Negative answer is given by the following theorem.

Theorem 2. For every formulaτ := [ψ][IR,x̄ϕ]t̄ of FO+TAI withϕ positive inR there
is an equivalent formula(τ)∗ of FO + LFP

Proof The translation here uses thestage comparison theoremof Moschovakis [16].
With any monotone mapΦϕ of arityk defined by a positive inR formula and a structure
with finite domainM on can associate a rank function| |Φ: Mk → N ∪ {∞} which
when applied to any tuple of elementsā ∈ Mk yeilds the least numbern such that
ā ∈ Φn(∅) if suchn exists and∞ otherwise, i.e. when̄a 6∈ Φ∞

Stage comparison relation≤Φ defined as̄a ≤Φ b̄⇔ ā, b̄ ∈ Φφ(∅) and| ā |≤| b̄ |.

Theorem 3. For any LFPϕ operator associated with a first-order formulaϕ(P, x̄)
positive inP the stage comparison relation≤ϕ is definable in FO+LFP uniformly over
all finite structures.

The stage comparison relation can be used then to simulate time in modelling tem-
poral access to the iteration steps within FO+LFP. As above,the translation is defined
by induction on formula structure. We present here only translation of[ψ(z̄)][IR,x̄ϕ]t̄
whereψ(z̄) is a temporal formula andϕ is in FO+LFP.

For a formula[ψ(z̄)][IR,x̄ϕ]t̄, define translation of its temporal headerψ(z̄) in the
context of iteration[IR,x̄ϕ], to a formula in FO+LFP. Translation is indexed by either
a constants ( from start) or a tuple of variables of the same length as the arity of the
predicate used in iteration definition, i.e. ofR:

– [P (x̄)]s := P (x̄) (for any predicateP ).
– [R(x̄)]ū := x̄ ≤ϕ ū ∧R(x̄) (for the iteration predicateR)
– [P (x̄)]ū := P (x̄) (for any predicateP other than iteration predicate)
– [ρ ∧ τ ]s := [ρ]s ∧ [τ ]s

– [ρ ∧ τ ]ū := [ρ]ū ∧ [τ ]ū

– [¬ρ]s := ¬[ρ]s

– [¬ρ]ū := ¬[ρ]ū

– [∀xρ]s := ∀x[ρ]s

– [∀xρ]ū := ∀x[ρ]ū

– [ ❣τ ]s := ∃ū(ϕ(ū) ∧ [τ ]ū)
– [ ❣τ ]ū := ∃ū′(nextϕ(ū, ū′) ∧ [τ ]ū

′

)
– [♦τ ]s := ∃ū[LFPR,x̄ϕ]ū ∧ [τ ]ū

– [♦τ ]ū := ∃(ū′(ū ≤ϕ ū
′) ∧ [τ ]ū

′

)

– [ρUτ ]s := ∃ū([LFPR,x̄ϕ]ū ∧ [τ ]ū) ∧ ∀ū′(ū′ <ϕ ū)→ [ρ]ū
′

– [ρUτ ]ū := ∃ū′(ū ≤ϕ ū
′ ∧ [τ ]ū

′

) ∧ ∀ū′′(ū ≤ϕ ū
′′ <ϕ ū

′)→ [ρ]ū
′′

Now to get a formula in FO+LFP equivalent to[ψ(z̄)][IR,x̄ϕ]t̄ we take translation
[ψ(z̄)]s in the context of[IR,x̄ϕ]t̄.



7 Concluding remarks

We proposed in this paper the logic with temporally accessible iteration which provides
the simple unifying framework for studying logics with inductive fixed point operators.
Obvious next step is to extend the semantics to the case of infinite structures. Also of
interest are modifications of FO+TAI with branching time access to incorporate non-
deterministic inductive definitions [4] and modal variantsof the logic. Probably most
interesting applications FO+TAI may find in formal analysisof revision theory in the
spirit of recent conceptual idea [15] to analyse “the nonmonotonic process by looking
at the behaviour of interpretations under revision rules”.
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