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Abstract

Maritime surveillance is important for applications in
safety and security, but the visual detection of objects in
maritime scenes remains challenging due to the diverse and
unconstrained nature of such environments, and the need
to operate in near real-time. Recent work on deep neural
networks for semantic segmentation has achieved good per-
formance in the road/urban scene parsing task. Driven by
the potential application in autonomous vehicle navigation,
many of the architectures are designed to be fast and light-
weight. In this paper, we evaluate semantic segmentation
networks in the context of an object detection system for
maritime surveillance. Using data from the ADE20k scene
parsing dataset, we train a selection of recent semantic seg-
mentation network architectures to compare their perfor-
mance on a number of publicly available maritime surveil-
lance datasets.

1. Introduction

Maritime surveillance is important for situational aware-
ness in a range of applications to ensure the safety and se-
curity of vessels, ports and other maritime infrastructure.
The combination of off-the-shelf video cameras and modern
computer vision techniques offers rich visual information at
an affordable cost. However, there are a number of visual
sensing challenges associated with operating in the mar-
itime domain: dynamic background, reflections, the large
variety of objects which may be encountered, and extreme
environmental conditions. Due to the unconstrained nature
of the domain, maritime surveillance may take place from
a number of different viewpoints, ranging from a camera
mounted on a small surface vehicle close to the waterline,
to static shore-based cameras, to aerial surveillance from
planes or drones. It is therefore desirable that any approach
is able to generalise to different viewpoints and accommo-

Figure 1: Concept of semantic segmentation for object detection.

date substantial differences in object appearance. In addi-
tion, methods should be robust to large camera motions and
be able to operate in real-time. In this paper, we evaluate
the use of deep semantic segmentation networks as part of
a maritime visual object detection system concept (Fig. 1)
and compare their performance on sequences from publicly
available maritime surveillance datasets. Our objective is to
see how well this approach can cope with the challenges of
maritime environments based on limited training data.

2. Related work
Recent approaches for maritime object detection [2, 3, 5,

7, 11, 12, 13, 20, 22, 23] include object classification, back-
ground modelling, and saliency based methods. Detection
based on classifiers using Haar [2], HOG [12] or CNN [3, 7]
features require substantial training data and are prone to
overfitting on specific subsets of maritime objects. Mod-
elling maritime backgrounds (i.e. sea and sky) using colour
[13], texture [23] or graphical [11] models avoids overfitting
for specific object classes, but may fail to generalise well
to different environmental or lighting conditions. Saliency-
based methods [5, 20, 22] are model-free and robust to these
challenges, but are unable to distinguish between maritime
objects of interest and any other salient regions of the scene
(such as land).

Semantic segmentation is the process of assigning a class
label to every pixel in an image. This is an important
task in total scene understanding and is crucial to applica-
tions, such as autonomous driving and augmented reality
[8]. Deep semantic segmentation networks represent the
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Figure 2: Block diagram presenting the different stages of the proposed approach.

current state-of-the-art in road/urban scene parsing com-
petitions [4, 6], even when trained with relatively small
datasets (100s of images) [1]. This makes them an attrac-
tive candidate for use in the maritime domain, where there
is very little publicly available annotated data. Driven by
the potential application in autonomous vehicle navigation,
many of the architectures [14, 15] are also designed with
speed and memory consumption in mind so that they can
run in real time on low-power hardware.

3. System Overview

We propose a simple object detection system (Fig. 2)
which exploits the characteristics of deep semantic segmen-
tation networks to address the challenges of maritime en-
vironments. The system takes 3-channel RGB images as
input and processes them through a semantic segmentation
network to generate a class probability distribution for each
pixel. The class probability distributions are smoothed over
time by taking the mean of a sliding window over 3 frames.
A binary map is created for each class by selecting pixels
where that class is the maximum probability and then mor-
phologically filtering to remove small, disconnected regions
and fill small holes. We apply the opening operation with a
kernel of size 5, followed by closing with a kernel of size
10. Candidate regions are extracted from the binary maps
by labelling connected components and computing bound-
ing boxes. To remove transient detections, candidate re-
gions are matched frame-to-frame based on their overlap
ratio, and their positions are filtered with a Kalman filter.
Detections which are stable for more than 5 frames are out-
put for each frame as a set of bounding boxes, each with an
associated class label.

4. Semantic segmentation networks

4.1. Network architectures

We select three semantic segmentation networks from re-
cent literature which have been designed to be efficient, mo-
tivated by use in real-time applications such as autonomous
driving. Two networks – ENet [15] and ESPNet [14] – re-
port performance speeds >20 FPS. The third network (Seg-
Net [1]) runs slower, but is included in the comparison to
assess the trade-off between accuracy and speed. All three
networks obtain similar accuracy performance on bench-
mark datasets such as CamVid [4] and CityScapes [6] (see
Table 1). The networks are fully convolutional and do not
rely on post-processing of the network output (e.g. using

Network Params FPS mIOU Class Balancing Optimisation

SegNet [1] 29.5M 1.6 57.0
Median

Frequency

SGD; lr: 0.001,
momentum: 0.9;
weight decay: 0.0005

ENet [15] 0.36M 21.6 58.3 wi =
1

ln (1.02 + pi)

ADAM; βs: 0.9, 0.999;
lr: 0.005, γ: 0.1;
weight decay: 0.0002

ESPNet [14] 0.36M 27.4 60.3 wi =
1

ln (1.02 + pi)

ADAM; βs: 0.9, 0.999;
lr: 0.0005, γ: 0.5;
weight decay: 0.0005

Table 1: Semantic segmentation networks. Values for no. of parameters,
FPS and mIOU are for the CityScapes [6] dataset, as reported in [14].

CRF refinement [8]) to obtain high accuracy. Both of these
features are important for reducing the number of network
parameters and keeping inference speed fast. Being fully
convolutional also means they can be applied to input im-
ages of any size, irrespective of the size of the training im-
ages. This is useful for real-world applications, where the
input data may not be the same resolution as the training
data.

All three networks follow the encoder-decoder architec-
ture paradigm. SegNet uses the convolutional layers of the
VGG16 network [19] as its encoder, and a ‘mirror image’
of VGG16 as its decoder. The decoder uses pooling indices
from the corresponding max-pooling layer of the encoder
to create sparsely upsampled feature maps, which are then
refined through trainable convolutional filters. The ENet ar-
chitecture is based on a ‘bottleneck’ module, inspired by
the residual blocks of ResNet [9]. Dilated convolutions are
used in several bottleneck modules to increase the effective
receptive field without losing resolution. ESPNet is also
based on a module that exploits dilated convolutions. The
ESP module uses a spatial pyramid of dilated convolutions
to simultaneously learn multi-scale representations. Both
ENet and ESPNet have smaller decoders than encoders, on
the basis that the role of the decoder is primarily to up-
sample the low-resolution representation created by the en-
coder, fine-tuning the details, rather than learning new fea-
tures.

4.2. Training

We train the networks on a subset of the ADE20k dataset
[24], created by extracting images which contain maritime
objects, as well as sea and sky. The ADE20k dataset is not
ideally suited to the maritime surveillance task, but it is the
only dataset currently available which covers the relevant
classes with sufficient pixel-level groundtruth for training
semantic segmentation networks. We manually exclude im-
ages which are completely unsuitable, e.g. an indoor scene
which contains a painting of a boat, or images where sky is



Figure 3: Example training images from the subset of ADE20k [24].

only visible through a window. Examples of images in the
subset for training can be seen in Fig. 3.

We map the original ADE20k classes to one of 4 classes
(plus a void class): Sea, Sky, Object and Other. Note that
the Object class refers to maritime objects, i.e. those that
are found on the surface of the sea and that we want to de-
tect in a maritime surveillance scenario. This includes large
ships, speedboats, sailing boats, buoys, and so on. Any
other objects are mapped to the Other class. The generated
dataset consists of 448 images with median dimensions of
300 × 256 pixels. The properties of the data can be found
in Table 2. Note that, on average, the target Object class
occupies just 4% of the total image.

Sea Sky Object Other Void

No. Image Occurrences 443 417 180 433 447

Total proportion (all images) 34% 30% 9% 25% 2%

Mean proportion (per image) 34.6% 32.9% 4% 26.6% 1.9%

Table 2: Training data properties.

We use the hyperparameters, class balancing scheme and
training protocol as described in each of the original papers
to train the networks (see Table 1). SegNet can be trained
end-to-end; for ENet and ESPNet, the encoder and decoder
are trained separately (using down-sampled groundtruth to
train the encoder). For all networks, we use batches of 4
images, scaled to 640×480. During training, we apply ran-
dom data augmentations (crops, horizontal flips, rotations,
shears, and brightness/colour perturbations).

5. Experimental results
We train the networks as described above, using the au-

thor’s original code where possible. SegNet5 and ENet6 are
implemented in the Caffe framework; ESPNet7 is imple-
mented in the PyTorch framework. The proposed object
detection system is implemented in Python, which has con-
venient interfaces to both frameworks. Training and object
detection are run on the same Alienware laptop with an 8-
core 2.6GHz Intel Core i7-6700HQ CPU and 16GB RAM,

5https://github.com/alexgkendall/SegNet-Tutorial
6https://github.com/TimoSaemann/ENet
7https://github.com/sacmehta/ESPNet

with an externally connected NVIDIA GeForce GTX Titan
X GPU with 12GB memory.

5.1. Maritime surveillance datasets

We select sequences (Table 3) from 4 publicly avail-
able maritime surveillance datasets: Maritime Object De-
tection Dataset (MODD) [11], Singapore Maritime Dataset
(SMD) [17], IPATCH [16] and SEAGULL [18]. These
datasets span the range of maritime surveillance con-
texts, ranging from very low in the water (MODD) to
high aerial (SEAGULL). We select sequences where ob-
ject groundtruth (bounding boxes) is available, and which
contain a range of technical challenges, including large
camera motion, small/distant objects, glare/reflections, and
wakes/whitepeaks. We also include a sequence where haze
is present to compare performance under challenging visi-
bility conditions. The sequences from the IPATCH dataset
contain many frames where no objects are present, so we
extract a shorter sub-sequence which contains a more bal-
anced selection of frames with and without objects.

5.2. Evaluation metrics

To evaluate object detection performance, we adopt two
widely-used detection metrics from the CLEAR 2006 eval-
uation [21]: N-MODA provides a score of detection ac-
curacy for a whole sequence, taking into account missed
detections and false positives, while N-MODP provides a
corresponding sequence-level measure of detection preci-
sion (quality of object localisation). For N-MODA, we set
cm = cf = 1. To complement these two scores, we also
plot recall curves for differing overlap thresholds to mea-
sure how well each network can localise objects, regardless
of false positives. Recall is computed as a function of over-
lap threshold, τ ∈ (0, 1]:

Recall(τ) =
TP (τ)

NG
, TP (τ) =

Nframes∑
t=1

Nt
matched∑
i=1

[
|Dt

i ∩Gt
i|

|Dt
i ∪Gt

i|
≥ τ

]
, (1)

whereNG is the number of groundtruth targets in the whole
sequence and TP (τ) is the number of true positives, calcu-
lated as the number of matched detections where the overlap
ratio between estimated and groundtruth bounding boxes is
at least τ . Dt

i andGt
i represent the detected and groundtruth

targets, respectively, for the ith matching in frame t. Match-
ing is performed using the spatial overlap ratio and the Hun-
garian algorithm, for consistency with the N-MODA and
N-MODP metrics. As the networks perform classification
and localisation jointly, we analyse the classification aspect
by computing the metrics for two conditions: 1) where the
best detection is taken, regardless of whether it is the correct
class (Object or Other); 2) where only correctly classified
objects are included in the performance evaluation (i.e. de-
tections labelled as Other are removed).



Dataset Camera Height / Viewpoint Sequence Resolution
No. Frames Objs. per Frame Obj. Size Range (px) Detection

Challenges(with objs.) Mean Max Width Height

MODD
[11]

Very low
Camera on USV4

01 640× 480 540 (540) 3.2 5 6 - 202 5 - 267 LCM, OL
07 640× 464 641 (589) 1.5 2 11 - 244 20 - 212 LCM, OL

SMD
[17]

Low; camera on speedboat 0797 VIS OB 1920× 1080 600 (600) 2.1 3 29 - 641 34 - 169 LCM, OL

Medium
Static camera on shore

1469 VIS 1920× 1080 600 (600) 9.9 11 45 - 423 30 - 215 OL, DO
1448 VIS Haze 1920× 1080 604 (604) 9.1 10 40 - 376 22 - 228 OL, DO, Haze

IPATCH
[16]

Med-high
Camera on large vessel

Sc2a Tk1-CAM11 1920× 1080 800 (544) 1.4 2 5 - 276 8 - 150 R, W
Sc3 Tk2-CAM14 1920× 1080 1026 (1026) 2.0 2 7 - 338 7 - 212 DO, R, W

SEAGULL
[18]

Very high
Camera in aerial vehicle

lanchaArgos clip3 1920× 1080 1401 (1238) 1.0 1 4 - 216 8 - 84 DO, R
portimao GP020175 part01 1920× 1080 300 (264) 2.0 2 5 - 69 6 - 34 DO, R

Table 3: Maritime surveillance sequences. Key – LCM: large camera motion, OL: overlapping objects, DO: distant objects, R: reflections, W: wake.

5.3. Results and analysis

Results for the N-MODA and N-MODP scores are listed
in Table 4. Qualitative examples of the segmentations pro-
duced by each network are presented in Fig 5. When class
is ignored, ENet has the best detection accuracy (N-MODA
score) overall; however, this performance degrades severely
when class is taken into consideration. Although ENet de-
tects objects of interest with few false positives, it tends
to misclassify them as Other (e.g. Fig. 5 (f-h)). SegNet
and ESPNet have lower detection accuracy, but are better
at detecting Objects specifically, reflected in the higher Ob-
ject only N-MODA scores. ESPNet suffers from a large
number of false positives (of both classes) (e.g. Fig. 5 (j-
l)), so achieves lower N-MODA scores. Looking at pre-
cision (N-MODP), ENet and SegNet perform best across
all sequences when class is ignored, with ENet achieving
a slightly higher average score. As before, this is largely
due to the high false positive rate of ESPNet, which gen-
erates larger (and therefore less precise) regions (e.g. Fig.
5 (j)). However, in the SEAGULL-portimao sequence,
both SegNet and ENet are unable to detect the target at all,
whereas ESPNet can. This property of ESPNet becomes
even more obvious when looking at the N-MODP scores
with class labels taken into account. ESPNet is better at
distinguishing maritime objects from other classes, despite
its high false positive rate.

The recall curves (Fig. 4) allow a more fine-grained
analysis of the trade off between localisation accuracy and
missed detections (false negatives), which is useful for de-
ciding which network to use in a particular application. For
example, if the cost of a missed detection is high, a greater
number of false positives may be tolerated, especially if
they can be filtered out using a secondary processing step.
ENet and SegNet have comparable performance in most se-
quences, but ESPNet is better at outputting the correct class,
as shown by the small difference in its recall curves (solid
and dotted lines), compared to SegNet and ENet.

The generalisation of SegNet and ENet from the train-
ing data to the test sequences is promising, considering
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the small quantity of training data and the large difference
in resolution and visual characteristics between the train-
ing and test sets. The poor visibility in SMD-1448 Haze
proved more challenging for ENet, but SegNet maintained
its recall performance under these conditions. Wakes and
glare/reflections remain challenging for all networks. The
reflection of the sun in the SEAGULL-lanchaArgos se-
quence proved particularly challenging (see Fig. 5 (d, h &
l)) and was consistently detected as Object or Other. We
speculate that this is due to the mismatch between the train-
ing data – which consists primarily of carefully framed pho-
tographs which minimise such artefacts – and the test se-
quences. Objects (boats, etc.) in the training data were also
often white or light in colour.

A fundamental weakness in using semantic segmenta-
tion for object detection is that overlapping objects of the
same class cannot be distinguished. This occurred in the
MOD and SMD sequences, and influenced the scores for all
networks, compared to sequences which contain only 1 or
2 non-overlapping objects. This issue could be addressed
by combining the network output with an edge or feature
detector to infer boundaries between objects. Finally, an in-
teresting ‘by-product’ of the proposed approach is that the
horizon line can be easily inferred from the segmentation
map, as has been done recently [10]. Horizon detection is a
common pre-cursor task in maritime surveillance, as it can
be used to determine camera orientation and inferring the
distance (and hence real-world size) of objects.

6. Conclusion

In this paper, we have evaluated the performance of
deep semantic segmentation networks for object detection
in maritime surveillance applications and demonstrated the
feasibility of the approach. Even with very limited training
data, the ability to generalise to different viewpoints, envi-
ronmental conditions and object types is promising. Over-
all, SegNet and ENet achieve higher detection accuracy and
precision, but ESPNet is better at classifying objects cor-
rectly. Considering the maritime surveillance application,
the ENet model would be the most suitable from this study,



Sequence
N-MODA N-MODP

Object and Other Object only Object and Other Object only
SegNet ENet ESPNet SegNet ENet ESPNet SegNet ENet ESPNet SegNet ENet ESPNet

MODD-01 0.676 0.200 0.397 0.398 0.457 0.453 0.150 0.128 0.150 0.150 0.109 0.170
MODD-07 0.378 0.683 0.003 0.506 0.159 0.626 0.338 0.315 0.292 0.088 0.009 0.270
SMD-0797 VIS OB 0.447 0.256 -0.295 0.501 0.343 0.276 0.273 0.496 0.524 0.212 0.046 0.010

SMD-1469 VIS 0.167 0.644 0.186 0.859 0.142 0.755 0.334 0.316 0.131 0.058 0.016 0.112
SMD-1448 VIS Haze 0.404 0.494 0.423 0.166 0.090 0.679 0.171 0.210 0.088 0.147 0.005 0.040

IPATCH-Sc2a Tk1-CAM11 -3.471 0.382 -11.320 0.388 0.225 -3.858 0.198 0.211 0.136 0.010 0.002 0.104
IPATCH-Sc3 Tk2-CAM14 -3.796 -3.912 -8.322 0.354 -0.767 -3.022 0.265 0.355 0.143 0.004 0.028 0.129
SEAGULL-lanchaArgos -8.501 -5.656 -6.254 -1.319 -1.686 -2.092 0.432 0.420 0.168 0.050 0.001 0.168
SEAGULL-portimao 0.013 0.048 0.491 0.013 0.000 0.565 0.000 0.000 0.242 0.000 0.000 0.242

Mean -1.520 -0.762 -2.743 0.207 -0.115 -0.624 0.240 0.272 0.208 0.080 0.024 0.138

Table 4: N-MODA and N-MODP scores for two test conditions: 1) class is ignored (both Object and Other detections are included in the evaluation); 2)
Other detections are discarded before evaluation.

Figure 4: Recall curves for varying overlap threshold τ . Solid line represents test condition 1 (class ignored); dotted line represents test condition 2 (Other
detections discarded before evaluation).

as it is faster than SegNet. Future work will explore using
additional training data that is more representative of mar-
itime surveillance sequences to improve performance, and
investigate whether the proposed approach could be com-
bined with other methods to improve separation of overlap-
ping objects.

References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image
segmentation. Trans. PAMI, 39(12):2481–2495, 2017.

[2] D. D. Bloisi, F. Previtali, A. Pennisi, D. Nardi, and M. Fior-
ini. Enhancing Automatic Maritime Surveillance Sys-
temsWith Systems With Visual Information. Trans. ITS,
18(4):824 –833, 2017.

[3] F. Bousetouane and B. Morris. Fast CNN surveillance
pipeline for fine-grained vessel classification and detection
in maritime scenarios. In AVSS, pages 242–248, 2016.

[4] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object
classes in video: A high-definition ground truth database.
Patt. Recog. Lett., 30(2):88–97, 2009.

[5] T. Cane and J. Ferryman. Saliency-Based Detection for Mar-
itime Object Tracking. In CVPR Work., pages 1257–1264,
2016.

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
Cityscapes Dataset for Semantic Urban Scene Understand-
ing. In CVPR, 2016.

[7] G. Cruz and A. Bernardino. Aerial Detection in Maritime
Scenarios Using Convolutional Neural Networks. In ACIVS,
pages 373–384, 2016.

[8] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, and J. Garcia-Rodriguez. A Review on Deep
Learning Techniques Applied to Semantic Segmentation.
arXiv:1704.06857, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. In CVPR, pages 770–778, 2016.



SegNet ENet ESPNet

MOD-01, fr. 410 (a) (e) (i)

SMD-1469 VIS, fr. 560 (b) (f) (j)

IPATCH-Sc2a Tk1-CAM11, fr. 405 (c) (g) (k)

SEAGULL-lanchaArgos, fr. 690 (d) (h) (l)

Figure 5: Example pixel classifications from each network (after temporal smoothing and morphological filtering) for representative frames from each
dataset: (a-d) SegNet [1], (e-h) ENet [15], (i-l) ESPNet [14]. Key: Blue = Sea, Grey = Sky, Red = Object, Yellow = Other, Black = masking provided for
IPATCH sequence which we apply to the output class probabilities of each network before processing.

[10] C. Y. Jeong, H. Yang, and K.-D. Moon. Horizon detection in
maritime images using scene parsing network. IET Electron.
Lett., 2018.

[11] M. Kristan, V. S. Kenk, S. Kovačič, and J. Perš. Fast Image-
Based Obstacle Detection from Unmanned Surface Vehicles.
Trans. Cybern., 46(3):641–654, 2016.

[12] M. J. Loomans, R. G. Wijnhoven, and P. H. de With. Robust
automatic ship tracking in harbours using active cameras. In
ICIP, pages 4117–4121, 2013.

[13] J. Marques, A. Bernardino, G. Cruz, and M. Bento. An Al-
gorithm for the Detection of Vessels in Aerial Images. In
AVSS, pages 295–300, 2014.

[14] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Ha-
jishirzi. ESPNet: Efficient Spatial Pyramid of Dilated Con-
volutions for Semantic Segmentation. arXiv:1803.06815,
2018.

[15] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:
A Deep Neural Network Architecture for Real-Time Seman-
tic Segmentation. arXiv:1606.02147, 2016.

[16] L. Patino, T. Nawaz, T. Cane, and J. Ferryman. PETS 2017:
Dataset and Challenge. In CVPR Work., pages 2126–2132,
2017.

[17] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and
C. Quek. Video Processing From Electro-Optical Sensors for
Object Detection and Tracking in a Maritime Environment :
A Survey. Trans. ITS, pages 1–24, 2017.

[18] Ricardo Ribeiro. The SEAGULL dataset,
http://vislab.isr.ist.utl.pt/seagull-dataset.

[19] K. Simonyan and A. Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556, pages 1–14, 2014.

[20] A. Sobral, T. Bouwmans, and E. H. Zahzah. Double-
constrained RPCA based on saliency maps for foreground
detection in automated maritime surveillance. In AVSS, 2015.

[21] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo,
D. Mostefa, and P. Soundararajan. The CLEAR 2006 Evalu-
ation. In CLEAR Work., pages 1–44, 2006.

[22] T. H. Tran and T. L. Le. Vision based boat detection for
maritime surveillance. In ICEIC, 2016.

[23] Y. Zhang, Q. Z. Li, and F. N. Zang. Ship detection for visual
maritime surveillance from non-stationary platforms. Ocean
Eng., 141:53–63, 2017.

[24] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-
ralba. Scene parsing through ADE20K dataset. In CVPR,
pages 5122–5130, 2017.


