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ABSTRACT Mathematical anxiety (MA) is defined as a feeling of tension, apprehension, or fear that 
interferes with mathematical performance in various daily or academic situations. Cognitive consequences 
of MA have been studied a lot and revealed that MA seriously affects complex problem solving due to the 
corruption of working memory (WM). The corruption of WM caused by MA is well documented in 
behavioral level, but the involved neurophysiological processes have not been properly addressed, despite 
the recent attention drawn on the neural basis of MA. This is the second part of our study that intents to 
investigate the neurophysiological aspects of MA and its implications to WM. In the first study, we saw the 
how MA affects so the early stages of numeric stimuli processes as the WM indirectly, using Event Related 
Potentials (ERPs) in scalp EEG signals. This study goes one step further to investigate the cortical 
activations, obtained by multichannel EEG recordings, as well as, the cortical functional networks in three 
working memory tasks with increasing difficulty. Our results indicate that the High Math Anxious (HMA) 
group activated more areas linked with negative emotions, pain and fear, while the Low Math Anxious 
(LMA) group activated regions related to the encoding and retrieval processes of the WM. Functional 
connectivity analysis also reveals that the LMAs’ brain has got more structured cortical networks, with 
increased connectivity in areas related to WM, like the frontal cortex, while the HMAs’ brain has a more 
diffused and unstructured network, superimposing the evidence that the structured processes of WM are 
corrupted. 

INDEX TERMS Mathematical anxiety, math anxiety, working memory, EEG, cortical functional 
connectivity

I. INTRODUCTION 
Cognitive consequences of mathematical anxiety (MA) 

have been studied and reviewed by Ashcraft & Ridley [1], 
who found that MA seriously affects complex problem 
solving (two-digit mental calculations). Although MA does 
not affect the retrieval of basic mathematical concepts and 
calculation strategies, which are stored in long-term 

memory [2], it seems to affect complex calculations via 
working memory’s (WM) corruption [1]. The correlation of 
MA to WM corruption has been well documented in a 
behavioral level [3], but not so deeply in a 
neurophysiological level. 

Only recently, attention was drawn on the neural basis of 
MA. A fMRI study [4], revealed that math anxious activate 
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regions related to pain perception in the anticipation of 
mathematical processing, while Young et al. [5] support 
that MA activates regions that regulate negative emotions. 
Another recent study, using voxel-based morphometry 
found that increased MA was associated with reduced grey 
matter in the left anterior intraparietal sulcus, a region that 
was also associated with attention, suggesting that baseline 
differences in morphology may underpin attentional 
differences between children with low and high MA [6]. 
Moreover, an electroencephalographic (EEG) study [7] has 
revealed the relationship among the arithmetic split effect 
[8] and the P600/P3b component which was more enhanced 
and delayed in math anxious, while P3 also seems to be 
modulated by buying decisions in math anxious [9]. 

In addition to the aforementioned studies, our group has 
found that MA is related with lower Event Related 
Potentials (ERPs), during the early stages of the processing 
of numeric stimuli [10], while math anxious individuals 
have a strong effect on the connectivity pattern of brain 
regions responsible for WM task performances [11]. 
Moreover, we have also checked the cortical networks 
during the anticipation of doing mathematics, where we 
found that anticipatory anxiety prior to mathematical tasks 
affects so the integration as the segregation of cortical 
networks [12].  Nevertheless, we need to investigate further 
the underlying mechanism of how MA corrupts WM while, 
in addition, relevant functional connectivity issues remain 
largely unexplored.   

This piece of work intents to investigate the 
neurophysiological aspects of MA and its implications for 
WM. EEG was used to investigate cortical activations as 
well as the cortical functional networks in WM task of 
increasing difficulty that includes trivial numerical stimuli. 
We hypothesized that when undertaking WM tasks, math 
anxious, when compared to non-math anxious controls, 
would show stronger activations in areas linked with 
negative emotions, pain and fear, such as the Anterior 
Cingulate Cortex (ACC), Insula and Supplementary Motor 
Area (SMA) [4], [13], while controls would show stronger 
activations in areas linked with WM [14], [15]. 

 
II. MATERIALS AND METHODS 

A. PARTICIPANTS 
One thousand students of the Aristotle University of 

Thessaloniki have completed the Abbreviated Math 
Anxiety Scale (AMAS) [16], which was translated and 
adapted for the Greek population. AMAS was chosen as 
due to its relatively short length (9 items only) and its test-
retest reliability, while it’s correlation with the 98-item long 
Math Anxiety Rating Scale (MARS) [17] goes up to 0.85 
[18]. Two (2) groups of sixteen participants each, were 
formed from this pool of data, namely LMA (Low Math 
Anxiety), and HMA (High Math Anxiety) according to 
their AMAS scores (Figure 1) (AMAS score: LMA: 
11.937±1.691 HMA: 32.875±3.964; F=4.17 p<1.52E-18), 

while controlling other factors, like age, gender, education 
and dominant hand (equal numbers of males/females in 
each group; mean ages were  22.5 ± 2.3 (LMA) and 22.21 ± 
2.43 (HMA) - p=1). In order to assess their mathematical 
abilities, we have ranked their school according to how 
many mathematical courses they have, while ranking scaled 
from zero (school of literacy) to five (school of 
mathematics). One-way ANOVA showed that there is not 
any statistically significant difference (F=4.17, p=0.26) in 
the mathematical ability of our groups (LMA:2.93 ± 1.12; 
HMA: 2.31 ± 1.88). Participants with a history of 
psychiatric or neurological disorder or under medication 
were excluded from the study. All participants had normal 
(10/10) or corrected to normal vision. Participants were 
asked to avoid alcohol intake on the day before and caffeine 
consumption on the day of the experiment; they were also 
asked to sleep as adequately and comfortably as possible on 
the night before. All recordings were performed in a fixed 
morning slot. All participants signed an informed consent 
form, while the experimental protocol was approved by the 
Bioethics committee of the Medical School at the Aristotle 
University of Thessaloniki, and the study was conducted in 
accordance to the Declaration of Helsinki. 

B. BEHAVIORAL INDICES 
Two behavioral indices were employed to assess participant 
performance, as proposed by current literature [1]. The first 
one measures the correctness of the given answers, and it was 
computed by the means of the d’prime index [19], while the 
second one measures the reaction time and it was extracted 
by the stimuli presentation software. 

 
FIGURE 1.  Violin plots of AMAS scores of both groups, where it is 
obvious that there is a clear distinction between the two groups’ 
distribution. 
 
In order to measure the anxiety of our groups we performed 
STAI I (State Anxiety) and II (Trait Anxiety) tests [20], [21]. 
STAI I refers to how a person is feeling at the time of a 
perceived threat and is considered temporary, while STAI II 
can be defined as feelings of stress, worry, discomfort, etc. 
that one experiences on a daily basis. 
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C. EEG RECORDINGS AND PRE-PROCESSING 
EEG recordings were performed in a dark and sound 

attenuated room. Participants were seated in a comfortable 
chair and the stimuli were presented on a monitor located 
about 80 cm in front of the subjects’ nasion. EEG signals 
were recorded with 57 electrodes placed on the scalp 
according to the 10/10 international system (Fp1, Fp2, F3, 
F4, C3, C4, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, 
TP8, Afz, FCz, CPz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, 
CP6, Fpz, Oz, F1, Poz, F2, C1, C2, P1, P2, AF3, AF4, FC3, 
FC4, CP3, CP4, PO3, PO4, F5, F6, C5, C6, P5, P6, FT7, 
FT8, TP7). Electrodes A1 and A2 served as the reference, 
while the linked earlobes montage was used. Four ocular 
electrodes were used; two positioned in the outer canthi of 
each eye and another two above and below the left eye. The 
difference of the first couple used to form a bipolar signal 
for the horizontal electooculogram (EOG), while the 
difference of the last two electrodes formed a bipolar signal 
for the vertical EOG. The signals were amplified and 
digitized at 500 Hz, while the electrodes’ resistance was < 
2kΩ. 

During pre-processing, EEG signals were filtered between 
0.5-45Hz while the EEGLAB’s [22] notch filter was 
applied in 47-53Hz to remove the line’s noise. The REG-
ICA methodology [23], [24] was applied to remove ocular 
artifacts. This methodology was preferred as it removed 
EOG artifacts while leaving EEG signals relatively intact 
[24]. According to REG-ICA, extended-ICA [25] was used 
to decompose EEG signals into independent components 
(ICs). Subsequently, the algorithm proposed by Schlögl et 
al. [26] was used to filter out the contaminated ICs only, 
and finally, all the ICs (cleaned or not) were used to 
reconstruct the cleaned EEG signals. Bad channels were 
interpolated using the interpolation algorithm included in 
the EEGLAB software [22], while as a final step three 
independent expert observers checked EEG signals and 
removed any bad trials. 

D. STIMULI AND TASKS 
To examine the correlation of MA with WM the n-back 

task [27] was used in three levels: in the 1-Back Test (BT1-
40 trials), participants were asked to press the right mouse-
button, if the presented number was the same as the one 
shown previously, or the left one otherwise. Similarly, in 
the 2-Back Test (BT2-40 trials) (and 3-Back Test (BT3-40 
trials)) subjects had to press the mouse-button if the 
presented number was the same with the number appeared 
two (three) positions before (Figure 2). The correspondence 
of the (true/false) answers to (left/right) mouse-buttons was 
counterbalanced across subjects for each group separately, 
while it was kept constant across all tasks for a single 
subject. The stimuli were randomly presented to each 
participant, while the EEG was synchronized to the 
stimulus presentation via a photo resistor adjusted at the 
lower left corner of the stimulus presentation monitor. 

 
FIGURE 2.  Tasks used in this study, presented items that were 
compared with previous (passed) items which should supposedly be 
stored in WM. Participants had to press the button corresponding to 
TRUE, if the presented item was the same with the item shown before 
one (BT1), two (BT2) or three (BT3) trials away, or the other button 
otherwise. In the presented example, only in BT2, participants should 
press the button corresponds to TRUE, while for BT1 and BT3 the 
FALSE button should be pressed.   

E. CORTICAL ACTIVITY 
The Boundary Element Model method (BEM) as 

implemented within the Brainstorm toolbox [28] was used 
to compute a generic head model, comprised of four  
compartments (scalp, outer and inner skull, cortex) on the 
basis of an average MRI reconstructed from 152 normal 
MRI scans (MNI template 
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NL
in2009). BEM compartments were computed by a closed 
triangle mesh with 4 mm triangle side length and 302 
nodes.  

Current density reconstructions (CDRs) were calculated 
on the averaged, over trials, neural responses of each 
subject for each task (i.e. BT1, BT2, BT3) using sLORETA 
[29]. sLORETA directly computes a current distribution 
throughout the full gray matter volume instead of a limited 
number of dipolar point sources or a distribution restricted 
to the surface of the cortex, while it has zero error 
localization even for dipoles included in cortical and non-
connected subcortical grey matter [29]. Three separate time 
windows centered at 200, 300 and 400ms (i.e. T1:180 – 220 
ms; T2:280-320 ms; and T3:380-420 ms) were chosen for 
the CDRs, as driven by the observation of the group 
differences on the grand average of the corresponding 
Global Field Power (GFP) (Figure 3 [10]). Only these three 
fixed time windows were chosen because each one is 
related to a specific Event Related Potential (ERP) 
component, while all of them are strongly connected with 
the mathematical processing [10], [30]–[33].  

Statistical Parametric Mapping 8 (SPM8, 
http://www.fil.ion.ucl.ac.uk/spm) and GLM-Flex 
(http://nmr.mgh.harvard.edu/harvardagingbrain/People/Aar
onSchultz/GLM_Flex.html) running on Matlab (Math 
Works Inc., Natick, MA, USA) were used for the statistical 
analysis of the CDRs. Specifically, using GLM-Flex a 
separate analysis was designed for each time-window 
employing a 2 × 3 mixed model ANOVA with the group 
category (LMA and HMA) as the between subject factor 
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and the BT tasks (BT1; BT2 and BT3) as the within subject 
factor. 

 
FIGURE 3. Global field power (GFP) of the grand average trials of each 
group. Time window choices are marked by rectangle areas. Note that 
the LMA group has stronger activity in all tasks, with the most 
prominent difference in tasks BT1 and BT2, but BT3, which was too 
hard for both groups anyway. This figure explains our time window 
choice. Figure is already presented in [10]. 

 
Results were constrained in gray matter using a mask, 
thereby keeping the search volume small and in 
physiologically reasonable areas. False Discovery Rate 
(FDR) correction was adopted in order to control for Type I 
error, while maintaining the nominal alpha level to .05, 
except otherwise mentioned. Visualization of the statistical 
parametric maps was done using MRIcron 
(http://www.mccauslandcenter.sc.edu/mricro/mricron/). 

F. CORTICAL FUNCTIONAL CONNECTIVITY 
EEG records the activity of the cortical sources oriented 

in tangential or radial directions with respect to the scalp 
surface. Despite that, the variation of the electrical 
conductivity among the different head compartments leads 
to the volume conduction problem, which forms a serious 
drawback for functional connectivity analysis. To overcome 
this problem, we have also performed the functional 
connectivity analysis on the cortical layer. More precisely 
we have multiplied the inversion kernel extracted by 
sLORETA [302x57] with our EEG signals averaged over 
trials [57x1000], thereby obtaining the cortical signals on 
the nodes of the cortex, as denoted by the triangular mesh 
extracted by the BEM [34]–[36]. The first 400ms after the 
stimulus onset were chosen for the extraction of the herein 
presented functional networks. 

A weighted graph is a mathematical object consisting of a 
set of elements (nodes) that may be linked through binary 
or weighted connections (edges). In this study, the nodes 
correspond to the position of the estimated cortical dipoles, 
while the weight of each edge is given by the Magnitude 
Square Coherence (MSC) value within each pair of 

vertices. For this purpose we have used the MSC function 
of MATLAB (The MathWorks Inc.) with a 50% overlap, 
based on recent evidence that this is more suitable to model 
cerebral EEG networks as compared to other connectivity 
metrics [37]. The MSC in a particular frequency f, is 
defined as the square of the cross Power Spectrum Density 
(PSD) of signals x and y divided by the product of the 
PSDs of x and y respectively, as shown by formula (1): 

𝑀𝑆𝐶$%(𝑓) =
|+,-(.)|/

+,,(.)+--(.)
   (1) 

PSD was estimated using the Welch method [38]. Signals 
between 0-400msec were divided into segments containing 
40 samples each, and PSD was then computed using 
formula (2): 

𝑃(𝑓) = 1
.2324

∫ 𝐷$$(𝜌)|𝑊(𝑓 − 𝜌):|𝑑𝜌
<2
/
=<2/

	(2) 

In this formula, 𝐷$$ is the Discrete Fourier Transform of 
the signal’s correlation sequence 𝑅$$, 𝑓A	is the digitization 
rate (500 Hz in this case), 𝐿A is the segment length and 𝑈	is 
a normalization constant ensuring that the PSD is 
asymptotically unbiased. This process leads to 96 [16 
subjects * 6 frequency bands:  delta (0.5-4Hz), theta (4-
8Hz), alpha1 (8-10Hz), alpha2 (10-12Hz), beta (12-30Hz), 
gamma (30-45Hz)] fully connected graphs for each group, 
for each task separately. A threshold to 0 was applied to 
each graph, isolating all negative weights. To investigate 
the impact of MA into the network structure the following 
parameters were employed: 
 
Density (DEN): graph density indicates how many edges 
are inside the graph divided by the maximum possible 
number of edges between the vertices of the graph. This 
definition is only used for binary (not weighted) graphs, so 
it was adapted herein to fit our needs. We define the density 
of a weighted network as the sum of all weights divided by 
the maximum possible number of edges between the 
vertices multiplied by the maximum value of the current 
connectivity metric (MSC in this case), as shown in 
formula (3):   

𝐷𝐸𝑁 =
∑ GHIJHI∈L∧HNI

(O(O=1))		PQ$	(RST)
=

∑ GHIJHI∈L∧HNI

(O(O=1))		
	 (3) 

where 𝑉 denotes the number of nodes. 
 
Clustering Coefficient (CC): it denotes the fraction of 
triangles around a node is equivalent to the fraction of node 
neighbors that are neighbors of each other. There are at 
least four different definitions [39] regarding the 
computation of the weighted clustering coefficient. For the 
purposes of the current analysis we used the definition 
proposed by [40] (see formula (4)) as it takes into account 
the weights of all edges in a triangle and it is invariant to 
the weights permutation in a single triangle: 
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𝐶VW =
:

XH(XH=1)
∑ Y𝑤V[\𝑤[X\ 𝑤XV\ ]1/_`aX 	(4) 

	
 
where kc denotes the node strength of the iefnode and whi\ is 
the normalized weight of the edge connecting the ief and jef 
nodes. 

Characteristic Path Length (CPL): The characteristic 
path length is the average shortest path length in the 
network.  

Global Modularity (GM): The optimal community 
structure is a subdivision of the network into non-
overlapping groups of nodes in a way that maximizes the 
number of within-group edges and minimizes the number 
of between-group edges. GM is a statistic that quantifies the 
degree to which the network may be subdivided into such 
clearly delineated groups. GM used was proposed by [41] 
and it is also implemented in the Brain Connectivity 
Toolbox for MATLAB [42]. After identifying the partition 
of the network, we measured the overall number of 
modules (NUM). Additionally we quantified some nodal 
characteristics, like the intra- and inter-module connectivity 
[43], [44]. The first one is measured by means of the 
within-module degree z-score (Z) (5), while the second one 
by the Participation Coefficient (PC) (6). 

Zc =
lm=lnm
opnm

	(5) 

PCc = 1 − ∑ t
lnm
lm
u
:

vw
xy1 (6) 

	
In both formulas kc denotes the node strength of the ief 
node in the sc module, kxm is the mean strength of the sc 
module, and σlnm is the standard deviation of the kxm. 
 
Betweenness Centrality (BC) and Edge Betweenness 
Centrality (EBC):  BC is a measure of a node's centrality 
in a network. It is equal to the number of shortest paths 
from all vertices to all others that pass through that node, 
while EBC is exactly the same apart from its application to 
edges instead of nodes. In this analysis, we used the 
algorithm proposed by [45] for the computation of BC and 
EBC. 

Small-World Index (S): A small-world network is a graph 
in which most nodes are not neighbors of one another, but 
most nodes can be reached from every other in a small 
number of steps. Humphries and Gurney [46] have defined 
the S of a network as: 

S = }/}~���
�/�~���

	(7) 
 
where C, L are the CC and the short path length 
respectively, whereas the C��v�, L��v� indices define the 

mean values of C and L respectively, as extracted by fifty 
surrogate random networks. Each random network was 
produced by a random rewiring of the observed network 
[47].  

All graph parameters, with exception of SWN, are 
implemented within the Brain Connectivity Toolbox for 
MATLAB [42]. Similarly, to the statistical analysis of the 
cortical activations, the analysis used for the graph 
parameters was a 2 × 3 mixed model ANOVA with the 
group category (LMA, HMA) being the between-subject 
factor and the tasks (BT1, BT2, BT3) being the within-
subject factor. Only for the nodal characteristics (Z, PC, 
BC, EBC) we have used pairwise t-tests for each node 
separately.  False Discovery Rate (FDR) was also adopted 
herein in order to control for Type I errors, while 
maintaining the nominal alpha level to .05. The statistical 
analysis of the graph parameters was performed in SPSS 
v.20. 

III. RESULTS 

A. BEHAVIORAL DATA 

In addition to MA differences between our groups (Figure 
1), HMA group reported also higher situational anxiety 
(t(30) = 3.94, p = 0.0001), compared to LMA, while both 
groups have comparable levels of trait anxiety (p > 0.10). 
The Pearson correlation between AMAS and state anxiety 
was moderate (r = 0.575, p = 0.001) and much lower 
between AMAS and trait anxiety (r = 0.274, p = 0.129) in 
accordance with the original standardization study of 
AMAS [48]. Regarding the behavioral indices mentioned 
above, we didn’t find any Group × Task interaction (p > 
0.7). However, pairwise comparisons exhibited that Group 
effect on d’prime was significant only during the BT3. [10] 

Β. CORTICAL ACTIVATION – T1 Time Window 

The statistical analysis of the CDRs in the T1 time-
window showed no significant result in the interaction of 
Group × Task indicating that the three levels of the BT 
tasks affected the two groups equally. Nevertheless, a 
significant main effect of Group indicated that there were 
significant differences in the cortical activity of the two 
groups, independently of the BT task. Specifically, the main 
effect of group revealed that the HMA group had 
significantly greater activity than the group of LMA in one 
cluster located in the left middle temporal gyrus (MTG) 
[peak coordinates: x = -55, y = 4, z = -21; t(30) = 6.19; 
cluster size = 90 voxels; p < 0.05 FDR corrected] (Figure 
5). 
    On the other hand, LMA  had significantly greater 
activity in 4 clusters: one located in the right superior 
frontal gyrus (SFG) [peak coordinates: x = 10, y = 48, z = 
44; t(30) = -5.3450; cluster size = 222 voxels; p < 0.05 FDR 
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corrected], one located in the right middle frontal gyrus 
(MFG) [peak coordinates: x = 34, y = 50, z = 18; t(30) = -
4.7207; cluster size = 572 voxels; p < 0.05 FDR corrected], 
one located in the left inferior frontal gyrus (IFG) [peak 
coordinates: x = -57, y = 28, z = 2; t(30) = -3.6289; cluster 
size = 133 voxels; p < 0.05 FDR corrected], and one located 
in the left postcentral gyrus (PCG) [peak coordinates: x = -
39, y = -31, z = 70; t(30) = -3.7784; cluster size = 112 
voxels; p < 0.05 FDR corrected]. Statistical maps of this 
analysis are presented in Figure 4 (all anatomical regions 
were defined using the AAL atlas [49]. 

 
FIGURE 4. Statistically significant differences among the two groups in 
all three-time windows. LMA group activate more areas of the frontal, 
temporal and parietal cortex, which are linked with WM processes. On 
the other hand, HMA group activate more areas like the pole of the right 
MTG, the insula and the parahippocampal gyrus, which are connected 
to negative emotions, pain and fear. 

C. CORTICAL ACTIVATION – T2 Time Window 

The statistical analysis of the CDRs in the T2 time-
window showed a significant interaction of Group × Task 
indicating that the group difference was differentially 
affected by the 3 levels of BT. This interaction effect was 
located mainly in prefrontal, temporal and cingulate regions 
(the complete list of clusters is presented in Table 1). In 
order to resolve this two-way interaction, three post-hoc 
independent samples t-tests were performed (i.e. one for 
BT1, one for BT2 and one for BT3) using the interaction 
effect as a localizer; the results of the post-hoc analyses 
were restricted to the cortical regions, where the two-way 
interaction was found to be significant. 

The independent samples t-test for BT1 revealed that the 
group of LMA had significantly greater activity than the 

group of HMA in 6 clusters: one located in IFG [peak 
coordinates: x = -55, y = 32, z = -5; t(60) = -5.42; cluster 
size = 65 voxels; p < 0.05 FDR corrected], one located in 
the left hippocampal gyrus (HG)  [peak coordinates: x = -
25, y = -37, z = -3; t(60) = -4.52; cluster size = 85 voxels; p 
< 0.05 FDR corrected], one located in the left superior 
temporal gyrus (STG) [peak coordinates: x = -45, y = -41, z 
=22; t(60) = -3.83; cluster size = 74 voxels; p < 0.05 FDR 
corrected], one in the right SFG [peak coordinates: x = 2, y 
= 28, z =48; t(60) = -9.83; cluster size = 1688 voxels; p < 
0.05 FDR corrected], one in the posterior parietal cortex 
(PPC) [peak coordinates: x = -13, y = -49, z =64; t(60) = -
5.95; cluster size = 238 voxels; p < 0.05 FDR corrected], 
and one located in the right SFG [peak coordinates: x = 26, 
y = -3, z =70; t(60) = -5.68; cluster size = 110 voxels; p < 
0.05 FDR corrected]. In contrast the group of HMA did not 
show significantly greater activity than the LMA group in 
BT1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5. Localized areas where there is a statistically significant 
difference among the cortical activations between LMA and HMA 
groups for all three tasks in T2 and T3 time windows. Note that for BT1 
and BT2 tasks, LMA has greater activity in the depicted areas, while in 
BT3, HMA group has significantly greater activity as it is shown in the 
next section. 
 

Similarly to the results of the BT1, the independent 
samples t-test for BT2 revealed that the group of LMA 
showed significantly greater activity in two clusters: both of 
them located in the right SFG [peak coordinates for cluster 
(a): x = 34, y = 50, z =18; t(60) = -4.74; cluster size = 465 

voxels; peak coordinates for cluster (b): x = 2, y = 30, z 
=48; t(60) = -5.20; cluster size = 127 voxels; p < 0.05 FDR 

Location of activation 
Peak voxel 

Hem 
Coordinates 

Cluster Size t-value X Y Z 

Parahippocampal Gyrus 8.76 L -27 -37 -7 101 
Parahippocampal Gyrus 6.43 R 18 -27 -9 117 
Middle Frontal Gyrus 10.94 L -41 48 -13 231 

Superior Frontal Gyrus 10.51 L -15 58 -9 51 
Superior Temporal Gyrus 7.93 R 48 -21 2 62 
Superior Temporal Gyrus 12.03 L -46 -37 15 131 

Middle Frontal Gyrus 13.29 R 8 46 44 1903 
Table 1. Summarized results for the Group × Task interaction effect in T2 time window. 
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corrected] (Figure 5). Again, the HMA group did not show 
significantly greater activity than the LMA group. 

In contrast to the previous two t-tests, the independent 
samples t-test for BT3 revealed that the group of LMA did 
not show significantly greater activity than the HMA group. 
Instead, the group of HMA showed significantly greater 
activity in 6 clusters: one located in right parahippocampal 

gyrus (PHG) [peak coordinates: x = 20, y = -25, z =-9; t(60) 
= 3.69; cluster size = 105 voxels; p < 0.05 FDR corrected], 
one located in the left MFG [peak coordinates: x = -39, y = 
50, z =13; t(60) = 4.77; cluster size = 68 voxels; p < 0.05 
FDR corrected], one located in the right STG [peak 
coordinates: x = 47, y = -19, z =2; t(60) = 4.69; cluster size 
= 61 voxels; p < 0.05 FDR corrected], one located in the 
left STG [peak coordinates: x = -39, y = -29, z =8; t(60) = 
3.74; cluster size = 59 voxels; p < 0.05 FDR corrected], one 
located in the anterior cingulate cortex (ACC) [peak 
coordinates: x = 8, y = 24, z =24; t(60) = 3.99; cluster size 
= 80 voxels; p < 0.05 FDR corrected], and one located in 
the posterior cingulate cortex (PCC) [peak coordinates: x = 
-1, y = -87, z =38; t(60) = 4.48; cluster size = 75 voxels; p < 
0.05 FDR corrected] (Figure 6). 

The independent samples t-test for BT1 revealed that the 
group of LMA had significantly greater activity than the 
group of HMA in 3 clusters: one located in the left MFG 
[peak coordinates: x = 18, y = 18, z =-25; t(60) = -4.55; 
cluster size = 825 voxels; p < 0.05 FDR corrected], one 
located in the left SFG [peak coordinates: x = -65, y = -37, 
z =6; t(60) = -4.04; cluster size = 69 voxels; p < 0.05 FDR 
corrected] and one located in the left cuneus [peak 
coordinates: x = -15, y = -81, z =10; t(60) = -4.48; cluster 
size = 81 voxels; p < 0.05 FDR corrected] (Figure 5). The 
group of HMA did not show significantly greater activity in 
any area than the LMA group in BT1.  

The independent samples t-test for BT2 revealed that the 
group of LMA had significantly greater activity than the 
group of HMA in 3 clusters: one in the right MFG [peak 

coordinates: x = 6, y = 12, z =-21; t(60) = -3.43; cluster size 
= 258 voxels; p < 0.05 FDR corrected], one located in the 
left cuneus [peak coordinates: x = -3, y = -87, z =10; t(60) = 
-4.80; cluster size = 81 voxels; p < 0.05 FDR corrected], 
and one in the left inferior parietal gyrus (IPG) [peak 
coordinates: x = -39, y = -33, z =60; t(60) = -4.36; cluster  
FIGURE 6. Illustration of areas where HMA have significantly greater 

activity in the T2 time window. (Top) areas extracted by the main effect 
of Group; note that HMA group has significantly greater activity in the 
ACC, as well as, in the supplementary motor area (SMA). (Bottom) 
results of the Group x Task interaction. HMA has significantly greater 
activity in the ACC and (bilaterally) in Insula. 

 
size = 194 voxels; p < 0.05 FDR corrected] (Figure 5). The 
group of HMA did not show significantly greater activity in 
any area than the LMA group in BT2.  

In contrast to the previous two t-tests, the independent 
samples t-test for BT3 revealed that the group of LMA did 
not show significantly greater activity than the HMA group. 
Instead, the group of HMA showed significantly greater 
activity in 8 clusters: one located in the left PHG [peak 
coordinates: x = -15, y = -29, z =-9; t(60) = 5.04; cluster 
size = 100 voxels; p < 0.05 FDR corrected], one located in 
the middle occipital gyrus (MOG) [peak coordinates: x = 
22, y = -101, z =-2; t(60) = 6.06; cluster size = 65 voxels; p 

Location of activation Peak voxel Hemisphere Coordinates Cluster Size t-value X Y Z 
Inferior frontal gyrus 13.74 R 20 16 -23 1262 

Fusiform gyrus 12.25 L -31 -47 -21 171 
Hippocampal gyrus 15.97 L -25 -39 -1 182 

Parahippocampal gyrus 7.82 R 26 -35 -7 63 
Posterior cingulate gyrus 8.68 L -11 -57 -1 186 
Superior temporal gyrus 7.89 L -63 -37 8 203 
Middle occipital gyrus 8.24 R 22 -97 4 65 
Inferior frontal gyrus 7.1 L -43 0 8 132 

Cuneus 8.33 L -13 -38 10 82 
Inferior frontal gyrus 9.5 R 38 18 28 148 
Supramarginal gyrus 9.86 R 46 -33 44 1580 

Cuneus 9.46 R 12 -83 40 140 
Posterior cingulate gyrus 10.09 R 4 -83 46 1059 

Inferior parietal gyrus 11.82 L -37 -45 50 337 
Middle frontal gyrus 11.29 R 40 18 46 493 

Postcentral gyrus 10.78 L -41 -33 56 292 
Middle frontal gyrus 7.01 L -23 10 68 145 

Table 2. Summarized results for the Group × Task interaction effect in T3 time window. 
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< 0.05 FDR corrected], one located in the left Insula [peak 
coordinates: x = -47, y = 4, z =6; t(60) = 4.39; cluster size = 
118 voxels; p < 0.05 FDR corrected], one located in the 
right IFG [peak coordinates: x = 38, y = 14, z =28; t(60) = 
4.08; cluster size = 104 voxels; p < 0.05 FDR corrected], 
one located in the right supramarginal gyrus [peak 
coordinates: x = 40, y = -59, z =32; t(60) = 6.34; cluster 
size = 1334 voxels; p < 0.05 FDR corrected], one located in 
the posterior cingulate gyrus [peak coordinates: x = 6, y = -
40, z =47; t(60) = 5.04; cluster size = 61 voxels; p < 0.05 
FDR corrected], and one in the right MFG [peak 
coordinates: x = 40, y = 20, z = 48; t(60) = 5.22; cluster size 
= 451 voxels; p < 0.05 FDR corrected] (Figure 5).   

E. CORTICAL FUNCTIONAL NETWORKS 

CPL and NUM didn’t show any statistically significant 
differences, so they are excluded from further reporting, 
which concentrates into those parameters indicating 
alternations to network organization and structure due to 
MA. These results are depicted below in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 7. Network Parameters that appear to have statistically 
significant differences due to MA. GM (top left) reveals that the network 
modularity is altered due to MA in delta and beta bands, revealing 
networks with higher modularity structures for LMA. CC (top right) and 
DEN (bottom left) have similar patterns, as they are strongly related with 
each other, and in both LMA has increased values over the delta and 
theta bands; theta rhythm is strongly related with WM. SWN (bottom 
right), seems to support that the efficient communication of the network 
significantly drops in the HMA group in alpha band. 
 

Significant results have been found in CC in both delta 
(F(1;30) = 6.890;p = 0.014) and theta (F(1;30) = 4.903;p = 
0.035) bands concerning the testing group. More precisely, 
LMA group seem to have higher clustering performance in 

the aforementioned bands delta (LMA: 0.367 ± 0.020, 
HMA: 0.292 ± 0.020), theta (LMA: 0.366 ± 0.019, HMA: 
0.308 ± 0.019) than HMA group. This indicates that LMA 
group shows greater efficiency in their wiring, compared to 
HMA, by increasing the degree to which, nodes tend to 
cluster together.  

Alternations in density were found to be significant in 
delta (F(1;30) = 7.853; p = 0.009) and theta (F(1;30) = 
5.579; p = 0.025) bands, where LMA group seems to have 
higher density (delta: LMA: 0.440 ± 0.018, HMA: 0.367 ± 
0.018; theta: LMA: 0.425 ± 0.018, HMA: 0.367 ± 0.018). 
This is strongly connected with the CC, which also reveals 
the efficiency of LMA group. It should be noted that theta 
band is strongly connected with WM. Despite the numerical 
interpretation of density’s results, we can extract some 
results from the illustration of cortical networks (Figure 8). 
There is no statistically significant difference among the 
tasks, so we chose to depict only the networks for BT1 (the 
graphs of BT2 and BT3 are identical). In Figure 8, we can 
see that the LMA group forms a clear pattern in all 
brainwaves which connects the left temporal lobe with the 
right frontal cortex, while HMA have a more random and 
chaotic pattern. In the third row of Figure 8 we can see the 
stronger connections of the difference among LMA and 
HMA groups, where the aforementioned pattern is 
enhanced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 8. Functional Connectivity Networks of the two groups, and 
their differences as well, in our six frequency bands according to the 
MSC metric. Only the stronger network connections are shown (around 
1% (912 edges)). Top row: the LMA group shows a clear pattern 
connecting the left temporal region with the right frontal cortex. Middle 
row: the HMA group exhibits a more random and chaotic pattern. 
Bottom row: the stronger connections (around 1% (912 edges)) of the 
difference among LMA and HMA groups, where the aforementioned 
pattern seems to be enhanced. 
 

The main effect of group in the networks’ SWN showed 
that MA affects the alpha1 (F(1;30) = 4.294; p = 0.047; 
LMA:1.036±0.001, HMA:1.034±0.001) and  alpha2 
(F(1;30) = 4.627; p = 0.041; LMA:1.037±0.001, 
HMA:1.034±0.001) brainwaves. SWN is the main indicator 
of the network’s efficacy, and according to these results 
LMA group seems to be more efficient compared to HMA.  
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The Interaction of Group x Task was found to be 
marginally significant in GM in delta band 
(F(1;30)=2.753;p=0.079), while the post-hoc analysis 
revealed that this was provoked by the BT2 task (p=0.016). 
The main effect of group was statistically significant in 
delta (F(1;30)=4,426;p=0,044) and beta bands 
(F(1;30)=4.905;p=0.035). In both brain bands the LMA 
group seems to have a higher modular organization as 
denoted by global modularity (delta: LMA:0.139±0.009, 
HMA:0.165±0.009; beta: LMA:0.107±0.002, HMA: 
0.099±0.002). 

Regarding the Z and the PC we should note that although 
two nodes may have the same z-score, they may play 
different roles within the cluster. Therefore, this measure is 
often compared with the PC. Z and PC together reveal 
whether nodes are truly hubs in the network. Thus, Figure 9 
depicts only those nodes that are, for both indices, greater 
for one group (in this case LMA), while simultaneously 
they both have statistically significant differences between 
the two groups in BT1 task. The rest tasks didn’t have 
nodes that were for both indices significantly different 
between our two groups.  Note that the group of LMA has 
significantly higher PC and Z in nodes of the parieto-
occipital cortex for Alpha2, which is probably linked with 
the attentional buffer involved in WM, something well 
documented by [50]. For the Beta band, the LMA group 
appears to have  significantly higher PC and Z in the frontal 
and prefrontal regions probably due to the encoding of 
memorized objects [51] as well as to WM related activity 
[52]. We did not find significant differences for the 
remaining frequency bands and for any of the other tasks. 
 

FIGURE 9. Nodes that have significantly greater Z and PC values in LMA 
compared to HMA in BT1.  
 
Removing a node (edge) with high BC (EBC), we break 
many short paths, thereby dropping the communication 
efficacy of the network. In the results presented in Figure 
10, the nodes and edges that have statistically significant 
difference (p-values were corrected with FDR) between the 
two groups are illustrated: blue (red) denotes nodes/edges 
with significantly higher BC/EBC for LMA (HMA) group.  
BC and EBC findings support the CDR findings, by 
revealing that HMA group have more central nodes in the 
midline (i.e. ACC and SMA), as well as, in the parietal (i.e 

Insula) and occipital cortex (i.e. Cuneus), while the central 
nodes of LMA are around the left temporal and the right  

FIGURE 9. BC and EBC plots: In this figure we can see the nodes and 
the edges that have significantly higher BC and EBC respectively. With 
blue (red) color we denote the nodes/edges which have higher BC/EBC 
in LMA (HMA) group. We can see that HMA have their central nodes 
around the midline and the posterior parietal cortex, supporting the 
CDR findings, while LMA’s central nodes are around the left temporal 
and right frontal cortex, enhancing the pattern revealed from the 
density’s analysis. Regarding the EBC we can clearly observe that they 
appear mainly in Beta band which is essential for the encoding of 
memorized objects. The aforementioned LMA’s pattern seems to be still 
unaltered, while it gets weaker across the task’s difficulty. This means 
that the LMA group has a better overall communication’s efficacy which 
can support the internal cognitive processes of WM, and it doesn’t 
depend on certain nodes or edges.   
 
frontal cortex. One can also notice that the EBC appears 
only in Beta and Gamma band, being denser in the first of 
the two.  It can be also noticed that the LMA group drop 
their BC and EBC according to task difficulty. This means 
that LMA have an overall communication efficacy which 
can support the internal cognitive processes of WM and 
they do not depend on specific nodes or edges. On the other 
hand, HMA group increases its BC and EBC alongside with 
increasing task difficulty, which means that, both the 
mnemonic and the affective networks are still engaged and 
reinforced by the increasing demand and the stronger 
negative emotions respectively.    
 
IV. DISCUSSION 
 

Behavioral results reveal a suppression of WM in MA, by 
showing high reaction time and high error rates for HMA. 
Both of these findings come in line with current 
literature[1], where it is supported that although math 
anxious  try to succeed in a certain task (high reaction 
time), they fail (high error rate) because their anxiety 
consumes resources of their WM system. It should be 
mentioned at this point that although state anxiety may play 
a role in T1, where no Group × Task interaction was found 
the modulation of our results with the task difficulty in the 
other time windows, leads to assuming that MA is mainly 
responsible for these findings.  

Our study goes one step further from prior obtained 
behavioral results and explains this consumption by the 
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means of cortical activations and cortical connectivity. In 
contrast to LMA, who have stronger activations in areas 
related to WM tasks, HMA exhibit strong activation in 
areas included in the pain network like the ACC, the SMA 
(Figure 7), the Insula and the PHG (Table 1), even by 
viewing simple numbers. The ACC has been identified as a 
basic component of the parallel distributed attentional[53] 
and emotional[54], [55] network, while it has also been 
found to be activated during negative emotions[54], [55]. 
Moreover, numerous studies integrate all the 
aforementioned areas in the perception of pain[56]–[59] 
which seems to be activated due to hurting past memories 
as well. The combination of these areas can be further 
explained by considering the existing relationship of 
hippocampus with the retrieval of long-term memories, and 
the involvement of amygdala when this memory recall has 
an emotional background [13], [60], [61]. More precisely, 
the ACC and the insula receive signals from the amygdala 
and hippocampus using the PHG [62]–[64]; thus, they are 
activated during affective mnemonic functions[13], [65]. 
Amygdala hyperactivity has also been linked with MA in 
conjunction with lower problem-solving demands[5]. In the 
same way, a recent study found that math anxious activate 
pain related areas in the anticipation of doing 
mathematics[4]. Our study enhances this theory, by 
revealing that math anxious also activate pain related areas 
during a WM task.  

A typical working memory task is usually consisted of an 
initial encoding period, followed by a delay period and 
finally a retrieval task.  LMA show significantly greater 
activity in areas related to WM[66], something indicating 
that their WM function seems to be more efficient in 
contrast to that of HMA. The reported results are in line 
with our hypothesis, as they indicate an activation of both 
the left IFG and the right MFG at T1. According to a 
previous study these two regions were activated during the 
delay period of a working memory task[67]. According to 
the same study, left IFG is also active during the encoding 
phase, while MFG is found to have increased functional 
connectivity with the PCC during a WM task[15]. A more 
recent study provided evidence of right SFG and bilateral 
PCG during encoding[68]. These regions were also active 
in our study during T1 and T3 and they are related with 
processing of information during working memory tasks.  

We found also activation in the left cuneus. This region 
was found in studies employing fMRI while participants 
performed both operation span and arithmetic tasks[69]. 
Increased activation of the same area was also 
demonstrated in another study which employed fifteen 
participants who practiced for 6 weeks in working memory 
tasks[70]. We should state cuneus’s role during novel 
stimulus encoding[71]. Cuneus is involved in the 
phonological representation of the stimuli[72], which is 
essential for the encoding phase, where the articulatory 
rehearsal is performed[73].  A recent study[74] connects the 
phonological processing of WM with increased activity in 
the supramarginal gyrus.  

In modern network theory, the brain is a complex network 
that evaluates the segregation and integration of functional 
regions, which seem to be also altered during the 
anticipatory phase prior doing maths [12]. Our functional 
connectivity network findings revealed for the LMA group, 
a frontal activation linked with activation in the left 
temporal lobe. This pattern is also found by other studies 
with different modalities (EEG, fMRI, etc.)[14], [15], [75]. 
More precisely, we can see that the number of intra-
connections of the right frontal cortex, as well as, that of the 
inter-connections among the two aforementioned regions is 
increased. Considering that both regions are involved in 
WM[76], [77], this finding superimposes the evidence that 
WM is corrupted in HMA group, as a more diffused 
network activation is observed.  It is known that WM is 
negatively affected by acute and chronic stress, due to a 
decrease of frontal cortex neuronal firing, as a result of the 
stress-induced catecholamine release[78]. fMRI studies 
have also linked the reduced WM performance caused by 
stress with the deactivation of the dorsolateral prefrontal 
cortex due to increased catecholamine release[79], while 
the functional connectivity of the frontal cortex seems to be 
weakened due in stressful situations[80]. 

In this study, LMA and HMA show also differences in 
brain organization in both easy and difficult WM tasks. It is 
interesting that there is a difference between the groups in 
easy tasks (i.e. BT1) (Figure 8). The network organization 
of LMA at BT1 differs mainly in low frequency bands, 
which are believed to have a main role in long-range 
coordination where local activations occur[81]. Thus, it 
seems that there is a degree of weaker long coordination in 
HMA individuals. In contrast, LMA individuals show signs 
of higher long-distance coordination and the higher CC and 
DEN are indicative of higher local activations in regions 
coordinated by the low frequency bands.  

Increased activity in Alpha1 and Alpha2 bands is often 
found during cognitive tasks[82], [83] in combination with 
activity in higher frequencies[84]. The increased SWN 
index in LMA individuals shows a better network 
organization in contrast to that of HMA individuals. There 
seems to be a sign of higher readiness to react in cognitive 
demands, which goes in parallel with our behavioral 
findings. The higher GM of beta band in LMA individuals 
could be also explained as higher interregional activity 
together with the higher role of lower frequency bands. 
Simultaneously, it can be related to higher SWN index of 
Alpha1 and Alpha2 bands, while it is probably due to the 
encoding of memorized objects[51], as well as, due to WM 
related activity[52]. 

Admittedly, however, our study does contain some 
limitations. One of them lies with the experimental setup, in 
which the use of a motor execution task (mouse button 
press) does not facilitate a careful observation of what is 
happening  in the pre-stimulus interval ,  like in the study of 
[85]. Despite the fact that the motor task was 
counterbalanced across the subjects of each group and its 
effect does not appear in the GFP plots (Figure 3), we chose 
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to investigate only the post-stimulus interval, where the 
ongoing mental activity cannot be corrupted by button 
presses. Another point that it should be underlined is the 
relatively low number of trials (40 for each BT). Although 
more trials enhance the signal to noise ratio and the 
accuracy of results, they could also introduce mental fatigue 
of participants accompanied with the well-known 
behavioral and neurophysiological consequences. A final 
limitation to note is the use of a generic head model in the 
performance of CDR analysis. Ιt would be very interesting 
for future investigations to examine the relationship of MA 
and WM using individualized head models, in order to 
specify alternations in exact functional regions.  

Despite these limitations, our confirmed hypothesis 
supports that some resources of WM are consumed due to 
MA, because math anxious activate mainly regions related 
with negative emotions and pain, as the energy consumed 
in areas associated with WM is found to be significantly 
higher in LMA. This in itself is a very interesting finding 
considering that none of the used tasks required any 
mathematical processing, while the numbers used for the 
Back Tests were trivial. This finding dispute the current 
studies that use numerical stimuli without controlling the 
levels of MA, while it further suggests that future studies, 
which use numerical stimuli, should take math anxiety into 
account.       The obvious significance of this finding cannot 
be underestimated. 
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