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Abstract

The prefrontal cortex is thought to learn the relationships between actions and their
outcomes. But little is known about what changes to population activity in prefrontal
cortex are specific to learning these relationships. Here we characterise the plasticity of
population activity in the medial prefrontal cortex of male rats learning rules on a Y-maze.
First, we show that the population always changes its patterns of joint activity between
the periods of sleep either side of a training session on the maze, irrespective of successful
rule learning during training. Next, by comparing the structure of population activity in
sleep and training, we show that this population plasticity differs between learning and
non-learning sessions. In learning sessions, the changes in population activity in post-
training sleep incorporate the changes to the population activity during training on the
magze. In non-learning sessions, the changes in sleep and training are unrelated. Finally,
we show evidence that the non-learning and learning forms of population plasticity are
driven by different neuron-level changes, with the non-learning form entirely accounted
for by independent changes to the excitability of individual neurons, and the learning
form also including changes to firing rate couplings between neurons. Collectively, our
results suggest two different forms of population plasticity in prefrontal cortex during the
learning of action-outcome relationships, one a persistent change in population activity
structure decoupled from overt rule-learning, the other a directional change driven by
feedback during behaviour.

Significance statement

The prefrontal cortex is thought to represent our knowledge about what action is worth
doing in which context. But we do not know how the activity of neurons in prefrontal
cortex collectively changes when learning which actions are relevant. Here we show in a
trial-and-error task that population activity in prefrontal cortex is persistently changing,
irrespective of learning. Only during episodes of clear learning of relevant actions are
the accompanying changes to population activity carried forward into sleep, suggesting a
long-lasting form of neural plasticity. Our results suggest that representations of relevant
actions in prefrontal cortex are acquired by reward imposing a direction onto ongoing
population plasticity.

Introduction

Among the myriad roles assigned to the medial prefrontal cortex a common thread is that
it learns a model for the statistics of actions and their expected outcomes, in order to
guide or monitor behaviour (Alexander and Brown, 2011; Euston et al., 2012; Holroyd
and McClure, 2015; Khamassi et al., 2015; Starkweather et al., 2018} Wang et al., 2018).
One way to probe this role is to use rule-switching tasks that depend on trial-and-error to
uncover the statistics of each new action-outcome association. Previous work has shown
that inactivating medial prefrontal cortex impairs the learning of new rules (Ragozzino et
al., 1999,a; Rich and Shapiro, 2007; Floresco et al., 2008), and single pyramidal neurons
change their firing times relative to ongoing theta-band oscillations only with successful
rule learning (Benchenane et al.,2010). In well-trained animals, a shift in their behavioural
strategy in response to a rule change is preceded by a shift in population activity in
prefrontal cortex (Durstewitz et al., |2010; |Karlsson et al., [2012; Powell and Redish, 2016)),
consistent with a change to a statistical model of the current action-outcome dependencies.

We know little though about how prefrontal cortex population activity changes dur-
ing the initial learning of rules (Peyrache et al., [2009; Tavoni et al., |2017; Maggi et al.,
2018). The changes to population activity could be continuous or constrained only to
periods of overt learning. And these changes could be modulations of firing rates, of firing
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correlations, or of precise co-spiking between neurons. Knowing the continuity and form
of plasticity in population activity would provide strong constraints on theories for how
statistical models of the world are acquired and represented by medial prefrontal cortex.

To address these questions, here we analyse the continuity and form of population
plasticity in the prefrontal cortex of rats learning rules on a Y-maze (Peyrache et al.,
2009). We report that the structure of the population’s activity markedly changes be-
tween the periods of sleep either side of training on the maze. This turnover in neural
activity occurs whether or not there is behavioural evidence of learning during training,
and can be accounted for entirely by changes to the excitability of individual neurons, with
no contribution from changes to correlations. Unique to bouts of learning is that changes
to the structure of population activity in training are carried forward into the following
periods of sleep. These conserved activity states are created by a combination of changes
to individual neurons’ excitability and to rate, but not spike, correlations between neu-
rons. Thus, prefrontal cortex population activity undergoes constant plasticity, but this
plasticity only has a persistent direction during learning.

Materials and Methods

Task and electrophysiological recordings

Four Long-Evans male rats with implanted tetrodes in prelimbic cortex were trained on a
Y-maze task (Figure [1]A). Each recording session consisted of a 20-30 minute sleep or rest
epoch (pre-training epoch), in which the rat remained undisturbed in a padded flowerpot
placed on the central platform of the maze, followed by a training epoch, in which the
rat performed for 20-40 minutes, and then by a second 20-30 minute sleep or rest epoch
(post-training epoch). Figure shows the structure of these three epochs in the ten
identified learning sessions. Every trial in the training epoch started when the rat left
the beginning of the departure arm and finished when the rat reached the end of one of
the choice arms. Correct choice was rewarded with drops of flavoured milk. Each rat had
to learn the current rule by trial-and-error, either: go to the right arm; go to the cued
arm; go to the left arm; go to the uncued arm. To maintain consistent context across
all sessions, the extra-maze light cues were lit in a pseudo-random sequence across trials,
whether they were relevant to the rule or not.

The data analysed here were from a total set of 50 experimental sessions taken from
the study of (Peyrache et al., 2009), representing training sessions starting from naive
until either the final training session, or until choice became habitual across multiple
consecutive sessions (consistent selection of one arm that was not the correct arm). The
four rats respectively had 13, 13, 10, and 14 sessions. From these we have used here ten
learning sessions and up to 17 “stable” sessions (see below).

Tetrode recordings were spike-sorted only within each recording session for conservative
identification of stable single units. In the sessions we analyse here, the populations ranged
in size from 15-55 units. Spikes were recorded with a resolution of 0.1 ms. For full details
on training, spike-sorting, sleep identification, and histology see (Peyrache et al., 2009).

Session selection and strategy analysis

We primarily analyse here data from the ten learning sessions in which the previously-
defined learning criteria (Peyrache et al., 2009) were met: the first trial of a block of at
least three consecutively rewarded trials after which the performance until the end of the
session was above 80%. In later sessions the rats reached the criterion for changing the
rule: ten consecutive correct trials or one error out of 12 trials. By these criterion, each
rat learnt at least two rules.

We also sought sessions in which the rats made stable choices of strategy. For each
session, we computed P(rule) as the proportion of trials in which the rat’s choice of arm
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corresponded to each of the three rules (left, right, cued-arm). Whereas P(left) and
P(right) are mutually exclusive, P(cued — arm) is not, and has an expected value of 0.5
when it is not being explicitly chosen because of the random switching of the light cue. A
session was deemed to be “stable” if P(rule) was greater than some threshold 6 for one of
the rules, and the session contained at least 10 trials (this removed only two sessions from
consideration). Here we tested both # = 0.9 and 6 = 0.85, giving N = 13 and N = 17
sessions respectively. These also respectively included 2 and 4 of the rule-change sessions.
For the time-series in Figure ,E,F we estimated P(rule) in windows of 7 trials, starting
from the first trial, and sliding by one trial.

Characterising population activity as a dictionary

For a population of size N, we characterised the instantaneous population activity from
time ¢ to t + ¢ as an N-length binary vector or word. The ith element of the vector was
a 1 if at least one spike was fired by the ¢th neuron in that time-bin, and 0 otherwise.
Throughout we test bin sizes covering two orders of magnitude, with § ranging from 1 ms
to 100 ms. For a given bin size, the set of unique words that occurred in an epoch defined
the dictionary of that epoch. The probability distribution for the dictionary was compiled
by counting the frequency of each word’s occurrence in the epoch and normalising by the
total number of time bins in that epoch.

For each session we constructed three dictionaries per bin size, and their corresponding
probability distributions P(Epoch): pre-session sleep P(Pre), post-session sleep P(Post),
and trials during training P(T'rials). To unambiguously identify sleep periods, and for
comparisons with previous reports of replay in PfC (Euston et al. 2007; Peyrache et al.,
2009), we used slow-wave sleep bouts for the pre- and post-session sleep dictionaries.

We built dictionaries using the number of recorded neurons N, up to a maximum of
35 for computational tractability. The number of neurons used in each analysis is listed in
Tables[1] and 2} where we needed to use less than the total number of recorded neurons, we
ranked them according to the coefficient of variation of their firing rate between the three
epochs, and choose the N least variable; in practice this sampled neurons from across the
full range of firing rates. Only two learning sessions and six stable sessions were capped
in this way.

Trials Pre-training SWS Post-training SWS
Session ID  Neurons Duration (ms) Number Duration (ms) Bouts Duration (ms) Bouts
201222 31 125.5279 23 724.0082 3 660.9652 3
201227 23 137.8321 18 703.9857 3 829.9588 3
201229 12 153.0175 33 866.0116 3 032.9798 3
181012 35 228.5572 13 481.9801 2 923.9320 )
181020 35 125.8876 29 1117.0111 4 644.9920 3
150628 25 155.9059 29 775.9994 7 1137.0150 4
150630 27 202.6222 15 742.0170 ) 907.9818 4
150707 23 217.2740 48 561.9935 4 386.9965 2
190214 20 236.8101 42 130.0125 1 331.0333 2
190228 20 122.9788 26 540.0200 3 198.9732 2

Table 1. Learning session statistics. The Neurons column give the number of neurons used from each of
the ten learning sessions to build the words; eight used all recorded neurons, two were capped at 35. For
each epoch within a session, we give the total duration of spike-train data used to construct words, and
the number of trials or sleep bouts that comprised this total duration. The number of words per epoch at
a given bin size b can thus be calculated from this table as: Duration / b.
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Trials Pre-training SWS Post-training SWS
Session ID  Neurons Duration (ms) Number Duration (ms) Bouts Duration (ms) Bouts
150701 21 83.9801 15 866.0116 3 532.9798 3
150706 19 140.8352 20 754.0503 3 937.0184 3
181024 35 152.8336 35 525.9901 4 525.0188 2
181025 35 80.0858 20 682.0686 6 501.0109 4
181026 35 140.2582 34 333.0157 3 779.0119 5
181027 35 132.5743 34 209.9913 2 33.9931 2
181102 35 133.6886 38 572.9771 2 521.0275 7
181103 35 93.0362 22 219.9789 3 418.0025 4
190213 21 142.4687 32 255.9889 2 605.9930 1
190301 19 899.2288 12 693.0521 ) 897.0089 )
190302 22 60.0684 14 477.0404 4 279.9953 1
190303 17 132.0855 29 1043.9569 4 661.0032 4
201228 19 217.3680 41 883.9506 2 337.9834 4
201230 21 171.9406 44 180.9926 2 224.9939 3
200102 22 195.2417 42 199.0138 1 162.0023 2
200103 29 289.0712 37 308.9891 3 429.9769 4
200105 12 223.3549 45 215.9840 2 408.0112 4

Table 2. Stable session statistics. Column entries as per Table

Comparing dictionaries between epochs

We quantified the distance D(P|Q) between two dictionary’s probability distributions P
and @ using the Hellinger distance, defined by Dy (P|Q) = % Yo (Vpi— \/q7)2 To a first
approximation, this measures for each pair of probabilities (p;,¢;) the distance between
their square-roots. In this form, Dy(P|Q) = 0 means the distributions are identical, and
Dy (P|Q) = 1 means the distributions are mutually singular: all positive probabilities in
P are zero in (), and vice-versa.

To understand if a pair of pre- and post-training sleep dictionaries meaningfully dif-
fered in their structure, we compared the distance between them D(Pre|Post) to the pre-
dicted distance if they had an identical underlying probability distribution (in which case
D(Pre|Post) > 0 would be solely due to finite sampling effects). We used a resampling
test to estimate the predicted distance. We first created a single probability distribution
P(sleep) for a session by calculating the probability of each word’s appearance in all sleep
bouts across both pre and post-training sleep epochs. We then sampled P(sleep) to create
new time-series of pre- and post-training sleep words, matching the number of emitted
words in each epoch in the original data. By then reconstructing the dictionaries in each
epoch from the resampled data, we obtained a prediction for the distance D(Pre*|Post*),
where * denotes the estimate from the resampled data. Repeating the resampling 20 times
gave us a distribution of expected distances assuming an identical underlying probability
distribution for words. The sampling distribution’s mean and its 99% confidence interval
are plotted for each session in Figure BD,E — the intervals are too small to see on this
scale.

We quantified the relative convergence of the training dictionary X with the dictionar-
ies in sleep by [D(Pre|X) — D(Post|X)]/[D(Pre|X) + D(Post|X)]. Convergence greater
than 0 indicates that the distance between the training epoch [P(X)] and post-training
sleep [P(Post)] distributions was smaller than that between the training and pre-training
sleep [P(Pre)] distributions.
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Testing hypotheses for changes in dictionary structure

To understand what drove the observed changes in the structure of population activity,
we tested three hypotheses: independent changes in the excitability of neurons; changes in
firing rate co-variations between neuron; and shifts in precise co-spiking between neurons.
We tested these hypotheses in two steps:

1. We tested whether dictionaries constructed from independently firing neurons could
account for the observed changes in the structure of population activity, with two
possible outcomes:

e Yes: then we could conclude that changes in the data were due to independent
changes to the excitability of the recorded neurons.

e No: this implied that the correlations between neurons were also changed.

2. To then identify the types of those correlations, we turned to dictionaries constructed
from spikes jittered a little in time, and asked if they could account for the observed
changes:

e No: then we would have evidence that precise co-spiking between neurons con-
tributed to the changes in population activity structure.

e Yes: then changes to population activity did not depend on precise co-spiking,
and could be accounted for by changes to co-variations in rate between neurons.

For the independent neuron dictionaries, we shuffled inter-spike intervals for each neu-
ron independently, and then constructed words at the same range of bin sizes. As both the
training and sleep epochs were broken up into chunks (of trials and slow-wave sleep bouts,
respectively), we only shuffled inter-spike intervals within each chunk. This procedure kept
the same inter-spike interval distribution for each neuron, but disrupted any correlation
between neurons during a trial or during a sleep bout, thus testing for dictionary changes
that could be accounted for solely by changes to independent neurons. We repeated the
shuffling 20 times.

For any given data statistic sq.4, for a single session, we compute the same statistic
Sshufle for each shuffled data-set, and plot the difference § = sgqtq — E(Sshuffie) using the
mean F() over the shuffled data’s statistics. Confidence intervals at 99% for all § were
smaller than the size of the plotted symbol for §, so are omitted for clarity.

For the jittered dictionaries, each spike was jittered in time by a random amount drawn
from a Gaussian of mean zero and standard deviation o. We tested o from 2 to 50 ms. For
each o we constructed 20 jittered data-sets. Words were constructed from each using 5 ms
bins here, both as this time-scale would capture millisecond-precise spike-timing between
neurons, and because the biggest effects in the data were most consistently seen at this
bin size.

We illustrated changes in the rate co-variation between neurons using the coupling
between single neuron and ongoing population activity (Okun et al.[2015). Each neuron’s
firing rate was the spike density function f; obtained by convolving each spike with a
Gaussian of 100 ms standard deviation. Population coupling for the ith neuron is the
Pearson’s correlation coefficient: ¢; = corr(f;, Px;), where P; is the population rate
obtained by summing all firing rate functions except that belonging to the ith neuron.

Relationship of location and change in word probability

To examine the spatial correlates of word occurrence, the maze was linearised, and nor-
malised (0: start of departure arm; 1: end of the chosen goal arm). The location of every
occurrence of a word during the training epoch’s trials (“trial word”) was expressed as a
normalized position on the linearised maze, from which we computed the word’s median
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location and corresponding interquartile interval. Histograms of median word location
were constructed using kernel density, with 100 equally spaced points between 0 and 1.

We tested whether the trial words closer in probability to post- than pre-training sleep
were from any specific locations, which would suggest a changing representation of a key
location. For each word, we computed the difference in its probability between training
and pre-training sleep 0y, = |p(pre)—p(trial)|, and the same for post-training sleep dpost =
|p(post) —p(trial)|, and from these computed a closeness index: (pre — post)/ (Opre +post)-
Closeness is 0 if the word is equidistant from training to both sleep epochs, 1 if it has an
identical probability between training and post-training sleep; and -1 if it has an identical
probability between training and pre-training sleep.

When assessing identified maze segments, words were divided into terciles by thresholds
on the closeness index at [—0.5,0.5]; similar results were obtained if we used percentile
bounds of [10, 90]%. We counted the proportion of words in each tercile whose median
position fell within specified location bounds on the linearised maze. Confidence intervals
on the proportions were computed using 99% Jeffrey’s intervals (Brown et al., 2001]).

Statistics

Quoted measurement values are mean Z and confidence intervals for the mean [z —
ta/2nSE, T +tq /2 nSE], where t, /5, is the value from the t-distribution at a = 0.05 (95%
CI) or a = 0.01 (99% CI), and given the number n of data-points used to obtain z. For
testing the changes in convergence, we used the Wilcoxon signed-rank test for a differ-
ence from zero; for differences in population-coupling correlations, we used the Wilcoxon
signed-rank paired-sample test. Throughout, we have n = 10 learning sessions and n = 17
stable sessions.

Data and code availability

The spike-train and behavioural data that support the findings of this study are available
at CRCNS.org (DOI: 10.6080/KOKHOKHS5) (Peyrache et al., 2018)). The sessions meeting
our learning and stable criteria are listed in Tables [1] and

Code to reproduce the main results of the paper is available at:
https://github.com/mdhumphries/PfCDictionaryl

Results

Signatures of rule-learning on the Y-maze

Rats with implanted tetrodes in the prelimbic cortex learnt one of four rules on a Y-maze:
go right, go to the randomly-cued arm, go left, or go to the uncued arm (Figure )
Rules were changed in this sequence, unsignalled, after the rat did 10 correct trials in
a row, or 11 correct trials out of 12. Each rat learnt at least two of the rules, starting
from a naive state. Each training session was a single day containing 3 epochs totalling
typically 1.5 hours: pre-training sleep/rest, behavioural training on the task, and post-
training sleep/rest (Figure [IB). Here we consider bouts of slow-wave sleep throughout,
to unambiguously identify periods of sleep. Tetrode recordings were spike-sorted within
each session, giving populations of single neuron recordings ranging between 12 and 55
per session (see Tabledl] and [2] for details of each session and each epoch within a session).

In order to test for the effects of learning on the structure of joint population activity,
we need to compare sessions of learning with those containing no apparent learning as
defined by the rats’ behaviour. In the original study containing this data-set, [Peyrache et
al. (2009) identified 10 learning sessions as those in which three consecutive correct trials
were followed by at least 80% correct performance to the end of the session; the first trial
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Figure 1. Task and behaviour.

(A) Y-maze task set-up (top); each session included the epochs of pre-training sleep/rest, training trials,
and post-training sleep/rest (bottom). One of four target rules for obtaining reward was enforced
throughout a session: go right; go to the cued arm; go left; go to the uncued arm. No rat successfully
learnt the uncued-arm rule.

(B) Breakdown of each learning session into the duration of its components. The training epoch is
divided into correct (red) and error (blue) trials, and inter-trial intervals (white spaces). Trial durations
were typically 2-4 seconds, so are thin lines on this scale. The pre- and post-training epochs contained
quiet waking and light sleep states (“Rest” period) and identified bouts of slow-wave sleep (“SWS”).
(C) Internally-driven behavioural changes in an example learning session: the identified learning trial
(grey line) corresponds to a step increase in accumulated reward and a corresponding shift in the
dominant behavioural strategy (bottom). The target rule for this session is ‘go right’. Strategy
probability is computed in a 7-trial sliding window; we plot the mid-points of the windows.

(D) Peri-learning cumulative reward for all ten identified learning sessions: in each session, the learning
trial (grey line) corresponds to a step increase in accumulated reward.

(E) Peri-learning strategy selection for the correct behavioural strategy. Each line plots the probability of
selecting the correct strategy for a learning session, computed in a 7-trial sliding window. The learning
trial (grey vertical line) corresponds to the onset of the dominance of the correct behavioural strategy.
(F) Strategy selection during stable behaviour. Each line plots the probability of selecting the overall
dominant strategy, computed in a 7-trial sliding window. One line per session.
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Figure 2. A neural dictionary of population activity in prefrontal cortex.

A snapshot of population activity from N = 23 neurons during 500 ms of pre-training sleep, and below is
the corresponding binary word structure (black: 1; white: 0) for bins of 10 ms. One bin of the population
activity and its corresponding binary word is highlighted in grey. Right: The set of binary words and the
frequency of their occurrence over the whole pre-training sleep epoch defines a dictionary of population
activity.

of the initial three was considered the learning trial. By this criterion, the learning trial
occurs before the mid-point of the session (mean 45%; range 28-55%). We first check this
criterion corresponds to clear learning: Figure [I|C,D shows that each of the ten sessions
has an abrupt step change in reward accumulation around the identified learning trial
corresponding with a switch to a consistent, correct strategy within that session (Figure
1[E).

We further identify a set of 17 sessions with a stable behavioural strategy throughout,
defined as a session with the same strategy choice (left, right, cue) on more than 85% of
trials (Figure ) This set includes four sessions in which the rule changed. Setting this
criterion to a more conservative 90% reduces the number of sessions to 13 (including two
rule change sessions), but does not alter the results of any analysis; we thus show the 85%
criterion results throughout.

Constant plasticity of population activity between sleep epochs

We want to describe the joint population activity over all N simultaneously-recorded
neurons with minimal assumptions, so that we can track changes in population activity
however they manifest. Dividing time into bins small enough that each neuron either spikes
(‘1’) or doesn’t (‘0’) gives us the instantaneous state of the population as the N-element
binary vector or word in that bin (Figure . The dictionary of words appearing in an
epoch and their probability distribution together describe the region of joint activity space
in which the population is constrained. Comparing dictionaries and their probabilities
between epochs will thus reveal if and how learning changes this region of joint activity.
If learning during training correlated with changes to the underlying neural circuit in
prefrontal cortex then we might reasonably expect population activity in post-training
sleep to also be affected by these changes, and so differ from activity in pre-training sleep.
We thus compare the dictionaries in pre- and post-training sleep for the learning sessions,
and then check if any detected changes also appear during sessions of stable behaviour.
A first check is simply if the dictionary content changed during learning and not stable
behaviour. We find that the words common to both sleep epochs (Figure ) account for
almost all of each epoch’s activity (Figure ) at bin sizes up to 20 ms. Consequently,
there are no differences between learning and stable behaviour in the overlap of dictionary
contents between sleep epochs (Figure ) or in the proportion of activity accounted for
by words common to both sleep epochs (Figure ) We could thus rule out that learning
changes the dictionary content between sleep epochs compared to stable behaviour. Any
learning-specific change ought then be found in the structure of the population activity.
We capture this structure by the respective distributions P(Pre) and P(Post) for
the probability of each word appearing in pre- or post-training sleep. Changes to the
detailed structure of the pre- and post-training sleep dictionaries are then quantified by
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Figure 3. Distributions of word probabilities change between pre- and post-training sleep.
(A) Proportion of words in the pre-training sleep dictionary that are also in the post-training sleep
dictionary, per session.
(B) Proportion of the pre-training sleep epoch’s activity that is accounted for by words in common with
post-training sleep, per session.
(C) The joint distribution of the probability of every word occurring in pre-training sleep (distribution
P(Pre)) and post-training sleep (distribution P(Post)), for one learning session. D(Pre|Post): the
distance between the two probability distributions for words.
(D) Distance between the word probability distributions for pre- and post-training sleep (x-axis) against
the expected distance if the sleep activity was drawn from the same distribution in both epochs (y-axis).
One symbol per learning session; we plot the mean and 99% confidence interval (too small to see) of the
expected distance D(Pre*|Post™). Words constructed using 5 ms bins.
(E) Same as (D), for stable sessions.
(F) Bin-size dependence of changes in the dictionary between sleep epochs. Difference between the data
and mean null model distance are plotted for each session, at each bin-size used to construct words.

the distance between these probability distributions (Figure ) These distances will
vary according to both the number of neurons N and the duration of each epoch. So
interpreting them requires a null model for the distances expected if P(Pre) and P(Post)
have the same underlying distribution P(Sleep), which we approximate using a resampling
test (see Methods). In this null model any differences between P(Pre) and P(Post) are
due to the finite sampling of P(Sleep) forced by the limited duration of each epoch.

In learning sessions the distance between pre- and post-training sleep probability dis-
tributions always exceeds the upper limit of the null model’s prediction (Figure ) This
was true at every bin size (Figure ), even at small bin sizes where the dictionaries were
nearly identical between the sleep epochs (Figure ) Thus, the probability distributions
of words consistently differ between pre and post-training sleep epochs in learning sessions.

However, Figure BE-F shows this consistent difference is also true for the sessions
with stable behaviour. There is quantitative agreement too as the gap between the data
and predicted distances has the same distribution for both learning and stable behaviour
(Figure ) We conclude that the probabilities of words do systematically change between
sleep epochs either side of training, but do so whether there is overt learning or not.

Learning systematically updates the dictionary

This leaves open the question of whether changes in population activity between sleep
epochs are a consequence of changes during training. If the population changes between
sleep epochs are unrelated to population activity in training, then the probability distribu-
tion of words in training will be equidistant on average from that in pre- and post-training
sleep. Alternatively, changes to population activity during training may carry forward into
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post-session sleep, possibly as a consequence of neural plasticity during the trials changing
the region of joint activity space in which the population is constrained. A prediction
of this neural-plasticity model is that the directional change would thus occur predomi-
nantly during learning sessions, so that only in these sessions is the distribution of word
probabilities in training closer to that in post-training sleep than in pre-training sleep.

Unpicking the relationship between the sleep changes and training requires that the
dictionary in training also appears in the sleep epochs; otherwise changes to word prob-
abilities during training could not be tracked in sleep. We find that the structure of
population activity in training is highly conserved in the sleep epochs (Figure ), both
in that the majority of words appearing in trials also appear in the sleep epochs, and that
these common words account for almost all of the total duration of the trials. This conser-
vation of the training epoch population structure in sleep allows us to test the prediction
of a learning-driven directional change in population structure (Figure )

To do so, we take the dictionary of words that appear during training, and compute
the distance between its probability distribution and the probability distribution of that
dictionary in pre-training sleep (D(Pre|Learn)), and between training and post-training
sleep (D(Post|Learn)) (Figure [4IC). The prediction of the directional change model is
then D(Pre|Learn) > D(Post|Learn). This is exactly what we found: D(Pre|Learn) is
consistently larger than D(Post|Learn) at small bin sizes, as illustrated in Figure [4D for
5 ms bins.

If these directional changes are uniquely wrought by learning, then it follows that we
should not see any systematic change to the dictionary in the stable behaviour sessions
(Figure [4B). To test this prediction, we similarly compute the distances D(Pre|Stable)
and D(Post|Stable) using the dictionary of words from the training epoch, and test if
D(Pre|Stable) = D(Post|Stable). Again, this is exactly what we found: D(Pre|Stable)
was not consistently different from D(Post|Stable) at any bin size, as illustrated in Figure
4E for 5 ms bins.

It is also useful to consider not just which sleep distribution of words is closer to
the training distribution, but how much closer. We express this as a convergence ratio
C = [D(Pre|X) — D(Post|X)]/[D(Pre|X) + D(Post|X)], given the training distribution
X = {Learn, Stable} in each session. So computed C falls in the range [—1,1] with a
value greater than zero meaning that the training probability distribution is closer to the
distribution in post-training sleep than the distribution in pre-training sleep. Figure @G
shows that for learning sessions the word distribution in training is closer to the post-
training than the pre-training sleep distribution across an order of magnitude of bin sizes.
For stable sessions the absence of relative convergence is consistent across two orders of
magnitude of bin size (Figure ) Both qualitatively and quantitatively, the structure of
prefrontal cortex population activity shows a relative convergence between training and
post-training sleep that is unique to learning.

Changes to neuron excitability account for changes between sleep epochs

What then is the main driver of the observed changes in the structure of population
activity? These could arise from changes to the excitability of independent neurons, to co-
variations in rate over tens to hundreds of milliseconds, or to the millisecond-scale precise
timing of co-incident spiking between neurons. We first examine the drivers of the changes
between sleep epochs we saw in Figure

Individual sessions showed a rich spread of changes to neuron excitability between the
sleep epochs (Figure ) We thus begin isolating the contribution of these three factors
by seeing how much of the change in population structure between sleep epochs can be
accounted for by independent changes to neuron excitability. Shuffling inter-spike intervals
within each epoch gives us null model dictionaries for independent neurons by removing
both rate and spike correlations between them, but retaining their excitability (at least,
as captured by their inter-spike interval distribution).
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Figure 4. Distributions of word probabilities converge only during learning.

(A) For the training epochs, the proportion of the epoch’s dictionary (left) and duration (right)
accounted for by words in common with both sleep epochs. One symbol per learning session.

(B) Schematic of comparisons between epochs, and summary of main results. (C) Examples for one
learning session of the joint probability distributions for each word in trials and pre-training sleep (left),
and trials and post-training sleep (right), using 5 ms bins. D(T'rials|X): the distance between the two
probability distributions for words.

(D) Distances for all learning sessions, for words constructed using 5 ms bins. T: Trials.

(E) As for (D), for stable sessions.

(F) Bin-size dependence of the relative convergence between the word distributions in trials and in sleep.
Each distance was computed using only the dictionary of words appearing in the trials. Numbers are
P-values from two-sided signtests for each median differing from zero.

(G) As for (F), for stable sessions.
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Figure 5. Changes between sleep epochs are accounted for by independently changing
neurons.

(A) Example excitability changes between sleep epochs, for one learning session. Each pair of bars plot
the distributions of a neuron’s inter-spike intervals in the pre- and post-training sleep epochs, each bar
showing the median (white line), interquartile range (dark shading) and 95% interval (light shading).
Neurons are ranked by the difference in their median interval between sleep epochs. We use a log-scale on
the y-axis: some neurons shift their distribution over orders of magnitude between sleep epochs. The first
neuron was silent in the post-training sleep epoch.

(B) Distances between sleep epochs for dictionaries of independent neurons (x-axis), and their expected
distances from a null model of the same dictionary in both epochs (y-axis). Independent neuron
dictionaries are constructed by shuffling inter-spike intervals within trials or sleep bouts. One symbol per
learning session; we plot the mean and 99% confidence interval (too small to see) of the expected
distance D(Pre*|Post™). Words constructed using 5 ms bins. S: shuffled data.

(C) As for (B), for stable sessions.

(D) Independent neuron dictionaries are consistently different between sleep epochs at all bin sizes —
compare to results for the data dictionaries in Figure BJF. Each symbol is a mean over 20 shuffled
data-sets.

(E) Departure from the expected distance between sleep epochs for each learning session (Data), and the
corresponding predicted departure by independent neurons (Shuffle; mean over 20 shuffled data-sets).
Words constructed using 5 ms bins.

(F) As for (D), for stable sessions.

(G) Difference between the recorded and shuffled data, as a proportion of the data’s departure from the
expected distance between sleep epochs. Almost all differences are less then 0.1% of the difference
between data and the null model. One symbol per session.

(H) The proportion of words in the dictionary with two or more active neurons, over all learning sessions.
(I) As for panel (G), using dictionaries that contained only words with co-activity. At all bin sizes, there
is no systematic difference between recorded and shuffled data.
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When we analyse the changes between sleep epochs for independent neuron dictionar-
ies, the strong similarity with the results from the data dictionaries is compelling. We
illustrate this in Figure [BB-D, by repeating the analyses in Figure BD-F but now using
the independent neuron dictionaries — and see the results are essentially the same. The
departure from the null model of a single probability distribution in sleep is almost iden-
tical between the data and independent neuron dictionaries, illustrated in Figure [FE-F for
5 ms bins. And while the data dictionaries tend to depart further from the null model,
this excess is negligible, being on the order of 0.1% of the total departure from the null
model (Figure [5|G).

A potential confound in searching for the effects of correlation here are that words
coding for two or more active neurons are infrequent at small bin sizes, comprising less
then 10% of words at small bins sizes (Figure [JH). As a consequence, any differences
between the independent neuron and data dictionaries that depend on correlations between
neurons in the data could be obscured. To check for this, we repeat the same analyses of
the changes between sleep for both the data and independent neuron dictionaries when
they are restricted to include only co-activity words. As Figure [ shows, this did not
uncover any hidden contribution of correlation between neurons in the data; indeed, for co-
activity words alone, the difference between the data and the independent model is about
zero. Thus, the changes in word probabilities between pre- and post-training sleep can
be almost entirely accounted for by independent changes to the excitability of individual

neurons (Figure [5jA).

Learning-driven changes to the dictionary include rate co-variations

Can independent changes to individual neuron excitability also account for the relative
convergence of dictionaries in learning? Repeating the comparisons of training and sleep
epoch activity using the independent neuron dictionaries, we observe the same learning-
specific convergence of the training and post-training sleep dictionaries, illustrated in
Figure @A for 5 ms bins (compare Figure —E). Figure shows that the difference
in convergence score between the data and independent neuron dictionaries is close to
zero at most bin sizes. This suggests that the changes in population activity during the
trials that are carried forward to the post-training sleep can also be accounted for by the
changing excitability of individual neurons.

To check this conclusion, we again account for the relative infrequency of co-activity
words at small bin sizes by recomputing the distances between sleep and training epochs
using dictionaries of only co-activity words. Now we find that, unlike the changes between
sleep epochs, the relative convergence between training and post-training sleep for the
data dictionaries is greater than for the independent neuron dictionaries (Figure [6|C). We
conclude that changes to the correlations between neurons during the trials of learning
sessions are also detectably carried forward to post-training sleep.

These correlations could take the form of co-variations in rate, or precise co-incident
spikes on millisecond time-scales. To test for precise co-spiking, we construct new null
model dictionaries: we jitter the timing of each spike, and then build dictionaries using 5
ms bins to capture spike alignment. If precise co-spiking is contributing to the correlations
between neurons, then relative convergence should be smaller for these jittered dictionaries
than the data dictionaries. As Figure[6D shows, this is not what we found: across a range
of time-scales for jittering the spikes, the difference in relative convergence between the
data and jittered dictionaries was about zero. The changed correlations between neurons
are then rate co-variations, not precise co-spiking.

Figure [6E-H gives some intuition for these changes in rate co-variation. We measure
the coupling of each neuron’s firing to the ongoing population activity (Figure @E) as
an approximation of each neuron’s rate covariation (as population-coupling is fixed to a
particular time-scale, so it can only represent part of the co-variation structure captured
by the dictionaries of words). The distribution of population coupling across the neurons
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varied between epochs (Figure @F—G)7 signalling changes to the co-variations in rate be-
tween neurons. Consistent with changes to rate co-variations, the distribution of coupling
tended to be more similar between training and post-training sleep than between training
and pre-training sleep (Figure [6]H).

Locations of dictionary sampling during learning

The changes to population activity in training carried forward to post-training sleep may
correspond to learning specific elements of the task. We check for words linked to task
elements by first plotting where each word in the training dictionary occurs on the maze
during trials. Words cluster at three maze segments, as illustrated in Figure for 3 ms
bins: immediately before the choice area, at its centre, and at the end of the chosen arm.
This clustering is consistent across all bin sizes (Figure [7B).

Repeating this location analysis using the dictionaries of independent words gives the
same three clusters (grey lines in Figure —B). This suggests that the clustering of words
at particular locations can be largely attributed to the amount of time the animals spent
at those locations. The only departures are that the choice region is slightly under-
represented in the data dictionaries, and the arm-end slightly over-represented. These
departures are potentially interesting, as they correspond to key points in the task: the
area of the maze at which the goal arm has to be chosen, and the arrival at the goal arm’s
reward port.

We thus check if words in these three segments are more likely to have their probabilities
in training carried forward to post-training sleep. Figure shows that when we plot the
closeness of each word’s probability in training and sleep, we obtain a roughly symmetrical
distribution of locations for words closer to pre-training and post-training sleep. At the
three maze segments, we indeed find that a word’s probability in training is equally likely
to be closer to pre-training sleep, equidistant from both sleep epochs, or closer to post-
training sleep (Figure —F). We obtain the same results if we use just co-activity words,
or if we divide the closeness distribution into pre/equidistant/post by percentiles rather
than the fixed ranges we use in Figure[7]D-F (data not shown). There is, then, no evidence
in this analysis that words representing specific maze locations, and putatively key task
elements, have their changes in training carried forward to post-training sleep. Rather,
changes to the structure of population activity during learning are distributed over the
entire maze.

Independent neurons capture the majority of structure in prefrontal cor-
tex population activity

The above analyses have shown that independently-firing neurons capture much of the
changes to and location dependence of population activity in medial prefrontal cortex.
This implies that independent neurons can account for much of the population activity
structure within each epoch. We take a closer look at this conclusion here.

A useful measure of the overall structure of the population spiking activity is the
proportion of “1’s” that encode two or more spikes. The occurrence rates of these “binary
errors” across different bin sizes tell us about the burst structure of the neural activity.
Figure shows that increasing the bin size applied to the data interpolates between
words of single spikes and words of spike bursts in both training and sleep epochs. At
bin sizes less than 10 ms, almost all 1’s in each word are single spikes; at bin sizes above
50 ms, the majority of 1’s in each word are two or more spikes and so encode a burst of
spikes from a neuron.

Dictionaries of independent neurons largely recapitulate these bin size dependencies
for all epochs (Figure [§B-D). Their only departure is about 5% more binary errors than
in the data at bin sizes above 20 ms (Figure [§D). As by construction there are the same
number of spikes for each neuron in the data and independent neuron dictionaries, this
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Figure 7. Locations of words during trials of learning sessions.

(A) Scatter of the spread in location against median location for every word in the training epoch
dictionaries of the learning sessions, constructed using 3 ms bins. Spread in location is the inter-quartile
interval, which we also plot as vertical lines. On the right we plot the density of median locations for the
data (red area plot) and independent neuron (grey line) dictionaries.

(B) Density of median locations across all bin sizes, for data (red area plot) and independent neuron
(grey line) dictionaries.

(C) For each word in the training epoch dictionaries, we plot its median location against the closeness
between its training epoch and sleep epoch probability. Closeness is in the range [—1, 1], where -1
indicates identical probability between training and pre-training sleep, and 1 indicates identical
probability between training and post-training sleep. Coloured bars indicate the regions of the maze
analysed in panels D-F.

(D) Distributions of word closeness to sleep in specific maze segments, for 3 ms bins. All words with
median locations within the specified maze segment are divided into terciles of closeness by thresholds of
-0.5 and 0.5 (vertical grey lines). Symbols plot proportions of words falling in each tercile, and error bars
plot 99% confidence intervals on those proportions. Blue: arm end; orange: choice point; red: pre-choice
segment.

(E) As panel D, for 10 ms bins.

(F) As panel D, for 50 ms bins.
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Figure 8. Independent neurons capture a large fraction of population activity structure.
(A) Proportion of “1’s” that encode more than one spike (“binary error”), across all emitted words in all
learning sessions. Epoch colours apply to all panels.

(B) As panel (A), for dictionaries of independent neurons derived by shuffling neuron inter-spike intervals
to remove correlations. Proportions are means from 20 shuffled datasets of the learning sessions.

(C) Mean difference between binary error proportions in the data and predicted by independent neurons,
in percentile points.

(D) As panel (C), expressed as a proportion of the binary errors in the data.

(E) Proportion of emitted words in each epoch that have more than one active neuron, pooled across all
learning sessions (replotted from Figure [FH).

(F) As panel (E), for dictionaries of independent neurons.

(G) Median difference between the proportion of emitted co-activity words in the data and predicted by
independent neurons.

(H) As panel (G), expressed as a proportion of the number of co-activity words in the data.

implies that the data contain more spikes per burst on 50-100 ms time-scales (so that
there are fewer bins with bursts in total).

A useful summary of the joint structure of population activity is the fraction of emitted
words that code for two or more active neurons. For the data, increasing the bin size
increases the fraction of emitted words that contain more than one active neuron (Figure
BE), from about 1% of words at 2 ms bins to all words at 50 ms bins and above. There are
consistently more of these co-activity words in training epochs than sleep epochs for the
same bin size, pointing to more short time-scale synchronous activity during movement
along the maze than in sleep.

Dictionaries of independent neurons also recapitulate these bin size and epoch de-
pendencies of neural co-activity (Figure —H). Figure shows that the independent
neuron dictionaries have more co-activity words at small bin sizes. It might be tempt-
ing here to conclude that the data dictionaries are constrained to fewer co-activity words
than predicted by independent neurons; but these differences are equally consistent with
a shadowing effect from spike-sorting, where one or more near-simultaneous spikes from
neurons on the same electrode are missed (Harris et all) 2000; Bar-Gad et al., |2001):
when the data are shuffled, more near-simultaneous spikes between neurons are possible.
Nonetheless, above bins of 5 ms, the disagreement between the data and independent
neuron dictionaries is proportionally negligible (Figure ) Consequently, much of the
population activity in medial prefrontal cortex is well-captured by an independent-neuron
model, perhaps pointing to a high-dimensional basis for neural coding.
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Discussion

We studied here how the structure of population activity in medial prefrontal cortex
changes during rule-learning. We found the structure of instantaneous population activ-
ity in sleep always changes after training, irrespective of any change in overt behaviour
during training. This plasticity of population activity could be entirely accounted for by
independent changes to the excitability of individual neurons. Unique to learning is that
changes to the structure of instantaneous population activity during training are carried
forward into the following bouts of sleep. Population plasticity during learning includes
both changes to individual neuron excitability and to co-variations of firing rates between
neurons. These results suggest two forms of population plasticity in medial prefrontal cor-
tex, one a constant form unrelated to learning, and the other correlated with the successful
learning of action-outcome associations.

To isolate learning and non-learning changes, we found useful the “strong inference”
approach of designing analyses to decide between simultaneous hypotheses for the same
data. We identified separable sessions of learning and stable behaviour in order to contrast
the hypothesis that population structure would only change during overt learning against
the hypothesis that population structure is always changing irrespective of behaviour.
Similarly, we contrasted three hypotheses for what drove those changes in population
structure: changes to excitability of independent neurons; changes in brief co-variations
of rates; and changes in precise co-spiking.

A dictionary of cortical activity states

Characterising the joint activity of cortical neurons is a step towards understanding how
the cortex represents coding and computation (deCharms and Zador, 2000; Wohrer et
al., 2013; [Yuste, 2015). One clue is that the joint activity of a cortical population seems
constrained to visit only a sub-set of all the possible states it could reach (Tsodyks et
al., |1999; Luczak et al., |2009; Sadtler et al., 2014; Jazayeri and Afraz, 2017), in part
determined by the connections into and within the network of cortical neurons (Galan,
2008; Marre et al., 2009; Ringach, 2009; Buesing et al., 2011} [Habenschuss et al., [2013;
Kappel et al.l 2015). This view predicts that changing the network connections through
learning would change the set of activity states (Battaglia et al., [2005]).

We see hints of this prediction in our data. We found changes to the probability of
words in training that are detectable in post-training sleep, consistent with the idea that
reinforcement-related plasticity of the cortical network has persistently changed the con-
strained set of activity states. But changing the network’s connections should change not
just the set of activity states, but also their sequences or clustering in time (Tkacik et al.,
2014; |Ganmor et al., |2015). This suggests that further insights into population plastic-
ity with these data could be found by characterising the preservation of word sequences
or clusters in time between training and sleep epochs, and comparing those to suitable
alternative hypotheses for temporal structure.

Excitability drives constant population plasticity

A change in the statistics of a population’s neural activity is not in itself evidence of
learning (Okun et al.;|2012). Indeed, we saw here a constant shifting in statistical structure
between sleep epochs, regardless of whether the rats showed any evidence of learning in
the interim training epoch. As these shifts between sleep could be seen at all time-scales of
words we looked at, and were recapitulated by dictionaries of independent neurons, they
are most consistent with a model of independent changes to the excitability of individual
neurons.

Excitability changes could arise from the spontaneous remodelling of synaptic connec-
tions onto a neuron, whether from remodelling of dendritic spines (Fu et al.,2012; |Hayashi-
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Takagi et al., 2015)), or changes of receptor and protein expression within a synapse (Wolft
et al., |1995; |Ziv and Brenner} [2017). Alternatively, these changes could arise from long-
lasting effects on neuron excitability of neuromodulators accumulated in medial prefrontal
cortex during training (Seamans and Yang), 2004; |Tierney et al. 2008; |Dembrow et al.,
2010; Benchenane et al., |2011)). A more detailed picture of this constant population plas-
ticity will emerge from stable long-term population recordings at millisecond resolution
(Jun et al.l |2017)) of the same prefrontal cortex neurons throughout rule-learning.

Learning correlates with directional population plasticity

Unique to learning a new rule in the Y-maze was that changes to word probability in
training were carried forward to post-training sleep. As this persistence of word probability
occurred most clearly for short time-scale words (20 ms or less), and were partly driven
by changes in rate co-variations, it is most consistent with a model of synaptic changes
to the prefrontal cortex driven by reinforcement. A possible mechanism here is that
reinforcement-elicited bursts of dopamine permitted changes of synaptic weights into and
between neurons whose co-activity preceded reward (Izhikevich, 2007; Benchenane et al.|
2011). Such changes in synaptic weights would also alter the excitability of the neuron
itself, accounting for the changes between pre and post-training sleep epochs in learning
sessions.

A particularly intriguing question is how the constant and learning-specific plasticity
of population activity are related. Again, stable long-term recordings of spiking activity
in the same population of neurons across learning would allow us to test whether neurons
undergoing constant changes in excitability are also those recruited during learning (Lee
et al., [2012; Hayashi-Takagi et al.; 2015)). Another question is how the carrying forward of
training changes of population activity into sleep depends on an animal’s rate of learning.
In each learning session here the identified learning trial was before the half-way mark,
meaning that the majority of words contributing to the training dictionary came from trials
after the rule was acquired. It is an open question as to whether the same relationship
would be seen in sessions of late learning, or in tasks with continual improvement in
performance rather than the step changes seen here.

Replay and dictionary sampling

The increased similarity of word probability in training and post-training sleep suggests
an alternative interpretation of “replay” phenomena in prefrontal cortex (Euston et al.,
2007; [Peyrache et all 2009). Replay of neural activity during waking in a subsequent
episode of sleep has been inferred by searching for matches of patterns of awake activity
in sleep activity, albeit at much coarser time-scales than used here. The better match of
waking activity with subsequent sleep than preceding sleep is taken as evidence that replay
is encoding recent experience, perhaps to enable memory consolidation. However, our
observation that the probabilities of words in stable sessions’ trials are not systematically
closer to those in post-training sleep (Figure [4)) is incompatible with the simple replay of
experience-related activity in sleep. Rather, our results suggest learning correlates with
persistent changes to the cortical network, such that words have more similar probabilities
of appearing in training and post-training sleep than in training and pre-training sleep. In
this view, replay is a signature of activity states that appeared in training being resampled
in post-training sleep (Battaglia et al., 2005]).

Population coding of statistical models

What constraints do these changes to mPfC population activity place on theories for
acquiring and representing statistical models of actions and their outcomes? In this view,
the joint activity of the population during the trials represents something like the joint
probability P(a,o|state) of action a and outcome o given the current state of the world
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(Alexander and Brown, 2011); or, perhaps more generally, a model for the transitions
in the world caused by actions, P(state(t + 1)|a, state(t)). Such models could support
the proposed roles of medial prefrontal cortex in guiding action selection (by querying
the outcomes predicted by the model), or monitoring behaviour (by detecting unexpected
deviations from the model). The changes in the structure of population activity during
learning are consistent with updating such models based on reinforcement.

Our results show these dictionary changes are carried forward to the spontaneous
activity of sleep, suggesting that the encoded statistical model is present there too. One
explanation for this stems from the sampling hypothesis for probability encoding. In this
hypothesis, a population encodes a statistical model in the joint firing rates of its neurons,
so that the pattern of activity across the population at each moment in time is a sample
from the encoded distribution (Fiser et al., |2010; Berkes et al. 2011). This hypothesis
predicts that spontaneous activity of the same neurons must still represent samples from
the statistical model: but in the absence of external input, these are then samples from
the “prior” probability distribution over the expected properties of the world.

According to this hypothesis, our finding that learning-driven changes to population
structure are conserved in post-training sleep is consistent with the statistical model now
reflecting well-learnt expected properties of the world — namely, that a particular set of
actions on the maze reliably leads to reward. In other words, the prior distribution for the
expected properties of the world has been updated. Further, the sampling hypothesis also
proposes a role for the constant changes of excitability without obvious direction — that
such spontaneous plasticity explores possible configurations of the network and so acts as
a search algorithm to optimise the encoded statistical model (Kappel et al., [2015; Maass,
2016). These links, while tentative, suggest the utility of exploring models for probabilistic
codes outside of early sensory systems (Fiser et al., [2010; Pouget et al., 2013).

References

Alexander WH, Brown JW (2011) Medial prefrontal cortex as an action-outcome predictor.
Nature Neurosci 14:1338-1344.

Bar-Gad I, Ritov Y, Vaadia E, Bergman H (2001) Failure in identification of overlap-
ping spikes from multiple neuron activity causes artificial correlations. J Neurosci
Meth 107:1-13.

Battaglia FP, Sutherland GR, Cowen SL, Mc Naughton BL, Harris KD (2005) Fir-
ing rate modulation: a simple statistical view of memory trace reactivation. Neural
Netw 18:1280-1291.

Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener
SI (2010) Coherent theta oscillations and reorganization of spike timing in the
hippocampal- prefrontal network upon learning. Neuron 66:921-936.

Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a
gateway to memory and attention. Curr Opin Neurobiol 21:475-485.

Berkes P, Orban G, Lengyel M, Fiser J (2011) Spontaneous cortical activity reveals
hallmarks of an optimal internal model of the environment. Science 331:83-87.

Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a binomial proportion.
Statist Sci 16:101-133.

Buesing L, Bill J, Nessler B, Maass W (2011) Neural dynamics as sampling: a model
for stochastic computation in recurrent networks of spiking neurons. PLoS Comput
Biol 7:e1002211.



22

deCharms RC, Zador A (2000) Neural representation and the cortical code. Annu Rev
Neurosci 23:613-647.

Dembrow NC, Chitwood RA, Johnston D (2010) Projection-specific neuromodulation of
medial prefrontal cortex neurons. J Neurosci 30:16922-16937.

Durstewitz D, Vittoz NM, Floresco SB, Seamans JK (2010) Abrupt transitions between
prefrontal neural ensemble states accompany behavioral transitions during rule learning.
Neuron 66:438-448.

Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in
memory and decision making. Neuron 76:1057-1070.

Euston DR, Tatsuno M, McNaughton BL (2007) Fast-forward playback of recent memory
sequences in prefrontal cortex during sleep. Science 318:1147-1150.

Fiser J, Berkes P, Orban G, Lengyel M (2010) Statistically optimal perception and learn-
ing: from behavior to neural representations. Trends Cogn Sci 14:119-130.

Floresco SB, Block AE, Tse MTL (2008) Inactivation of the medial prefrontal cortex of
the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated
procedure. Behav Brain Res 190:85-96.

Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation
of clustered dendritic spines in vivo. Nature 483:92-95.

Galan RF (2008) On how network architecture determines the dominant patterns of
spontaneous neural activity. PloS One 3:€2148.

Ganmor E, Segev R, Schneidman E (2015) A thesaurus for a neural population code.
Elife 4:e06134.

Habenschuss S, Jonke Z, Maass W (2013) Stochastic computations in cortical microcircuit
models. PLoS Comput Biol 9:e1003311.

Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsdki G (2000) Accuracy of tetrode spike
separation as determined by simultaneous intracellular and extracellular measurements.
J Neurophysiol 84:401-414.

Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman
B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces
in the motor cortex. Nature 525:333—-338.

Holroyd CB, McClure SM (2015) Hierarchical control over effortful behavior by rodent
medial frontal cortex: A computational model. Psychological review 122:54-83.

Izhikevich EM (2007) Solving the distal reward problem through linkage of stdp and
dopamine signaling. Cereb Cortex 17:2443-2452.

Jazayeri M, Afraz A (2017) Navigating the neural space in search of the neural code.
Neuron 93:1003-1014.

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou
CA, Andrei A, Aydn C, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL,
Gutnisky DA, Hausser M, Karsh B, Ledochowitsch P, Lopez CM, Mitelut C, Musa S,
Okun M, Pachitariu M, Putzeys J, Rich PD, Rossant C, Sun WL, Svoboda K, Carandini
M, Harris KD, Koch C, O’Keefe J, Harris TD (2017) Fully integrated silicon probes for
high-density recording of neural activity. Nature 551:232-236.



23

Kappel D, Habenschuss S, Legenstein R, Maass W (2015) Network plasticity as Bayesian
inference. PLoS Comput Biol 11:€1004485.

Karlsson MP, Tervo DGR, Karpova AY (2012) Network resets in medial prefrontal cortex
mark the onset of behavioral uncertainty. Science 338:135-139.

Khamassi M, Quilodran R, Enel P, Dominey PF, Procyk E (2015) Behavioral regulation
and the modulation of information coding in the lateral prefrontal and cingulate cortex.
Cereb Cortex 25:3197-3218.

Lee D, Lin BJ, Lee AK (2012) Hippocampal place fields emerge upon single-cell manipu-
lation of excitability during behavior. Science 337:849-853.

Luczak A, Barth6 P, Harris KD (2009) Spontaneous events outline the realm of possible
sensory responses in neocortical populations. Neuron 62:413-425.

Maass W (2016) Searching for principles of brain computation. Curr Opin Behav
Sci 11:81-92.

Maggi S, Peyrache A, Humphries MD (2018) An ensemble code in medial prefrontal cortex
links prior events to outcomes during learning. Nature Comms p. in press.

Marre O, Yger P, Davison AP, Frégnac Y (2009) Reliable recall of spontaneous activity
patterns in cortical networks. J Neurosci 29:14596-14606.

Okun M, Steinmetz NA, Cossell L, Tacaruso MF, Ko H, Bartho P, Moore T, Hofer SB,
Mrsic-Flogel TD, Carandini M, Harris KD (2015) Diverse coupling of neurons to pop-
ulations in sensory cortex. Nature 521:511-515.

Okun M, Yger P, Marguet SL, Gerard-Mercier F, Benucci A, Katzner S, Busse L, Caran-
dini M, Harris KD (2012) Population rate dynamics and multineuron firing patterns in
sensory cortex. J Neurosct 32:17108-17119.

Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia F (2018) Activity of neu-
rons in rat medial prefrontal cortex during learning and sleep. doi:10.6080/KOKHOKHS5.

Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of
rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neu-
rosci 12:916-926.

Pouget A, Beck JM, Ma WJ, Latham PE (2013) Probabilistic brains: knowns and un-
knowns. Nat Neurosci 16:1170-1178.

Powell NJ, Redish AD (2016) Representational changes of latent strategies in rat medial
prefrontal cortex precede changes in behaviour. Nat Commun 7:12830.

Ragozzino ME, Detrick S, Kesner RP (1999a) Involvement of the prelimbic-infralimbic
areas of the rodent prefrontal cortex in behavioral flexibility for place and response
learning. J Neurosci 19:4585-4594.

Ragozzino ME, Wilcox C, Raso M, Kesner RP (1999) Involvement of rodent prefrontal
cortex subregions in strategy switching. Behav Neurosci 113:32—41.

Rich EL, Shapiro ML (2007) Prelimbic/infralimbic inactivation impairs memory for mul-
tiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747-4755.

Ringach DL (2009) Spontaneous and driven cortical activity: implications for computa-
tion. Curr Opin Neurobiol 19:439-444.



24

Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, Yu BM, Batista
AP (2014) Neural constraints on learning. Nature 512:423-426.

Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine mod-
ulation in the prefrontal cortex. Prog Neurobiol 74:1-58.

Starkweather CK, Gershman SJ, Uchida N (2018) The medial prefrontal cortex shapes
dopamine reward prediction errors under state uncertainty. Neuron p. in press.

Tavoni G, Ferrari U, Battaglia FP, Cocco S, Monasson R (2017) Functional coupling
networks inferred from prefrontal cortex activity show experience-related effective plas-
ticity. Network Neurosci pp. 275-301.

Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates
temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb
Cortex 18:2251-2262.

Tkacik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry n MJ (2014) Search-
ing for collective behavior in a large network of sensory neurons. PLoS Comput
Biol 10:¢1003408.

Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single
cortical neurons and the underlying functional architecture. Science 286:1943-1946.

Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, Hassabis D,
Botvinick M (2018) Prefrontal cortex as a meta-reinforcement learning system. Nat
Neurosci 21:860-868.

Wohrer A, Humphries MD, Machens C (2013) Population-wide distributions of neural
activity during perceptual decision-making. Prog Neurobiol 103:156-193.

Wolff JR, Laskawi R, Spatz WB, Missler M (1995) Structural dynamics of synapses and
synaptic components. Behav Brain Res 66:13-20.

Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neu-
rosci 16:487-497.

Ziv NE, Brenner N (2017) Synaptic tenacity or lack thereof: Spontaneous remodeling of
synapses. Trends Neurosci 41:89-99.



