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Abstract
1.	 Tropical forests store and sequester large quantities of carbon, mitigating climate 
change. Lianas (woody vines) are important tropical forest components, most con-
spicuous in the canopy. Lianas reduce forest carbon uptake and their recent in-
crease may, therefore, limit forest carbon storage with global consequences for 
climate change. Liana infestation of tree crowns is traditionally assessed from the 
ground, which is labour intensive and difficult, particularly for upper canopy 
layers.

2.	 We used a lightweight unmanned aerial vehicle (UAV) to assess liana infestation of 
tree canopies from above. It was a commercially available quadcopter UAV with 
an integrated, standard three-waveband camera to collect aerial image data for 
150 ha of tropical forest canopy. By visually interpreting the images, we assessed 
the degree of liana infestation for 14.15 ha of forest for which ground-based esti-
mates were collected simultaneously. We compared the UAV liana infestation es-
timates with those from the ground to determine the validity, strengths, and 
weaknesses of using UAVs as a new method for assessing liana infestation of tree 
canopies.

3.	 Estimates of liana infestation from the UAV correlated strongly with ground-
based surveys at individual tree and plot level, and across multiple forest types 
and spatial resolutions, improving liana infestation assessment for upper canopy 
layers. Importantly, UAV-based surveys, including the image collection, process-
ing, and visual interpretation, were considerably faster and more cost-efficient 
than ground-based surveys.

4.	 Synthesis and applications. Unmanned aerial vehicle (UAV) image data of tree cano-
pies can be easily captured and used to assess liana infestation at least as accu-
rately as traditional ground data. This novel method promotes reproducibility of 
results and quality control, and enables additional variables to be derived from the 
image data. It is more cost-effective, time-efficient and covers larger geographical 
extents than traditional ground surveys, enabling more comprehensive monitor-
ing of changes in liana infestation over space and time. This is important for as-
sessing liana impacts on the global carbon balance, and particularly useful for 
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1  | INTRODUC TION

Tropical forests and their canopies play a crucial role in the mainte-
nance and provision of unique biodiversity and essential ecosystem 
services to all life on Earth (Lowman & Schowalter, 2012; Ozanne 
et al., 2003). One of the most important ecosystem services that 
tropical forests provide is their ability to store and sequester carbon 
(Pan et al., 2011). Managing tropical forests for carbon sequestra-
tion, therefore, provides a key opportunity to mitigate some of the 
effects of climate change resulting from increasing atmospheric CO2 
concentrations (Canadell & Raupauch, 2008).

Lianas (woody vines) are conspicuous components of tropical 
forests, where they peak in abundance, biomass, and species rich-
ness (Schnitzer & Bongers, 2002). Lianas use the structural biomass 
of trees to deploy leaves in the canopy, thus investing relatively 
more resources in producing an extensive leaf canopy than in woody 
tissue. Lianas, therefore, disproportionately contribute to the for-
est canopy: liana leaves can comprise up to 30% of forest leaf area 
but only up to 5% woody stem biomass of tropical forests (van der 
Heijden, Schnitzer, Powers, & Phillips, 2013). Liana abundance and 
biomass have increased over the last few decades (Schnitzer & 
Bongers, 2011). Consequently, lianas have proliferated in the forest 
canopy, indicated by an increase in their contribution to leaf pro-
ductivity as well as in the number of tree crowns infested (Ingwell, 
Wright, Becklund, Hubbell, & Schnitzer, 2010; Wright, Calderón, 
Hernandéz, & Paton, 2004). Partly due to their extensive cano-
pies, lianas aggressively compete with trees, reducing tree growth 
(Ingwell et al., 2010; van der Heijden & Phillips, 2009), fecundity 
(e.g., Kainer, Wadt, & Staudhammer, 2014), survival (Ingwell et al., 
2010; Phillips, Vásquez Martínez, Monteagudo Mendoza, Baker, 
& Núñez Vargas, 2005) and, consequently, forest biomass and net 
carbon uptake (van der Heijden, Powers, & Schnitzer, 2015). Lianas 
pose a particular problem for managed forests, where they can sub-
stantially hinder carbon sequestration and forest restoration (e.g., 
Marshall et al., 2017). Liana cutting is often used to enhance carbon 
uptake (Marshall et al., 2017; van der Heijden et al., 2015); however, 
this is expensive and labour intensive to perform over large extents. 
The ability to identify where liana management would be most ben-
eficial would therefore help target management of tropical forests.

Being able to accurately monitor the presence and degree of 
liana infestation in forest canopies over time and space is, there-
fore, important for determining whether and where liana impacts 

are high and/or may be increasing, particularly in managed tropical 
forests. Due to practical difficulties in accessing tropical forest can-
opies (Nakamura et al., 2017), assessing liana canopy infestation is 
traditionally done by ground-based surveys (e.g., van der Heijden, 
Feldpausch, Herrero, van der Velden, & Phillips, 2010). These are 
labour- and time intensive, and consequently limited in their spatial 
and temporal coverage, and lianas, therefore, remain understudied 
in tropical forests (Marvin, Asner, & Schnitzer, 2016). Furthermore, 
the stratified nature of tropical forests often limits the visibility 
of canopy and emergent tree crowns, affecting the reliability of 
ground-based estimates for them. As these larger trees tend to store 
and sequester the most carbon and, due to high light conditions in 
their crown, often harbour lianas (van der Heijden, Healey, & Phillips, 
2008), reliable assessment of liana infestation for top-of-the-canopy 
trees is especially important.

Assessing lianas from a vantage point above the canopy should 
be feasible using remote sensing platforms which offer views of the 
canopy with much less obscuration by vegetation than possible from 
the ground (Nadkarni, Parker, & Lowman, 2011). However, satellite 
and many airborne platforms generally provide data too coarse in 
temporal or spatial resolution for this task, too expensive at very fine 
resolutions, and frequently suffer from cloud obscuration, especially 
in moist forests. Workarounds exist: using hyperspectral and LiDAR 
sensors, the Carnegie Airborne Observatory was able to accurately 
map heavy liana infestation across the forests of Panama (Marvin 
et al., 2016). The use of such sensors is very expensive and restricted 
to specialists, however, prohibiting their accessibility to the major-
ity of researchers and forest managers. Furthermore, such remote 
sensing campaigns are typically carried out as one-time operations, 
so frequent monitoring is difficult (Xue & Su, 2017).

Unmanned aerial vehicles (UAVs) with sensors overcome most 
of the aforementioned limitations of remote sensing platforms 
(Cunliffe, Brazier, & Anderson, 2016). They can acquire remotely 
sensed data from relatively inaccessible environments, and thus are 
useful for measuring and (long-term) monitoring of forest canopies 
(Kachamba, Ørka, Gobakken, Eid, & Mwase, 2016; Paneque-Gálvez, 
McCall, Napoletano, Wich, & Koh, 2014; Zahawi et al., 2015; Zhang 
et al., 2016). Additionally, UAVs can capture data at even finer tem-
poral and spatial resolutions than satellite and manned-airborne re-
mote sensing (Nakamura et al., 2017). This is especially important 
because visually distinguishing lianas from trees requires ultra-fine 
resolution (mm–cm) image data: liana leaves grow among the leaves 

forest management where knowledge of the location and change in liana infesta-
tion can be used for tailored, targeted, and effective management of tropical for-
ests for enhanced carbon sequestration (e.g., REDD+ projects), timber concessions, 
and forest restoration.
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of the trees in which they are located, becoming embedded in the 
canopy, and are also heterogeneous in nature, as lianas are phylo-
genetically and functionally highly diverse (Burnham, 2004; Gentry, 
1991). Because their physical traits vary, leaves of a given liana spe-
cies may look very different or very similar to other liana species or 
the tree in which they are located. Additional textural context, such 
as leaf shape or arrangement, could allow improved discrimination of 
liana leaves from tree leaves in cases where spectral discrimination 
is unfeasible. Thus, UAVs and the enhanced spatial resolution they 
offer are potentially effective for assessing canopy-level liana infes-
tation. However, even though UAVs have been used to study other 
canopy phenomena (e.g., Zahawi et al., 2015); thus far, they have not 
been used to study lianas.

Here, we examine, for the first time, the applicability of UAV-
derived image data to assess the presence and degree of liana infes-
tation in tropical tree canopies, using ground-based observations as 
a benchmark. Specifically, we aim to assess the validity of utilizing 
a consumer-grade UAV and camera as a new method for collecting 
data on liana infestation, by (a) assessing interobserver bias in clas-
sifying liana infestation from UAV images (reproducibility between 
observers); (b) evaluating the strength of the correlation between 
UAV- and ground-derived measures of liana infestation on individual 
tree- and plot levels, and for different canopy strata (accuracy and 
reproducibility against benchmarked method); and (c) comparing input 
time and costs between ground and UAV surveys of liana infestation 
(efficiency against a benchmarked method).

2  | MATERIAL S AND METHODS

2.1 | Study sites

Ground and UAV-based surveys were conducted in two sites across 
eastern Sabah, Malaysia: Danum Valley Conservation Area (Danum) 
(4°57′N, 117°42′E) and Sepilok Forest Reserve (Sepilok) (5°52′N, 
117°56′E) (Figure 1). Danum is characterized by lowland, evergreen 

dipterocarp forest, covering ~43,800 ha, and Sepilok by alluvial low-
land dipterocarp, sandstone hill dipterocarp, and kerangas forests, 
covering ~4,300 ha. We surveyed 17 plots: eight 1-ha plots located 
in the Center for Tropical Forest Science (CTFS) 50-ha plot, three ad-
ditional 10-ha plots (Berry, Phillips, Ong, & Hamer, 2008), and three 
0.05-ha circular plots (Foody et al., 2001) in Danum and three 1-ha 
plots in Sepilok located in the alluvial, sandstone hill, and kerangas 
forests (Nilus, 2004).

2.2 | Ground-based data collection and liana 
assessments

We classified the liana load carried by each tree ≥10 cm DBH within 
the plots using two methods: (a) crown occupancy index (COI) and 
(b) percentage liana cover (%LC). The COI expresses liana load in 
the tree crown on a simple 5-point ordinal scale: (0) no lianas in the 
crown, (1) 1%–25%, (2) 26%–50%, (3) 51%–75%, and (4) >75% of the 
crown covered by liana leaves (Clark & Clark, 1990). This index is 
widely used in liana research and accurately measures liana loads 
at both the individual tree- and site level with little interobserver 
bias (van der Heijden et al., 2010).  %LC is a more detailed estimate, 
expressed as the mean of four compass quadrants into which the 
tree crown is visually split and percentage of the crown covered by 
lianas estimated to the nearest 5% (cf. Marvin et al., 2016).

The plot corners (or midpoints for the 0.05-ha plots) and individ-
ual trees ≥10 cm DBH within each plot were georeferenced using a 
handheld GPS unit (Garmin eTrex Vista HCx), allowing individual tree 
crowns to be identified and cross-referenced in the UAV images. We 
also assigned each tree ≥10 cm DBH a value indicating the light level 
its crown received using the crown illumination index (CII) (Clark & 
Clark, 1992). This ordinal scale index is more-or-less equivalent to 
canopy stature (1 = understorey, 2 = lower canopy, 3 = mid canopy, 
4 = upper canopy, 5 = emergent); it helped identify individual trees 
on the UAV image data and allowed comparison across different tree 
canopy statures.

F IGURE  1 Location of the 2 study 
sites and 17 plots, which are in the state 
of Sabah, Malaysia, on the island of 
Borneo, Southeast Asia. The orthomosaics 
created from the UAV survey (150 ha) are 
shown outlined in white on top of satellite 
imagery, and the plots (14.15 ha) outlined 
in yellow. Satellite imagery source: 
DigitalGlobe WorldView2 RGB imagery
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The CII, COI, and %LC values were assigned by two independent 
observers, who discussed their estimates in the field and agreed final 
values for each tree. In one of the Danum plots %LC data were not 
collected, and in the Sepilok plots we only collected data for higher 
canopy-level trees.

2.3 | UAV data collection and liana assessments

We acquired images of the forest canopy using a lightweight, agile, 
inexpensive, commercially available quadcopter UAV: a DJI Phantom 
3 Advanced equipped with an integrated three-waveband (RGB) 
camera, mounted on a three-axis, gyro-stabilized gimbal. The high-
quality Sony EXMOR 1/2.3″ 12-megapixel camera has a narrow 94° 
field of view lens (35 mm format equivalent: 20 mm) reducing “fish-
eye” image distortion, and an f/2.8 aperture and 8s–1/8000s shutter 
speed reducing image blur. The UAV possesses GPS and GLONASS 
positioning to enable autonomous flights of up to ~23 min. Each 
image is geo-tagged with the GPS location and altitude of the UAV 
at the point of capture.

The plots were flown using the automatic mapping software 
Map Pilot, with predetermined flight plans with the same parame-
ters (speed: 4 m/s; image overlap at ground-level: 90% forward, 90% 
side; altitude: 30 and 60 m above canopy surface) in parallel tracks 
that covered the plot and a “buffer” of surrounding vegetation to 
minimize edge-effects affecting the images of the plot in processing. 
High image overlap at ground-level was necessary to maintain ade-
quate overlap for producing orthomosaics at canopy-level (for more 
information see Supporting Information Appendix S1.3). We identi-
fied canopy gaps large enough to allow the UAV to be launched/

landed, and manually piloted it through, to ensure maximal pilot con-
trol and minimal risk of collisions. The flights were conducted during 
calm conditions to prevent wind effects on leaves (McNeil, 2016) 
and, where possible, when there was even cloud cover to ensure 
diffuse radiation and minimize shadowing in the canopy—improving 
clarity in the images and aiding liana identification. All flights took 
place concurrently with the ground assessments in May and June 
2016. Additional details on the UAV surveys, and our experiences 
and recommendations for using UAVs for research, are in Supporting 
Information Appendix S1.

In total, 6,094 and 1,344 images taken 30 and 60 m above the 
canopy were captured with spatial resolutions of ~10 mm/pixel and 
~20 mm/pixel, covering ~150 ha and ~50 ha of forest, respectively, 
within which the plots cover 14.15 ha. The images were assembled 
to form a single two-dimensional orthorectified image (orthomosaic) 
for each plot, geo-referenced to the WGS84 UTM Zone 50N pro-
jected coordinate system, using Agisoft PhotoScan version 1.3.0. 
An example Agisoft PhotoScan output is in Supporting Information 
Appendix S2. The orthomosaics were exported into ArcGIS to iden-
tify individual trees (supplemented by the original images, to provide 
multiple views from different angles, where necessary). The 30 m 
data were used for all analyses; the 60 m data were used to compare 
different spatial resolutions.

For each individual tree, COI and %LC values were determined 
by visual image interpretation using the same method used on the 
ground but applied from above. Interpreting the images in this way is 
beneficial because it (a) matches the visual assessment used on the 
ground and (b) harnesses the power of human interpretation skills, 
which is especially important as no algorithm has been developed 

F IGURE  2 An example image taken 
using the DJI Phantom 3 Advanced. Two 
sections of the image have been selected 
to show a (a) liana-free and (b) liana-
infested tree crown (indicated by a white 
border). The yellow border in (b) indicates 
the liana leaves

(a)

(b)
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to automate liana infestation identification in tree canopies from 
RGB image data. Any trees for which ground data were collected, 
but which were obscured by larger trees and not visible on the UAV 
image data, were excluded from further analysis on individual tree 
levels but retained for plot-level comparisons of UAV and ground 
surveys.

3  | RESULTS

Liana load data were collected in 17 plots across 4 forest types, via 
both ground- and UAV-based methods, for more than 3,500 trees. 
The ultra-fine spatial resolution (10 mm/pixel) of the UAV data ren-
dered each tree crown recognizable and individual leaves clearly 
identifiable (Figure 2). Liana load could, therefore, be assessed: trees 
without liana infestation (Figure 2a) could be distinguished from 
liana-infested trees (Figure 2b). This remained true when using the 
coarser ~20 mm/pixel spatial resolution.

3.1 | Reproducibility (between observers)

We assessed interobserver bias in classifying liana load from the UAV 
image data; bias in ground-based surveys was examined previously 
by van der Heijden et al. (2010) and therefore not assessed here. 
Three independent observers with differing levels of experience in 
liana identification classified the COI and %LC for 200 randomly se-
lected trees. We used Kendall’s coefficient of concordance (Kendall’s 
W) and Spearman’s rank test, respectively, to assess the concord-
ance of COI and %LC values recorded by different observers, find-
ing high degrees of concordance for both measures (Table 1). The 
same COI was recorded by all observers on 75% of occasions and on 
only 2% of occasions did all observers classify liana load differently. 
When classifications differed, this was most often by only one class 
(86%).

3.2 | Reproducibility (against a benchmarked 
method)

There was high concordance of COI scores between UAV and 
ground surveys for the full dataset (Kendall’s W = 0.947, p < 0.001, 
N = 3,555; Tables 2 and 3), with liana load scored the same on 71.1% 
of occasions. Classifications differed by one class for 26.1%, and 
by two or more classes for 2.8% of the trees. The most frequent 
differences between UAV and ground surveys (43.2% of trees that 
differed) were when COI was scored 0 (liana-free) by ground-based 
surveys and 1 (low infestation) by UAV surveys (Tables 2 and 3). 
Similar trends were found for Danum and the different forest types 
in Sepilok separately (Supporting Information Appendix S3.1).

We used Model II regression to test the relationship between 
the UAV and the ground-derived %LC values. Model II regression 
performs better than standard Model I (OLS) regression when there 
are errors associated with both variables (Legendre & Legendre, 
1998), with the estimated model having the same slope and r2 values 

independent of which way round the axes are. To further evaluate 
the relationship between the UAV- and ground-based methods, we 
also calculated the RMSE with respect to the 1:1 line with lower 
RMSE values indicating greater concordance between the UAV and 
ground methods. We found a strong relationship between ground- 
and UAV-based assessments of %LC for the full dataset (r2 = 0.867, 
p < 0.001, N = 3,320; Figure 3), for different forest types separately 
(Supporting Information Appendix S3.23) and when using a coarser 
spatial resolution (Supporting Information Appendix S3.3). Although 
UAV- and ground-based classifications were similar for more heavily 
infested trees, UAV-based %LC classification was higher for lightly 
infested trees, with the regression line significantly below the 1:1 
line for %LC below 40% (Figure 3). This was mainly caused by the 
high number of tree crowns classed as liana-free by the ground sur-
vey but as low-level liana infestation by the UAV survey.

Since canopies of taller trees can be hard to see from the ground 
due to the stratified nature of tropical forests canopies, we also 
compared ground and UAV survey results for tree crowns located 
in different canopy strata. We found strong agreement between 
ground- and UAV-derived COI values (Kendall’s W > 0.9) for all can-
opy stature classes except emergent trees (Kendall’s W = 0.750; 
Table 2; Supporting Information Appendix S3.4a–d). The most 
common differences were again when COI was classed as 0 by the 
ground survey and 1 by the UAV survey, especially in the higher 
canopy strata (this was up to seven times more likely for emergent 
trees). Agreement between the two methods was greater for tree 
crowns in the lower canopy layers, and for more heavily infested 
individuals in upper canopy strata (Table 2; Supporting Information 
Appendix S3.4a–d). These patterns were also evident when compar-
ing the %LC values; although ground- and UAV-derived %LC values 
were strongly related for all four canopy strata (Figure 4), the regres-
sion line deviated significantly from the 1:1 line for upper canopy 
and emergent trees. This was again caused by many trees classified 
as liana-free in the ground-based surveys and with low levels of liana 
infestation in the UAV-based surveys (Figure 4c,d).

At plot level, there was a strong, positive relationship between 
ground- and UAV-based classifications of (a) the proportion of liana-
infested trees per plot, and plot level (b) mean COI and (c) %LC values 
(r2 = 0.719, 0.899, and   0.920 respectively; Figure 5). This indicates 

TABLE  1 Degree of concordance between different observers 
in independently assessing liana infestation of tree crowns in UAV 
image data using crown occupancy index (COI) and percentage liana 
cover (%LC). Differences in COI and %LC were assessed with 
Kendall’s W and Spearman’s rank tests, respectively

COI %LC

W p r p

All 0.950 <0.001

Obs. 1 & 2 0.966 <0.001 0.961 <0.001

Obs. 1 & 3 0.966 <0.001 0.942 <0.001

Obs. 2 & 3 0.955 <0.001 0.927 <0.001
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that, although fewer tree crowns (of smaller trees) are discernible in 
the UAV image data (mean trees/ha: ground = 360; UAV = 270), the 
UAV method is nonetheless suitable for plot-level analysis. UAV-
derived plot-level estimates of liana infestation were higher (i.e., under 
the 1:1 line in Figure 5) than ground-based estimates for almost all 
plots, with the difference more pronounced for plots with lower liana 
infestation.

3.3 | Efficiency

The UAV method was particularly time-efficient, with liana infestation 
assessment on average more than five times faster than the ground-
based method, including both field and laboratory time (Table 4). Field 
campaigns are typically the most costly and time-limited phases of 
ecological research, and here the efficiency of the UAV survey over 
the ground survey is particularly enhanced. It reduces field time by 
98.6% and the fixed costs of UAV hardware and software are recov-
ered in the first 5.5 ha, with further UAV surveys costing 5.5% as 
much as the ground survey (Table 4). As fixed costs decrease with de-
velopments in UAV technology and popularity, the break-even point 
will occur even sooner than the 5.5 ha in this study.

4  | DISCUSSION

Here, we demonstrate, for the first time, that UAVs can be used as 
an accurate, accessible, agile, cost-effective, and time-efficient new 
tool for collecting data on liana infestation of tropical tree crowns, 
overcoming limitations of existing methods. Liana loads derived 
from UAV surveys and traditional ground surveys were strongly re-
lated at both individual tree- and plot level (Tables 2 and 3; Figures 3 
and 4). Furthermore, we found little interobserver bias in visual clas-
sifications of liana loads derived from UAV image data, regardless 
of liana expertise or previous experience of liana surveys (Table 1), 
indicating high reproducibility of the UAV method. Additionally, 
the UAV method was much more time-efficient than the ground-
based method, particularly in the field, and considerably more cost-
efficient over multiple surveys (Table 4), with initial investment 
recouped within the first six plots. The UAV also remains cheaper 
than most suitable satellite or manned aerial survey image data. 

TABLE  2 Percentage of trees in each of the crown occupancy index (COI) classes for the ground (G) and UAV surveys, and the degree of 
concordance between the surveys (Kendall’s W) for the full dataset (All trees) and the dataset partitioned by canopy strata. p < 0.001 for all 
comparisons

N W

COI 0 (%) COI 1 (%) COI 2 (%) COI 3 (%) COI 4 (%)

G UAV G UAV G UAV G UAV G UAV

All trees 3,555 0.947 44.6 34.5 13.0 24.7 12.3 11.4 12.1 12.8 18.0 16.6

Lower 1,841 0.968 33.9 31.6 16.2 22.0 15.2 13.5 13.1 14.0 22.0 19.0

Mid 989 0.936 44.5 29.6 11.0 26.7 11.2 11.7 13.6 14.3 19.5 17.7

Upper 412 0.909 61.2 39.6 10.2 28.9 7.8 7.0 10.0 10.2 10.9 14.3

Emergent 313 0.750 86.9 60.7 4.2 29.1 4.2 3.8 3.2 4.5 1.6 1.9

TABLE  3 Error matrix showing the number of trees classified in 
each crown occupancy index (COI) class for the ground and UAV 
surveys for the full dataset. Counts in bold indicate when the two 
methods produced the same score

Ground data COI

0 1 2 3 4

U
AV
 d
at
a 
CO
I 0 1,164 54 7 2 0

1 390 358 109 16 5

2 25 43 227 93 18

3 9 6 85 259 96

4 1 1 8 59 520

F IGURE  3 Relationship between the UAV-derived percentage 
liana cover (%LC) and the ground-derived percentage liana cover 
(%LC). The solid red line is the Model II regression line, and its 
associated r2 is reported, dashed red lines are the 95% confidence 
intervals, and the black line is the 1:1 line (i.e., perfect match). 
N = 3,320; RMSE (with respect to the 1:1 line) = 12.73. Darker dots 
indicate more data points with similar ground and UAV values

r 2 : 0.8670
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Thus, UAVs make liana data collection more accessible to a wider va-
riety of researchers and forest managers and may, therefore, enable 
canopy monitoring and mapping of lianas on unprecedented spatial 
and temporal scales.

At the plot level, UAV-based surveys consistently classed per-
cent liana infestation higher than ground-based surveys (Figure 5). 

There are two explanations for this. Firstly, UAVs were better at 
recognizing low-level liana infestation (Tables 2 and 3; Figures 3 and 
4). Secondly, plot-level estimates of liana infestation from ground 
surveys included understorey trees not visible on the UAV image 
data. As understorey trees are less frequently infested by lianas 
than larger trees (van der Heijden et al., 2008), their inclusion in 

F IGURE  4 Relationships between 
the UAV-derived percentage liana 
cover (%LC) and the ground-derived 
percentage liana cover (%LC) for (a) 
lower canopy (N = 1,711; RMSE (with 
respect to the 1:1 line) = 12.79), (b) mid 
canopy (N = 931; RMSE (with respect to 
the 1:1 line) = 12.47), (c) upper canopy 
(N = 380; RMSE (with respect to the 1:1 
line) = 14.96), (d) emergent trees (N = 298; 
RMSE (with respect to the 1:1 line) = 9.79). 
Solid red lines are the Model II regression 
lines with their associated r2s reported, 
dashed red lines are the 95% confidence 
intervals, and black lines are the 1:1 lines 
(i.e., perfect match). Darker dots indicate 
more data points with similar ground and 
UAV values
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F IGURE  5 Relationships between ground and UAV-derived plot-level (a) proportion of infested trees (%; N = 14; RMSE (with respect 
to the 1:1 line) = 10.86), (b) mean liana crown occupancy index (COI; N = 14; RMSE (with respect to the 1:1 line) = 0.19), and (c) mean 
percentage liana cover (%LC; N = 13; RMSE (with respect to the 1:1 line) = 3.68) for the Danum Valley Conservation Area plots. The Model 
II regression lines are shown in red, with their associated r2s reported, and the 1:1 lines in black. The 1:1 line fell within the 95% confidence 
bands, but as intervals were large they were excluded from the graph
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ground surveys reduces plot-level values of percent liana infestation. 
Despite these differences between the ground- and UAV-based sur-
veys, there was a strong positive relationship between their results 
for plot-level liana infestation. This suggests either method can be 
used to compare plot-level liana infestation rates across sites (cf. van 
der Heijden et al., 2010), provided that the same method is used.

The fine spatial resolution of UAV image data, combined with 
the top-of-the-canopy view, provides an enhanced perspective to 
study liana infestation. This makes UAVs particularly useful for silvi-
cultural systems, where liana cutting is routinely performed for im-
proving timber and fruit production (Kainer et al., 2014; Sist, Fimbel, 
Sheil, Nasi, & Chevallier, 2003; Verwer, Peña-Claros, Van Der Staak, 
Ohlson-Kiehn, & Sterck, 2008), and for forest management or res-
toration purposes, where liana cutting has been shown to regener-
ate biomass (Marshall et al., 2017). With UAVs, users can quickly, 
efficiently, and accurately pinpoint which trees or areas suffer from 
heavy liana infestation, and those at risk of heavy liana infestation 
in the future. This is feasible over much larger areas than normally 
possible with ground-based methods, enabling better targeting of 
management practices such as liana cutting, and saving time, effort, 
and money.

UAVs improve liana infestation assessment for canopy and 
emergent trees, compared to ground surveys (Table 2; Figure 4c,d; 
Supporting Information Appendix S3.4c,d). These tall trees store 

and sequester the most carbon and are the main commercial spe-
cies. Liana-induced changes in them may, therefore, be an import-
ant mechanism affecting forest-level and tree-level carbon storage 
and sequestration, for which UAVs represent a particularly useful 
management tool. Successful liana management may also help to 
increase timber and fruit productivity, and carbon storage and se-
questration of degraded forests (van der Heijden et al., 2015). In 
particular, UAVs increased our ability to detect low-level liana infes-
tation in these trees, which is particularly difficult from the ground 
as they are often partly obscured by shorter canopy trees (Table 3; 
Figure 4c,d). Although lianas exert limited effects at low levels 
(<50% crown coverage; for example Ingwell et al., 2010), identifying 
them quickly is important as infestation progression is likely as lianas 
utilize each other to climb into the tree crown (Putz, 1984), stressing 
the importance of repeated surveys of liana infestation.

Unmanned aerial vehicles answer this need, offering user-
controlled deployment times, potential for high temporal fre-
quency and an increased likelihood of recognizing low-level 
liana infestation (Table 2; Figure 4c,d). This allows for a flexible 
approach to liana management, tailoring it for trees or areas of 
forests at risk of heavy liana infestation. The new technique also 
facilitates monitoring and assessment of the success of manage-
ment practices after they are put in place (Zahawi et al., 2015), 
including changing where management efforts are concentrated, 

TABLE  4 Efficiency comparison of the time taken and costs required to collect crown occupancy index (COI) and percentage liana cover 
(%LC) using ground-based and UAV-based methods for a 1-ha plot, including the fixed costs (field and UAV equipment and processing 
software) required for the whole campaign (14.15 ha for ground; 150 ha for UAV). All timings are reported in “person-hours” (i.e., time taken 
to collect data considering number of people required) and exclude time to walk to the plots. All costs exclude international travel and costs/
ha have been calculated based on number of days required at each plot with daily rates of £14.10 and £27.75 for accommodation/
subsistence and field assistant costs, respectively. To replicate most grant budget costings, field assistant wages have been costed, whereas 
researcher input time has not

Ground UAV

Time/ha (h) Fixed costs (£) Cost/ha (£) Time/ha (h) Fixed costs (£) Cost/ha (£)

Fielda

Accommodation/
subsistence

– – 84.60 – – 4.70b

Field assistants – – 166.50 – – 9.25b

UAV flight (inc. take-off/
landing)

– – – 0.5 1,336 –

COI and %LC assessments 40 450 – – – –

Laboratory

Data type up 5 – – – – –

Processing image data – – – 9 427.10 –

Mapping trees on 
orthomosaics

– – – 1 – –

COI and %LC assessment – – – 2 – –

Total 45 450 251.10 12.5 1,763.10 13.95
aTraining time is not included as it is not measured per ha. We found 5 hr ground and 2 hr UAV training was sufficient. Ground-measurement training 
must take place in the field; UAV training can take place beforehand, although some flight training in a tropical forest is recommended. bWe found it 
possible to survey three 1-ha plots, at two altitudes in a single day. To generate costs/ha, we have divided the daily accommodation/subsistence and 
field assistant costs by three. 
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as spatial patterns of liana infestation change over time. It will 
also help track temporal changes, not only in liana infestation 
but also in wider canopy phenomena, such as tree crown shape 
and area, and timber, fruit, and forest-level biomass productiv-
ity and phenology, over shorter time-scales than is possible with 
ground-based surveys. The ability to track temporal changes en-
ables investigation of the effects of short-term phenomena, such 
as drought events, on liana infestation and other processes in 
the canopy. The image data also represent an archive of detailed 
information about the forest canopy that allows (a) reproducibil-
ity, as people can check previous results; (b) additional metrics 
to be derived, for example, 3D models or digital elevation mod-
els (Supporting Information Appendix S2.5); (c) users to go back 
in time and measure variables that were not measured at the 
time but are later deemed important. For example, orangutan 
nests are clearly visible in our imagery (Supporting Information 
Appendix S3.5).

Advances in UAV technology and competitive price pressures 
are likely to improve the current UAV method and expand its 
applicability for forest management. We cannot specify at what 
resolution lianas (or other canopy phenomena) become indistin-
guishable (lianas remained clearly identifiable in our coarser spa-
tial resolution images; Supporting Information Appendix S3.3), 
but the advent of newer UAVs with larger high-resolution image 
sensors, bright lenses, and zoom lens technology will enable even 
higher flights while retaining the ability to identify lianas, which 
may increase areal coverage (it is unlikely that this will be possi-
ble using satellite data in the next few decades). Further research 
could usefully investigate this for lianas, as well as for other canopy 
phenomena. The wide array of UAV platforms and sensors already 
available (Pajares, 2015) allows tailoring of system choice towards 
individual research and/or monitoring requirements. Additionally, 
rapid advances in the miniaturization of hyperspectral and LiDAR 
sensors increasingly enable them to be mounted on UAVs (Sankey, 
Donager, McVay, & Sankey, 2017) alongside RGB cameras and pre-
dicted future price drops will increase their accessibility. While 
RGB images allow visual species identification (Baena, Boyd, & 
Moat, 2018; Getzin, Wiegand, & Schöning, 2012), multispectral 
or hyperspectral sensors may allow this to be automated (Baena, 
Moat, Whaley, & Boyd, 2017; Sankey et al., 2018), further increas-
ing the speed and ease of liana identification. Future work could 
test whether a suitably equipped UAV could automate mapping of 
liana infestation and changes in infestation similar to the approach 
adopted by Marvin et al. (2016) using airborne-collected data, but 
at much finer spatial and temporal resolutions, and at a small frac-
tion of the cost. Also, as liana and tree species differ spectrally 
(e.g., Sánchez-Azofeifa et al., 2009), hyperspectral UAVs may help 
discern liana and tree species, supporting monitoring of tropical 
forest biodiversity, which is particularly important for the man-
agement of degraded forests (e.g., Marshall et al., 2017). With the 
emergence of a new platform and sensor capabilities, the opportu-
nities for using UAVs in both liana, and canopy research more gen-
erally, will increase. Thus, the UAV method presented here offers a 

wealth of opportunities for forest canopy research and monitoring, 
including liana monitoring, over space and time to assist with tai-
lored management of tropical forests, and forms a firm foundation 
for exploiting future advances.

5  | CONCLUSIONS

The recent proliferation of lianas, coupled with their large im-
pacts on the carbon balance and cycle of tropical forests, has 
made it important to study liana infestation of tree canopies 
more comprehensively and frequently than feasible with current 
methods. Here, we show, for the first time, how capturing RGB 
images of tree canopies via an inexpensive, lightweight UAV can 
be used accurately and efficiently to assess liana infestation and 
help make such data collection more accessible. Liana infestation 
data derived from UAV image data are at least as accurate as tra-
ditional ground data, and superior in assessing liana infestation 
of tree crowns in upper canopy layers, enabling future advances 
in liana and tropical forest ecology research. The support for fre-
quent surveys, data archiving, wealth of additional data captured, 
and larger geographical extent covered will enable more detailed 
monitoring of liana infestation and forest canopies over space 
and time with the potential to revolutionize both liana and canopy 
research. These advantages will be enhanced by rapidly develop-
ing protocols for UAV use in science (Duffy et al., 2018) and the 
potential for additional sensors offered by UAV platforms. UAVs 
also provide potential for tailored and targeted liana management 
protocols to effectively manage liana infestation to aid restora-
tion of degraded forests, silvicultural systems, and projects de-
signed to increase carbon storage and sequestration in tropical 
forests.
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