Accepted Manuscript

Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis

Laura A. Wyatt, Lilian N. Nwosu, Deborah Wilson, Roger Hill, Ian Spendlove, Andrew J. Bennett, Brigitte E. Scammell, David A. Walsh

PII: S1063-4584(18)31590-5

DOI: https://doi.org/10.1016/j.joca.2018.12.012

Reference: **YJOCA 4373**

To appear in: Osteoarthritis and Cartilage

Received Date: 28 March 2018

Revised Date: 17 December 2018 Accepted Date: 19 December 2018

Please cite this article as: Wyatt LA, Nwosu LN, Wilson D, Hill R, Spendlove I, Bennett AJ, Scammell BE, Walsh DA, Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis, Osteoarthritis and Cartilage, https://doi.org/10.1016/j.joca.2018.12.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Molecular expression pat	terns in the synovium and their association with advanced
2	symptomatic knee osteoar	thritis
3		nn N. Nwosu ^{1,2} , Deborah Wilson ⁴ , Roger Hill ⁴ , Ian Spendlove ⁵ , nett ^{1,6} , Brigitte E. Scammell ^{1,2,3,7} , David A. Walsh ^{1,2,4,7}
5	¹ Arthritis Research UK Pain Cer	atre, University of Nottingham, Nottingham, NG5 1PB, UK.
6	² Division of Rheumatology, Orth	opaedics and Dermatology, University of Nottingham, Nottingham, UK
7 8	3Arthritis Research UK Centre UK	for Sport, Exercise and Osteoarthritis, University of Nottingham, Nottingham,
9 10	⁴ Department of Rheumatology, Ashfield, NG17 4JL, UK	Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in
11	⁵ Divison of Cancer and Stem Cen	lls, University of Nottingham, UK
12	⁶ School of Life Sciences, Univers	ity of Nottingham, Nottingham, NG5 1PB, UK.
13	⁷ NIHR Nottingham, Biomedical I	Research Centre, University of Nottingham, UK
14	Supported by Arthritis Res	earch UK (grants 18769 & 20777).
15		
16	Corresponding author:	Dr Laura A Wyatt
17		Arthritis Research UK Pain Centre,
18		Clinical Sciences Building,
19		City Hospital,
20		Nottingham,
21		NG5 1PB
22		
23		Tel: +44 (0) 115 8231554
24		Email: laura.wyatt@nottingham.ac.uk
25		
26		
27		

\mathbf{a}	O
/	Х.

29	ABSTRACT	(246/250 words)
----	----------	----------------	---

30

- 31 **OBJECTIVE:** Osteoarthritis (OA) is a major source of knee pain. Mechanisms of OA knee
- 32 pain are incompletely understood but include synovial pathology. We aimed to identify
- 33 molecular expression patterns in the synovium associated with symptomatic knee OA.
- 34 **DESIGN:** Snap frozen synovia were from people undergoing total knee replacement (TKR)
- 35 for advanced OA, or from post-mortem (PM) cases who had not sought help for knee pain.
- 36 Associations with OA symptoms were determined using discovery and validation samples,
- 37 each comprising TKR and PM cases matched for chondropathy (Symptomatic or
- 38 Asymptomatic Chondropathy). Associations with OA were determined by comparing age
- 39 matched TKR and PM control cases. Real-time quantitative PCR for 96 genes involved in
- 40 inflammation and nerve sensitisation used TaqMan® Array Cards in discovery and validation
- 41 samples, and protein expression for replicated genes was quantified using Luminex bead
- 42 assay.
- 43 **RESULTS:** Eight genes were differentially expressed between asymptomatic and
- 44 symptomatic chondropathy cases and replicated between discovery and validation samples
- (P<0.05 or > 3-fold change). Of these, matrix metalloprotease (MMP)-1 was also increased
- 46 whereas interleukin-1 receptor 1 (IL1R1) and vascular endothelial growth factor (VEGF)
- 47 were decreased at the protein level in the synovium of symptomatic compared to
- 48 asymptomatic chondropathy cases. MMP1 protein expression was also increased in OA
- 49 compared to PM controls.
- 50 **CONCLUSION:** Associations of symptomatic OA may suggest roles of MMP1 expression
- and IL1R1 and VEGF pathways in OA pain. Better understanding of which inflammation-
- 52 associated molecules mediate OA pain should inform refinement of existing therapies and
- development of new treatments.
- 54 **KEY WORDS:** Osteoarthritis, Pain, Synovitis, Gene expression

INTRODUCTION

Knee osteoarthritis (OA) is a complex disease involving all joint tissues. Mechanisms of OA
knee pain are incompletely understood, but can include synovial pathology [1-3] and
subchondral bone [4]. Inflammatory mediators from the synovium activate or sensitise
nociceptors through downstream signalling pathways. Nerve terminal sensitisation leads
stimuli that would not usually elicit pain to be perceived as painful. Understanding molecular
expression patterns that contribute to symptomatic OA is crucial to developing new analgesic
treatment strategies, and to focus disease modification strategies on those which are most
likely to improve symptoms.
Numerous inflammatory mediators such as cytokines, chemokines, growth factors, and
matrix metalloproteinase (MMPs) released from synoviocytes during inflammation might
contribute to OA pain. Key roles have been suggested for the pro-inflammatory cytokines
interleukin (IL)-1 β and tumour necrosis factor (TNF)- α in mediating pain through the release
of other downstream inflammatory mediators such as matrix metalloproteases (MMPs) and
cytokines [5]. The effects of IL-1 β are mediated through binding to IL-1 receptor type 1
(IL1R1). Pain has been associated with increased TNF- α [6], chemokine ligand 2 (CCL2),
chemokine ligand 4 (CCL4), IL-6 and interferon- γ [7] in synovial fluid. Vascular endothelial
growth factor (VEGF), a potent stimulator of angiogenesis involved in neuropathic pain [8],
is increased in OA synovium [9, 10] and associated with OA pain and progression [11].
MMP1 is an interstitial collagenase that is elevated in synovial fluid from people with OA
[12]. The nuclear factor kappa-B (NF-κB) is part of a downstream signalling pathway which
contributes to the up-regulation of various pro-inflammatory and angiogenic factors [13].
Recent work has identified differences in gene expression patterns of inflammatory cytokines
between inflamed and non-inflamed areas of synovia from people with OA [14, 15]. We

hypothesised that specific molecular patterns in the synovium are associated with symptomatic OA, indicating possible molecular mechanisms of OA pain. Gene and protein expression patterns in the synovium were compared between groups of people with similar macroscopic appearances of the tibiofemoral articular surfaces who had either sought TKR for OA symptoms (symptomatic chondropathy) or had not sought help for OA knee pain before death (asymptomatic chondropathy), and between people with or without OA. The rationale for comparing people with or without OA was to define whether signatures identified as characteristic of symptomatic OA were also characteristics of OA. Pain in OA might be due to aspects of OA pathology which mediate pain, or due to concurrent pathology which, in the context of OA, is painful.

METHOD

- 91 This cross-sectional study was approved by Nottingham Research Ethics Committee 1
- 92 (05/Q2403/24) and Derby Research Ethics Committee 1 (11/H0405/2).

Patients

94 Total knee replacement groups

symptomatic OA ('OA' or 'symptomatic chondropathy' groups). All TKR cases satisfied the American College of Rheumatology classification criteria for knee OA at the time of surgery [16] but groups differed only in that the OA group comprised cases aged-matched to post mortem (PM) controls, whereas the symptomatic chondropathy group was matched to the

Snap frozen synovium samples were collected at total knee replacement (TKR) surgery for

- asymptomatic chondropathy group for macroscopic scoring of cartilage surface changes [17].
- 101 All in the OA group had a Kellgren Lawrence radiographic score ≥ 2 .

103	Post-mortem (PM) groups
104	Three sample groups were selected from post-mortem (PM) cases who did not have arthritis
105	and had not reported knee pain during the last year of their life ('PM control', 'non-arthritic
106	control' and 'asymptomatic chondropathy' groups).
107	The PM control group were selected as consecutive aged matched cases to the OA group and
108	did not include cases with macroscopic chondropathy lesions of grade 4 (subchondral bone
109	exposure) in the medial tibiofemoral compartment [17].
110	Inclusion criteria for the non-arthritic control group were no osteophytes in the dissected
111	knee, no Heberden's nodes (because these may be associated with knee OA incidence and
112	progression [18]) and no macroscopic chondropathy lesions grade ≥ 3 in the medial
113	tibiofemoral compartment [3].
114	Molecular associations with OA symptoms
115	Associations of gene expression with symptoms were determined using discovery
116	(n=12/group) and validation samples (n = 10/group), each comprising symptomatic and
117	asymptomatic chondropathy groups. Discovery and validation samples were combined to
118	compare protein expression between asymptomatic (n=22) and symptomatic (n=22)
119	chondropathy groups (supplementary figure 1A).
120	Molecular associations with OA disease status
121	The following age-matched (within 7 years) control PM groups and OA groups were
122	compared to determine associations with OA disease status:
123	1) Non-arthritic control vs. symptomatic chondropathy (n = 10/group) for gene expression
	1) Non-artific control vs. symptomatic chondropathy (ii = 10/group) for gene expression

- 2) PM control (n=10) vs. OA (n=11) for protein expression analyses (supplementary figure
- 126 1C).

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Body mass index (BMI; kg/m²) was available for TKR but not PM cases.

Tissue processing and grading

Surgeons and technician (RH) were instructed to collect synovium from the medial joint line from PM and TKR cases. Fresh synovium was snap-frozen in liquid nitrogen, without fixation, with replicate samples formalin-fixed and wax-embedded for haematoxylin and eosin staining and grading for synovitis [9]. Synovial inflammation was graded (0 to 3) only in samples with synovial lining present. Grade 0 = no synovitis, synovial lining < 4 cells thick, with few or no inflammatory cells. Grade 1 = mild synovitis, synovial lining 4 or 5 cells thick, with increased cellularity and some inflammatory cells present. Grade 2 = synovial lining 6 or 7 cells thick, dense cellularity with inflammatory cells (but no lymphoid aggregates). Grade 3 = severe synovitis; synovial lining more than 7 cells thick, with inflammatory cell inflammation which may include perivascular lymphoid aggregates and dense cellularity. The extent and severity of articular cartilage loss of medial and lateral tibial plateaux and femoral condyles were graded [17] as follows; grade 0 = normal: smooth, unbroken surface, homogeneous white to off-white colour, grade 1 = swelling and softening: a light brown homogenous colouration, grade 2 = superficial fibrillation lightly broken surface, white to off-white/light brown in colour, grade 3 = deep fibrillation: coarsely broken cartilage surface, dark brown, grey or red in colour, grade 4 = subchondral bone exposure: stippled white and dark brown/red in colour. The proportion of each articular surface area corresponding to each grade was used to calculate a chondropathy score (0-100). Scores for each of the 4

148	compartments were summated to give a tibiofemoral chondropathy score (0; normal - 400;
149	complete cartilage loss).
150	PM delay was calculated as the time (h) between death and opening of the knee for tissue
151	collection. Cadavers were stored at 4°C.
152	Gene expression
153	Total RNA was extracted from snap frozen synovia, homogenised in 1ml of TRI reagent
154	(Sigma, Poole, UK) and purified according to manufacturer instructions. Total RNA (100ng)
155	was reverse transcribed to complementary DNA using Affinity Script Reverse Transcriptase
156	(Agilent Technologies, Stockport, UK) and random primers, according to the manufacturer's
157	protocol. The reaction was incubated at 25°C for 10 minutes, then 50°C for 60 minutes and
158	terminated by incubation at 70°C for 15 minutes. The cDNA was in a total reaction volume
159	of 28µ1.
160	Gene expression profiling was performed using custom-made 384 well microfluidic cards
161	(TaqMan® Array Card, Applied Biosystems, Waltham, MA). Each card consisted of 4
162	reference genes (Beta actin [ACTB], Glyceraldehyde 3-phosphate dehydrogenase [GAPDH],
163	Hydroxymethylbilane Synthase [HMBS] and Ubiquitin C [UBC]) and 92 target genes, which
164	were identified as possibly mediating pain through sensitising peripheral nerve terminals
165	(supplementary table 1).
166	For each tissue sample a reaction mix was made using 100µl of diluted cDNA (1:4) and
167	100μl of TaqMan Universal PCR Master Mix. Reaction mix (100μl) was loaded into two
168	adjacent ports in the microfluidic card which allowing duplicate runs on a 7900HT Fast Real-
169	Time PCR system (Applied Biosystems). RNA expression values are reported as arbitrary
170	units normalised to reference gene expression.

Protein expression

The Luminex screening human assay (10-plex) (LXSAH-10, R&D systems) was used to
measure expression of CCL2, CCL5, CCL8, Chemokine ligand 10 (CXCL10), IL1β, IL1R1,
MMP1, MMP7, TNFα, VEGF. Analytes selected for Luminex analysis were those that were
either significantly (P<0.05) or > 3-fold different (in the same direction) between
asymptomatic and symptomatic chondropathy groups in both the discovery and validation
samples. In addition, we included two analytes previously hypothesised to be important in
OA (TNFα and IL1β) [19], and two pro-inflammatory chemokines that were increased in
symptomatic chondropathy compared to non-arthritic controls (CXCL10 and CCL5).
ANXA1 and NFKBIA protein expression were excluded due to non-availability of
compatible reagents. Discovery and validation samples on cases with RNA data in the current
study were together used to compare protein expression between asymptomatic and
symptomatic chondropathy groups.
Total protein was extracted from snap frozen synovia homogenised in 600µl of Cell Lysis
buffer (R&D systems, Abingdon, UK) with protease inhibitor (Sigma), and centrifuged for 5
minutes. Total protein concentration was measured in supernatants (Pierce BCA-200 Protein
Assay Kit, Fisher Scientific, Loughborough, UK). For Luminex analysis the remaining
supernatant was diluted 1:2 with Calibrator Diluent RD6-52. The plate, standards (3-fold
dilution series), microparticle cocktail, biotin antibody cocktail and streptavidin-PE were
prepared according to the manufacturer's instructions. In brief, the plate was rinsed with
wash buffer and liquid removed using a vacuum manifold. Tissue samples were incubated
(2h, room temperature) with the microparticle cocktail on a microplate shaker, followed by
incubation with Biotin antibody (1h) and Steptavidin-PE (30min), with triplicate washes

Ra	id, Hemel F	Hempstead,	UK).	Each	analyte	was	adjusted	for	total	protein	concentra	tion i	n
ea	ch case. Pro	tein express	sion is	expre	essed as	ng pr	otein of i	nter	est pe	r g total	protein (n	ıg/g).	

Statistical analysis

Fold changes in gene expression levels were calculated for each tissue sample using the comparative C_t method $(2^{-\Delta Ct})$ where ΔC_t refers to C_t value of each individual target gene value minus C_t value of the reference gene. ΔC_t values are given as mean (95% confidence interval [CI]) and using Mann-Whitney U test (asymptomatic vs symptomatic chondropathy and PM control vs OA). Kruskal Wallis One Way ANOVA with post-hoc pair wise comparisons compared differences between non-arthritic controls, asymptomatic and symptomatic chondropathy). Fold increase in gene expression was calculated by dividing the mean of the symptomatic chondropathy group by the mean of the asymptomatic chondropathy group, and fold decrease as the inverse of the fold increase. Tissue samples were excluded from analysis where RNA could not be transcribed to cDNA, or where reference gene C_t values were outliers (Grubb's test, Graphpad, San Diego). P< 0.05 was considered statistically significant, and the false discovery rate (FDR) set at 5%, was used to correct for multiple testing [20].

NormFinder (Microsoft Excel add-in) was used to determine the most stable individual reference gene C_t values, or the most stable geometric mean of different combinations of reference genes to normalise gene expression.

Binary logistic regression compared between groups reference gene stability and gene expression associations with covariates (age, gender, BMI and PM delay, each separately tested in discovery and validation samples combined). C_t values were dichotomised about the

median as the dependent variable, and analyses adjusted for experiment number,	to account
for inherent variability between experimental runs as discovery and validation st	tudies were
conducted on different days. Spearman's rank correlation was used to determine a	associations
between protein expression and each parameter (age, gender, BMI, PM delay), and	d separately
to identify associations between reference gene expression and PM delay.	S
Multivariable testing was used to adjust for multiple covariates (age, gender and	experiment
number) combing discovery and validation sample RNA gene expression da	ata for key
analytes. All gene and protein targets were selected to share associations with in	flammation
or sensitisation, and therefore adjustments were not made for other genes	or proteins
measured in the same cases within each experiment.	
Pseudo R ² values are reported to explain logistic regression model variance (Cox	x and Snell
R-square and Nagelkerke R-square), and percentages are reported for the numb	er of cases
correctly classified as asymptomatic chondropathy vs. symptomatic chondropathy	y. Receiver
operator curve (ROC) analysis was used to determine sensitivity, specificity	and 95%
confidence intervals for determining classification of asymptomatic or sy	ymptomatic
chondropathy cases (StataSE v15). ROC analyses were conducted using one gen	ne at a time
and binary logistic regression was undertaken to produce a predictive variable	combining
three genes together.	
RESULTS	
Patient demographics and joint pathology	
Study groups were similar for sex, but symptomatic chondropathy groups were you	ounger than
asymptomatic chondropathy groups in discovery gene expression and proteom	nics studies

(Table 1). Synovitis scores were higher in symptomatic (median (IQR); 1 (0-3) and 1.5 (0.25-

249	[TABLE 1]
248	displayed moderate or severe synovitis (grades 2 or 3).
247	(grade 0) in 9/10 PM control cases and mild (grade 1) in 1 case. Cases in the OA group all
246	61 (54-74) years, P=0.86; 60% and 27% male, P=0.20). Histological synovitis was absent
245	demographics did not significantly differ from OA cases (median (IQR) ages 66 (59-70) and
244	displayed low macroscopic chondropathy scores (median [IQR]; 82 [45-111]) and their
243	PM controls (n=10) selected for comparison of protein expression with OA cases (n=11)
242	respectively for discovery and validation gene expression samples).
241	3)) than in asymptomatic (0 (0-0.5) and 0 (0-0)) chondropathy cases (P=0.05 and 0.005,

250	Reference gene expression
251	C _t expression for each of the 4 reference genes was not significantly different between PM
252	and TKR cases (asymptomatic and symptomatic chondropathy groups, respectively, $P \ge 0.42$)
253	and their geometric mean was used for normalisation (supplementary Table 2). PM delay (h)
254	was not associated with the C _t values of any of the four reference genes; ACTB, GAPDH,
255	HMBS and UBC ($P = 0.98, 0.74, 0.70, 0.68$). Final study numbers/group are reported in table
256	1, (see table 1 legend for an explanation of exclusions).
257	Synovial gene and protein expression patterns associated with symptomatic OA
258	Synovial gene expression in symptomatic OA
259	In the discovery samples, following corrections for multiple testing (FDR = 5%, $P \le 0.01$) 8
260	genes were significantly upregulated and 12 significantly down-regulated in symptomatic
261	compared to asymptomatic chondropathy cases (supplementary Table 3). In the validation
262	samples, 2 genes were significantly up-regulated and one significantly down-regulated
263	(supplementary Table 4). Table 2 shows genes which were differentially expressed in the
264	same direction in both discovery and validation samples.
265	CCL2, CCL8 and ANXA1 were up-regulated in symptomatic chondropathy cases in both
266	discovery and validation samples (Table 2) but did not reach statistical significance after
267	FDR correction. In addition, MMP1 expression was >3-fold higher in symptomatic
268	chondropathy cases across both samples, reaching statistical significance in the discovery
269	sample. IL1R1 and NFKBIA gene expressions were down-regulated in symptomatic
270	chondropathy cases in both discovery and validation samples, IL1R1 remaining significant
271	after FDR correction in both samples. MMP7 and VEGFA expressions were >3-fold lower in

272	symptomatic chondropathy cases in both discovery and validation samples, VEGFA was
273	significantly downregulated in the discovery sample (P= 0.001).
274	
275	[Table 2]
276	
277	
278	Synovial protein expression in symptomatic OA
279	Five analytes were significantly differentially expressed at the protein level between groups
280	(Figure 1, Table 3). Of these, CCL5 and MMP1 were greater, whereas VEGF, CXCL10 and
281	IL1R1 were each lower in symptomatic than in asymptomatic chondropathy cases.
282	
283	[Figure 1]
284	[Table 3]
285	
286	Synovial gene and protein expression patterns associated with OA disease status
287	In order to explore whether differences in gene and protein expression between symptomatic
288	and asymptomatic OA represented characteristics of OA disease, we compared OA samples
289	obtained at TKR with post mortem samples from people without known arthritis.
290	Synovial gene expression
291	Gene expression is compared between groups in supplementary table 4. Several genes were
292	upregulated in symptomatic chondropathy compared to non-arthritic control groups (fold
293	increase, P); ANXA1 (1.90, P<0.001), ANXA6 (2.30, P=0.001), CCL2 (2.25, P=0.042), CCL5

294	(3.30, P=0.001), CMKLR1 (4.25, P=0.02), CTGF (3.06, P=0.001), CXCL10 (6.28, P=0.001)
295	and FOS (6.87, P<0.001). F2RL3 (32.25, P<0.001), IL1R1 (1.84, P=0.02) and NFKBIA (3.52,
296	P=0.04) were decreased in symptomatic chondropathy compared to non-arthritic control
297	groups.
298	Synovial protein expression in OA
299	CCL8 and MMP1 protein immunoreactivities were significantly increased in the synovium of
300	the OA compared to PM control groups (Figures 2B&C), whereas CCL2, VEGF, CXCL10
301	IL1R1 and CCL5 did not reach statistical significance (Figures 2A, D-G).
302	
303	[Figure 2]
304	
305	Contribution of synovial molecular expression to classification of symptomatic and
306	asymptomatic chondropathy
307	To evaluate the possible direct contributions of synovial molecular expression to the presence
308	or absence of symptoms in OA we first explored possible effects of measured confounding
309	factors, and then evaluated the relative contributions of gene expression for 3 identified key
310	molecules (IL1R1, MMP1 and VEGFA) to classification of symptomatic and asymptomatic
311	chondropathy cases.
312	Possible effects of age, gender, post-mortem delay or body mass index on protein or gene
313	expression, separately were explored; only IL1R1 gene expression was associated with age
314	and CXCL10 with gender (supplementary table 5).
315	When gene expression data from discovery and validation samples, analysed within a single
316	model, were adjusted for age, gender and experiment number, the following were

317	significantly increased in symptomatic chondropathy cases compared to asymptomatic cases;
318	<i>CCL</i> 2 (2.01-fold, $P = 0.01$), <i>CCL</i> 8 (4.46-fold, $P = 0.007$), $IL1\beta$ (1.93-fold, $P = 0.021$) and
319	MMP1 (11.6-fold, $P = 0.03$). IL1R1 and VEGFA RNA were significantly decreased (2.67-
320	fold, $P = 0.016$, and 4.79-fold, $P = 0.017$, respectively) in symptomatic chondropathy vs.
321	asymptomatic chondropathy. CCL5, CXCL10, MMP7 and TNF α RNA were not significantly
322	different between groups $P = 026$, 0.11, 0.17 and 0.26, respectively.
323	The logistic regression model exploring association of symptomatic vs. asymptomatic
324	chondropathy with expression of each identified gene was adjusted for age, gender and
325	experiment number. For IL1R1 the model explained between 58% (Cox and Snell R-square)
326	to 78% (Nagelkerke R-square) of the variance and correctly classified 87% of cases. For
327	MMP1 the logistic regression model explained between 49% (Cox and Snell R-square) to
328	65% (Nagelkerke R-square) of the variance and correctly classified 80% of cases. For
329	VEGFA the logistic regression model explained between 49% (Cox and Snell R-square) to
330	66% (Nagelkerke R-square) of the variance and correctly classified 87% of cases. A
331	combined logistic regression model (which included MMP1, IL1R1 and VEGFA, adjusted for
332	age, gender and experiment number), explained between 75% (Cox and Snell R-square) to
333	100% (Nagelkerke R-square) variance, and correctly classified 100% of cases in symptomatic
334	and asymptomatic chondropathy groups. Similarly, ROC analyses indicated that 90% of
335	cases were correctly classified using combined expression of the 3 genes, with sensitivity and
336	specificity of 85-95% (supplementary table 6).
337	
338	

DISCUSSION

We have identified synovial molecular expression patterns that are associated with
symptomatic OA by comparing TKR cases (symptomatic chondropathy) with PM cases with
similar macroscopic joint surface appearances who had not sought help for knee pain
(asymptomatic chondropathy). Additionally, we have identified synovial molecular
expression patterns that are associated with OA disease status, by comparing aged-matched
PM and TKR cases.
Up-regulation of MMP1 in concert with the down-regulation of VEGFA and IL1R1 might
reflect molecular pathways that mediate OA symptoms. MMP1 (collagenase-1) is a secreted
metalloproteinase which catalyses cleavage of matrix collagens in OA. MMP1 gene and
protein expression were increased in association with OA disease status in the synovia of OA
compared to PM controls. MMP1 is induced in synovial fibroblasts in response to pro-
inflammatory mediators such as IL1 β and TNF α [21]. Synovium, as well as chondrocytes,
might contribute to increased synovial fluid MMP1 levels observed in OA [22]. Association
of MMP1 expression with symptomatic disease is unlikely to be entirely explained by
cartilage structural damage because our cases and controls were matched for severity of
macroscopic chondropathy. Urinary collagen degradation products, generated by the action of
collagenases, have also been associated with OA pain[23]. Increased MMP1 might be a
marker of cytokine-driven inflammation, which may in turn lead to a cascade of events that
sensitise peripheral nerve terminals in the synovium, whilst exacerbating cartilage damage.
IL1 β is produced by OA synovium, even in early disease[24]. IL1 β was upregulated in
symptomatic compared to asymptomatic chondropathy cases. The pro-inflammatory actions
of IL1 β are exerted through binding its membrane receptor, interleukin-1 receptor (IL1R1).
Increased IL1R1 expression was previously found in OA synovial fibroblasts, compared to

normal controls [25]. IL1R1 expression can be downregulated during activation by IL1β [26].
Our data suggest downregulation of IR-1R1 in OA synovium compared to non-arthritic
controls, and, in particular in symptomatic compared with asymptomatic chondropathy,
consistent with increased IL1 β /IL1R1 pathway activity. Decreased IL1R1 mRNA in
symptomatic chondropathy was replicated across both discovery and validation samples, and
at the protein level. $IL1\beta/IL1R1$ pathway activation might therefore have particular relevance
for OA symptoms. Studies using OA animal models report favourable benefits of IL-1 receptor
antagonist therapy [27, 28]; however clinical trials in humans reported no improvement in pain
([29, 30]). Antibodies specifically targeted at IL1R1 did not achieve clinical important
symptomatic benefit compared to placebo [29]. Our data raise the possibility that IL1R1
downregulation prior to treatment might have contributed to these negative results, and
earlier phases of OA synovitis might respond differently to IL1β/IL1R1 pathway inhibition.
Furthermore, IL1β/IL1R1 pathway inhibition might only be effective for a subset of people
with OA whose pain is mediated by synovitis.
with OA whose pain is mediated by synovitis. Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps surprisingly, we found that VEGFA was decreased at the gene and protein level in patients
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps surprisingly, we found that VEGFA was decreased at the gene and protein level in patients with symptomatic compared to asymptomatic chondropathy. VEGF exists as multiple
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps surprisingly, we found that VEGFA was decreased at the gene and protein level in patients with symptomatic compared to asymptomatic chondropathy. VEGF exists as multiple isoforms dependant on alternative splicing of mRNA [34]. VEGFAa isoforms contribute to
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps surprisingly, we found that VEGFA was decreased at the gene and protein level in patients with symptomatic compared to asymptomatic chondropathy. VEGF exists as multiple isoforms dependant on alternative splicing of mRNA [34]. VEGFAa isoforms contribute to angiogenesis and pain, whereas VEGFAb isoforms might be anti-angiogenic and analgesic.
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA pain through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps surprisingly, we found that VEGFA was decreased at the gene and protein level in patients with symptomatic compared to asymptomatic chondropathy. VEGF exists as multiple isoforms dependant on alternative splicing of mRNA [34]. VEGFAa isoforms contribute to angiogenesis and pain, whereas VEGFAb isoforms might be anti-angiogenic and analgesic. Further studies should explore whether reduced VEGF expression observed in the current study reflects an alteration in isoform balance that might contribute to OA pain.
Increased VEGF in synovium, cartilage, synovial fluid and plasma might contribute to synovitis and osteophyte formation in OA[31]. VEGF might also contribute to OA paint through facilitating inflammation and by actions on sensory nerves[32, 33]. Perhaps surprisingly, we found that VEGFA was decreased at the gene and protein level in patients with symptomatic compared to asymptomatic chondropathy. VEGF exists as multiple isoforms dependant on alternative splicing of mRNA [34]. VEGFAa isoforms contribute to angiogenesis and pain, whereas VEGFAb isoforms might be anti-angiogenic and analgesic. Further studies should explore whether reduced VEGF expression observed in the current

389	protein expression levels than with MMP1, IL1R1 and VEGF. The small sample sizes in the
390	current study might have led us to overlook biologically important associations, although our
391	repository of joint samples from >3000 cases was required to select sample groups with
392	adequate matching for severity of structural chondropathy and other factors. Further research
393	should explore mechanisms by which CCL2, CCL8, CCL5, CXCL10, TNF- α and MMP7
394	might contribute to OA pain.
395	CCL2 and CCL8 gene expressions were higher in symptomatic OA vs non-arthritic controls
396	(CCL8 protein was also higher in OA vs. PM controls), and in symptomatic knee OA
397	compared to chondropathy-matched asymptomatic post mortem cases. CCL2 and CCL8 each
398	serve as ligands for chemokine receptor 2 (CCR2) [35]. CCL2 from synovial fibroblasts [36]
399	recruits and activates inflammatory cells to sites of inflammation [37] and CCL2 mRNA and
400	protein are upregulated in osteoarthritic tibiofemoral joints [38]. Synovial fluid CCL2 has
401	been associated with OA knee pain severity, in addition to physical disability [39]. During
402	inflammation, elevated expression of CCL2 might act on sensory nerves to activate transient
403	receptor potential cation channel subfamily V member 1 (TRPV1) to induce hyperalgesia
404	[40]. CCL8 has previously been detected in fibroblasts and macrophages in the synovial
405	lining of arthritic patients [35]. Mice that lacked the CCL2 receptor (CCR2) were protected
406	against movement-provoked pain following surgical induction of OA [41]. Together these
407	data indicate the CCL2, CCL8 and CCR2 pathway as possible targets for OA pain.
408	Our study is necessarily subject to a number of limitations. Both RNA and proteins are
409	susceptible to degradation by post-mortem processes, and RNA by RNAses [42]. However,
410	we did not identify associations between gene or protein expression levels and time from
411	death to tissue processing for any of the replicated genes taken forward for Luminex analysis.
412	Furthermore, there were no significant differences in the expression of the 4 reference genes
413	between surgical and post-mortem groups. Target gene expression was also normalised to

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

reference genes to compensate for any heterogeneity of quality between tissue samples. Genes might be activated post-mortem, however this has only been shown in animal studies and not yet with human tissue [43]. OA is strongly associated with age, and it can be difficult to distinguish between OA pathological change and age-related changes or senescence. However, we found associations of gene and protein expression with disease status in agematched cases, and associations with symptomatic chondropathy were not affected by adjustment for chronological age, except for IL1R1. Gene expression and protein levels alone need not necessarily indicate protein activity. We validated key molecular targets identified through gene expression studies using a complimentary proteomics approach, but future studies should explore functional activity. We investigated a large number of proteins and genes, and some statistically significant associations might have occurred by chance. In order to reduce this risk, we undertook analyses to adjust for multiple testing by applying a correction for FDR [20]. Furthermore our study design comprised of initial exploratory analysis (discovery RNA study), which was then validated using a separate set of asymptomatic and symptomatic chondropathy cases. Our main conclusions are based on results from across independent case samples used for discovery and validation gene expression studies and supported by protein expression data. Genes and proteins were selected for study due to their potential roles in inflammation and neuronal sensitisation, and identified targets might be markers for other associated inflammatory or sensitising factors. The high pseudo R² values obtained in this study suggest that, when severity of chondropathy is matched, a high proportion of model variance for allocation to symptomatic or asymptomatic chondropathy groups might be explained by synovial gene and protein expression. This suggests that gene and protein expression might be biologically important, but targets identified through these studies require further exploration either as biomarkers, or

438	as treatment targets for managing OA pain. However, it is important to note that the high
439	pseudo R ² values may be representing an overfitted model.

In conclusion, symptomatic OA was associated with an up-regulation in synovium of MMP1 and decrease of IL1R1 and VEGFA compared to asymptomatic chondropathy cases with similar macroscopic joint surface appearances who did not seek TKR. Synovial inflammation is a feature of symptomatic OA, and better understanding of the gene expression patterns could lead to refinement of existing therapies and development of new treatments to reduce pain. This work was a target generating exercise. Further work is necessary to determine whether molecular targets that we have identified are biologically or clinically important, or may eventually lead to treatment strategies aiming to alleviate OA symptoms.

ACKNOWLEDGMENTS

We are grateful to the patients, orthopaedic surgeons and Bereavement Centre colleagues at Sherwood Forest Hospitals Trust for providing the post-mortem and surgical tissue for our repository. We thank the staff at of the Histopathology Department at Sherwood Forest Hospitals NHS Foundation Trust for processing the tissues. We thank Mrs Monika Owen for her support with the RNA expression work, and Dr Daniel McWilliams and Dr Boliang Guo for their advice with the statistical analysis. We are grateful to Nottingham University Hospitals NHS Trust for their support of our tissue repository.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr Wyatt (laura.wyatt@nottingham.ac.uk) had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

461	Substantial contributions to study conception and design. Wyatt, Wilson, Hill, Spendlove,
462	Bennett, Scammell and Walsh
463	Substantial contributions to acquisition of data: Wyatt and Nwosu.
464	Substantial contributions to analysis and interpretation of data. Wyatt, Nwosu,
465	Spendlove, Bennett, Scammell and Walsh
466	ROLE OF THE FUNDING SOURCE
467	This work was supported by Arthritis Research UK (grants 18769 & 20777).
468	CONFLICT OF INTEREST
469	The authors declare no conflicts of interest.
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	

481 **REFERENCES**

- Hill, C.L., D.J. Hunter, J. Niu, M. Clancy, A. Guermazi, H. Genant, et al., Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis, 2007. 66(12): p. 1599-603.
- 485 2. Baker, K., A. Grainger, J. Niu, M. Clancy, A. Guermazi, M. Crema, et al., Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis, 2010. 69(10): p. 1779-83.
- 488 3. Stoppiello, L.A., P.I. Mapp, D. Wilson, R. Hill, B.E. Scammell, and D.A. Walsh, 489 Structural associations of symptomatic knee osteoarthritis. Arthritis & Rheumatology, 490 2014: p. n/a-n/a.
- 491 4. Felson, D.T., J. Niu, A. Guermazi, F. Roemer, P. Aliabadi, M. Clancy, et al.,
 492 Correlation of the development of knee pain with enlarging bone marrow lesions on
 493 magnetic resonance imaging. Arthritis Rheum, 2007. 56(9): p. 2986-92.
- Fernandes, J.C., J. Martel-Pelletier, and J.P. Pelletier, The role of cytokines in osteoarthritis pathophysiology. Biorheology, 2002. 39(1-2): p. 237-46.
- Orita, S., T. Koshi, T. Mitsuka, M. Miyagi, G. Inoue, G. Arai, et al., Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee.
 BMC Musculoskelet Disord, 2011. 12: p. 144.
- Cuellar, J.M., G.J. Scuderi, V.G. Cuellar, S.R. Golish, and D.C. Yeomans, Diagnostic
 utility of cytokine biomarkers in the evaluation of acute knee pain. J Bone Joint Surg
 Am, 2009. 91(10): p. 2313-20.
- 503 8. Lin, J., G. Li, X. Den, C. Xu, S. Liu, Y. Gao, et al., VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X(2)(/)(3) receptor of primary sensory neurons. Brain Res Bull, 2010. 83(5): p. 284-91.
- Haywood, L., D.F. McWilliams, C.I. Pearson, S.E. Gill, A. Ganesan, D. Wilson, et al., Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum, 2003. 48(8): p. 2173-7.
- 509 10. Jackson, J.R., J.A. Minton, M.L. Ho, N. Wei, and J.D. Winkler, Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol, 1997. 24(7): p. 1253-9.
- 512 11. Hamilton, J.L., M. Nagao, B.R. Levine, D. Chen, B.R. Olsen, and H.J. Im, Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res, 2016. 31(5): p. 911-24.
- Zeng, G.Q., A.B. Chen, W. Li, J.H. Song, and C.Y. Gao, High MMP-1, MMP-2, and
 MMP-9 protein levels in osteoarthritis. Genet Mol Res, 2015. 14(4): p. 14811-22.
- Tak, P.P. and G.S. Firestein, NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001. 107(1): p. 7-11.
- Lambert, C., J.-E. Dubuc, E. Montell, J. Vergés, C. Munaut, A. Noël, et al., Gene
 Expression Pattern of Cells From Inflamed and Normal Areas of Osteoarthritis
 Synovial Membrane. Arthritis & Rheumatology, 2014. 66(4): p. 960-968.
- 522 15. Deligne, C., S. Casulli, A. Pigenet, C. Bougault, L. Campillo-Gimenez, G. Nourissat, et al., Differential expression of interleukin-17 and interleukin-22 in inflamed and
- 524 non-inflamed synovium from osteoarthritis patients. Osteoarthritis and Cartilage, 525 2015. 23(11): p. 1843-1852.
- 526 16. Altman, R., E. Asch, D. Bloch, G. Bole, D. Borenstein, K. Brandt, et al.,
- Development of criteria for the classification and reporting of osteoarthritis.
- 528 Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria

- 529 Committee of the American Rheumatism Association. Arthritis Rheum, 1986. 29(8): p. 1039-49.
- 531 17. Walsh, D.A., A. Yousef, D.F. McWilliams, R. Hill, E. Hargin, and D. Wilson,
- Evaluation of a Photographic Chondropathy Score (PCS) for pathological samples in a study of inflammation in tibiofemoral osteoarthritis. Osteoarthritis Cartilage, 2009. 17(3): p. 304-12.
- 535 18. Kumar, N.M., N. Hafezi-Nejad, A. Guermazi, A. Haj-Mirzaian, I.K. Haugen, F.W.
- Roemer, et al., Brief Report: Association of Quantitative and Topographic
- Assessment of Heberden's Nodes With Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Rheumatol, 2018. 70(8): p. 1234-1239.
- 539 19. Bondeson, J., S.D. Wainwright, S. Lauder, N. Amos, and C.E. Hughes, The role of 540 synovial macrophages and macrophage-produced cytokines in driving aggrecanases, 541 matrix metalloproteinases, and other destructive and inflammatory responses in 542 osteoarthritis. Arthritis Res Ther, 2006. 8(6): p. R187.
- 543 20. Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 1995. 57(1): p. 289-300.
- Vincenti, M.P. and C.E. Brinckerhoff, Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Research & Therapy, 2001. 4(3): p. 157.
- Zeng, G.Q., A.B. Chen, W. Li, J.H. Song, and C.Y. Gao, High MMP-1, MMP-2, and
 MMP-9 protein levels in osteoarthritis. Genetics & Molecular Research, 2015. 14(4):
 p. 14811-22.
- Garnero, P., B. Mazieres, A. Gueguen, M. Abbal, L. Berdah, M. Lequesne, et al., Cross-sectional association of 10 molecular markers of bone, cartilage, and synovium with disease activity and radiological joint damage in patients with hip osteoarthritis: the ECHODIAH cohort. Journal of Rheumatology, 2005. 32(4): p. 697-703.
- 557 24. Smith, M.D., S. Triantafillou, A. Parker, P.P. Youssef, and M. Coleman, Synovial membrane inflammation and cytokine production in patients with early osteoarthritis.

 559 Journal of Rheumatology, 1997. 24(2): p. 365-71.
- Sadouk, M.B., J.P. Pelletier, G. Tardif, K. Kiansa, J.M. Cloutier, and J. Martel Pelletier, Human synovial fibroblasts coexpress IL-1 receptor type I and type II
 mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab Invest, 1995. 73(3): p. 347-55.
- Aveleira, C., A. Castilho, F. Baptista, N. Simoes, C. Fernandes, E. Leal, et al., High glucose and interleukin-1beta downregulate interleukin-1 type I receptor (IL-1RI) in retinal endothelial cells by enhancing its degradation by a lysosome-dependent mechanism. Cytokine, 2010. 49(3): p. 279-86.
- Fernandes, J., G. Tardif, J. Martel-Pelletier, V. Lascau-Coman, M. Dupuis, F.
 Moldovan, et al., In vivo transfer of interleukin-1 receptor antagonist gene in
 osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J Pathol,
 1999. 154(4): p. 1159-69.
- 572 28. Pelletier, J.P., J.P. Caron, C. Evans, P.D. Robbins, H.I. Georgescu, D. Jovanovic, et 573 al., In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor 574 antagonist using gene therapy. Arthritis Rheum, 1997. 40(6): p. 1012-9.
- Cohen, S.B., S. Proudman, A.J. Kivitz, F.X. Burch, J.P. Donohue, D. Burstein, et al.,
 A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody
 to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res Ther, 2011. 13(4):
 p. R125.

- 579 30. Chevalier, X., P. Goupille, A.D. Beaulieu, F.X. Burch, W.G. Bensen, T. Conrozier, et 580 al., Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, 581 randomized, double-blind, placebo-controlled study. Arthritis Rheum, 2009. 61(3): p. 582 344-52.
- 583 31. Yuan, Q., L. Sun, J.J. Li, and C.H. An, Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskeletal Disorders, 2014. 15: p. 437.
- Mapp, P.I. and D.A. Walsh, Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nature Reviews Rheumatology, 2012. 8(7): p. 390-8.
- 587 33. Kiguchi, N., Y. Kobayashi, Y. Kadowaki, Y. Fukazawa, F. Saika, and S. Kishioka, Vascular endothelial growth factor signaling in injured nerves underlies peripheral sensitization in neuropathic pain. J Neurochem, 2014. 129(1): p. 169-78.
- 590 34. Oltean, S., M. Gammons, R. Hulse, M. Hamdollah-Zadeh, A. Mavrou, L. Donaldson, 591 et al., SRPK1 inhibition in vivo: modulation of VEGF splicing and potential treatment 592 for multiple diseases. Biochemical Society Transactions, 2012. 40(4): p. 831-5.
- Haringman, J.J., T.J. Smeets, P. Reinders-Blankert, and P.P. Tak, Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis, 2006. 65(3): p. 294-300.
- 597 36. Eisinger, K., S. Bauer, A. Schaffler, R. Walter, E. Neumann, C. Buechler, et al., 598 Chemerin induces CCL2 and TLR4 in synovial fibroblasts of patients with 599 rheumatoid arthritis and osteoarthritis. Exp Mol Pathol, 2012. 92(1): p. 90-6.
- Woscopoulos, C. and M. Lema, When does acute pain become chronic? Br J Anaesth, 2010. 105 Suppl 1: p. i69-85.
- Dawes, J.M., H. Kiesewetter, J.R. Perkins, D.L. Bennett, and S.B. McMahon,
 Chemokine expression in peripheral tissues from the monosodium iodoacetate model
 of chronic joint pain. Mol Pain, 2013. 9: p. 57.
- 605 39. Li, L. and B.E. Jiang, Serum and synovial fluid chemokine ligand 2/monocyte chemoattractant protein 1 concentrations correlates with symptomatic severity in patients with knee osteoarthritis. Ann Clin Biochem, 2015. 52(Pt 2): p. 276-82.
- Spicarova, D., P. Adamek, N. Kalynovska, P. Mrozkova, and J. Palecek, TRPV1
 receptor inhibition decreases CCL2-induced hyperalgesia. Neuropharmacology, 2014.
 81: p. 75-84.
- Miller, R.E., P.B. Tran, R. Das, N. Ghoreishi-Haack, D. Ren, R.J. Miller, et al., CCR2
 chemokine receptor signaling mediates pain in experimental osteoarthritis.
 Proceedings of the National Academy of Sciences, 2012. 109(50): p. 20602-20607.
- Holland, N.T., M.T. Smith, B. Eskenazi, and M. Bastaki, Biological sample collection
 and processing for molecular epidemiological studies. Mutat Res, 2003. 543(3): p.
 217-34.
- 617 43. Pozhitkov, A., R. Neme, T. Domazet-Loso, B. Leroux, S. Soni, D. Tautz, et al.,
 618 Thanatotranscriptome: genes actively expressed after organismal death. Open
 619 Biology, 2016.

620

621

622

624 FIGURE LEGENDS

Figure 1: Protein expression in synovia from chondropathy cases classified as either
asymptomatic or symptomatic. Groups were matched for macroscopic chondropathy scores.
A: CCL2 (chemokine ligand 2), B: CCL5 (chemokine ligand 5). C: MMP1 (matrix
metalloprotease 1), D : VEGF (vascular endothelial growth factor-A), E : CXCL10
(chemokine ligand 10), \mathbf{F} : IL1R1 (interleukin 1 receptor 1). Median (IQR) are shown. IL1 β ,
$TNF\alpha$, MMP7 and CCL8 immunoreactivities were below the lower limit of detection.
Figure 2: Protein expression for selected genes compared between PM control and OA cases
undergoing arthroplasty. A: CCL2 (chemokine ligand 2), B: CCL8 (chemokine ligand 8) C):
MMP1 (matrix metalloprotease 1), D: VEGF-A (vascular endothelial growth factor-A), E:
CXCL10 (chemokine ligand 10), F: IL1R1 (interleukin 1 receptor 1) and G: CCL5
(chemokine ligand 5). Data expressed as median (IQR). MMP7, IL1 β and TNF α
immunoreactivities were below the lower limit of detection.

TABLES

Table 1 Clinical and pathological characteristics of the study groups

	Discovery sample			Validation sample				Protein expression		
	Chondropathy		Chondropathy Non- arthritic controls		Chondropathy			Chondropathy		
	Asymptomatic	Symptomatic	P		Asymptomatic	Symptomatic	P	Asymptomatic	Symptomatic	P
n	11	11		7	8	9		20	21	
Age, years	79 (65-88)	61 (54-73)	0.005	64 (49-74)	67 (52-78)	64 (55-72)	0.756	74 (64-85)	64(35-82)	0.026
% male	36	46	0.748	43	25	35	0.774	35	43	0.611
BMI, kg/m ²	NA	33 (31-39)	NA	NA	NA	31 (28-36)	NA	NA	32 (29-37)	NA
Post-mortem delay (h)‡	58 (29-89)	NA	NA	55 (29-64)	66 (44-79)	NA	NA	64 (35-82)	NA	NA
Macroscopic chondropathy score (scale range 0-400)	214 (204-229)	223 (213-239)	0.300	55 (44-97)	197 (163-204)*	195(171-203)^	0.001	205 (195-223)	208(188-231)	0.698

Tissues were obtained at the time of total knee replacement for OA (symptomatic chondropathy) or were obtained post mortem (asymptomatic chondropathy and non-arthritic controls). Results are reported for groups following exclusions for outlier reference genes, or inability to transcribe RNA to cDNA. In the discovery RNA study, 1 asymptomatic chondropathy case was excluded due to inability to transcribe RNA to cDNA (low RNA concentration) and one symptomatic chondropathy case due an outlier reference gene Ct value (final numbers, 11/group). In the validation study, the following were excluded from the final analysis; 3 non-arthritic controls, (low RNA concentration), 2 asymptomatic chondropathy cases (one low RNA concentration, the other due to an outlier reference gene Ct value) and 1 symptomatic chondropathy cases (low RNA concentration). Final numbers for the validation study were 7 non-arthritic controls, 8 asymptomatic chondropathy and 9 symptomatic chondropathy. Protein expression conducted on one extra asymptomatic chondropathy and symptomatic chondropathy case that were excluded from the final RNA analysis (due to outlier reference genes). Asymptomatic and symptomatic chondropathy cases were successfully matched for macroscopic chondropathy scores. ‡Post-mortem delay was calculated as the time (h) between death and tissue collection. Data

expressed for included cases as median (IQR) or %. Differences between asymptomatic and symptomatic chondropathy groups in the discovery sample and in the proteomics analysis were comparing using Mann Whitney tests. Differences between non-arthritic controls, asymptomatic chondropathy, and symptomatic chondropathy groups in the validation sample were compared using Kruskal Wallis One Way ANOVA. *P = 0.006 vs non-arthritic controls, $^{A}P = 0.003$ vs non-arthritic controls. BMI; body mass index, NA; not available.

Table 2: Genes which were differentially expressed in the synovium of symptomatic chondropathy cases compared to asymptomatic chondropathy cases in discovery and validation samples.

	Discover	y sample	Validation sample			
	Fold change	P	Fold change	P		
Up-regulated						
ACE	2.05	0.01	1.81	.059		
ANXA1	1.41	0.04	1.30	.021		
CASP1	2.90	< 0.001	1.45	.139		
CCL2	1.65	0.013	3.57	.004		
CCL3	2.02	0.056	3.21	.167		
CCL4	1.91	0.023	1.98	.236		
CCL5	1.40	0.034	1.07	.606		
CCL8	3.87	0.016	6.28	.000082*		
CMKLR1	1.99	0.008	2.06	.167		
CNR2	2.85	0.088	1.39	.481		
CTGF	2.22	0.003	1.61	.139		
CTSK	1.19	0.562	1.37			
CXCL10	5.81	0.133	2.08			
EPHX2	1.68	0.034	1.07			
FOS	2.03	0.056	5.16			
IL10	2.31	0.023	2.62			
IL1B	1.29	0.519	3.85			
IL6	1.01	0.401	2.40			
JUN	1.23	0.171	1.49			
MMP1	13.93	<0.001*	4.66			
MMP3	4.15	0.116	1.27			
S100A8	1.43	0.243	1.49			
TG	1.08	0.606	1.51			
TREM1	1.23	0.652	1.33			
TRPV4	1.45	0.088	1.25			
Down-regulated	1.13	0.000	1.20	.000		
CX3CL1	2.72	< 0.001	1.62	0.167		
CXCL2	2.71	0.013	2.40			
CXCL5	3.36	0.056	2.50			
F2RL3	7.45	0.101	9.65			
IL1R1	2.07	0.001*	3.32			
IL8	2.86	0.056	1.95			
KDR	2.33	0.01	1.28			
LTB4R	2.29	0.007	1.87			
MMP7	4.91	0.034	11.62			
MMP9	1.56	0.699	5.58			
NFKBIA	2.37	0.0003*	3.79			
NOS3	2.20	0.019	1.42			
S100A9	2.12	0.606	1.34			
SOCS1	2.70	0.002	1.11			
SOCS3	2.23	0.056	1.49			
STAT3	1.11	0.652	2.06			
DIAIJ	1.11	0.032	2.00	0.117		

TNFRSF11B	1.27	0.562	1.45	0.321
VEGFA	8.45CCEPTED	Mo.001*SCRIPT	4.08	0.139

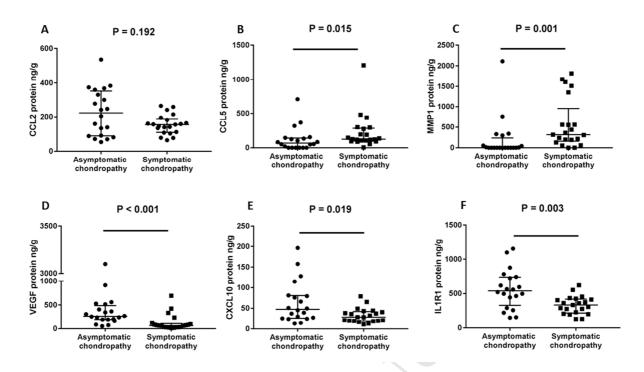
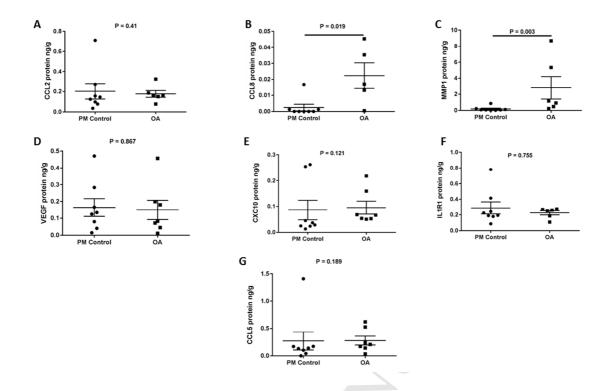

Up or down regulation references symptomatic compared to asymptomatic chondropathy cases. Genes shown are those which were increased or decreased in the same direction in both discovery and validation samples; see supplementary tables 3 & 4 for additional analytes. Bold indicates genes selected for analysis of protein expression based on concordant findings between discovery and validation samples (p<0.05 or >3-fold difference between symptomatic and asymptomatic chondropathy groups). *P<0.01 after FDR (5%) corrections in the discovery sample and <0.0001 in the validation sample. Gene expression is normalised to the geometric mean of all 4 reference genes.

Table 3: Overall summary of key molecular targets associated with symptomatic OA.


Target	RNA Discovery		RNA Validation		Protein		
	Fold change	P	Fold change	P	Fold change	P	
MMP1: Matrix	13.93 increased in	< 0.001	4.66 increased in	0.888	2.92 increased in	0.001	
Metalloprotease 1*	Symptomatic chondropathy		Symptomatic chondropathy		Symptomatic chondropathy		
IL1R1: Interleukin 1	2.07 decreased in	0.001	3.32 decreased in	0.001	1.68 decreased in	0.003	
receptor, type I*	Symptomatic chondropathy		Symptomatic chondropathy		Symptomatic chondropathy		
VEGF: Vascular endothelial	8.15 decreased in	< 0.001	4.08 decreased in	0.139	3.63 decreased in	< 0.001	
growth factor A*	Symptomatic chondropathy		Symptomatic chondropathy		Symptomatic chondropathy		
CCL2: Chemokine Ligand 2	1.65 increased in	0.013	3.57 increased in	0.004	1.46 decreased in	0.192	
	Symptomatic chondropathy	(2)	Symptomatic chondropathy		Symptomatic chondropathy		
CCL8: Chemokine Ligand 8	3.87 increased in	0.016	6.27 increased in	< 0.001	NA	NA	
	Symptomatic chondropathy		Symptomatic chondropathy				
IL-1β: Interleukin 1-beta	1.29 increased in	0.519	3.85 increased in	0.036	NA	NA	
	Symptomatic chondropathy		Symptomatic chondropathy				
TNF-α: Tumour necrosis	3.86 increased in	< 0.001	1.25 decreased in	0.815	NA	NA	
factor-alpha	Symptomatic chondropathy		Symptomatic chondropathy				
MMP7: Matrix	4.908 decreased in	0.034	11.62 decreased in TKR	0.541	NA	NA	
Metalloprotease 7	Symptomatic chondropathy						

CCL5: Chemokine ligand 5	1.40 increased in	0.034	1.07 increased in TKR	0.606	1.86 increased in TKR	0.015
	Symptomatic chondropathy					
CXCL10: Chemokine (C-X-C	5.81 increased in	0.133	2.08 increased in TKR	0.277	1.97 decreased in TKR	0.019
motif) ligand 10)	Symptomatic chondropathy			Y		

^{*} Genes that satisfy the following criteria 1)increased in the same direction in both the original and replication RNA study, 2) P<0.05 or fold change >3 and 3) significantly differentially expressed at the protein level.

Figure 1: Protein expression in synovia from chondropathy cases classified as either asymptomatic or symptomatic. Groups were matched for macroscopic chondropathy scores. **A:** CCL2 (chemokine ligand 2), **B:** CCL5 (chemokine ligand 5). **C:** MMP1 (matrix metalloprotease 1), **D:** VEGF (vascular endothelial growth factor-A), **E:** CXCL10 (chemokine ligand 10), **F:** IL1R1 (interleukin 1 receptor 1). Median (IQR) are shown. IL1β (interleukin 1 beta), TNF-α (tumour necrosis factor alpha), MMP7 (matrix metalloprotease 7) and CCL8 (chemokine ligand 8) immunoreactivities were below the lower limit of detection.

below the lower limit of detection.

Figure 2: Protein expression for selected genes compared between PM control and OA cases undergoing arthroplasty. **A:** CCL2 (chemokine ligand 2), **B:** CCL8 (chemokine ligand 8) **C**): MMP1 (matrix metalloprotease 1), **D:** VEGF-A (vascular endothelial growth factor-A), **E:** CXCL10 (chemokine ligand 10), **F:** IL1R1 (interleukin 1 receptor 1) and **G:** CCL5 (chemokine ligand 5). Data expressed as median (IQR). MMP7 (matrix metalloprotease 7), IL1β (interleukin 1 beta) and TNF-α (tumour necrosis factor alpha) immunoreactivities were