
Split Cuts From Sparse Disjunctions

by

Shenghao Yang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2019

c© Shenghao Yang 2019

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is based on the manuscript Split cuts from sparse disjunctions, by Ricardo
Fukasawa, Laurent Poirrier and Shenghao Yang, which has been submitted to Mathemat-
ical Programming Computation and is currently under revision.

iii

Abstract

Cutting planes are one of the major techniques used in solving Mixed-Integer Linear
Programming (MIP) models. Various types of cuts have long been exploited by MIP
solvers, leading to state-of-the-art performance in practice. Among them, the class of split
cuts, which includes Gomory Mixed Integer (GMI) and Mixed Integer Rounding (MIR)
cuts from tableaux, are arguably the most effective class of general cutting planes within
a branch-and-cut framework. Sparsity, on the other hand, is a common characteristic of
real-world MIP problems, and it is an important part of why the simplex method works
so well inside branch-and-cut. A natural question, therefore, is to determine how sparsity
can be incorporated into split cuts and how effective are split cuts that exploit sparsity.
In this thesis, we evaluate the strength of split cuts that arise from sparse split disjunc-
tions. In particular, we implement an approximate separation routine that separates only
split cuts whose split disjunctions are sparse. We also present a straightforward way to
exploit sparsity structure that is implicit in the MIP formulation. We run computational
experiments and conclude that, one possibility to produce good split cuts is to try sparse
disjunctions and exploit such structure.

iv

Acknowledgements

First of all, I would like to thank my supervisors Dr. Ricardo Fukasawa and Dr. Laurent
Poirrier, for the patient guidance and invaluable advice they generously provided through-
out my time as their student. Both Ricardo and Laurent have been extremely caring and
supportive. It would never have been possible for me to complete this work without their
encouragement and dedication. I was very lucky to have the opportunity to work with and
learn from them.

I would also like to thank my readers, Dr. Levent Tunçel and Dr. Bertrand Guenin, for
their time to read my thesis and provide insightful feedbacks.

Last but not least, I would like to thank my parents, for their unconditional support,
and my wife, Xiaoyu, for bringing so much joy and love into my life.

v

Dedication

To my wife, and our parents.

vi

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Cutting planes . 2

1.2 Closures . 3

1.3 Split disjunctions and split cuts . 4

1.4 Sparsity . 6

1.5 Motivations and outline . 7

2 Background 9

2.1 Cut generating linear program . 9

2.2 Cut lifting . 15

2.3 Optimizing over the split closure . 18

2.4 Automatic detection of double-bordered block-diagonal structure 20

3 Implementation Details 22

3.1 Existing methods for practical computation 22

3.2 New features in our implementation . 25

3.3 Algorithmic descriptions . 27

vii

4 Computational Experiments 30

4.1 Choice of model parameter values . 31

4.2 Three experiments . 33

4.2.1 How does our implementation compare with known results? 33

4.2.2 How does sparsity help? . 35

4.2.3 How does structured sparsity help? 38

4.3 Computing (restricted) split closure on MIPLIB 2003 instances 44

5 Conclusion 46

References 48

APPENDICES 53

A Additional computational results 54

A.1 U = 1, M = 1, MIPLIB 3.0 . 55

A.2 U = 1, M = 1, MIPLIB 2003 . 56

A.3 U = 1, M = 2, MIPLIB 3.0 . 57

A.4 U = 1, M = 2, MIPLIB 2003 . 58

B Effect of heuristics in computation 59

viii

List of Tables

4.1 Model parameter values used in computation 31

4.2 Gap closed as a percentage of the known gap for the lift-and-project closure
(from [21]) . 34

4.3 Gap closed as a percentage of the best known gap for the split closure
(from [13] and [29]) . 34

4.4 Gap closed for the (i) full split closure, (ii) sparse split cuts only, and (iii)
sparse ±1 split cuts only. 37

4.5 Gap closed with sparse ±1 splits and DB-k structures 40

4.6 Disjunction and cut density for three example instances. 43

4.7 Gap closed in MIPLIB2003 instances. 45

B.1 Effect of heuristics . 60

ix

List of Figures

1.1 A cutting plane example . 3

1.2 A split disjunction and a split cut . 5

1.3 Examples of sparse matrices . 6

2.1 Original problem structure versus its DB-k forms 21

3.1 Effect of stabilizing objective . 25

4.1 Gap closed as a percentage of the best known gap closure (from [13] and [29]),
vs. number of integer variables . 35

4.2 Distribution of cut densities with different experimental settings. 38

4.3 Distribution of gap closed with time limit of one week. 38

4.4 Distribution of relative gap closed for DB-k forms for several values of ρ . . 41

4.5 Distribution of cut densities for DB-2 . 43

4.6 Evolution of average gap closed . 44

B.1 Effect of heuristics . 60

x

Chapter 1

Introduction

A mixed-integer linear programming (MIP) problem is a mathematical optimization prob-
lem where the objective and the constraints are linear and some or all of the variables are
restricted to be integers. Many real-world problems in planning, transportation, telecom-
munications, economics and finance can be naturally formulated and solved as MIPs [40].
Formally, a MIP is stated as:

min c>x

s.t. x ∈ P ∩ (Zp × Rn−p)
(1.1)

where P = {x ∈ Rn : Ax = b, x ≥ 0} is a rational polyhedron in Rn, and 1 ≤ p ≤ n.

Due to wide range of applications of MIP models in practice, numerous computer
codes have been developed to solve optimization problems of form (1.1), including both
commercial solvers like CPLEX [3], Gurobi [2], FICO Xpress [1], and non-commercial
ones like SCIP [38]. Over the last 25 years, MIP solvers have accomplished remarkable
progress, achieving a machine-independent speed-up of the solution process by more than a
factor of 450,000 [18]. Among many other technical developments, general-purpose cutting
plane methods are arguably the most important contributors to this progress (see, for
example, [20]).

The focus of this thesis is on a particular class of cutting planes called split cuts and
their computational properties. In the rest of this chapter we discuss the basic concepts
and previous results that motivate our study. We begin by defining cutting planes for
MIPs.

1

1.1 Cutting planes

A general solution technique for (1.1) is to use its linear programming relaxation along with
cutting planes. The linear programming relaxation simply drops the integrality constraints
on the variables and results in a linear program

min c>x

s.t. x ∈ P
(1.2)

which can be solved quickly in practice, for example, by the simplex method. The concept
of cutting planes is fundamental in integer programming. We now formally define what
cutting planes are.

Definition 1. A valid inequality for (1.1) is a linear constraint α>x ≥ β that does not
eliminate any feasible integer solutions. That is, for every x ∈ P ∩ (Zp × Rn−p) we have
α>x ≥ β. A valid inequality is also called a cutting plane, or cut.

Note that, some authors (e.g., [26]) require a cut, apart from being a valid inequality, to
cuts off part of the feasible region of linear programming relaxation. In this thesis, we use
cutting planes and valid inequalities interchangeably. We call a cut violated if it cuts off
part of the feasible region of linear programming relaxation, and non-violated otherwise.
Sometimes we also call a cut valid to emphasize that this cut is a valid inequality, and
invalid to emphasis that, it cuts off part of the feasible region, but it is not a valid inequality
(and thus it is not a cut).

Below we give a concrete example of a violated cutting plane.

Example 2. Consider a simple integer program of just 2 variables,

max 1>x

s.t.
[
−2 6
2 1

]
x ≤

(
9
5

)
x ∈ Z2

+.

(1.3)

The feasible region of the linear programming relaxation of (1.3) is shown in Figure 1.1.
It is a polyhedron on the plane with vertices (0, 0), (0, 3/2), (3/2, 2), (5/2, 0). The linear
inequality 5x1 + 6x2 ≤ 16 does not eliminate any feasible integer points, therefore it is a
cut for (1.3). Furthermore, it cuts off the vertex x∗ = (3/2, 2), and thus it is a violated
cut. Note that solving the linear programming relaxation of (1.3) along with constraint
5x1 + 6x2 ≤ 16 readily yields the optimal integer solution!

2

Figure 1.1: A cutting plane example

In fact, it turns out that the cut in Example 2 belongs to the family of split cuts
introduced by Cook et al. [25], which has shown to be the most useful family of cuts to
solve MIPs in practice [20]. We refer to [26] for a comprehensive review of several classical
families of cuts and how they are related to each other.

A central concept in the study of cutting planes is that of closures. In the next section,
we give a brief overview of known results on closures.

1.2 Closures

To study the impact that a particular family of cuts may have, both theoretically and com-
putationally, a common approach is to consider the closure of those cuts. Given a family
of cuts, the associated closure is the convex set defined by the intersection of all cuts in
the same family. Therefore, a closure can be seen as an approximation to the convex hull
of all feasible integer solutions, or simply, the integer hull. On the theoretical side, topics
range from determining polyhedrality of closures [25,45] and the complexity of optimizing a
linear function over them [23,32], to analyzing relationships between different closures [28]
and how well they approximate the integer hull [14]. On the computational front, sev-
eral authors proposed strategies to empirically evaluate the strength of different closures
by computing the amount of integrality gap (c.f. Definition 3) they close: we thus have
computational evaluations of the Chvátal closure [33], the split closure [13], the projected
Chvátal-Gomory closure [22], the MIR closure [29] and the lift-and-project closure [21].

Definition 3. Consider (1.1) and its linear programming relaxation (1.2). Suppose (1.1)
is feasible and (1.2) is bounded below. Let OptMIP and OptLP denote the optimum of

3

(1.1) and (1.2), respectively. Given a family of cuts. Let C denote its closure, and let

OptCLO := min
x∈C

c>x.

Then the integrality gap closed by C is expressed as the quantity

OptCLO −OptLP
OptMIP −OptLP

.

Usually, integrality gaps are computed individually on a set of benchmark instances,
and the average gap closed by a given family of cuts is then compared with others. The
Mixed Integer Programming LIBrary [4], or MIPLIB, is an electronically available library
consisting of various real-world pure and mixed integer programs. Currently MIPLIB has
five versions. The first version was initiated in 1992, and the sixth version was just released
on November 5, 2018. Since its introduction, MIPLIB has become a standard test set used
to compare the performance of mixed integer optimizers. In this thesis we will use MIPLIB
3.0 [19] and MIPLIB 2003 [5], which are the third and the forth versions of MIPLIB. We
explain in more details about our choice of test sets in Chapter 4.

The split closure, or equivalently the MIR closure, was shown computationally to be a
very tight approximation of the integer hull [13, 36]. On average it closes more than 75%
of the integrality gap on MIPLIB 3.0 instances. This has since led to efforts on efficient
generation of strong split cuts (see, for example, [7,27,35,36]). We formally introduce split
cuts in the next section.

1.3 Split disjunctions and split cuts

Consider an integer vector π ∈ Zn where πj = 0 for all j ≥ p + 1 and an integer π0 ∈ Z.
We define a split disjunction for P ∩ (Zp × Rn−p) as

π>x ≤ π0 ∨ π>x ≥ π0 + 1. (1.4)

Note that (1.4) is satisfied by every x ∈ Zp × Rn−p. Therefore, let

Π
(π,π0)
1 := P ∩ {x ∈ Rn : π>x ≤ π0},

Π
(π,π0)
2 := P ∩ {x ∈ Rn : π>x ≥ π0 + 1},

and x̄ be any feasible integer solution of (1.1), then either x̄ ∈ Π
(π,π0)
1 or x̄ ∈ Π

(π,π0)
2 .

4

Consider the convex hull of sets Π
(π,π0)
1 and Π

(π,π0)
2

P (π,π0) := conv
(

Π
(π,π0)
1 ∪ Π

(π,π0)
2

)
,

where conv(S) denotes the smallest convex set that contains set S. Clearly x̄ ∈ P (π,π0).
We thus define split cuts as follows.

Definition 4. A split cut for P ∩ (Zp×Rn−p) is a valid inequality for some P (π,π0), where
(π, π0) is a split disjunction for P ∩ (Zp × Rn−p).

Example 5. The cut 5x1 + 6x2 ≤ 16 in Example 2 is a split cut corresponding to the split

disjunction π =

(
0
1

)
and π0 = 1, as illustrated in Figure 1.2.

Figure 1.2: A split disjunction and a split cut

Obtaining effective violated cutting planes for MIPs is usually a nontrivial process.
The problem of finding a cut that separates a fractional point from the convex hull of all
feasible integer solutions, or showing that none exists, is called a Separation Problem. It
has been shown that the separation problem for split cuts is NP-hard [23] in general, and
costly in practice [36].

MIPs are hard to solve in general, but there is an important property that underlies
many real-world problems and plays in our favor: sparsity. We discuss it in the next
section.

5

(a) less structured (b) more structured

Figure 1.3: Examples of sparse matrices

1.4 Sparsity

In numerical analysis and scientific computation, a matrix or a vector is considered sparse
if most of the entires are zero, and it is dense if most of the entries are nonzero. Depending
on the contexts, the term sparsity has been used in the literature with different meanings
and emphases. Some authors refer to sparsity as the numeric quantity calculated from
dividing the number of zero entries by the number of all entries, i.e., sparsity equals one
minus density; some authors refer to sparsity as a general property of a matrix or vector
being sparse. In this thesis, whenever we use the term sparsity, we mean the underlying
matrix or vector is sparse. Sometimes the nonzero entries in a sparse matrix demonstrate
a clear pattern. This is illustrated in Figure 1.3, where we take two sparse matrices, both
have the same number of rows and columns, and plot their respective sparsity patterns by
replacing each nonzero element with a black dot. Observe that most of the nonzero entries
in the matrix on the right lie in five identifiable blocks, whereas the nonzero entries in the
matrix on the left are distributed more arbitrarily. In fact, the more structured matrix in
Figure 1.3b is obtained from the less structured one in Figure 1.3a by permuting its rows
and columns. The advantage of having structured patterns in a sparse matrix will be made
clearer in Chapter 2.

In general, sparsity helps when storing and manipulating matrices and vectors on a
computer, as specialized algorithms and data structures may be designed to take advantage
of their sparse structures. During a MIP solution process, sparsity may be exploited in
several ways. In the following we mention a few that motivate the goal in this thesis.

First, many real-world MIP models have well-structured sparse constraint matrices

6

that are amenable to decomposition-based solution approach. A recent result of Bergner
et al. [15] shows that several benchmark instances have an almost block-diagonal structure
called arrowhead, that is, a structure with several blocks that are linked only by few linking
variables and constraints (e.g. Figure 1.3b). This shows that not only are these benchmark
instances sparse (on average, MIPLIB 2010 [42] instances only have 1.62% density), but in
many cases such sparsity has an identifiable structure that can be exploited.

Second, modern implementations of the simplex algorithm take advantage of sparsity
in solving large linear systems [47], an approach credited as one of the two most notable
improvements in the linear algebra routines of the simplex method [17]. Thus sparsity is a
desirable property of cutting planes for MIPs. Indeed, in almost every cut generation and
selection procedure described in the articles we mentioned in the previous sections, specific
heuristics were implemented to impose sparsity in the cuts, e.g., introducing a penalty
term in the objective of a cut generating problem to make the resulting cut sparser [33],
applying a coefficient reduction algorithm to reduce the number of nonzero coefficients in
the split cut [27], or discarding all dense cuts to ensure that only sparse cuts are added [35].
Additionally, in a recent computational study by Walter [48], it is shown that equivalent
but denser versions of the same cuts negatively affect the performance of MIP solvers.
Due to all this interest, there has also been some recent work to analyze theoretically the
strength of sparse cutting planes [30,31].

Finally, in their computational study of the split closure [13], Balas and Saxena ob-
served that most split disjunctions they produced were sparse, regardless of problem size.
Although sparse split disjunctions do not necessarily lead to sparse split cuts, the two are
not uncorrelated. On the other hand, although split closure provides a tight approxima-
tion to the integer hull, the time it takes to separate an arbitrary split cut makes it almost
unrealistic to use in practice. Thus, given the possibility to exploit the sparsity underlying
problem structures, and given the advantage of using sparser cuts, it is very interesting
to evaluate the strength of split cuts based purely on sparse disjunctions, as a first step
towards determining subsets of split cuts that are computationally more promising.

1.5 Motivations and outline

Split cuts have been shown to be strong theoretically—they dominate Chvatál-Gomory
cuts, even on pure-integer sets [25]—and computationally [13, 29, 36]. Furthermore, even
small subfamilies of split cuts, namely GMI and MIR cuts from tableaux, have proven
extremely invaluable in practice [20]. On the other hand, finding a general split cut is hard
both in theory [23] and in practice [36]. This motivates our search for subsets of split cuts,

7

beyond GMI and MIR cuts from tableaux, with promising computational properties.

The main goal of this thesis is to study the strength of split cuts that exploit sparsity.
Our contributions are the following. First, we implement an approximate separation rou-
tine based on the work on Balas and Saxena [13] that separates only split cuts whose split
disjunctions are sparse and whose split coefficients are small. Second, we show empirically
that in spite of these restrictions, the integrality gap closed by this subclass of split cuts is
still quite significant compared to gap closed by the full split closure. Finally, we consider
problem structures of individual instances and show that split cuts computed by consider-
ing only constraints and variables from a single block in an arrowhead decomposition [15,37]
of the constraint matrix also largely preserve the strength of general split cuts, in terms of
gap closed.

The focus of this work is computational, but the tools and results should be interesting
to both practitioners and theoreticians. For example, although the separation problem
for general split cuts is NP-hard, finding a split cut arising from split disjunction with
just one nonzero entry can be done in polynomial time [21]. Therefore, one might ask,
how hard is it to optimize over all split cuts arising from split disjunction with support
that has cardinality at most, say, two, five, ten? Furthermore, to begin with, is it even a
meaningful question to think about? The results that we present in this thesis provide a
positive answer: Split cuts from sparse disjunctions constitute a strong subclass of split
cuts and indeed worth further study, both computationally and theoretically.

This thesis is organized as follows. In Chapter 2 we give a quick introduction to the
cut generating linear program and the cut lifting procedure that are necessary for our
separation routine. Then we lay out the basic approach of Balas and Saxena [13] for the
separation of split cuts. Finally we introduce the automatic arrowhead decomposition of
Bergner et al. [15]. In Chapter 3 we detail the implementation of our split cut separator. In
particular, we describe exactly what measures we took to obtain cuts that are numerically
stable and effective, while being verifiably valid. Chapter 4 presents the results of our
computational experiments.

8

Chapter 2

Background

In this chapter we review some basic results in linear and integer programming that will
enable us to develop from first principles an approximate split cut separator for general
MIPs. In particular, we begin by introducing the so-called Cut Generating Linear Program
for split cuts, of which one variant plays a key role in our separator. Then we discuss
a classical idea, called lifting, to obtain a cutting plane valid for a higher dimensional
polyhedron from a given cutting plane valid for a lower dimensional one. It turns out that
the lifting procedure significantly reduces computation time in practice and, as a result,
makes the separation of split cuts realistic. With these basic technical tools, we present
details of the approach of Balas and Saxena [13] for the separation of split cuts. Lastly,
we give a concise overview of the method of Bergner et al. [15] to automatically detect
structured sparsity in MIP instances.

2.1 Cut generating linear program

The idea that one can formulate the problem of finding a cutting plane valid for some given
polyhedron as a linear program relies on Farkas’ lemma. Farkas’ lemma provides a simple
characterization about the solvability of a system of linear inequalities. In the following we
state three versions of Farkas’ lemma that will be useful in our context. Proofs of Farkas’
lemma can be found in various introductory texts, e.g., [24, Theorem 3.4] and [16, Theorem
4.6].

Theorem 6 (Farkas’ lemma). Let A ∈ Rm×n and b ∈ Rm. Then{
x ∈ Rn : Ax ≤ b

}
= ∅ ⇐⇒

{
u ∈ Rm : A>u = 0, b>u < 0, u ≥ 0

}
6= ∅.

9

Corollary 7 (Farkas’ lemma, other versions). Let A ∈ Rm×n, G ∈ Rl×n, b ∈ Rm, d ∈ Rl.
Then {

x ∈ Rn : Ax = b, x ≥ 0
}

= ∅ ⇐⇒
{
u ∈ Rm : A>u ≤ 0, b>u > 0

}
6= ∅,

and {
x ∈ Rn : Ax = b,Gx ≥ d, x ≥ 0

}
= ∅

⇐⇒
{

(u, v) ∈ Rm × Rl : A>u+G>v ≤ 0, b>u+ d>v > 0, v ≥ 0
}
6= ∅.

Here is a direct consequence of Farkas’ lemma.

Corollary 8. Suppose P = {x ∈ Rn : Ax = b, x ≥ 0} 6= ∅, and min{c>x : x ∈ P} > −∞.
Then D = {y ∈ Rm : A>y ≤ c} 6= ∅.

Proof. If D = ∅, then by Farkas’ lemma, there is ū ∈ Rn such that Aū = 0, c>ū < 0, ū ≥ 0.
Let x̄ ∈ P , then x̄ + λū ∈ P for all λ ≥ 0, and limλ→+∞ c

>(x̄ + λū) = −∞, contradicting
to our assumption that min{c>x : x ∈ P} > −∞.

Another useful result in linear programming is strong duality.

Theorem 9 (Strong duality). Let P = {x ∈ Rn : Ax = b, x ≥ 0} and D = {y ∈ Rm :
A>y ≤ c}. If P 6= ∅ and D 6= ∅, then min{c>x : x ∈ P} = max{b>y : y ∈ D}, and there
exist x∗ ∈ P and y∗ ∈ D such that c>x∗ = b>y∗.

Recall that an inequality α>x ≥ β is a valid split cut corresponding to the disjunction
(π, π0) only if it is satisfied by all points in P (π,π0) = conv

(
Π

(π,π0)
1 ∪Π

(π,π0)
2

)
, where Π

(π,π0)
1 =

P ∩ {x : π>x ≤ π0}, Π
(π,π0)
2 = P ∩ {x : π>x ≥ π0 + 1}, and P = {x ∈ Rn : Ax = b, x ≥ 0}.

Farkas’ lemma enables us to certify the validity of α>x ≥ β relative to P (π,π0), as stated in
Theorem 10. We give a proof that is similar to the proof of Theorem 3.22 in [24]. However,
we note that the statement of Theorem 3.22 in [24] does not extend completely trivially to
Theorem 10 that we present here. The slight technicality comes when one of Π

(π,π0)
1 and

Π
(π,π0)
2 is empty. As we will see, it is easy to deal with.

10

Theorem 10. Suppose P (π,π0) 6= ∅. An inequality α>x ≥ β is valid for P (π,π0) if and
only if there exist y, z ∈ Rm, s, t ∈ Rn, y0, z0 ∈ R, such that s, t ≥ 0, y0, z0 ≥ 0, and the
following conditions hold:

α = A>y + s− y0π
α = A>z + t+ z0π

β ≤ b>y − y0π0
β ≤ b>z + z0(π0 + 1).

(2.1)

Proof. Since P (π,π0) 6= ∅, we may assume without loss of generality that Π
(π,π0)
1 6= ∅.

Our proof considers Π
(π,π0)
1 and Π

(π,π0)
2 separately. The required result follows by simply

observing that if α>x ≥ β is valid for both Π
(π,π0)
1 and Π

(π,π0)
2 , then it must be valid for

P (π,π0), too.

Let us first show that α>x ≥ β is valid for Π
(π,π0)
1 if and only if there exist (y, y0) ∈

Rm × R and s ∈ Rn such that

α = A>y + s− y0π, β ≤ b>y − y0π0, s ≥ 0, y0 ≥ 0. (CRT-1)

Suppose α = A>y + s− y0π and β ≤ b>y− y0π0 for some (y, y0) ∈ Rm ×R and s ∈ Rn

such that s ≥ 0 and y0 ≥ 0. Then for all x ∈ Π
(π,π0)
1 ,

α>x = y>Ax+ s>x− y0π>x = y>b+ s>x− y0π>x
≥ y>b− y0π>x ≥ y>b− y0π0 ≥ β.

Conversely, suppose α>x ≥ β is valid for Π
(π,π0)
1 . Consider the linear programs

min α>x

s.t. Ax = b

π>x+ x0 = π0

x ≥ 0, x0 ≥ 0

(P)
max b>y + π0y0

s.t. A>y + πy0 ≤ α

y0 ≤ 0

(D).

The feasible region of (P) is
{

(x, x0) ∈ Rn × R : x ∈ Π
(π,π0)
1

}
, and thus is nonempty.

Furthermore, since α>x ≥ β is valid for Π
(π,π0)
1 , (P) has a finite optimum β∗ ≥ β > −∞.

By Corollary 8, the feasible region of (D) is nonempty. Therefore, by strong duality, there
exist (y, y0) ∈ Rm × R such that A>y + πy0 ≤ α, y0 ≤ 0, and b>y + π0y0 = β∗ ≥ β,

11

but upon flipping the sign of y0 and adding slack variables s ≥ 0, this is exactly the
condition (CRT-1).

Let us now consider Π
(π,π0)
2 . The conditions that α>x ≥ β is valid for Π

(π,π0)
2 if and

only if there exist (z, z0) ∈ Rm × R and t ∈ Rn such that

α = A>z + t+ z0π, β ≤ b>z + z0(π0 + 1), t ≥ 0, z0 ≥ 0 (CRT-2)

follows analogously if Π
(π,π0)
2 6= ∅. So suppose Π

(π,π0)
2 = ∅. By Farkas’ lemma applied to

Π
(π,π0)
2 , there exist (u, u0) ∈ Rm × R such that

A>u+ πu0 ≤ 0, b>u+ (π0 + 1)u0 > 0, u0 ≥ 0.

Note that we must have u0 > 0 (otherwise, by Farkas’ lemma, we would get a contradiction
to P 6= ∅, and thus contradicting P (π,π0) 6= ∅). But then for any (y, y0) and s that satisfy
(CRT-1) and any appropriately scaled (u, u0) such that

b>u+ (π0 + 1)u0 ≥ y0 and u0 ≥ y0,

we obtain (z, z0) and t that satisfy (CRT-2) by setting

z := y + u, z0 := u0 − y0 ≥ 0, t := s− A>u− πu0 ≥ 0.

This completes the proof.

Remark 11. As noted in [34], for technical reasons we usually assume that the trivial
inequality 0>x ≥ −1 is contained (implicitly) in the system Ax = b, x ≥ 0 that describes
the constraint set. For problems with at least one bounded variable, say lj ≤ xj ≤ uj,
such trivial inequality may be obtained by adding xj ≥ lj and −xj ≥ −uj and dividing the
resulting inequality by uj − lj > 0. Due to the presence of 0>x ≥ −1, we are allowed to
require the ≤ inequalities for β in Theorem 10 to hold at equality. We will therefore make
such an assumption in all of our subsequent discussions.

Theorem 10 immediately allows us to check whether a point x̂ ∈ P lies in P (π,π0).

Corollary 12. Let x̂ ∈ P . Then x̂ ∈ P (π,π0) if and only if the following optimization prob-
lem, called Cut Generating Linear Program (CGLP), has a non-negative optimal objective

12

value.

min α>x̂− β
s.t. α = A>y + s− y0π

α = A>z + t+ z0π

β = b>y − y0π0
β = b>z + z0(π0 + 1)

y, z ∈ Rm, s, t ∈ Rn
+, y0, z0 ∈ R+

(CGLP(π, π0))

Therefore, given a point x̂ ∈ P and a split disjunction (π, π0) ∈ Zn × Z, a most vio-
lated split cut α>x ≥ β can be obtained by solving the corresponding (CGLP(π, π0)). The
optimal objective value is negative if such a cut exists. Otherwise, (CGLP(π, π0)) proves
x̂ ∈ P (π,π0).

Remark 13 (Normalization). The objective value of (CGLP(π, π0)) is unbounded from
below when it has a negative objective value. This is because one can scale up the solutions
(α, β, y, z, s, t, y0, z0) while maintaining feasibility. In other words, the feasible region of
(CGLP(π, π0)) is a cone. Therefore, a normalization constraint f(α, β, y, z, s, t, y0, z0) = κ,
where κ is a positive constant normally set to be 1, is introduced to truncate the cone of
feasible solutions. Many choices of f are possible, for example,

• β-normalization [11]
f(·) := β or f(·) := −β;

• α-normalization [11]

f(·) :=
n∑
j=1

|αj|;

• trivial normalization
f(·) := y0 + z0;

• standard normalization [10]

f(·) :=
m∑
j=1

|yj|+
m∑
j=1

|zj|+
n∑
j=1

sj +
n∑
j=1

tj + y0 + z0;

13

• Euclidean normalization [34]

f(·) :=
m∑
j=1

‖Aj‖|yj|+
m∑
j=1

‖Aj‖|zj|+
n∑
j=1

sj +
n∑
j=1

tj + ‖π‖y0 + ‖π‖z0

where Aj is the jth column of A and ‖ · ‖ is the Euclidean norm of a vector.

Normalization methods directly affect the quality of cut coefficients α and β as solutions of
(CGLP(π, π0)). The conditions of interest in our context are the trivial and the standard
normalization conditions. The former is simple enough to make the separation of arbitrary
split cuts possible, and the latter usually produces stronger cuts [34] and is used in our
setting as a heuristic strengthening procedure for split cuts. We will return to this in
Chapter 3.

We refer to [11,12,34] for in-depth discussions of different normalization conditions.

The following observation on the nonnegativity of Farkas’ multipliers y and z in (CGLP(π, π0))
is useful when imposing normalization conditions. It allows us to avoid unnecessary lin-
earization of the absolute value constraint on y and z. While, in the literature, previous
works use this observation as a fact, we couldn’t find any proof. Here, we give a proof for
the sake of completeness.

Proposition 14. Let x̂ ∈ P . If (CGLP(π, π0)) has an optimal solution under the trivial,
standard, or Euclidean normalization condition, then it has an optimal solution in which
the Farkas’ multipliers y and z are nonnegative.

Proof. Let (α̂, β̂, ŷ, ẑ, ŝ, t̂, ŷ0, ẑ0) be an optimal solution to (CGLP(π, π0)) under normaliza-
tion f(·), where f(·) belongs to one of the conditions in the statement. Define ĉ ∈ Rm such
that

ĉj :=

0 if ŷj ≥ 0 and ẑj ≥ 0,
−ŷj if ŷj < 0 and ẑj ≥ 0,
−ẑj if ŷj ≥ 0 and ẑj < 0,
−ŷj − ẑj if ŷj < 0 and ẑj < 0.

and consider

α := α̂ + A>ĉ β := β̂ + b>ĉ y := ŷ + ĉ z := ẑ + ĉ,
s := ŝ, t := t̂, y0 := ŷ0, z0 := ẑ0.

It is straightforward to see that

14

(i) |yj|+ |zj| = |ŷj|+ |ẑj| for all j = 1, 2, . . . ,m;

(ii) α>x̂− β = α̂>x̂− β̂;

(iii) y ≥ 0 and z ≥ 0.

The proof is completed by noting that (i) gives feasibility of (α, β, y, z, s, t, y0, z0) under
the same normalization f(·) = κ; (ii) gives optimality; and (iii) gives nonnegativity as
required.

As a result of Proposition 14, we will require that y ≥ 0 and z ≥ 0 in (CGLP(π, π0))
from now on.

2.2 Cut lifting

Lifting is a classical topic in integer programming, whose origin dates back to the 1960’s
and 70’s in the contexts of the group problem [39] and the set packing problem [44]. A
lifting problem can be stated as follows:

We are given

I ⊆ {1, 2, . . . , n},
P =

{
x ∈ Rn : Ax = b, x ≥ 0

}
,

Q =
{
x ∈ P : xj ∈ Z, ∀ j ∈ I

}
,

PR =

{
xR ∈ Rn−q :

(
xR

0

)
∈ P

}
,

QR =
{
xR ∈ PR : xRj ∈ Z, ∀ j ∈ I ∩ {1, 2, . . . , n− q}

}
,

(2.2)

i.e., PR is the restriction of P obtained by setting the last q variables to 0. Given an
inequality

(
αR
)>
xR ≥ β valid for QR, find α ∈ Rn such that α>x ≥ β is valid for Q and

αj = αRj for 1 ≤ j ≤ n− q.
When trying to obtain a split cut that separates x̂ ∈ P from Q, a usual strategy is to

work in the subspace, say Rn−q, of variables x̂j that are not at their bound (i.e., x̂j > 0),
find a cut

(
αR)>x ≥ β in Rn−q, and then lift it to Rn. Note that since x ≥ 0 for every

x ∈ P , we would like the lifted coefficients as small as possible, in the sense that the lifted
cut is potentially stronger. Therefore, an approach is to minimize cut coefficients subject
to the lifted cut remaining valid. We give the details below.

15

A trivial lifting procedure for split cuts:

Suppose P,Q, PR, QR are as in (2.2). Given a point x̂ ∈ P such that, up to permutation
of indices, x̂j > 0 for 1 ≤ j ≤ n − q and x̂j = 0 otherwise. Then the projection x̂R of x̂
onto Rn−q lies in PR. Given (αR, β) ∈ Rn−q × R such that

(i) (αR)>x̂R < β;

(ii) (αR)>xR ≥ β is a split cut for PR corresponding to a split disjunction (πR, π0) ∈
Zn−q × Z.

Our goal is to obtain α ∈ Rn such that αj = αRj for 1 ≤ j ≤ n− q and

(i’) α>x̂ < β;

(ii’) α>x ≥ β is a split cut for P corresponding to a split disjunction (π, π0) ∈ Zn × Z
where πj = πRj for 1 ≤ j ≤ n− q and πj = 0 for n− q + 1 ≤ j ≤ n;

(iii’) αj is minimized for n− q + 1 ≤ j ≤ n.

Note that, in the above, (ii) implies (αR)>xR ≥ β is valid for QR and (ii’) implies α>x ≥ β
is valid for Q. The following Theorem 15 is a straightforward extension of the trivial lifting
procedure of lift-and-project cuts described in [11].

Theorem 15. Given (αR, β) that satisfies (i) and (ii). Let AR ∈ Rm×(n−q) be obtained
from A by removing the last q columns. Let yR ∈ Rm, zR ∈ Rm, sR ∈ Rn−q, tR ∈ Rn−q, yR0 ∈
R, zR0 ∈ R satisfy

αR = (AR)>yR + sR − yR0 πR = (AR)>zR + tR + zR0 π
R,

β = b>yR − yR0 π0 = b>zR + zR0 (π0 + 1),

yR, zR, sR, tR, yR0 , z
R
0 ≥ 0.

(2.3)

Define α ∈ Rn such that αj = αRj for 1 ≤ j ≤ n− q and

αj = max
{
A>j y

R, A>j z
R
}
, n− q + 1 ≤ j ≤ n, (2.4)

where Aj is the jth column of A. Then (α, β) satisfies (i’) and (ii’). Furthermore, if the
set of multipliers (yR, zR) that satisfy (2.3) are unique, then (α, β) satisfies (iii’).

16

Proof. Note that (i’) is always satisfied since x̂j = 0 for n − q + 1 ≤ j ≤ n. To see that
(ii’) is satisfied, observe that α satisfies

αj = αRj , 1 ≤ j ≤ n− q,
αj ≥ A>j y

R, n− q + 1 ≤ j ≤ n,

αj ≥ A>j z
R, n− q + 1 ≤ j ≤ n,

(2.5)

and (yR, zR) satisfies (2.3). The validity of α>x ≥ β corresponding to the split disjunction
(π, π0) defined in (ii’) follows directly by applying Theorem 10.

If the multipliers (yR, zR) that satisfy (2.3) are unique, then the lifted cut α>x ≥ β is
valid if and only if (2.5) holds, and thus αj is minimized by taking the maximum of A>j yR
and A>j zR.

Remark 16. It is clear from our construction in this section that, given x̂ ∈ P , there is a
split cut α>x ≥ β for P that corresponds to disjunction (π, π0) and cuts off x̂ if and only if
there is a split cut (αR)>xR ≥ β for PR that corresponds to disjunction (πR, π0) and cuts
off x̂R.

Remark 17. There is no loss of generality in assuming that the feasible region of every
MIP is of the form Q. Indeed, for a free variable xj we can replace it with two bounded
variables x+j and x−j such that xj = x+j −x−j . For a bounded variable xj with nonzero lower
bound lj and upper bound uj, we can do either of the following:

• shift the lower bound, i.e., replace b with b − ljAj, then subsume the upper bound
into constraints Ax = b; or

• complement the variable and shift the upper bound, i.e., replace Aj with −Aj and
replace b with b− ujAj, then subsume the lower bound into constraints Ax = b.

Of course, we can always require inequality constraints to hold at equality by adding slack
variables.

Following Remark 17, the lifting procedure described here easily extends to MIPs whose
variables have nonzero lower and/or upper bounds. In practice, depending on a given x̂,
for each bounded variable x̂j we choose one of the transformations in Remark 17 so that,
after the transformation, either x̂j is not at the bound or x̂j = 0.

17

2.3 Optimizing over the split closure

The split closure SC for mixed-integer set P ∩ (Zp ∩ Rn−p) is defined as

SC =
⋂

(π,π0)∈Zn×Z
πj=0, j≥p+1

P (π,π0).

Given x̂ ∈ P , the problem of deciding wether x̂ ∈ SC is NP-hard in general [23]. Balas and
Saxena [13] implemented an iterative procedure that alternates between a Master Problem
and a Separation Problem to find

min{c>x : x ∈ SC}.

At each iteration, the Master Problem is a linear program of the form

min{c>x : x ∈ P, αtx ≥ βt, t ∈ T} (MP)

where {αtx ≥ βt : t ∈ T} is the set of all split cuts generated by the Separation Problem
so far. If x̂ is an optimal solution to (MP), the Separation Problem then finds a valid
split cut violated by x̂, or proves that x̂ ∈ SC. The Separation Problem is a mixed-integer
nonlinear program obtained from (CGLP(π, π0)) with trivial normalization y0 + z0 = 1,
and allowing (π, π0) to vary over Zn × Z, written as:

min α>x̂− β
s.t. α = A>y + s− y0π

α = A>z + t+ z0π

β = b>y − y0π0
β = b>z + z0(π0 + 1)

1 = y0 + z0

y, z ∈ Rm
+ , s, t ∈ Rn

+, y0, z0 ∈ R+

(π, π0) ∈ Zn × Z, πj = 0, j ≥ p+ 1.

(SP)

In [13], (SP) is shown to be equivalent to a parametric MILP with a scalar parameter
taking values between 0 and 1

2
. For completeness we state and prove their result here.

Theorem 18 ([13]). The optimum of (SP) is equal to the optimum of the following
parametric mixed-integer linear program,

min
0≤θ≤ 1

2

MILP(θ)

18

where each MILP(θ) is given by

min s>x̂− θ(π>x̂− π0)
s.t. A>w + s− t− π = 0

b>w − π0 = 1− θ
w ∈ Rm, s, t ∈ Rn

+

(π, π0) ∈ Zn × Z, πj = 0, j ≥ p+ 1.

(MILP(θ))

Proof [13]. Apply the following modifications to (SP):

(a) substitute α = A>y + s− y0π and β = b>y − y0π0 into the objective;

(b) eliminate α and β from the constraints;

(c) substitute z0 = 1− y0 into the constraints;

(d) replace y − z with w and replace y0 with θ.

We see that (SP) is equivalent to

min
0≤θ≤1

MILP(θ).

Now, fix θ = θ̂ and suppose (ŵ, ŝ, t̂, π̂, π̂0) is a feasible solution for MILP(θ̂). Then

w := −ŵ, s := t̂, t := ŝ, π := −π̂, π0 := −π̂0 − 1

is a feasible solution for MILP(θ) with θ := 1− θ̂, and that

s>x̂− θ(π>x̂− π0) = t̂>x̂− (1− θ̂)(−π̂>x̂+ π̂0 + 1)

= t̂>x̂+ π̂>x̂− π̂0 − 1 + θ̂ − θ̂(π̂>x̂− π̂0)
= ŝ>x̂− θ̂(π̂>x̂− π̂0),

where the last line follows from ŝ>x̂ = t̂>x̂ + π̂>x̂− π̂0 − 1 + θ̂, which in turn is obtained
as a linear combination of constraints in MILP(θ̂), i.e.,

x̂>
(
A>ŵ + ŝ− t̂− π̂

)
−
(
b>ŵ − π̂0

)
= −1 + θ̂.

Therefore,
min
0≤θ≤1

MILP(θ) = min
0≤θ≤1

MILP(1− θ) = min
0≤θ≤ 1

2

MILP(θ).

19

We immediately obtain a result similar to that of Corollary 12.

Corollary 19. Let x̂ ∈ P . Then x̂ ∈ SC if and only if

min
0≤θ≤ 1

2

MILP(θ) ≥ 0.

Writing (SP) as a parametric mixed-integer program enables us to approximate its
optimum by solving a finite sequence of problems MILP(θ) with varying values for θ using
state-of-the-art MIP solvers.

2.4 Automatic detection of double-bordered block-diagonal
structure

The idea of exploiting block-diagonal structure in sparse matrices has been widely dis-
cussed in the contexts of numerical linear algebra and mathematical programming. One
motivation is that the diagonal blocks usually give rise to small independent subproblems
well suited for parallel processing. Applications include solving systems of linear equa-
tions arising from a discretization of a continuous domain, LU and QR factorizations, and
decomposition-based solution methods for structured (mixed-integer) linear programs. In
general, the constraint matrix A of (1.1) does not admit a block-diagonal form, but it can
be put into a k-way double-bordered block-diagonal form

D1 F 1

D2 F 2

.
Dk F k

A1 A2 · · · Ak G

 (DB-k)

for some k ≥ 1. This is sometimes informally called the arrowhead form. The constraints
associated with rows in Ai are called linking constraints, and the variables associated with
columns in F i are called linking variables.

Given a sparse matrix, Aykanat et al. [8] considered the problem of obtaining a DB-k
form by permuting its rows and columns. They reduce the matrix permutation problem
to that of graph and hypergraph partitioning. However, even when the number k of

20

blocks is fixed, computational experiments show that the resulting DB-k forms demonstrate
significant variability and are very sensitive to input parameters. To cope with this, Bergner
et al. [15] proposed to use a proxy measure to automatically detect the “best” DB-k form, for
the purpose of applying Dantzig-Wolfe reformulations to general MIPs. Figure 2.1 shows
a few examples of MIPLIB instances, with black dots representing nonzero coefficients of
the constraint matrix. The bottom row shows a rearrangement of the columns/rows of the
matrix evidencing the DB-k structure.

seymour 10teams gesa2 arki001

seymour-DB-2 10teams-DB-3 gesa2-DB-4 arki001-DB-5

Figure 2.1: Original problem structure versus its DB-k forms

21

Chapter 3

Implementation Details

In this chapter we outline the computational details in our implementation of a split cut
separator with (and without) structural information supplied by a given DB-k form. We
follow the idea of Balas and Saxena [13] to approximate the optimal value of (SP) by solving
a sequence of (MILP(θ))’s parametrized by θ ∈ [0, 1/2]. The structure of this chapter is as
follows. We begin by introducing some practical methods used in our implementation that
are taken from or similar to those already presented in [13]. Then we discuss new features
that we added to serve our goal of evaluating split cuts based on sparsity properties. Finally
we lay out concise algorithmic descriptions of the entire computational process.

3.1 Existing methods for practical computation

Discretizing parameters. We denote by Θ the set of values of θ for which (MILP(θ))
will be solved. By Theorem 18, obtaining an exact solution of (SP) would require that
Θ = [0, 1/2], which is prohibitive in practice. Therefore, we take Θ as a uniform parameter
grid of finitely many points between 0 and 1/2. The initial size of Θ is t, and we increase
the number of grid points whenever necessary, following the criteria in Algorithm 1.

Stabilizing objective. When some entries in an incumbent solution x̂ are close to
their bounds, say x̂j ≈ 0 for j ∈ J , the objective coefficients for s in (MILP(θ)) are close
to zero. As a result, there may exist multiple feasible solutions (w, s, tπ, π0) with differing
values sj and tj for j ∈ J , whose objective values are arbitrarily close to optimum. Some of
these sj’s and tj’s can be unnecessarily large, which in turn leads to weak split directions
and weak cuts. (This is because large sj’s or tj’s usually produce large πj’s, and when
the disjunction coefficients are unnecessarily large, two undesirable numerical issues can

22

happen. First, a split disjunction may be “squeezed” as its coefficients simultaneously
become large, the two sides of the disjunction get close to each other in Euclidean norm,
and thus we are not cutting off many points. Second, a split disjunction may be “tilted”
away from the disjunction that produces most violated cut, and thus leading to weaker
cuts. We illustrate this latter observation in Example 20.) However, due to numerical
tolerances in a MIP solver, these poorly-scaled suboptimal solutions may be regarded as
optimal. Therefore, to avoid obtaining unnecessarily weak cut coefficients, we replace x̂ in
the objective of (MILP(θ)) with

x̃j := max{x̂j, δ}, ∀ j,

for δ a small positive constant. We show the effect of this modification in a concrete ex-
ample.

Example 20. Consider the integer program from Example 2. Let us write it in the general
form of (1.1) by adding 2 continuous slacks variables x3 and x4. Given a point x′ ∈ R4, we
may find a split disjunction (π, π0) ∈ Z4 × Z and a split cut that separates x′ from P (π,π0)

by substituting the data into (MILP(θ)),

min
4∑
j=1

x′jsj − θ
4∑
j=1

x′jπj + θπ0

s.t. π =

−2 2

6 1
1 0
0 1

w + s− t

π0 =
(
9 5

)
w − 1 + θ

w free, s, t ≥ 0

(π, π0) ∈ Z4 × Z, π3 = π4 = 0

(3.1)

and solve it for some θ ∈ [0, 1/2]. Suppose we want to separate

x′ = (0.000000001, 1.5, 0.000000002, 3.499999998)>.

Take θ = 1/10. It is easy to verify that

w′ =

(
210
31
4
35

)
, s′ =

1
15

0
0
0

 , t′ =

0
0
210
31
4
35

 , π′ =

0
1
0
0

 , π′0 = 1 (3.2)

23

is an optimal solution for (3.1) with optimal objective value − 749999999
15000000000

≈ −0.049999. We
thus recover (α, β) from (s′, t′, π′, π′0) as

α = s′ − θπ′ =

1
15

− 1
10

0
0

 , β = −θπ0 = − 1

10
.

Since x3 = 9 + 2x1 − 6x2 and x4 = 5− 2x1 − x2, we can eliminate cut coefficients for slack
variables (in this case they are already 0) and obtain a cut in the space of (x1, x2) as

1

15
x1 −

1

10
x2 ≥ −

1

10
.

However, solving (3.1) with the same x′ and θ = 1/10 by CPLEX 12.71 we obtained a
solution

w′′ ≈
(
−23333279

210
4
35

)
, s′′ ≈

0
0

23333279
210

0

 , t′′ ≈

18333329

15

0
0
4
35

π′′ =

−1000000
−666665

0
0

 , π′′0 = −999998

(3.3)

whose objective value is approximately −0.049678. After eliminating slack variables, (3.3)
gives the cut

322221.70476x1 − 599998.61428x2 ≥ −899997.87142.

We note that lower bounding the objective coefficients by some appropriate δ, for example
δ = 0.0001, helped CPLEX find the optimal solution (3.2). Figure 3.1 shows the cuts
obtained from CPLEX by solving (3.1) with and without our stabilizing objective.

Cut strengthening. Once a feasible solution (w̄, s̄, t̄, π̄, π̄0) for MILP(θ̄) with a neg-
ative objective value is found, we feed (π̄, π̄0) into (CGLP(π, π0)) with the standard nor-
malization

m∑
j=1

yj +
m∑
j=1

zj +
n∑
j=1

sj +
n∑
j=1

tj + y0 + z0 = κ

for a fixed positive constant κ. This normalization is shown in [34] to produce empirically
stronger cuts than the normalization y0 + z0 = 1 used in deriving (MILP(θ)).

24

Figure 3.1: Effect of stabilizing objective

Cut lifting. We work in the subspace of the variables that are not at their bounds
in the incumbent solution, and lift the resulting cuts to the full space following the lifting
procedure described in Chapter 2.

Set covering. In an effort to impose some degree of orthogonality in the set of split
disjunctions, every time a split (π̄, π̄0) is found, we solve the set covering problem

min
z∈{0,1}p

{
p∑
j=1

min{x̂j − bx̂jc, dx̂je − x̂j} zj :

p∑
j=1

I[πj 6=0]zj ≥ 1,∀π ∈ S

}
(StCvIP(x̂,S))

where S is the set of splits already discovered, and I[k 6=0] = 1 if k 6= 0, I[k 6=0] = 0 if
k = 0. Let ẑ be an optimal solution to (StCvIP(x̂,S)), then we impose πj = 0 for all
j ∈ {j : ẑj 6= 0} when solving (MILP(θ)) in the next θ point. This modification ensures
that (MILP(θ)) never returns a split disjunction whose support is identical to that of an
already discovered one. In practice it also prevents us from obtaining the same π with
varying θ values, which is an important property that makes our implementation more
effective. Moreover, we observed that the computation time spent on solving set covering
problems is almost negligible compared to the time spent on solving (MILP(θ)).

3.2 New features in our implementation

In addition to some modifications of (MILP(θ)) described in the last section, we added three
more constraints to (MILP(θ)) in order to control the quality and structural properties of
split disjunctions discovered by (MILP(θ)).

25

Fractionality constraint. Split disjunctions (π, π0) where π>x̂ is too close to either
π0 or π0 + 1 usually give rise to weak split cuts. To avoid that, we impose the bounds

σ ≤ π>x̂− π0 ≤ 1− σ (C1)

for a small σ > 0.

Sparsity constraint. To impose the condition that π is sparse with at mostM nonzero
entries, we introduce binary variables r ∈ {0, 1}p and constraints

− Urj ≤ πj ≤ Urj, ∀ j = 1, . . . , p, and
p∑
j=1

rj ≤M (C2)

where U is an artificial upper bound on the magnitude of the components of π. Note that
imposing an artificial upper and lower bound on disjunction coefficients not only helps us
control the sparsity, but also prevent us from obtaining weak splits due to unnecessarily
large disjunction coefficients.

Structure constraint. Given a DB-k form of the constraint matrix A, to compute
split disjunctions whose support lie entirely in a single block Di, we simply impose that:

πj = sj = tj = 0, ∀ j 6∈ Ci

wj = 0, ∀ j 6∈ Ri
(C3)

where Ci and Ri are column and row index set of Di, respectively.

Certifying validity. For every split cut α>x ≥ β generated from (CGLP(π, π0)), we
provide another certificate for the validity of the cut. Let

β̂l := min
x∈P
{α>x : π>x ≤ π0} and β̂u := min

x∈P
{α>x : π>x ≥ π0 + 1}.

Then it should always hold that β ≤ min{β̂l, β̂u}. If the inequality fails, then the cut is
invalid and we discard it. In theory, split cuts returned by (CGLP(π, π0)) should always be
valid as they are obtained from Farkas multipliers which already certify their validity; in
practice, however, we may obtain invalid cuts due to either a numerical issue within the LP
or MIP solver or an error in our own implementation. Having an independent procedure
that checks the validity of cuts before adding them to the Master Problem ensures our
computational results are reliable, in the sense that as long as our checker implementation
is correct, not a single invalid cut is added during the entire computation.

Cleaning up cut coefficients. To prevent cut coefficients from being too large or
too small, once a split cut is returned by (CGLP(π, π0)), we scale the cut so that the

26

greatest absolute value of cut coefficients equals 104. Furthermore, after scaling we set all
cut coefficients whose absolute value is less than 10−6 to zero. In general, setting a nonzero
cut coefficient to zero may strengthen the cut and make it invalid, but since our tolerance is
small, the effect is small as well. Nonetheless, the validity of the cut is always subsequently
certified by the independent checker. Note that this scaling process also serves as an
implicit dynamism control, i.e., the ratio between the greatest and the smallest absolute
value of cut coefficients is no greater than 1010.

Time limit on the MIP solver. Mixed-integer linear programs are much harder
to solve than linear programs in general. As a result, even finding a feasible solution to
(MILP(θ)) can be extremely time-consuming. We observed that this is frequently the
case, in particular, when separating a point that is close to the closure we aim to optimize
over. Therefore, a deterministic time limit of 800 ticks (roughly 1 second) is set for each
(MILP(θ)) we process. We use CPLEX’s deterministic time (ticks) so that the results are
reproducible and comparable across different machines.

Dynamics. At each iteration, if no cut is generated because we could not find a feasible
solution to (MILP(θ)), we increase the time limit to 48,000 ticks (roughly 60 seconds) and
the upper cutoff limit of the objective value. If there is no improvement in the optimal
objective value of the (MP) for a while (see Algorithm 1), we increase the number of grid
points and add more cuts per iteration. Furthermore, in order to control the number of cuts
presented in the Master Problem, we delete all cuts that are nonbinding in the incumbent
solution every five iterations.

Global time limit. The whole process is terminated if the entire computation time
exceeds a global time limit.

3.3 Algorithmic descriptions

Details of the iterative procedure are described in Algorithm 1. The cut generation proce-
dure to separate a given x̂ ∈ P is summarized in Algorithm 2.

27

Algorithm 1: Overall cut generation loop
1 Initialization.

Choose initial parameter grid size t, upper objective value cutoff limits γ1 < γ2 < 0,
deterministic time limits τ1 = 800 ticks, τ2 = 48,000 ticks. Set iteration counter
Iter = 0. Denote k the number of blocks in a given DB-k from; if no decomposition
is available, set k = 1.

2 TimeLimit← τ1, Cutoff← γ1.
3 Iter ← Iter + 1. Solve (MP) and obtain optimal solution x̂. Denote n the number

of consecutive iterations where no improvement in the optimal objective value is
made. Delete nonbinding cuts if necessary.

4 if n = 100 then return x̂.
5 Update parameter grid size in the current iteration.

if 0 ≤ n ≤ 39 then s← 2b0.1nct. else s← 16t.
6 Set parameter grid Θ uniformly with |Θ| ← s.
7 Separation.

for j = 1, . . . , k do Generate a set K(j) of cuts following
CutGen(x̂,Θ, Cutoff, TimeLimit) for block j.

8 if
⋃k
j=1K(j) 6= ∅ then Add cuts to (MP), go to 2.

9 else if TimeLimit= τ1, Cutoff= γ1 then TimeLimit← τ2, go to 7.
10 else if TimeLimit= τ2, Cutoff= γ1 then Cutoff← γ2, go to 7.
11 else if TimeLimit= τ2, Cutoff= γ2 then return x̂.

28

Algorithm 2: CutGen(x̂,Θ, γ, τ)

Input: Incumbent solution x̂, parameter grid Θ, upper cutoff limit γ < 0, time limit
τ , minimum cut violation ε > 0, required properties of split disjunctions
(C1),(C2),(C3). Polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0} describing the
constraint set of (1.2).

Output: A set K of split cuts violated by x̂.
1 K ← ∅, S ← ∅.
2 for θ ∈ Θ do
3 Solve StCvIP(x̂,S) and impose partial orthogonality if needed. Add

fractionality (C1), sparsity (C2), and structure (C3) constraints to (MILP(θ))
as indicated.

4 Solve (MILP(θ)) with time limit τ .
5 if Found a feasible solution (π, π0) to (MILP(θ)) with objective value ≤ γ. then
6 Perform cut strengthening to get cut α>x ≥ β.
7 Perform cut lifting on cut α>x ≥ β.
8 Perform cut cleaning on cut α>x ≥ β.
9 if α>x̂− β ≤ −ε then

10 βl ← min
x∈P
{α>x : π>x ≤ π0}, βu ← min

x∈P
{α>x : π>x ≥ π0 + 1}.

β∗ ← min{βl, βu}.
11 if β ≤ β∗ then
12 K ← K ∪ {α>x ≥ β}, S ← S ∪ {π}.

13 return K.

29

Chapter 4

Computational Experiments

In this chapter we present and discuss our computational results. In order to evaluate the
strength of a certain (sub-)family of cuts, we use the amount of integrality gap closed by
these cuts (c.f. Definition 3) as a measure of how strong that (sub-)family of cuts is.

While it is tempting to argue that more integrality gap closed by some cuts does not
necessarily mean that these cuts are indeed more effective in practice, the amount of
gap closed does provide a more stable measure of the cut strength than other possible
candidates, e.g., the amount of time to find an optimal solution. Intuitively the amount
of gap closed gives us a rough idea on how closer we are to the optimal solution. On the
other hand, we note that the gap closed depends on the objective function in the MIP
formulation, that is, it may happen that with one objective function a family of cuts closes
100% integrality gap but with a different objective function the same family closes 0% gap.
This is not a concern for us because all MIP formulations have a clearly defined objective
function and in practice we need only care about how close we can get to the optimal
solution in the direction of the objective.

Previous results on the integrality gap closed by the split closure are only known on
MIPLIB 3.0 instances, therefore, for comparison purposes we first carry out the compu-
tations on MIPLIB 3.0 instances. These instances are older and tend to be smaller than
instances in the more recent MIPLIB 2003 and MIPLIB 2010, but nonetheless they repre-
sent a diverse selection of test instances (there are still unsolved problems in MIPLIB 3.0).
Then in order to see whether we can obtain similar computational results on newer and
possibly larger instances, we run the same experiments again on MIPLIB 2003 instances.
We did not run our experiments on MIPLIB 2010 instances due to time constraint, but
we expect that the conclusions we are able to draw from these computational tests would
stay the same.

30

This chapter is organized as follows. Section 4.1 deals with the practical setup for the
experiments: we explain how and why each parameter is chosen in our actual computation.
Section 4.2 consists of three sets of experiments. We first show that our implementation is
reasonable in the sense that our computational results are consistent with known results
under the same setting. Then we evaluate the strength of split cuts under sparsity and
structured sparsity constraints and demonstrate the potential advantages of exploiting
sparsity. Finally in Section 4.3 we present results on MIPLIB 2003 instances.

We implemented our code in C, with IBM ILOG CPLEX 12.7.1 as black-box MIP and
LP solver. The computations were conducted on an assortment of machines with x86_64
architecture CPUs. In order to ensure reproducibility, all machines used the same single-
threaded binary code, and all time limits made use of CPLEX’s deterministic time feature,
aside from the global time limit.

4.1 Choice of model parameter values

The values of various model parameters used in the computation are summarized in Ta-
ble 4.1. An asterisk (*) indicates that the parameter does not apply to all experiments.
We also present below a brief motivation for our choices.

measure parameter value
maximum number of nonzero components in π (*) M 1 or 10
bounds on |πj|, 1 ≤ j ≤ p (*) U 1 or 100
initial number of grid points (without DB-k form) t 80
initial number of grid points (with DB-k form) t 20
normalization constant κ 104

minimum nonzero objective coefficient δ 10−4

upper cutoff limits of objective value γ1, γ2 −10−3,−10−5

minimum cut violation ε 10−6

fractionality bound (*) σ 10−6 or 0.025

Table 4.1: Model parameter values used in computation

When only one nonzero element is allowed for split disjunctions, the corresponding split

31

cuts are essentially lift-and-project cuts1. Therefore, in a way to test the reliability of our
implementation, we first set M = 1 and compare the computational results with those of
the lift-and-project closure by Bonami et al [21].

In their experimental analysis, Balas and Saxena [13] noted that the split disjunctions
they computed generally featured two interesting characteristics. Although not being in-
tentionally restricted,

(i) most split disjunctions had a support of size between 10 and 20, irrespective of the
size of the problem; and

(ii) most split disjunctions did not have very large coefficients, with the average coefficient
size per iteration typically being less than 5.

We chose the sparsity parameter of M = 10 to reflect the lower end of that spectrum.
When attempting to limit the size of the split coefficients, we chose bounds U = 1 (i.e.,
−1 ≤ πj ≤ 1, for all 1 ≤ j ≤ p) since these would be the simplest splits obtainable. When
“only” sparsity constraints were enforced, we actually set U = 100 (i.e., −100 ≤ πj ≤ 100,
for all 1 ≤ j ≤ p). This allows for splits with somewhat larger coefficients, but we still
need U to be finite for practical reasons.

At each iteration, the initial parameter grid size depends on whether a DB-k form of
the constraint matrix is supplied or not. If no DB-k form is given, we set t = 80, and 80
MILP(θ)’s are processed; if a decomposition is given, then we set t = 20 for each of the k
blocks, and therefore 20k MILP(θ)’s are processed in total.

For the fractionality bound σ on the set of split disjunctions, a natural value could be,
for example, the integrality tolerance 10−6. In general, more cuts may be obtained by using
such a loose bound, and we thus set σ = 10−6 when trying to reproduce lift-and-project
results of Bonami [21]. In all the other experiments, however, we impose a rather strict
bound σ = 0.025. This led to more gap closed per iteration on average and more gap
closed overall within our time limits. Adding a fractionality bound also helped preventing
MILP(θ)’s from yielding unviolated split disjunctions due to numerical errors.

1Original ideas of the lift-and-project approach dates back to the early 1970’s in the context of dis-
junctive programming, see Balas [9]. More explicit reformulation techniques for integer programs with all
binary variables are proposed by Sherali and Adams [46], and by Lovász and Schrijver [43]. When lift-
and-project is applied to a single variable xj , Balas et al. [11] showed that it is equivalent to considering
P (ej ,0) (c.f. Section 1.3), i.e., a disjunctive programming problem. Therefore, for general MIPs, we say
that any inequality valid for P (ej ,π0) for some integer variable xj and π0 ∈ Z is a lift-and-project cut.

32

4.2 Three experiments

4.2.1 How does our implementation compare with known results?

To check whether our implementation was reasonable, we performed two tests.

First, we tested the code on both MIPLIB 3.0 [19] and MIPLIB 2003 [5] instances, in
a configuration where it approximates2 a lift-and-project cut separator. We restricted the
sparsity parameter M = 1 in order to allow only one nonzero element in split disjunctions,
thus forcing our split cut separator to return lift-and-project cuts only. Since M = 1,
we upper bounded, without loss of generality, the magnitude of disjunction coefficients by
U = 1. The entire computation time for each instance is limited to one week, including
the time taken to check cut validity. At termination, we measure the final percentage of
integrality gap closed (GAPnew), which is then compared with the bounds (GAPknown)
given in [21]. For each instance, we look at the percentage of gap closed divided by the
analogous results in [21], i.e., we compute

relative gap closed :=
GAPnew

GAPknown
.

Therefore, a 50% relative gap closed means that our result is equal to 50% of the known
gap, and a 100% relative gap closed means that our result is exactly the same as the
known gap. Note that, however, due to numerical tolerances, a 99% relative gap closed
would usually mean the results are identical.

We do this comparison on the 57 MIPLIB 3.0 instances where the gaps in [21] are strictly
positive. Table 4.2 shows the number of instances that fall within various categories based
on this ratio. In particular, on 49 (out of 57) instances we closed at least 99% relative
gap, and on 54 (out of 57) instances we closed at least 90% relative gap. The distribution
of relative gaps for MIPLIB 2003 instances is similar. Appendix A.1 and A.2 contain the
details of gap closed for each of MIPLIB 3.0 and MIPLIB 2003 instances, respectively.

Note that our implementation, which involves solving a large sequence of MILP(θ)’s, is
not designed for lift-and-project cut, as the separation problem for lift-and-project cuts can
be done by solving linear programs only [21]. Therefore, it is reasonable to expect that on
some instances we could obtain a low percentage on the relative gap closed. It is somewhat
striking to observe how close our results are to the results given in [21], considering that
our approach is completely different, yet on many instances the gaps are identical within
a ±0.01% tolerance.

2Here “approximates” is in a sense that our cut separator involves discretization of θ ∈ [0, 1/2].

33

relative gap closed # instances
≥ 99% 49
≥ 90% 54
≥ 50% 57

Table 4.2: Gap closed as a percentage of the known gap for the lift-and-project closure
(from [21])

relative gap closed # instances
> 100% 8
≥ 99% 25
≥ 90% 30
≥ 50% 31
< 1% 23

Table 4.3: Gap closed as a percentage of the best known gap for the split closure
(from [13] and [29])

Second, we tested the code on the MIPLIB 3.0 instances, in a configuration where it
approximates a straightforward split cut separator, i.e., without any sparsity or structure
constraints on the split disjunctions. Artificial lower and upper bounds ±100 are applied
on the disjunction coefficients (U = 100), which allows for a reasonably large subset of
all disjunctions to be considered. As in our first test, we limited the entire computation
time for each instance to one week, including the time taken to check cut validity3. At
termination, we measure the final percentage of integrality gap closed, which is then com-
pared with the best of the bounds given in [13] and [29]. For each instance, we look at the
percentage of gap closure divided by the best of the analogous results in [13] and [29]. We
do this comparison on the 57 instances where the best known gaps are strictly positive.
Table 4.3 shows the number of instances that fall within various categories based on this
ratio. On 8 (out of 57) instances we closed more gap than the best available result, and
on 30 (out of 57) instances we closed at least 90% relative gap.

On the other hand, we closed less than 1% relative gap on 23 (out of 57) instances.
As shown in Figure 4.1 where each dot represents an individual instance, those are gen-
erally the instances that have the most integer variables. While there are many plausible
explanations for our poor performance in this large set of instances, an important one is
that the parameters in our code were not fine-tuned for this experiment, but rather for

3Note that neither [13] nor [29] has any cut validity checking procedure and also that [13] mention no
time limit on their experiments

34

0%

50%

100%

150%

200%

10 100 1000 10000 1e+05

Number of integer variables

R
el

at
iv

e
ga

p
cl

os
ed

Figure 4.1: Gap closed as a percentage of the best known gap closure (from [13]
and [29]), vs. number of integer variables

the experiments considering sparsity. When changing the values of parameters such as the
number |Θ| of grid points and the fractionality bound σ, we were able to close significantly
more gap on these 23 instances.

The purpose of this experiment was to determine if our implementation was reliable,
compared to other ones. Our highly consistent lift-and-project results (M = 1) demon-
strate that the implementation was indeed reasonable. Although the results on general
split cuts were not as convincing, it is sensible to expect that they would match with
the best known results had we chosen a longer computation time limit and fine-tuned the
parameters (this is omitted because the fine-tuning of the parameters is not the primary
goal of this work). Finally, we note that the reliability of our implementation is further
evidenced by the experiments in subsequent sections.

4.2.2 How does sparsity help?

In this section, we evaluate the relative strength of split cuts (i) whose split disjunctions are
sparse and (ii) whose split coefficients are also small. We ran our implementation again on
the MIPLIB 3.0 instances, first with the additional sparsity constraint obtained by setting
M = 10. Then, we additionally considered ±1 bounds on the disjunction coefficients
(that is, setting U = 1). As was the case earlier, a time limit of one week was set for all
computations. Table 4.4 shows the details of our results. The first column of the table
shows the best of the gaps given in [13] and [29], followed by results obtained with arbitrary
disjunctions, sparse disjunctions, and sparse disjunctions with ±1 bound, respectively.

35

The last column in each setting shows the percentage of the total computation
time that was spent checking cut validity. Observe that on a few large instances,
the time spent on checking took most of the computation time. For example, in
computing the gap closed by sparse disjunctions with ±1 bounds on the instance
fast0507, of the 168 hours spent, only 38% contributed to the actual computation.
The remaining 62% was all dedicated to the verification of cut validity. We should
thus expect that the bound obtainable on these large instances should be greater
than the result shown in Table 4.4, had we chosen a longer time limit. Nonetheless,
by restricting ourselves to split disjunctions with at most 10 nonzero coefficients, we
still obtained significantly better results in terms of relative gap closed on instances
that have a large number of integer variables, as opposed to the poor performance
we observed with arbitrary disjunctions.

Besides allowing for more gap closed in less time, an interesting related effect
to observe is the sparsity of the cuts produced. Although sparse disjunctions do
not necessarily lead to sparse cuts, Figure 4.2 compares the densities of cuts (i.e.,
proportion of cut coefficients that are nonzero) obtained from different sets of split
disjunctions. For each of the 60 MIPLIB 3.0 instances, we computed the average cut
density by considering all the cuts that were used to obtain the results in Table 4.4.
This resulted in 60 average cut densities for each set of split disjunctions. We then
plot the distribution of these average cut densities in Figure 4.2. The horizontal lines
in the figure represent the range of densities (with outliers omitted), the rectangles
represent the 25-75 percentile interval and the solid vertical line represents the me-
dian. We consider as “outliers” cuts that are extremely dense, as determined by the
following criterion. Let r be the difference in density between the 25th and 75th per-
centile. Any cut with density of more than 1.5r above the 75 percentile is considered
an outlier. Observe that sparse disjunctions did indeed lead to sparser split cuts in
general: While the median density was 0.420 with arbitrary disjunctions, it dropped
to 0.140 with sparse ones, and 0.124 with sparse ±1 disjunctions.

The resulting average integrality gap closed by the split cuts in the most re-
stricted experiment (disjunctions with at most 10 nonzero ±1 coefficients) is 69.0%,
accounting for 92% of the 75.2% average for the best in [13] and [29]. Figure 4.3
shows a breakdown of the 57 instances whose best gap is strictly positive, according
to the relative gap closed in this case. Surprisingly, we lost almost nothing (at most
2%) on more than half of MIPLIB 3.0 instances. Furthermore, we closed at least
90% relative gap on more than two thirds of the instances.

Our conclusion from this experiment is twofold. First, split cuts based on sparse
disjunctions with small coefficients are almost as strong as general split cuts. Sec-
ondly, they tend to be sparser.

36

Best M = +∞, U = 100 M = 10, U = 100 M = 10, U = 1
gap Instance Gap # cuts Time % time Gap # cuts Time % time Gap # cuts Time % time

[13], [29] closed binding (h) checking closed binding (h) checking closed binding (h) checking
100.00 10teams 0.00 6700 28.73 27.03 84.91 4643 168.00 20.09 93.76 1245 168.00 14.50
100.00 air03 0.66 531 168.00 97.36 100.00 749 0.52 89.70 100.00 324 0.05 86.47
91.23 air04 0.02 387 168.00 98.33 49.12 350 168.00 74.98 89.57 525 168.00 67.36
61.98 air05 0.07 587 168.00 93.18 54.67 381 168.00 47.25 63.53 370 168.00 16.50
83.95 arki001 0.01 4212 168.00 94.78 77.11 214 168.00 0.05 42.61 236 32.54 0.24
99.60 bell3a 99.64 87 22.44 0.03 75.50 100 1.72 0.03 75.73 81 0.08 0.20
92.95 bell5 93.24 185 15.23 0.01 91.18 75 28.07 0.00 92.57 222 0.29 0.03
46.52 blend2 35.03 453 3.16 1.99 39.71 76 1.48 0.04 45.56 72 0.86 0.12
65.17 cap6000 66.00 1068 168.00 0.19 63.83 61 0.40 1.77 64.69 119 2.12 0.65
0.22 dano3mip 0.00 1217 168.00 88.22 0.16 428 168.00 17.00 0.24 492 168.00 36.16
8.20 danoint 9.11 515 168.00 2.09 8.15 294 168.00 0.76 8.98 393 168.00 0.74

100.00 dcmulti 100.00 1069 1.21 6.62 99.80 252 33.00 0.02 99.84 309 11.71 0.01
100.00 egout 100.00 281 0.17 0.43 100.00 223 0.18 0.12 98.64 230 0.00 2.22
19.08 fast0507 0.00 5034 168.00 55.62 0.55 360 168.00 55.87 7.50 401 168.00 61.66
99.68 fiber 0.03 445 168.00 89.91 37.38 232 168.00 0.01 72.99 263 168.00 0.02
99.75 fixnet6 99.87 562 157.75 0.01 99.83 558 168.00 0.01 99.86 342 168.00 0.01
100.00 flugpl 100.00 86 0.05 0.05 100.00 86 0.05 0.06 98.49 124 0.00 0.59
100.00 gen 90.28 510 12.91 11.97 100.20 281 136.25 0.04 100.20 378 0.08 6.95
99.70 gesa2 99.93 255 168.00 0.15 99.87 168 168.00 0.01 100.00 277 36.31 0.01
99.97 gesa2_o 92.41 336 168.00 0.38 87.41 303 168.00 0.02 99.99 274 37.79 0.01
95.81 gesa3 3.77 378 6.50 8.77 95.08 240 168.00 0.04 96.01 292 54.24 0.01
95.20 gesa3_o 0.45 482 2.47 13.39 95.38 238 168.00 0.03 96.07 242 122.70 0.01
98.38 gt2 91.35 2528 168.00 0.57 94.18 105 168.00 0.00 98.89 175 75.47 0.01
58.48 harp2 0.02 142 0.13 15.46 12.93 90 1.95 0.07 45.21 161 70.59 0.02
100.00 khb05250 100.00 308 0.21 0.66 100.00 386 0.24 0.47 100.00 451 0.01 12.50
95.20 l152lav 0.26 2434 168.00 59.31 32.33 202 168.00 1.83 48.93 199 168.00 0.33
93.75 lseu 90.66 116 168.00 0.00 70.18 52 74.19 0.00 76.16 103 65.68 0.00
14.02 mas74 16.39 117 168.00 0.23 10.65 39 149.46 0.00 11.81 45 56.51 0.00
26.52 mas76 27.06 108 168.00 0.04 13.67 38 82.92 0.00 14.94 63 84.85 0.00
51.70 misc03 51.26 224 168.00 1.09 51.17 188 57.57 0.02 51.49 216 57.13 0.01
100.00 misc06 100.00 279 0.03 8.07 100.00 325 0.09 4.48 100.00 168 0.02 11.82
20.11 misc07 0.04 2020 168.00 25.33 16.92 226 168.00 0.07 16.62 322 168.00 0.01
100.00 mitre 0.00 6421 168.00 2.49 0.06 4466 168.00 0.19 23.52 2195 168.00 0.28
36.16 mkc 0.00 6530 128.30 7.86 55.96 534 168.00 1.13 65.11 942 168.00 1.27
99.98 mod008 99.97 315 168.00 0.51 54.71 74 39.72 0.00 55.51 128 52.65 0.00
100.00 mod010 0.06 5807 50.50 40.61 84.43 206 168.00 3.37 100.00 384 2.78 9.36
72.44 mod011 16.06 6403 43.39 9.48 83.78 1155 168.00 0.73 85.35 1115 168.00 0.78
92.18 modglob 95.97 191 7.45 0.03 96.52 181 11.07 0.03 95.49 164 132.90 0.00
100.00 nw04 0.07 491 168.00 96.81 57.30 325 168.00 98.41 85.08 380 168.00 2.59
87.42 p0033 87.42 123 9.05 0.00 81.59 55 29.99 0.00 82.43 66 31.20 0.00
74.93 p0201 68.15 1570 168.00 4.54 69.94 518 168.00 0.02 71.31 162 168.00 0.01
99.99 p0282 99.52 130 96.74 0.03 98.97 130 168.00 0.00 98.45 132 149.50 0.00
99.42 p0548 0.00 6430 4.37 1.26 93.14 373 168.00 0.00 96.37 369 168.00 0.00
99.90 p2756 0.52 6433 14.95 1.52 85.95 444 168.00 0.01 87.29 467 119.63 0.01
0.00 pk1 0.00 4193 168.00 0.03 0.00 269 168.00 0.00 0.00 265 168.00 0.00
97.03 pp08a 97.04 186 152.16 0.01 97.04 175 150.58 0.00 97.04 184 134.58 0.00
95.81 pp08aCUTS 95.84 176 168.00 0.03 95.80 132 125.56 0.00 95.82 196 83.59 0.00
77.51 qiu 78.09 617 168.00 0.67 78.09 385 168.00 0.64 78.09 419 168.00 0.24
100.00 qnet1 0.09 989 168.00 74.80 97.09 266 168.00 0.04 100.00 230 2.61 0.16
100.00 qnet1_o 0.11 928 168.00 12.32 99.97 208 168.00 0.01 100.00 369 3.51 0.05
23.40 rentacar 54.03 326 23.48 9.51 50.86 307 28.93 8.67 6.93 265 8.66 15.33
100.00 rgn 100.00 438 14.51 0.10 74.55 120 168.00 0.00 75.15 616 107.75 0.00
70.70 rout 0.00 6416 18.34 5.13 50.29 215 168.00 0.05 68.99 293 168.00 0.08
89.74 set1ch 25.26 470 51.64 1.73 89.76 411 12.20 0.01 89.75 342 6.41 0.01
61.52 seymour 0.00 5020 168.00 34.97 7.89 816 168.00 21.73 57.96 1039 168.00 18.67
0.00 stein27 0.00 156 3.88 0.01 0.00 169 1.71 0.01 0.00 125 3.06 0.01
0.00 stein45 0.00 1438 168.00 0.14 0.00 3751 139.54 0.15 0.00 4882 99.76 0.21
33.93 swath 0.00 6400 20.75 67.02 13.00 339 168.00 1.67 28.93 305 168.00 0.54
100.00 vpm1 100.00 297 21.42 0.04 100.00 357 1.68 0.06 100.00 488 0.11 0.34
81.05 vpm2 81.81 204 90.73 0.02 81.31 192 39.05 0.00 81.46 217 22.41 0.00
75.17 average 42.79 1713 97.91 19.55 64.33 476 111.54 7.53 68.95 431 86.64 6.15

Table 4.4: Gap closed for the (i) full split closure, (ii) sparse split cuts only, and
(iii) sparse ±1 split cuts only.

37

Sparse
disjunctions
with {−1,1}
coefficients

Sparse
disjunctions

Arbitrary
disjunctions

0.0 0.2 0.4 0.6 0.8 1.0
Density of cuts

Figure 4.2: Distribution of cut densities with different experimental settings.

3

8

6
5

25

10

0

5

10

15

20

25

0%−50%
50%−80%

80%−90%

90%−98%

98%−100%
>100%

Relative gap closed

N
um

be
r

of
 in

st
an

ce
s

Figure 4.3: Distribution of gap closed with time limit of one week.

4.2.3 How does structured sparsity help?

Problem-specific DB-k forms provide a natural way to exploit sparsity. The potential advan-
tages of generating split disjunctions whose support lies entirely within individual blocks
are to produce split cuts that are both sparse and mutually orthogonal—two vital charac-
teristics that make a cut effective. Moreover, working with small blocks in a DB-k decom-
position may potentially reduce the computational time required to find a violated cut.
On the other hand, restricting ourselves to such a narrow class of cuts can result in a much
weaker cut family. The experiments in this section were designed to try and quantify these
tradeoffs.

38

We use GCG 2.1.1 [37] as a black-box tool to generate the required DB-k forms on
MIPLIB 3.0 instances, and then implement our model with the additional structure con-
straint (C3) on the disjunctions, as described in Chapter 3. Furthermore, for comparison
purposes,

• we have kept the sparsity parameterM = 10 and coefficient bound U = 1 on all split
disjunctions;

• for each instance with a given decomposition, we adhered to that decomposition in
all iterations, i.e., we didn’t change the structural requirement on disjunctions from
one iteration to another;

• we ignored all linking constraints and linking variables by setting the corresponding
multipliers to zero;

• the time limit was set to one week.

Table 4.5 shows the final gap closed by restricting split disjunctions with the structures
given by DB-k forms for k = 2, 3, 4, 5 (GAPk). The last column of Table 4.5 shows the result
from previous section, with the same one week time limit, obtained by using disjunctions
with M = 10 and U = 1 but no structure constraint (GAPnodb). The second last column
represents the highest gap closed between all DB-k forms. We removed from the table three
instances where the gap closed without DB-k was zero (pk1,stein27,stein45) and seven
instances where no DB-k form was found for any k ∈ {2, 3, 4, 5} (air03, mas74, mas76,
mod008, nw04, p0033, rentacar).

Note that the set of split cuts we used to obtain the results on Table 4.5 is extremely
restrictive: (i) the corresponding disjunctions have at most 10 nonzero coefficients which
are either 1 or -1, and (ii) the cuts are obtained by aggregating only rows and columns
that belong to a single block in a DB-k form. Despite being so selective, these cuts close a
significant amount of gap in most cases. In fact, of the 50 instances left, the average gap
closed without DB-k is 75.6% and the best gap closed among all DB-k is 56.7%.

While the above averages already indicate that the disadvantage of using DB-k forms
does not seem to be too big in terms of gap closed, it seems that using DB-k decompositions
may not always pay off. To try and discard bad decompositions, we filtered the results in
Table 4.5. The results are summarized in Figure 4.4. For a given DB-k decomposition and a
value of ρ, we first removed from the DB-k results the ones obtained from a decomposition
where either the percentage of linking constraints or variables were above ρ percent. Then,
for each remaining instance, we computed the relative gap closed (RGAP) as:

GAPk
GAPnodb

. (RGAP)

39

DB
-2

DB
-3

DB
-4

DB
-5

B
es
t
ga
p

G
ap

In
st
an

ce
G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

w
it
h

w
it
ho

ut
cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

DB
-k

DB
-k

10
te

am
s

96
.9
9

10
96

16
8.
00

6.
97

10
0.
00

80
7

16
8.
00

7.
93

10
0.
00

14
15

16
8.
00

3.
32

10
0.
00

12
95

16
8.
00

1.
17

10
0.
00

93
.7
6

ai
r0

4
45
.6
1

17
1

11
0.
02

7.
45

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

45
.6
1

89
.5
7

ai
r0

5
0.
00

0
1.
01

0.
00

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

63
.5
3

ar
ki

00
1

33
.0
3

14
5

8.
76

0.
13

33
.3
8

17
1

42
.0
3

0.
05

32
.3
1

17
3

0.
77

0.
94

32
.3
1

18
6

2.
89

0.
66

33
.3
8

42
.6
1

be
ll

3a
70
.7
4

83
0.
00

10
.0
0

70
.7
4

64
0.
00

10
.0
0

70
.7
4

59
0.
00

0.
00

70
.6
6

56
0.
00

10
.0
0

70
.7
4

75
.7
3

be
ll

5
92
.0
1

90
0.
11

0.
05

91
.9
4

84
0.
00

2.
22

88
.9
9

53
0.
01

0.
57

86
.8
3

58
0.
00

1.
25

92
.0
1

92
.5
7

bl
en

d2
19
.7
9

14
0.
00

0.
00

19
.7
9

16
0.
00

3.
33

19
.7
9

17
0.
00

0.
00

19
.7
9

13
0.
00

0.
00

19
.7
9

45
.5
6

ca
p6

00
0

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

64
.6
9

da
no

3m
ip

0.
21

20
5

16
8.
00

26
.4
7

0.
25

26
7

16
8.
00

25
.2
0

0.
22

21
4

16
8.
00

27
.9
7

0.
25

24
6

16
8.
00

36
.1
2

0.
25

0.
24

da
no

in
t

0.
77

72
3.
68

0.
80

0.
80

63
0.
32

4.
28

0.
30

30
0.
05

6.
95

0.
72

83
0.
05

37
.8
1

0.
80

8.
98

dc
mu

lt
i

95
.5
7

19
6

17
.3
4

0.
01

73
.2
4

13
8

2.
09

0.
01

69
.5
6

13
7

5.
56

0.
02

60
.2
8

13
0

1.
22

0.
02

95
.5
7

99
.8
4

eg
ou

t
95
.6
3

13
2

0.
01

0.
70

92
.1
4

90
0.
00

2.
00

86
.5
6

98
0.
00

3.
33

93
.8
6

93
0.
00

2.
31

95
.6
3

98
.6
4

fa
st

05
07

0.
00

0
0.
01

0.
00

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

7.
50

fi
be

r
65
.5
0

20
0

16
8.
00

0.
01

73
.1
8

17
7

16
8.
00

0.
01

24
.2
2

90
48
.5
4

0.
01

15
.7
7

52
13
.4
8

0.
01

73
.1
8

72
.9
9

fi
xn

et
6

84
.2
6

27
4

1.
54

0.
08

83
.5
6

31
9

0.
08

0.
49

84
.4
3

36
6

0.
05

1.
05

84
.8
6

41
3

0.
03

3.
80

84
.8
6

99
.8
6

fl
ug

pl
90
.1
6

18
0.
00

0.
00

65
.0
3

13
0.
00

0.
00

7.
05

4
0.
00

0.
00

45
.8
3

4
0.
00

0.
00

90
.1
6

98
.4
9

ge
n

10
0.
20

22
5

0.
12

3.
08

10
0.
20

20
3

0.
54

0.
47

10
0.
20

38
0

0.
04

9.
47

10
0.
20

39
2

0.
02

9.
19

10
0.
20

10
0.
20

ge
sa

2
99
.9
7

19
2

20
.3
8

0.
03

99
.9
5

21
4

8.
28

0.
02

99
.9
5

25
3

0.
43

0.
42

99
.9
4

20
9

21
.6
9

0.
01

99
.9
7

10
0.
00

ge
sa

2_
o

44
.6
0

12
5

19
.6
8

0.
00

38
.6
7

16
6

2.
50

0.
02

38
.5
9

16
1

10
.7
3

0.
01

38
.6
0

15
5

4.
63

0.
01

44
.6
0

99
.9
9

ge
sa

3
95
.8
7

19
0

30
.0
6

0.
01

95
.8
7

11
9

28
.0
0

0.
01

95
.8
4

20
6

47
.6
5

0.
00

96
.0
3

29
0

32
.5
7

0.
01

96
.0
3

96
.0
1

ge
sa

3_
o

95
.8
5

16
9

66
.9
1

0.
01

96
.0
8

18
4

11
9.
44

0.
00

46
.5
6

23
8

2.
59

0.
04

60
.2
1

20
8

8.
91

0.
01

96
.0
8

96
.0
7

gt
2

0.
00

0
0.
00

N
A

0.
00

0
0.
00

N
A

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

98
.8
9

ha
rp

2
0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

45
.2
1

kh
b0

52
50

53
.4
8

19
0.
00

2.
00

53
.4
8

19
0.
00

1.
67

53
.4
8

19
0.
00

1.
67

53
.4
8

19
0.
00

1.
11

53
.4
8

10
0.
00

l1
52

la
v

0.
24

23
0.
84

0.
04

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
24

48
.9
3

ls
eu

52
.6
2

64
0.
00

1.
00

19
.9
4

52
0.
00

2.
00

38
.5
8

37
0.
00

0.
00

4.
21

5
0.
00

0.
00

52
.6
2

76
.1
6

mi
sc

03
0.
00

6
0.
00

N
A

0.
00

0
0.
00

N
A

0.
00

0
0.
00

N
A

0.
00

0
0.
00

N
A

0.
00

51
.4
9

mi
sc

06
94
.1
8

45
0.
00

13
.3
3

26
.5
5

27
0.
00

5.
00

68
.1
4

39
0.
00

10
.0
0

97
.5
1

52
0.
00

9.
29

97
.5
1

10
0.
00

mi
sc

07
0.
00

54
0.
25

0.
40

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

N
A

N
A

N
A

N
A

N
A

0.
00

16
.6
2

mi
tr

e
55
.2
3

20
98

16
8.
00

0.
63

63
.3
4

37
58

16
8.
00

0.
46

64
.0
2

27
56

16
8.
00

0.
59

65
.9
3

21
60

16
8.
00

0.
56

65
.9
3

23
.5
2

mk
c

62
.9
0

46
7

16
8.
00

0.
35

69
.0
8

19
8

16
8.
00

0.
22

69
.8
4

54
3

16
8.
00

0.
20

72
.9
1

35
3

16
8.
00

0.
19

72
.9
1

65
.1
1

mo
d0

10
0.
00

0
2.
41

0.
00

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

10
0.
00

mo
d0

11
89
.1
2

11
29

16
8.
00

0.
92

92
.5
1

12
56

16
8.
00

0.
85

89
.0
1

13
88

16
8.
00

1.
03

90
.6
1

12
17

16
8.
00

1.
00

92
.5
1

85
.3
5

mo
dg

lo
b

93
.0
8

16
1

4.
30

0.
02

85
.5
8

11
7

0.
68

0.
05

85
.8
7

12
8

0.
10

0.
38

83
.6
4

11
9

0.
05

0.
65

93
.0
8

95
.4
9

p0
20

1
54
.1
4

93
78
.5
8

0.
00

50
.0
0

10
3

10
.3
9

0.
01

0.
00

0
0.
00

N
A

0.
00

0
0.
00

N
A

54
.1
4

71
.3
1

p0
28

2
3.
51

79
0.
01

0.
26

83
.8
8

52
0.
00

0.
59

1.
52

10
0.
00

0.
00

83
.8
7

35
0.
01

0.
80

83
.8
8

98
.4
5

p0
54

8
90
.2
0

27
8

11
4.
73

0.
00

89
.8
3

28
7

16
7.
93

0.
00

89
.7
3

31
3

16
8.
00

0.
00

88
.2
0

34
4

14
6.
88

0.
00

90
.2
0

96
.3
7

p2
75

6
88
.2
9

40
8

62
.7
7

0.
01

86
.9
9

42
7

17
.6
1

0.
02

85
.1
7

54
0

13
.4
4

0.
02

86
.0
4

47
8

17
.9
1

0.
01

88
.2
9

87
.2
9

pp
08

a
95
.5
3

18
8

0.
08

0.
10

94
.2
8

16
9

0.
03

0.
53

95
.5
9

18
4

0.
02

0.
57

95
.1
8

20
1

0.
01

2.
07

95
.5
9

97
.0
4

pp
08

aC
UT

S
93
.7
3

15
9

0.
43

0.
10

92
.8
0

18
6

0.
03

0.
98

93
.3
7

21
4

0.
02

3.
11

89
.0
6

18
5

0.
02

2.
00

93
.7
3

95
.8
2

qi
u

78
.0
9

26
2

16
8.
00

0.
15

0.
00

0
0.
16

0.
00

78
.0
9

94
6

75
.3
8

0.
31

0.
00

0
0.
16

0.
00

78
.0
9

78
.0
9

qn
et

1
2.
44

23
2.
14

0.
00

2.
45

42
1.
30

0.
01

2.
45

42
3.
48

0.
00

1.
90

29
2.
33

0.
00

2.
45

10
0.
00

qn
et

1_
o

20
.9
6

9
0.
00

N
A

20
.9
6

9
0.
00

N
A

20
.9
6

6
0.
00

N
A

20
.9
6

6
0.
00

0.
00

20
.9
6

10
0.
00

rg
n

68
.4
0

18
7

2.
18

0.
03

48
.2
0

11
5

0.
01

1.
74

35
.8
6

11
6

0.
00

3.
75

N
A

N
A

N
A

N
A

68
.4
0

75
.1
5

ro
ut

42
.0
0

31
9

10
7.
82

0.
05

44
.1
4

39
3

33
.8
8

0.
08

41
.7
5

28
2

33
.0
4

0.
05

71
.4
2

51
3

16
4.
45

0.
03

71
.4
2

68
.9
9

se
t1

ch
89
.7
3

33
2

0.
17

0.
40

89
.7
3

34
9

0.
26

0.
54

89
.7
3

45
2

0.
15

0.
89

89
.7
3

42
7

0.
08

1.
07

89
.7
3

89
.7
5

se
ym

ou
r

35
.9
4

43
9

16
8.
00

21
.8
0

53
.8
9

70
8

16
8.
00

23
.0
0

54
.6
3

48
1

16
8.
00

23
.0
2

60
.4
8

91
8

16
8.
00

24
.0
4

60
.4
8

57
.9
6

sw
at

h
19
.0
8

10
7

0.
05

10
.5
3

16
.6
5

73
0.
06

3.
39

11
.2
6

87
0.
01

31
.5
9

12
.7
8

12
0

0.
01

31
.1
1

19
.0
8

28
.9
3

vp
m1

78
.1
8

18
9

0.
01

1.
90

34
.5
5

11
5

0.
00

2.
22

34
.5
5

10
1

0.
03

0.
18

42
.4
2

85
0.
00

2.
86

78
.1
8

10
0.
00

vp
m2

73
.8
5

13
5

0.
92

0.
02

74
.5
9

15
7

0.
16

0.
21

57
.5
2

13
2

0.
02

0.
55

66
.3
8

18
2

0.
01

1.
60

74
.5
9

81
.4
6

av
er
ag
e

53
.2
3

21
7

40
.0
3

2.
34

53
.9
6

26
0

35
.8
2

2.
37

49
.4
8

28
2

31
.5
1

3.
22

53
.0
9

26
4

33
.1
5

4.
41

56
.7
3

75
.6
0

Ta
bl
e
4.
5:

G
ap

cl
os
ed

w
it
h
sp
ar
se
±

1
sp
lit
s
an

d
DB

-k
st
ru
ct
ur
es

40

50%

100%

20 40 60 80 100

RGAP

ρ

(a) k = 2

50%

100%

20 40 60 80 100

RGAP

ρ

(b) k = 3

50%

100%

20 40 60 80 100

RGAP

ρ

(c) k = 4

50%

100%

20 40 60 80 100

RGAP

ρ

(d) k = 5

50%

100%

20 40 60 80 100

RGAP

ρ

(e) best

Figure 4.4: Distribution of relative gap closed for DB-k forms for several values of ρ

The following statistics are shown in Figure 4.4 for the instances remaining after filtering:

• Average (bold line)

• 10-th percentile (dashed line)

• Median (solid line)

• 25-75th percentile (shaded region)

41

Note that, while in principle (RGAP) should be always at most 100%, due to time
limits, it is possible that the result from (GAPnodb) is not as high as it should be, resulting
in (RGAP) above 100%. The results in Figure 4.4 show that eliminating DB-k forms with
a high number of linking variables or constraints is indeed a good indicator to filter out
results where split cuts from DB-k form do not close too much gap.

The above results show that the gap loss is not too big when restricting ourselves to
split cuts from DB-k form, especially when ρ is small. We now try to understand how
structured sparsity helps to produce more effective cuts. Table 4.6 shows the average
support size in the first 100 disjunctions (of a given type) obtained by our implementation,
and the corresponding average cut density, for instances 10teams, mkc, and seymour. We
picked 10teams as an extreme example where, without utilizing a DB-2 structure, highly
sparse disjunctions (8.3 nonzero entries, which accounts for only 5% of the 1800 integer
variables) have produced almost completely dense cuts. Instance mkc and seymour were
picked because they represent reasonably large instances that are also in MIPLIB 2003. We
observe that, as expected, exploiting the DB-2 structure yields sparser cuts. Furthermore,
the last row of Table 4.6 shows that disjunctions with arbitrarily many nonzero entries
that are much denser still lead to sparse cuts when exploiting problem structure.

In Figure 4.5 we compare the distributions of average cut densities on the 40 MIPLIB
3.0 instances whose DB-2 forms have at most 50% linking variables or constraints. We
picked DB-2 as a candidate for comparison because this is the simplest DB-k decompostion,
having just 2 blocks. Other decompositions that contain more blocks all demonstrate a
similar pattern. The 50% threshold was applied so that instances whose DB-k forms have a
high number of linking variables or constraints are excluded from comparison. As discussed
earlier, split cuts based on these decompositions are unlikely to close much gap, regardless
of how sparse they are. The cut densities in category “Sparse disjunctions with {-1,1}
coefficients” are computed based on the cuts obtained in the previous section, and the
cut densities under “Structured sparse disjunctions” are computed based on the results
with DB-2 forms. As seen in Figure 4.5, block structures lead to the sparsest cuts: Even
comparing with the disjunctions (M = 10, U = 1) that previously led to the sparsest cuts,
it further decreased the median of cut densities from 0.067 to 0.047, and the 75 percentile
from 0.115 to 0.080.

Finally, we illustrate one more potential advantage of using split cuts based on DB-k
forms. Figure 4.6 shows the evolution of the average gap closed in terms of runtime of
our cut procedure and in terms of number of cuts added in our cut procedure. It can be
seen that the split cuts obtained by using DB-k forms converge faster to a gap closer to the
final gap both in terms of time (Figure 4.6a) and in terms of number of cuts (Figure 4.6c).
The gain in terms of time is even more pronounced if we focus on large instances, that is,

42

instances with at least 1000 variables, among which at least 50 are integer (Figure 4.6b).
The grey lines labelled “DB-k*” in Figure 4.6 represent the average gap closed had we
chosen for each instance the DB-k form that closes the most gap after adding up to 500
cuts. While it is hard to completely attribute these gains to a few factors only, we note
that the most apparent difference between these cuts and those generated earlier is their
higher degree of both sparsity and orthogonality4.

Instance Disjunction type Average support size Average cut density
of disjunctions (#) (%)

10teams M = 10, U = 1 8.3 95.5
10teams M = 10, U = 1, with DB-2 8.2 54.6
mkc M = 10, U = 1 9.4 12.6
mkc M = 10, U = 1, with DB-2 9.2 3.8
seymour M = 10, U = 1 9.8 9.6
seymour M = 10, U = 1, with DB-2 8.2 3.7
seymour M = +∞, U = 1, with DB-2 255.2 10.3

Table 4.6: Disjunction and cut density for three example instances.

Structured
sparse

disjunctions
with {−1,1}
coefficients

Sparse
disjunctions
with {−1,1}
coefficients

0.00 0.05 0.10 0.15 0.20
Density of cuts

Figure 4.5: Distribution of cut densities for DB-2

4It is clear from CGLP(π, π0) and the shape of DB-k forms that, if a split disjunction has a support
that lies entirely within a block, then the support of the corresponding split cut lies entirely in that block,
too. Therefore, if two disjunctions each has a support in a different block, then the split cuts from these
disjunctions will be orthogonal (in the sense that the dot product of their coefficients are zero).

43

0

10

20

30

40

50

0 20 40 60 80 100 120

Time (s)

G
ap

 c
lo

se
d

DB−2

DB−3

DB−4

DB−5

DB−k*

sc

(a) Average gap closed over
time

0

10

20

30

0 20 40 60 80 100 120

Time (s)

G
ap

 c
lo

se
d

DB−2

DB−3

DB−4

DB−5

DB−k*

sc

(b) Average gap closed over
time for large instances

0

20

40

60

0 500 1000 1500 2000

Number of cuts

G
ap

 c
lo

se
d

DB−2

DB−3

DB−4

DB−5

DB−k*

sc

(c) Average gap closed per cuts
added

Figure 4.6: Evolution of average gap closed

4.3 Computing (restricted) split closure on MIPLIB 2003
instances

Our final set of experiments was to run our code on larger instances than were previously
available in the literature. For this purpose, we ran our code on MIPLIB 2003 [5] instances.
However, since these instances are typically larger than the ones available in MIPLIB 3.0,
we were able to run our code only using the parametersM = 10 and U = 1 and imposing a
time limit of two weeks. Table 4.7 shows the results for those instances that are in MIPLIB
2003 but not in MIPLIB 3.0. Since there are no previous split closure numbers for those
instances, we compare against the lift-and-project results of Bonami [21]. Compared to lift-
and-project, significantly more gap can still be closed with the split closure approximation
that does not exploit DB-k structure. Also, note that, even though the average results
for DB-k based cuts are not as good, there are some instances where these results are
significantly better than any of the other approaches, closing as much as 100% of the
integrality gap.

44

L&
P

St
r.

L&
P

W
it
ho

ut
DB

-k
DB

-2
DB

-3
DB

-4
DB

-5
B
es
t

ga
p

ga
p

In
st
an

ce
G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

ga
p

[2
1]

[2
1]

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

(D
B-
k
)

78
.7
6

78
.7
6

a1
c1

s1
93

.5
4

39
8

33
6.
00

0.
03

92
.5
5

68
0

99
.0
8

0.
03

90
.6
5

64
9

14
7.
50

0.
03

90
.8
5

68
9

39
.8
1

0.
08

88
.6
9

68
8

19
.1
8

0.
19

92
.5
5

42
.4
1

43
.2
7

af
lo

w3
0a

65
.0
9

24
5

33
6.
00

0.
00

3.
43

19
0.
67

0.
00

0.
00

0
0.
05

0.
00

0.
00

0
0.
01

0.
00

0.
00

0
0.
00

0.
00

3.
43

34
.2
9

35
.8
7

af
lo

w4
0b

52
.5
6

33
5

33
6.
00

0.
03

0.
00

0
0.
97

0.
00

0.
00

0
0.
06

0.
00

0.
00

0
0.
25

0.
00

0.
00

0
0.
00

0.
00

0.
00

1.
09

1.
77

at
la

nt
a-

ip
0.
00

20
4

33
6.
00

7.
99

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

0.
13

gl
as

s4
0.
00

20
4

2.
27

0.
22

0.
00

70
0.
26

0.
35

0.
00

84
0.
15

1.
35

0.
00

57
0.
07

1.
00

0.
00

87
0.
21

0.
71

0.
00

N
A

N
A

ma
nn

a8
1

82
.8
0

19
44

33
6.
00

0.
03

96
.8
4

18
13

33
6.
00

0.
06

88
.2
7

16
13

33
6.
00

0.
15

10
0.
00

19
74

62
.9
0

0.
24

10
0.
00

17
96

34
.6
4

0.
29

10
0.
00

44
.8
8

45
.1
5

mo
me

nt
um

1
40

.7
6

42
5

33
6.
00

39
.6
2

41
.2
2

56
8

33
6.
00

54
.6
3

28
.9
1

31
7

33
6.
00

75
.1
6

37
.0
6

48
7

33
6.
00

76
.8
5

34
.8
3

54
0

33
6.
00

49
.2
4

41
.2
2

41
.4
7

41
.8
4

mo
me

nt
um

2
65

.6
8

82
4

33
6.
00

64
.6
8

26
.2
8

20
0

25
.5
5

70
.2
3

14
.0
1

27
8

43
.2
6

51
.0
1

27
.5
9

47
8

30
.5
7

64
.4
2

17
.9
2

52
3

22
.5
5

65
.7
6

27
.5
9

42
.2
3

44
.6
5

ms
c9

8-
ip

0.
00

0
0.
07

0.
00

0.
00

0
1.
28

0.
00

0.
00

0
2.
54

4.
00

0.
00

0
1.
80

21
.1
0

0.
00

0
1.
94

37
.7
3

0.
00

56
.4
7

10
0.
00

mz
zv

11
63

.3
5

64
8

33
6.
00

78
.1
0

46
.4
2

36
4

33
6.
00

83
.2
2

57
.7
3

42
6

33
6.
00

84
.8
7

56
.5
5

58
7

33
6.
00

86
.5
0

65
.1
7

60
2

33
6.
00

89
.0
8

65
.1
7

87
.7
3

10
0.
00

mz
zv

42
z

79
.9
2

61
2

33
6.
00

77
.7
1

43
.2
2

40
0

33
6.
00

84
.7
1

91
.7
3

48
3

33
6.
00

86
.9
9

71
.9
9

73
9

33
6.
00

84
.8
6

91
.1
8

82
7

33
6.
00

80
.4
5

91
.7
3

22
.7
3

22
.7
1

ne
t1

2
5.
97

86
2

33
6.
00

46
.8
7

2.
87

54
3

33
6.
00

37
.0
2

6.
61

67
2

33
6.
00

31
.8
5

4.
49

62
8

33
6.
00

38
.6
1

5.
77

74
1

33
6.
00

33
.9
6

6.
61

36
.8
8

77
.0
9

ns
ra

nd
-i

px
65

.3
8

10
75

33
6.
00

0.
10

61
.0
8

10
57

33
6.
00

0.
09

50
.2
5

84
3

33
6.
00

0.
06

52
.8
2

90
7

33
6.
00

0.
10

49
.6
1

87
8

33
6.
00

0.
08

61
.0
8

0.
19

26
.3
2

op
t1

21
7

4.
89

38
7

33
6.
00

0.
42

0.
00

0
0.
01

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

10
.2
9

10
.8
3

pr
ot

fo
ld

37
.4
1

21
72

33
6.
00

24
.9
8

1.
68

10
55

33
6.
00

29
.5
0

1.
14

11
30

33
6.
00

29
.4
3

1.
19

12
73

33
6.
00

32
.4
7

1.
29

11
18

33
6.
00

25
.0
3

1.
68

0.
00

0.
00

rd
-r

pl
us

c-
21

0.
00

20
3

22
.5
9

1.
52

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

16
.3
1

55
.9
0

ro
ll

30
00

37
.9
0

50
4

29
1.
02

0.
57

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

42
.0
6

59
.9
1

sp
97

ar
65

.0
4

53
3

33
6.
00

0.
54

47
.6
2

41
0

33
6.
00

1.
29

41
.4
7

35
5

33
6.
00

1.
15

41
.1
2

31
8

33
6.
00

1.
40

25
.9
1

26
7

33
6.
00

1.
58

47
.6
2

26
.9
9

42
.4
5

ti
mt

ab
1

86
.1
0

26
5

23
.7
0

0.
01

54
.7
1

16
9

13
.3
4

0.
00

40
.5
6

15
1

4.
18

0.
01

34
.0
8

15
8

2.
56

0.
01

29
.1
7

18
3

0.
07

0.
22

54
.7
1

20
.9
8

40
.1
8

ti
mt

ab
2

84
.6
7

43
0

28
3.
14

0.
01

55
.3
9

29
7

21
.3
8

0.
02

46
.2
4

27
9

23
.2
4

0.
01

31
.9
2

27
5

26
.0
4

0.
01

31
.4
0

27
0

5.
42

0.
01

55
.3
9

64
.1
2

64
.1
2

tr
12

-3
0

88
.0
5

68
0

30
.9
5

0.
01

85
.6
0

67
6

5.
99

0.
05

84
.6
0

69
9

3.
75

0.
06

85
.0
1

67
9

0.
64

0.
29

84
.0
4

69
2

0.
75

0.
23

85
.6
0

31
.9
0

42
.4
3

av
er
ag

e
48

.5
3

61
7

25
5.
13

16
.3
5

31
.3
8

39
6

13
6.
03

17
.2
0

30
.5
8

38
0

13
8.
70

17
.4
3

30
.2
2

44
0

11
9.
84

19
.4
3

29
.7
6

43
9

11
6.
04

18
.3
1

34
.9
7

Ta
bl
e
4.
7:

G
ap

cl
os
ed

in
M
IP

LI
B
20

03
in
st
an

ce
s.

45

Chapter 5

Conclusion

The family of split cuts in general provides very tight relaxations to the feasible sets of
MIPs [35], yet the computational cost of separating an arbitrary split cut is prohibitive
both in theory [23] and in practice [36]. The main motivation for this thesis was to search
for subsets of split cuts with promising computational properties. In particular, our goal
is to address the following questions:

• How much can we restrict the set of split cuts that we separate over, while retaining
enough of the strength of the full split closure?

• Is there a systematic way to obtain split cuts with desirable computational charac-
teristics?

In this thesis we developed a tool, which builds on the work of Balas and Saxena’s sepa-
ration algorithm [13], to empirically evaluate the strengths of several restricted classes of
split cuts. The specific restrictions that we explore aim at two desirable characteristics.
First, we want sparse cuts, because they are beneficial to the linear algebra that underlies
MIP solution methods. Second, we want cuts that are computed from different parts of the
constraint matrix, and involve varied subsets of the variables. The latter point corresponds
to generating cuts that are (approximately) mutually orthogonal, to as high a degree as
possible, and it has been observed [13, 36] to be favorable in getting tighter relaxations
with fewer cuts.

Our experiments show that explicitly enforcing sparsity of the split disjunctions, and
bounding the magnitude of their coefficients, yields one such promising family of split cuts.
We observe that the resulting cuts themselves are sparse too, which was expected but not

46

a priori obvious. More surprisingly, even in an extreme setting where we only allow 10
nonzero disjunction coefficients with values ±1, we obtain cuts that are 92% as effective
as all split cuts together (in terms of gap closed, and compared to the best known results
for the split closure [13, 29]).

Next, in the same spirit of restricting the split disjunctions available to us, we exploit
problem structure to impose static constraints on how cuts are generated. Specifically,
we start by computing block decompositions of our problems. Then, we force our split
cut generator to use, for each cut, only constraints and variables from a single block. We
test this approach with arrowhead decompositions [15,37] of the constraint matrices, while
keeping the same limitations on the disjunctions as before. In this even more restricted
setting, we observe a significant degradation of the average gap closure. However, we
demonstrate that it is easy to determine a priori which instances will benefit from block
decompositions, and which will not. With a very simple rule based on the number the
linking constraints and variables, we are able to isolate the instances that are most suited
for this technique. By using decompositions only when appropriate, we get a subset of
instances on which, due to time limits, we close even more gap than without decomposition.
Moreover, as a general rule, we observe that this setting lets us cut much more gap per cut
on average. We attribute this desirable feature to the orthogonality of the cuts generated.

Overall, our results suggest that there exist small subsets of split cuts that exhibit ad-
vantageous properties, and that are yet to be exploited. Therefore, a possible continuation
of this work is to look at which subsets of split cuts can be computed more quickly in
practice. For example, lift-and-project cuts are computed much more quickly in [21] than
in our setting where we simply set M = 1 and U = 1. However, even a tiny step up
to M = 2 in the number of nonzero elements in split disjunctions is shown to produce
a significantly tighter relaxation (c.f. Appendix A.3 and A.4). Thus, it is interesting to
determine if this small class of split cuts are easy to separate over, both in theory and in
practice. Other possible research directions are:

• determine a more accurate method, possibly more sophisticated than simply looking
at the number of linking constraints and linking variables, to classify MIP instances
that are suitable or not so suitable for decomposition-based separation of split cuts;
and moreover,

• dynamically find the “best” decomposition (or the “best” combination of decomposi-
tions) that will lead to strong split cuts.

We expect that for example tools from machine learning may help addressing these ques-
tions. There are already some recent work on applying supervised learning to MIP solution
processes, e.g., [6] and [41].

47

References

[1] FICO Xpress Optimization. http://www.fico.com/en/products/
fico-xpress-optimization. Accessed: 2018-09-10.

[2] Gurobi Optimization. http://www.gurobi.com. Accessed: 2018-09-10.

[3] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/analytics/
cplex-optimizer. Accessed: 2018-09-10.

[4] MIPLIB. http://miplib.zib.de. Accessed: 2018-10-30.

[5] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):361–372, 2006.

[6] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A supervised
machine learning approach to variable branching in branch-and-bound. In IN ECML,
2014.

[7] Kent Andersen and Robert Weismantel. Zero-coefficient cuts. In Friedrich Eisenbrand
and F. Bruce Shepherd, editors, Integer Programming and Combinatorial Optimiza-
tion, pages 57–70, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[8] C. Aykanat, A. Pinar, and Ü. Çatalyürek. Permuting sparse rectangular matrices into
block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860–1879, 2004.

[9] Egon Balas. Disjunctive programming. In P.L. Hammer, E.L. Johnson, and B.H.
Korte, editors, Discrete Optimization II, volume 5 of Annals of Discrete Mathematics,
pages 3 – 51. Elsevier, 1979.

[10] Egon Balas. A modified lift-and-project procedure. Mathematical Programming,
79(1):19–31, Oct 1997.

48

http://www.fico.com/en/products/fico-xpress-optimization
http://www.fico.com/en/products/fico-xpress-optimization
http://www.gurobi.com
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://miplib.zib.de

[11] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0–1 programs. Mathematical Programming, 58(1–3):295–324,
1993.

[12] Egon Balas and Michael Perregaard. A precise correspondence between lift-and-
project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 pro-
gramming. Mathematical Programming, 94(2):221–245, Jan 2003.

[13] Egon Balas and Anureet Saxena. Optimizing over the split closure. Mathematical
Programming, 113(2):219–240, 2008.

[14] Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and François Margot. On the
relative strength of split, triangle and quadrilateral cuts. Mathematical Programming,
126(2):281–314, 2011.

[15] Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E. Lübbecke,
Enrico Malaguti, and Emiliano Traversi. Automatic Dantzig–Wolfe reformulation of
mixed integer programs. Mathematical Programming, 149(1):391–424, 2015.

[16] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1st edition, 1997.

[17] Robert E. Bixby. Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1):3–15, 2002.

[18] Robert E. Bixby. A brief history of linear and mixed-integer programming computa-
tion. Documenta Mathematica, pages 107–121, 2012.

[19] Robert E. Bixby, Sebastián Ceria, Cassandra M. McZeal, and Martin W. P Savels-
bergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, (58):12–
15, June 1998.

[20] Robert E. Bixby and Edward Rothberg. Progress in computational mixed integer pro-
gramming - a look back from the other side of the tipping point. Annals of Operations
Research, 149(02):37–41, 2007.

[21] Pierre Bonami. On optimizing over lift-and-project closures. Mathematical Program-
ming Computation, 4(2):151–179, 2012.

[22] Pierre Bonami, Gérard Cornuéjols, Sanjeeb Dash, Matteo Fischetti, and Andrea Lodi.
Projected Chvátal–Gomory cuts for mixed integer linear programs. Mathematical
Programming, 113(2):241–257, 2008.

49

[23] Alberto Caprara and Adam N. Letchford. On the separation of split cuts and related
inequalities. Mathematical Programming, 94(2):279–294, Jan 2003.

[24] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli. Integer Programming.
Springer Publishing Company, Incorporated, 2014.

[25] William J. Cook, Ravi Kannan, and Alexander Schrijver. Chvátal closures for mixed
integer programs. Mathematical Programming, 47:155–174, 1990.

[26] Gérard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical
Programming, 112(1):3–44, Mar 2008.

[27] Gérard Cornuéjols and Giacomo Nannicini. Practical strategies for generating rank-1
split cuts in mixed-integer linear programming. Mathematical Programming Compu-
tation, 3(4):281–318, 2011.

[28] Gérard Cornuéjols and Yanjun Li. Elementary closures for integer programs. Opera-
tions Research Letters, 28(1):1 – 8, 2001.

[29] Sanjeeb Dash, Oktay Günlük, and Andrea Lodi. MIR closures of polyhedral sets.
Mathematical Programming, 121(1):33–60, 2010.

[30] Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with
sparse inequalities. Mathematical Programming, 154(1):329–352, 2015.

[31] Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Analysis of sparse cutting planes
for sparse MILPs with applications to stochastic MILPs. Mathematics of Operations
Research, 43(1):304–332, 2018.

[32] Friedrich Eisenbrand. Note – on the membership problem for the elementary closure
of a polyhedron. Combinatorica, 19(2):297–300, Feb 1999.

[33] Matteo Fischetti and Andrea Lodi. Optimizing over the first Chvátal closure. Math-
ematical Programming, 110(1):3–20, 2007.

[34] Matteo Fischetti, Andrea Lodi, and Andrea Tramontani. On the separation of dis-
junctive cuts. Mathematical Programming, 128(1):205–230, 2011.

[35] Matteo Fischetti and Domenico Salvagnin. A relax-and-cut framework for Gomory
mixed-integer cuts. Mathematical Programming Computation, 3(2):79–102, 2011.

[36] Matteo Fischetti and Domenico Salvagnin. Approximating the split closure. IN-
FORMS Journal on Computing, 25(4):808–819, 2013.

50

[37] Gerald Gamrath and Marco E. Lübbecke. Experiments with a generic dantzig-wolfe
decomposition for integer programs. In Paola Festa, editor, Experimental Algorithms,
pages 239–252, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[38] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath,
Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch, Marco E.
Lübbecke, Stephen J. Maher, Matthias Miltenberger, Benjamin Müller, Marc E.
Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser, Christoph Schu-
bert, Felipe Serrano, Yuji Shinano, Jan Merlin Viernickel, Matthias Walter, Fabian
Wegscheider, Jonas T. Witt, and Jakob Witzig. The SCIP Optimization Suite 6.0.
ZIB-Report 18-26, Zuse Institute Berlin, July 2018.

[39] Ralph E. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra
and its Applications, 2(4):451 – 558, 1969.

[40] C. Guéret, C. Prins, and M. Servaux. Applications of optimization with Xpress - MP.
Dash Optimization Ltd., London, 2002.

[41] Elias B. Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina.
Learning to branch in mixed integer programming. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’16, pages 724–731. AAAI Press,
2016.

[42] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy,
and Kati Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103–
163, 2011.

[43] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991.

[44] Manfred W. Padberg. On the facial structure of set packing polyhedra. Mathematical
Programming, 5(1):199–215, Dec 1973.

[45] A. Schrijver. On cutting planes. In Peter L. Hammer, editor, Combinatorics 79,
volume 9 of Annals of Discrete Mathematics, pages 291 – 296. Elsevier, 1980.

[46] H. Sherali and W. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics, 3(3):411–430, 1990.

51

[47] Uwe H. Suhl and Leena M. Suhl. Computing sparse LU factorizations for large-scale
linear programming bases. ORSA Journal on Computing, 2(4):325–335, 1990.

[48] Matthias Walter. Sparsity of lift-and-project cutting planes. In Stefan Helber, Michael
Breitner, Daniel Rösch, Cornelia Schön, Johann-Matthias Graf von der Schulenburg,
Philipp Sibbertsen, Marc Steinbach, Stefan Weber, and Anja Wolter, editors, Op-
erations Research Proceedings 2012, pages 9–14, Cham, 2014. Springer International
Publishing.

52

APPENDICES

53

Appendix A

Additional computational results

54

A.1 U = 1, M = 1, MIPLIB 3.0

L&P U = 1,M = 1 L&P U = 1,M = 1
Instance gap Gap # cuts Time % time Instance gap Gap # cuts Time % time

[21] closed binding (s) checking [21] closed binding (s) checking
10teams 30.41 32.26 2260 604800 1.05 misc06 86.21 81.93 121 35 4.00
air03 100.00 100.00 54 2 60.00 misc07 11.44 11.44 358 8338 0.20
air04 87.38 90.13 551 604800 21.58 mitre 100.00 100.00 6674 44523 0.36
air05 85.81 61.88 441 604800 9.51 mkc 63.18 63.48 26109 604800 0.05
arki001 20.34 19.59 328 3178 0.93 mod008 9.02 9.03 87 19 1.58
bell3a 64.46 64.56 76 3 0.00 mod010 52.51 52.49 418 5663 2.85
bell5 86.25 86.25 110 20 0.00 mod011 55.39 79.65 1355 604800 0.77
blend2 21.82 21.82 47 58 0.69 modglob 57.09 57.08 182 350 0.31
cap6000 50.00 46.67 41 593 1.32 nw04 38.85 40.02 825 146178 6.77
dano3mip 0.52 0.47 639 604800 7.72 p0033 8.19 8.19 79 6 1.67
danoint 5.53 5.63 1147 131888 1.07 p0201 46.85 46.85 171 115 0.52
dcmulti 98.15 98.15 476 1060 0.43 p0282 93.90 93.90 332 698 0.30
egout 93.85 93.85 203 33 0.61 p0548 91.36 91.48 821 604800 0.00
fast0507 9.95 16.50 354 604800 22.94 p2756 81.60 82.29 846 34841 0.02
fiber 20.63 20.63 646 7613 0.03 pk1 NA 0.00 1054 4657 0.13
fixnet6 86.36 86.37 876 2014 0.46 pp08a 79.29 79.29 243 86 0.23
flugpl 11.72 11.74 25 2 0.00 pp08aCUTS 68.81 68.82 282 242 0.25
gen 70.49 70.41 326 407 1.33 qiu 78.09 78.09 2815 604800 1.03
gesa2 59.10 59.08 268 623 0.30 qnet1 94.28 94.28 307 154 1.62
gesa2_o 59.80 59.78 312 1032 0.21 qnet1_o 87.59 87.59 309 154 0.45
gesa3 79.89 79.75 513 1293 0.36 rentacar 91.35 58.71 404 604800 9.65
gesa3_o 82.88 82.68 680 1382 0.25 rgn 11.88 11.88 255 26 1.54
gt2 92.38 92.01 74 4 0.00 rout 28.01 27.98 594 40163 0.09
harp2 21.28 20.66 283 196356 0.03 set1ch 39.88 39.88 221 1841 0.03
khb05250 99.86 99.86 325 98 4.49 seymour 55.94 61.77 860 604800 5.30
l152lav 34.46 24.16 345 15612 1.27 stein27 0.00 0.00 84 48 1.04
lseu 16.58 16.58 127 12 0.83 stein45 0.00 0.00 598 10672 0.31
mas74 5.47 5.45 86 80 1.12 swath 2.77 3.68 316 629 7.54
mas76 3.68 3.68 99 61 0.66 vpm1 31.42 31.42 159 79 0.38
misc03 40.31 40.21 313 184 0.92 vpm2 54.29 54.29 240 211 0.28

average 50.98 50.44 986 122743 3.16

55

A.2 U = 1, M = 1, MIPLIB 2003

L&P U = 1,M = 1
Instance gap Gap # cuts Time % time

[21] closed binding (s) checking
a1c1s1 78.76 78.77 831 76709 0.07
aflow30a 42.41 42.45 856 10356 0.11
aflow40b 34.29 34.29 1363 22829 0.17
atlanta-ip 1.09 0.22 29 200108 3.31
ds NA 7.88 967 604800 81.23
glass4 0.00 0.00 102 10527 0.05
manna81 NA 100.00 456 3736 0.14
momentum1 44.88 65.67 1305 604800 14.63
momentum2 41.47 68.59 1181 604800 24.60
msc98-ip 42.23 0.00 0 4885 0.00
mzzv11 56.47 68.33 803 604800 53.82
mzzv42z 87.73 81.97 616 604800 63.93
net12 22.73 25.46 3298 604800 17.88
nsrand-ipx 36.88 36.88 1008 177603 0.04
opt1217 0.19 0.19 603 3531 2.28
protfold 10.29 40.32 556 604800 19.70
rd-rplusc-21 0.00 0.00 476 479317 0.11
roll3000 16.31 16.31 613 604800 1.08
sp97ar 42.06 47.04 761 541947 0.78
timtab1 26.99 26.99 233 697 0.07
timtab2 20.98 21.65 272 8132 0.02
tr12-30 64.12 64.12 738 26168 0.01
average 35.35 37.60 776 291134 12.91

56

A.3 U = 1, M = 2, MIPLIB 3.0

L&P U = 1,M = 2 L&P U = 1,M = 2
Instance gap Gap # cuts Time % time Instance gap Gap # cuts Time % time

[21] closed binding (s) checking [21] closed binding (s) checking
10teams 30.41 49.52 764 604800 2.97 misc06 86.21 100.00 217 77 8.96
air03 100.00 100.00 51 3 90.00 misc07 11.44 13.36 326 229485 0.01
air04 87.38 90.54 508 604800 35.28 mitre 100.00 100.00 17973 365986 0.28
air05 85.81 63.13 299 604800 6.68 mkc 63.18 66.46 1758 604800 0.18
arki001 20.34 29.02 409 21342 0.15 mod008 9.02 16.62 109 249 0.32
bell3a 64.46 69.09 80 12 0.83 mod010 52.51 82.32 373 209606 0.11
bell5 86.25 87.54 159 75 0.53 mod011 55.39 81.88 1193 604800 0.75
blend2 21.82 24.27 109 251 0.24 modglob 57.09 90.94 245 8584 0.02
cap6000 50.00 58.05 39 925 2.00 nw04 38.85 55.40 497 604800 2.94
dano3mip 0.52 0.52 409 604800 14.99 p0033 8.19 15.23 82 99 0.10
danoint 5.53 7.49 607 604800 0.13 p0201 46.85 69.37 291 15323 0.02
dcmulti 98.15 100.00 651 341 1.00 p0282 93.90 96.54 246 6159 0.03
egout 93.85 100.00 175 40 0.75 p0548 91.36 95.49 439 604800 0.00
fast0507 9.95 16.92 494 604800 36.39 p2756 81.60 86.96 717 239467 0.00
fiber 20.63 33.82 472 604800 0.00 pk1 0.00 0.00 752 98794 0.01
fixnet6 86.36 89.73 678 25831 0.02 pp08a 79.29 94.42 207 5711 0.01
flugpl 11.72 13.34 44 5 0.00 pp08aCUTS 68.81 88.72 288 2246 0.09
gen 70.49 83.71 291 10878 0.08 qiu 78.09 78.09 746 604800 0.17
gesa2 59.10 77.21 317 19523 0.03 qnet1 94.28 98.96 375 190146 0.01
gesa2_o 59.80 77.41 342 20924 0.01 qnet1_o 87.59 93.00 371 47003 0.00
gesa3 79.89 96.02 663 33012 0.05 rentacar 91.35 26.33 132 1367 20.72
gesa3_o 82.88 96.02 592 22314 0.03 rgn 11.88 22.16 232 514 0.14
gt2 92.38 92.62 90 127 0.08 rout 28.01 43.99 336 604800 0.01
harp2 21.28 34.20 159 74382 0.03 set1ch 39.88 65.61 225 29366 0.00
khb05250 99.86 100.00 410 675 1.14 seymour 55.94 62.12 783 604800 8.78
l152lav 34.46 32.44 330 582244 0.07 stein27 0.00 0.00 179 297 0.13
lseu 16.58 34.96 144 630 0.05 stein45 0.00 0.00 2199 565672 0.15
mas74 5.47 7.31 94 459 0.17 swath 2.77 10.15 305 195594 0.14
mas76 3.68 5.22 80 369 0.14 vpm1 31.42 43.63 232 1699 0.04
misc03 40.31 40.21 257 4518 0.04 vpm2 54.29 70.57 230 7137 0.01

average 50.98 57.98 696 191778 3.97

57

A.4 U = 1, M = 2, MIPLIB 2003

L&P U = 1,M = 2
Instance gap Gap # cuts Time % time

[21] closed binding (s) checking
a1c1s1 78.76 91.62 792 490411 0.02
aflow30a 42.41 58.86 577 604800 0.00
aflow40b 34.29 46.45 694 604800 0.01
atlanta-ip 1.09 8.19 626 578238 5.18
ds NA 9.23 1142 604800 68.75
glass4 0.00 0.28 206 21661 0.16
manna81 NA 100.00 1579 22549 0.08
momentum1 44.88 65.81 1245 604800 18.85
momentum2 41.47 67.93 914 604800 32.35
msc98-ip 42.23 0.00 0 268 0.00
mzzv11 56.47 60.44 337 604800 69.81
mzzv42z 87.73 76.02 850 604800 65.04
net12 22.73 23.35 2311 604800 16.33
nsrand-ipx 36.88 48.84 1001 604800 0.03
opt1217 0.19 0.43 682 166681 0.04
protfold 10.29 38.99 786 604800 26.92
rd-rplusc-21 0.00 0.00 669 522527 0.62
roll3000 16.31 26.33 567 604069 0.58
sp97ar 42.06 55.19 282 604800 0.97
timtab1 26.99 53.80 260 37060 0.00
timtab2 20.98 43.92 309 102548 0.00
tr12-30 64.12 85.49 773 574047 0.00
average 35.35 43.70 755 444221 13.90

58

Appendix B

Effect of heuristics in computation

In order to examine the effect of some features and modifications we introduced to our
separation routine, we ran the code on MIPLIB 3.0 instances with M = +∞ and U = 100.
We set the global time limit to an hour, and disabled the following features one at a time:

• cut strengthening (cut_str_off);

• stabilizing objective (stb_obj_off);

• set covering (set_cov_off).

We then plotted, for each scenario, the number of instances on which at least x% integrality
gap was closed, for x ∈ {10, 20, . . . , 90}. As shown in Figure B.1, the additional features
indeed helped to obtain better results.

Among the three heuristics compared, using set covering to impose partial orthogonality
between split cuts plays the most important role. The advantage of stabilizing objective
is also evident. Note that, these results were obtained with a bound U = 100 already
imposed on the disjunction coefficients. We thus expect to observe a more dramatic gain
from stabilized objective, had we chosen a larger bound U to begin with. Table B.1 shows
the average gap closed in each computational setting. Note that we were able to close
significantly more integrality gap when all features were used (default).

59

Setting Average gap closed
default 31.04%
cut_str_off 28.35%
stb_obj_off 21.32%
set_cov_off 12.41%

Table B.1: Effect of heuristics

10

20

30

40

50

>0%
>10%

>20%
>30%

>40%
>50%

>60%
>70%

>80%
>90%

Gap closed

N
um

be
r

of
 in

st
an

ce
s

 default

cut_str_off

stb_obj_off

set_cov_off

Figure B.1: Effect of heuristics

60

	List of Tables
	List of Figures
	Introduction
	Cutting planes
	Closures
	Split disjunctions and split cuts
	Sparsity
	Motivations and outline

	Background
	Cut generating linear program
	Cut lifting
	Optimizing over the split closure
	Automatic detection of double-bordered block-diagonal structure

	Implementation Details
	Existing methods for practical computation
	New features in our implementation
	Algorithmic descriptions

	Computational Experiments
	Choice of model parameter values
	Three experiments
	How does our implementation compare with known results?
	How does sparsity help?
	How does structured sparsity help?

	Computing (restricted) split closure on MIPLIB 2003 instances

	Conclusion
	References
	APPENDICES
	Additional computational results
	U=1, M=1, MIPLIB 3.0
	U=1, M=1, MIPLIB 2003
	U=1, M=2, MIPLIB 3.0
	U=1, M=2, MIPLIB 2003

	Effect of heuristics in computation

