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Abstract

Incomplete data arises frequently in health research studies designed to investigate the

causal relationship between a treatment or exposure, and a response of interest. Statistical

methods for conditional causal effect parameters in the setting of incomplete data have

been developed, and we expand upon these methods for estimating marginal causal effect

parameters. This thesis focuses on the estimation of marginal causal odds ratios, which

are distinct from conditional causal odds ratios in logistic regression models; marginal

causal odds ratios are frequently of interest in population studies. We introduce three

methods for estimating the marginal causal odds ratio of a binary response for different

levels of a subgroup variable, where the subgroup variable is incomplete. In each chapter,

the subgroup variable, exposure variable and the response variable are binary and the

subgroup variable is missing at random.

In Chapter 2, we begin with an overview of inverse probability weighted methods for

confounding in an observational setting where data are complete. We also briefly review

methods to deal with incomplete data in a randomized setting. We then introduce a

doubly inverse probability weighted estimating equation approach to estimate marginal

causal odds ratios in an observational setting, where an important subgroup variable is

incomplete. One inverse probability weight accounts for the incomplete data, and the other

weight accounts for treatment selection. Only complete cases are included in the response

model. Consistency results are derived, and a method to obtain estimates of the asymptotic

standard error is introduced; the extra variability introduced by estimating two weights is

incorporated in the estimation of the asymptotic standard error. We give a method for

hypothesis testing and calculation of confidence intervals. Simulation studies show that the

doubly weighted estimating equation approach is effective in a non-ignorable missingness

setting with confounding, and it is straightforward to implement. It also performs well

when the missing data process is ignorable, and/or when confounding is not present.

In Chapter 3, we begin with an overview of an EM algorithm approach for estimating

conditional causal effect parameters in the setting of incomplete covariate data, in both

randomized and observational settings. We then propose the use of a doubly weighted

EM-type algorithm approach to estimate the marginal causal odds ratio in the setting of
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missing subgroup data. In this method, instead of using complete case analysis in the

response model, all available data is used and the incomplete subgroup variable is filled

in using a maximum likelihood approach. Two inverse probability weights are used here

as well, to account for confounding and incomplete data. The weight which accounts for

the incomplete data is needed, even though an EM approach is being used, because the

marginal causal odds ratio is of interest. A method to obtain asymptotic standard error

estimates is given where the extra variability introduced by estimating the two inverse

probability weights, as well as the variability introduced by estimating the conditional

expectation of the incomplete subgroup variable, is incorporated. Simulation studies show

that this method is effective in terms of obtaining consistent estimates of the parameters

of interest; however it is difficult to implement, and in certain settings there is a loss of

efficiency in comparison to the methods introduced in Chapter 2.

In Chapter 4, we begin by reviewing multiple imputation methods in randomized and

observational settings, where estimation of the conditional causal odds ratio is of interest.

We then propose the use of multiple imputation with one inverse probability weight to

account for confounding in an observational setting where the subgroup variable is incom-

plete. We discuss methods to correctly specify the imputation model in the setting where

the conditional causal odds ratio is of interest, as well as in the setting where the marginal

causal odds ratio is of interest. We use standard methods for combining the estimates of

the marginal log odds ratios from each imputed dataset. We propose a method for estimat-

ing the asymptotic standard error of the estimates, which incorporates both the estimation

of the parameters in the weight for confounding, and the multiply imputed datasets. We

give a method for hypothesis testing and calculation of confidence intervals. Simulation

studies show that this method is efficient and straightforward to implement, but correct

specification of the imputation model is necessary.

In Chapter 5, the three methods that have been introduced are used in an application to

an observational cohort study of 418 colorectal cancer patients. We compare patients who

received an experimental chemotherapy with patients who received standard chemotherapy;

of interest is estimation of the marginal causal odds ratio of a thrombotic event during the

course of treatment or 30 days after treatment is discontinued. The important subgroups

are (i) patients receiving first line of treatment, and (ii) patients receiving second line of
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treatment.

In Chapter 6, we compare and contrast the three methods proposed. We also discuss

extensions to different response models, models for missing response data, and weighted

models in the longitudinal data setting.
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Chapter 1

Introduction

This thesis focuses on causal analysis in observational settings for a binary response where

subgroup data is incompletely observed. Doubly inverse probability weighted estimating

equations are developed to account for missing data in the causal inference setting, a doubly

weighted EM-type algorithm is proposed, and multiple imputation is explored as a third

technique.

In this chapter, statistical methods for causal inference, including an introduction to

counterfactual notation, are briefly described. This is followed by a brief review of methods

for incomplete data.

1.1 Statistical Methods for Causal Analysis

Methods for causal inference are used to investigate whether something - a treatment

or exposure - is causally linked to an outcome of interest. The terms ‘treatment’ and

‘exposure’ will be used interchangeably throughout this thesis. In a medical setting, it is

often of interest to make causal statements about the effect of an exposure on a health-

related outcome (Papanikolaou et al., 2006; Schulz et al., 2010). For example, interest may

lie in determining whether patients undergoing non-cardiac surgery who are exposed to
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low-dose aspirin are at a lower risk of post-operative acute kidney injury compared with

patients who do not take aspirin (Garg et al., 2014).

Throughout this thesis, we focus on estimation of the odds ratio in logistic regression

models. The odds ratio is a popular summary measure in comparisons of probabilities

between groups as it is easily estimable using standard statistical software (Bland and

Altman, 2000; Greenland, 1987). When the probability of success is less than 10% in the

comparison group, the odds ratio is a reasonable approximation of the relative risk, which

is an easily interpretable summary measure (Viera, 2008).

In this section, we define the causal odds ratio, discuss assumptions for estimation of

the causal odds ratio, and discuss issues about collapsibility and subgroup effect estimation

in both randomized and observational settings.

1.1.1 Counterfactual Notation, Causal Effects and Study Design

Let Y denote a response of interest, and let X denote a treatment or exposure. For

example, Yi could indicate whether subject i had an acute kidney injury within 14 days

after surgery, and Xi could indicate whether the subject was treated with low-dose aspirin.

Let Y1i denote the response under treatment X = 1 for subject i and Y0i denote the

response under treatment X = 0. Then the average causal effect of X on Y is defined as

E(Y1i)− E(Y0i) (1.1)

(Rubin, 1974; Greenland et al., 1999). In the context of a binary response, where interest

lies in quantifying the difference in the probability of an event between the two treatments

with the odds ratio, the causal odds ratio is defined as

P (Y1i = 1)/[1− P (Y1i = 1)]

P (Y0i = 1)/[1− P (Y0i = 1)]
. (1.2)

The causal model notation above assumes that treatment X = 1 can be administered

to subject i, and then treatment X = 0 can be applied to the same individual under the

exact same conditions. This is not possible in practice; (Y1, Y0) are called counterfactuals
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or potential responses because only one can be observed, and observation of the other

is therefore ‘counter to fact’ (Neyman, 1923; Rubin, 1990). Counterfactual notation can

be used as a framework for describing relationships in observational studies where causal,

rather than associative, questions are of interest (Pearl, 2010).

In practice, treatment X = 1 is administered to one group of subjects, and treatment

X = 0 is administered to another group of subjects, and the difference between the average

responses for each group is used to approximate the causal effect (1.1). Care must be taken

to ensure that there are no systematic differences between the treatment groups, other than

the treatment itself. The gold standard for making causal inference in a clinical setting

is the randomized controlled trial, where the treatment or exposure is randomly allocated

to study participants and therefore no participant factors, measured or unmeasured, can

influence both treatment selection and the response of interest. Because the treatment

allocation is not related to participant characteristics in a randomized trial, participant

characteristics will be balanced across the treatment groups, and any differences in out-

comes between those who are treated and those who are untreated can be attributed to

the treatment (Greenland, 1990; Greenland et al., 1999; Rubin, 1974).

Nonrandomized, or observational, studies are also useful for causal analysis, although

analysis and interpretation of observational data is more complex due to systematic differ-

ences that often exist between those who are treated and those who are untreated; these

differences may, at least in part, explain any differences in the average response between the

treatment groups (Black, 1996; von Elm et al., 2007). In other words, characteristics that

are different between the treatment groups can confound our ability to attribute any dif-

ferences in the response to the treatment. We define a confounding variable or confounder

as a variable that is both related to treatment selection (i.e. whether a subject receives

treatment X = 1 or X = 0), and the response of interest (Greenland et al., 1999), and we

let Z1 denote a vector of measured confounders. Note that a confounder in this setting is

a variable that is not on the causal pathway between the treatment and the response; we

assume that confounders are measured at the time that treatment is selected/randomly

allocated.

We define the following assumptions for causal analysis: (i) strong ignorability, (ii)

positivity, (iii) consistency, and (iv) the stable unit treatment value assumption. These

3



assumptions are made implicitly in all chapters of this thesis.

(i) Strong Ignorability: Strong ignorability holds when treatment assignment (whether

X = 1 or X = 0) and response (Y1, Y0) are independent, conditional on measured con-

founders Z1. This is also referred to as the no unmeasured confounders assumption, or

conditional exchangeability (Cole and Hernán, 2008; Rosenbaum and Rubin, 1983). In the

randomized setting where X⊥Z1, treatment selection is strongly ignorable.

(ii) Positivity: The positivity assumption holds when the conditional probability of receiv-

ing treatment X = 1 or X = 0 is non-zero, i.e. 0 < P (X = 1|Z1) < 1 (Petersen et al.,

2010).

(iii) Consistency: The consistency assumption holds when a subject’s observed outcome

is equal to their counterfactual outcome under the observed exposure (Cole and Hernán,

2008). Formally, using counterfactual notation, consistency holds when

Yx = Y ,

for x = 0, 1.

(iv) Stable Unit Treatment Value Assumption (SUTVA): The stable unit treatment value

assumption holds when: (a) all individuals in the same exposure group have identical

treatment, (b) the potential response of one individual does not influence that of another

individual, (c) the exposure status of one individual does not influence the potential re-

sponses of another individual, and (d) identical repetitions of the exposure would result in

identical responses (Cotton, 2009; Pearl, 2003).

The strong ignorability, or no unmeasured confounders, assumption is difficult to test

in a study setting. In practice, if the set of covariates collected is rich enough and contains

clinically relevant information about the response process, the strong ignorability assump-

tion may be appropriate. Brumback et al. (2004) developed a method for attempting to

quantify unmeasured confounding in marginal structural model analyses, but we do not

explore these methods here.

These assumptions, particularly consistency and strong ignorability, are useful in both

the randomized and observational study settings for making causal inferences. First, we

show that we can obtain unbiased estimates of the average causal difference in the response

(equation (1.1)) using randomized data. Next, we show that the same is true in an obser-
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vational setting, provided there are no unmeasured confounders. In a randomized trial, the

expected value of the difference in the average response is equal to the causal difference in

means:

E[E(Yi|Xi = 1)− E(Yi|Xi = 0)]

= E[E(Y1i|Xi = 1)− E(Y0i|Xi = 0)] (consistency)

= E[E(Y1i)− E(Y0i)] (strong ignorability, randomized trial)

= E(Y1i)− E(Y0i)

where the strong ignorability assumption holds because there are no confounders in a

randomized setting. Before showing that observational data can be used to estimate the

average causal difference in the response of interest, we introduce new notation for the

treatment variable in the observational setting; let Wi denote the treatment variable in

an observational study for subject i. We distinguish between Xi and Wi because the

distribution of the treatment variable in a randomized setting is independent of all sub-

ject characteristics, whereas the distribution of the treatment variable is often dependent

upon subject characteristics in observational settings. In an observational setting with no

unmeasured confounders, the expected value of the difference in the average response is

E[E(Yi|Wi = 1,Z1i)− E(Yi|Wi = 0,Z1i)]

= E[E(Y1i|Wi = 1,Z1i)− E(Y0i|Wi = 0,Z1i)] (consistency)

= E[E(Y1i|Z1i)− E(Y0i|Z1i)] (strong ignorability)

= E(Y1i)− E(Y0i) (1.3)

where the strong ignorability assumption holds because confounder vector Z1i contains

information on all important confounders.

The causal odds ratio is defined in (1.2), and we show here that randomized study data
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can be used to estimate the causal odds ratio where the response of interest is binary:

E(Yi|Xi = 1)/(1− E(Yi|Xi = 1))

E(Yi|Xi = 0)/(1− E(Yi|Xi = 0))

=
E(Y1i|Xi = 1)/(1− E(Y1i|Xi = 1))

E(Y0i|Xi = 0)/(1− E(Y0i|Xi = 0))
(consistency)

=
E(Y1i)/(1− E(Y1i))

E(Y0i)/(1− E(Y0i))
(strong ignorability, randomized trial)

=
P (Y1i = 1)/(1− P (Y1i = 1))

P (Y0i = 1)/(1− P (Y0i = 1))
.

However, we cannot use observational data to estimate the causal odds ratio in the same

way as in (1.3) (i.e. by conditioning on the confounders) and this is because the odds ratio is

subject to non-collapsibility (Greenland and Robins, 1986; Martinussen and Vansteelandt,

2013; Miettinen and Cook, 1981).

A model is said to be collapsible if the marginal causal effect is equal to the conditional

causal effect (Austin et al., 2007b; Greenland et al., 1999). A conditional response model

is one where all variables that are associated with the response are included (conditioned

on). An example of a conditional generalized linear model is

g[µi(Xi,Z1i,Vi)] = ϑ0 + ϑ1Xi + Z1iϑ2 + Viϑ3 ,

where µi(Xi,Z1i,Vi) = E(Yi|Xi,Z1i,Vi) and Vi denotes a vector of auxiliary variables

measured at the time that treatment is administered that are associated with the re-

sponse, but independent of treatment selection. The vector of regression coefficients in

the conditional response model is ϑ = (ϑ0, ϑ1,ϑ
T
2 ,ϑ

T
3 )T . A marginal response model is a

causal model where only the treatment variable is included as an independent variable.

For example,

g[µi(Xi)] = β0 + β1Xi , (1.4)

where µi(Xi) = E(Yi|Xi) and β = (β0, β1) is a vector of regression coefficients. A model is

said to be collapsible if the marginal treatment effect is equal to the conditional treatment

effect, i.e. β1 = ϑ1. In summary,

i) β1 = ϑ1 when X ⊥ Z1 and the model is collapsible;
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ii) β1 6= ϑ1 when X ⊥ Z1 and the model is not collapsible;

and iii) β1 6= ϑ1 when X 6⊥ Z1 regardless of whether the model is collapsible.

Note that for simplicity, we have used X and W interchangeably here, and we have let

X ⊥ Z1 denote a randomized setting, and X 6⊥ Z1 in an observational setting. The X and

W notation will be used to distinguish between a randomized setting and an observational

setting throughout the rest of this work. An example of a collapsible regression model is

the linear regression model where g[µ] = µ, and an example of a non-collapsible regression

model is the logistic regression model with logit link function g[µ] = log(µ/(1−µ)) (Austin

et al., 2007b; Greenland, 1987; Greenland et al., 1999).

The conditional causal odds ratio is defined as

P (Y1i = 1|Z1i,Vi)/[1− P (Y1i = 1|Z1i,Vi)]

P (Y0i = 1|Z1i,Vi)/[1− P (Y0i = 1|Z1i,Vi)]
. (1.5)

In the following subsections, we discuss methods for estimation of the marginal causal

odds ratio (1.2) that do not include conditioning on measured confounders in an observa-

tional setting.

1.1.2 The Propensity Score

The propensity score is the conditional probability that an individual receives treatment

X = 1 (or W = 1) given their covariates (Lunceford and Davidian, 2004; Rosenbaum and

Rubin, 1983). In this section, we focus on the observational setting where treatment is

denoted by W . Note that in the randomized setting, the propensity score is the same

for each subject in the trial and the probability of receiving X = 1 is typically 50% (i.e.

P (Xi = 1|Z1i) = P (Xi = 1) = 0.5).

Let Z2i denote a vector of auxiliary variables that are associated with treatment selec-

tion (i.e. the distribution of Z2i is not balanced between treatment groups), but Z2i is not

related to the response variable, conditional on other observed confounders and auxiliary

variables, i.e. Z2i ⊥ Yi|(Wi,Z1i,Vi)). In this thesis, the propensity score for subject i is

defined as

πi(ξ1) = P (Wi = 1|Z1i,Z2i; ξ1) , (1.6)
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where ξ1 is a vector of regression coefficients. Auxiliary variable Vi is not included here

because Wi⊥Vi by definition. Note that some researchers suggest only including variables

that are both predictive of treatment selection and the response in the propensity score

(i.e. Z1i only), while others recommend including all variables that are either predictive of

treatment selection or response (i.e. Z1i,Z2i,Vi) (Austin et al., 2007a).

The propensity score is a balancing score (Rosenbaum and Rubin, 1983). A balancing

score is a function of the data where, conditional on the balancing score, treatment selection

and baseline variables are independent, i.e. covariates are balanced between treatment

groups. Formally, if b(Z1i,Z2i) is a balancing score, then

(Z1i,Z2i) ⊥ Wi | b(Z1i,Z2i) .

Intuitively, this means that subjects with a similar balancing score have a similar covariate

distribution. In other words, if covariates Z1 and Z2 are summarized among subjects with

a similar balancing score within each treatment group, one would expect the summary

statistics (e.g. sample means) to be similar across the treatment groups on average.

Rosenbaum and Rubin (1983) showed that if treatment selection is strongly ignorable

given Z1 and Z2, then treatment selection is strongly ignorable given π(ξ1). Formally, this

can be expressed as

(Y1i, Y0i) ⊥ Wi | (Z1i,Z2i) ⇒ (Y1i, Y0i) ⊥ Wi | πi(ξ1) .

In estimation of the difference in the average response between the treatment groups (1.1),

this is useful, especially when Z1 is of high dimension (Dehejia and Wahba, 2002); instead

of conditioning on Z1 in the causal model for the response, one can condition on the

propensity score to estimate the causal difference in the average response:

E[E(Yi|Wi = 1, πi(ξ1))− E(Yi|Wi = 0, πi(ξ1))]

= E[E(Y1i|Wi = 1, πi(ξ1))− E(Y0i|Wi = 0, πi(ξ1))] (consistency)

= E[E(Y1i|πi(ξ1))− E(Y0i|πi(ξ1))] (strong ignorability)

= E(Y1i)− E(Y0i) .

Because the odds ratio is non-collapsible, we cannot condition on the propensity score

to adjust for confounding to ensure consistent estimation of causal odds ratio (1.2) (Austin
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et al., 2007b). However, the propensity score can be used as a balancing score in the

logistic regression setting in order to obtain consistent estimates of the marginal causal

odds ratio by stratification on the propensity score, propensity score matching, and inverse

probability of treatment weighting using the propensity score (Austin, 2009; Loux et al.,

2017). In this thesis, we focus on inverse probability weighting and introduce this approach

in Section 1.1.3.

Before proceeding, we note that in observational studies, the true propensity score

for each individual is unknown. Propensity scores can be estimated using the observed

data; estimated propensity scores produce sample balance for the probability of exposure

and can therefore be used for causal inference (Rosenbaum and Rubin, 1983; Rosenbaum,

1987). Typically, a logistic regression model is used where the independent variables are the

confounders, and the dependent variable is the exposure (Rosenbaum and Rubin, 1984).

1.1.3 Inverse Probability of Treatment Weighted Estimating

Equations

The inverse probability weighted estimating equation method is used to fit a marginal

structural model (MSM). This approach was developed by Robins and colleagues (Hernán

et al., 2000; Robins, 2000; Robins et al., 2000) for causal analysis in an observational

setting with longitudinal data. In an inverse probability weighted estimating equation,

each subject is given a weight which is the inverse of the propensity score for those who

are treated, and the inverse of the complement of the propensity score for those who

are untreated. Under the causal assumptions listed in Section 1.1.1, and given that the

model used to estimate the weights is not misspecified, a weighted model creates a pseudo-

population where treatment selection is independent of measured confounders (Cole and

Hernán, 2008; Hernán et al., 2000). One can then use observational data to estimate

marginal parameters that would be of interest in a randomized trial setting (Tsai et al.,

2010).

The following is an example of an inverse probability weighted estimating function with

a logistic regression response model, where the response for subject i is denoted by Yi, the
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treatment variable is denoted by Wi and the propensity score is denoted by πi(ξ1) from

(1.6):

Ui(β; ξ1) =
1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1 (Yi − µi(β))

where β is a vector of regression parameters, ξ1 are the parameters in the propensity score

model, µi(β) = P (Yi = 1|Wi;β), Di(β) = ∂µi(β)/∂β, and Vi(β) = µi(β)(1 − µi(β)).

Stabilized weights can be used, where the denominator of the weight is unchanged, and

a numerator is added which may be, for example, the marginal probability of receiving

the treatment or the control. Stabilized weights are less variable, and resulting estimators

provide a good basis for inference (Hernán et al., 2000, 2002) since they are often more

efficient, but we do not explore them here. Standard statistical packages can be used to

implement the inverse probability weighted method (van der Wal and Geskus, 2011).

In the inverse probability weighted method, consistency of the parameter estimates is

subject to the selection of an appropriate propensity score model. Doubly robust methods,

or augmented inverse probability weighted methods for controlling for confounding combines

an inverse probability weight for confounding and regression modeling so that if either the

weight or the regression model is correctly specified, the parameter estimates are consistent

(Bang and Robins, 2005), however we do not explore doubly robust methods here.

1.1.4 Subgroup Effects

This thesis focuses on estimation of causal effects within sub-populations. A sub-group

or subgroup is defined as group of patients characterized by a set of common parameters

measured at the time that treatment is administered (Yusuf et al., 1991). Subgroup vari-

ables are also referred to as moderators in the literature (Aguinis et al., 2005). When the

causal effect of a treatment depends on the level of, or the value of, another variable, this

is referred to as effect modification or interaction (Altman and Matthews, 1996; Green-

land and Morgenstern, 1989). Marginal treatment effects for different levels of a subgroup

variable are often the effects of interest in randomized trials (Mazer et al., 2018; Raison

et al., 2013; Rothwell, 2005). For example, in a study of acute kidney injury in the setting
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of non-cardiac surgery where the treatment of interest is receipt of low-dose aspirin, an

important subgroup variable is pre-surgery chronic kidney disease, defined as an estimated

glomerular filtration rate (eGFR) < 60 mL/min per 1.73 m2 (Garg et al., 2014).

Let S denote a binary subgroup variable. The average causal effect of treatment rep-

resented by a difference in means (or proportions) within the subgroup of the population

with Si = 1 can be defined as followed:

E(Y1i|Si = 1)− E(Y0i|Si = 1) ,

and similarly, the average causal effect within the subgroup of the population with Si = 0

is defined as

E(Y1i|Si = 0)− E(Y0i|Si = 0) .

In the setting where Yi is binary and the causal odds ratio within subgroups is of

interest, the causal odds ratio for Si = 1 is defined as

P (Y1i = 1|Si = 1)/[1− P (Y1i = 1|Si = 1)]

P (Y0i = 1|Si = 1)/[1− P (Y0i = 1|Si = 1)]
,

and the causal odds ratio for Si = 0 is

P (Y1i = 1|Si = 0)/[1− P (Y1i = 1|Si = 0)]

P (Y0i = 1|Si = 0)/[1− P (Y0i = 1|Si = 0)]
.

(Hernán and Robins, 2006; VanderWeele, 2009).

Issues have been raised with multiple testing and inflated type I error rates in studies

where multiple subgroup effects are tested (Schulz and Grimes, 2005). To avoid finding

spurious subgroup effects, it is recommended that subgroup analyses should be pre-specified

and restricted to only one or two clinically relevant subgroups, and in the event that many

comparisons are made within multiple subgroups, multiple comparisons must be taken into

account (Yusuf et al., 1991). As well, subgroup analyses should be restricted to the primary

outcome (Assman et al., 2000).

Randomized trials and observational studies are not typically powered to detect sub-

group effects (Brookes et al., 2004). For example, in a simulation study designed to assess
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the power of a study under different parameter settings, a significant subgroup effect was

detected in between 7% and 64% of simulations (Brookes et al., 2004). Brookes et al.

(2004) recommended that, in order to detect an interaction effect of the same magnitude

as the overall effect, the sample size should be approximately four times the size required

to detect the overall effect.

1.2 Statistical Methods for Incomplete Covariates

Incomplete data frequently arises in both randomized and observational study settings.

Incomplete data can arise by design, where subsets of individuals are sampled in order

to minimize costs (e.g. in the case of collecting biomarker data); incomplete data can

also arise due to participant or investigator non-compliance. Problems can arise when the

missing data process is related to the response model. Before describing existing methods

to analyze data when covariates are incomplete, we begin with a description of the different

types of missing data patterns.

Data are missing completely at random (MCAR) when the missingness process is not

dependent on any variables, including the incomplete variable itself. In other words, the

subjects with missing covariate data are a random subset of the population of interest. Data

are missing at random (MAR) when the missingness process is dependent on variables that

are fully observed, but not dependent on the missing variable itself (Bhaskaran and Smeeth,

2014; Sterne et al., 2009). Data are missing not at random (MNAR) when the missingness

process is dependent upon unobserved data (Sterne et al., 2009).

A complete case analysis is one where only data from individuals with fully observed

data are included, and subjects with at least one missing variable are excluded; this is also

referred to as list-wise deletion (Allison, 2000). Complete case analysis can produce con-

sistent estimates in some settings, although there is typically a loss of information (Austin

and Escobar, 2005; Jones, 1996; Paik and Tsai, 1997; Robins et al., 1994). For example,

Vach (1994) used a complete case analysis approach in a logistic regression response model

with two covariates where one was subject to missing data; when the missing data process

was independent of the response, the parameter estimates were consistent.
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The term ignorable missing value mechanism was introduced by Rubin (1976) to refer

to data that is MCAR or MAR (Vach and Blettner, 1991). The term ignorable can also be

used to describe missing data settings where a complete case analysis is a valid approach,

and non-ignorable can refer to settings where a complete case analysis would result in

biased estimates (Carpenter and Kenward, 2013); we apply this usage throughout the

thesis.

Methods to obtain consistent estimates of regression parameters in the setting of non-

ignorable missing data have been developed, including inverse probability weighted esti-

mating equations, the EM-algorithm approach, and multiple imputation (Ibrahim et al.,

1999; McIsaac and Cook, 2017). In the following sections, we briefly describe these meth-

ods.

1.2.1 Inverse Probability Weighted Estimating Equations

Inverse probability weights can be used to account for the effect of missing data in a similar

way to inverse weighting for confounding when data are MAR (Chen et al., 2010; Robins

et al., 1995; Rotnitzky and Robins, 1995; Seaman and White, 2013). Carpenter et al.

(2006) give an intuitive example of the use of inverse probability weighting for missingness.

Essentially, inverse probability weighting involves the use of a complete case analysis in

fitting the response model, where each individual is given a weight which is the inverse of

the conditional probability of their data being observed. Subjects who are less likely to

have fully observed data are given more weight while those who are more likely to have

observed data are given lower weight. This effectively creates a pseudo-population where

the distribution of the covariates explaining the dependence between the outcome and the

and the missing data indicator is like that of the original sample. When it is possible

to condition on covariates in the response model so that missingness is ignorable, but

estimation of conditional causal parameters is not of interest, inverse probability weighted

models are useful.

An inverse probability weighted estimating function in a logistic regression response

model, where the response for subject i is denoted by Yi, the covariates are denoted by Xi,

the missing data indicator is denoted by Ri, and Di represents variables that are predictive
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of the missing data process, can take the form

Ui(β;ρ) =
Ri

πi(ρ)
Di(β)[Vi(β)]−1 (Yi − µi(β)) (1.7)

where µi(β) = P (Yi = 1|Xi;β), β is a vector of regression parameters, πi(ρ) = P (Ri =

1|Di;ρ), ρ are the parameters in the inverse probability weight model, Di(β) = ∂µi(β)/∂β,

and Vi(β) = µi(β)(1−µi(β)). Standard statistical packages can be used to implement the

inverse probability weighted method (van der Wal and Geskus, 2011). Stabilized weights

can be used here as well, where the denominator of the weight is the conditional probability

of having observed data, and a numerator is added which may be, for example, the marginal

probability of observed data. Stabilized weights are less extreme, and have good properties

in terms of estimation and hypothesis testing (Robins et al., 2000), but we do not explore

them here.

The parameters in the inverse probability weight are estimated using observed data,

therefore a model for the missing data process must be chosen and fitted, and the variability

in the parameter estimates must be incorporated in the variance estimate. In Section 2.3.2

we derive the formula for the asymptotic standard error of estimators obtained from inverse

probability weighted estimating equations in a general setting, and this derivation can be

applied to more simple settings, for example, the above estimating equation (1.7).

Consistency of parameter estimates is subject to the selection of an appropriate missing

data model. ‘Augmented’ inverse probability weighted models, or ‘doubly robust’ models,

are a generalization of inverse probability weighted methods and make use of data from

subjects with partially incomplete data. In augmented inverse probability weighting, an

inverse probability weight is used as well as an estimate of the conditional expectation of

the response for those with incomplete data. Consistency can be achieved as long as one

or both of the missing data process model or the conditional expectation of the response

are correctly specified (Seaman and White, 2013).

1.2.2 The Expectation-Maximization Algorithm

When covariate data are incomplete and the missing data is ignorable, an expectation-

maximization (EM) algorithm can be used to estimate causal treatment effects in the
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setting of missing data (Ibrahim et al., 2005). Unlike in the inverse probability weighted

method, the EM algorithm makes use of data from subjects with incomplete data. At the E-

step, the expectation of the complete data likelihood over the conditional distribution of the

missing data is computed given the current estimate of the parameters of interest. In the M-

step, the expectation of the E-step is maximized with respect to the parameters of interest

to obtain updated estimates. This process is repeated until pre-specified convergence

criteria are met. Standard errors of the treatment effect parameters can be estimated

using Louis’s formula (Louis, 1982; Ibrahim et al., 2005).

When the incomplete covariate is binary, and when there are very few missing co-

variates, the EM algorithm method is straightforward. However in the setting where the

missing covariate is continuous or the dimensionality is high, the EM algorithm method

is not ideal since valid inference depends on the correct specification of the conditional

covariate distribution.

When covariate data are non-ignorably missing, the EM-algorithm method can be

adapted with the addition of a selection model, which is a parametric model for the missing

data process (Ibrahim et al., 2005).

1.2.3 Multiple Imputation

Multiple imputation is described in detail in Rubin (1987). Multiple imputation involves

specifying a distribution for the missing variable(s), imputing, or ‘filling-in’, the missing

values using this distribution while allowing for variability, and repeating this imputation

process K times to create K complete datasets. The response model is fitted for each of the

complete datasets and the average of the K estimates is computed as the final parameter

estimate. A simple formula can be used to compute the variance which incorporates both

the variance of each estimate, as well as the the variability between the K estimates.

In multiple imputation methods, there may be somewhat of a separation between the

imputation model and the analysis model, which is in contrast to EM-algorithm based

methods (Schafer, 2003). Also, multiple imputation is different from inverse probability

weighting methods because it is not necessary to model the missing data process; this is
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useful in some settings, since surveys are not typically designed to capture adequate data

for modeling the missing data process.

Selection of variables to include in the imputation model has been widely studied (Car-

penter and Kenward, 2013; Collins et al., 2001; Penning de Vries and Groenwold, 2016).

The substantive response model is defined as the response model of interest. Rubin (1996)

offers the following guidelines for choosing imputation covariates: (i) variables that are

associated with the missing variable, and (ii) all of the variables that are included in the

substantive response model. Generally, any interaction and non-linear terms that will be

used in the final analysis model should be included in the imputation model, as well as

variables that are predictive of the missing data process (Collins et al., 2001; Rezvan et al.,

2015).

The addition of packages for multiple imputation in standard statistical software, in-

cluding fully conditional specification (FCS) multiple imputation which is useful when

there are many incomplete variables and the missing data pattern is non-monotone, has

helped multiple imputation become a popular method to deal with missing data.

Multiple imputation methods are designed for the setting where data are MAR (or

MCAR). When data are MNAR, multiple imputation methods can be augmented to ac-

commodate the missing data process (Schafer, 2003), or weighted to account for the degree

of the departure from the MAR assumption (Carpenter et al., 2007).

1.3 Causal Inference in the Setting of Missing Data

In this thesis, we focus on methods for estimation of marginal causal parameters in non-

collapsible response models where an important subgroup variable is incomplete.

Moodie et al. (2008) use a “full-weight” approach to causal analysis with an incomplete

confounding variable in a longitudinal treatment setting. The full-weight is the product of

two weights: one which accounts for confounding and one which accounts for missingness.

In Chapter 2, we apply this method to a single treatment setting with an incomplete

subgroup variable (which is not a confounder) and give a method for variance estimation.
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Hill (2004) introduced methods for estimating propensity scores within multiply im-

puted datasets, and Mitra and Reiter (2016) extended this work in comparing two ap-

proaches for causal analysis using multiple imputation and propensity score matching. In

the first approach, Mitra and Reiter (2016) estimated the propensity score and individuals

were matched based on the propensity score within each imputed dataset; the treatment

effect was estimated within each dataset and standard methods to combine the treatment

effects were used. In the second approach, the treatment effect was estimated within each

dataset and then was averaged across each imputed dataset for each subject. Leyrat et al.

(2017) further extended these methods in a comparison of propensity score-based models

within a multiple imputation setting in analysis of a binary response variable. Research

involving the use of multiple imputation for missing covariates in propensity score models,

with inverse probability weighted methods for estimating marginal causal effects, has been

conducted (Crowe et al., 2010; Eulenburg et al., 2016; Leyrat et al., 2017; Moodie et al.,

2008; Qu and Lipkovich, 2009; Seaman and White, 2014). In Chapter 4 we investigate the

use of multiple imputation to account for a missing subgroup variable in a causal setting

where the covariates in the propensity score are complete and therefore the propensity

score is estimated before imputation.

1.4 Incidence of Thrombotic Events in Metastatic Col-

orectal Cancer Patients

In 2006, bevacizumab (BV, Avastinr) became a publicly funded treatment in Ontario

in combination with chemotherapy FOLFIRI (leucovorin, fluorouracil and irinotican) for

those with metastatic colorectal cancer (mCRC). Previous studies have shown a survival

benefit in patients receiving BV in combination with standard chemotherapy (Hurwitz

et al., 2005; Saif and Mehra, 2006; Saltz et al., 2008), however the effect is modest and

BV has been associated with increased treatment-related adverse events (Ranpura et al.,

2011). Interest lies in comparing the rate of adverse events, including thrombotic events, in

mCRC patients receiving BV plus FOLFIRI in comparison to patients receiving FOLFIRI

alone. Registry data from patients treated between 2004 and 2011 at the Juravinski Cancer
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Centre in Hamilton, Ontario, Canada were used to study the causal treatment effect of

BV plus FOLFIRI; see Al-Shamsi et al. (2015) for more information. BV plus FOLFIRI

can be used as a second line of therapy or a first line of therapy. Interest lies in estimating

the causal effect of BV plus FOLFIRI on the risk of a thrombotic event within each line of

treatment subgroup. In Chapter 5, we apply the methods proposed in Chapters 2, 3 and

4 to this registry data in estimating the causal odds ratio of a thrombotic event in each

subgroup.

1.5 Outline of Thesis

In Chapter 2, we introduce a doubly inverse probability weighted estimating equation

approach to estimate marginal causal odds ratios in an observational setting, where an

important subgroup variable is incomplete. One inverse probability weight accounts for

the incomplete data, and the other weight accounts for treatment selection. Only complete

cases are included in the response model. Consistency results are derived, and a method

to obtain estimates of the asymptotic standard error is introduced; the extra variability

introduced by estimating two weights is incorporated in the estimation of the asymptotic

standard error. We give a method for hypothesis testing and calculation of confidence in-

tervals. Simulation studies show that the doubly weighted estimating equation approach is

effective in a non-ignorable missingness setting with confounding, and it is straightforward

to implement. It also performs well when the missing data process is ignorable, and/or

when confounding is not present.

In Chapter 3, we propose the use of a doubly weighted EM-type algorithm approach to

estimating the marginal causal odds ratio in the setting of missing subgroup data. The two

inverse probability weights are used to account for confounding and incomplete data. A

method to obtain asymptotic standard error estimates is given where the extra variability

introduced by estimating the two inverse probability weights, as well as the variability

introduced by estimating the parameters of the conditional distribution of the incomplete

subgroup variable, is incorporated. Simulation studies show that this method is effective in

terms of obtaining consistent estimates of the parameters of interest; however it is difficult
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to implement and in certain settings there is a loss of efficiency in comparison to the

methods introduced in Chapter 2.

In Chapter 4, we explore the use of multiple imputation with one inverse probability

weight for confounding in an observational setting where the subgroup variable is incom-

plete. We discuss methods to correctly specify the imputation model in the setting where

the conditional causal odds ratio is of interest, as well as in the setting where the marginal

causal odds ratio is of interest. Standard methods for combining the estimates of the

marginal log odds ratios are used. We propose a method for estimating the asymptotic

standard error of the estimates, which incorporates both the estimation of the parameters

in the weight for confounding, and the multiply imputed datasets. We give a method for

hypothesis testing and calculation of confidence intervals. Simulation studies show that

this method is efficient and straightforward to implement, but correct specification of the

imputation model is necessary.

In Chapter 5, the three methods are used in an application to a cohort study of 418

metastatic colorectal cancer patients. We compare patients who received an experimental

chemotherapy with patients who received standard chemotherapy; of interest is estimation

of the marginal causal odds ratio of a thrombotic event during the course of treatment

or 30 days after treatment is discontinued. The important subgroups are (i) patients who

received treatment as a first line strategy, and (ii) patients who received treatment as a

second line strategy.

In Chapter 6, we compare and contrast the three methods proposed. We also discuss

extensions of the methods presented.

19



Chapter 2

Doubly Weighted Estimating

Equations for Causal Inference with

an Incomplete Subgroup Variable

In this chapter, we introduce a doubly weighted estimating equation approach to estimate

coefficients of a marginal regression model in an observational setting, where an important

subgroup variable is incomplete.

This chapter is organized as follows. In Section 2.1, the notation and models are defined

in a complete data setting. Estimation of subgroup effects in a marginal regression model

is described in randomized and observational settings. In Section 2.2, estimation of sub-

group effects in a marginal regression model is described in randomized and observational

settings with an incomplete subgroup variable; the method in the observational setting is

the doubly weighted estimating equation approach. In Section 2.3, the consistency and

the asymptotic distribution of the estimators from the doubly weighted estimating equa-

tion approach are discussed. We give a method for estimating standard errors of marginal

regression coefficient estimates obtained using the doubly weighted estimating equation ap-

proach. Limiting values of estimators from estimating functions with misspecified weights

are derived. In Section 2.4, we describe simulation studies and graphically study the bias

introduced by misspecifying the weights in the weighted estimating functions. Concluding
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remarks are in Section 2.5.

2.1 Notation and Models

Let Yi denote a binary response variable, Xi denote a binary treatment variable in a

randomized setting, and Si denote a binary subgroup variable, for subject i in a random

sample of n individuals, i = 1, ..., n. Variable S is a subgroup variable (or effect modifier)

in the sense that the effect of the treatment on the response is dependent upon the level of

S. Let Z1i = (Z11i, ..., Z1p1i) denote a vector of variables that are directly associated with

response, and Z2i = (Z21i, ..., Z2p2i) denote a vector of variables that do not have direct

effects on the response. We refer to Z1i and Z2i as ‘auxiliary’ variables; in an observational

setting, we further distinguish between Z1i and Z2i.

We begin by introducing the models and specifying conditional independence assump-

tions in general terms in the setting of a randomized controlled trial in Section 2.1.1, and

proceed to describe the models in the setting of an observational study in Section 2.1.2.

2.1.1 Subgroup Effects in a Randomized Setting

We make the following conditional independence assumptions in a randomized controlled

trial setting:

A.1 Yi ⊥ Z2i | (Xi, Si,Z1i)

A.2 Xi ⊥ (Si,Z1i,Z2i) (randomized setting)

A.3 Z1i ⊥ Z2i .

Response variable Yi is independent of Z2i given all other variables, which distinguishes

Z2i from Z1i in the sense that Z2i is not independently associated with Yi. Because of

randomization, Xi is independent of all other variables that are measured at or a short

time before treatment selection. We also assume that Z1i ⊥ Z2i which is an assumption

that can later be relaxed. See Figure 2.1 for a causal directed acyclic graph (DAG) which

gives a visual representation of the relationships between the variables. In a causal DAG,
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an arrow connecting variable X to Y indicates that X is a parent of Y , and Y is a child

of X. The term directed indicates that all edges connecting variables are arrows, and the

term acyclic indicates that none of the directed paths form a closed loop. The DAG in

Figure 2.1 is causal because every arrow represents the presence of an effect of the parent

variable on the child variable (Greenland and Brumback, 2002).

Figure 2.1: Simple causal DAG for treatment or exposure variable X, response Y , and

auxiliary variables Z1 and Z2, in the context of a randomized controlled trial. Variables Z1

are causally related to the response, and may be causally related to the subgroup variable

S, but are not independently associated with X in the randomized setting. Variables Z2

are not causally related to the response, and are not associated with treatment in the

randomized setting, but may be causally related to the subgroup variable.

The assumptions above allow us to factor the joint probability of Yi, Xi, Si,Z1i,Z2i for

subject i as

P (Yi, Xi, Si,Z1i,Z2i)

= P (Yi|Xi, Si,Z1i,Z2i)P (Xi|Si,Z1i,Z2i)P (Si|Z1i,Z2i)P (Z1i,Z2i)

= P (Yi|Xi, Si,Z1i)P (Xi)P (Si|Z1i,Z2i)P (Z1i)P (Z2i) (2.1)

For simplicity, we consider the setting where Z1i and Z2i are scalars denoted by Z1i and

Z2i.

Define µi(ϑ) = E(Yi|Xi, Si, Z1i) = P (Yi = 1|Xi, Si, Z1i;ϑ). We consider a logistic

regression model for the response whereby

g(µi(ϑ)) = ϑ0 + ϑ1Xi + ϑ2Si + ϑ3XiSi + ϑ4XiZ1i . (2.2)
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Here, g(µ) = log(µ/(1 − µ)) is the logit link function, and ϑ = (ϑ0, ϑ1, ϑ2, ϑ3, ϑ4)T is a

vector of regression coefficients. We assume that there is no main effect of Z1i on Yi, but

this constraint can be relaxed.

When Z1 is a subgroup variable, the causal treatment effect depends on the level of Z1.

However, we are in a setting where the investigators do not wish to estimate the effect of

Z1 as a subgroup variable; the only subgroups of interest are S = 1 and S = 0. This is not

uncommon. Often, the true response model is a complex combination of baseline variables,

with many subgroup effects. However, investigators generally focus on a small number of

subgroup effects due to sample size limitations, and interpretability of causal effects.

Let E(Xi) = P (Xi = 1) = 0.5, so that the percentage of treated subjects in the

randomized setting is 50%. For the auxiliary variables, let E(Zji) = P (Zji = 1; ζj) =

expit(ζj), for j = 1, 2, where expit is the inverse of the logit link function. The subgroup

variable is modeled as follows:

E(Si|Z1i, Z2i) = P (Si = 1|Z1i, Z2i; ξ2) = expit(ξ20 + ξ21Z1i + ξ22Z2i) , (2.3)

where ξ2 = (ξ20, ξ21, ξ22)T is a vector of regression coefficients.

Although Z1i is directly causally related to response Yi through (2.2), we are interested

in estimating the marginal causal effect of treatment (Xi) on response (Yi) for each sub-

group defined by values of Si without conditioning on any other variables. As discussed in

Chapter 1, a logistic regression model that includes Z1 will produce conditional odds ratios

of treatment effects for each subgroup rather than marginal odds ratios. We are interested

in estimating the parameters from the following marginal logistic regression model for the

response:

µi(β) = expit(β0 + β1Xi + β2Si + β3XiSi) , (2.4)

where µi(β) = E(Yi|Xi, Si) = P (Yi = 1|Xi, Si;β), and β = (β0, β1, β2, β3)T is a vector

of regression coefficients. The marginal causal odds ratio when S = 0 is exp(β1) and the

marginal causal odds ratio when S = 1 is exp(β1 +β3). The marginal model can be written

in terms of the conditional model by taking the expectation of the conditional response
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model over Z1i given Xi and Si:

P (Yi = 1|Xi, Si;β) = EZ1i|Xi,Si
[P (Yi = 1|Xi, Si, Z1i;ϑ)]

= EZ1i|Si
[P (Yi = 1|Xi, Si, Z1i;ϑ)] A.2 (randomized setting)

=
1∑

z1=0

P (Yi = 1|Xi, Si, z1;ϑ)P (Z1i = z1|Si; ξ2, ζ1, ζ2) (2.5)

where

P (Z1i = z1|Si; ξ2, ζ1, ζ2) =

∑1
z2=0 P (Si|Z1i = z1, Z2i = z2; ξ2)P (Z1i = z1; ζ1)P (Z2i = z2; ζ2)

P (Si; ξ2, ζ1, ζ2)
.

Marginal model parameters β can be estimated by solving the following estimating

equation

U(β) =
n∑
i=1

Ui(β) = 0 (2.6)

where

Ui(β) = Di(β)[Vi(β)]−1(Yi − µi(β)) ,

with Di(β) = ∂µi(β)/∂β and Vi(β) = var(Yi|Xi, Si) = µi(β)[1 − µi(β)] (McCullagh and

Nelder, 1989). The resulting estimator is denoted by β̂, where β̂ is the solution to (2.6).

Under mild regularity conditions, β̂ is consistent and asymptotically normal due to the

unbiasedness of estimating functions U(β), i.e.

√
n(β̂ − β)

D−→ MVN(0, I(β)−1)

where

I(β) = E[−∂Ui(β)/βT ] .

To test whether the interaction between treatment and the subgroup variable is sig-

nificant, one would use standard statistical methods to test the null hypothesis that β3 is

equal to zero. The estimate of the causal odds ratio comparing those who were treated
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to those who were not treated, when S = 0, is exp(β̂1). The odds ratio when S = 1 is

exp(β̂1 + β̂3).

We have described the notation and models for estimating subgroup effects in a ran-

domized setting. Next, we will describe the notation and models in an observational

setting.

2.1.2 Subgroup Effects in an Observational Setting

We now consider the models in the context of an observational study. As noted before,

we use Wi to denote the treatment or exposure variable for subject i in an observational

setting, instead of Xi. We make the distinction between the two variables because their

probability distributions are different. In an observational setting, we assume that the

treatment variable, Wi, is not independent of auxiliary variables Z1i and Z2i, as treatment

(or exposure) selection is often dependent upon subject characteristics; for simplicity, we

continue to assume that the auxiliary variables are scalars. We make the assumption that

Wi is independent of subgroup variable Si conditional on Z1i and Z2i. This assumption is

appropriate in settings where, for example, the subgroup variable Si denotes the presence

or absence of some genetic factor, which is information that may not be readily available

to the treating physician and hence could not directly affect treatment decisions.

Suppose we make the same conditional independence assumptions as in the randomized

setting, with the exception of the assumption for the treatment variable:

B.1 Yi ⊥ Z2i | (Wi, Si, Z1i)

B.2 Wi ⊥ Si | (Z1i, Z2i) (observational setting)

B.3 Z1i ⊥ Z2i .

See Figure 2.2 for a causal DAG of the variables in the observational study setting.

The assumptions above allow us to factor the joint probability of Yi,Wi, Si, Z1i, Z2i for

subject i as

P (Yi,Wi, Si, Z1i, Z2i)

= P (Yi|Wi, Si, Z1i, Z2i)P (Wi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Yi|Wi, Si, Z1i)P (Wi|Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i)P (Z2i) .
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Figure 2.2: Simple directed acyclic graph for treatment variable (or exposure variable) W ,

response Y , and auxiliary variables Z1 and Z2, in the context of an observational study.

Variable Z1 is directly associated with response, whereas Z2 is not directly associated with

response.

We can re-write the logistic regression model for the response using the notation for

the treatment variable in an observational setting: µi(ϑ) = E(Yi|Wi, Si, Z1i) = P (Yi =

1|Wi, Si, Z1i;ϑ). As before, we consider a logistic regression model for the response whereby

logit(µi(ϑ)) = ϑ0 + ϑ1Wi + ϑ2Si + ϑ3WiSi + ϑ4WiZ1i , (2.7)

where ϑ = (ϑ0, ϑ1, ϑ2, ϑ3, ϑ4)T is a vector of regression coefficients. We further assume that

the probability distribution of the response stays the same if we condition on the same

observed values of exposure, subgroup variable and potential confounder. In other words,

the conditional odds ratios of treatment are the same whether we are in a randomized

setting or in an observational setting, as discussed in Chapter 1. This can be written as

P (Yi = 1|Xi = w, Si, Z1i;ϑ) = P (Yi = 1|Wi = w, Si, Z1i;ϑ) . (2.8)

The parametric model forms of Si, Z1i and Z2i are the same as in the randomized

setting. Since the treatment selection process for subject i depends on auxiliary variables

Z1i and Z2i, we assume

πi(ξ1) = P (Wi = 1|Z1i, Z2i; ξ1) = expit(ξ10 + ξ11Z1i + ξ12Z2i)

where ξ1 = (ξ10, ξ11, ξ12)T are regression parameters. Here, πi(ξ1) is the propensity score

for subject i.
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Next, we compute the marginal conditional distribution for response Y given only

the treatment, subgroup variable, and their interaction, which is the model that we are

interested in fitting. In the observational setting, we have

P (Yi = 1|Wi, Si)

= EZ1i|Wi,Si
{P (Yi = 1|Wi, Si, Z1i;ϑ)}

=
1∑

z1=0

P (Yi = 1|Wi, Si, Z1i = z1;ϑ)P (Z1i = z1|Wi, Si) . (2.9)

Comparing the forms of P (Y |W,S) from (2.9) and P (Y |X,S) in (2.5), we see that they

are not equal in general.

Marginal regression parameters β from (2.4) can be estimated in an observational

setting using the following weighted estimating equation

Ũ1(β; ξ1) =
n∑
i=1

Ũ1i(β; ξ1) (2.10)

(Robins et al., 2000), where

Ũ1i(β; ξ1) =
1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1(Yi − µi
(
β)
)

(2.11)

with Di(β) = ∂µi(β)/∂β and Vi(β) = var(Yi|Wi, Si) = µi(β)[1−µi(β)]. The tilde indicates

that a weighted estimating equation is used with a weight for confounding. Let β̃ denote

the solution to Ũ1(β; ξ1) = 0 for fixed ξ1.

An auxiliary estimating function is required to estimate ξ1 and we specify this as

U2(ξ1) =
n∑
i=1

U2i(ξ1)

where

U2i(ξ1) =
n∑
i=1

Di(ξ1)[Vi(ξ1)]−1(Wi − πi
(
ξ1)
)

,
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Di(ξ1) = ∂πi(ξ1)/∂ξ1 and Vi(ξ1) = var(Wi|Z1i, Z2i) = πi(ξ1)(1− πi(ξ1)). Then let

Ũi(γ) =

(
Ũ1i(β)

U2i(ξ1)

)
,

where γ = (βT , ξT1 )T . In practice, we use the data to obtain an estimate for ξ1, denoted

by ξ̂1, and replace the weight in (2.11) with its estimated counterpart πi(ξ̂1) = P (Wi =

1|Z1i, Z2i; ξ̂1). Let γ̃ = (β̃
T
, ξ̂1

T
)T .

Under mild regularity conditions and provided the propensity score model is not mis-

specified, γ̃ is consistent and asymptotically normal due to the unbiasedness of estimating

functions, i.e.

√
n(γ̃ − γ)

D−→ MVN(0,Σ(γ)) .

The asymptotic covariance matrix Σ(γ) takes the form

Σ(γ) = I−1(γ)C(γ)
[
I−1(γ)

]T
,

where

I(γ) = E[−∂Ui(γ)/γT ]

and

C(γ) = E
[
Ui(γ)Ui(γ)T

]
.

The above covariance matrix takes into account the estimation of ξ1. See Section 2.3.2 for

details on estimation of Σ(γ) in a more general setting.

The subgroup effects are estimated in the same way as in the randomized setting,

which is described at the end of Section 2.1.1. We have discussed estimation of treatment

effects in an observational setting with an important subgroup variable using a weighted

estimating function approach. In the next section, we discuss estimation of β in the setting

where the subgroup variable is not observed for some subjects.
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2.2 Inference with Incomplete Subgroup Data

2.2.1 Estimation in the Randomized Setting

In the randomized controlled trial setting, we may experience missing data. We consider

the setting where the subgroup variable is not observed for some subjects. A weighted

estimating equation approach can be used in this setting.

The subgroup variable Si is incomplete for some individuals and so we let Ri =

I(Si is observed). We make the following assumptions in the randomized setting when

the subgroup variable is missing for some subjects.

A.0 Ri ⊥ (Yi, Xi, Si) | (Z1i, Z2i) .

A.1 Yi ⊥ Z2i | (Xi, Si, Z1i)

A.2 Xi ⊥ (Si, Z1i, Z2i) (randomized setting)

A.3 Z1i ⊥ Z2i

As before, response variable Yi is independent of Z2i given all other variables, which

distinguishes Z2i from Z1i in the sense that Z2i is not independently associated with re-

sponse. The missing data indicator Ri depends on Z1i and Z2i only, so that conditioned on

(Z1i, Z2i), Ri is independent of all other variables. In particular, Ri is conditionally inde-

pendent of the subgroup variable Si, which means that we do not have a MNAR missing

data setting. Because of randomization, Xi is independent of all variables measured at the

time of randomization (Si, Z1i, Z2i). As before, we also assume that Z1i ⊥ Z2i, but note

that this assumption can be relaxed, and the methods in this section will still be valid. See

Figure 2.3 for a causal DAG which summarizes the conditional independence assumptions

between the variables.

The models for generating Yi, Xi, Si and Z1i and Z2i are the same as in Section 2.1.1.

The logistic regression model for generating Ri is

πi(ρ) = E(Ri|Z1i, Z2i) = P (Ri = 1|Z1i, Z2i;ρ) = expit(ρ0 + ρ1Z1i + ρ2Z2i) , (2.12)

where ρ = (ρ0, ρ1, ρ2)T is a vector of regression parameters.
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Figure 2.3: Simple causal DAG for treatment X, response Y , a variable that is indepen-

dently associated with response Z1, and auxiliary variable Z2, in the context of a ran-

domized controlled trial. Variable R indicates whether subgroup variable S is observed.

Assumptions A.0 - A.3 allow us to factor the joint probability of Ri, Yi, Xi, Si, Z1i, Z2i

for subject i as

P (Ri, Yi, Xi, Si, Z1i, Z2i) = P (Ri|Yi, Xi, Si, Z1i, Z2i)P (Yi|Xi, Si, Z1i, Z2i)

· P (Xi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Ri|Z1i, Z2i)P (Yi|Xi, Si, Z1i)P (Xi)P (Si|Z1i, Z2i)

· P (Z1i)P (Z2i) . (2.13)

Since we are interested in estimating the marginal response model parameters β, we write

the joint probability omitting Z1i as

P (Ri, Yi, Xi, Si, Z2i) = P (Ri|Yi, Xi, Si, Z2i)P (Yi|Xi, Si, Z2i) (2.14)

· P (Xi|Si, Z2i)P (Si|Z2i)P (Z2i)

= P (Ri|Yi, Xi, Si, Z2i)P (Yi|Xi, Si)P (Xi)P (Si|Z2i)P (Z2i) .

We see that the missing data process is not independent of the response model parameters

because we cannot factor Yi from the conditional probability for Ri, and therefore when

we omit Z1i from the response model the missingness is non-ignorable.

To handle the missing data problem, we use a weighted estimating function method,

with an inverse probability weight for missing data. Only complete cases are included in
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the estimation. The weighted estimating function for estimating β from (2.4) is given by

U1(β;ρ) =
n∑
i=1

U1i(β;ρ) (2.15)

where

U1i(β;ρ) =
Ri

πi(ρ)
Di(β)[Vi(β)]−1

(
Yi − µi(β)

)
,

with Di(β) = ∂µi(β)/∂β and Vi(β) = var(Yi|Xi, Si) = µi(β)(1 − µi(β)). The overbar

indicates the use of an inverse probability weight for missingness. Let β̄ denote the solution

to U1(β;ρ) = 0 for fixed ρ.

Let

U2(ρ) =
n∑
i=1

U2i(ρ)

where

U2i(ρ) = Di(ρ)[Vi(ρ)]−1(Ri − πi
(
ρ)
)

,

with Di(ρ) = ∂πi(ρ)/∂ρ and Vi(ρ) = var(Ri|Z1i, Z2i) = πi(ρ)(1− πi(ρ)). Then let

Ui(η) =

(
U1i(β)

U2i(ρ)

)
,

where η = (βT ,ρT )T . In practice, we use the data to obtain an estimate for ρ, denoted

by ρ̂, and replace the weight in (2.15) with its estimated counterpart, πi(ρ̂) = P (Ri =

1|Z1i, Z2i; ρ̂).

Under mild regularity conditions, η= (β
T
, ρ̂T )T is consistent and asymptotically normal

due to the unbiasedness of estimating functions, i.e.

√
n(η− η)

D−→ MVN(0,Σ(η)) , (2.16)

where Σ(η) takes the form

Σ(η) = I−1(η)C(η)
[
I−1(η)

]T
.
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Here,

I(η) = E[−∂Ui(η)/ηT ]

and

C(η) = E
[
Ui(η)Ui(η)T

]
.

The above covariance matrix takes into account the estimation of ρ. See Section 2.3.2 for

details on estimating Σ(η) in a generalized setting.

We have discussed the use of a single weight in the randomized trial setting, where the

subgroup variable is missing for some subjects. Next, we introduce the use of a double

inverse probability weight in an observational setting with a missing subgroup variable and

confounding.

2.2.2 Estimation in an Observational Setting

Suppose we make the same conditional independence assumptions as in the randomized

setting, with the exception of the conditional assumptions for the treatment variable:

B.0 Ri ⊥ (Yi,Wi, Si) | (Z1i, Z2i)

B.1 Yi ⊥ Z2i | (Wi, Si, Z1i)

B.2 Wi ⊥ Si | (Z1i, Z2i) (observational setting)

B.3 Z1i ⊥ Z2i

See Figure 2.4 for a causal DAG that summarizes the relationships between the variables.

The models to generate Yi, Wi, Si, Z1i and Z2i are the same as in Section 2.1.2 and Ri is

generated in the same way was described in Section 2.2.1.

The assumptions allow us to factor the joint probability of Ri, Yi,Wi, Si, Z1i, Z2i for

subject i as

P (Ri, Yi,Wi, Si, Z1i, Z2i) = P (Ri|Yi,Wi, Si, Z1i, Z2i)P (Yi|Wi, Si, Z1i, Z2i)

· P (Wi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Ri|Z1i, Z2i)P (Yi|Wi, Si, Z1i)

· P (Wi|Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i)P (Z2i) (2.17)
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Figure 2.4: Simple causal DAG for treatment (W ), response (Y ), confounding variable

(Z1), and an auxiliary variable (Z2), in the context of an observational study. Variable R

indicates whether the subgroup variable is observed.

However, interest lies in fitting a marginal model, where Z1i is not included in the response

model. If we omit Z1i from the joint probability (2.17) and factor P (Ri, Yi,Wi, Si, Z2i) as

in Section 2.2.1, we see that the missingness is non-ignorable.

Because the missing data is non-ignorable in the marginal causal model setting, we

use a doubly inverse probability weighted estimating equation approach for estimating

parameters in a marginal model using observational data. As in the previous section, we

restrict attention to individuals with complete data and use inverse probability weights for

both missingness and treatment selection. The doubly weighted estimating equation is

Ũ1(β;ψ) =
n∑
i=1

Ũ1i(β;ψ) (2.18)

where

Ũ1i(β;ψ) =
1∑
l=0

Ri

πi(ρ)

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1
(
Yi − µi(β)

)
,

with ψ = (ρT , ξT1 )T , Di(β) = ∂µi(β)/∂β and Vi(β) = var(Yi|Xi, Si) = µi(β)(1 − µi(β)).

The tilde and overbar denote that we are weighting for treatment selection and missingness,

respectively. Let β̃ denote the solution to Ũ1(β;ψ) = 0 for fixed ψ.

Let

U2(ψ) =
n∑
i=1

U2i(ψ)
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denote an unbiased estimating function for ψ where

U2i(ψ) =

(
U2i(ρ)

U2i(ξ1)

)
. (2.19)

Let ψ̂ denote the solution to U2(ψ) = 0. Let ω = (βT ,ψT )T be the vector containing all

parameters with ω̃ = (β̃
T

, ψ̂
T

)T , and write

Ũ(ω) =
n∑
i=1

Ũi(ω) =
n∑
i=1

(
Ũ1i(β;ψ)

U2i(ψ)

)
= 0 . (2.20)

In practice, to obtain an estimate for β, we first estimate ξ1 using the full dataset

(including subjects where Si is missing, since only Wi and Z1i, Z2i are needed) and replace

πi(ξ1) with its estimated counterpart, πi(ξ̂1) = P (Wi = 1|Z1i, Z2i; ξ̂1). Second, we estimate

ρ using the full dataset, and replace πi(ρ) with its estimated counterpart πi(ρ̂) = P (Ri =

1|Z1i, Z2i; ρ̂). Standard software can be used to solve for β̃. For example, in R, we use the

glm function, with ‘family=binomial(link=“logit”)’ for logistic regression (R Core Team,

2018). We can create a new variable which is the product of the two inverse probability

weights, and specify the weight using the ‘weights’ option.

In the following section, we show that

ERi,Yi,Xi,Si,Z1i,Z2i
[Ũ1i(β;ψ)] = 0 , (2.21)

and therefore β̃ is a consistent estimator of β from (2.4). We also derive the asymptotic

distribution for β̃.

2.3 Statistical Inference

2.3.1 Consistency of Doubly Weighted Estimators for β

Theorem 1. β̃, the solution to Ũ1(β;ψ) =
∑n

i=1 Ũi(β;ψ) = 0, is a consistent estimator

of β from (2.4).
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Proof: Consistency results can be established by showing that the doubly inverse probability

weighted estimating function is an unbiased estimating function. Note that, although we

have observed treatment Wi for subject i, we write the conditional expectation of Yi with

respect to Xi because we are estimating β from (2.4); in other words, we write

µi(β) = E(Yi|Xi, Si;β) = P (Yi = 1|Xi, Si;β) .

First, we take the conditional expectation of Ũ1i(β;ψ) from (2.18) with respect to Ri given

Yi,Wi, Si, Z1i, Z2i which by assumption B.0 gives

1∑
l=0

P (Ri = 1|Z1i, Z2i;ρ)

πi(ρ)

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1

{
Yi − P (Yi = 1|Xi = l, Si;β)

}
.

Since πi(ρ) = P (Ri = 1|Z1i, Z2i;ρ), this simplifies to

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1

{
Yi − P (Yi = 1|Xi = l, Si;β)

}
.

Next, we take the conditional expectation of this with respect to Yi|Wi, Si, Z1i, Z2i which

by assumption B.1 gives

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1

{
P (Yi = 1|Wi, Si, Z1i;ϑ)− P (Yi = 1|Xi = l, Si;β)

}
.

Next, we take the conditional expectation of this with respect to Wi|Si, Z1i, Z2i which by

assumption B.2 gives

1∑
w=0

1∑
l=0

I(w = l)P (Wi = w|Z1i, Z2i; ξ1)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1

{
P (Yi = 1|Wi = w, Si, Z1i;ϑ)

−P (Yi = 1|Xi = l, Si;β)

}
.

The indicator I(Wi = l) ensures only one term is retained (when w = l for w = 0, 1).
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Therefore we have

1∑
w=0

P (Wi = w|Z1i, Z2i; ξ1)

πi(ξ1)w(1− πi(ξ1))1−w Di(β)[Vi(β)]−1

{
P (Yi = 1|Wi = w, Si, Z1i;ϑ)

−P (Yi = 1|Xi = w, Si;β)

}
=

1∑
w=0

Di(β)[Vi(β)]−1

{
P (Yi = 1|Wi = w, Si, Z1i;ϑ)− P (Yi = 1|Xi = w, Si;β)

}
.

Finally, we take the expectation of this with respect to Si, Z1i, Z2i which by assumption

B.3 gives

1∑
z2=0

1∑
z1=0

1∑
s=0

1∑
w=0

Di(β)[Vi(β)]−1

{
P (Yi = 1|Wi = w, Si = s, Z1i = z1;ϑ)

−P (Yi = 1|Xi = w, Si = s;β)

}
· P (Si = s|Z1i = z1, Z2i = z2; ξ2)P (Z1i = z1; ζ1)P (Z2i = z2; ζ2) .

From (2.8) we can replace Wi with Xi in the conditional probability of the response, and

therefore this can be re-written as

1∑
z2=0

1∑
z1=0

1∑
s=0

1∑
w=0

Di(β)[Vi(β)]−1

{
P (Yi = 1|Xi = w, Si = s, Z1i = z1;ϑ)

−P (Yi = 1|Xi = w, Si = s;β)

}
· P (Si = s|Z1i = z1, Z2i = z2; ξ2)P (Z1i = z1; ζ1)P (Z2i = z2; ζ2) .

From (2.5), we have

P (Yi = 1|Xi, Si;β) =
1∑

z2=0

1∑
z1=0

P (Yi = 1|Xi, Si, Z1i = z1;ϑ)

· P (Si|Z1i = z1, Z2i = z2; ξ2)P (Z1i = z1; ζ1)P (Z2i = z2; ζ2)

P (Si; ξ2, ζ1, ζ2)
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in the context of a randomized controlled trial. Therefore,

1∑
z2=0

1∑
z1=0

P (Yi = 1|Xi, Si, Z1i = z1;ϑ)P (Si|Z1i = z1, Z2i = z2; ξ2)

·P (Z1i = z1; ζ1)P (Z2i = z2; ζ2)

= P (Yi = 1|Xi, Si;β)P (Si) .

Then, the conditional expectation of the estimating equation can be written as

1∑
s=0

1∑
w=0

Di(β)[Vi(β)]−1P (Yi = 1|Xi = w, Si = s;β)P (Si = s)

−
1∑
s=0

1∑
w=0

Di(β)[Vi(β)]−1P (Yi = 1|Xi = w, Si = s;β)

·
1∑

z1=0

1∑
z2=0

P (Si = s|Z1i = z1, Z2i = z2; ξ2)P (Z1i = z1; ζ1)P (Z2i = z2; ζ2)

=

1∑
s=0

1∑
w=0

Di(β)[Vi(β)]−1

{
P (Yi = 1|Xi = w, Si = s;β)P (Si = s)

−P (Yi = 1|Xi = w, Si = s;β)P (Si = s)

}
= 0 .

Therefore, β̃ is a consistent estimator of β from (2.4).

2.3.2 Derivation of the Asymptotic Covariance

The following asymptotic variance derivation is based on the theory introduced by Newey

and McFadden (1994) and Robins et al. (1995). We present a method for deriving the

asymptotic covariance matrix for β̃ which is the solution to Ũ1(β;ψ) = 0. Recall that

ω = (βT ,ψT )T is the vector containing all parameters with ω̃ = (β̃
T

, ψ̂
T

)T . Since

Ũ(ω̃) = Ũ(ω) +
∂Ũ(ω)

∂ωT
(ω̃− ω) + op

(
1√
n

)
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then

√
n(ω̃ − ω) =

[
− 1

n

∂Ũ(ω)

∂ωT

]−1 [
1√
n

Ũ(ω)

]
+ op(1) (2.22)

where

− 1

n

∂Ũ(ω)

∂ωT
= − 1

n

n∑
i=1

[
∂Ũ1i(β;ψ)/∂βT ∂Ũ1i(β;ψ)/∂ψT

0 ∂U2i(ψ)/∂ψT

]
. (2.23)

As n→∞, (2.23) converges in probability to

E(−∂Ũi(ω)/∂ωT ) =

[
E(−∂Ũ1i(β;ψ)/∂βT ) E(−∂Ũ1i(β;ψ)/∂ψT )

E(−∂Ũi2(ψ)/∂ψT )

]

=

[
I11(ω) I12(ω)

0 I22(ω)

]
= I(ω) .

Let

C(ω) = E
[
Ũi(ω)Ũi(ω)T

]
.

Then √
n(ω̃ − ω)

D−→ MVN(0,Σ(ω))

where Σ(ω) = I−1(ω)C(ω) [I−1(ω)]
T

(Cook et al., 2013; Newey and McFadden, 1994;

Robins et al., 1995). Variance estimates are computed by replacing the expectations with

their empirical counterparts to obtain

Σ(ω̃) = I−1(ω̃)C(ω̃)
[
I−1(ω̃)

]T
(2.24)

where

I(ω̃) =
1

n

n∑
i=1

 ∂Ũ1i(β;ψ)

∂βT

∂Ũ1i(β;ψ)

∂ψT

0 ∂U2i(ψ)

∂ψT

 ∣∣∣∣∣
ω=˜̄ω

and

C(ω̃) =
1

n

n∑
i=1

Ũi(ω)Ũ
T

i (ω)

∣∣∣∣∣
ω=˜̄ω

.
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The upper block of matrix Σ(ω̃) from (2.24) is the estimated covariance matrix for β̃.

We have derived the asymptotic distribution of this estimator, and we have given a

method for computing an estimate of the variance. We can use this information for infer-

ence for β. Suppose we are interested in testing the hypothesis that the main effect for the

treatment variable is equal to zero. To do this, we compute a Wald statistic of the form

β̃1 − 0

s.e.(β̃1)

where

s.e.(β̃1) =

√
Σ(ω̃)[2,2]/n

and assess significance using a reference standard normal distribution which this follows

asymptotically under the null hypothesis. We can also construct a 100(1−α)% confidence

interval as (
β̃1 − zα/2 s.e.(β̃1) , β̃1 + zα/2 s.e.(β̃1)

)
where z is a variable with standard normal distribution and P (z < −|zα|) = α. Other

coefficients can be tested in a likewise fashion.

2.3.3 Some Results on Misspecified Estimating Functions

We next derive the limiting values of estimators of β in an observational setting with a

missing subgroup variable, where we omit all weights from the estimating function.

To calculate the limiting values, we compute the expectation of the misspecified estimat-

ing function over all of the data. When we fail to weight for confounding and missingness,

and use only complete cases, the estimating function is

U(β) =
n∑
i=1

Ri Di(β)[Vi(β)]−1
(
Yi − µi(β)

)
. (2.25)
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By taking the expectation of the misspecified estimating function in a similar way to Section

2.3.1 (omitting the i subscript), we obtain the following expression:

1∑
z1=0

1∑
z2=0

1∑
s=0

1∑
w=0

D(β)[V (β)]−1
[
P (Y = 1|W = w, s, z1;ϑ)− P (Y = 1|X = w, s;β)

]
· P (R = 1|z1, z2;ρ)P (w|z1, z2; ξ1)P (s|z1, z2; ξ2)P (z1; ζ1)P (z2; ζ2) .

Let β† be the solution to setting the above expectation equal to 0. We can solve for β† in

terms of the other parameters. By considering the setting with w = s = 0, we can solve

for β†0:

1∑
z1=0

1∑
z2=0

P (R = 1|z1, z2;ρ) D(β)[V (β)]−1
[
expit(ϑ0)− expit(β†0)

]
· P (W = 0|z1, z2; ξ1)P (S = 0|z1, z2; ξ2)P (z1; ζ1)P (z2; ζ2) = 0 ,

therefore

β†0 = ϑ0 .

By setting w = 1 and s = 0, we can solve for β†1 :

β†1 = logit

{
Q1

Q2

}
− β†0 ,

where

Q1 =
1∑

z1=0

1∑
z2=0

{
expit(ϑ0 + ϑ1 + ϑ4z1) expit(ρ0 + ρ1z1 + ρ2z2) expit(ξ10 + ξ11z1 + ξ12z2)

· (1− expit(ξ20 + ξ21z1 + ξ22z2))P (z1; ζ1)P (z2; ζ2)

}
and

Q2 =
1∑

z1=0

1∑
z2=0

{
expit(ρ0 + ρ1z1 + ρ2z2) expit(ξ10 + ξ11z1 + ξ12z2)

· (1− expit(ξ20 + ξ21z1 + ξ22z2)) P (z1; ζ1)P (z2; ζ2)

}
.
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By setting w = 0 and s = 1, we can solve for β†2 :

β†2 = ϑ2 .

And finally, by setting w = s = 1, we can solve for β†3 :

β†3 = logit

{
Q3

Q4

}
− (β†0 + β†1 + β†2) ,

where

Q3 =
1∑

z1=0

1∑
z2=0

expit(ϑ0 + ϑ1 + ϑ2 + ϑ3 + ϑ4z1) expit(ρ0 + ρ1z1 + ρ2z2)

expit(ξ10 + ξ11z1 + ξ12z2) expit(ξ20 + ξ21z1 + ξ22z2)P (z1; ζ1)P (z2; ζ2)

and

Q4 =
1∑

z1=0

1∑
z2=0

expit(ρ0 + ρ1z1 + ρ2z2) expit(ξ10 + ξ11z1 + ξ12z2)

expit(ξ20 + ξ21z1 + ξ22z2) P (z1; ζ1)P (z2; ζ2) .

In a similar way, we can solve for the limiting values when we (i) weight for treatment

selection only (i.e. solve for β̃
†
) or (ii) weight for missingness only (i.e. solve for β

†
).

When we weight for both treatment selection and missingness, β̃
†

= β when the weights

are correctly specified (see Section 2.3.1).

2.4 Simulation Studies

Here, we describe simulation studies conducted in order to explore the degree of bias

introduced by misspecifying the weights in weighted estimating equations. We are most

interested in assessing the consistency and relative efficiency of our estimates of β1 and

β1 + β3 from (2.4); β1 is the marginal causal log odds ratio of response comparing those

who received the treatment to those who did not when S = 0 and β1 + β3 is the log odds

ratio when S = 1.
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The parameters are set so that we are able to examine the effect of misspecified weighted

estimating functions in four distinct settings: (i) treatment is randomized and the missing

data process is ignorable, (ii) treatment is randomized and the missing data process is

non-ignorable, (iii) observational data with ignorable missing data, (iv) observational data

with non-ignorable missing data.

In our simulation studies, we use four methods to analyze the data in each of the

parameter settings: complete case logistic regression analysis with (i) no weights, (ii)

one weight for missing data, (iii) one weight for treatment selection, and (iv) weights for

both missing data and treatment selection. When we use method (iv), we are using the

doubly weighted estimating equation Ũ(β;ψ) from (2.18). When we use method (i), we

are conducting a näıve complete case analysis.

In addition to our simulation studies, we give a visual representation of the difference

between the true values, and the limiting values, using estimating equations with mis-

specified weights based on the material in the previous section. The parameter settings

described in the following section are used in the simulation studies as well as the limiting

values figures.

2.4.1 Parameter Settings

The parameter specifications for our simulation studies and limiting values figures are given

here. The model for the response, written in terms of β from (2.4), is given by

µi(β) = expit(logit(0.5) + log(0.8)Xi + log(1.2)Si + log(1.2)XiSi) .

The model that is used to generate the response variable is the conditional response model

(2.2) which contains parameters ϑ, however, because we are interested in estimating β, we

specify β first, and solve for ϑ. The non-linear equations can be solved using a Newton

method, for example by using the ‘nleqslv’ package in R (Hasselman, 2017). To do this,

we must specify one of the ϑ coefficients, therefore, we set

ϑ4 = log(1.25) ,
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so that the interaction between X and Z1 is non-zero in the response model. The parame-

ters are chosen this way so that the causal effect of treatment is to decrease the probability

of the response, when the subgroup variable is S = 0. When the subgroup variable is

S = 1, the effect is lessened, and the causal effect is closer to the null value.

In the randomized setting,

P (Xi = 1|Z1i, Z2i; ξ1) = expit(logit(0.5) + log(1.0)Z1i + log(1.0)Z2i) ,

so that P (Xi = 1) = 0.5. In an observational setting,

P (Wi = 1|Z1i, Z2i; ξ1) = expit(logit(0.2) + log(4.0)Z1i + log(4.0)Z2i) ,

so that the treatment selection process for subject i is dependent upon auxiliary variables

Z1i and Z2i, and P (Wi = 1) = 0.5. In the observational setting, the parameters are such

that the probability of being treated is higher when Z1 = 1 and/or Z2 = 1.

The coefficients for generating the subgroup variable are

P (Si = 1|Z1i, Z2i; ξ2) = expit(logit(0.5) + log(0.9)Z1i + log(1.2)Z2i) .

The parameters are set so that the probability of being in subgroup S = 1 is lower for

those with Z1 = 1 and higher for those with Z2 = 1.

For the confounding and auxiliary variables, we set ζ1 and ζ2 so that P (Z1 = 1; ζ1) = 0.4

and P (Z2 = 1; ζ2) = 0.6.

To explore the effect of the percentage of missing subgroup data on bias and efficiency,

we chose parameters ρ from (2.12) so that P (R = 1) = 0.8 and P (R = 1) = 0.6. In the

first setting, when the percentage of missing subgroup data is 20%,

ignorable: πi(ρ) = expit(logit(0.76) + log(1.0)Z1i + log(1.5)Z2i)

non-ignorable: πi(ρ) = expit(logit(0.73) + log(1.5)Z1i + log(1.5)Z2i)

In the second setting, when the percentage of missing subgroup data is 40%, ρ is set to

ignorable: πi(ρ) = expit(logit(0.55) + log(1.0)Z1i + log(1.5)Z2i)

non-ignorable: πi(ρ) = expit(logit(0.50) + log(1.5)Z1i + log(1.5)Z2i) .
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Empirical bias (EBias) is defined as the average difference between the estimated log

odds ratio and the true log odds ratio. The average asymptotic standard error (ASE)

is calculated as the average of the estimated standard errors using formula (2.24). The

empirical standard error (ESE) is defined as the standard deviation of the m log odds

ratio estimates, where m is the number of simulated datasets. The empirical coverage

probability (ECP) is the empirical probability that the true log odds ratio is included in

the 95% confidence interval; for each simulated dataset, the confidence interval is computed

using the methods described in Section 2.3.2.

For each simulation study, the number of subjects per dataset is 2000 and the number

of simulated datasets is 5000. The simulated datasets are independent, and the seed value

for the first simulated dataset is the same across the simulation studies.
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Table 2.1: Empirical bias and efficiency of estimated marginal regression coefficients, us-

ing the doubly inverse probability weighted estimating equation approach. In this table,

parameters are chosen so that the overall probability of missing subgroup data is 20%.

Weighted for β1 β1 + β3

X/W R EBias ASE ESE ECP EBias ASE ESE ECP

Randomized setting, ignorable missing data

No No 0.0002 0.1448 0.1436 0.9530 0.0030 0.1398 0.1417 0.9496

No Yes 0.0003 0.1450 0.1436 0.9526 0.0030 0.1400 0.1419 0.9498

Yes No 0.0002 0.1451 0.1436 0.9534 0.0030 0.1401 0.1417 0.9506

Yes Yes 0.0003 0.1453 0.1437 0.9548 0.0030 0.1404 0.1419 0.9500

Randomized setting, non-ignorable missing data

No No 0.0051 0.1448 0.1443 0.9512 0.0068 0.1400 0.1424 0.9460

No Yes 0.0009 0.1451 0.1443 0.9508 0.0027 0.1403 0.1426 0.9464

Yes No 0.0051 0.1451 0.1443 0.9514 0.0068 0.1403 0.1423 0.9468

Yes Yes 0.0009 0.1455 0.1444 0.9500 0.0027 0.1406 0.1426 0.9480

Observational setting, ignorable missing data

No No 0.0327 0.1447 0.1443 0.9454 0.0324 0.1399 0.1404 0.9392

No Yes 0.0331 0.1449 0.1445 0.9460 0.0329 0.1401 0.1405 0.9380

Yes No 0.0005 0.1637 0.1627 0.9510 0.0018 0.1578 0.1568 0.9492

Yes Yes 0.0005 0.1642 0.1630 0.9502 0.0020 0.1584 0.1574 0.9498

Observational setting, non-ignorable missing data

No No 0.0368 0.1447 0.1448 0.9412 0.0366 0.1401 0.1404 0.9378

No Yes 0.0332 0.1450 0.1450 0.9438 0.0330 0.1404 0.1406 0.9404

Yes No 0.0050 0.1638 0.1629 0.9508 0.0059 0.1581 0.1570 0.9522

Yes Yes 0.0008 0.1644 0.1634 0.9510 0.0021 0.1587 0.1576 0.9516

Abbreviations: EBias Empirical bias, ASE asymptotic standard error,

ESE empirical standard error, ECP empirical coverage probability
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Table 2.2: Empirical bias and efficiency of estimated marginal regression coefficients, us-

ing the doubly inverse probability weighted estimating equation approach. In this table,

parameters are chosen so that the overall probability of missing subgroup data is 40%.

Weighted for β1 β1 + β3

X/W R EBias ASE ESE ECP EBias ASE ESE ECP

Randomized setting, ignorable missing data

No No -0.0006 0.1662 0.1660 0.9528 0.0017 0.1603 0.1619 0.9486

No Yes -0.0004 0.1670 0.1665 0.9522 0.0017 0.1611 0.1626 0.9492

Yes No -0.0006 0.1666 0.1661 0.9522 0.0017 0.1607 0.1619 0.9494

Yes Yes -0.0004 0.1674 0.1665 0.9522 0.0017 0.1614 0.1625 0.9502

Randomized setting, non-ignorable missing data

No No 0.0077 0.1674 0.1677 0.9496 0.0096 0.1618 0.1614 0.9526

No Yes -0.0007 0.1688 0.1691 0.9506 0.0009 0.1631 0.1625 0.9544

Yes No 0.0077 0.1678 0.1678 0.9506 0.0096 0.1622 0.1614 0.9542

Yes Yes -0.0006 0.1692 0.1691 0.9514 0.0009 0.1635 0.1625 0.9544

Observational setting, ignorable missing data

No No 0.0315 0.1661 0.1679 0.9452 0.0296 0.1605 0.1614 0.9438

No Yes 0.0325 0.1669 0.1684 0.9442 0.0306 0.1612 0.1620 0.9446

Yes No -0.0009 0.1877 0.1878 0.9506 -0.0007 0.1807 0.1793 0.9524

Yes Yes -0.0007 0.1892 0.1890 0.9492 -0.0003 0.1823 0.1807 0.9518

Observational setting, non-ignorable missing data

No No 0.0384 0.1674 0.1680 0.9474 0.0399 0.1622 0.1605 0.9456

No Yes 0.0311 0.1686 0.1690 0.9478 0.0326 0.1633 0.1612 0.9512

Yes No 0.0067 0.1893 0.1882 0.9550 0.0082 0.1828 0.1800 0.9564

Yes Yes -0.0018 0.1913 0.1901 0.9550 0.0003 0.1845 0.1815 0.9570

Abbreviations: EBias Empirical bias, ASE asymptotic standard error,

ESE empirical standard error, ECP empirical coverage probability
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2.4.2 Discussion of Simulation Results

When the missingness is ignorable (i.e. ρ1 = 0), and treatment is randomized, any of the

four weighted estimating function approaches (unweighted, weighted for missing data only,

weighted for confounding only, and doubly weighted) yield consistent estimates for β. See

Tables 2.1 and 2.2, rows 1-4.

When the missingness is non-ignorable and treatment is randomized, only one weight

for missingness is necessary, i.e. the use of estimating function U1(β;ρ) from (2.15) will

yield consistent estimates. In rows 5-8 of Tables 2.1 and 2.2, the parameters are set so

that the missing data is non-ignorable (i.e. ρ1 6= 0) and treatment is randomized; we see

that when we weight for missing data only (row 6), our estimates of β1 and β1 + β3 are

consistent, as expected. When we use a doubly weighted estimating function approach

(row 8), our estimates are consistent as well, which shows that if a weight for confounding

is included when it is not needed, consistent estimates are still obtained. However, when we

do not weight for missing data (rows 5 and 7), we see that consistency is affected, although

the degree of bias is relatively small. We also note that when a weight for missingness is

omitted, the bias is larger when the percentage of missing data is higher, as expected (i.e.

the EBias in Table 2.2 is larger than in Table 2.1).

In rows 9-12 of Tables 2.1 and 2.2, the parameters are set so that the missing data

is ignorable (i.e. ρ1 = 0) and treatment selection depends on a confounding variable

that is also independently associated with the response (Z1). In row 11, a single weight

for confounding is used, and we see that our estimates of β1 and β1 + β3 are consistent,

as expected. In row 12, when a doubly weighted estimating equation approach is used,

estimates are consistent, however, the estimates are slightly less efficient. In rows 9 and

10, a weight for confounding is not used, and we see that our estimates of β1 and β1 + β3

are biased.

When the missing data is non-ignorable and treatment is not randomized, we have

shown that the use of estimating function Ũ1(β;ψ) from (2.18) will yield consistent es-

timates, and the simulation results reflect this. In rows 13-16 of Tables 2.1 and 2.2, the

parameters are set so that the missing data is non-ignorable (i.e. ρ1 6= 0) and treatment

selection is dependent upon confounding variable Z1i. Row 16 shows the empirical bias,
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average asymptotic standard error, average empirical standard error and the 95% confi-

dence interval coverage probability for estimates of β1 and β1 +β3 under a doubly weighted

estimating equation approach. We see that the bias is small and the coverage probability

is very close to 0.95, as expected. However in rows 13-15 when we fail to weight for either

confounding or missing data or both, our estimates are not consistent. When a weight for

confounding is used but the weight for missing data is omitted, the bias is relatively small,

whereas when there is only one weight for missing data and the weight for confounding is

omitted, the bias is much larger.

The limiting values of the marginal odds ratios of treatment for each of the subgroups

is shown in Figures 2.5 and 2.6. These figures show that as the strength of the relationship

between the response and confounding variable increases (i.e. the further exp(ϑ4) is away

from 1), the degree of bias in estimates of β1 and β1 + β3 increases. Also we see that when

the weight for missing data is omitted but the weight for confounding is included, the bias

is relatively small, which is also reflected in our simulation studies.
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Figure 2.5: Asymptotic bias under model misspecification, in an observational setting

where the missing data is non-ignorable. Bias is calculated as the difference between

exp(β†1) and exp(β1) where exp(β†1) is the estimate for exp(β1). exp(β1) is the odds ratio of

the response, comparing exposed to unexposed subjects, for those with subgroup variable

S = 0. exp(β1 + β3) is the odds ratio when S = 1. See Section 2.4.1 for parameter

specifications for parameters other than ϑ4. The percentage of subjects with a missing

subgroup variable measurement is 20%.
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Figure 2.6: Asymptotic bias under model misspecification, in an observational setting

where the missing data is non-ignorable. Bias is calculated as the difference between

exp(β†1) and exp(β1) where exp(β†1) is the estimate for exp(β1). exp(β1) is the odds ratio of

the response, comparing exposed to unexposed subjects, for those with subgroup variable

S = 0. exp(β1 + β3) is the odds ratio when S = 1. See Section 2.4.1 for parameter

specifications for parameters other than ϑ4. The percentage of subjects with a missing

subgroup variable measurement is 40%.
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2.5 Discussion

In this chapter, methods for estimating marginal causal effects in both randomized and

observational settings with missing covariate data are given. In the observational setting,

we describe the use of an inverse probability weight to account for confounding. In a

randomized setting where the subgroup variable of interest is incomplete, an inverse prob-

ability weight to account for missing data is used. A doubly weighted estimating equation

approach for estimating marginal regression coefficients is introduced for an observational

setting where the subgroup variable is incomplete. This is an application of the ‘full-weight’

method introduced by Moodie et al. (2008) to a single treatment setting where the incom-

plete variable is an important subgroup variable. Consistency of the estimator from the

doubly weighted estimating equation is shown, and a derivation of the asymptotic variance

is given.

Limiting values under misspecified estimating functions, where the weight is misspeci-

fied, are calculated. Results of simulation studies are presented, and the bias introduced

by misspecifying the weights in the weighted estimating functions is shown in figures for a

variety of parameter settings.

We explore the impact of omitting one or both of the inverse probability weights in the

estimating functions for estimating marginal regression parameters. There are other ways

to misspecify the estimating functions, for example, omitting a variable from the propensity

score model which may impact our ability to adjust for confounding. (See Appendix B for

a simulation study where an important confounder is omitted from the propensity score

model.) This is true for the weight for missing data as well. Variables can be included

unnecessarily in the weight models, which may affect efficiency.

Data from subjects with incomplete subgroup data are omitted in the doubly inverse

probability weighted method, which may impact the efficiency of the estimates. To address

this, in the following chapter, we propose a weighted EM-type algorithm method for esti-

mating marginal causal parameters using all available data, including data from subjects

who are missing the subgroup variable.
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Chapter 3

Causal Inference with Incomplete

Data Via a Weighted EM Algorithm

In Chapter 2 we introduce a complete case doubly weighted estimating equation approach

for estimating marginal causal odds ratios based on data from an observational study. In

this chapter, we introduce an alternative approach based on an expectation-maximization

(EM) algorithm which makes use of all available data (i.e. it is not restricted to individuals

with complete data).

We first describe the EM approach for estimating conditional causal effects. In this

framework, we then describe a weighted EM-type algorithm for estimating marginal treat-

ment effects by subgroup in the randomized setting where the subgroup variable is incom-

pletely observed. Finally, we describe a weighted EM-type algorithm for dealing with an

incompletely observed subgroup variable in an observational setting.
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3.1 Estimation of Conditional Causal Effects in a Ran-

domized Setting

3.1.1 Notation and Models

Suppose we have a setting similar to the one in Section 2.2.1 where Yi denotes a binary

response variable, Xi a binary treatment variable in a randomized setting, and Si a binary

subgroup variable for subject i in a random sample of n individuals, i = 1, ..., n. Let

Z1i = (Z11i, ..., Z1p1i)
T denote a vector of auxiliary variables that are directly associated

with the response, and Z2i = (Z21i, ..., Z2p2i)
T denote a vector of auxiliary variables that

are not independently associated with the response. For simplicity, we again consider the

setting where Z1i and Z2i are scalars denoted by Z1i and Z2i. The subgroup variable Si

may be incomplete for some individuals, so we let Ri = I(Si is observed) as before.

We wish to consider a setting where only one auxiliary variable is predictive of the

subgroup variable. We make the following conditional independence assumptions in a

randomized controlled trial setting:

A.0 Ri ⊥ (Yi, Xi, Si) | (Z1i, Z2i)

A.1 Yi ⊥ Z2i | (Xi, Si, Z1i)

A.2 Xi ⊥ (Si, Z1i, Z2i) (randomized setting)

A.3 Si ⊥ Z1i|Z2i

A.4 Z1i ⊥ Z2i .

The assumptions here are the same as in Chapter 2, with the exception of the additional

assumption that Si ⊥ Z1i|Z2i which is made for convenience throughout this chapter. The

joint probability of Ri, Yi, Xi, Si, Z1i, Z2i for subject i can be factorized as before (see (2.1)):

P (Ri, Yi, Xi, Si, Z1i, Z2i) = P (Ri|Yi, Xi, Si, Z1i, Z2i)P (Yi|Xi, Si, Z1i, Z2i) (3.1)

· P (Xi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Ri|Z1i, Z2i)P (Yi|Xi, Si, Z1i)P (Xi)P (Si|Z2i)P (Z1i)P (Z2i) .

Conditional on Xi, Si and Z1i, the response model parameters and the missing data mech-

anism parameters are distinct, therefore the missing data mechanism is ignorable.
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Figure 3.1 contains a causal DAG that summarizes the relationships between the vari-

ables.

Figure 3.1: Simple causal DAG for treatment X, response Y , a variable that is indepen-

dently associated with response Z1, and auxiliary variable Z2, in the context of a random-

ized controlled trial. Variable R indicates whether the subgroup variable is observed.

The conditional expectation of the binary response can be written as

µi(ϑ) = E(Yi|Xi, Si, Z1i) = P (Yi = 1|Xi, Si, Z1i;ϑ) .

We again consider a logistic regression model whereby

µi(ϑ) = expit(ϑ0 + ϑ1Xi + ϑ2Si + ϑ3XiSi + ϑ4XiZ1i) , (3.2)

and ϑ = (ϑ0, ϑ1, ϑ2, ϑ3, ϑ4)T is a vector of regression coefficients. Although we do not

include a main effect for the auxiliary variable Z1 to simplify the model, the methods

described in this chapter are applicable in the setting where the coefficient for the main

effect of Z1 is non-zero. We consider this as the ‘true’ data generating model for the

response and deal with methods for fitting it here; we deal with the observational setting

subsequently.

In the randomized setting, we let E(Xi) = P (Xi = 1; ξ1) = 0.5, so that the percentage

of treated subjects is 50%. For the auxiliary variables, E(Zji) = P (Zji = 1; ζj) = expit(ζj),

for j = 1, 2.

The subgroup variable is modeled as follows:

πi(ξ2) = E(Si|Z1i, Z2i) = P (Si = 1|Z1i, Z2i; ξ2) = expit(ξ20 + ξ21Z1i + ξ22Z2i) , (3.3)
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where ξ2 = (ξ20, ξ21, ξ22)T is a vector of regression coefficients. Because we have assumed

that Si ⊥ Z1i|Z2i, we set ξ21 = 0 and so write this as P (Si = 1|Z2i; ξ2) in what follows.

The logistic regression model for generating Ri is

πi(ρ) = E(Ri|Z1i, Z2i) = P (Ri = 1|Z1i, Z2i;ρ) = expit(ρ0 + ρ1Z1i + ρ2Z2i) , (3.4)

where ρ = (ρ0, ρ1, ρ2)T is a vector of regression parameters.

In the following section, we describe an EM algorithm for estimating ϑ.

3.1.2 An EM Algorithm for Incomplete Covariates

If interest lies in estimating ϑ from (3.2), an EM algorithm method for dealing with missing

covariate data can be used (Ibrahim et al., 2005).

Let δ = (ϑT , ξT2 )T , and let

D1i = {Yi, Xi, Si, Z1i, Z2i for Ri = 1; or Yi, Xi, Z1i, Z2i for Ri = 0}

denote the observed data for individual i, with D1 = {D1i, i = 1, ..., n}. In the E-step, the

conditional expectation of the loglikelihood for δ with respect to D1 at the kth iteration

is written as:

Q(δ; δ̂
(k)

) = Q1(ϑ; δ̂
(k)

) +Q2(ξ2; δ̂
(k)

)

=
n∑
i=1

(
Q1i(ϑ; δ̂

(k)
) +Q2i(ξ2; δ̂

(k)
)

)
(3.5)

where

Q1i(ϑ; δ̂
(k)

) = Ri logP (Yi|Xi, Si, Z1i;ϑ) (3.6)

+(1−Ri)
1∑
j=0

logP (Yi|Xi, Si = j, Z1i;ϑ)P (Si = j|D1i; δ̂
(k)

)

and

Q2i(ξ2; δ̂
(k)

) = Ri logP (Si|Z2i; ξ2) (3.7)

+(1−Ri)
1∑
j=0

logP (Si = j|Z2i; ξ2)P (Si = j|D1i; δ̂
(k)

) .
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For subjects with Ri = 0,

P (Si = j|D1i; δ̂
(k)

) =
P (Yi|Xi, Si = j, Z1i; ϑ̂

(k)
)P (Si = j|Z2i; ξ̂

(k)

2 )∑1
s=0 P (Yi|Xi, Si = s, Z1i; ϑ̂

(k)
)P (Si = s|Z2i; ξ̂

(k)

2 )
. (3.8)

In the M-step, we maximize Q1(ϑ; δ̂
(k)

) and Q2(ξ2; δ̂
(k)

) to obtain δ̂
(k+1)

. To do this,

a weighted GLM can be fitted using a ‘long’ dataset. The long dataset is constructed as

follows. Each subject has two rows, one for j = 1 and one for j = 0; when Si is observed,

the weight is 1 when Si = j and 0 otherwise. When Si is missing, the weight is computed

using equation (3.8). See Table 3.1 for an example of how to set up such a dataset.

Table 3.1: Layout of a dataset for the EM algorithm, at the (k + 1)st M-step.

i Z1i Z2i Xi Si Yi Ri j weight

1 1 0 0 1 1 1 1 1

1 1 0 0 1 1 1 0 0

2 1 1 0 . 0 0 1 P (Si = 1|Z1i = 1, Z2i = 1, Xi = 0, Yi = 0; δ̂
(k)

)

2 1 1 0 . 0 0 0 P (Si = 0|Z1i = 1, Z2i = 1, Xi = 0, Yi = 0; δ̂
(k)

)

3 0 1 1 0 0 1 1 0

3 0 1 1 0 0 1 0 1

4 1 0 1 . 1 0 1 P (Si = 1|Z1i = 1, Z2i = 0, Xi = 1, Yi = 1; δ̂
(k)

)

4 1 0 1 . 1 0 0 P (Si = 0|Z1i = 1, Z2i = 0, Xi = 1, Yi = 1; δ̂
(k)

)
...

...
...

...
...

...
...

...
...

The estimating function for obtaining ϑ̂
(k+1)

at the (k+1)st M-step of the EM algorithm

is

U1(ϑ; δ̂
(k)

) =
n∑
i=1

U1i(ϑ; δ̂
(k)

) (3.9)
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where

U1i(ϑ; δ̂
(k)

) = Ri Di(ϑ)[Vi(ϑ)]−1
(
Yi − µi(ϑ)

)
+ (1−Ri)

1∑
j=0

Di(ϑ)[Vi(ϑ)]−1

{(
Yi − µi(ϑ)

)
P (Si = j|D1i; δ̂

(k)
)

}
,

with Di(ϑ) = ∂µi(ϑ)/∂ϑ and Vi(ϑ) = µi(ϑ)(1−µi(ϑ)). Similarly, the estimating function

for obtaining ξ̂
(k+1)

2 at the (k + 1)st M-step of the EM algorithm is

U2(ξ2; δ̂
(k)

) =
n∑
i=1

U2i(ξ2; δ̂
(k)

) (3.10)

where

U2i(ξ2; δ̂
(k)

) = Di(ξ2)[Vi(ξ2)]−1

[
Ri

(
Si − πi(ξ2)

)
+ (1−Ri)

1∑
j=0

{(
j − πi(ξ2)

)
P (Si = j|D1i; δ̂

(k)
)

}]
,

with Di(ξ2) = ∂πi(ξ2)/∂ξ2 and Vi(ξ2) = var(Si|Z2i) = πi(ξ2)(1−πi(ξ2)). The expectation

and maximization steps are repeated iteratively until |δ̂
(k)
− δ̂

(k+1)
| < ε for a fixed tolerance

ε. In other words, we (i) obtain initial estimates for δ = (ϑT , ξT2 )T denoted by δ̂
(1)

; (ii)

calculate the weights for each individual; (iii) fit each weighted GLM to obtain δ̂
(2)

. This

is repeated until the convergence criteria are met. One way to obtain initial estimates

for ϑ and ξ2 is to fit two separate unweighted GLMs using complete cases only. The EM

algorithm described here is simply a computational device for obtaining the maximum

likelihood estimate of δ.

If δ̂ denotes the estimate of δ at convergence, the estimate of the asymptotic covariance

matrix of ϑ is the upper block of matrix [I(δ̂)]−1 where I(δ̂) is the observed information
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given by

I(δ̂) = −Q̈(δ̂; δ̂)

−
{ n∑
i=1

(
Ri Si(D1i; δ̂) STi (D1i; δ̂)

+(1−Ri)
1∑
j=0

Si(D1i, Si = j; δ̂) STi (D1i, Si = j; δ̂)P (Si = j|D1i; δ̂)

)

−
n∑
i=1

Q̇i(δ̂; δ̂) Q̇T
i (δ̂; δ̂)

}
(3.11)

(Louis, 1982). The contribution to (3.11) when Ri = 1 involves

Si(D1i; δ) =

(
S1i(Yi, Xi, Si, Z1i;ϑ)

S2i(Si, Z2i; ξ2)

)

where

S1i(Yi, Xi, Si, Z1i;ϑ) =


1

Xi

Si

XiSi

XiZ1i

 (Yi − µi(ϑ))

and

S2i(Si, Z2i; ξ2) =

(
1

Z2i

)
(Si − πi(ξ2)) .

Likewise when Ri = 0, the contributions involve the terms

Si(D1i, Si = j; δ) =

(
S1i(Yi, Xi, Si = j, Z1i;ϑ)

S2i(Si = j, Z2i; ξ2)

)
.

Finally we define Q̇i(δ; δ) and Q̈(δ; δ) as

Q̇i(δ; δ) = Ri Si(D1i; δ) + (1−Ri)
1∑
j=0

Si(D1i, Si = j; δ)P (Si = j|D1i; δ)
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and

Q̈(δ; δ) =
n∑
i=1

(
Ri

∂Si(D1i; δ)

∂δT
+ (1−Ri)

1∑
j=0

∂Si(D1i, Si = j; δ)

∂δT
P (Si = j|D1i; δ)

)
.

In this section we have described an EM algorithm for estimating regression coefficients

in the randomized setting with an incomplete subgroup variable. Next, we review the

notation and models for an observational setting, and show that the EM algorithm for

estimating regression coefficients in the correctly specified conditional model is the same

as in the randomized setting.

3.2 Estimation of Conditional Causal Effects in an

Observational Setting

Here, we briefly show that the EM algorithm described in Section 3.1 also works in an

observational setting where confounding is an issue provided we control for the confounding

variable in the response model by conditioning on Z1i. We first review the notation and

models in an observational setting which are presented in Sections 2.1.2 and 2.2.2.

3.2.1 Notation and Models

Suppose we make the same conditional independence assumptions as in the randomized

setting, with the exception of the assumptions for the treatment variable:

B.0 Ri ⊥ (Yi,Wi, Si) | (Z1i, Z2i)

B.1 Yi ⊥ Z2i | (Wi, Si, Z1i)

B.2 Wi ⊥ Si|(Z1i, Z2i) (observational setting)

B.3 Si ⊥ Z1i|Z2i

B.4 Z1i ⊥ Z2i .
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Figure 3.2: Simple causal DAG for treatment W , response Y , a variable that is indepen-

dently associated with response Z1 and treatment selection, and auxiliary variable Z2 that

is associated with treatment selection, in the context of an observational study. Variable

R indicates whether subgroup variable S is observed.

The joint probability of Ri, Yi,Wi, Si, Z1i, Z2i for subject i can be factorized as

P (Ri, Yi,Wi, Si, Z1i, Z2i) = P (Ri|Yi,Wi, Si, Z1i, Z2i)P (Yi|Wi, Si, Z1i, Z2i)

· P (Wi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Ri|Z1i, Z2i)P (Yi|Wi, Si, Z1i)

· P (Wi|Z1i, Z2i)P (Si|Z2i)P (Z1i)P (Z2i) . (3.12)

See Figure 3.2 for a causal DAG that summarizes the relationships between the variables.

The conditional expectation of the response can be written as µi(ϑ) = E(Yi|Wi, Si, Z1i).

We again consider a logistic regression model for the response whereby

µi(ϑ) = expit(ϑ0 + ϑ1Wi + ϑ2Si + ϑ3WiSi + ϑ4WiZ1i) , (3.13)

and ϑ = (ϑ0, ϑ1, ϑ2, ϑ3, ϑ4)T is a vector of regression coefficients. Note that ϑ is the same

vector of regression coefficients as in equation (3.2) regardless of whether we are in a setting

where treatment is randomized, or an observational setting.

When treatment is not randomized, the conditional probability of treatment given

(Z1i, Z2i) for subject i is assumed to have the form

πi(ξ1) = P (Wi = 1|Z1i, Z2i; ξ1) = expit(ξ10 + ξ11Z1i + ξ12Z2i) , (3.14)

where ξ1 = (ξ10, ξ11, ξ12)T is a vector of regression coefficients. The remaining variables,

Ri, Si, Z1i and Z2i, are generated as in Section 3.1.1.
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3.2.2 The EM Algorithm with Observational Data

Here we show that EM algorithm described in Section 3.1.2 can be used in an observational

setting.

Let

D2i = {Yi,Wi, Si, Z1i, Z2i for Ri = 1; or Yi,Wi, Z1i, Z2i for Ri = 0}

denote the observed data for individual i, with D2 = {D2i, i = 1, ..., n}. At the E-step, the

conditional expectation of the loglikelihood for δ with respect to D2 at the kth iteration

is written as:

Q(δ; δ̂
(k)

) = Q1(ϑ; δ̂
(k)

) +Q2(ξ2; δ̂
(k)

)

=
n∑
i=1

(
Q1i(ϑ; δ̂

(k)
) +Q2i(ξ2; δ̂

(k)
)

)
where

Q1i(ϑ; δ̂
(k)

) = Ri logP (Yi|Wi, Si, Z1i;ϑ)

+(1−Ri)
1∑
j=0

logP (Yi|Wi, Si = j, Z1i;ϑ)P (Si = j|D2i; δ̂
(k)

)

and

Q2i(ξ2; δ̂
(k)

) = Ri logP (Si|Z2i; ξ2)

+(1−Ri)
1∑
j=0

logP (Si = j|Z2i; ξ2)P (Si = j|D2i; δ̂
(k)

) .

For subjects with Ri = 0,

P (Si = j|D2i; δ̂
(k)

) =
P (Yi|Wi, Si = j, Z1i; ϑ̂

(k)
)P (Si = j|Z2i; ξ̂

(k)

2 )∑1
s=0 P (Yi|Wi, Si = s, Z1i; ϑ̂

(k)
)P (Si = s|Z2i; ξ̂

(k)

2 )
.

Because we condition on Z1i in the conditional response model, confounding is not an issue,

and we proceed with the methods given in Section 3.1.2.

We have shown how to use an EM algorithm to estimate conditional causal odds ratios

in both randomized and observational settings with a missing subgroup variable.
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3.3 Estimation of Marginal Causal Effects in a Ran-

domized Setting

In this section, we extend the EM algorithm for incomplete covariate data in a conditional

response model for estimation of marginal causal effects.

3.3.1 Notation and Models

See Section 3.1.1 for a list of assumptions and models for random variables R, Y,X, S, Z1

and Z2 in a randomized setting. A key assumption used in Chapter 2, which is used here

as well, is:

P (Yi = 1|Wi = w, Si = s, Z1i = z1;ϑ) = P (Yi = 1|Xi = w, Si = s, Z1i = z1;ϑ) . (3.15)

This means that the full conditional distribution of the response given the treatment vari-

able and Si, Z1i is the same whether we are in a randomized or an observational setting.

This holds because we are conditioning on all of the variables that are (independently)

associated with response.

In the marginal model setting, we wish to estimate β defined as the logistic regression

coefficients in the following response model:

P (Yi = 1|Xi, Si;β) = µi(β) = expit(β0 + β1Xi + β2Si + β3XiSi) , (3.16)

where

P (Yi = 1|Xi, Si;β) = EZ1i|Xi,Si
[P (Yi = 1|Xi, Si, Z1i;ϑ)]

=
1∑

z1=0

P (Yi = 1|Xi, Si, z1;ϑ)P (Z1i = z1; ζ1)

by assumptions A.2, A.3 and A.4.
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3.3.2 A Weighted EM-Type Algorithm for Incomplete Data

We begin by writing the joint probability in the context of estimating β. Because we are

not interested in estimating the effect of Z1 on Y , we do not include Z1 in the model of

interest (3.16), but we note that Z1 is an important variable which will be used in the

discussion of bias and limiting values. We include Z2 since it contains information about

the missing subgroup variable and is conditionally independent of Y . The joint distribution

of the variables can be factored as follows:

P (Ri, Yi, Xi, Si, Z2i) = P (Ri|Yi, Xi, Si, Z2i)P (Yi|Xi, Si, Z2i)

· P (Xi|Si, Z2i)P (Si|Z2i)P (Z2i)

= P (Ri|Yi, Xi, Si, Z2i)P (Yi|Xi, Si)P (Xi)P (Si|Z2i)P (Z2i) .

We cannot factor Yi from the missing data model when we do not include Z1i in the

joint probability. Omitting Z1i from the model for Y creates non-ignorable missingness. A

selection model can be incorporated into the likelihood to account for the non-ignorably

missing data (Ibrahim et al., 2005), however, instead we propose the use of an inverse

probability weight when using the EM algorithm to estimate parameters of the marginal

model. A weighted EM-type estimating function is described in what follows using weights

based on the inverse of P (Ri = r|Z1i, Z2i;ρ).

Let

D3i = {Yi, Xi, Si, Z2i for Ri = 1; or Yi, Xi, Z2i for Ri = 0} ,

D3 = {D3i, i = 1, ..., n} and θ = (βT , ξT2 )T . At the E-step, the conditional expectation of

a working loglikelihood for θ with respect to D3 at the kth iteration is written as:

Q(θ; θ̂
(k)
,ρ) = Q1(β; θ̂

(k)
,ρ) +Q2(ξ2; θ̂

(k)
,ρ)

=
n∑
i=1

(
Q1i(β; θ̂

(k)
,ρ) +Q2i(ξ2; θ̂

(k)
,ρ)

)
(3.17)
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where

Q1i(β; θ̂
(k)
,ρ) =

Ri

πi(ρ)
logP (Yi|Xi, Si;β)

+
(1−Ri)

(1− πi(ρ))

1∑
j=0

logP (Yi|Xi, Si = j;β)P (Si = j|D3i; θ̂
(k)

)

and

Q2i(ξ2; θ̂
(k)
,ρ) =

Ri

πi(ρ)
logP (Si|Z2i; ξ2)

+
(1−Ri)

(1− πi(ρ))

1∑
j=0

logP (Si = j|Z2i; ξ2)P (Si = j|D3i; θ̂
(k)

) .

For subjects with Ri = 0,

P (Si = j|D3i; θ̂
(k)

) =
P (Yi|Xi, Si = j; β̂

(k)
)P (Si = j|Z2i; ξ̂

(k)

2 )∑1
s=0 P (Yi|Xi, Si = s; β̂

(k)
)P (Si = s|Z2i; ξ̂

(k)

2 )
.

In the M-step, we fit two weighted GLMs to maximize Q1(β; θ̂
(k)
,ρ) and Q2(ξ2; θ̂

(k)
,ρ)

to obtain θ̂
(k+1)

. We do this in the same way as described for estimating ϑ in Section 3.1,

however, the first step is to estimate ρ using the full dataset. A logistic regression model

can be fitted to obtain ρ̂. Then, a “long” dataset is constructed as before with two rows

for each subject, setting j = 1 in the first row and j = 0 in the second row. See Table

3.2 for an example of a dataset structure in this context. The weight for subject i with

Ri = 1 is 1/πi(ρ̂) when Si = j and 0 otherwise. The weight for subject i with Ri = 0 is

P (Si = j|D3i; θ̂
(k)

)/(1− πi(ρ̂)).

The weighted estimating function at the M-step for obtaining β̂
(k+1)

is

U1(β; θ̂
(k)
,ρ) =

n∑
i=1

U1i(β; θ̂
(k)
,ρ)

where

U1i(β; θ̂
(k)
,ρ) =

Ri

πi(ρ)
Di(β)[Vi(β)]−1

(
Yi − µi(β)

)
+

(1−Ri)

1− πi(ρ)

1∑
j=0

Di(β)[Vi(β)]−1

{(
Yi − µi(β)

)
P (Si = j|D3i; θ̂

(k)
)

}
,
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Table 3.2: Layout of a dataset for the weighted EM-type algorithm, at the (k+1)st M-step.

i Z1i Z2i Xi Si Yi Ri j weight

1 1 0 0 1 1 1 1 1/πi(ρ̂)

1 1 0 0 1 1 1 0 0

2 1 1 0 . 0 0 1 P (Si=1|Z2i=1,Xi=0,Yi=0;θ̂
(k)

)
1−πi(ρ̂)

2 1 1 0 . 0 0 0 P (Si=0|Z2i=1,Xi=0,Yi=0;θ̂
(k)

)
1−πi(ρ̂)

3 0 1 1 0 0 1 1 0

3 0 1 1 0 0 1 0 1/πi(ρ̂)

4 1 0 1 . 1 0 1 P (Si=1|Z2i=0,Xi=1,Yi=1;θ̂
(k)

)
1−πi(ρ̂)

4 1 0 1 . 1 0 0 P (Si=0|Z2i=0,Xi=1,Yi=1;θ̂
(k)

)
1−πi(ρ̂)

...
...

...
...

...
...

...
...

...

where Di(β) = ∂µi(β)/∂β and Vi(β) = µi(β)(1− µi(β)).

Similarly, the estimating function for the M-step for estimating ξ
(k+1)
2 is

U2(ξ2; θ̂
(k)
,ρ) =

n∑
i=1

U2i(ξ2; θ̂
(k)
,ρ)

where

U2i(ξ2; θ̂
(k)
,ρ) = Di(ξ2)[Vi(ξ2)]−1

[
Ri

πi(ρ)

(
Si − πi(ξ2)

)
+

(1−Ri)

(1− πi(ρ))

1∑
j=0

{(
j − πi(ξ2)

)
P (Si = j|D3i; θ̂

(k)
)

}]
,

where Di(ξ2) = ∂πi(ξ2)/∂ξ2 and Vi(ξ2) = πi(ξ2)(1 − πi(ξ2)). If we iterate between the

E-step and the M-step until |θ̂
(k)
− θ̂

(k+1)
| < ε for a fixed tolerance ε, the solution θ̂ is

obtained. In other words, we (i) obtain initial estimates for β and ξ2 denoted by β̂
(1)

and ξ̂
(1)

2 ; (ii) calculate the weights for each row for each individual using ρ̂ and θ̂
(1)

; (iii)

fit each weighted GLM to obtain β̂
(2)

and ξ̂
(2)

2 . Steps (ii) and (iii) are repeated until the
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convergence criteria are met. Initial estimates for β and ξ2 can be obtained by fitting two

separate unweighted GLMs using complete cases only.

Let φ = (θT ,ρT )T . If φ denotes the estimate of φ at convergence, the estimate of the

asymptotic covariance matrix of β is the upper 4× 4 block of matrix Σ(φ) which has the

sandwich form. See Section 3.4.4 for details on variance estimation in a more generalized

setting.

We have proposed a type of weighted EM algorithm that can be used for handling

missing data in the randomized setting when marginal regression coefficients are of interest.

An inverse probability weight for missing data is introduced to account for non-ignorably

missing subgroup data.

3.4 Estimation of Marginal Causal Effects in an Ob-

servational Setting

Here we introduce a doubly inverse probability weighted EM-type algorithm for estimating

marginal causal effects in an observational setting where the subgroup variable is incom-

pletely observed.

3.4.1 Notation and Models

In Section 3.2.1 a list of conditional independence assumptions and the logistic regression

models that generate the variables are provided in an observational setting. As before, the

binary response Yi for subject i is generated by the conditional probability

P (Yi = 1|Wi, Si, Z1i;ϑ) ,

but interest lies in the marginal model Yi|Xi, Si where the causal effect of Xi at different

levels of the subgroup variable Si is of primary interest. Therefore, interest lies in estimating

β from (3.16). However in this observational setting, the treatment is not randomized, and

we make the assumption that treatment selection depends on confounder Z1 and auxiliary

variable Z2.
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3.4.2 Doubly Weighted EM-Type Algorithm

The joint probability for Ri, Yi,Wi, Si, Z2i for subject i can be factored as

P (Ri, Yi,Wi, Si, Z2i) = P (Ri|Yi,Wi, Si, Z2i)P (Yi|Wi, Si, Z2i)

· P (Wi|Si, Z2i)P (Si|Z2i)P (Z2i) . (3.18)

As in Section 3.3.2, we cannot factor the response variable from the conditional probabil-

ity of the missing data indicator when we do not condition on Z1, therefore the missing

subgroup data is non-ignorable. As well, confounding is an issue since we are in an obser-

vational setting where treatment selection is dependent upon confounder Z1.

In Section 3.3.2, we introduced a ‘fix’ for estimating marginal regression coefficients

which involved weighting the estimating function at the M-step by the inverse of P (Ri =

r|Z1i, Z2i;ρ). Here, in the observational data setting, we propose the use of two inverse

probability weights for both missing data and confounding.

Let

D4i = {Yi,Wi, Si, Z2i for Ri = 1; or Yi,Wi, Z2i for Ri = 0} ,

D4 = {D4i, i = 1, ..., n}, and θ = (βT , ξT2 )T as before. Also, let ψ = (ρT , ξT1 )T represent

the parameters in the inverse probability weight for missing data and confounding.

At the E-step, the conditional expectation of a working loglikelihood for θ with respect

to D4 at the kth iteration is written as:

Q̃i(θ; θ̂
(k)
,ψ) = Q̃1i(β; θ̂

(k)
,ψ) + Q̃2i(ξ2; θ̂

(k)
,ψ) (3.19)

where

Q̃1i(β; θ̂
(k)
,ψ) =

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

[
Ri

πi(ρ)
logP (Yi|Wi, Si;β)

+
1−Ri

1− πi(ρ)

1∑
j=0

logP (Yi|Wi, Si = j;β)P (Si = j|D4i; θ̂
(k)

)

]
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and

Q̃2i(ξ2; θ̂
(k)
,ψ) =

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

[
Ri

πi(ρ)
logP (Si|Z2i; ξ2)

+
1−Ri

1− πi(ρ)

1∑
j=0

logP (Si = j|Z2i; ξ2)P (Si = j|D4i; θ̂
(k)

)

]
.

For subjects with Ri = 0,

P (Si = j|D4i; θ̂
(k)

) =
P (Yi|Wi, Si = j; β̂

(k)
)P (Si = j|Z2i; ξ̂

(k)

2 )∑1
s=0 P (Yi|Wi, Si = s; β̂

(k)
)P (Si = s|Z2i; ξ̂

(k)

2 )
.

In the M-step, we fit two weighted GLMs to maximize Q̃1(β; θ̂
(k)

) and Q̃2(ξ2; θ̂
(k)

) to

obtain θ̂
(k+1)

. The weighted estimating equation for the M-step of the weighted EM-type

algorithm for obtaining estimate β̂
(k+1)

is

Ũ1(β; θ̂
(k)
,ψ) (3.20)

=
n∑
i=1

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

[
Ri

πi(ρ)
Di(β)[Vi(β)]−1

(
Yi − µi(β)

)
+

1−Ri

1− πi(ρ)

1∑
j=0

Di(β)[Vi(β)]−1

{(
Yi − µi(β)

)
P (Si = j|D4i; θ̂

(k)
)

}]
,

where Di(β) = ∂µi(β)/∂β, and Vi(β) = µi(β)(1− µi(β)).

Similarly, the weighted estimating equation at the M-step for obtaining ξ̂
(k+1)

2 is

Ũ2(ξ2; θ̂
(k)
,ψ) (3.21)

=
n∑
i=1

1∑
l=0

Di(ξ2)[Vi(ξ2)]−1 I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

[
Ri

πi(ρ)

(
Si − πi(ξ2)

)
+

1−Ri

1− πi(ρ)

1∑
j=0

{(
j − πi(ξ2)

)
P (Si = j|D4i; θ̂

(k)
)

}]
,

where Di(ξ2) = ∂πi(ξ2)/∂ξ2 and Vi(ξ2) = πi(ξ2)(1− πi(ξ2)).
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Table 3.3: Layout of a dataset for the doubly weighted EM-type algorithm, at the (k+1)st

M-step.

i Z1i Z2i Wi Si Yi Ri j weight

1 1 0 0 1 1 1 1 1

πi(ρ̂)(1−πi(ξ̂1))

1 1 0 0 1 1 1 0 0

2 1 1 0 . 0 0 1 P (Si=1|Z2i=1,Xi=0,Yi=0;θ̂
(k)

)

(1−πi(ρ̂))(1−πi(ξ̂1))

2 1 1 0 . 0 0 0 P (Si=0|Z2i=1,Xi=0,Yi=0;θ̂
(k)

)

(1−πi(ρ̂))(1−πi(ξ̂1))

3 0 1 1 0 0 1 1 0

3 0 1 1 0 0 1 0 1
πi(ρ̂)πi(ξ1)

4 1 0 1 . 1 0 1 P (Si=1|Z2i=0,Xi=1,Yi=1;θ̂
(k)

)

(1−πi(ρ̂))πi(ξ̂1)

4 1 0 1 . 1 0 0 P (Si=0|Z2i=0,Xi=1,Yi=1;θ̂
(k)

)

(1−πi(ρ̂))πi(ξ̂1)
...

...
...

...
...

...
...

...
...

In practice, the inverse probability weights are unknown, so the first step is to fit a

logistic regression model using the full dataset to obtain ρ̂. The second step is to fit another

logistic regression model to obtain ξ̂1, again using the full dataset. The inverse probability

weights are then replaced with their estimated counterparts. The inverse probability weight

estimates are unchanged throughout the iterations and only θ is updated at each iteration.

For estimation we iterate between the E-step and the M-step until |θ̂
(k)
− θ̂

(k+1)
| < ε,

for fixed ε. We do this in the same way as described for estimating ϑ. A “long” dataset

is constructed with two rows for each subject. In the first row, a new variable j is set

to 1, and in the second row j is set to 0. The weight in rows with Ri = 0 is P (Si =

j|Yi,Wi, Z2i; θ̂
(k)

)/[(1− πi(ρ̂))πi(ξ̂1)Wi(1− πi(ξ̂1))1−Wi ]. For rows with Ri = 1, the weight

is 0 when j 6= Si, and 1/[πi(ρ̂)πi(ξ̂1)Wi(1− πi(ξ̂1))1−Wi ] when j = Si. See Table 3.3 for an

example of a “long” dataset with weights.

Let β̃ denote the estimate of β when convergence criteria are met, and likewise let θ̃

denote the estimate of θ.

In the following sections, we show that β̃ is a consistent estimator of β by showing that
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the estimating function (3.20) is unbiased.

3.4.3 Consistency Results

Theorem 2. Let β̃ be the solution to Ũ1(β;θ,ψ) = 0. Then β̃ is a consistent estimator

of β from (3.16).

Proof: Consistency results can be established by showing that estimating function (3.20)

is an unbiased estimating function for β. Note that, although we observe the treatment

variable in the context of an observational study, the response model is written in terms

of Y,X, S since we are interested in estimating the effects that we would estimate using

randomized data where the treatment selection process is randomized and X is independent

of (Z1, Z2). Also, in a logistic regression setting, Di(β)[Vi(β)]−1 = (1,Wi, Si,WiSi)
T .

First, we take the conditional expectation with respect to R|Y,W, S, Z1, Z2 (dropping

the i subscript) which by Assumption B.0 of Section 3.2.1 gives

1∑
l=0

I(W = l)

π(ξ1)l(1− π(ξ1))(1−l)

{
P (R = 1|Z1, Z2;ρ)

π(ρ)
(1,W, S,WS)T

(
Y − P (Y = 1|X = l, S;β)

)
+

P (R = 0|Z1, Z2;ρ)

1− π(ρ)

1∑
j=0

[
(1,W, j,Wj)T

(
Y − P (Y = 1|X = l, S = j;β)

)
· P (S = j|Y,X = l, Z2;θ)

]}
=

1∑
l=0

I(W = l)

π(ξ1)l(1− π(ξ1))(1−l)

{
(1,W, S,WS)T

(
Y − P (Y = 1|X = l, S;β)

)
+

1∑
j=0

(1,W, j,Wj)T
[(
Y − P (Y = 1|X = l, S = j;β)

)
P (S = j|Y,X = l, Z2;θ)

]}
.

Next, we take the conditional expectation of this with respect to Y |W,S, Z1, Z2 which by
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Assumption B.1 of Section 3.2.1 gives

1∑
l=0

I(W = l)

π(ξ1)l(1− π(ξ1))(1−l)

{
(1,W, S,WS)T

(
P (Y = 1|W,S,Z1;ϑ)− P (Y = 1|X = l, S;β)

)
+

1∑
j=0

(1,W, j,Wj)T
[ 1∑
y=0

(
y − P (Y = 1|X = l, S = j;β)

)
· P (S = j|Y = y,X = l, Z2;θ)P (Y = y|W,S,Z1;ϑ)

]}
=

1∑
l=0

I(W = l)

π(ξ1)l(1− π(ξ1))(1−l)

{
(1,W, S,WS)T

(
P (Y = 1|W,S,Z1;ϑ)− P (Y = 1|X = l, S;β)

)
+

1∑
j=0

(1,W, j,Wj)T
[
P (S = j|Y = 1, X = l, Z2;θ)P (Y = 1|W,S,Z1;ϑ)

−P (Y = 1|X = l, S = j;β)

1∑
y=0

P (S = j|Y = y,X = l, Z2;θ)P (Y = y|W,S,Z1;ϑ)

]}
.

Next, we take the conditional expectation of this with respect to W |S,Z1, Z2 which by
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Assumption B.2 of Section 3.2.1 gives

1∑
w=0

1∑
l=0

I(w = l)P (W = w|Z1, Z2; ξ1)

π(ξ1)l(1− π(ξ1))(1−l)

{
(1, w, S, wS)T

(
P (Y = 1|W = w, S, Z1;ϑ)

−P (Y = 1|X = l, S;β)
)

+

1∑
j=0

(1, w, j, wj)T
[
P (S = j|Y = 1, X = l, Z2;θ)P (Y = 1|W = w, S, Z1;ϑ)

−P (Y = 1|X = l, S = j;β)

1∑
y=0

P (S = j|Y = y,X = l, Z2;θ)P (Y = y|W = w, S, Z1;ϑ)

]}

=

1∑
w=0

P (W = w|Z1, Z2; ξ1)

π(ξ1)w(1− π(ξ1))(1−w)

{
(1, w, S, wS)T

(
P (Y = 1|W = w, S, Z1;ϑ)

−P (Y = 1|X = w, S;β)
)

+

1∑
j=0

(1, w, j, wj)T
[
P (S = j|Y = 1, X = w,Z2;θ)P (Y = 1|W = w, S, Z1;ϑ)

−P (Y = 1|X = w, S = j;β)

·
1∑
y=0

P (S = j|Y = y,X = w,Z2;θ)P (Y = y|W = w, S, Z1;ϑ)

]}

=
1∑

w=0

{
(1, w, S, wS)T

(
P (Y = 1|W = w, S, Z1;ϑ)− P (Y = 1|X = w, S;β)

)
+

1∑
j=0

(1, w, j, wj)T
[
P (S = j|Y = 1, X = w,Z2;θ)P (Y = 1|W = w, S, Z1;ϑ)

−P (Y = 1|X = w, S = j;β)

·
1∑
y=0

P (S = j|Y = y,X = w,Z2;θ)P (Y = y|W = w, S, Z1;ϑ)

]}

since the indicator I(Wi = l) ensures only one term is retained (when l = w for w = 0, 1).

Finally, we take the expectation of this with respect to S,Z1, Z2 which by Assumptions
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B.3 and B.4 of Section 3.2.1 gives

1∑
z2=0

1∑
z1=0

1∑
s=0

1∑
w=0

{
(1, w, s, ws)T

(
P (Y = 1|W = w, S = s, Z1 = z1;ϑ)

−P (Y = 1|X = w, S = s;β)
)

+

1∑
j=0

(1, w, j, wj)T
[
P (S = j|Y = 1, X = w, z2;θ)P (Y = 1|W = w, S = s, z1;ϑ)

−P (Y = 1|X = w, S = j;β)

·
1∑
y=0

P (S = j|Y = y,X = w, z2;θ)P (Y = y|W = w, S = s, z1;ϑ)

]}
· P (S = s|Z2 = z2; ξ2)P (Z1 = z1; ζ1)P (Z2 = z2; ζ2) .

Since

P (Y = 1|W = w, S = s, Z1 = z1;ϑ) = P (Y = 1|X = w, S = s, Z1 = z1;ϑ) ,

the expectation of the estimating equation can be written as

1∑
z2=0

1∑
s=0

1∑
w=0

{
(1, w, s, ws)T

(
P (Y = 1|X = w, S = s;β)P (S = s|Z2 = z2; ξ2)P (Z2 = z2; ζ2)

−P (Y = 1|X = w, S = s;β)P (S = s|Z2 = z2; ξ2)P (Z2 = z2; ζ2)
)}

+

1∑
z2=0

1∑
z1=0

1∑
s=0

1∑
w=0

{ 1∑
j=0

(1, w, j, wj)T

·
[
P (S = j|Y = 1, X = w, z2;θ)P (Y = 1|X = w, S = s, z1;ϑ)

−P (Y = 1|X = w, S = j;β)

·
1∑
y=0

P (S = j|Y = y,X = w, z2;θ)P (Y = y|X = w, S = s, z1;ϑ)

]}
· P (S = s|Z2 = z2; ξ2)P (Z1 = z1; ζ1)P (Z2 = z2; ζ2)

since

1∑
z1=0

P (Y = 1|X = w, S = s, Z1 = z1;ϑ)P (Z1 = z1; ζ1) = P (Y = 1|X = w, S = s;β) .
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We can then write the expectation as

=
1∑

z2=0

1∑
z1=0

1∑
s=0

1∑
w=0

{ 1∑
j=0

(1, w, j, wj)T
[

P (Y = 1|X = w, S = j;β)P (S = j|z2; ξ2)∑1
r=0 P (Y = 1|X = w, S = r;β)P (S = r|z2; ξ2)

· P (Y = 1|X = w, S = s, z1;ϑ)P (S = s|Z2 = z2; ξ2)P (Z1 = z1; ζ1)P (Z2 = z2; ζ2)

−P (Y = 1|X = w, S = j;β)

1∑
y=0

P (Y = y|X = w, S = j;β)P (S = j|z2; ξ2)∑1
r=0 P (Y = y|X = w, S = r;β)P (S = r|z2; ξ2)

· P (Y = y|X = w, S = s, z1;ϑ)P (S = s|Z2 = z2; ξ2)P (Z1 = z1; ζ1)P (Z2 = z2; ζ2)

]}
=

1∑
z2=0

1∑
w=0

{ 1∑
j=0

(1, w, j, wj)T
[
P (Y = 1|X = w, S = j;β)P (S = j|z2; ξ2)P (Z2 = z2; ζ2)

−P (Y = 1|X = w, S = j;β)

·
1∑
y=0

P (Y = y|X = w, S = j;β)P (S = j|z2; ξ2)P (Z2 = z2; ζ2)

]}
= 0

We have thus shown that β̃ is a consistent estimator of β.

3.4.4 Derivation of the Asymptotic Variance

Let U3(ρ) represent the standard logistic regression estimating function for estimating ρ,

and let U4(ξ1) represent the standard logistic regression estimating function for estimating

ξ1. Then

Ũ(ω;θ) =


Ũ1(β;θ,ψ)

Ũ2(ξ2;θ,ψ)

U3(ρ)

U4(ξ1)

 (3.22)

is the joint estimating function for ω = (θT ,ψT )T obtained by replacing the θ̂
(k)

terms in

(3.20) and (3.21) with θ.

Here we derive the asymptotic covariance matrix for β̃ by generalizing the Louis (1982)

method (Section 3.1.2) to incorporate doubly inverse probability weights (Section 2.3.2).
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The asymptotic covariance matrix for ω̃ takes the form

I(ω)−1C(ω)[I(ω)−1]T , (3.23)

where

I(ω) =

[
I11(ω) I12(ω)

0 I22(ω)

]
,

and

C(ω) = E[Ũi(ω),Ũi(ω)T ] .

I11(ω) is the expected value of the observed information I11(ω) given by

I11(ω) = −Q̈(θ;θ,ψ)

−
{ n∑
i=1

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

(
Ri

πi(ρ)
Si(D4i;θ) STi (D4i;θ)

+
(1−Ri)

1− πi(ρ)

1∑
j=0

Si(D4i, Si = j;θ) STi (D4i, Si = j;θ)P (Si = j|D4i;θ)

)

−
n∑
i=1

Q̇i(θ;θ,ψ) Q̇T
i (θ;θ,ψ)

}
.

For Ri = 1,

Si(D4i;θ) =

(
S1i(Yi,Wi, Si;β)

S2i(Si, Z2i; ξ2)

)
where

S1i(Yi,Wi, Si;β) =


1

Wi

Si

WiSi

 (Yi − µi(β))

and

S2i(Si, Z2i; ξ2) =

(
1

Z2i

)
(Si − πi(ξ2)) .
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Likewise when Ri = 0,

Si(D4i, Si = j;θ) =

(
S1i(Yi,Wi, Si = j;β)

S2i(Si = j, Z2i; ξ2)

)
.

Also,

Q̇i(θ;θ,ψ) =
1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

(
Ri

πi(ρ)
Si(D4i;θ)

+
(1−Ri)

1− πi(ρ)

1∑
j=0

Si(D4i, Si = j;θ)P (Si = j|D4i;θ)

)
,

and

Q̈(θ;θ,ψ) =
n∑
i=1

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l

(
Ri

πi(ρ)

∂Si(D4i;θ)

∂θT

+
1−Ri

1− πi(ρ)

1∑
j=0

∂Si(D4i, Si = j;θ)

∂θT
P (Si = j|D4i;θ)

)
.

Next, we define the remaining sub-matrices of I(ω):

I12(ω) = E[−∂Ũi(ω;θ)/∂ψT ]

and

I22(ω) = E[−∂Uψ,i(ψ)/∂ψT ]

where

Uψ,i(ψ) =

(
U3i(ρ)

U4i(ξ1)

)
.

As in Chapter 2, we replace ω by its estimated counterpart ω̃ to obtain variance estimates.

We have given a method for obtaining the asymptotic covariance matrix for β̃.
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3.5 Simulation Studies

Here, we describe simulation studies conducted in order to explore the bias and relative ef-

ficiency of estimates obtained from the EM-type algorithm with inverse probability weights

described in this chapter. In the marginal response model, we are most interested in as-

sessing the consistency and relative efficiency of our estimates of β1 and β1 + β3, where β1

is the log odds ratio of response comparing those who received the treatment to those who

did not when S = 0; β1 + β3 is the log odds ratio when S = 1.

We also compare the methods introduced in this chapter to the doubly inverse proba-

bility weighted estimating equation approach introduced in Chapter 2.

3.5.1 Parameter Settings

Refer to Section 2.4.1 for a list of parameters for our simulation studies. In this setting,

where variable Z1 is not independently associated with the subgroup variable, the model

that generates the subgroup variable is the following logistic regression model:

πi(ξ2) = expit(logit(0.5) + log(1.0)Z1i + log(1.2)Z2i) .

As in Chapter 2, we vary the percentage of missing data to be 20% and 40%. Results

of analyses using the EM algorithm described in Section 3.2 are given in Table 3.4. Results

of the methods proposed in Sections 3.3 and 3.4 are given in Table 3.5. Also included in

Table 3.5 is a comparison to the doubly inverse probability weighted estimating function

method introduced in Chapter 2 where the same parameter settings are used in order to

compare the efficiency of both methods.

Empirical bias (EBias) is defined as the average difference between the estimated log

odds ratio and the true log odds ratio. The average asymptotic standard error (ASE)

is calculated as the average of the estimated standard errors using equation (3.23). The

empirical standard error (ESE) is defined as the standard deviation of the m log odds

ratio estimates, where m is the number of simulated datasets. The empirical coverage

probability (ECP) is the empirical probability that the true log odds ratio is included in
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Table 3.4: Empirical biases and standard errors of estimated conditional causal effects

using an EM algorithm in the setting of an incomplete subgroup variable.

ϑ1
a ϑ1 + ϑ3

a

EBias ASE ESE ECP EBias ASE ESE ECP

P (R = 1) = 0.8

Randomized setting

EM algorithm 0.0001 0.1580 0.1567 0.9506 -0.0016 0.1502 0.1511 0.9482

Complete case 0.0027 0.1703 0.1688 0.9504 -0.0047 0.1627 0.1624 0.9488

Observational setting

EM algorithm -0.0035 0.1609 0.1601 0.9516 0.0007 0.1528 0.1533 0.9510

Complete case -0.0013 0.1733 0.1735 0.9508 -0.0027 0.1655 0.1659 0.9540

P (R = 1) = 0.6

Randomized setting

EM algorithm -0.0013 0.1698 0.1679 0.9494 -0.0005 0.1600 0.1603 0.9512

Complete case -0.0001 0.1991 0.1981 0.9486 -0.0048 0.1903 0.1923 0.9478

Observational setting

EM algorithm -0.0032 0.1726 0.1713 0.9534 0.0005 0.1626 0.1634 0.9510

Complete case -0.0017 0.2024 0.2003 0.9524 -0.0036 0.1934 0.1966 0.9466

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability, EM expectation-maximization
a Conditional causal effect for Z1 = 0.

the 95% confidence interval; for each simulated dataset, the confidence interval is computed

using the estimated asymptotic standard deviation from equation (3.23), using a normal

approximation.

For each simulation study, the number of subjects per dataset is 2000 and the number

of simulated datasets is 5000. The simulated datasets are independent, and the seed value

for the first simulated dataset is the same across the simulation studies.
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Table 3.5: Empirical biases and standard errors of estimated marginal causal effects using

a (doubly) inverse probability weighted EM-type algorithm in the setting of an incomplete

subgroup variable.

β1 β1 + β3

EBias ASE ESE ECP EBias ASE ESE ECP

P (R = 1) = 0.8

Randomized setting

Weighted EM 0.0003 0.1558 0.1537 0.9514 -0.0013 0.1501 0.1513 0.9478

Weighted EE a 0.0010 0.1468 0.1458 0.9490 0.0026 0.1388 0.1407 0.9476

Observational setting

Weighted EM -0.0008 0.1759 0.1763 0.9470 0.0033 0.1692 0.1714 0.9460

Weighted EE a 0.0016 0.1662 0.1656 0.9498 0.0024 0.1571 0.1563 0.9492

P (R = 1) = 0.6

Randomized setting

Weighted EM 0.0008 0.1546 0.1522 0.9570 0.0016 0.1448 0.1439 0.9546

Weighted EE a -0.0005 0.1708 0.1711 0.9514 0.0009 0.1613 0.1606 0.9546

Observational setting

Weighted EM 0.0001 0.1746 0.1743 0.9504 0.0020 0.1633 0.1628 0.9508

Weighted EE a -0.0010 0.1936 0.1923 0.9556 0.0008 0.1826 0.1804 0.9546

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability, EM expectation-maximization,

EE estimating equation
a The (doubly) weighted EE method introduced in Chapter 2 with a weight for missingness,

and a weight for confounding in the observational setting.
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3.5.2 Discussion of Simulation Study Results

In Table 3.4, the estimates for ϑ1 and ϑ1 + ϑ3 are consistent using the EM algorithm

described in Sections 3.1.2 and 3.2.2 for the randomized and observational settings respec-

tively. The asymptotic standard error is larger in the observational setting, compared to

the randomized setting. As expected, the asymptotic standard errors for ϑ̂1 and ϑ̂1 + ϑ̂3 are

smaller when the percentage of missingness is lower. The complete case analysis approach

results in consistent estimates, however there is a loss of efficiency compared to the EM

algorithm method.

In Table 3.5, the (doubly) inverse probability weighted EM-type algorithm performs

well in terms of consistency, and the method is more efficient in the randomized setting.

Interestingly, the weighted EM algorithm is as efficient when the percentage of missing

data is high (40%) as when the percentage is lower (20%). In comparison to the weighted

estimating equation approach introduced in Chapter 2, the weighted EM-type algorithm

method is more efficient in the setting where there is more missing data (40%), and less

efficient in the setting where there is less missing data (20%).

3.6 Discussion

In this chapter, we review the EM algorithm for estimating conditional regression param-

eters in randomized and observational settings with ignorably missing covariate data. We

expanded upon this method in the setting where estimation of marginal regression param-

eters is of interest; a single inverse probability weight is used to account for non-ignorably

missing covariate data in the randomized setting, and a double inverse probability weight

is used to account for both missing data and confounding in an observational setting.

In simulation studies, the doubly weighted EM-type algorithm method performs well

in terms of consistency. In estimating the marginal regression parameters, when the per-

centage of missingness is high, the doubly weighted EM-type algorithm method is more

efficient than the doubly weighted estimating equation approach introduced in Chapter 2.

Further study of the relative efficiency of the two approaches could be carried out using
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the asymptotic variances analogous to the way relative efficiency was studied in McIsaac

and Cook (2017), but we do not consider that in detail here.

The methods presented in this chapter are not ideal when the missing variable is contin-

uous, or when more than one variable is missing. Also, variance estimation is not straight-

forward, even in the simplest setting. In the following chapter, we introduce a weighted

multiple imputation method that is conceptually similar to the method presented in this

chapter, but that is easier to use and is more generalizable.
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Chapter 4

Multiple Imputation for Causal

Inference with Incomplete Data

In Chapter 2, we investigate the use of complete case analysis with inverse probability

weighted estimating equations for estimation of marginal regression coefficients to address

(i) treatment selection and (ii) missing subgroup data. The weight for treatment selection is

based on the propensity score, while the weight for missingness accounts for non-ignorably

missing subgroup data in a marginal model setting. In Chapter 3, we explore the use of an

EM algorithm approach, with two inverse probability weights for treatment selection and

missing data. The doubly weighted method introduced in Chapter 2 is relatively straight-

forward, but requires making assumptions about the missing data process, which can be

complex when there is more than one missing variable. The weighted EM-type algorithm

introduced in Chapter 3 requires modeling the incomplete covariate and has the potential

to be more efficient, but generalization to accommodate continuous or higher dimensional

missing covariates is challenging. In this chapter, we introduce another approach that

is easy to implement for estimation of marginal causal effects using partially incomplete

observational data: multiple imputation with one inverse probability weight for treatment

selection (confounding).
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4.1 Estimation of Conditional Causal Effects in a Ran-

domized Setting

4.1.1 Notation and Models

Here we adopt the notation and models introduced in the randomized setting of Chapter

2, Section 2.2.1. We let Yi denote a binary response variable, Xi denote a binary treatment

variable in a randomized setting, and Si denote a binary subgroup variable, for subject i in

a random sample of n individuals, i = 1, ..., n. Let Z1i denote a confounding variable that is

associated with treatment selection and the response, and Z2i denote an auxiliary variable

that does not have a direct effect on the response. The subgroup variable Si is unknown

for some individuals and so we let Ri = I(Si is observed) as before. Let Nobs =
∑n

i=1 Ri

be the number of subjects with an observed subgroup variable, and Nmis = n − Nobs be

the number of subjects with a missing subgroup variable. We let

R = {i : Ri = 1} and Rc = {i : Ri = 0} .

We make the following conditional independence assumptions in a randomized con-

trolled trial setting:

A.0 Ri ⊥ (Yi, Xi, Si) | Z1i, Z2i

A.1 Yi ⊥ Z2i | (Xi, Si, Z1i)

A.2 Xi ⊥ (Si, Z1i, Z2i) (randomized setting)

A.3 Z1i ⊥ Z2i .

The assumptions allow us to factor the joint probability of Ri, Yi, Xi, Si, Z1i, Z2i for subject

i as

P (Ri, Yi, Xi, Si, Z1i, Z2i)

= P (Ri|Yi, Xi, Si, Z1i, Z2i)P (Yi|Xi, Si, Z1i, Z2i)P (Xi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Ri|Z1i, Z2i)P (Yi|Xi, Si, Z1i)P (Xi)P (Si|Z1i, Z2i)P (Z1i)P (Z2i) . (4.1)
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We define µi(ϑ) = E(Yi|Xi, Si, Z1i) = P (Yi = 1|Xi, Si, Z1i;ϑ) as before and consider a

logistic regression model for the response whereby

µi(ϑ) = expit(ϑ0 + ϑ1Xi + ϑ2Si + ϑ3XiSi + ϑ4XiZ1i) , (4.2)

where ϑ = (ϑ0, ϑ1, ϑ2, ϑ3, ϑ4)T is a vector of regression coefficients. Note that we have

assumed that there is no main effect of Z1i on Yi, but this constraint can be relaxed.

We let E(Xi) = P (Xi = 1) = 0.5, so that the percentage of treated subjects in the

randomized setting is 50%. For the auxiliary variables, E(Zji) = P (Zji = 1; ζj) = expit(ζj),

for j = 1, 2. The subgroup variable is modeled as follows:

πi(ξ2) = E(Si|Z1i, Z2i) = P (Si = 1|Z1i, Z2i; ξ2) = expit(ξ20 + ξ21Z1i + ξ22Z2i) , (4.3)

where ξ2 = (ξ20, ξ21, ξ22)T is a vector of regression coefficients. The model for the missing

subgroup indicator is

πi(ρ) = E(Ri|Z1i, Z2i) = P (Ri = 1|Z1i, Z2i;ρ) = expit(ρ0 + ρ1Z1i + ρ2Z2i) ,

where ρ = (ρ0, ρ1, ρ2)T is a vector of regression coefficients.

Assume here that we are interested in estimating ϑ from the full response model (4.2).

In the multiple imputation literature, the substantive model is the response model of inter-

est (Carpenter and Kenward, 2013); in this setting, the substantive model is the conditional

response model in equation (4.2). In the substantive model, we condition on Z1i so that

the missing data process and the response model can be modeled separately, which means

that the missingness is ignorable, see (4.1). Therefore it is not critical that we use multiple

imputation, however we may wish to use multiple imputation in this setting to increase

efficiency.

4.1.2 Imputation Model

Here, we describe the imputation model for the missing subgroup variable Si to be used

for subjects with Ri = 0. We use a sequential imputation approach to impute the missing
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subgroup variable (Carpenter and Kenward, 2013). Sequential imputation involves model-

ing and imputing each missing variable separately. Rather than using a global multivariate

distribution for all variables, each individual missing variable is modeled separately, typ-

ically using a regression analysis with one response variable. In our setting, there is one

incomplete variable, therefore only one imputation model is necessary.

In terms of selecting an appropriate imputation model for the subgroup variable, the

true conditional distribution of Si for subject i given all observed data is

P (Si|Yi, Xi, Z1i, Z2i) =
P (Yi|Xi, Si, Z1i;ϑ)P (Si|Z1i, Z2i; ξ2)∑1

s=0 P (Yi|Xi, Si = s, Z1i;ϑ)P (Si = s|Z1i, Z2i; ξ2)
. (4.4)

In practice, to obtain an estimate of the relationship between Si and the fully observed

variables, we use data from subjects with Ri = 1 to fit a logistic regression model to

approximate (4.4), where Si is the response variable, and we condition on all observed

variables. The logistic regression model to impute the missing subgroup variable has the

following general structure:

P (Si = 1|Yi, Xi, Z1i, Z2i; ξ3) = expit(Aiξ3) , (4.5)

where ξ3 is the column vector of imputation model regression parameters, and Ai is a row

vector of variables which are a combination of the observed variables Yi, Xi, Z1i, Z2i, which

can include main effects and interaction terms.

A congenial imputation model is one that is compatible with the substantive response

model (Meng, 1994). This means that any variable and any interaction term that is

included in the response model, is included in the imputation model. Rubin (1996) offers

the following guidelines for choosing imputation covariates: (i) variables that are included

in the model that generates the missing variable (in this setting, these variables are Z1 and

Z2), see (4.3); and (ii) all of the variables that are included in the substantive response

model (in our setting, these variables are Y , X, S and Z1) (Rubin, 1996). Barnard and

Meng (1999) also recommend that the imputation model should include information about

the missing data process, while avoiding over-fitting.

Given the above recommendations, we propose a formal method that can be used to

choose the two-way interaction terms necessary in the imputation model. To approximate
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the true conditional distribution of S using a logistic regression model, we examine the

odds ratio of S for a particular variable, at at different levels of another variable, using

the true conditional distribution (4.4). For example, to assess whether we need a Z1Z2

interaction term, we look at the odds of S comparing Z2 = 1 to Z2 = 0, for both levels

of Z1 (i.e. when Z1 = 1 and when Z1 = 0). The odds ratio of S = 1 versus S = 0 as a

function of Z2 when Z1 = 0 is

P (S = 1|Y,X,Z1 = 0, Z2 = 1)/P (S = 0|Y,X,Z1 = 0, Z2 = 1)

P (S = 1|Y,X,Z1 = 0, Z2 = 0)/P (S = 0|Y,X,Z1 = 0, Z2 = 0)
, (4.6)

but

P (S = 1|Y,X,Z1, Z2 = 1) =
P (Y |X,S = 1, Z1)P (S = 1|Z1, Z2 = 1)

P (Y |X,Z1)

so the odds in the numerator is

P (S = 1|Y,X,Z1, Z2 = 1)

P (S = 0|Y,X,Z1, Z2 = 1)
=
P (Y |X,S = 1, Z1)P (S = 1|Z1, Z2 = 1)

P (Y |X,S = 0, Z1)P (S = 0|Z1, Z2 = 1)
.

As a result (4.6) is equal to

P (S = 1|Z1 = 0, Z2 = 1)/P (S = 0|Z1 = 0, Z2 = 1)

P (S = 1|Z1 = 0, Z2 = 0)/P (S = 0|Z1 = 0, Z2 = 0)

which does not depend on Z1 since there is no Z1Z2 interaction term in the model for S.

To show that a Y X interaction term is needed in the imputation model S, we write

the odds ratio of S comparing Y = 1 to Y = 0 in terms of the true model (4.4) for two

settings: (i) when X = 0 and (ii) when X = 1. When X = 0,

P (S = 1|Y = 1, X = 0, Z1, Z2)/P (S = 0|Y = 1, X = 0, Z1, Z2)

P (S = 1|Y = 0, X = 0, Z1, Z2)/P (S = 0|Y = 0, X = 0, Z1, Z2)

=
P (Y = 1|X = 0, S = 1, Z1)/P (Y = 1|X = 0, S = 0, Z1)

P (Y = 0|X = 0, S = 1, Z1)/P (Y = 0|X = 0, S = 0, Z1)

This ratio of odds is different when X = 1 because there is an XS interaction term in the

conditional probability for Y : P (Y = 1|X,S, Z1) = ϑ0 + ϑ1X + ϑ2S + ϑ3XS + ϑ4XZ1.

A similar method can be used to show that the following two-way interaction terms are
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required in the logistic regression model for imputing S: Y X, Y Z1, and XZ1. Therefore an

imputation model that adequately describes the relationship between S and (Y,X,Z1, Z2)

is one for which

Ai = (1, Yi, Xi, Z1i, Z2i, YiXi, YiZ1i, XiZ1i) (4.7)

in equation (4.5). In practice, the true conditional distribution of S (equation (4.4)) is

unknown, and investigators must make assumptions about the true distribution in order

to select an appropriate imputation model.

From imputation model (4.5) with Ai given by (4.7), we obtain the maximum likelihood

estimate ξ̂3 with covariance matrix Σ(ξ3). The estimated conditional probability of Si = 1

given Ai is

πi(ξ̂3) = expit(Aiξ̂3) .

By π(ξ̂3), we mean the estimated probability using the estimated parameters, and we will

use this convention throughout the chapter. Having fitted the imputation model, the next

step is to draw from the (estimated) posterior distribution N(ξ̂3,Σ(ξ̂3)) (Carpenter and

Kenward, 2013); for the first imputation we let ξ̃
1

3 denote the drawn sample. For each

subject i with Ri = 0 we then draw Si from the Bernoulli distribution with probability

πi(ξ̃
1

3) = expit(Aiξ̃
1

3) ,

and let S1
i denote the realization for i ∈ Rc. This process is repeated K times, starting

with the draw from the posterior distribution to get a new ξ̃
k

3 at the kth sample, to form

K independent imputed datasets. With the use of the sampled values for Si, for Nmis

individuals with i ∈ Rc, each of the K imputed datasets is ‘complete’.

In the following section, we discuss methods to estimate the conditional causal param-

eters using the multiply imputed datasets.

4.1.3 Estimation of Response Model Coefficients

In this section, we discuss estimation of the parameters in the conditional response model

(ϑ) using multiply imputed data in a randomized study setting. Once the imputation
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is complete and we have K complete datasets to work with, we fit a logistic regression

model to each imputed dataset separately. Let Ski denote the imputed value of S from

the kth imputation for subjects with Ri = 0; for subjects with Ri = 1, Ski = Si. For

the kth imputed dataset, conditional model parameters ϑ can be estimated by solving the

following standard estimating equation

Uk(ϑ) =
n∑
i=1

Uk
i (ϑ)

=
n∑
i=1

Dk
i (ϑ)[V k

i (ϑ)]−1(Yi − µki (ϑ)) ,

where µki (ϑ) = P (Yi = 1|Xi, S
k
i , Z1i;ϑ), Dk

i (ϑ) = ∂µki (ϑ)/∂ϑ and V k
i (ϑ) = µki (ϑ)[1 −

µki (ϑ)]. To obtain estimator ϑ̂
k

for the kth dataset, solve Uk(ϑ) = 0. Let Σk(ϑ̂
k
) be the

corresponding standard estimated covariance matrix for ϑ̂
k
.

To obtain the overall estimate of ϑ, we take the average of the K estimates, so

ϑ̂
MI

=
1

K

K∑
k=1

ϑ̂
k

.

An estimate of the covariance matrix for ϑ̂
MI

is then given by

Σ(ϑ̂
MI

) = W(ϑ̂
MI

) +

(
1 +

1

K

)
B(ϑ̂

MI
) , (4.8)

where

W(ϑ̂
MI

) =
1

K

K∑
k=1

Σk(ϑ̂
k
) ,

B(ϑ̂
MI

) =
1

K − 1

K∑
k=1

(ϑ̂
k
− ϑ̂

MI
)(ϑ̂

k
− ϑ̂

MI
)T ,

and the (1 +K−1) term in (4.8) accounts for the finite number of imputations (Carpenter

and Kenward, 2013; Rubin, 1987).
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4.1.4 Inference

Let ϑ̂MI
1 be the second component of ϑ̂

MI
which is the multiple imputation estimate for ϑ1

(the conditional causal odds ratio of treatment when S = Z1 = 0). Let σ̂2
ϑ1

be the variance

estimate for ϑ̂MI
1 . Tests and confidence intervals for ϑ1 can be based on a Student’s t

approximation:

(ϑ̂MI
1 − ϑ1)√
σ̂2
ϑ1

∼ tv ,

with degrees of freedom

v = (K − 1)

[
1 +

ϑ̂MI
1

(1 +K−1)B(ϑ̂MI
1 )

]2

where B(ϑ̂MI
1 ) is the [2, 2] entry of matrix B(ϑ̂

MI
) that corresponds to ϑ1 (Schafer, 1999).

In our simulation study, we use a normal approximation to build confidence intervals. A

normal approximation is appropriate in the case where, for example, ϑ1 = log(1.25), K = 5

and B(ϑ̂MI
1 ) = 0.1, so that v > 30.

In this section, estimation of the conditional causal odds ratio is of interest in the

randomized setting where the subgroup variable is incomplete. A method for imputing the

missing subgroup variable is given, along with a method for choosing two-way interaction

terms. Then, a way to combine estimates from the imputed datasets, as well as a method

to compute an estimate of the variability, is given. A method for making inferences about

the estimates, along with confidence intervals, is given. In the following sections, we show

that multiple imputation methods for estimation of conditional causal parameters in an

observational setting are the same as in the randomized setting. We then present methods

for estimation of marginal causal parameters in both the randomized and observational

settings.
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4.2 Estimation of Conditional Causal Effects in an

Observational Setting

In this section, we show that estimation of conditional causal parameters in the obser-

vational setting with an incomplete subgroup variable is the same as in the randomized

setting when multiple imputation is used.

4.2.1 Notation and Models

We refer to the notation and models introduced in the observational setting in Chapter 2,

Section 2.1.2. To recap, Wi denotes the treatment variable for subject i in an observational

setting, instead of Xi. We make the distinction between the two variables because their

probability distributions are different. In an observational setting, we assume that the

treatment variable, Wi, is not independent of auxiliary variables Z1i and Z2i, as treatment

selection is often dependent upon subject characteristics. We make the assumption that

Wi is independent of subgroup variable Si conditional on Z1i and Z2i. This assumption is

appropriate in settings where the subgroup variable Si denotes the presence or absence of

some genetic factor, which is information that may not be readily available to the treating

physician.

Suppose we have the same conditional independence assumptions as in the randomized

setting, with the exception of the assumption for the treatment variable:

B.0 Ri ⊥ (Yi,Wi, Si) | (Z1i, Z2i)

B.1 Yi ⊥ Z2i | (Wi, Si, Z1i)

B.2 Wi ⊥ Si | (Z1i, Z2i) (observational setting)

B.3 Z1i ⊥ Z2i .

The assumptions allow us to factor the joint probability of Ri, Yi,Wi, Si, Z1i, Z2i for

subject i as

P (Ri, Yi,Wi, Si, Z1i, Z2i)

= P (Ri|Yi,Wi, Si, Z1i, Z2i)P (Yi|Wi, Si, Z1i, Z2i)P (Wi|Si, Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i, Z2i)

= P (Ri|Z1i, Z2i)P (Yi|Wi, Si, Z1i)P (Wi|Z1i, Z2i)P (Si|Z1i, Z2i)P (Z1i)P (Z2i) .
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As before, in an observational setting, the conditional expectation of response Yi is

denoted by µi(ϑ) = E(Yi|Wi, Si, Z1i) = P (Yi = 1|Wi, Si, Z1i;ϑ). A logistic regression

model is used for the response whereby

µi(ϑ) = expit(ϑ0 + ϑ1Wi + ϑ2Si + ϑ3WiSi + ϑ4WiZ1i) , (4.9)

where ϑ = (ϑ0, ϑ1, ϑ2, ϑ3, ϑ4)T is the same vector of regression coefficients as in (4.2).

When treatment is not randomized, the conditional probability of treatment given

(Z1i, Z2i) for subject i is

πi(ξ1) = P (Wi = 1|Z1i, Z2i; ξ1) = expit(ξ10 + ξ11Z1i + ξ12Z2i) , (4.10)

where ξ1 = (ξ10, ξ11, ξ12)T is a vector of regression coefficients.

The remaining variables, Ri, Si, Z1i and Z2i are generated as in Section 4.1.1.

4.2.2 Imputation Model and Estimation of Causal Effects

By following the methods given in Section 4.1.2, the imputation model from (4.5) with

variables listed in (4.7) is the same in an observational setting. This is because the model

for the treatment variable is not a factor in terms of determining the main effects and

two-way interaction terms included in the imputation model.

Similarly, the methods described in Section 4.1.3 for estimating ϑ in the randomized

setting using multiply imputed data, are the same for estimating ϑ in an observational

setting. Again, this is because the distribution of the treatment variable does not change

the methods given.
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4.3 Estimation of Marginal Causal Effects in a Ran-

domized Setting

4.3.1 Notation and Models

Although Z1i is directly causally related to response Yi through (4.2), we are interested

in the marginal causal effect of treatment (Xi) on response (Yi) for each subgroup defined

by values of Si; that is, we are interested in fitting the model with an interaction between

the treatment and the important subgroup variable. Refer to Section 4.1.1 for notation

and models in the randomized setting. Estimation of the parameters from the following

marginal logistic regression model for the response is of interest:

µi(β) = expit(β0 + β1Xi + β2Si + β3XiSi) , (4.11)

where µi(β) = E(Yi|Xi, Si) = P (Yi = 1|Xi, Si;β), and β = (β0, β1, β2, β3)T is a vector of

regression coefficients. The conditional expectation µi(β) can be computed by taking the

expectation of the true response model over Z1i given Xi and Si:

P (Yi = 1|Xi, Si;β) = EZ1i|Xi,Si
[P (Yi = 1|Xi, Si, Z1i;ϑ)]

= EZ1i|Si
[P (Yi = 1|Xi, Si, Z1i;ϑ)] A.2 (randomized setting)

=
1∑

z1=0

P (Yi = 1|Xi, Si, z1;ϑ)P (Z1i = z1|Si; ξ2, ζ1, ζ2) (4.12)

where

P (Z1i = z1|Si; ξ2, ζ1, ζ2) =

∑1
z2=0 P (Si|z1, z2; ξ2)P (Z1i = z1; ζ1)P (Z2i = z2; ζ2)

P (Si; ξ2, ζ1, ζ2)
.

4.3.2 Imputation Model

The imputation model used in the setting of estimating conditional causal parameters ϑ

will be used for estimating β. Although Z1i is not incorporated into the response model,

we use Z1i in the imputation model, because it is independently associated with S. When
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the imputation model contains more terms and/or higher order terms than the substantive

model (the substantive model being (4.11) in the marginal causal setting), it is said to be a

‘richer’ model (Carpenter and Kenward, 2013). The imputation model from Section 4.1.2

can be used in the context of the marginal substantive model because it is an imputation

method for a richer model (i.e. one containing an extra term, XZ1). A richer imputation

model that follows the imputation model rules listed in Section 4.1.2 but that includes

extra terms that are not included in the response model is a valid imputation model

(Rubin, 1996). Therefore, we use the imputation model described in Section 4.1.2.

4.3.3 Estimation of Response Model Coefficients

Here, we discuss the use of multiply imputed data to estimate β from equation (4.11). As

in Section 4.1.3, we obtain an estimate of β using a logistic regression model to obtain β̂
k
,

k = 1, ..., K. A consistent estimator for β can be obtained as a solution to the estimating

equation for the kth imputed dataset:

Uk(β) =
n∑
i=1

Uk
i (β)

where

Uk
i (β) = Dk

i (β)[V k
i (β)]−1(Yi − µki (β)) ,

for k = 1, ..., K, provided that the imputation model is appropriate. Here, µki (β) = P (Yi =

1|Xi, S
k
i ;β), Dk

i (β) = ∂µki (β)/∂β and V k
i (β) = var(Yi|Xi, S

k
i ) = µki (β)(1− µki (β)).

The estimate of β and its covariance matrix from the kth imputed dataset are denoted

by β̂
k

and Σk(β̂
k
) respectively. To obtain the multiple imputation estimate of β, we take

the average of the K estimates:

β̂
MI

=
1

K

K∑
k=1

β̂
k

.

An estimate of the covariance matrix for β̂
MI

is

Σ(β̂
MI

) = W(β̂
MI

) +

(
1 +

1

K

)
B(β̂

MI
) , (4.13)
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where

W(β̂
MI

) =
1

K

K∑
k=1

Σk(β̂
k
) ,

and

B(β̂
MI

) =
1

K − 1

K∑
k=1

(β̂
k
− β̂

MI
)(β̂

k
− β̂

MI
)T .

4.3.4 Inference

Tests and confidence intervals for β1, the parameter that corresponds to the log odds ratio

of the response comparing treated to untreated when S = 0, can be based on a Student’s

t approximation:

(β̂MI
1 − β10)√

σ̂2
β1

∼ tv ,

with

v = (K − 1)

[
1 +

β̂1

(1 +K−1)B(β̂MI
1 )

]2

.

degrees of freedom (Schafer, 1999). Here, σ̂2
β1

is the component of Σ(β̂
MI

) from (4.13)

that corresponds to β̂1, and B(β̂MI
1 ) is the same for B(β̂

MI
). In our simulation study,

we use a normal approximation to build confidence intervals. A normal approximation is

appropriate in the case where, for example, β1 = log(1.25), K = 5 and B(β̂
MI

1 ) = 0.1, so

that v > 30.

4.4 Estimation of Marginal Causal Effects in an Ob-

servational Setting

Refer to Section 4.2.1 for notation and models in an observational setting.
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4.4.1 Imputation Model

We are interested in estimating β from equation (4.11) using observational data. We base

our imputation model on (i) variables that are included in the model that generates the

missing variable (Z1, Z2); (ii) variables that are included in the substantive (i.e. response)

model (Y , W ); and (iii) variables that are predictive of the missing data indicator (which

are already listed: Z1 and Z2). The variables included in the imputation model are the

same as in Section 4.1.2, which is a randomized setting with treatment variable X, instead

of W . However, we note that the distribution of the treatment variable does not change

the imputation model, i.e.

P (Si = j|Yi,Wi, Z1i, Z2i) =
P (Yi|Wi, Si = j, Z1i;ϑ)P (Si = j|Z1i, Z2i; ξ2)∑1
s=0 P (Yi|Wi, Si = s, Z1i;ϑ)P (Si = s|Z1i, Z2i; ξ2)

.

where P (Yi|Wi, Si = j, Z1i;ϑ) = P (Yi|Xi, Si = j, Z1i;ϑ). Therefore the imputation model

derived in Section 4.1.2 in a randomized setting is valid here as well in an observational

setting.

4.4.2 Estimation of Response Model Coefficients

In this section, we describe the use of multiply imputed datasets to estimate β in an

observational setting, where systematic differences exist between treatment groups, and

those differences can be explained by variables Z1 and Z2. We use an inverse probability

weight which is based on the propensity score to account for the differences between the

treatment groups. We make the assumption that the true propensity score model is given

by the following logistic regression model:

π(ξ1) = P (W = 1|Z1, Z2; ξ1) = expit(ξ10 + ξ11z1 + ξ12z2) . (4.14)

The estimate ξ̂1 that is obtained from fitting this model to the full dataset is used to

create an estimated weight. The propensity score is estimated using the entire dataset,

since treatment variable W and auxiliary variables Z1 and Z2 are observed for all subjects.

For each of the K imputed datasets, we estimate β using a logistic regression model.

A consistent estimator for β can be obtained as a solution to the estimating equation for

95



the kth imputed dataset

Ũk
1(β; ξ1) =

n∑
i=1

Ũk
1i(β; ξ1)

where

Ũk
1i(β; ξ1) =

1∑
l=0

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−lD
k
i (β)[V k

i (β)]−1(Yi − µki (β)) ,

for k = 1, ..., K, provided the imputation model is appropriate and the weight model is

properly specified. Here, µki (β) = P (Yi = 1|Wi, S
k
i ;β), Dk

i (β) = ∂µki (β)/∂β and V k
i (β) =

var(Yi|Xi, S
k
i ) = µki (β)(1− µki (β)).

In practice, we estimate ξ1 first using the full dataset to obtain ξ̂1, and replace πi(ξ1)

with its estimated counterpart πi(ξ̂1). The estimate of β for the kth imputed dataset is

denoted by β̃
k
, where the tilde denotes the inverse probability weight for confounding. The

multiple imputation estimate of β is

β̃
MI

=
1

K

K∑
k=1

β̃
k

.

The covariance matrix of the estimate is computed in a similar way as described in Section

4.3.3. The difference in this weighted method is that we need to incorporate the fact that

we have used an (estimated) inverse probability weight. Let

U2(ξ1) =
n∑
i=1

U2i(ξ1)

denote an unbiased estimating function for ξ1 corresponding to (4.14). Let ω = (βT , ξT1 )T

be the vector containing all parameters, and write

Ũk(ω) =
n∑
i=1

Uk
i (ω) =

n∑
i=1

(
Ũk

1i(β; ξ1)

U2i(ξ1)

)
= 0 . (4.15)

Let ω̃k = ([β̃
k
]T , ξ̂

T

1 )T denote the solution to (4.15), and let ω̃ = ([β̃
MI

]T , ξ̂
T

1 )T . From the

results derived in Chapter 2 which are based on theory given by Newey and McFadden
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(1994) and Robins et al. (1995), we let

Ik(ω) =

[
Ik11(ω) Ik12(ω)

0 Ik22(ω)

]
=

[
E(−∂Ũk

1i(β; ξ1)/∂βT ) E(−∂Ũk
1i(β; ξ1)/∂ξT1 )

E(−∂U2i(ξ1)/∂ξT1 )

]
and

Ck(ω) = E
[
Ũk
i (ω)Ũk

i (ω)T
]

.

Then

√
n(ω̃k − ω)

D−→ MVN(0,Σk(ω))

where Σk(ω) = [Ik(ω)]−1Ck(ω)
[
[Ik(ω)]−1

]T
. We compute variance estimates by replacing

the expectations with their empirical counterparts to obtain estimated covariance matrix

Σk(ω̃k) for the estimates from the kth imputed dataset.

Then,

W(β̃
MI

) =
1

K

K∑
k=1

Σk(β̃
k
) ,

where Σk(β̃
k
) is the upper block of the Σk(ω̃k) matrix which corresponds to the estimates

for β.

Next, an estimate of the covariance matrix for β̃
MI

is

Σ(β̃
MI

) = W(β̃
MI

) +

(
1 +

1

K

)
B(β̃

MI
) ,

where

B(β̃
MI

) =
1

K − 1

K∑
k=1

(β̃
k − β̃MI

)(β̃
k − β̃MI

)T .

4.4.3 Inference

Tests and confidence intervals for β1, the parameter that corresponds to the marginal causal

log odds ratio of the response when S = 0, is based on a Student’s t approximation:

(β̃1 − β1)√
σ̃2

1

∼ tv ,

97



with

v = (K − 1)

[
1 +

β̃1

(1 +K−1)B(β̃1)

]2

degrees of freedom (Schafer, 1999). Here, σ̃2
1 and B(β̃1) are the components of Σ(β̃

MI
)

and B(β̃
MI

) that correspond to β̃1, respectively. In our simulation study, we use a normal

approximation to build confidence intervals. A normal approximation is appropriate in the

case where, for example, β1 = log(1.25), K = 5 and B(β̃1) = 0.1, so that v > 30. Methods

for inference for β1 + β3, the log odds ratio when S = 1, are similar.

4.5 Simulation Specifications and Results

Here, we describe simulation studies conducted in order to explore the degree of bias

introduced by misspecifying the imputation model. We are interested in assessing the

consistency and relative efficiency of our estimates of the conditional causal parameters

(ϑ1 and ϑ1 + ϑ3), and the marginal causal parameters (β1 and β1 + β3). Here, ϑ1 is the

log odds ratio of the response for those with S = Z1 = 0 conditional on all variables that

are independently associated with the response, and ϑ1 + ϑ3 is the same for S = 1,Z1 = 0.

Similarly, β1 is the marginal log odds ratio of response when S = 0; β1 +β3 is the log odds

ratio when S = 1.

The parameters are set so that we are able to examine the effect of different imputation

models in an observational setting, where the missingness is ignorable in the conditional

causal model where we condition on Z1, and non-ignorable in the marginal causal model

where we omit Z1.

Recall that the imputation model takes the form

g(P (Si = 1|Yi, Xi, Z1i, Z2i; ξ3)) = Aiξ3 .

Because two-way interaction terms YW , Y Z1, and WZ1 are identified as important terms

to include in the imputation model for S, in simulation, we explore the following variable
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combinations for Ai:

Main effects only: Ai = (1, Yi,Wi, Z1i, Z2i)

YW interaction: Ai = (1, Yi,Wi, Z1i, Z2i, YiWi)

Y Z1 interaction: Ai = (1, Yi,Wi, Z1i, Z2i, YiZ1i)

WZ1 interaction: Ai = (1, Yi,Wi, Z1i, Z2i,WiZ1i)

YW and Y Z1 interaction: Ai = (1, Yi,Wi, Z1i, Z2i, YiWi, YiZ1i)

YW and WZ1 interaction: Ai = (1, Yi,Wi, Z1i, Z2i, YiWi,WiZ1i)

Y Z1 and WZ1 interaction: Ai = (1, Yi,Wi, Z1i, Z2i, YiZ1i,WiZ1i)

All two-way interactions: Ai = (1, Yi,Wi, Z1i, Z2i, YiWi, YiZ1i, YiZ2i,WiZ1i,WiZ2i, Z1iZ2i)

All three-way interactions: Ai = (1, Yi,Wi, Z1i, Z2i, YiWi, YiZ1i, YiZ2i,WiZ1i,

WiZ2i, Z1iZ2i, YiWiZ1i, YiWiZ2i,WiZ1iZ2i) .

The methods described in Section 4.2.2 are used for estimating ϑ in Tables 4.1 and 4.2.

The methods described in Section 4.4.2 are used for estimating β in Tables 4.3 and 4.3,

where a single inverse probability weight for confounding is used. We also perform complete

case analysis without the use of imputation for comparison. In the marginal model without

the use of multiple imputation where complete case analysis is used, one inverse probability

weight for confounding is used (i.e. only the missingness was ignored). We also present

the results from the Chapter 2 simulation study (the doubly weighted estimating equation

approach introduced in Section 2.2.2) and the results of the simulation study in Chapter

3 (the weighted EM algorithm introduced in Section 3.4.2) for comparison.

4.5.1 Parameter Settings

See Section 2.4.1 for parameter settings.

We use multiple imputation by fully conditional specification (FCS) which is imple-

mented by the mice procedure in R (van Buuren and Groothuis-Oudshoorn, 2011); the

methods described in Section 4.1.2 are performed in this procedure. The number of impu-

tations in each simulation is K = 5. Recently, others have suggested that a larger number

of imputations should be used (Carpenter and Kenward, 2013), however we use K = 5 for
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these simulation studies, and note that a larger number of imputed datasets is practical in

an applied setting with one dataset of interest.

Empirical bias (EBias) is defined as the average difference between the estimated log

odds ratio and the true log odds ratio. The average asymptotic standard error (ASE)

is calculated as the average of the estimated standard errors using methods described in

Section 4.4.3. The empirical standard error (ESE) is defined as the standard deviation of

the m log odds ratio estimates, where m is the number of simulated datasets. The empirical

coverage probability (ECP) is the average of the indicator variables which indicate whether

the true log odds ratio is included in the 95% confidence interval. For each simulated

dataset, the confidence interval is computed using the methods described in Section 4.4.3.

For each simulation study, the number of subjects per dataset is 2000 and the number

of simulated datasets is 5000. The simulated datasets are independent, and the seed value

for the first simulated dataset is the same across the simulation studies.
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Table 4.1: Empirical biases and standard errors of conditional causal parameters in an

observational setting with incomplete subgroup data using multiple imputation, unless

otherwise specified. Imputation model interaction terms are listed under “Imputation

Model.” The number of imputed datasets is K = 5 for each simulated dataset.

ϑ1
a ϑ1 + ϑ3

a

Imputation Model EBias ASE ESE ECP EBias ASE ESE ECP

P (R = 1) = 0.8

No imputation b -0.0045 0.1733 0.1736 0.9510 0.0002 0.1655 0.1658 0.9546

Main effects only 0.0192 0.1605 0.1473 0.9640 -0.0185 0.1526 0.1410 0.9654

YW -0.0007 0.1622 0.1595 0.9554 0.0010 0.1541 0.1553 0.9474

Y Z1 0.0178 0.1606 0.1473 0.9672 -0.0155 0.1528 0.1445 0.9580

WZ1 0.0194 0.1605 0.1460 0.9680 -0.0171 0.1527 0.1438 0.9606

YW and Y Z1 -0.0036 0.1623 0.1619 0.9506 -0.0018 0.1540 0.1545 0.9522

YW and WZ1 -0.0039 0.1623 0.1619 0.9508 -0.0018 0.1540 0.1544 0.9516

Y Z1 and WZ1 0.0149 0.1606 0.1494 0.9624 -0.0183 0.1527 0.1438 0.9632

YW , Y Z1, WZ1 -0.0049 0.1622 0.1619 0.9506 0.0018 0.1540 0.1535 0.9538

All two-way c -0.0023 0.1623 0.1616 0.9520 0.0023 0.1540 0.1546 0.9470

All three-way c 0.0011 0.1624 0.1645 0.9442 0.0008 0.1543 0.1540 0.9508

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability
a Conditional log odds ratio for Z1 = 0.
b Complete case analysis, where subjects with a missing subgroup variable are omitted.
c All two-way/three-way interactions are included in the subgroup variable imputation

model.
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Table 4.2: Empirical biases and standard errors of conditional causal parameters in an

observational setting with incomplete subgroup data using multiple imputation, unless

otherwise specified. Imputation model interaction terms are listed under “Imputation

Model.” The number of imputed datasets is K = 5 for each simulated dataset.

ϑ1
a ϑ1 + ϑ3

a

Imputation Model EBias ASE ESE ECP EBias ASE ESE ECP

P (R = 1) = 0.6

No imputation b -0.0048 0.2023 0.2003 0.9524 -0.0006 0.1933 0.1962 0.9492

Main effects only 0.0380 0.1672 0.1441 0.9704 -0.0350 0.1584 0.1419 0.9648

YW 0.0001 0.1760 0.1777 0.9472 -0.0028 0.1656 0.1642 0.9490

Y Z1 0.0370 0.1681 0.1466 0.9690 -0.0352 0.1590 0.1399 0.9704

WZ1 0.0398 0.1675 0.1439 0.9730 -0.0383 0.1585 0.1377 0.9710

YW and Y Z1 -0.0013 0.1755 0.1754 0.9484 -0.0017 0.1655 0.1645 0.9476

YW and WZ1 -0.0016 0.1755 0.1758 0.9480 -0.0020 0.1655 0.1648 0.9472

Y Z1 and WZ1 0.0348 0.1678 0.1463 0.9686 -0.0342 0.1591 0.1407 0.9672

YW , Y Z1, WZ1 -0.0012 0.1759 0.1758 0.9456 -0.0054 0.1656 0.1687 0.9464

All two-way c -0.0033 0.1756 0.1755 0.9472 -0.0033 0.1655 0.1688 0.9434

All three-way c -0.0003 0.1762 0.1789 0.9444 0.0024 0.1657 0.1659 0.9506

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability
a Conditional log odds ratio for Z1 = 0.
b Complete case analysis, where subjects with a missing subgroup variable are omitted.
c All two-way/three-way interactions are included in the subgroup variable imputation

model.
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Table 4.3: Empirical biases and standard errors of marginal causal parameters in an obser-

vational setting with incomplete subgroup data using multiple imputation, unless otherwise

specified. Imputation interaction terms are listed under “Imputation Model.” The overall

percentage of missing data is 20%. The number of imputed datasets is K = 5 for each

simulated dataset.

Imputation β1 β1 + β3

Model EBias ASE ESE ECP EBias ASE ESE ECP

No imputation a 0.0050 0.1638 0.1629 0.9508 0.0059 0.1581 0.1570 0.9522

Main effects 0.0185 0.1551 0.1405 0.9668 -0.0195 0.1494 0.1365 0.9636

YW -0.0018 0.1569 0.1550 0.9516 0.0014 0.1510 0.1495 0.9478

Y Z1 0.0179 0.1552 0.1412 0.9674 -0.0170 0.1495 0.1370 0.9654

WZ1 0.0178 0.1552 0.1411 0.9660 -0.0170 0.1494 0.1370 0.9652

YW and Y Z1 -0.0009 0.1570 0.1545 0.9502 -0.0006 0.1510 0.1495 0.9504

YW and WZ1 -0.0009 0.1568 0.1528 0.9536 -0.0007 0.1509 0.1480 0.9552

Y Z1 and WZ1 0.0189 0.1552 0.1390 0.9696 -0.0191 0.1494 0.1356 0.9676

YW , Y Z1, WZ1 -0.0016 0.1570 0.1555 0.9524 0.0033 0.1511 0.1516 0.9484

All two-way b -0.0055 0.1570 0.1566 0.9502 -0.0033 0.1510 0.1490 0.9514

All three-way b -0.0020 0.1574 0.1531 0.9532 -0.0001 0.1514 0.1514 0.9472

DWEE c 0.0008 0.1644 0.1634 0.9510 0.0021 0.1587 0.1576 0.9516

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability, DWEE doubly weighted estimating

equation
a Complete case analysis, where subjects with a missing subgroup variable are omitted.
b All two-way/three-way interactions are included in the subgroup variable imputation

model.
c Method proposed in Chapter 2, Section 2.2.2.
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Table 4.4: Empirical biases and standard errors of marginal causal parameters in an obser-

vational setting with incomplete subgroup data using multiple imputation, unless otherwise

specified. Imputation interaction terms are listed under “Imputation Model.” The overall

percentage of missing data is 40%. The number of imputed datasets is K = 5 for each

simulated dataset.

Imputation β1 β1 + β3

Model EBias ASE ESE ECP EBias ASE ESE ECP

No imputation a 0.0067 0.1893 0.1882 0.9550 0.0082 0.1828 0.1800 0.9564

Main effects 0.0369 0.1633 0.1344 0.9782 -0.0373 0.1570 0.1292 0.9762

YW -0.0002 0.1714 0.1679 0.9480 0.0004 0.1642 0.1602 0.9530

Y Z1 0.0393 0.1634 0.1349 0.9748 -0.0365 0.1570 0.1306 0.9764

WZ1 0.0395 0.1633 0.1349 0.9776 -0.0367 0.1569 0.1306 0.9754

YW and Y Z1 0.0003 0.1720 0.1679 0.9512 -0.0059 0.1647 0.1631 0.9514

YW and WZ1 -0.0004 0.1714 0.1651 0.9530 -0.0055 0.1641 0.1607 0.9510

Y Z1 and WZ1 0.0382 0.1632 0.1326 0.9788 -0.0414 0.1568 0.1310 0.9734

YW , Y Z1, WZ1 0.0015 0.1721 0.1694 0.9532 -0.0005 0.1649 0.1588 0.9556

All two-way b -0.0005 0.1729 0.1719 0.9478 -0.0024 0.1655 0.1668 0.9458

All three-way b 0.0012 0.1739 0.1709 0.9520 -0.0001 0.1665 0.1644 0.9496

DWEE c -0.0018 0.1913 0.1901 0.9550 0.0003 0.1845 0.1815 0.9570

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability, DWEE doubly weighted estimating

equation
a Complete case analysis, where subjects with a missing subgroup variable are omitted.
b All two-way/three-way interactions are included in the subgroup variable imputation

model.
c Method proposed in Chapter 2, Section 2.2.2.
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Table 4.5: Simulation study results for estimating marginal causal parameters in an obser-

vational setting with an incomplete subgroup variable using Chapter 3 simulation study

parameters (see Section 3.5.1). The number of imputed datasets is K = 5 for each simu-

lated dataset.

Imputation β1 β1 + β3

Model EBias ASE ESE ECP EBias ASE ESE ECP

P (R = 1) = 0.8

YW , Y Z1, WZ1 -0.0013 0.1588 0.1570 0.9526 0.0033 0.1494 0.1502 0.9478

All two-way a -0.0058 0.1589 0.1588 0.9494 -0.0032 0.1494 0.1483 0.9500

All three-way a -0.0037 0.1590 0.1570 0.9528 -0.0001 0.1495 0.1500 0.9484

Weighted EM b -0.0008 0.1759 0.1763 0.9470 0.0033 0.1692 0.1714 0.9460

P (R = 1) = 0.6

YW , Y Z1, WZ1 0.0015 0.1746 0.1716 0.9538 -0.0004 0.1631 0.1569 0.9576

All two-way a -0.0011 0.1752 0.1743 0.9478 -0.0028 0.1635 0.1643 0.9468

All three-way a 0.0015 0.1759 0.1740 0.9496 -0.0047 0.1640 0.1621 0.9510

Weighted EM b 0.0001 0.1746 0.1743 0.9504 0.0020 0.1633 0.1628 0.9508

Abbreviations: EBias Empirical bias, ASE asymptotic standard error, ESE empirical

standard error, ECP empirical coverage probability; EM expectation-maximization
a All two-way/three-way interactions are included in the subgroup variable imputation

model.
b Doubly weighted EM-type algorithm method presented in Chapter 3, Section 3.4.2.
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4.5.2 Discussion of Simulation Studies

In Tables 4.1 and 4.2, we see that the complete case model for estimating ϑ is appropriate

and results in consistent estimates for ϑ1 and ϑ1+ϑ3 as expected. However, there is a loss of

efficiency in comparison to the multiple imputation estimates. The imputation models with

main effects only, and with Y Z1 or WZ1 as the only interaction term, result in inconsistent

estimates of ϑ1 and ϑ1 + ϑ3. This is interesting, as the complete case analysis results in

consistent estimates, but the models with an incorrect imputation model do not. Therefore

specifying the correct imputation model is important. We showed in Section 4.1.2 that the

two-way interaction terms that are necessary in the imputation model in order to estimate

the true relationship between all of the variables are YW , Y Z1 and WZ1. However, we

do see that in an imputation model where YW is the only interaction term, consistent

estimates are obtained. This may be due to the relatively weak relationship between Y

and Z1 (ϑ4 = log(1.25)). Including all two-way, or even all three-way, interaction terms

in the imputation model results in consistent estimates and does not result in a loss of

efficiency.

In Tables 4.3 and 4.4, we see that the complete case method which ignores the missing

data and includes one weight for confounding results in slightly biased estimates of β1 and

β1 +β3. The imputation model for S which includes main effects only performs worse than

the complete case method with only one weight for confounding in terms of consistency,

which is interesting. This highlights the importance of choosing an appropriate imputation

model. The imputation model with YW as the only interaction term performs well under

the parameter settings. The multiple imputation method is quite a bit more efficient than

the doubly weighted estimating equation method presented in Chapter 2.

The results in Table 4.5 are similar to the results in Tables 4.3 and 4.4. In terms of

a comparison between the weighted EM-type algorithm method introduced in Chapter 3

and the multiple imputation method, we see that the efficiency is very similar and both

methods result in consistent estimates for β1 and β1 + β3 when the percentage of missing

data is high (40%). However, the weighted multiple imputation model is more efficient

when the percentage of missing data is lower (20%).
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4.6 Summary

In this chapter, we explore a method for selecting an imputation model for a missing co-

variate/subgroup variable in the presence of interaction terms in the response (substantive)

model. We review existing methods for imputing missing values to create K ‘full’ datasets.

We also review existing methods for estimating conditional regression parameters using

multiply imputed data in the randomized and observational settings. We do the same for

estimating marginal regression parameters in randomized and observational settings, where

a weight for confounding is included in an observational setting. A method for estimating

the variance in the weighted multiple imputation method is given, as well as suggestions

for inference and confidence interval calculations.

In simulation studies, we find that correct specification of the imputation model is

important in both conditional parameter estimation and marginal parameter estimation.

The weighted multiple imputation method is more efficient than the doubly weighted esti-

mating equation approach from Chapter 2. Also, the weighted multiple imputation model

is comparable to the doubly weighted EM algorithm method introduced in Chapter 3 in

terms of efficiency when the percentage of missing data is high, and the weighted multiple

imputation model is more efficient when the percentage of missing data is low.
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Chapter 5

Incidence of Thrombotic Events in

the Treatment of Metastatic

Colorectal Cancer

In this chapter we apply the methods presented in Chapters 2, 3 and 4 in a causal analysis of

the effect of bevacizumab plus chemotherapy versus chemotherapy alone on the incidence of

thrombotic events in a cohort of patients with metastatic colorectal cancer treated between

2006 and 2011.

5.1 Background, Exclusions and Data Summary

Interest here lies in comparing the risk of a thrombotic event (TE) in metastatic colorectal

patients who receive either a combination of bevacizumab (BV, Avastinr) and chemother-

apy (FOLFIRI), or FOLFIRI alone. The causal link between BV plus FOLFIRI and a TE

during the course of therapy is of interest within two subgroups: those who are treated

as a second line of treatment, and those who are treated as a first line of treatment.

Data are from a cohort study of patients from the Juravinski Cancer Centre in Ontario,

Canada between 2004 and 2011. Data were obtained from a registry of patients diagnosed
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Table 5.1: Year of start of treatment for study participants treated with BV plus FOLFIRI

or FOLFIRI alone between 2004 and 2011.

BV plus FOLFIRI FOLFIRI

Year of start of therapy (n = 261) (n = 189)

2004 0 1

2005 0 9

2006 3 38

2007 4 47

2008 47 27

2009 79 20

2010 67 28

2011 39 19

Missing 22 0

with metastatic colorectal cancer who were referred to the Juravinski Cancer Centre from

facilities within the centre’s catchment area, as well as patients who were referred from

other cancer centres. In September 2006, BV became a publicly funded drug, therefore

we restrict attention to patients who started treatment between 2006 and 2011, since all

patients who started treatment before 2006 were given the control therapy. See Table 5.1

for information on the distribution of treatment assignment by year, and Table 5.2 for

exclusion criteria. The analyses performed in this chapter are intended as an exploratory

application of the methods proposed in Chapters 2, 3 and 4.

Al-Shamsi et al. (2015) give the reasons for not receiving BV in addition to FOLFIRI for

the control patients, which include risk of perforation due to a large tumor, post-surgical

wound complication, and prior deep vein thrombosis (DVT) and/or pulmonary embolus

(PE). A small percentage of patients treated with BV in addition to FOLFIRI have a

history of DVT/PE. In 34% of control patients, there is no documented reason for not

receiving BV in addition to FOLFIRI.

See Table 5.3 for a summary of baseline characterstics for study participants. Overall

we see that BV plus FOLFIRI patients are healthier. The median age is lower in the BV
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Table 5.2: Exclusions for patients treated with BV plus FOLFIRI or FOLFIRI alone.

BV plus FOLFIRI FOLFIRI

Exclusion criteria (n = 261) (n = 189)

Missing date of start of therapy, n 22 0

Year of start of therapy < 2006, n 0 10

Patients included in the analysis, n 239 179

plus FOLFIRI group (61 vs. 64 years). BV plus FOLFIRI patients are less likely to have

hypertension (33.9% vs. 41.9%) or diabetes (8.8% vs. 22.3%). BV plus FOLFIRI patients

are less likely to have rectal/rectosigmoid cancer (29.3% vs. 43.6%) and more likely to

have colon cancer (69.9% vs. 56.4%).

In Table 5.4 we summarize the occurrence of a TE during the treatment period for

study participants. A patient is considered as having a TE if the event occurs during the

course of treatment, or within 30 days after discontinuation. For patients who did not

have a TE, the follow-up time is the difference between the start of therapy, and the end

of therapy, plus 30 days. The incidence of a TE is higher in the BV plus FOLFIRI group

compared to the group receiving FOLFIRI alone (16.3% vs. 12.3%). In Al-Shamsi et al.

(2015), where control patients who began treatment in 2004 and 2005 (before BV was

introduced) were included, the incidence of TE was lower in the BV plus FOLFIRI group

(14.9% vs. 15.9%). One patient in the FOLFIRI without BV treatment group experienced

a TE at the start of treatment (day 0).

5.2 Variable Selection and Notation

We define the following variables to reflect the set-up of Chapters 2 through 4. The binary

response variable is denoted by Y , where Yi = 1 if patient i experiences a TE during the

course of treatment or during the 30 days after treatment is discontinued, and Yi = 0

otherwise. The treatment variable is denoted by W in this observational setting, where
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Table 5.3: Baseline characteristics for 239 colorectal cancer patients treated with BV plus

FOLFIRI, and 179 colorectal cancer patients treated with FOLFIRI alone.

BV plus FOLFIRI FOLFIRI

Baseline characteristic (n = 239) (n = 179)

Male, n (%) a 149/234 (63.7%) 112/179 (62.6%)

Age (years), median (range) a 61 (24, 83) 64 (37, 92)

BMI (kg/m2), median (range) 26 (17, 52) 27 (18, 46)

Diabetes, n (%) 21 (8.8%) 40 (22.3%)

Hypertension, n (%) 81 (33.9%) 75 (41.9%)

Smoking, n (%) 27 (11.3%) 24 (13.4%)

Type of cancer, n (%)

Colon 167 (69.9%) 101 (56.4%)

Rectal or Rectosigmoid 70 (29.3%) 78 (43.6%)

Site of metasteses, n (%)

Liver 119 (49.8%) 134 (74.9%)

Lung 63 (26.4%) 89 (49.7%)

Second line of treatment b 17/221 (7.7%) 114/178 (64.0%)

History of DVT/PE 8 (3.3%) 31 (17.3%)

History of MI 26 (10.9%) 24 (13.4%)

Abbreviatons: BV bevacizumab; BMI body mass index; DVT deep vein

thrombosis; PE pulmonary embolus; MI myocardial infarction
a Sex is missing in 5 patients and age is missing in 1 patient (all BV plus FOLFIRI).
b Line of treatment is missing in 19 patients, 18 BV plus FOLFIRI, 1 FOLFIRI.

Wi = 1 if patient i receives BV plus FOLFIRI, and Wi = 0 otherwise. The subgroup

variable denoted by S indicates line of treatment, where Si = 1 if patient i receives second

line of treatment, and Si = 0 if patient i receives first line of treatment. The subgroup

variable of interest is incomplete for 5% of patients included in the study (Table 5.3). The

possible confounder, denoted by Z1i, indicates whether patient i has a history of DVT/PE;

we consider this as a confounder because it is both a risk factor for a TE and is associated

with treatment selection in this patient sample (see Table 5.3). The auxiliary variable Z2i
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Table 5.4: Frequency and location of thrombotic events by treatment group (BV plus

FOLFIRI and FOLFIRI).

BV plus FOLFIRI FOLFIRI

(n = 239) (n = 179)

Thrombotic event a, n (%) 39 (16.3%) 22 (12.3%)

Thrombotic location b, n (%)

Venous upper limb 5 (12.8%) 8 (36.4%)

Venous lower limb 8 (20.5%) 4 (18.2%)

Pulmonary embolus 20 (51.3%) 9 (40.9%)

Other 6 (15.4%) 1 (4.5%)

Diagnosed as b, n (%)

Symptomatic 25 (64.1%) 14 (63.6%)

Incidental 14 (35.9%) 8 (36.4%)

Time (days), median (range)

Treatment start to stop, all patients 211 (6, 1261) 170 (0, 1398)

Treatment start to thrombotic event 96 (6, 893) 110 (0, 289)
a Thrombotic event is defined as a thrombotic event that occurs during the

course of treatment or within 30 days of discontinuation.
b The denominator for the percentages is the total number of thrombotic

events for each treatment group.

indicates whether patient i has malignant colon cancer and if Z2i = 0, patient i has a

malignant rectal/rectosigmoid cancer. Note that out of 268 patients with malignant colon

cancer, one patient has rectal/rectosigmoid cancer as well, and for this patient, we set

Z2i = 1. We let Ri denote the missing data indicator where Ri = 1 if we have observed

the subgroup variable for patient i, and 0 otherwise.

Figure 5.1 contains a causal DAG which summarizes the conceptualized causal rela-

tionships between the variables. We make the following assumptions, in alignment with
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Figure 5.1: Simple causal DAG for treatment (BV plus FOLFIRI) versus control

(FOLFIRI), denoted by W . The binary response variable Y denotes whether a patient

has a TE during the course of treatment or within 30 days of discontinuation. Potential

confounder Z1 denotes whether a patient has a history of DVT/PE, and auxiliary variable

Z2 denotes the indicator variable for malignant colon cancer. The important, and possi-

bly incomplete, subgroup variable is denoted by S which represents the line of treatment

(second or first). Variable R indicates whether S is observed.

those of Chapters 2 and 4.

B.0 Ri ⊥ (Yi,Wi, Si) | (Z1i, Z2i)

B.1 Yi ⊥ Z2i | (Wi, Si, Z1i)

B.2 Wi ⊥ Si | (Z1i, Z2i) (observational setting)

B.3 Z1i ⊥ Z2i .

Note that we make the assumption that S and W are conditionally independent, and

we explore whether this assumption is appropriate given the data. In Chapter 3, we

further assume that Z1 and S are conditionally independent and we explore whether this

assumption is appropriate as well.

To investigate whether the potential confounding variable Z1 and auxiliary variable

Z2 are appropriately chosen based on the study data, we model the propensity score for

113



treatment selection, see Table 5.5. An analysis of variables that may be associated with

treatment selection are included in the full model (Model T1) which contains all potential

confounding and auxiliary variables as well as the subgroup variable, and a reduced model

(Model T2) where only Z1 (history of DVT/PE) and Z2 (malignant colon cancer) are

included. We see that Z1 and Z2 are both significantly associated with treatment selection,

and that other variables are also significantly associated with treatment selection, including

diabetes, liver metasteses and the subgroup variable. The assumption that S and W are

conditionally independent is not appropriate, however we restrict the propensity score

model to two important covariates to reflect the models proposed in our derivation of

methods in Chapters 2, 3 and 4. (See Appendix B for results of a simulation study

investigating the effect of a subgroup variable that is also a confounding variable, where

the subgroup variable is omitted from the propensity score model.) The propensity score

from Model T2 is estimated by fitting the following logistic regression model

πi(ξ1) = P (Wi = 1|Z1i, Z2i; ξ1) = expit(ξ10 + ξ11Z1i + ξ12Z2i) .

To investigate whether variables Z1 (history of DVT and/or PE) and Z2 (malignant

colon cancer) are associated with subgroup variable S (line of treatment), we fit a logistic

regression model with S as the binary outcome variable and Z1 and Z2 as the independent

variables (Model S2, Table 5.6). Model S2 is the following logistic regression model:

πi(ξ2) = P (Si = 1|Z1i, Z2i; ξ2) = expit(ξ20 + ξ21Z1i + ξ22Z2i) .

We also fit a larger logistic regression model to identify any other variables measured before

the start of therapy that are associated with S (Model S1, Table 5.6). Variables Z1 and Z2

are both significantly associated with S, therefore the assumption that we make in Chapter

3 which is that Z1 and S are independent, is not appropriate. Other variables that are

associated with line of therapy are gender, age, diabetes and liver metasteses.

To investigate whether variables Z1 and Z2 are associated with R (the indicator for

whether S is observed), we fit a logistic regression model with R as the binary outcome

variable and Z1 and Z2 as the covariates (Model R2, Table 5.7). We also fit a larger logistic

regression model to identify any other variables measured before the start of therapy that
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Table 5.5: Estimates from full (Model T1) and reduced (Model T2) logistic regression

models for the propensity score. All independent variables listed are included in Model

T1, and only Z1 and Z2 are included in Model T2.

Model T1 Model T2

Covariate Comparison Est. (SE) p Est. (SE) p

History of DVT/PE (Z1) Yes vs. no -1.66 (0.52) <0.01 -1.85 (0.41) < 0.01

Colon cancer (Z2) a Yes vs. no 0.72 (0.29) 0.01 0.64 (0.21) < 0.01

Gender F vs. M -0.004 (0.29) 0.99

Age (years) -0.03 (0.01) 0.07

Body mass index (kg/m2) 0.03 (0.03) 0.30

Diabetes Yes vs. no -0.91 (0.39) 0.02

Hypertension Yes vs. no -0.07 (0.31) 0.81

Smoking Yes vs. no -0.21 (0.41) 0.61

Liver metasteses Yes vs. no -1.05 (0.29) <0.01

History of MI Yes vs. no -0.32 (0.41) 0.44

Line of treatment (S) 2nd vs. 1st -2.94 (0.32) <0.01

Abbreviatons: Est. log odds ratio estimate; SE; standard error; DVT deep

vein thrombosis; PE pulmonary embolus; MI myocardial infarction
a Comparing patients with malignant colon cancer to those with malignant rectal cancer.

are associated with R (Model R1, Table 5.7). Model R2 is the following logistic regression

model:

πi(ρ) = P (Ri = 1|Z1i, Z2i;ρ) = expit(ρ0 + ρ1Z1i + ρ2Z2i) .

From Table 5.7, we see that Z1 is not significantly associated with the missing data process,

however Z2 is significantly associated with R at the 0.10 significance level (p=0.07).

Tables 5.8 and 5.9 are 2 × 2 tables displaying the number of TEs by treatment group

(BV plus FOLFIRI vs. FOLFIRI) for each subgroup (second or first line of treatment).

For those whose treatment is the second line, the probability of a TE is 0.18 versus 0.11

comparing BV plus FOLFIRI to FOLFIRI alone. For those whose treatment is the first

line of treatment, the probability of a TE is the same in each treatment group (0.16).
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Table 5.6: Results of full and reduced logistic regression models to investigate the relation-

ship between the subgroup variable and other baseline variables. In Model S1, all variables

listed are covariates; in Model S2, only Z1 and Z2 are included as covariates.

Model S1 Model S2

Covariates Comparison Est. (SE) p Est. (SE) p

History of DVT/PE (Z1) Yes vs. no 1.08 (0.36) < 0.01 1.19 (0.35) < 0.01

Colon cancer (Z2) a -0.68 (0.24) < 0.01 -0.50 (0.22) 0.03

Gender F vs. M 0.53 (0.24) 0.03

Age (years) 0.04 (0.01) < 0.01

Body mass index (kg/m2) 0.02 (0.02) 0.46

Diabetes Yes vs. no 0.70 (0.31) 0.03

Hypertension Yes vs. no -0.09 (0.26) 0.74

Smoking Yes vs. no 0.53 (0.35) 0.13

Liver metasteses Yes vs. no 0.94 (0.25) < 0.01

History of MI Yes vs. no -0.35 (0.37) 0.34

Abbreviatons: Est. log odds ratio estimate; SE standard error; DVT deep

vein thrombosis; PE pulmonary embolus; MI myocardial infarction
a Comparing patients with malignant colon cancer to those with malignant rectal cancer.
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Table 5.7: Results of full and reduced logistic regression models to investigate the rela-

tionship between R (indicator of missing data) and baseline variables. In Model R1, all

variables listed are covariates; in Model R2, only Z1 and Z2 are included as covariates.

Model R1 Model R2

Covariates Comparison Est. (SE) p Est. (SE) p

History of DVT/PE (Z1) Yes vs. no 0.41 (1.08) 0.70 0.67 (1.04) 0.52

Colon cancer (Z2) a -1.64 (0.77) 0.03 -1.14 (0.64) 0.07

Gender F vs. M 0.11 (0.52) 0.83

Age (years) 0.003 (0.02) 0.90

Body mass index (kg/m2) -0.05 (0.04) 0.29

Diabetes Yes vs. no 1.01 (1.09) 0.35

Hypertension Yes vs. no 0.08 (0.56) 0.89

Smoking Yes vs. no 0.15 (0.80) 0.85

Liver metasteses Yes vs. no 0.93 (0.51) 0.07

History of MI Yes vs. no 0.84 (1.07) 0.44

Abbreviatons: Est. log odds ratio estimate; SE standard error; DVT deep

vein thrombosis; PE pulmonary embolus; MI myocardial infarction
a Comparing patients with malignant colon cancer to those with malignant rectal cancer.

Table 5.8: 2 × 2 table comparing the percentage of patients with a TE in second line of

treatment patients (Si = 1).

Thrombotic event

Second line of treatment No Yes

BV plus FOLFIRI 14 (82%) 3 (18%)

FOLFIRI 102 (89%) 12 (11%)
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Table 5.9: 2 × 2 table comparing the percentage of patients with a TE for first line of

treatment patients (Si = 0).

Thrombotic event

First line of treatment No Yes

BV plus FOLFIRI 171 (84%) 33 (16%)

FOLFIRI 54 (84%) 10 (16%)
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5.3 Conditional Response Model

In Table 5.10, we explore the relationship between the response, TE during the course

of therapy or within 30 days after discontinuation, and variables measured at baseline

in separate logistic regression models each with one independent variable. In unadjusted

analyses, treatment (BV plus FOLFIRI vs. FOLFIRI alone) is not significantly associated

with TE during therapy, however the odds ratio is 1.39 (p=0.25), indicating that the risk

of a TE may be higher in the BV plus FOLFIRI group.

We also report the results of an adjusted logistic regression analysis in Table 5.11 which

is similar to the conditional response model fitted in Al-Shamsi et al. (2015); here, we use

data from the cohort of patients who started therapy between 2006 and 2011. In this

table, we see that the odds of a TE is higher for the BV plus FOLFIRI group, whereas

in the original analysis of patients who started therapy between 2004 and 2011, the odds

are lower for the BV plus FOLFIRI group. In both analyses, the treatment effect is not

statistically significantly different from zero.

Interest lies in estimating the marginal causal effect of BV plus FOLFIRI on the risk

of a TE during the course of therapy, for two subgroups: (i) first line of therapy and (ii)

second line of therapy. However, we begin our exploration of the response model by fitting

the full conditional response model using complete cases in the following model

P (Y = 1|W,S, Z1) = expit(ϑ0 + ϑ1W + ϑ2S + ϑ3WS + ϑ4Z1) , (5.1)

where the variables are defined in Section 5.2. Note that in our proposed conditional

response model (e.g. equation (2.7)), we have assumed that the main effect of Z1 on the

response is null, however we have relaxed that assumption here and we are including a

main effect for Z1 and omitting the interaction effect with the treatment variable because

we do not wish to estimate the treatment effect for different levels of Z1.

In an ignorable missingness setting, where all variables that are associated with the

response are included in the response model, the full conditional response model results in

consistent estimates of the conditional causal parameters. This may not be a reasonable

assumption, however, since we have restricted attention to only three independent vari-

ables: treatment W (BV plus FOLFIRI versus FOLFIRI alone), subgroup variable S (line
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Table 5.10: Results of logistic regression models to investigate the relationship between a

TE, treatment and baseline covariates. In each regression analysis, one covariate is included

as an independent variable and TE during the course of treatment or within 30 days of

discontinuation is the dependent variable.

Covariate Comparison OR (95% CI) p

Treatment (W ) BV + FOLFIRI vs. FOLFIRI 1.39 (0.79, 2.44) 0.25

Line of treatment (S) a 2nd vs. 1st 0.68 (0.36, 1.27) 0.22

History of DVT/PE (Z1) Yes vs. no 0.65 (0.22, 1.89) 0.42

Colon cancer (Z2) b 1.08 (0.61, 1.91) 0.80

Gender F vs. M 0.70 (0.39, 1.27) 0.24

Age (years) 0.99 (0.97, 1.01) 0.44

Body mass index (kg/m2) 1.08 (1.04, 1.14) <0.01

Diabetes Yes vs. no 0.87 (0.39, 1.92) 0.72

Hypertension Yes vs. no 1.52 (0.88, 2.63) 0.14

Smoking Yes vs. no 0.46 (0.16, 1.33) 0.15

Liver metasteses Yes vs. no 1.09 (0.62, 1.91) 0.76

Past history of MI Yes vs. no 0.78 (0.32, 1.91) 0.58

Abbreviatons: OR odds ratio; DVT deep vein thrombosis;

PE pulmonary embolus; MI myocardial infarction
a Line of treatment is missing in 5% of patients.
b Comparing patients with colon cancer to rectal cancer.

of treatment) and potential confounding variable Z1 (history of DVT/PE). The estimated

odds ratios for both levels of the subgroup variable in a complete case conditional response

model analysis are given in Table 5.12. We see that the treatment effect is not statistically

significant for either of the levels of the subgroup variable in this setting, and the test for

interaction is not significant (p-value=0.51).
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Table 5.11: Results of a conditional logistic regression model to investigate the relationship

between the response, treatment and baseline covariates. This response model is similar to

the one in Al-Shamsi et al. (2015), but restricted to patients who started therapy between

2006 and 2011; all covariates listed are included in the adjusted model.

Covariates Comparison OR (95% CI) p

Age (years) 0.99 (0.96, 1.02) 0.41

Body mass index (kg/m2) 1.08 (1.03, 1.14) < 0.01

Gender F vs. M 0.78 (0.42, 1.44) 0.42

Colon cancer (Z2) a 1.16 (0.63, 2.11) 0.63

Metastatic disease Yes vs. no 1.75 (0.86, 3.56) 0.13

Risk factors for VTE Yes vs. no 0.62 (0.22, 1.74) 0.36

Risk factors for ATE Yes vs. no 1.02 (0.56, 1.88) 0.94

Treatment (W ) BV + FOLFIRI vs. FOLFIRI 1.39 (0.74, 2.58) 0.30

Abbreviatons: OR odds ratio; CI confidence interval;

VTE venous thromboembolism; ATE arterial thromboembolism
a Comparing patients with malignant colon cancer to rectal cancer.

Table 5.12: Results of fitting a complete case logistic regression model to investigate the

relationship between the response, treatment, subgroup variable and potential confounder.

See equation (5.1) for the logistic regression model, and Section 5.2 for details on variable

selection and notation.

Independent variable OR (95% CI)

Treatment effect, for S = 0 (exp(ϑ1)) 1.02 (0.47, 2.21)

Treatment effect, for S = 1 (exp(ϑ1 + ϑ3)) a 1.74 (0.43, 7.02)

Abbreviatons: OR odds ratio; CI confidence interval
a Interaction p-value = 0.51.
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5.4 Marginal Causal Effect Estimation

Interest lies in estimating the marginal causal effect of BV plus FOLFIRI on the risk of

a TE during treatment for two subgroups: (i) those whose treatment was a second line

of treatment and (ii) those whose treatment was a first line of treatment. We use the

following logistic regression model to relate the treatment and subgroup variables to the

response:

P (Y = 1|X,S;β) = expit(β0 + β1X + β2S + β3XS) , (5.2)

where X denotes the treatment variable in a randomized setting. See Section 5.2 for de-

tails on variable selection and definitions of other variables. Since we are working with

observational data with an incomplete subgroup variable, we do not assume that the miss-

ingness is ignorable when we condition on treatment and the subgroup variable alone; also

treatment selection is highly correlated with baseline characteristics that may be associ-

ated with the response therefore confounding may be an issue in this study. To account

for the non-ignorably missing data and confounding, we use the approaches introduced in

Chapters 2, 3 and 4 to estimate the marginal causal effects.

We begin by using the doubly weighted estimating equation approach introduced in

Chapter 2 (see equation (2.18)). We compare the doubly weighted estimating equation

approach to the following possibly misspecified models: complete case analysis without

weights (equation 2.25); complete case analysis with a weight for confounding, with the

addition of Ri in the numerator of the weight to ensure that only complete cases are

included in the model (equation (2.11)); and complete case analysis with a weight for

missingness (equation (2.15)).

In an application of the doubly weighted estimating equation method, the median

(range) of the product of the double inverse probability weights is 1.99 (1.18, 7.15). See

Table 5.13 for results; we see that in using the doubly weighted estimating equation ap-

proach, there may be a subgroup effect, where patients receiving treatment as a second

line of therapy may have a higher odds ratio of a TE (1.82, 95% CI 0.45 to 7.39) compared

to those receiving treatment as a first line of therapy (1.15, 95% CI 0.50 to 2.61). We

note however that the interaction effect is not statistically significant, and the causal effect
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Table 5.13: Results of fitting a complete case estimating function with or without weights

in an application of the methods proposed in Chapter 2 to estimate marginal causal pa-

rameters in a logistic regression setting. See Section 5.2 for notation and equation (5.2)

for the model of interest.

Method OR (95% CI a) OR (95% CI b)

Complete case unweighted method

Treatment effect, for S = 0 1.04 (0.48, 2.25) 1.04 (0.49, 2.64)

Treatment effect, for S = 1 1.82 (0.46, 7.26) 1.82 (0.45, 6.67)

Complete case, IPW for confounding

Treatment effect, for S = 0 1.14 (0.44, 2.98) 1.14 (0.52, 3.07)

Treatment effect, for S = 1 1.89 (0.39, 9.09) 1.89 (0.46, 6.91)

Complete case, IPW for missingness

Treatment effect, for S = 0 1.05 (0.49, 2.27) 1.05 (0.50, 2.67)

Treatment effect, for S = 1 1.75 (0.44, 6.97) 1.75 (0.43, 6.40)

Complete case, doubly weighted estimating equation c

Treatment effect, for S = 0 1.15 (0.50, 2.61) 1.15 (0.52, 3.08)

Treatment effect, for S = 1 1.82 (0.45, 7.39) 1.82 (0.44, 6.61)

Abbreviatons: OR odds ratio; CI confidence interval; IPW inverse

probability weight
a Confidence interval derived using methods proposed in Section 2.3.2.
b The 2.5th and 97.5th percentiles from 5000 bootstrap samples.
c Interaction p-value = 0.41.

is not statistically significant in either subgroup. We also report the confidence intervals

(CIs) obtained from bootstrapping and we find that the bootstrap CIs are comparable to

those obtained using the standard error derivation in Section 2.3.2. In the estimation of

bootstrap CIs, for approximately 5% of the bootstrap samples, there is not enough data to

obtain an estimate of the interaction effect between the treatment and subgroup variables.

We omit these bootstrap sample estimates to obtain the 2.5th and 97.5th percentiles of the

estimates.

See Table 5.14 for results of an EM-type approach with double inverse probability

123



Table 5.14: Results of applying the doubly weighted EM-type algorithm introduced in

Chapter 3 to the BV plus FOLFIRI data to estimate marginal causal parameters in a

logistic regression setting. See Section 5.2 for notation and equation (5.2) for the model of

interest.

OR (95% CI a)

Doubly weighted EM-type algorithm

Treatment effect, for S = 0 (exp(β1)) 1.32 (0.51, 3.39)

Treatment effect, for S = 1 (exp(β1 + β3)) 2.66 (0.10, 68.29)

Abbreviatons: OR odds ratio; CI confidence interval;

EM expectation-maximization
a Confidence interval calculated using the method proposed

in Section 3.4.4.

The interaction p-value is 0.70.

weights for missingness and confounding. The median (range) of the product of the inverse

probability weights for confounding and missing data is 1.99 (1.18, 118.0). The effect

estimates are similar in comparison to the doubly weighted estimating equation approach,

although the confidence intervals are much wider. We note that there is a violation of the

assumption that S and Z1 are independent (see Table 5.6), therefore the results from the

application of the weighted EM-type approach are not as useful as the results from the

other marginal models.

See Table 5.15 for results of an application of the multiple imputation approach with an

inverse probability weight for confounding. Following the imputation model recommenda-

tions given in Section 4.1.2, three interaction terms are included in the imputation model

for S: YW , Y Z1 and WZ1, and the number of imputations is K = 5. The effect estimates

are very similar to those obtained in an application of the doubly weighted estimating

equation method.
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Table 5.15: Results of applying the weighted multiple imputation method introduced in

Chapter 4 to the BV plus FOLFIRI data to estimate marginal causal parameters in a

logistic regression setting. See Section 5.2 for notation and equation (5.2) for the model of

interest.

OR (95% CI a)

Weighted multiple imputation

Treatment effect, for S = 0 (β1) 1.16 (0.43, 3.12)

Treatment effect, for S = 1 (β1 + β3) 1.71 (0.36, 8.24)

Abbreviatons: OR odds ratio; CI confidence interval
a Confidence interval calculated using the method proposed

in Section 4.4.2.

The interaction p-value is 0.67.

5.5 Additional Estimates of Marginal Causal Effects

Here we perform an additional analysis which is not restricted to variables Y , W , S, Z1,

Z2, and R. In this analysis, all variables that are associated with treatment selection are

included in the propensity score model, and all variables that are associated with missing

data are included in the missing data model. The marginal response model of interest is

unchanged (see equation (5.2)); see Section 5.2 for details on notation. In an application of

the method proposed in Chapter 2, a complete case doubly weighted estimating equation

approach is used to obtain an estimate of the marginal causal effects, and confidence

intervals are estimated using the 2.5th and 97.5th percentiles of 5000 bootstrap samples.

To select the variables included in the propensity score model and the missing data

model, we use a p-value cut-off of 0.10. For the treatment selection model, we include the

following variables as covariates (see Model T1 in Table 5.5): history of DVT/PE (Z1),

colon cancer (Z2), age, diabetes, and liver metasteses. Although the subgroup variable

is also significantly associated with treatment selection, we omit this variable from the

propensity score model. (See Appendix B for a discussion of misspecified propensity score

models where the subgroup variable of interest is a confounder, but is omitted from the
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propensity score model.) For the missing data model, we include the following variables

as covariates (see Model R1 in Table 5.7): colon cancer (Z2) and liver metasteses.

The estimate of the odds ratio of a TE comparing those treated with BV plus FOLFIRI

to FOLFIRI alone, in the first line of treatment group, is 1.07 (95% CI 0.48 to 2.92). In

the second line of treatment group, the estimated odds ratio is 1.39 (95% CI 0.27 to 6.59).

5.6 Discussion and Conclusions

In an application of the methods proposed in this thesis, we find that the risk of a TE is the

same between treatment groups (BV plus FOLFIRI compared to FOLFIRI alone), and the

subgroup effect (line of treatment) is not statistically significant. In an application of the

doubly weighted estimating equation approach introduced in Chapter 2, the estimate of

the marginal causal odds ratio in the first line of treatment group is 1.15 (95% confidence

interval (CI) 0.50 to 2.61), and the odds ratio in the second line of treatment group is

1.82 (95% CI 0.45 to 7.39). We remark that while these estimates are not statistically

significantly different, the point estimates convey quite different messages. The estimates

are similar when the methods introduced in Chapters 3 and 4 are applied, although the

confidence intervals resulting from an application of the EM-type algorithm method are

wider in comparison.

We note that this study is likely underpowered to detect a clinically significant subgroup

effect. See Appendix A for results of simulation studies designed to estimate the power to

detect a significant subgroup effect using the methods proposed in this thesis.
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Chapter 6

Discussion, Conclusions and Future

Work

6.1 Summary and Discussion

In a clinical setting, investigators often wish to estimate marginal causal parameters that

are estimable in randomized controlled trials, using observational data. Missing data and

confounding arise frequently in observational studies; in this thesis, we investigate the

estimation of marginal causal odds ratios in the observational setting where an important

subgroup variable is incomplete. In Chapter 1, we review statistical methods for causal

inference, which includes a brief overview of counterfactual notation. We then review

methods for incomplete data.

In Chapter 2, we propose a method for estimating marginal causal odds ratios in an ob-

servational setting, for each level of a subgroup variable, using a doubly inverse probability

weighted estimating equation. The inverse probability weights account for both confound-

ing and missing data, as the subgroup variable is incomplete. Prior to introducing this

method, we review existing methods for causal analysis where an inverse probability weight

for confounding is incorporated. We then review existing inverse probability weighted

methods for adjusting for non-ignorably missing data. In the doubly weighted method,
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we show that the asymptotic standard error estimation is relatively straightforward, and

involves accounting for the extra variability introduced by estimating the parameters in

the inverse probability weights. A method for hypothesis testing is given, and simulation

studies show that this method is straightforward to implement and that the estimators are

consistent.

In implementing the doubly weighted estimating equation approach, knowledge of the

model to generate the incomplete subgroup variable is not necessary; only knowledge about

the missing data process and the appropriateness of the no unmeasured confounders as-

sumption is required. The weight models must be properly specified and omission of one

or both of the weights can lead to biased estimates. We recommend using a more liberal

approach to building a model for the missing data process as well as including as many

potential confounding variables as is necessary in the propensity score model. Although

variance estimation is relatively straightforward when there are only one or two covariates

included in the weight models, bootstrapping to obtain confidence intervals may be useful

when the number of covariates in the inverse probability weight models is large.

The doubly weighted estimating equation approach involves complete case analysis,

where data from subjects with an incomplete subgroup variable is omitted, which may im-

pact efficiency. In Chapter 3, we review an existing method for handling missing covariate

data in conditional causal models, which involves an EM algorithm where all available data

is included in the analysis. We extend this method to the setting where marginal causal

parameters are of interest and this involves an EM-type algorithm approach with the ad-

dition of two inverse probability weights - one for non-ignorably missing data, and one for

confounding. To implement this method, one must have knowledge about the subgroup

variable model, the missing data process and whether the no unmeasured confounders as-

sumption is appropriate. We derive the asymptotic properties of the estimators, and a

method for hypothesis testing is proposed. In simulation studies, we see that the weighted

EM-type algorithm can be used to obtain consistent estimates of causal parameters, how-

ever, estimation of the variance of the estimators is not straightforward.

In Chapter 4, we review existing methods for multiple imputation in the setting of

a missing covariate. We discuss the selection of an appropriate imputation model given

the true conditional distribution of the incomplete subgroup variable. We investigate the
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use of multiply imputed data with an imputed subgroup variable, in weighted estimat-

ing equations with one weight for confounding. Standard methods to combine estimates

from multiply imputed datasets are used; the extra variability introduced by estimating

the parameters in the model for the weight for confounding is incorporated into standard

methods for variance estimation in a multiple imputation setting. Simulation studies show

that this method is straightforward to implement, and consistent estimates of the param-

eters of interest are obtained. However, care must be taken when choosing an imputation

model for the missing covariate, and an imputation model that characterizes the model for

the missing covariate as adequately as possible is desirable.

In terms of a comparison between the multiple imputation method introduced in Chap-

ter 4 and the doubly inverse probability weighted method introduced in Chapter 2, in simu-

lation studies, the estimators of the multiple imputation method tend to be more efficient.

In the multiple imputation setting, knowledge about the incomplete subgroup variable

model is required for imputation whereas knowledge about the missing data process is

required for the doubly weighted estimating equation approach. In an observational data

setting, it may not be feasible to collect data on the variables that are associated with the

missing data process, and studies are not often designed to answer such questions, which

may make the doubly inverse probability weighted method more difficult to implement in

practice. In terms of selecting an imputation model for the incomplete subgroup variable,

we see in simulation studies that exact knowledge of the model for imputing the subgroup

variable is not necessary, and a more liberal approach to variable inclusion and interaction

effect inclusion does not affect consistency or efficiency of the estimates of the marginal

causal effects. In both methods, knowledge about the appropriateness of the propensity

score model and the no unmeasured confounders assumption is required.

In comparing the weighted EM-type algorithm method introduced in Chapter 3, and

the multiple imputation method of Chapter 4, we need to use a more restrictive approach

to estimating the conditional distribution of the subgroup variable in the weighted EM-

type method. This is because estimation of the subgroup model is tied into the marginal

causal model in the EM-type algorithm method, whereas the multiple imputation model

used to approximate the true conditional distribution of the subgroup variable need not

be restricted by the marginal response model. Existing software to facilitate imputation
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makes the weighted multiple imputation method preferable in practice.

In Appendix A, we summarize the results of simulation studies designed to estimate

the power to detect a significant subgroup effect under different parameter settings and

sample sizes. We find that a large sample size (n ≥ 2000) is required have adequate power

to detect a relatively large subgroup effect (β3 > 0.5). The three methods are comparable

in terms of power to detect a subgroup effect.

In Chapter 5, we apply the methods proposed in Chapters 2, 3 and 4 to investigate

the causal link between a novel treatment for metastatic colorectal cancer, and thrombotic

events. We find that there is no significant difference in the risk of a thrombotic event

comparing patients who receive the new treatment, bevacizumab (BV) plus chemotherapy

(FOLFIRI), to patients who receive FOLFIRI alone. The subgroup of interest is line of

treatment (second or first); the interaction effect is not statistically significant, although

the data indicate that perhaps the odds ratio of a thrombotic event is higher in those whose

treatment was a second line therapy. Data from 418 patients are included in this study,

and we note that the study is likely underpowered to detect a significant and clinically

meaningful treatment effect and/or subgroup effect. In the marginal models described in

Chapters 2, 3 and 4, we make the assumption that the subgroup variable is not also a

confounder. This assumption is likely not appropriate in the application to the BV plus

FOLFIRI data; see Appendix B for results of simulation studies designed to estimate the

degree of bias introduced from a misspecified propensity score model where an important

confounder is omitted.

6.2 Future Work

This section is an outline of future research related to this thesis.

6.2.1 Extension to Other Response Models

In this thesis, we focus on estimation of the marginal causal odds ratio. With a binary

response variable, risk differences and risk ratios may be of interest. The methods presented

130



in this thesis can be explored for estimating other types of summary statistics. We note

that log linear models are collapsible, and therefore the marginal relative risk is estimable

using a conditional response model, and a weight for confounding and/or missing data may

not be necessary, depending on the missing data process (Zou, 2004).

When estimation of the causal hazard ratio is of interest, the methods presented in

Chapter 2 may be useful, as the hazard ratio is subject to non-collapsibility and therefore

conditioning on confounding variables and covariates that are associated with the missing

data process in the response model may not be desirable. Hernán et al. (2000) introduce

weighted Cox models for adjustment for time-dependent confounding. These methods can

be modified to account for missingness and selection bias introduced when an important

subgroup variable is incomplete, and marginal causal effects are of interest.

6.2.2 Stabilized Weights

The inverse probability weights used in Chapters 2, 3 and 4 can be stabilized by adding the

product of the marginal probability of treatment and the marginal probability of missing

data in the numerator of the weight. In the longitudinal data setting, the stabilized weight

for confounding at time t is

swi(t) =
t∏

k=0

f [A(k)|Ā(k − 1)]

f [A(k)|Ā(k − 1), L̄(k)]
(6.1)

where A(k) is the observed treatment at visit k, Ā(k−1) is the observed treatment history

up to and including visit k − 1, L(k) is a vector of time-varying covariates and L̄(k)

contains the covariate history up to and including visit k (Hernán et al., 2002). This can

be simplified to the setting with only one follow-up visit, and extended to the setting where

a weight for missing data is also incorporated. One may wish to investigate the properties

of the following weighted estimating equation with stabilized weights:

Ũi(β;ψ) =

1∑
l=0

RiP (Ri = 1)

πi(ρ)

I(Wi = l)P (Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1
(
Yi − µi(β)

)
, (6.2)

where the parameters and Di(β) and Vi(β) are defined in Section 2.2.2.
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Because the use of stabilized weights may result in estimators with more desirable

properties, it is of interest to investigate the sample size requirements for detecting a

significant treatment effect and/or a significant subgroup effect with the use of stabilized

weights.

6.2.3 Extension to Missing Response Data

In this thesis, we have discussed methods to deal with one incomplete covariate. The

multiple imputation method investigated in Chapter 2 can be extended to the setting with

more than one incomplete covariate, and/or an incomplete response variable. Suppose

that, in addition to missing subgroup data, the response of interest is also incomplete, and

let πi(α) = P (Ry
i = 1|Di;α) where Ry

i indicates whether response variable Yi is observed

and Di is some combination of the data measured at baseline. It is of interest to investigate

the properties of the following weighted estimating equation:

Ui(β;ρ,α, ξ1) =

1∑
l=0

Ri
πi(ρ)

Ryi
πi(α)

I(Wi = l)

πi(ξ1)l(1− πi(ξ1))1−l Di(β)[Vi(β)]−1
(
Yi − µi(β)

)
,

where β, ξ1, ρ and Di(β) and Vi(β) are defined in Section 2.2.2.

In an extension of the multiple imputation method proposed in Chapter 4, an investi-

gation of an appropriate model for imputing an incomplete response variable is of interest.

Fully conditional specification (FCS) multiple imputation methods can be easily imple-

mented through the use of standard statistical software, and there are many options for

the imputation model (e.g. logistic regression, linear regression, predictive mean matching,

etc.) (van Buuren and Groothuis-Oudshoorn, 2011). As well, in FCS multiple imputation,

the missing data need not have a monotone missing data pattern to implement the impu-

tation, which allows for flexibility.

6.2.4 Extension to Longitudinal Data

Interest may lie in estimating marginal causal odds ratios in the longitudinal data setting;

the doubly weighted estimating function method described in Chapter 2 and multiple
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imputation with a weight for confounding investigated in Chapter 4 can be extended to

the longitudinal data setting.

Chen et al. (2010) introduce a method for estimation of conditional causal parameters

using inverse probability weighting for missing data in a longitudinal setting; covariate

and response data may be incomplete at each follow-up visit. We propose an extension of

these methods to estimate marginal causal parameters in an observational setting where

confounding may be present.

Let Yij denote a binary response variable, Xij denote a binary treatment variable in a

randomized setting, and Sij denote a binary subgroup variable, for subject i in a random

sample of n individuals, i = 1, ..., n with measurement at the jth assessment/follow-up

visit. In an observational setting, we let Wij denote the treatment. Let Z1ij denote a

vector of variables that are directly associated with response, and Z2ij denote a vector of

variables that do not have direct effects on the response.

Suppose the model for the response at assessment j is given by

µij(ϑ) = P (Yij = 1|Xij, Sij,Zij;ϑ) = expit(ϑ0 + ϑxXij + ϑsSij + ϑxsXijSij + Zijϑz)

for j = 1, ..., J . Suppose we are interested in fitting the marginal response model

µij(β) = expit(β0 + βxXij + βsSij + βxsXijSij)

where

µij(β) = P (Yij = 1|Xij, Sij;β)

=
1∑
z=0

P (Yij = 1|Xij, Sij, Zij = z;ϑ)P (Zij = z|Sij)

with Zij = Zij for convenience. We make the assumption that Xij ⊥ Sij, Zij in a random-

ized setting.

Let Ry
ij indicate whether the response variable is measured at the jth assessment for

subject i, and Rs
ij denote whether the subgroup variable is measured at the jth assessment.

Let πsyijk = P (Rs
ij = 1, Rs

ik = 1, Ry
ik = 1|Yi,Wi,Z1i,Z2i), where Yi,Wi,Z1i,Z2i represent
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the vectors of variables measured at each assessment (some components may be incom-

plete). Chen et al. (2010) propose a weighted estimating equation with weight matrix

∆i = [wijk]J×J , where wijk = I(Rs
ij = 1, Rs

ik = 1, Ry
ik = 1)/πsyijk.

In an observational setting, it is of interest to investigate the addition of an inverse

probability weight for confounding. Let

πwij =

j∏
k=0

[ 1∑
l=0

I(Wik = l)

P (Wik = l|W̄ik, Z̄1ik, Z̄2ik)

]
,

where W̄ik = {Wi1, ...,Wi,k−1}, Z̄1ik = {Z1i1, ..., Z1ik} and Z̄2ik = {Z2i1, ..., Z2ik}. We

propose an augmentation of weight matrix ∆ijk to include πwij.
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Appendix A

Empirical Power Calculations

A.1 Marginal Causal Effects

Here we present the results of simulation studies designed to investigate the empirical

power to detect a significant subgroup effect using the marginal causal model methods

presented in Chapters 2, 3 and 4. We use the parameter settings given in Section 2.4.1

for the observational setting with non-ignorable missingness, unless otherwise specified.

To investigate the power of the methods introduced, we vary the value of β3 which is the

regression coefficient associated with the interaction effect WS. For the application of

multiple imputation method proposed in Section 4.4.2, all two-way interaction terms are

included in the imputation model for the incomplete subgroup variable. The number of

imputed datasets is K = 5.

For the weighted EM-type algorithm method, the parameter specifications are given in

Chapter 3, Section 3.5.1, unless otherwise specified.

We consider two sample sizes: n = 500 and n = 2000. Although these are the sample

sizes for the entire sample of subjects, when a complete case analysis is used, the sample

size is smaller. We vary the percentage of missing data to be 20% and 40%.

For each simulated dataset, a subgroup effect is considered significant if the 2-sided

p-value for a test of the null hypothesis that the interaction term β3 = 0 is less than 0.05
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Figure A.1: Empirical power to detect a significant subgroup effect in a marginal causal

model using the doubly weighted estimating equation method (Section 2.2.2); α = 0.05.

(i.e. α = 0.05). Each simulation study contains 1000 independent simulated datasets. The

seed value for generating 1000 independent datasets is recorded for reproducibility.

A.1.1 Discussion

In Figure A.1, we see that the empirical power to detect a significant interaction effect using

the doubly weighted estimating equation approach introducted in Chapter 2 increases as

the subgroup effect parameter (β3) increases, as expected. As well, the empirical power is

higher when the percentage of missing data is lower, also as expected. For a sample size of

2000, the power to detect a significant subgroup effect is >80% when β3 ≥ 0.80, for either

percentage of missingness (20% or 40%). The power to detect a significant subgroup effect

is < 80% when the sample size is 500 and for 0.0 < β3 ≤ 1.0.

The doubly weighted EM-type algorithm method and the weighted multiple imputation

method are very similar to the doubly weighted estimating equation approach in terms of

power. See Figures A.2 and A.3.
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Figure A.2: Empirical power to detect a significant subgroup effect in a marginal causal

model using the doubly weighted EM-type algorithm method (Section 3.4.2); α = 0.05.

A.2 Conditional Causal Effects

Next, we investigate the empirical power to detect a significant subgroup effect in a com-

plete case conditional regression model without weights. The parameter settings for ξ1,

ξ2, ζ1, ζ2 and ρ in the observational setting with non-ignorable missing data (when we do

not include Z1 in the response model) are given in Chapter 2. The conditional regression

parameters ϑ from equation (2.2) are set to

P (Yi = 1|Wi, Si, Z1i) = expit(log(1) + log(0.75)Wi + log(1.2)Si + ϑ3WiSi + log(1.25)WiZ1i) ,

where ϑ3, the subgroup effect coefficient, is allowed to vary. Note that in the conditional

response model, the missingness is ignorable since we condition on Z1. Also, the confound-

ing effect is adjusted for when we include Z1 in the response model. Therefore a complete

case unweighted analysis is appropriate here.
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Figure A.3: Empirical power to detect a significant subgroup effect in a marginal causal

model using the weighted multiple imputation method (Section 4.4.2); α = 0.05.

Figure A.4: Empirical power to detect a significant subgroup effect in a conditional causal

model using complete case analysis; α = 0.05.

150



A.2.1 Discussion

The power to detect a significant subgroup effect is higher in the conditional causal model

compared to the marginal causal models. This is likely due to the extra variability in-

troduced in the estimation of the weights, and the extra variability introduced in the

imputation of the missing subgroup variable.

Overall, the power estimates found in these simulation studies are consistent with other

results (Aguinis et al., 2005; Brookes et al., 2004). In our studies, given the chosen param-

eters, a large sample size (n ≥ 2000) is required have adequate power to detect a relatively

large subgroup effect (β3 > 0.5).
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Appendix B

Simulation Study to Explore the

Effect of a Subgroup Variable That Is

Also a Confounder

Here we perform a simulation study to investigate the estimation of marginal causal effects

in the setting where the subgroup variable is also a confounder.

Suppose the true propensity score model is

P (Wi = 1|Z1i, Z2i, Si; ξ
†
1) = expit(ξ†10 + ξ†11Z1i + ξ†12Z2i + ξ†13Si) ,

but we omit the incomplete subgroup variable from the propensity score model and fit the

following model using the full dataset

P (Wi = 1|Z1i, Z2i; ξ1) = expit(ξ10 + ξ11Z1i + ξ12Z2i) .

In our simulation study, we use the parameter settings for β, ϑ4, ξ2, ζ1, ζ2 and ρ

for the observational setting with non-ignorable missing data given in Section 2.4.1. The

parameters for the true propensity score model are

P (Wi = 1|Z1i, Z2i, Si; ξ
†
1) = expit(logit(0.2) + log(4.0)Z1i + log(4.0)Z2i + log(2.0)Si) .
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Table B.1: Empirical bias and efficiency of estimated marginal regression coefficients, using

the doubly inverse probability weighted estimating equation approach, the doubly weighted

EM-type algorithm, and weighted multiple imputation.

β1 β1 + β3

EBias ASE ESE ECP EBias ASE ESE ECP

Doubly weighted estimating equation method

20% missing 0.0037 0.1640 0.1650 0.9512 0.0080 0.1661 0.1675 0.9462

40% missing 0.0020 0.1896 0.1882 0.9540 0.0113 0.1922 0.1939 0.9460

Doubly weighted EM-type algorithm

20% missing 0.0311 0.1760 0.1769 0.9458 0.0148 0.1804 0.1830 0.9470

40% missing 0.0296 0.1724 0.1715 0.9488 0.0129 0.1715 0.1724 0.9464

Weighted multiple imputation method

20% missing 0.0025 0.1563 0.1554 0.9482 -0.0022 0.1590 0.1624 0.9426

40% missing 0.0016 0.1719 0.1713 0.9466 -0.0034 0.1750 0.1744 0.9488

Abbreviations: EBias Empirical bias, ASE asymptotic standard error,

ESE empirical standard error, ECP empirical coverage probability

In the simulation studies where the doubly weighted EM-type algorithm is used, the

parameter settings are given in Section 3.5.1, with the exception of propensity score model

parameters ξ†1 which are given above.

For each simulation study, the number of subjects per dataset is 2000 and the number

of simulated datasets is 5000. The simulated datasets are independent, and the seed value

for the first simulated dataset is the same across the simulation studies.

B.1 Discussion

In Table B.1 we see that consistency is affected in the doubly weighted estimating equation

method when we omit the subgroup variable from the propensity score model which is the

basis for the weight for confounding, but the degree of bias is relatively low. In the EM-
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type algorithm where the weight for confounding is misspecified, the bias is quite large in

comparison. This is likely because the conditional distribution for the subgroup variable is

also misspecified. Consistency is not affected in the weighted multiple imputation method.

In the complete case doubly weighted estimating equation approach, one may wish to

estimate the propensity score including the subgroup variable as a covariate using com-

plete cases only. If the propensity score model is properly specified, the parameters are

independent from the parameters of the missing data model, and the missingness does not

depend on the treatment variable, a complete case analysis is a valid approach. Weights

can therefore be estimated for each subject in the complete cases dataset, and the doubly

weighted estimating equation method can be implemented.

In the multiple imputation approach, the subgroup variable can be imputed, and the

propensity score can be estimated within each imputed dataset by correctly specifying the

propensity score model (i.e. including S). Standard methods to combine the estimates

from each imputed dataset can be used, while incorporating the inverse probability weight

for confounding in the variance estimation (see Section 4.4.2) (Crowe et al., 2010; Qu and

Lipkovich, 2009; Seaman and White, 2014).
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