
Protein Structure Elastic Network
Models and the Rank 3 Positive
Semidefinite Matrix Manifold

by

Xiao-Bo Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Xiao-Bo Li 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Zhijun Wu
Professor, Dept. of Mathematics,
Iowa State University

Supervisor: Forbes Burkowski
Associate Professor Emeritus, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Justin Wan
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Member: Christopher Batty
Assistant Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Spiro Karigiannis
Associate Professor , Dept. of Pure Mathematics,
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis is a contribution to the study of protein dynamics using elastic network models
(ENMs).

An ENM is an abstraction of a protein structure where inter-atomic interactions are
assumed to be modelled by a Hookean potential energy which is a function of inter-atomic
distances. This model has been studied by various authors, and despite being a very
simple model, can nonetheless provide a realistic understanding of protein dynamics. For
example, it was shown by Tirion, that the Hookean potential energy can reproduce the
normal mode fluctuations of the more complicated semi-empirical potential. In addition,
it was shown by Tekpinar and Zheng that linearly interpolating two Hookean potentials
can correctly model the order of local conformational changes before global conformational
changes during ATP-driven conformational changes.

The purpose of this thesis is to provide a second mathematical formulation for modelling
ENMs. This thesis suggests removing the square-root in the Hookean potential which
leads to a positive semidefinite (PSD) potential that is a function of quadrances rather
than distances. There are many similarities between the two approaches, but also many
differences. One main difference is PSD matrices are linearly related to quadrance, the
square of distance, which opens the way to model the PSD potential using perceptrons
whose weight matrix is a rank 3 PSD matrix. This interesting consequence is left as a
topic of future research.

The PSD potential is just as appropriate for modelling ENMs as observed by the
following two agreements: The PSD potential produces normal mode fluctuations that
agree with the Hookean potential introduced by Tirion. This agreement suggests both
potentials provide the same information about a protein structure’s flexibility. The generalization
of the Hookean iENM potential (introduced by Tekpinar and Zheng) to the PSD iENM
potential also interpolates the local conformational changes before the global conformational
changes, in agreement with the original Hookean observations.

Recall that the equations of motion in classical mechanics is formulated using an
abstract Riemannian manifold. This abstraction gives modellers the flexibility to consider
different Riemannian manifolds appropriate to the problem.

After the introduction of the Hookean potential, the study of protein dynamics still uses
the 3n dimensional Euclidean space as the Riemannian manifold, the same Riemannian
manifold used by the semi-empirical potential. This is because both the semi-empirical
potential and the Hookean potential assume the atomic coordinates of a protein structure
are represented by a 3n by 1 vector.

iv

However, with the introduction of the PSD potential, the protein structure’s atomic
coordinates are represented as a point on the rank 3 n by n PSD matrix manifold. Consequently,
a new Riemannian manifold for modelling protein dynamics has been proposed.

In order to model protein dynamics on the rank 3 PSD matrix manifold, the equations
of motion needs to be defined. This thesis presents the geometric objects: horizontal
projection, gradient, Hessian, and retraction required for formulating the equations of
motion for protein structures as an optimization problem on the rank 3 PSD matrix
manifold. These formulas are a modification of the original formulas introduced by Journée
et al. to allow constraints relevant to a protein structure to be described. Rosen’s correction
to the constraint manifold was already introduced in 1961, and was reintroduced by
Goldenthal et al. in 2007 under the name of “the fast projection algorithm”. Rosen’s,
Goldenthal et al.’s, and Journée et al.’s work are all closely related but were developed
independently. This thesis makes their relationship more apparent.

Keywords: elastic network model, Euclidean distance matrix, Gram matrix, matrix
manifold optimization, protein structure, positive semidefinite, Riemannian manifold

v

Acknowledgements

I would like to thank my advisor, Professor Forbes Burkowski for introducing me to the
field of structural bioinformatics. We spent many hours discussing various research papers
which helped me to form the basis of my thesis. He also spent many hours helping me with
editing my thesis. I would also like to thank Professor Henry Wolkowicz, who introduced
me to semidefinite optimization. In addition, thanks to all my PhD Committee members
for their valuable feedback and for investing their time. Professor Wan, Professor Batty,
and Professor Karigiannis all provided me with questions which were of central importance
during the revision of my thesis. Especially Professor Wan, his detailed questions provided
the feedback I needed to reorganize my thesis.

vi

Dedication

In memory of my father. To my parents.

vii

Table of Contents

List of Tables xiv

List of Figures xv

List of Symbols xviii

1 Introduction 1

1.1 Notation . 4

1.2 Protein Structure Basics . 6

1.3 The Defects of Using Dihedral Angles for Studying Protein Dynamics . . . 9

1.4 Elastic Network Model and the Hookean Potential 9

1.5 The Defects of Modelling ENMs on R3n . 12

1.6 Thesis Outline and Contributions . 12

2 Elastic Network Models on R3n 15

2.1 Introduction . 15

2.2 The Generic Hookean Potential . 16

2.3 The Hookean Potential and Normal Mode Analysis 20

2.4 The Hookean Potential for Elastic Network Interpolation (ENI) 23

2.5 The Hookean Potential for Interpolated ENM (iENM) 25

2.6 The Hookean Potential for Avoiding Inter-Atomic Collisions 28

viii

2.7 Minimizing the Hookean Potential is Ill-Posed 28

2.8 Enforcing Constraints R3n . 30

2.8.1 J. B. Rosen’s Gradient Projection (1960 and 1961) 31

2.8.2 Goldenthal et al.’s Fast projection (2007) 33

2.8.3 Benefits of Fast Projection . 39

2.8.4 Termination of Fast Projection . 49

2.8.5 Remark: Rosen’s Correction and Fast Projection 51

2.9 Summary . 52

3 Unconstrained Optimization with Fixed Rank PSD Matrices 53

3.1 Introduction . 53

3.2 The EDM Completion (EDMC) Problem 54

3.2.1 Low Embedding Dimension EDMC 56

3.3 The PSD Objective Function for EDMC 56

3.4 Fixed Rank PSD Matrix Manifold Optimization 57

3.5 The Riemannian Trust Region (RTR) Algorithm 60

3.6 Geometric Objects for EDMC on Sn,r+ ' Rn×r
∗ /Or 62

3.6.1 Riemannian Metric . 65

3.6.2 Tangent Space . 66

3.6.3 Projection onto the Horizontal Space 69

3.6.4 The Riemannian Gradient . 70

3.6.5 The Riemannian Hessian . 73

3.6.6 Retraction . 76

3.7 Summary . 76

4 Normal Mode Analysis and the PSD Potential 77

4.1 Introduction . 77

4.2 Density of Modes and Root Mean Square (RMS) Fluctuations 78

ix

4.2.1 Density of modes . 78

4.2.2 RMS Fluctuations . 79

4.3 The Positive Semidefinite Potential Energy 81

4.4 The PSD Potential Prefers Quadrance . 83

4.5 Summary . 90

5 The Equations of Motion for the Riemannian Manifold Sn,3+ ' Rn×3
∗ /O3 92

5.1 Introduction . 92

5.2 Revisiting ENMs in R3n . 93

5.2.1 Revisiting the Rank Deficient Hessian of ENI and iENM 93

5.2.2 The Constraint Force Has Two Purposes 94

5.3 The Constraint Manifold . 95

5.4 Equations of Motion . 96

5.5 Removing the Conservation of Linear Momentum Constraint 100

5.6 Constraint Reduction for Rigid Groups of Atoms 102

5.7 Summary . 105

6 Constrained Optimization with Fixed Rank PSD Matrices 106

6.1 Introduction . 106

6.2 Removing Assumption 2 of Journée et al. 107

6.3 Geometric Objects for Constrained Optimization on Sn,3+ ' Rn×3
∗ /O3 . . . 108

6.3.1 The Tangent Space . 108

6.3.2 Projecting to the Horizontal Space 111

6.3.3 The Riemannian Gradient . 114

6.3.4 The Riemannian Hessian . 115

6.3.5 The Retraction . 119

6.4 Agreements Between C(R3n) and C(Sn,3+) 127

6.5 Summary . 134

x

7 Interpolating Transitional Conformations: An Example of Modelling
ENMs on Sn,3+ 135

7.1 Introduction . 135

7.2 Lattice Example . 135

7.3 Local and Global Conformational Changes 139

7.4 Summary . 143

8 Conclusion 146

8.1 Future Research . 146

References 150

A Interpolating transitions: An Object-Oriented Implementation in python157

A.1 Background . 157

A.2 Data Input and Data Output . 158

A.3 The R3n Calculations Class . 159

A.4 The PSD3 Calculations Class . 163

A.5 The Potential Base Class . 166

A.6 The Hookean ENI Class . 171

A.7 The Hookean iENM Class . 173

A.8 The Hookean Collision Energy . 175

A.9 The PSD ENI Class . 177

A.10 The PSD iENM Class . 179

A.11 The PSD Collision Class . 181

A.12 The Manifold Class . 183

A.13 The R3n manifold Class . 188

A.14 The PSD3 manifold Class . 190

A.15 The Optimzer Class . 195

A.16 Running the Interpolation . 200

xi

B Derivatives Involving Distance and Quadrance 201

B.1 Derivative of Distance . 201

B.2 Derivative of Quadrance . 201

B.3 Derivative of Distance times Vector . 201

B.4 Second Order Expansion for the Hookean Potential Energy 202

B.5 Second Order Expansion for the PSD Potential Energy 202

C The Sn+ Cone and the EDM Cone 204

C.1 Introduction to Convexity . 204

C.2 The Rn
+ Cone and its Faces . 206

C.3 The PSD Cone and its Faces . 207

C.4 The Euclidean Distance Matrix . 209

C.5 The Linear Isomorphism between SnC ∩ Sn+ and En 209

C.6 EDM Completion and Facial Reduction . 211

C.6.1 The Original Motivation for Facial Reduction 211

C.6.2 Cliques in the SNL problem (Krislock and Wolkowicz [44, 45]) . . . 214

C.6.3 Cliques in the Protein Structure-NMR problem (Alipanahi et al. [5,
4]) . 217

C.6.4 Noisy SNL and Cliques (Cheung et al. [16], Drusvyatskiy et al. [26, 25])220

C.6.5 Rigid Clusters and ENI [41, 37] . 222

D An Introduction to Riemannian Manifolds 226

D.1 Topological Manifolds . 226

D.2 Smooth Manifolds . 227

D.3 Geometric Objects . 229

D.3.1 Tangent space . 229

D.3.2 Pushforwards . 231

D.4 Examples of smooth manifolds . 232

xii

D.5 Riemannian Manifolds . 234

D.5.1 The Exponential Map . 234

D.6 Matrix Manifolds . 234

D.6.1 R3n . 235

D.6.2 Rn×m . 235

D.6.3 Embedded Submanifolds of Rn×m 236

D.6.4 Quotient Manifolds of Rn×m . 237

D.6.5 The rank r Positive Semidefinite Matrix Manifold Sn,r+ 238

D.7 Riemannian Manifolds and Classical Mechanics 240

E Miscellaneous Mathematics 241

E.1 Solving the Sylvester Equation via Diagonalization 241

E.2 The Procrustes Problem . 243

F Quadrance in Other Research Areas 244

F.1 The Stress Function and the S-Stress Function 244

xiii

List of Tables

1.1 Newton, Lagrange, and Hamilton’s formulation of the classical mechanics
equations of motion emphasized different mathematical insights. 3

1.2 The defects of modelling ENMs using R3n to be addressed in this thesis. . 13

5.1 A summary of when ∇C(−→p) is rank-deficient. 104

5.2 Number of constraints to enforce rigidity of |C| atoms in aromatic side chain
(includes β-carbon and out-of-plane atom). 105

6.1 A comparison of Fast Projection and Fast Retraction. 134

8.1 The advantages of modelling ENMs using Sn,3+ over R3n is summarized. . . 147

xiv

List of Figures

1.1 The geocentric solar system with epicycles is a complicated model of the
solar system. 2

1.2 Newton (L), Lagrange (C), and Hamilton (R) used different approaches to
arrive at classical mechanic’s equations of motion. 2

1.3 A generic amino acid. 6

1.4 The polypeptide Glycyl-Aspartyl-Tyrosyl-Alanyl-Asparagine (GDYAN) visualized
in UCSF Chimera. 7

1.5 ENI produces structures that smooth out the structures generated from
molecular dynamics. Figure 4.20 of (Kim, 2004[37]). 11

2.1 Case 1: The explicit constraint force used by SHAKE, points in the wrong
direction. 41

2.2 Case 2: The matrix ∇C(−→p (0)
j+1)∇C(−→p j)

T used by SHAKE is singular. The

matrix ∇C(−→p (0)
j+1)∇C(−→p (0)

j+1)
T used by Fast Projection is nonsingular. . . 41

2.3 Case 3: Two atoms with the same coordinates causes the matrix ∇C(−→p (0)
j+1)

to be rank deficient. Both SHAKE and Fast Projection produces no solution.
This can be avoided by taking a smaller unconstrained step. 42

2.4 Case 4: ∇C(−→p j) is rank deficient. 42

2.5 Figure 5 of [30]. This figure shows Fast Projection’s performance is the
fastest when compared with four other iterative constraint enforcing algorithms. 50

3.1 Vertical and horizontal spaces. Figure 2.6 of (Vandereycken, 2010 [78]). . . 67

3.2 A retraction on an abstract manifold. Figure 1.2 of (Vandereycken, 2010[78]). 76

xv

4.1 The shape of the density of normal modes is similar for many proteins.
Taken from [10]. 79

4.2 Density of normal modes for distance and quadrance. 84

4.3 Density of normal modes for distance and quadrance (continued). 85

4.4 σi graphs for various proteins. 86

4.5 σi graphs for various proteins (continued). 87

4.6 σk graphs for various proteins. 88

4.7 σk graphs for various proteins (continued). 89

5.1 Amino acids with rigid side chains (aromatic rings are colored in black). . . 103

7.1 The lattice structure “lattice1 small”. a) ball and stick model of the starting
conformation. b) stick model of the starting conformation. c) stick model
of the ending conformation. 136

7.2 Transitions generated by Hookean ENI without the constraint manifold for
lattice1 small. The final conformation is in the correct orientation after an
abrupt flip at t = 0.79. 136

7.3 Transitions generated by PSD ENI without the constraint manifold for
lattice1 small. The final conformation is in the wrong orientation. 137

7.4 Transitions generated by Hookean ENI with the constraint manifold for
lattice1 small. The black coloured part of the structure is constrained to be
rigid to allow it to rotate 180◦. 138

7.5 ‖ C(−→p t) ‖ for each transitional conformation −→p t generated by Hookean
ENI. The same graph was generated by Hookean iENM. 138

7.6 ‖ C(Pt) ‖ for each transitional conformation Pt generated by PSD ENI. The
same graph was generated by PSD iENM. 139

7.7 1FMW active site. 140

7.8 1BMF (chain E, βE subunit) active site. 141

7.9 1AON (chain H) active site. 142

7.10 PSD iENM delays global motion for 1FMW and 1BMF, in agreement with
Hookean iENM. 143

xvi

7.11 Local and global motion comparison for 1AON from chain H to chain A. . 144

7.12 Sample of transitional conformations for 1AON Chain H (black) to Chain
A with PSD ENI showing global motion already at t = 0.50. 144

7.13 1AON Chain H (black) superimposed onto Chain A before and after interpolation,
showing the range of global motion. 145

7.14 Sample transitional conformations for 1AON Chain H to Chain A with
PSD iENM showing global motion delayed to beyond the 90th transitional
conformation. 145

A.1 A bounding box around a protein. 167

C.1 A rigid intersection between two abstract cliques. Figure 2.2 of [45]. 215

C.2 A non-rigid intersection between two abstract cliques. Figure 2.3 of [45]. . 215

C.3 Protein clique example. Figure 3.13 of (Alipanahi, 2011[4]). 217

C.4 A schematic diagram of a protein with three rigid clusters (a rigid group of
atoms that move concurrently) connected by springs. Figure 6.1 of (Kim,
2004[37]). 223

D.1 A schematic diagram of a quotient manifold. Taken from Figure 2.5 of [78]. 238

xvii

List of Symbols

R The space of real numbers.
R3n The space of 3n vectors with real entries.
Rn×m The space of n×m matrices with real entries.
PSD Positive semidefinite matrix.
EDM Euclidean distance matrix.
n The number of atoms to be modelled.
a Atomic index, a ∈ {1, . . . , n}.
m The number of constraints.
i Constraint index, i ∈ {1, . . . ,m}.

ai, bi Atomic indices for atoms in the i-th constraint.

ea =
(
. . . 1 . . .

)T
An n × 1 vector with zeros everywhere, except at the
a-th position (also called the one-hot vector).

ea,I3 =
(
. . . I3 . . .

)T
A 3n × 3 matrix of n 3 × 3 blocks, where the a-block
is I3. If row index starts at 0, I3 occupides rows 3a :
3(a+ 1)− 1, if row index starts at 1, I3 occupies rows
3a− 2 : 3a.

pa Atomic coordinates for the a-th atom, a ∈ {1, . . . , n}.
−→p −→p =

(
p1
T , . . . , pn

T
)T ∈ R3n is a 3n×1 vector of atomic

coordinates.

P P =
(
p1, . . . , pn

)T
is an n × 3 matrix of atomic

coordinates.
X = PP T Gram matrix.
D The set containing pairs of atomic indices where the

inter-atomic distance is within a threshold distance (in
angstroms).

xviii

dab Distance between the a-th and b-th atom, dab =‖ pa−
pb ‖.

qab the quadrance between the a-th and b-th atom, qab =
dab

2 =‖ pa − pb ‖2.
t Time. May be used without a value, such as in

normal mode analysis, −→p (0) denotes the equilibrium
conformation and −→p (t) denotes a perturbation of the
−→p (0) conformation with a normal mode displacement.
May take on integer values : −→p (0),−→p (1),−→p (2) . . .
when modelling conformational change.

−→p t
−→p t = −→p (t). The vector −→p with a subscript is still a
3n × 1 vector, the subscript means time. This should
not be confused with pa ∈ R3, a 3 × 1 vector of the
atomic coordinate of the a-th atom.

A ◦B Element-wise multiplication of two matrices A and B.
Sn The space of n× n symmetric matrices.
Sn+ The cone of n× n PSD matrices.
Sn,r+ The space of rank r PSD matrices.

Sn,n+ or Sn++ The space of n× n positive definite matrices.
1n, 1n×m n × 1 matrix of all 1’s, m × n matrix of all 1’s

respectively.
0n, 0n×m n × 1 matrix of all 0’s, m × n matrix of all 0’s

respectively.
o
√
En The cone of n×n matrices whose (a, b)-th entry is dab,

not a convex cone when n > 3.
En The convex cone of n×n matrices whose (a, b)-th entry

is qab (EDMs).

xix

Chapter 1

Introduction

Everything should be made as simple
as possible, but not simpler.

a quote often attributed to Albert
Einstein

Mathematical science aims to understand our natural world through the use of mathematical
models. The “discovery” of a mathematical model is guided by at least two heuristics: the
search for simplicity, and the search for agreements.

The search for simplicity means when multiple mathematical models produce the same
result, the simpler model is the preferred one. Simplicity is evident in the very famous
transition from the geocentric model of the solar system to the heliocentric model. Figure
1.1 1 shows a geocentric solar system with complicated epicycles describing the path of the
Sun, Mercury, and Venus. This figure is a forever reminder that models of nature needs to
be as simple as possible, a principle also emphasized in the quote attributed to Einstein at
the beginning of this Chapter.

The search for agreements means when a newer, different, mathematical model of
nature is presented, which produces results that agree with prior approaches, the different
model often provides more insights into the phenomenon being modelled. An example

1Taken from the Wikipedia entry “Deferent and epicycle”. James Ferguson (1710-1776), based on
similar diagrams by Giovanni Cassini (1625-1712) and Dr Roger Long (1680-1770); engraved for the
Encyclopedia by Andrew Bell. [Public domain], via Wikimedia Commons (https://commons.wikimedia.
org/wiki/File:Cassini_apparent.jpg).

1

https://commons.wikimedia.org/wiki/File:Cassini_apparent.jpg
https://commons.wikimedia.org/wiki/File:Cassini_apparent.jpg

Figure 1.1: The geocentric solar system with epicycles is a complicated model of the solar
system.

Figure 1.2: Newton (L), Lagrange (C), and Hamilton (R) used different approaches to
arrive at classical mechanic’s equations of motion.

is that of the agreement between Newton, Lagrange, and Hamilton (see Figure 1.2 2),
in classical mechanic’s equations of motion. A discussion of these three approaches to
classical mechanics can be found in for example Taylor, 2005 [73]. Table 1.1 summarizes
the different emphasis of Newton, Lagrange, and Hamilton.

2Image credits are as follows. Newton’s image taken from Wikimedia Commons https://commons.

wikimedia.org/wiki/File:SS-newton.jpg. Attribution: Arthur Shuster & Arthur E. Shipley: Britain’s
Heritage of Science. London, 1917. (A Temple of Worthies) [Public domain], via Wikimedia Commons.
Lagrange’s image is taken from Wikimedia Commons https://commons.wikimedia.org/wiki/File:

Lagrange_portrait.jpg, see also: http://www-history.mcs.st-and.ac.uk/history/PictDisplay/

Lagrange.html. Hamilton’s image is taken from Wikimedia Commons https://commons.wikimedia.

org/wiki/File:William_Rowan_Hamilton_portrait_oval_combined.png.

2

https://commons.wikimedia.org/wiki/File:SS-newton.jpg
https://commons.wikimedia.org/wiki/File:SS-newton.jpg
https://commons.wikimedia.org/wiki/File:Lagrange_portrait.jpg
https://commons.wikimedia.org/wiki/File:Lagrange_portrait.jpg
http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Lagrange.html
http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Lagrange.html
https://commons.wikimedia.org/wiki/File:William_Rowan_Hamilton_portrait_oval_combined.png
https://commons.wikimedia.org/wiki/File:William_Rowan_Hamilton_portrait_oval_combined.png

Author Emphasis
Newton Forces and vectors, Cartesian

coordinates.
Lagrange The variational principle,

coordinate independence.
Hamilton Energy.

Table 1.1: Newton, Lagrange, and Hamilton’s formulation of the classical mechanics
equations of motion emphasized different mathematical insights.

The following quote from Taylor[73] page 521-522 provide a flavor of the differences
between these three formulations:

“..the Newtonian form of mechanics...describes the world in terms of forces
and acceleration (as related by the second law) and is primarily suited for
use in Cartesian coordinates...Lagrangian formulation...is entirely equivalent
to Newton’s, in the sense that either one can be derived from the other, but
the Lagrangian form is considerably more flexible with regard to choice of
coordinates...Hamiltonian mechanics leads very naturally from classical mechanics
into quantum mechanics.”

The above two themes: the search for a simpler model, and the search for a different
but agreeable approach in order to gain a deeper insight, will play an important role in
this thesis.

The purpose of this thesis is to provide a second mathematical formulation for modelling
protein structure elastic network models (ENMs). ENMs are abstract representations of
a protein structure where inter-atomic interactions are modelled using a Hookean spring
potential energy. This thesis suggests removing the square-root in the Hookean potential
which leads to a positive semidefinite (PSD) potential. PSD matrices are linearly related
to quadrance, the square of distance, which means this model is simple. However, the PSD
potential produces results that agree with the Hookean potential (two examples, NMA
and interpolating transitions are discussed). The linear relation between PSD matrices
and quadrance means a perceptron (neuron) can be used to calculate the PSD potential.
This interesting consequence is left as a topic of future research.

3

1.1 Notation

This section introduces some common notations and basic mathematical concepts used
throughout this thesis.

The letter n will mainly be used to refer to the number of atoms in a protein structure.
The letter a is used to index an atom in a summation, a ∈ {1, . . . , n}. When more than
one index is needed, the letter b will be used. When more than two atomic indices are
needed, it should be clear from the context which letters are atomic indices.

The letter m is used to represent the number of constraints. This should not be confused
with the mass of the a-th atom, which is denoted by ma. Since these two contexts are very
different, it should be clear from the context whether m is the number of constraints, or
the mass of an atom. The letter i is used to index a constraint in a summation.

The matrix 0n×m is an n ×m matrix of all zeros, if m = 1, 0n = 0n×1. The matrices
1n×m and 1n are defined similarly.

The matrix In is the n× n identity matrix.

The matrix AT denotes the transpose of A. Trace(A) denote the trace of A, which is
the sum of the diagonal elements of A.

The atomic coordinates of the a-th atom is a 3×1 vector pa ∈ R3. The vector −→p ∈ R3n

is the 3n× 1 vector formed from stacking the atomic coordinates pa, a = 1, . . . , n.

The n × 3 matrix P is the matrix whose rows are the atomic coordinates transposed,
pTa . The Gram matrix is the matrix X = PP T .

The rank of a matrix X, denoted rank(X), is the number of eigenvalues of X greater
than zero. Alternatively, the rank of a matrix is the number of columns or rows of the
matrix that are linearly independent. Any nonzero vector will have rank 1. Since the
atomic coordinates pa is in 3-D space, the matrix P has three columns that are linearly
independent, hence it has rank 3. The Gram matrix X = PP T also is of rank 3.

The range space of an n× n matrix A, denoted range(A) or A, is a vector space whose
elements are linear combinations of the columns of A. The null space of a matrix A is the
set null(A) = {x | Ax = 0n}. The null space and range space are orthogonal to each other,
this is denoted with the symbol “⊥”, e.g. null(A)⊥range(A).

The vector
ea =

(
. . . 1 . . .

)T ∈ Rn (1.1)

is an n× 1 vector with a 1 at the a-th position, and 0 elsewhere. This vector is also called
the “one-hot” vector in machine learning.

4

The matrix
ea,I3 =

(
. . . I3 . . .

)T ∈ R3n×3 (1.2)

is the 3n× 3 matrix of n 3× 3 blocks, where the a-th block is I3. If row index starts at 0,
I3 occupies rows 3a : 3(a+ 1)− 1, if row index starts at 1, I3 occupies rows 3a− 2 : 3a.

The matrix
Sab = (ea,I3 − eb,I3)(ea,I3 − eb,I3)T , (1.3)

is a 3n× 3n matrix, also called a stamp matrix in [9]. The matrix

Ai = (eai − ebi)(eai − ebi)T , (1.4)

is the n× n constraint matrix for the i-th constraint.

The set Sn is the set of n× n symmetric matrices. An n× n matrix X is PSD if it has
the property that vTXv ≥ 0 for any vector v ∈ Rn and v 6= 0n. The eigenvalues of a PSD
matrix will all be greater than or equal to zero. The set of n× n PSD matrices is denoted
Sn+. The set of n× n positive definite matrices is denoted Sn++. The set of fixed rank PSD
matrices will be denoted Sn,r+ , where r is the fixed rank. The Gram matrix has rank 3, so
it is an element of Sn,3+ .

The distance between the a-th and b-th atoms is denoted dab. The square of the distance
is called quadrance, it is denoted by qab [79].

A matrix D whose ab-th entry is quadrance, qab, is called a Euclidean distance matrix
(EDM). Note the name does not use quadrance. The set En is the set of matrices whose
ab-th entry is qab. Let o

√
· denote the entry-wise square-root operation. Closely related to

an EDM D is the matrix denoted o
√
D whose ab-th entry is distance. The set of o

√
D is

denoted
√
En. Unlike En,

√
En. is not convex for n ≥ 3, see for example Dattorro [24]

Section 6.3.

The set D (script D) contains atomic index pairs (a, b), whose inter-atomic distance dab
is less than some specified threshold inter-atomic distance, these atoms may be bonded or
nonbonded atoms. To avoid double counting pairs, a < b is assumed.

The symbol ∇ means taking the derivative of a mathematical expression. For example,
consider a function f : M → R, suppose M = Rn and let −→x = (x1, . . . , xn)T ∈ Rn be a
vector in Rn. If taking the derivative of f gives the gradient, then the gradient is denoted
by ∇f(−→x) or gradf(−→x) inter-changeably:

gradf(−→x) = ∇f(−→x)T =

(
∂f(−→x)

x1
, . . . ,

∂f(−→x)

∂xn

)T
∈ Rn , (1.5)

5

where gradf(−→x) is the preferred notation for matrix manifolds as seen in [1]. If the gradient
of a function requires operations in addition to taking the derivative, such as a projection,
then ∇f(·) means taking the derivative only, and gradf(·) denotes the final gradient.

The symbol ∇2 means to take the derivative twice to arrive at a matrix of second
derivatives. For example, when applied to the same function f , the symbol ∇2f is the
Hessian matrix given by

∇2f(−→x) = Hessf(−→x) =


∂2f(−→x)
∂x1∂x1

. . . ∂2f(−→x)
∂x1∂xn

. . .
∂2f(−→x)
∂xn∂x1

. . . ∂2f(−→x)
∂xn∂xn

 . (1.6)

The notation Hessf(−→x) is preferred for matrix manifold optimization algorithms as seen
in [1], where the Hessian matrix may also be a linear operator instead of a matrix.

1.2 Protein Structure Basics

Proteins serve important, life-sustaining functions in organisms, for example: hemoglobin
and myoglobin transport oxygen to cells, actin and myosin allow muscles to contract,
chaperones are proteins that assist other proteins to fold, and enzymes are proteins that
help promote (catalyze) chemical reactions.

Figure 1.3: A generic amino acid.

A protein structure is a chain of amino acids. Figure 1.3 3 shows the structure of

3Figure taken from wikipedia, https://commons.wikimedia.org/wiki/File:AminoAcidball.svg.

6

https://commons.wikimedia.org/wiki/File:AminoAcidball.svg

a generic amino acid, it is made up of nitrogen, carbon, oxygen, and hydrogen atoms.
Hydrogen atoms are often omitted when visualizing protein structures. The “R” component
of the amino acid is called the side chain, the carbon atom that the side chain is attached to
is called the α-carbon, the carbon atom in the side chain that is attached to the α-carbon
is called the β-carbon, other atoms in the side chain are also named using Greek letter γ,
δ, etc.. All these atoms are connected by a covalent bond, which is a connection resulting
from sharing of electrons.

The backbone of the protein is made up of the atoms not in the side chain, these are
the nitrogen, α-carbon, carbon, and oxygen atoms in the amino acid.

When two amino acids join, one water molecule is lost, therefore, each amino acid in a
chain of amino acids is called a residue. A coarse-grained model of a protein structure is
a model that represents each residue by its α-carbon. Figure 1.4 a) shows an example of
a short chain of amino acid residues, Figure 1.4 b) shows the corresponding coarse-grained
representation, which is a chain of α-carbons. A protein may have several hundred residues
to tens of thousands of residues (titin has about 27000 residues, see page 78 of [70]).

(a) All atoms representation (balls are
atoms).

(b) α-carbon backbone representation (balls
are atoms).

Figure 1.4: The polypeptide Glycyl-Aspartyl-Tyrosyl-Alanyl-Asparagine (GDYAN)
visualized in UCSF Chimera.

A conformation of a protein is a particular three-dimensional arrangement of atoms,
see for example page 76 of [35], or page 27 of [82] and the glossary therein. A particular
conformation changes to another conformation if no covalent bonds are broken. The
conformational change is due to a change in dihedral angles, also called torsion angles,
which is the angle between two planes. There are two dihedral angles around a α-carbon.
The φ dihedral angle is defined as the angle between:

7

• the plane occupied by the carbon atom of the previous residue, plus the nitrogen
atom and α-carbon atom of the current residue and

• the plane occupied by nitrogen atom, the α-carbon atom, and the carbon atom of
the current residue.

The ψ dihedral angle is defined as the angle between:

• the plane occupied by the nitrogen atom, the α-carbon atom, and the carbon atom
of the current residue and

• the plane occupied by the α-carbon atom and the carbon atom of the current residue,
plus the nitrogen atom of the next residue.

When modelling a protein’s conformational change, the most obvious generalized coordinates
to use are the dihedral angles mentioned above.

The semi-empirical potential, see for example [75, 70, 70, 13, 14, 60], is an example of a
potential energy that models changes in dihedral angles. Let Ep denote the semi-empirical
potential, the following equation is one of its common expressions:

Ep =
1

2

∑
(a,b)∈bonds

Kb(dab − d̂ab)2 +
1

2

∑
(a,b,c)∈angles

Kθ(θabc − θ̂abc)2

+
1

2

∑
(a,b,c,d)∈dihedrals

∑
n

Kω[1 + cos(nabcdωabcd − ρabcd)]

+
∑

(a,b)∈D

[(
Cab
d12ab
− Dab

d6ab

)
+
QaQb

εabdab

]
.

(1.7)

The first three terms are for bonded interactions, they measure the distortion in bond
lengths, bond angles, and dihedral angles respectively. The terms dab represents the bond
length between the a-th and b-th bonded atoms, θabc represents the bond angle formed by
the a-th b-th and c-th atoms, and ωabcd represents the dihedral angle between the plane
occupied by the a-th b-th and c-th atoms, and the plane occupied by the b-th c-th and d-th
atoms. The value nabcd is the periodicity of the dihedral angle, the term ρabcd is a phase
offset for the dihedral angle. The terms d̂ab, θ̂abc, are equilibrium bond lengths and bond
angles. The values Kb, Kθ, Kω are force constants.

The last summation is for non-bonded interactions, they are the Lennard Jones interaction
and the electrostatic interaction respectively. The constants Cab and Dab are specific to the

8

interacting pair. The a-th and b-th atoms have charges denoted by Qa and Qb respectively,
and εab in the electrostatic interaction term is the dieletric constant. These nonbonded
interactions are confined to atoms within a certain threshold distance.

1.3 The Defects of Using Dihedral Angles for Studying

Protein Dynamics

Researchers have noted several defects in modelling protein conformational changes using
dihedral angles, this Section reviews some of these defects.

According to Crippen [19], potential energies that are a function of dihedral angles have
numerous local minima whereas potential energies that are a function of distance are a lot
simpler.

Plantenga [64] has stated that using dihedral angles to study protein dynamics causes
ill-conditioning because “a slight rotation of the dihedral moves neighboring atoms only
a slight distance, but causes atoms farther down the chain to shift much larger distances;
thus the potential energy can be highly sensitive to small changes in dihedral variables.”

Neumaier [60] has pointed out further disadvantages of dihedral angles. Firstly, they
are undefined if the bond angle is 180◦, “[a]lthough equilibrium angles are typically far
away from 180◦, this is an important defect in global applications; for example, it ruins
(or produces unpredictable results in) any local optimization routine if one of the angles in
an intermediate calculation happens to come close to 180◦. The second defect of dihedral
angles as described by Neumaier is physically equivalent angles lead to different values of
the potential energy. This leads to using trigonometric functions of angles rather than the
angles themselves.

Kim [37] has stated that interpolating dihedral angles often leads to an infeasible
transition pathway, and therefore proposed to interpolate inter-atomic distances rather
than dihedral angles, this formulation is called “elastic network interpolation” (ENI).

1.4 Elastic Network Model and the Hookean Potential

ENMs focus on modelling the change in distance between atoms, rather than dihedral
angles, and overcome many of the disadvantages of using angles.

9

In this modelling approach, the interaction between non-bonded atoms is modelled
using a Hookean potential. This is equivalent to assuming these atoms are connected by
springs.

ENMs further simplify the model by assuming a protein is represented as a chain of
α-carbons, as shown in Figure 1.4 b).

The Hookean potential is a multi-purpose potential. It has been used in normal mode
analysis, to interpolate transitional conformations, and as shown by Tekpinar and Zheng
[74] can also be used to avoid atomic collision.

Normal mode analysis (NMA) is an efficient tool for studying protein structure flexibility.
It models the oscillation of the protein structure’s atomic coordinates around an equilibrium
conformation. It was shown by (Tirion, 1996 [75]) that a Hookean potential can reproduce
the large amplitude atomic normal mode displacements, which were previously found from
more the more complicated semi-empirical potentials.

NMA using the semi-empirical potential requires an energy minimization step to find a
protein conformation at an energy minimum, e.g. optimal dihedral angles are needed. The
Hookean potential energy can be used to find the normal modes of a protein more efficiently
than the semi-empirical potential because the initial protein conformation is already at an
energy minimum as measured by the Hookean potential, and any energy minimization of
this initial structure is not required.

While the Hookean potential in NMA is concerned with deviations about an equilibrium
protein structure, they have also been employed to model non-equilibrium dynamics, such
as the modelling of transitional conformations between a given beginning and an ending
conformation.

Protein macromolecular machines such as enzymes, channels, and pumps need to change
their conformation to perform their functions. For example, many proteins are known to
have “open” and “close” conformations. Understanding how the protein transitions from
the “open” to the “close” conformations, or vice-versa, is very important for understanding
the relationship between structure and function. Transitional conformations are relatively
difficult to obtain compared with long-lived stable functional states, whose structures can
be determined using X-ray crystallography or NMR.

Definition 1.4.1 (The Transitional Conformations Problem). Let the atomic coordinates
of the initial protein conformation at time tinitial = 0 be given by

p1(0), . . . , pn(0) ,

10

and the final atomic coordinates be given by

p1(tfinal), . . . , pn(tfinal) .

The transitional conformations problem is to find the intermediate conformations, where
t takes on integer values t = 1, 2, . . . , tfinal − 1 . The t-th intermediate conformation has
atomic coordinates

p1(t), . . . , pn(t) ,

Each intermediate conformation is found incrementally; that is, pa(t) is assumed to be
known, and pa(t+ 1) is to be found.

Examples of using the Hookean potential used to model the Transitional Conformations
Problem include the formulation of Kim et al. called elastic network interpolation (ENI)
[37, 40, 41, 38], Tekpinar and Zheng [74], and Bahar et al. [22]. Normal mode guided
transition pathways have been explored in [47]. Hybrid ENMs have been used to model
the transition pathways of rigid groups of atoms [71]. Interpolated ENM (iENM) have
been shown to model the local conformational change of active sites before a global
conformational change [74, 81].

Kim et al. [42, 37] provided a comparison between molecular dynamics (MD) simulation
and ENI was made to evaluate the reasonableness of the intermediate protein conformations
generated by ENI using the 16S ribosomal RNA. Their findings showed ENI has smoothed

Figure 1.5: ENI produces structures that smooth out the structures generated from
molecular dynamics. Figure 4.20 of (Kim, 2004[37]).

out the MD results, and generated an “average” MD pathway using much less computational

11

time than MD. This finding is summarized in Figure 9 of [42] and Figure 4.20 of [37],
reproduced in Figure 1.5.

In order to show that the intermediate conformations generated by iENM are reasonable,
three interpolation examples of ATP-driven conformational changes were presented in
[74]. These examples showed that iENM generates intermediate structures where the local
conformational change around an active site precedes global change. This result supports
the idea that the active site drives the conformational change of molecular machines, and
shows the iENM double-well potential pathway is a realistic model for conformational
changes.

In Chapter 2, Tirion’s Hookean potential, Kim et al.’s ENI Hookean potential, and
Tekpinar and Zheng’s iENM will be reviewed.

1.5 The Defects of Modelling ENMs on R3n

Currently, modelling ENMs is formulated in R3n; this formulation has a number of mathematical
defects, these are listed in Table 1.2. Each of these defects will be address in this thesis.
This thesis shows using Sn,3+ to model ENMs can remove all these defects.

1.6 Thesis Outline and Contributions

The first two chapters of this thesis provide an overview of needed background information.

• Chapter 2 introduces ENMs as they are currently modelled in R3n with a Hookean
potential energy. NMA and interpolation of transitional conformations are used as
application examples of where the Hookean potential has appeared. This is followed
by a discussion on enforcing constraints in R3n. Rosen introduced a “correction”
to the constraint manifold as early as 1961 [67], therefore the “step and project”
paradigm was already known at least since then. However, Ryckaert et al. did not
apply this paradigm in the development of the SHAKE algorithm published in 1977
[68], and Goldenthal et al. [30] modified Ryckaert et al.’s formulation to adhere to
the step and project paradigm in 2007, but they were also unaware of Rosen’s work.
The delay in using step and project to enforce distance constraints is a result of R3n

de-emphasizing introducing abstract concepts first, and then applying these concepts
to different applications. Matrix manifold optimization algorithms do not have this

12

Considerations Defects of the current approach
using R3n

Thesis reference

Minimizing the
potential is well-posed

No, problem is ill-posed. Section 2.7, 5.5

Distance or quadrance
in potential

No preference. Section 4.4

Number of constraints
for a rigid group of nq
atoms

3nq − 6, see [64] depends on nq,
i.e. O(nq).

Secton 5.6

Rotation of rigid
groups of atoms

Needs rotation matrices, and
Lie group theory, additional
complexity. [17]).

Section C.6.5

Conservation of linear
momentum

Additional constraint. See discussions on ill-posedness.

Enforcing constraints Both implicit and explicit
treatment of the constraint force
has been proposed.

Section 2.8.2, 6.3.5

Redundancy Yes. Mass matrix M repeats
mass of each atom three times,
ea,I3 repeats the 1 three times.

Equation (2.19), (1.2), (5.14),
(1.1)

Apply abstract
concepts to different
applications

No. Fast Projection was
already presented by Rosen
in 1961 [66] for general nonlinear
constraints, but re-introduced by
Goldenthal et al. [30] for distance
constraints.

Section 2.8.1, 2.8.2, 2.8.5,
Chapter 3

Table 1.2: The defects of modelling ENMs using R3n to be addressed in this thesis.

defect, as shown by Absil et al. [1], these algorithms start with abstract concepts, and
applies these concepts to different matrix manifolds.

The correction proposed by Rosen, and Fast Projection proposed by Goldenthal et al.
is called a retraction in matrix manifold language, and by definition a retraction takes
an unconstrained step followed by a correction to the matrix manifold. Therefore
when implementing the retraction for enforcing constraints, implicitly treating the
constraint-maintaining force is in fact the only option.

13

• Chapter 3 will present the mathematics for unconstrained optimization on the rank
3 PSD matrix manifold. This Chapter shows how abstract concepts from differential
geometry are applied to Sn,3+ and is based on the publication by Mishra et al. [58].
For applications to other matrix manifolds, see Absil et al. [1].

Thereafter begins the contributions of this thesis:

• Firstly, Chapter 4 presents the PSD potential energy in the context of normal mode
analysis because it was the same application used by Tirion [75] to introduce the
Hookean potential. This Chapter also discusses why the PSD potential energy is
different from the Hookean potential. The PSD potential prefers quadrance over
distance because this choice leads to the simpler model on Sn,3+ . Note that the PSD
potential does not offer benefits in additional to the Hookean potential for NMA,
rather NMA provides the context for introducing the PSD potential.

• The introduction of the PSD potential motivates the equations of motion to also be
formulated on Sn,3+ , this is the topic of Chapter 5. This Chapter also explains why
the constraint for enforcing the conservation of linear momentum is not required on
Sn,3+ , and also why the number of constraints to keep a group of nq atoms rigid is
independent of nq, unlike for R3n.

• Chapter 6 describes the geometric objects required for constrained optimization on
Sn,3+ , these objects include the gradient, Hessian, projection onto the tangent space,
and a retraction. The presentation in this Chapter closely follows the discussion by
Journée et al. [34]. The agreements between enforcing constraints on R3n and Sn,3+

are also discussed. These agreements are significant for the following reasons:

– modelling protein ENMs on Sn,3+ is not more complicated than on R3n,

– Sn,3+ can build on R3n, and not “reinvent the wheel”,

– additional mathematical insight can be gained by introducing Sn,3+ .

• Chapter 7 uses the transitional conformations problem as an example to show how
ENMs can be modelled on Sn,3+ . An object-oriented implementation using python is
given in the Appendix A.

Chapter 8 is the concluding Chapter, a summary of how modelling ENMs using Sn,3+

removes the corresponding defects in R3n is provided. Directions of future research are
also proposed.

14

Chapter 2

Elastic Network Models on R3n

2.1 Introduction

This Chapter introduces the mathematics for modelling protein structure ENMs as it is
currently formulated on R3n.

An ENM is an abstraction of a protein structure where nonbonded inter-atomic interactions
are modelled using a Hookean potential energy. The assumption made in this thesis is that
the ENM models only the α-carbons of a protein, as show in Figure 1.4 b). Because all
atoms are the same, they have the same atomic mass, therefore without loss of generality,
the mass of an α-carbon is assumed to be 1 (unit mass). If the mass is not 1, the equations of
motion can always be scaled to make the mass 1. In additional, inter-atomic distance does
not change when atoms are rotated, and therefore the Hookean potential is not affected
by gravity, hence mass is not a major modelling factor.

The generic Hookean potential is introduced first. Thereafter, the application of the
Hookean potential to NMA as presented by Tirion [75] is reviewed. This is followed by
a review of the application of this potential to the transitional conformations problem.
Enforcing constraints on R3n is then discussed.

In this Chapter, the parameter t represents time abstractly, in that it is used to
distinguish different protein conformations from each other, no specific time units are
assumed.

When discussing NMA, the time is assumed to be a continuous variable, t = 0 for the
equilibrium conformation, and t 6= 0 for the conformation perturbed by a normal mode
displacement (no specific value for t is needed).

15

When discussion the transitional conformations problem, t is assume to take on discrete
values, t = 0, 1, The initial conformation is assumed to have t = tinitial = 0 and the
final conformation is assumed to have t = tfinal = 100, with 100 intermediate conformations
generated in between.

The Hookean potential assumes the protein conformation’s atomic coordinates are
arranged as a 3n× 1 vector:

−→p =

p1...
pn

 ∈ R3n .

The atomic coordinates for a particular time t conformation is denoted as:

−→p t = −→p (t) =

p1(t)...
pn(t)

 ∈ R3n .

2.2 The Generic Hookean Potential

Define the function E : R3 → R:

E(x) =
1

2

(√
xTx− d̂ab

)2
=

1

2

(
‖ x ‖ −d̂ab

)2
.

The gradient and Hessian of this function is discussed in Appendix B.

Recall ea,I3 was defined in Equation (1.2). The generic pairwise Hookean potential
energy describing the interaction between the a-th and b-th atom is given by substituting

x = (ea,I3 − eb,I3)T−→p = pa − pb ,

in E(x):

E(pa − pb) =
1

2

(√−→p TSab
−→p − d̂ab

)2
=

1

2

(
‖ pa − pb ‖ −d̂ab

)2
. (2.1)

The stamp matrix Sab was defined in Equation (1.3) . The distance d̂ab is a “reference
distance” defined based on the problem.

The gradient and Hessian matrix of the generic pairwise Hookean potential have been
discussed by for example Kim [37]. They are found by using the formulas in Appendix B

16

with the substitution x = pa − pb. The 3× 1 gradient vector ∇E(pa − pb) is given by:

∇E(pa − pb) =
(
‖ pa − pb ‖ −d̂ab

) (ea,I3 − eb,I3)T−→p
‖ pa − pb ‖

=

(
1− d̂ab
‖ pa − pb ‖

)
(pa − pb) ,

(2.2)

The 3× 3 Hessian matrix of E(pa − pb) is:

∇2E(pa − pb) = I3 −
d̂ab

‖ pa − pb ‖
Q(pa − pb) ∈ R3×3 , (2.3)

where:

Q(x) = I3 −
xxT

‖ x ‖2
. (2.4)

Note that:
∇2E(pa − pb) = ∇2E(pb − pa) .

The total Hookean potential energy for the entire protein structure is a function EH :
R3n → R given by:

EH(−→p) =
∑

(a,b)∈D

wabE(pa − pb) . (2.5)

The scalar wab is the weight for the interaction pair (a, b), which may be the same for
all interacting pairs, further, wab = 1 can be assumed for all (a, b) ∈ D, for example see
[39, 37]. The summation is taken over the set D containing atom pairs that are within a
threshold distance apart, they can be bonded or nonbonded pairs. The gradient ∇EH(−→p)
is a 3n× 1 vector given by:

∇EH(−→p) =

∇EH(−→p)[1]
...

∇EH(−→p)[n]

 ∈ R3n×1 , (2.6)

17

where:

∇EH(−→p)[a] = −
a−1∑
k=1

wka∇E(pk − pa) +
n∑

k=a+1

wak∇E(pa − pk)

=
n∑
k=1
k 6=a

wak∇E(pa − pk) a = 1, . . . n .

(2.7)

The notation [a] is used to emphasize EH(−→p)[a] is a 3×1 vector, not a scalar. In other words,
whenever pa appears first in (pa−pk), derivative with respect to pa is a positive contribution
from the pairwise potential, whenever pa appears as the second term in (pk − pa), the
derivative with respect to pa is a negative contribution of the pairwise potential. It is
straighforward to show:

∇EH(−→p)T
−→
δ =

−→
δ T∇EH(−→p) =

∑
a<b

wab∇E(pa − pb)T (δa − δb) , (2.8)

The Hessian matrix, ∇2EH(−→p), of the total Hookean potential has a Laplacian structure.
For example, consider the case of just four atoms, n = 4. When all the atoms are
neighbours, ∇2EH(−→p) is given by the following 12× 12 matrix of 3× 3 blocks:

∇2EH(−→p)

=


∇2EH(−→p)[11] −w12∇2E(p1 − p2) −w13∇2E(p1 − p3) −w14∇2E(p1 − p4)

−w12∇2E(p1 − p2) ∇2EH(−→p)[22] −w23∇2E(p2 − p3) −w24∇2E(p2 − p4)
−w13∇2E(p1 − p3) −w23∇2E(p2 − p3) ∇2EH(−→p)[33] −w34∇2E(p3 − p4)
−w14∇2E(p1 − p4) −w24∇2E(p2 − p4) −w34∇2E(p3 − p4) ∇2EH(−→p)[44]

 .

The off-diagonal blocks are all the negative contributions of the Hessian of the pairwise
Hookean potentials.

The diagonals are the sum of all the positive contributions defined as follows:

• ∇2EH(−→p)[11] = w12∇2E(p1 − p2) + w13∇2E(p1 − p3) + w14∇2E(p1 − p4)

• ∇2EH(−→p)[22] = w12∇2E(p1 − p2) + w23∇2E(p2 − p3) + w24∇2E(p2 − p4)

• ∇2EH(−→p)[33] = w13∇2E(p1 − p3) + w23∇2E(p2 − p3) + w34∇2E(p3 − p4)

• ∇2EH(−→p)[44] = w14∇2E(p1 − p4) + w24∇2E(p2 − p4) + w34∇2E(p3 − p4)

The sign for the pairwise Hessian ∇2E(pa− pb) is positive or negative for the same reason
the sign for the pairwise gradient ∇E(pa − pb) is positive or negative, i.e. whether the

18

derivative is with respect to pa or pb. For a vector
−→
δ = (δT1 , δ

T
2 , δ

T
3 , δ

T
4)T ∈ R12, it is

straightforward to show:

−→
δ T∇2EH(−→p)

−→
δ =

∑
(a,b)∈D

(δa − δb)Twab∇2E(pa − pb)(δa − δb) .

where for this simple example, D is all possible pairs of the 4 atoms such that a < b to
avoid double counting pairs. For a general n, the off-diagonal blocks are given by

∇2EH(−→p)[ab] =

{
−wab∇2E(pa − pb) if (a, b) ∈ D
03×3 if (a, b) /∈ D

where the square bracket [ab] is used to emphasize this is a 3× 3 matrix and not a scalar.
The diagonal blocks are given by:

∇2EH(−→p)[aa] =
a−1∑
k=1

wka∇2E(pk − pa) +
n∑

k=a+1

wak∇2E(pa − pk)

=
n∑
k=1
k 6=a

wka∇2E(pk − pa)

The following convention is used:

b∑
k=a

xk = 0 if a > b . (2.9)

Similar to the n = 4 case, it is straightforward to show for any n:

−→
δ T∇2EH(−→p)

−→
δ =

∑
(a,b)∈D

(δa − δb)Twab∇2E(pa − pb)(δa − δb) . (2.10)

The second order expansion of EH(−→p) for a small displacement
−→
δ ∈ R3n is given by:

EH(−→p +
−→
δ) ≈ 1

2

−→
δ T∇2EH(−→p)

−→
δ +
−→
δ T∇EH(−→p) + EH(−→p) . (2.11)

Equation (2.11) can also be expressed in terms of the gradient and Hessian of the pairwise

19

potential using Equations (2.10) and (2.8):

1

2

−→
δ T∇2EH(−→p)

−→
δ +
−→
δ T∇EH(−→p) + EH(−→p)

=
1

2

∑
(a,b)∈D

(δa − δb)T∇2E(pa − pb)(δa − δb) +
∑

(a,b)∈D

∇E(pa − pb)T (δa − δb) +
∑

(a,b)∈D

E(pa − pb)

=
1

2

∑
(a,b)∈D

[
(δa − δb)T∇2E(pa − pb)(δa − δb) +∇E(pa − pb)T (δa − δb) + E(pa − pb)

]
,

(2.12)

2.3 The Hookean Potential and Normal Mode Analysis

This section describes the Hookean potential introduced by Tirion et al. for NMA[75].

Let −→p (0) denote the vector of equilibrium atomic coordinates, these are the atomic
coordinates stored in the protein data bank (PDB) files. Let the displaced atomic coordinates

at a time t > 0, t ∈ R, be −→p (t) = −→p (0) +
−→
δ (t). The 3n× 1 vector

−→
δ (t):

−→
δ t =

−→
δ (t) =

(
δ1(t)

T , . . . , δn(t)T
)T ∈ R3n δa(t) ∈ R3 a = 1, . . . , n , (2.13)

represents a small displacement. The pairwise NMA Hookean potential to model the
interaction between the a-th and b-th atoms is given by:

Eab,H-NMA(pa(t)− pb(t)) =
1

2

(√
−→p (t)TSab

−→p (t)− ‖pa(0)− pb(0)‖
)2

=
1

2
(‖pa(t)− pb(t)‖ − ‖pa(0)− pb(0)‖)2

=
1

2
(‖pa(t)− pb(t)‖ − dab(0))2 .

(2.14)

The total potential, EH-NMA(−→p (t)), is the sum of the pairwise potentials:

EH-NMA(−→p (t)) =
∑

(a,b)∈D

Eab,H-NMA(pa(t)− pb(t)) , (2.15)

This is the generic Hookean potential with the reference distance d̂ab set to dab(0) and the
atomic coordinates −→p set to −→p (t).

20

NMA requires using the second order approximation of the total potential near −→p (0)
in the equations of motion to arrive at a closed form solution to the protein’s motion.
Consider the pairwise Hookean potential first, its second order approximation is given by:

Eab,H-NMA((pa(0)− pb(0)) + (δa(t)− δa(t)))

≈ 1

2
(δa(t)− δb(t))T∇2Eab,H-NMA(pa(0)− pb(0))(δa(t)− δb(t))

+ (δa(t)− δb(t))T∇Eab,H-NMA(pa(0)− pb(0))

+ Eab,H-NMA(pa(0)− pb(0)) .

Note that
‖pa(0)− pb(0)‖ − dab(0) = 0

The constant term of the second order expansion is:

Eab,H-NMA(pa(0)− pb(0)) =
1

2
(‖pa(0)− pb(0)‖ − dab(0))2 = 0 .

Applying Equation (2.2) to Equation (2.14) gives:

∇Eab,H-NMA(pa(0)− pb(0)) = (‖ pa(0)− pb(0) ‖ −dab(0))
(ea,I3 − eb,I3)T−→p (0)

‖ pa(0)− pb(0) ‖
= 0× 1 = 0 .

Therefore, only the second order term is nonzero in the second order expansion of the
pairwise Hookean potential. Applying Equation (2.3) to Equation (2.14) gives:

∇2Eab,H-NMA(pa(0)− pb(0)) = I3 −
dab(0)

‖ pa(0)− pb(0) ‖
Q(pa(0)− pb(0))

= I3 −Q(pa(0)− pb(0))

= I3 − I3 +
(pa(0)− pb(0))(pa(0)− pb(0))T

(pa(0)− pb(0))T (pa(0)− pb(0))

=
(pa(0)− pb(0))(pa(0)− pb(0))T

(pa(0)− pb(0))T (pa(0)− pb(0))
.

(2.16)

21

Only the second order term is nonzero for the NMA Hookean potential.

Eab,H-NMA((pa(0)−pb(0))+(δa(t)−δb(t))) ≈
1

2
(δa(t)−δb(t))T∇2Eab,H-NMA(−→p (0))(δa(t)−δb(t)) .

Summing the second order approximation for all pairs inD gives the second order expansion
for NMA:

EH-NMA(−→p (0) +
−→
δ (t)) ≈ 1

2

∑
(a,b)∈D

(δa(t)− δb(t))T∇2Eab,H-NMA(pa(0)− pb(0))(δa(t)− δb(t)) ,

(2.17)
Equation (2.17) can be expressed in matrix form:

EH-NMA(−→p (0) +
−→
δ (t)) ≈ 1

2

−→
δ (t)T∇2EH-NMA(−→p (0))

−→
δ (t) , (2.18)

where ∇2EH-NMA(−→p (0)) has the block Laplacian structure discussed in Section 2.2. Let
M be the 3n× 3n mass matrix:

M =



m1

m1

m1

. . .

mn

mn

mn


. (2.19)

For the displacement vector
−→
δ (t),

−̇→
δ (t) is the velocity, where the dot is a time derivative.

Therefore, the kinetic energy of the ENM is given by:

Ek(
−̇→
δ (t)) =

1

2

−̇→
δ (t)TM

−̇→
δ (t) . (2.20)

The Lagrangian function is given by:

L = kinetic− potential

= Ek(
−̇→
δ (t))− EH-NMA(−→p (t)) .

(2.21)

22

Using the second order approximation for the potential from Equation (2.18):

L =
1

2

−̇→
δ (t)TM

−̇→
δ (t)− 1

2

−→
δ (t)T∇2EH-NMA(−→p (0))

−→
δ (t) . (2.22)

The equations of motion are then given by the Euler-Lagrange equations:

d

dt

 ∂L

∂
−̇→
δ (t)

− ∂L

∂
−→
δ (t)

= 0 . (2.23)

Substituting the kinetic and the second order approximated potential into the equations
of motion gives:

M
−̈→
δ (t) +∇2EH-NMA(−→p (0))

−→
δ (t) = 0 . (2.24)

Therefore, the normal mode displacements of the protein’s atoms are given by the eigenvectors
of ∇2EH-NMA(−→p (0)). The eigenvectors of ∇2EH-NMA(−→p (0)) corresponding to the low
eigenvalues give the large amplitude motions of the protein structure.

2.4 The Hookean Potential for Elastic Network Interpolation

(ENI)

Elastic Network Interpolation (ENI) [39, 37, 38, 41, 71, 40, 36] uses a Hookean potential
with a linearly interpolated reference distance model conformational transitions. The pair-
wise ENI Hookean potential used to find the (t+ 1)-st intermediate conformation is:

Eab,t+1(pa − pb) =
1

2
(
√−→p TSab

−→p − dab(t+ 1))2 =
1

2
(‖ pa − pb ‖ −dab(t+ 1))2 , (2.25)

The subscript t+1 is used to emphasize the potential is solving for the (t+1)-st transitional
conformation. The distance dab(t+ 1) is a linearly interpolated distance:

dab(t+ 1) =

(
1− t+ 1

100

)
‖ pa(0)− pb(0) ‖ +

(
t+ 1

100

)
‖ pa(100)− pb(100) ‖ . (2.26)

23

The denominator in the interpolation parameter is 100 since the last conformation’s time
index is assumed to be tfinal = 100. The total potential energy used by ENI is:

Et+1(
−→p) =

∑
(a,b)∈D

Eab,t+1(pa − pb) . (2.27)

The ENI Hookean potential is the generic Hookean potential with the following changes:

• the set D contains pairs of indices representing atoms within a threshold distance
in either the beginning or ending conformations, they can be either bonded or
nonbonded pairs (see [37] Section 3.2.1 page 65), these pairs do not change during
the interpolation, and

• the reference distance is d̂ab = dab(t+ 1).

The meaning of the ENI Hookean potential in Equation (2.27) is to measure how close
the inter-atomic distances of the atomic coordinates in −→p are to the target inter-atomic
distances, dab(t+ 1), for (a, b) ∈ D. The atomic coordinates of the (t+ 1)-st intermediate
conformation, denoted −→p t+1 = −→p (t+ 1), minimizes this ENI Hookean potential, Equation

(2.27). Let
−→
δ t+1 be a small displacement, as defined in Equation (2.13), the (t + 1)-st

conformation is given by:
−→p t+1 = −→p t +

−→
δ t+1 .

In order to find the next conformation −→p t+1,
−→
δ t+1 needs to be determined. The

−→
δ t+1

that gives the −→p t+1 which minimizes Equation (2.27) is referred to as the “optimal
displacement”.

The ENI approach to finding the optimal displacement
−→
δ t+1 is to first expand Equation

(2.27) to second order near −→p t:

Et+1(
−→p t+1) = Et+1(

−→p t +
−→
δ t+1)

≈ 1

2

−→
δ t+1

T
∇2Et+1(

−→p t)
−→
δ t+1 +∇Et+1(

−→p t)
T−→δ t+1 + Et+1(

−→p t) ,
(2.28)

then take the gradient of the second order approximation in Equation (2.28) with respect

to
−→
δ t+1:

d

d
−→
δ t+1

(
1

2

−→
δ t+1

T
∇2Et+1(

−→p t)
−→
δ t+1 +∇Et+1(

−→p t)
T−→δ t+1 + Et+1(

−→p t)

)
= ∇2Et+1(

−→p t)
−→
δ t+1 +∇Et+1(

−→p t) .

(2.29)

24

Finally, the
−→
δ t+1 that sets Equation (2.29) to zero is the “optimal displacement” as defined

by ENI. Setting Equation (2.29) to zero, then move ∇Et+1(
−→p t) to the other side shows

−→
δ t+1 solves the linear system:

∇2Et+1(
−→p t)
−→
δ t+1 = −∇Et+1(

−→p t) , (2.30)

2.5 The Hookean Potential for Interpolated ENM (iENM)

Interpolated ENM (iENM)[74, 81] generates a transition pathway using a double-well

potential. Let E0(
−→p) be a Hookean potential whose reference inter-atomic distances d̂ab

are set to the beginning conformation’s inter-atomic distances dab(0):

E0(
−→p) =

1

2

∑
(a,b)∈D0

wab(
√−→p TSab

−→p − dab(0))2

=
1

2

∑
(a,b)∈D0

wab(‖ pa − pb ‖ −dab(0))2 ,
(2.31)

and let E100(
−→p) be a Hookean potential whose reference inter-atomic distances d̂ab are set

to the ending conformation’s inter-atomic distances dab(100):

E100(
−→p) =

1

2

∑
(a,b)∈D100

wab(
√−→p TSab

−→p − dab(100))2

=
1

2

∑
(a,b)∈D100

wab(‖ pa − pb ‖ −dab(100))2 .
(2.32)

The weight wab is set to 10 for bonded residues and 1 otherwise. The set of neighbour
index pairs, D0 and D100, are calculated based on the beginning and ending conformation
respectively. As with ENI, these sets of pairs do not change during the interpolation.

The physical meaning of E0(
−→p) is to measure the deviations of an intermediate transitional

protein conformation’s inter-atomic distances, based on the atomic coordinates given in
−→p , from the beginning conformation. Likewise, E100(

−→p) will measure the deviations
of an intermediate transitional conformation’s inter-atomic distances from the ending
conformation.

The double-well potential used by iENM is a linear interpolation between E0(
−→p) and

E100(
−→p). The definition of a double-well potential is given in Definition 2.5.1.

25

Definition 2.5.1 (Double-Well Potential). An arbitrary double-well potential is a composite
function, F (E0(

−→p), E100(
−→p)), that has the following property:

F (E0(
−→p), E100(

−→p)) ≈

{
E0(
−→p) if E0(

−→p)� E100(
−→p)

E100(
−→p) if E0(

−→p)� E100(
−→p)

. (2.33)

This property means that if E0(
−→p) � E100(

−→p), the intermediate conformation −→p is
very similar to the beginning conformation −→p 0, and therefore the double-well potential
should produce a value very similar to E0(

−→p). Likewise, if E0(
−→p) � E100(

−→p), the
intermediate conformation −→p is very similar to the ending conformation −→p 100 and therefore
the double-well potential should produce a value very similar to E100(

−→p).

Note that E0(
−→p 0) = 0 and E100(

−→p 100) = 0. Thus, the beginning conformation −→p 0 and
the ending conformation −→p 100 are two minima of F (E0(

−→p), E100(
−→p)). The transitional

conformations −→p t, t ∈ (1, . . . , 99), form a sequence of saddle points of F (E0(
−→p), E100(

−→p)),
meaning they satisfy

∇F (E0(
−→p t), E100(

−→p t)) = 03n .

Using the chain rule:

∇F (E0(
−→p t), E100(

−→p t))

=

(
∂F (E0(

−→p t), E100(
−→p t))

∂E0(
−→p t)

)
∇E0(

−→p t) +

(
∂F (E0(

−→p t), E100(
−→p t))

∂E100(
−→p t))

)
∇E100(

−→p t)

= 03n .

(2.34)

Tekpinar and Zheng have stated that based on previous studies, the transitional pathway
generated by iENM is independent of the mathematical form of F (E0(

−→p), E100(
−→p)), see

[74] and the references therein. Since simpler models of nature are always preferable to
more complicated models, Tekpinar and Zheng proposed E0(

−→p) and E100(
−→p) should be

connected by a linearly interpolated potential. Divide Equation (2.34) by

∂F (E0(
−→p t), E100(

−→p t))

∂E0(
−→p t)

+
∂F (E0(

−→p t), E100(
−→p t))

∂E100(
−→p t)

,

then define the parameter λt to be:

λt =

∂F (E0(
−→p t),E100(

−→p t))
∂E0(

−→p t)

∂F (E0(
−→p t),E100(

−→p t))
∂E0(

−→p t)
+ ∂F (E0(

−→p t),E100(
−→p t)

∂E100(
−→p t)

, (2.35)

26

λt is an interpolation parameter varying from 1 to 0. Equation (2.34) shows the saddle
points satisfy:

λt∇E0(
−→p t) + (1− λt)∇E100(

−→p t) = 03n . (2.36)

It follows the saddle points (transitional conformations) are critical points of the following
iENM Hookean potential energy :

Et(
−→p) = λtE0(

−→p) + (1− λt)E100(
−→p) . (2.37)

Starting with −→p 0 and λ0 = 1, the original publication presents a way of getting λ1
from which the next conformation −→p 1 is determined, such a way of selecting the next
λt may not be uniform. However, since the iENM transition pathway is independent of the
mathematical form of F (E0(

−→p t), E100(
−→p t)), this thesis will assume λt changes uniformly;

this means λt is given by:

λt = 1− t

100
where t = 0, 1, . . . , 100 ,

which in turn gives the following iENM Hookean potential for finding the t-th transitional
conformation:

Et(
−→p) =

(
1− t

100

)
E0(
−→p) +

(
t

100

)
E100(

−→p) . (2.38)

Other simple functions have also been proposed, for example Das et al. [22] proposed:

min(E0(
−→p), E100(

−→p))

which also satisfy the property given in Equation (2.33) that characterizes a double-well
potential.

Tekpinar and Zheng added a steric collision energy to the iENM potential to ensure
atoms in the transitional conformations do not collide, see Section 2.6.

The next conformation−→p t+1 is a critical point of the optimization problem of minimizing
Et+1(

−→p). Since the previous conformation −→p t is known, finding the next conformation
−→p t+1 is equivalent to finding

−→
δ t+1 where −→p t+1 = −→p t +

−→
δ t+1 so the new conformation

−→p t+1 sets the gradient of the potential energy to zero:

∇Et+1(
−→p t +

−→
δ t+1) = 03n . (2.39)

Equation (2.39) shows
−→
δ t+1 can be viewed as the root of this Equation, and therefore

Tekpinar and Zheng proposes to use the Newton-Raphson algorithm to find
−→
δ t+1.

27

2.6 The Hookean Potential for Avoiding Inter-Atomic

Collisions

Together with the iENM double-well potential, Tekpinar and Zheng also introduced a
Hookean potential for avoiding atomic collisions[74, 81]. This potential is called the steric
collision energy, denoted Ecol(

−→p t), and is added to the iENM Hookean potential to ensure
the non-bonded atoms of the intermediate conformations avoid colliding with each other
during the transition. The steric collision energy for a pair of non-bonded atoms becomes
nonzero when they are within the distance threshold given by dcol measured in angstroms,
this nonzero energy causes these atoms to be pushed apart. The formula for Ecol(

−→p t) is
given by:

Ecol(
−→p t) =

1

2

n∑
a=3

a−2∑
b=1

wabh(dcol − dab(t))(‖ pa(t)− pb(t) ‖ −dcol)2 , (2.40)

where h(·) is the Heaviside function meaning that:

h(dcol − dab(t)) =

{
0 if dcol ≤ dab(t)

1 if dcol > dab(t)
(2.41)

dcol is the threshold such that a collision between α-carbons is assumed to have occurred,
dcol = 4Ȧ is used by Tekpinar and Zheng [74]. wab is set to 10 for non-bonded residues,
i.e. b 6= a± 1. Since Tekpinar and Zheng have excluded bonded residues, it is possible for
bonds to stretch or shrink during the interpolation, see Chapter 7.

2.7 Minimizing the Hookean Potential is Ill-Posed

Finding the next conformation by minimizing the Hookean potential is an ill-posed problem.
Note that ill-posed here does not mean a solution cannot be found, only that the solution
is not unique.

Since inter-atomic distance is invariant to translation of the atomic coordinates, any

translation of the solution
−→
δ t+1 for either ENI or iENM will produce another solution.

This can be seen in another way: the Hessian matrix ∇2Et+1(
−→p t) for ENI’s Hookean

potential in Equation (2.27) has six zero eigenvalues, and is therefore singular (not invertible).

28

Two modifications are suggested by Kim in [37] to ensure the solution
−→
δ t+1 is unique.

1. A modification of the ENI Hookean potential, Equation (2.27), to make the matrix
∇2Et+1(

−→p t) invertible. The modified ENI Hookean potential adds a weighted Cartesian
interpolation term to the ENI Hookean potential:

Êt+1(
−→p t+1) = Et+1(

−→p t+1) +
ε

2

n∑
a=1

‖ pa(t) + δa(t+ 1)− p̂a(t+ 1) ‖2 . (2.42)

where ε = 0.1 was used by Kim, and

p̂a(t+ 1) =

((
1− t+ 1

100

)
pa(0) +

(
t+ 1

100

)
pa(100)

)
,

is the linearly interpolated time t + 1 Cartesian coordinates. The gradient of this
modified potential evaluated at −→p t is:

∇Êt+1(
−→p t) = ∇Et+1(

−→p t) + ε

p1(t)− p̂1(t+ 1)
...

pn(t)− p̂n(t+ 1)


and the Hessian matrix evaluated at −→p t is:

∇2Êt+1(
−→p t) = ∇2Et+1(

−→p t) + εI3n . (2.43)

The Hessian matrix is now invertible.

2. An alternative, second, modification is to add the constraint that the linear momentum
is conserved:

n∑
a=1

maδa(t) = 03 (2.44)

Kim then makes the assumption that ma = 1 for a = 1, . . . , n.

The Hessian matrix for the iENM Hookean potential is also rank deficient. In order to use
the Newton-Raphson algorithm, the Hessian matrix, ∇2Et+1(

−→p t), of Equation (2.37) was
modified in [81]:

εI3n +∇2Et+1(
−→p t) , (2.45)

where ε is a small positive number. This is in fact the same modification as seen in Equation
(2.43) for the ENI Hookean potential’s non-invertible Hessian, both modifications adds a

29

weighted identity matrix to the Hessian of the Hookean potential to make the Hessian
invertible. This correction is known as Tikhonov’s regularization.

2.8 Enforcing Constraints R3n

The formulations for the transitional conformations problem by previous authors as discussed
above do not have a step for enforcing inter-atomic distance constraints. Constrained
optimization in R3n is a well studied research topic. This section reviews the following
results:

• the gradient projection method of J.B. Rosen and Rosen’s correction (1961)[67] and

• the Fast Projection method of Goldenthal et al. (2007) [30],

These methods have close analogues to constrained optimization for PSD matrices introduced
in Chapter 6.

Rosen’s correction to the constraint manifold was for general nonlinear constraints, it
used a “step and project” paradigm. However, their work was not built upon by Goldenthal
et al., whom reintroduced the same correction for distance constraints in particular. It is
a defect of R3n that abstract geometric ideas are not emphasized and applied to different
problems, and the same algorithm when applied to different problems are given different
names.

Before these methods are reviewed, the notations used to express constraints are introduced
here.

Consider a protein structure ENM with n α-carbons, indexed by 1, . . . , n. Let there be
m pairs of α-carbon atoms where the distance between each pair of atoms is a constraint,
these pairs of atoms are given as the following m index pairs:

(a1, b1), . . . , (am, bm) .

Goldenthal et al. used the following formula to constrain the quadrance between the ai-th
and bi-th atoms[30]:

Ci(
−→p) =

−→p TSaibi
−→p

daibi
− daibi =

‖ pai − pbi ‖2

daibi
− daibi i = 1, . . . ,m. (2.46)

30

For a vector −→p ∈ R3n of atomic coordinates, C(−→p) is an m × 1 vector describing all m
constraints, and is defined as follows in [30]:

C(−→p) =

C1(
−→p)
...

Cm(−→p)

 . (2.47)

The constraint manifold is defined as the set:

C(R3n) = {−→p | C(−→p) = 0m} . (2.48)

Rewrite the constraint expression as:

Ci(
−→p) =

1

2

(−→p TSaibi
−→p − qaibi

)
=

1

2

(
‖ pai − pbi ‖2 −qaibi

)
i = 1, . . . ,m. (2.49)

Clearly, this expression gives the same constraints as Goldenthal’s original expression.
Rearranging the constraint expression in this manner allows the gradient to be conveniently
given by the following expression:

∇Ci(−→p) = −→p TSaibi = (−→p ai −−→p bi)
T (eai,I3 − ebi,I3) . (2.50)

which is a 1× 3n vector. The gradient of all constraints is:

∇C(−→p) =

∇C1(
−→p)

...
∇Cm(−→p)

 =


−→p TSa1b1

...
−→p TSambm

 =

 (−→p a1 −−→p b1)
T (ea1,I3 − eb1,I3)
...

(−→p am −−→p bm)T (eam,I3 − ebm,I3)

 ,

(2.51)
which is an m× 3n matrix.

2.8.1 J. B. Rosen’s Gradient Projection (1960 and 1961)

J.B. Rosen’s Gradient Projection Method (GPM) was first discussed in as early as 1957 in
[65], then in more detailed papers in 1960 [66] and 1961[67].

Dantzig’s simplex method was formulated in 1947, and published in 1951 [21]. Consequently,
throughout the 1950s, linear programming was applied to a diverse range of problems.
Quoting from Rosen [66]:

31

[Applications of linear programming] include industrial applications, transportation
problems, contract awards, military applications, agricultural applications, marketing
analysis, production scheduling, inventory control and structural design. In
many problems a far more realistic formulation is possible if a linearized approximation
is not required. In such cases the optimum solution obtained by a nonlinear
programming method should have considerably more validity than the solution
to the approximate linear programming program. It is therefore anticipated
that an efficient method for the solution of nonlinear programming problems
will lead to more realistic solutions in many cases, as well as extending the
range of application for programming methods. (emphasis added)

Rosen pointed to “problems in mechanics, physics and chemistry” as one example of a new
area of application [66]. Given this historical context, Rosen’s introduction of GPM was
very much motivated by the Simplex Method. For example, see Section 6 of [66] where the
author compares the GPM to the dual simplex method and the references therein.

Rosen’s divide the GPM into two publications, Part I assumed constraints are linear
[66], Part II assumed constraints are nonlinear [67]. Rosen also considered both equality
and inequality constraints, the idea is that at a point −→p ∈ R3n, only active inequality
constraints are considered, these are the inequality constraints for which the equality
holds true at the given point. The discussion in this section will therefore assume all
constraints are equality constraints, this means the constraint manifold and the boundary
of the constraint manifold are the same.

The main idea behind the GPM is to ensure the gradient always stays on the tangent
space of the constraint manifold. In Part I of the publication [66], constraints are assumed
to be linear, which means they can be written in the form:

Li(
−→p) = −→η T

i
−→p − α

where −→η i ∈ R3n is a vector and α ∈ R is a constant. In this case, let the constraint
manifold be:

L(−→p) = {−→p | Li(−→p) = 0 i = 1, . . . ,m}

A vector is on the boundary of the constraint manifold if it is perpendicular to the space
span{ −→η 1, . . . ,

−→η m}. Define the 3n×m matrix:

N =
(−→η 1 . . . −→η m

)
,

32

then the projection onto the constraint manifold is given by the projection matrix:

Proj = I3n −N(NTN)−1NT

Part II of the publication [67] allowed the constraints to be nonlinear. In this case, the
projection will map a vector onto the tangent space of the constraint manifold, thereafter a
correction back to the constraint manifold from the tangent space is required. For example,
let the constraints be C(−→p) as defined in Equation (2.47), make the substitution:

N = ∇C(−→p)T ,

where ∇C(−→p) is defined in Equation (2.51), then the projection onto the tangent space of
the constraint manifold is given by:

Proj = I3n −∇C(−→p)T (∇C(−→p)∇C(−→p)T)−1∇C(−→p) . (2.52)

The GPM requires a step to be taken in this direction, but since the constraint is not
linear, this step leads to a point that is not on the constraint manifold. Rosen suggests “a
correction back to the feasible region” (see Section 3 [67]). Rosen did not give a name to
this procedure, we will refer to it as “Rosen’s Correction”. Rosen’s Correction proceeds as
follows: generate a sequence of points starting from the initial point on the tangent space
−→p (0) given by (see Equation (4.22) of [67]):

−→p (k) = −→p (k−1) −∇C(−→p (k−1))T (∇C(−→p (k−1))∇C(−→p (k−1))T)−1C(−→p (k−1)) (2.53)

until ‖ C(−→p (k−1)) ‖ is smaller than some tolerance. Rosen’s Correction is reintroduced by
Goldenthal et al. as the Fast Projection Algorithm to be reviewed next.

2.8.2 Goldenthal et al.’s Fast projection (2007)

Goldenthal et al. examined the modelling of cloth as a particle system with constraints
on inter-particle distances in [30]. The equations of motion for this particle system can
be arrived at from the augmented Lagrangian for modelling constrained dynamics in R3n

given by:

L(−→p t,
−→v t) =

1

2
(−→v t)

TM−→v t − E(−→p t)− C(−→p t)
Tλ (2.54)

where −→v t = −̇→p t is the velocity, M is the 3n×3n mass matrix with the mass of each particle
repeated three times along the diagonal, see Equation (2.19). E(−→p t) is the potential energy,

33

and λ is the m× 1 vector of Lagrange multipliers for the constraints.

The equations of motion are given by two Euler-Lagrange equations. The first one is
given by:

M−̇→v t = −∇E(−→p t)−∇C(−→p t)
Tλ (2.55)

Equation (2.55) states the total force acting on the atoms is the sum of the force from the
potential energy and the constraint force. The second Euler-Lagrange equation is

C(−→p t) = 0m (2.56)

The second equation states all constraints must be satisfied, equivalently, −→p t is on the
constraint manifold given by Equation (2.48).

The equations of motion are discretized over a time interval when used in computer
simulation. SHAKE and RATTLE are examples of discretization methods [68, 6], both
considers the constraint force to be evaluated explicitly, this means the coordinates of the
particles being simulated are evaluated at the beginning of the time interval. Barth et
al. pointed out four common geometric configurations where the SHAKE algorithm faces
difficulty [9]. Goldenthal et al. [30] proposed that the constraint-maintaining force should
be evaluated implicitly for SHAKE, that is, using the unconstrained coordinates at the end
of the time interval instead of the beginning, to alleviate the problems described by Barth
et al., this formulation is called Fast Projection.

The following discussion assumes t takes on arbitrary discrete values tj and tj+1, and
∆t = tj+1 − tj indicates an arbitrary change in time. Define −→p j+1 = −→p (tj+1) and −→p j =
−→p (tj). Let −→v j = −→v (tj) be the time t = tj velocity, and −→v j+1 = −→v (tj+1) be the time tj+1

velocity.

To arrive at the Fast Projection algorithm, two algorithms are first presented in [30].

1. Firstly, evaluating the constraint force at the end of the time interval, [tj, tj+1], this
is the implicitly constraint direction (ICD) method.

2. Secondly, consider an alternative, but equivalent, perspective to constrained dynamics.
Take an unconstrained step, then find the closest point on the constraint manifold
to project to. This perspective leads to the step and project (SAP) method.

3. Finally, Fast Projection is an approximation of SAP.

34

Implicit Constraint Direction (ICD)

The discretized equations of motion between time tj and tj+1, as presented in [30], assumes
the force due to the potential energy is treated explicitly, and the constraint-maintaining
force is treated implicitly. Equation (2.55) which describes forces is discretized as:

M
−→v j+1 −−→v j

∆t
= −∇E(−→p j)−∇C(−→p j+1)

Tλ . (2.57)

Equation (2.57) shows how to find the new velocity −→v j+1 from the potential and constraint
forces. This new velocity is then used to find the new coordinates −→p j+1.

−→p j+1 −−→p j

∆t
= −→v j+1 . (2.58)

Equation (2.56) when discretized implicitly uses the end of the time interval value:

C(−→p j+1) = 0m . (2.59)

Combining Equation (2.57) and (2.58) gives the following Equation for −→p j+1:

−→p j+1 = −→p j + (∆t)−→v j − (∆t)2M−1∇E(−→p j)− (∆t)2M−1∇C(−→p j+1)
Tλ . (2.60)

Equation (2.60) shows −→p j+1 can be separated into an unconstrained step given by:

−→p (0)
j+1 = −→p j + (∆t)−→v j − (∆t)2M−1∇E(−→p j) , (2.61)

followed by a correction due to the constraint forces, denoted δ−→p j+1, given by:

δ−→p j+1 = −→p j+1 −−→p (0)
j+1

= −(∆t)2M−1∇C(−→p j+1)
Tλ .

(2.62)

Finally, the constraint enforcing step δ−→p j+1 and the new Lagrange multipliers λ can be
written as the roots of the following system of equations:

F (δ−→p j+1, λ) = δ−→p j+1 + (∆t)2M−1∇C(−→p j+1)
Tλ = 03n

C(−→p j+1) = 0m .
(2.63)

The meaning of F (δ−→p j+1, λ) is to measure the deviation of the atomic coordinates away
from the forces due to the potential and constraint forces, it states that the unconstrained

35

step is corrected by the constraint forces. The function C(−→p j+1) measures the deviation
of −→p j+1 from the constraint manifold, defined in Equation (2.48).

Step and Project(SAP)

Step and Project (SAP) is a different perspective from ICD. It views the correction of the

unconstrained step, δ−→p j+1, as a projection of −→p (0)
j+1 to a point on the constraint manifold

closest to −→p (0)
j+1.

In other words, −→p (0)
j+1 and −→p j+1 are as close as possible, and this closeness is measured

using the L2 norm of the mass-weighted displacement δ−→p j+1:

(δ−→p j+1)
TM(δ−→p j+1) ,

where δ−→p j+1 = −→p j+1 −−→p (0)
j+1 is the correction of the unconstrained step.

SAP solves the following optimization problem to finding the closest point on the
constraint manifold to the unconstrained step:

min
1

2(∆t)2
(δ−→p j+1)

TM(δ−→p j+1)

s.t. C(−→p j+1) = 0m .

(2.64)

The constant 1/2(∆t)2 will become clear in Theorem 2.8.1. The Lagrangian of the optimization
problem for SAP in Equation (2.64) is:

LSAP (δ−→p j+1, λ) =
1

2(∆t)2
(δ−→p j+1)

TM(δ−→p j+1) + C(−→p j+1)
Tλ . (2.65)

ICD and SAP will find the same δ−→p j+1, and λ. This agreement is given as Theorem 1
in [30] and also presented as Theorem 2.8.1 below, where a more detailed explanation is
given.

Theorem 2.8.1 (Agreement between ICD and SAP). ICD and SAP finds the same
solution.

36

Proof. A stationary point (δ−→p j+1, λ) for SAP satisfies the following stationary equations:

∂LSAP (δ−→p j+1, λ)

∂δ−→p j+1

= 03n

∂LSAP (δ−→p j+1, λ)

∂λ
= 0m .

(2.66)

Substituting in the expression for LSAP (δ−→p j+1, λ) from Equation (2.65) shows the stationary
equations are given by:

1

(∆t)2
Mδ−→p j+1 +∇C(−→p j+1)

Tλ = 03n

C(−→p j+1) = 0m .

(2.67)

Rearranging gives:
δ−→p j+1 + (∆t)2M−1∇C(−→p j+1)

Tλ = 03n

C(−→p j+1) = 0m .
(2.68)

The linear system of Equation (2.68) is the same as the ICD system given in Equation
(2.63) and repeated below:

F (δ−→p j+1, λ) = δ−→p j+1 + (∆t)2M−1∇C(−→p j+1)
Tλ = 03n

C(−→p j+1) = 0m .
(2.69)

Therefore, (δ−→p j+1, λ) are the roots of the ICD system and also a stationary point for
SAP.

Even though ICD and SAP finds the same solutions, the SAP paradigm is more powerful
since it leads to the Fast Projection algorithm discussed next.

Fast Projection (FP) is an Approximation of SAP

Fast Projection is an approximation of the SAP method. Instead of finding the closest
point to the unconstrained step on the constraint manifold, −→p j+1, Fast Projection finds a
sequence of small steps approaching the constraint manifold:

−→p (0)
j+1,
−→p (1)

j+1,
−→p (2)

j+1,
−→p (3)

j+1, . . .

37

where −→p (0)
j+1 is given by Equation (2.61) and

−→p (k)
j+1 = −→p (k−1)

j+1 + δ−→p (k−1)
j+1 for k = 1, 2, . . . ,

and δ−→p (k−1)
j+1 is a small step.

The following discussion shows how to find −→p (1)
j+1 from −→p (0)

j+1. Since ‖ δ−→p (0)
j+1 ‖ is small,

C(−→p (1)
j+1) is very close to its linear approximation near −→p (0)

j+1:

C(−→p (1)
j+1) = C(−→p (0)

j+1 + δ−→p (0)
j+1) ≈ C(−→p (0)

j+1) +∇C(−→p (0)
j+1)δ

−→p (0)
j+1 . (2.70)

Therefore, Fast Projection replaces the constraint in Equation (2.64) with its linear approximation

to solve an optimization problem very similar to SAP to find the optimal step δ−→p (0)
j+1 :

min
1

2(∆t)2
(δ−→p (0)

j+1)
TM(δ−→p (0)

j+1)

s.t. C(−→p (0)
j+1) +∇C(−→p (0)

j+1)δ
−→p (0)

j+1 = 0m .

(2.71)

The meaning of this Fast Projection optimization problem is to find a small step, δ−→p (0)
j+1

such that the linearly approximated constraint near −→p (0)
j+1 is satisfied. This small step then

gives a new point, −→p (1)
j+1, that satisfies the constraints a bit better than −→p (0)

j+1. The only
difference between Equation (2.71) and Equation (2.64) is the constraint manifold has been
linearly approximated. The Lagrangian for the optimization problem in Equation (2.71)
is:

LFP (δ−→p (0)
j+1, δλ

(0))

=
1

2(∆t)2
(δ−→p (0)

j+1)
T
M(δ−→p (0)

j+1) +
(
C(−→p (0)

j+1) +∇C(−→p (0)
j+1)δ

−→p (0)
j+1

)T
δλ(0) ,

(2.72)

where δλ(0) ∈ Rm are m Lagrange multipliers for the small constraint-maintaining force
correcting−→p (0)

j+1. A stationary point of Equation (2.72), (δ−→p (0)
j+1, δλ

(0)), satisfies the following
two stationary equations simultaneously:

∂LFP (δ−→p (0)
j+1, δλ

(0))

∂δ−→p (0)
j+1

=
1

(∆t)2
M(δ−→p (0)

j+1) +∇C(−→p (0)
j+1)

T δλ(0) = 03n , (2.73)

38

∂LFP (δ−→p (0)
j+1, δλ

(0))

∂δλ(0)
= C(−→p (0)

j+1) +∇C(−→p (0)
j+1)δ

−→p (0)
j+1 = 0m . (2.74)

Rearranging Equation (2.73) gives:

δ−→p (0)
j+1 = −(∆t)2M−1∇C(−→p (0)

j+1)
T δλ(0) . (2.75)

Rearranging Equation (2.74) gives:

∇C(−→p (0)
j+1)δ

−→p (0)
j+1 = −C(−→p (0)

j+1) . (2.76)

Substituting Equation (2.75) into Equation (2.76) gives:

(∆t)2M−1
(
∇C(−→p (0)

j+1)∇C(−→p (0)
j+1)

T
)
δλ(0) = C(−→p (0)

j+1) . (2.77)

The δλ(0) that is the solution to Equation (2.77) will be used to find the correction δ−→p (0)
j+1

using Equation (2.75). Then, −→p (1)
j+1 is a point on the linearly approximated constraint

manifold and is found by:
−→p (1)

j+1 = −→p (0)
j+1 + δ−→p (0)

j+1 .

The same process is used to find −→p (2)
j+1,
−→p (3)

j+1, . . . until ‖ C(−→p (k)
j+1) ‖ is smaller than a

predefined threshold level, ε, which is an input to the Fast Projection algorithm. Since a
Fast Projection step is an approximation of SAP, δλ(k) found from the k-th iteration of
Fast Projection can be optionally scaled by a factor, α ∈ R, 0 < α ≤ 1 as needed to ensure
the correction is small. Fast Projection is summarized in Algorithm 1.

2.8.3 Benefits of Fast Projection

Goldenthal et al. [30] provided two benefits of Fast Projection.

1. Firstly, the authors showed Fast Projection can handle three of the four cases where
SHAKE will face difficulty as described in Barth et al.[9]. The remaining case can
be avoided by taking a smaller unconstrained step.

2. Secondly, the authors presented comparisons of Fast Projection with other algorithms,
and showed Fast Projection is faster and more accurate.

These are discussed in the following subsections.

39

Algorithm 1 Fast Projection

INPUT: Initial iterate −→p (0)
j+1 resulting from an unconstrained step, see Equation (2.61).

A small number ε.
OUTPUT: A sequence of iterates −→p (0)

j+1,
−→p (1)

j+1, . . . approaching the constraint manifold
C(R3n).

1: for k = 0, 1, 2, . . . do
2: Solve the linear system:

(∆t)2
(
∇C(−→p (k)

j+1)M
−1∇C(−→p (k)

j+1)
T
)
δλ(k) = C(−→p (k)

j+1) . (2.78)

to find δλ(k).
3: Find the correction δ−→p (k)

j+1:

δ−→p (k)
j+1 = −(∆t)2M−1∇C(−→p (k)

j+1)
T δλ(k) . (2.79)

4: Update −→p (k+1)
j+1 = δ−→p (k)

j+1 +−→p (k)
j+1.

5: if ‖C(−→p (k+1)
j+1)‖ < ε then

6: Return −→p (k+1)
j+1

7: end if
8: end for

40

Advantage of Fast Projection’s Implicit Constraint Force over SHAKE’s Explicit
Constraint Force

Barth et al.[9] discussed four cases where an explicit constraint force will not be able to
produce a correct constraint force after the atomic coordinates have changed. Goldenthal
et al. [30] discussed why treating the constraint force implicitly can lead to improvements,
their discussions are summarized here.

(a) −→p j (b) −→p (0)
j+1

(c)
Superposition.

(d) FP. (e) SHAKE.

Figure 2.1: Case 1: The explicit constraint force used by SHAKE, points in the wrong
direction.

(a) −→p j (b) −→p (0)
j+1

(c)
Superposition.

(d) FP.

Figure 2.2: Case 2: The matrix ∇C(−→p (0)
j+1)∇C(−→p j)

T used by SHAKE is singular. The

matrix ∇C(−→p (0)
j+1)∇C(−→p (0)

j+1)
T used by Fast Projection is nonsingular.

The four cases are presented in Figures 2.1, 2.2, 2.3, and 2.4. The black colored lattice
structures in each figure is the configuration at the beginning of the time interval, with
atomic coordinates denoted by the vector −→p j. The light gray structure is the the result of

one unconstrained step and is denoted −→p (0)
j+1, see Equation (2.61). The exact values of ∆t,

−→v j, and the force due to the potential energy that caused the unconstrained step is not
relevant to this discussion. Rather, the gradient ∇C(−→p) as given by Equation (2.51) and

41

(a) −→p j (b) −→p (0)
j+1

(c)
Superposition.

Figure 2.3: Case 3: Two atoms with the same coordinates causes the matrix ∇C(−→p (0)
j+1)

to be rank deficient. Both SHAKE and Fast Projection produces no solution. This can be
avoided by taking a smaller unconstrained step.

(a) −→p j

1
2
3

(b) −→p (0)
j+1

(c)
Superposition.

(d) FP.

Figure 2.4: Case 4: ∇C(−→p j) is rank deficient.

the related matrix:
∇C(−→p)M−1∇C(−→p)T ,

corresponding to each of the configurations given in Figures 2.1, 2.2, 2.3, and 2.4 are used
to illustrate how Fast Projection enforces constraints differently from SHAKE.

The following discussion assumes all atoms involved are the same, and therefore have
the same mass m. This means M = mI3n, where m is scalar that can be absorbed by
the Lagrange multiplier δλ(k), therefore, we can assume M = I3n. Under this assumption,
SHAKE’s linear system at beginning ofthe first iteration uses the matrix,

∇C(−→p (0)
j+1)∇C(−→p j)

T ,

while Fast Projection’s linear system at the beginning of the first iteration uses the matrix:

∇C(−→p (0)
j+1)∇C(−→p (0)

j+1)
T .

In addition, the constraints to be enforced are the bond lengths between consecutive atoms

42

as determined by the atomic coordinates in −→p j. This means C(−→p j) = 0m holds, whereas

C(−→p (0)
j+1) 6= 0m holds.

1. Case 1 is presented in Figure 2.1. In this case, −→p (0)
j+1 results from a 45◦ rotation and

a stretch of the bond length of −→p j. The main problem illustrated in this case is that
an explicit force does not use the most current relevant information.

Let the atomic coordinates of the black lattice be (0, 0, 0) and (4, 0, 0), and −→p j =
(0, 0, 0, 4, 0, 0)T . Let the atomic coordinates of the light gray lattice be (0,−2, 0), and

(4, 2, 0), and −→p (0)
j+1 = (0,−2, 0, 4, 2, 0)T . Calculating ∇C(−→p j) shows:

∇C(−→p j) = −→p T
j S12 = (p1(j)− p2(j))T

(
I3 | − I3

)
= ((0, 0, 0)− (4, 0, 0))

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (−4, 0, 0)

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (−4, 0, 0, 4, 0, 0)

The explicit constraint force ∇C(−→p j) = (−4, 0, 0, 4, 0, 0) can only make a correction

in the x direction for each atomic coordinate in the unconstrained step. ∇C(−→p (0)
j+1)

is given by:

∇C(−→p (0)
j+1) = (−→p (0)

j+1)
TS12 = (p

(0)
1 (j + 1)− p(0)2 (j + 1))T

(
I3 | − I3

)

= ((0,−2, 0)− (4, 2, 0))

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (−4,−4, 0)

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (−4,−4, 0, 4, 4, 0)

Fast Projection’s implicit constraint force ∇C(−→p (0)
j+1) = (−4,−4, 0, 4, 4, 0) can make

a correction in both the x and y direction for each atomic coordinate in the lattice.

43

As a result, Fast Projection is able to adjust the bond in the diagonal direction, but
SHAKE incorrectly makes a horizontal adjustment, rotating the bond’s orientation.

2. Case 2 is presented in Figure 2.2. In this case, −→p (0)
j+1 results from a 90◦ rotation

and a shrink in the bond length from the beginning of timestep conformation, with
coordinates −→p j. The main problem illustrated in this case is that a large rotation due

to the unconstrained step can cause the matrix used by SHAKE:∇C(−→p (0)
j+1)∇C(−→p j)

T

to be come singular or ill-conditioned (near singular).

Let the black lattice’s atomic coordinates be (0, 0, 0) and (4, 0, 0), let the light gray
lattice’s atomic coordinates be (2, 1.5, 0), and (2,−1.5, 0), giving−→p j = (0, 0, 0, 4, 0, 0)T

and −→p (0)
j+1 = (2, 1.5, 0, 2,−1.5, 0)T . ∇C(−→p j) is given by:

∇C(−→p j) = −→p T
j S12 = (p1(j)− p2(j))T

(
I3 | − I3

)
= ((0, 0, 0)− (4, 0, 0))

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (−4, 0, 0)

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (−4, 0, 0, 4, 0, 0)

∇C(−→p (0)
j+1) is given by:

∇C(−→p (0)
j+1) = (−→p (0)

j+1)
TS12 = (p

(0)
1 (j + 1)− p(0)2 (j + 1))T

(
I3 | − I3

)

= ((2, 1.5, 0)− (2,−1.5, 0))

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (0, 3, 0)

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (0, 3, 0, 0,−3, 0)

44

C(−→p (0)
j+1) is given by:

C(−→p (0)
j+1) =

1

2
(‖ (2, 1.5, 0)− (2,−1.5, 0) ‖2 − ‖ (0, 0, 0)− (4, 0, 0) ‖2) =

1

2
(9− 16) = −3.5

The linear system SHAKE solves at the first iteration is:

∇C(−→p (0)
j+1)∇C(−→p j)

Tλ(0) = C(−→p (0)
j+1)

(0, 3, 0, 0,−3, 0)(−4, 0, 0, 4, 0, 0)Tλ(0) = −3.5

0 = −3.5

This is a contradiction, thus SHAKE is unable to find a solution. On the other hand,
Fast Projection’s first iteration solves the system:

∇C(−→p (0)
j+1)∇C(−→p (0)

j+1)
Tλ(0) = C(−→p (0)

j+1)

(0, 3, 0, 0,−3, 0)(0, 3, 0, 0,−3, 0)Tλ(0) = −3.5

18λ(0) = −3.5

Therefore, large rotations due to an unconstrained step does not cause a problem for
Fast Projection, but can cause the matrix used by SHAKE, ∇C(−→p (0)

j+1)∇C(−→p j)
T to

become singular, or ill-conditioned.

3. In Figure 2.3, the atoms have collided resulting in a bond length of zero, after an
upwards motion. This is a situation where both SHAKE and Fast Projection cannot
find a solution, but can be avoided by taking a small unconstrained step.

In this situation, the unconstrained step has the bond shrunken to have length 0,
and the two atoms have collided. Therefore:

p
(0)
1 (j + 1)− p(0)2 (j + 1) = (0, 0, 0) .

45

The resulting ∇C(−→p (0)
j+1) is given by:

∇C(−→p (0)
j+1) = (−→p (0)

j+1)
TS12 = (p

(0)
1 (j + 1)− p(0)2 (j + 1))T

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1



= (0, 0, 0)

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


= (0, 0, 0, 0, 0, 0)

Fast Projection’s matrix, in this case a scalar, is singular:

∇C(−→p (0)
j+1)∇C(−→p (0)

j+1)
T = 0

SHAKE’s matrix is also singular:

∇C(−→p (0)
j+1)∇C(−→p j)

T = 0

Thus, if a bond length shrinks to 0, and two atoms have the same atomic coordinates,
a row of zeros is added to the gradient of the constraints, making this gradient matrix
rank deficient.

4. Case 4 is presented in Figure 2.4. This case involve a lattice with 4 atoms, three atoms
are labelled in Figure 2.4 (b), where the leftmost atom is assumed to be the first atom,
with label 1. The constraint pairs are the following index pairs: (1, 2), (1, 4), (2, 3),
(3, 4). Since the vector p1(j)− p2(j) and p1(j)− p4(j) are the same, ∇C(−→p j) is rank
deficient, causing the matrix used by SHAKE to also be rank deficient. The following
calculation provides a further clarification.

The atomic coordinates of the 1st to 4th atoms of the lattice at the beginning of the
time interval are: (0, 0, 0), (4, 0, 0), (8, 0, 0), (4, 0, 0) respectively. The beginning of

46

the time interval atomic coordinates give the following ∇C(−→p j) matrix:

∇C(−→p j) =


(−→p j)

TS12

(−→p j)
TS14

(−→p j)
TS23

(−→p j)
TS34

 =


(p

(0)
1 (j + 1)− p(0)2 (j + 1))T

(
I3 −I3 03×3 03×3

)
(p

(0)
1 (j + 1)− p(0)4 (j + 1))T

(
I3 03×3 03×3 −I3

)
(p

(0)
2 (j + 1)− p(0)3 (j + 1))T

(
03×3 I3 −I3 03×3

)
(p

(0)
3 (j + 1)− p(0)4 (j + 1))T

(
03×3 03×3 I3 −I3

)


=


((0, 0, 0)− (4, 0, 0))T

(
I3 −I3 03×3 03×3

)
((0, 0, 0)− (4, 0, 0))T

(
I3 03×3 03×3 −I3

)
((4, 0, 0)− (8, 0, 0))T

(
03×3 I3 −I3 03×3

)
((8, 0, 0)− (4, 0, 0))T

(
03×3 03×3 I3 −I3

)


=


(−4, 0, 0)T

(
I3 −I3 03×3 03×3

)
(−4, 0, 0)T

(
I3 03×3 03×3 −I3

)
(−4, 0, 0)T

(
03×3 I3 −I3 03×3

)
(4, 0, 0)T

(
03×3 03×3 I3 −I3

)


=


−4 0 0 4 0 0 0 0 0 0 0 0
−4 0 0 0 0 0 0 0 0 4 0 0
0 0 0 −4 0 0 4 0 0 0 0 0
0 0 0 4 0 0 4 0 0 −4 0 0

 .

∇C(−→p j) is a rank 3 matrix, this can be verified using singular value decomposition,
thus it is rank deficient.

The atomic coordinates of the 1st to 4th atoms of the lattice at the end of the
unconstrained step are: (2, 0, 0), (4, 2, 0), (6, 0, 0), (4,−2, 0) respectively. The unconstrained

47

step atomic coordinates gives the following ∇C(−→p (0)
j+1) matrix:

∇C(−→p (0)
j+1) =


(−→p (0)

j+1)
TS12

(−→p (0)
j+1)

TS14

(−→p (0)
j+1)

TS23

(−→p (0)
j+1)

TS34

 =


(p

(0)
1 (j + 1)− p(0)2 (j + 1))T

(
I3 −I3 03×3 03×3

)
(p

(0)
1 (j + 1)− p(0)4 (j + 1))T

(
I3 03×3 03×3 −I3

)
(p

(0)
2 (j + 1)− p(0)3 (j + 1))T

(
03×3 I3 −I3 03×3

)
(p

(0)
3 (j + 1)− p(0)4 (j + 1))T

(
03×3 03×3 I3 −I3

)


=


((2, 0, 0)− (4, 2, 0))T

(
I3 −I3 03×3 03×3

)
((2, 0, 0)− (4,−2, 0))T

(
I3 03×3 03×3 −I3

)
((4, 2, 0)− (6, 0, 0))T

(
03×3 I3 −I3 03×3

)
((6, 0, 0)− (4,−2, 0))T

(
03×3 03×3 I3 −I3

)


=


(−2,−2, 0)

(
I3 −I3 03×3 03×3

)
(−2, 2, 0)

(
I3 03×3 03×3 −I3

)
(−2, 2, 0)

(
03×3 I3 −I3 03×3

)
(−2,−2, 0)

(
03×3 03×3 I3 −I3

)


=


−2 −2 0 2 2 0 0 0 0 0 0 0
−2 2 0 0 0 0 0 0 0 2 −2 0
0 0 0 −2 2 0 2 −2 0 0 0 0
0 0 0 0 0 0 −2 −2 0 2 2 0

 .

∇C(−→p (0)
j+1) is a full rank matrix. Multiplying ∇C(−→p (0)

j+1)∇C(−→p (0)
j+1)

T shows this is
also a full rank matrix:

∇C(−→p (0)
j+1)∇C(−→p (0)

j+1)
T =


16 0 0 0
0 16 0 0
0 0 16 0
0 0 0 16


Multiplying out ∇C(−→p (0)

j+1)∇C(−→p j)
T gives:

∇C(−→p (0)
j+1)∇C(−→p j)

T =


16 8 −8 0
8 16 0 0
−8 0 16 8
0 −8 8 16

 ,

which is not full rank.

This concludes the review of the four cases discussed by Barth et al.[9] which was used by

48

Goldenthal et al. [30] to show the implicit constraint force is more advantageous.

Note that these four cases showed two situations where the gradient of the constraint
can become rank deficient. The first situation is as follows. Let −→p denote the vector
of atomic coordinates, and let pa denote the atomic coordinate of the a-th atom. For a
constraint on the distance between the a-th and b-th atom, if

pa − pb = 03 ,

then ∇C(−→p) will have a row of zeros and is therefore rank deficient. This means a force
pushing these two atoms away from each other cannot be found.

In the second situation, suppose the a-th atom is involved in more than one constraint.
For all constraints that the a-th atom is involved in, if there exists atomic indices b1 and
b2 such that,

pa − pb1 = α(pa − pb2) ,

where α ∈ R is an arbitrary constant, then ∇C(−→p) is rank deficient. This means in
particular that three atoms cannot be constrained to be collinear.

Speed and Accuracy of Fast Projection

Fast Projection is faster and more accurate than other iterative methods. This is presented
in Figure 5 of [30], where Fast Projection was compared with ICD, Shake, Jacobi, and
Gauss-Siedel. Figure 5 has been reproduced in Figure 2.5. The main conclusions from
Figure 5 are:

• Fast Projection uses less time than all other algorithms to enforce constraints to
higher accuracy (less strain). See Figure 5 a) of [30].

• As n and m increase, Fast Projection’s computing time increases the slowest among
all four algorithms. See Figure 5 b) of [30].

2.8.4 Termination of Fast Projection

The convergences of Rosen’s GPM, of which Fast Projection is a part of, is a research
direction of itself. See for example Rosen’s original work [66, 67], and also the publications
from Du and Zhang [27, 29, 28].

49

Figure 2.5: Figure 5 of [30]. This figure shows Fast Projection’s performance is the fastest
when compared with four other iterative constraint enforcing algorithms.

Assuming that the matrix in Fast Projection’s linear system is full rank, and assuming
a sequence of iterates converge to the constraint manifold exists, the following proof shows
Fast Projection will find this sequence of iterates and terminate (converge).

Theorem 2.8.2 (Termination of the Fast Projection Algorithm). Assume that the matrix
in Fast Projection’s linear system is full rank for all iterations k:(

∇C(−→p (k)
j+1)∇C(−→p (k)

j+1)
T
)
.

A sequence of iterates converge to the constraint manifold exists if and only if Fast Projection
terminates.

Proof. If a sequence of iterates approaching the constraint manifold exists, then

δ−→p (k)
j+1 → 03n as k →∞ .

By Equation (2.76)

∇C(−→p (k)
j+1)δ

−→p (k)
j+1 = −C(−→p (k)

j+1) .

This means
C(−→p (k)

j+1)→ 0m

and hence ‖ C(−→p (k)
j+1) ‖→ 0, and Fast Projection will terminate.

50

Conversely, starting with the assumption that Fast Projection terminates, then the
following must be true:

C(−→p (k)
j+1)→ 0m .

But from Equation (2.78)

(∆t)2
(
∇C(−→p (k)

j+1)M
−1∇C(−→p (k)

j+1)
T
)
δλ(k) = C(−→p (k)

j+1)→ 0m .

Since
(
∇C(−→p (k)

j+1)∇C(−→p (k)
j+1)

T
)

is full rank and invertible, this must mean

δλ(k) =
1

(∆t)2

(
∇C(−→p (k)

j+1)∇C(−→p (k)
j+1)

T
)−1

C(−→p (k)
j+1)→ 0m as k →∞

From Equation (2.79), this also means

δ−→p (k)
j+1 = −(∆t)2M−1∇C(−→p (k)

j+1)
T δλ(k) → 03n .

Thus a sequence of iterates that approach the constraint manifold has been generated.

2.8.5 Remark: Rosen’s Correction and Fast Projection

Rosen’s Correction and Fast Projection are the same algorithm developed independently
(Goldenthal et al. did not cite Rosen’s work). This independence is significant in its
own right in that both authors emphasized different mathematics 1. Rosen emphasized
generalizing from linear constraints to nonlinear constraints; Goldenthal et al. emphasized
using an implicit constraint force.

However, this independence also shows a serious defect of the approach on R3n: the
de-emphasis of applying “abstract” concepts to different problem contexts.

This is not the case for the matrix manifold optimization paradigm, which applies
abstract concepts from differential geometry to formulate optimization algorithms for a
wide range of matrix manifolds. For example, the particular operation performed by
both Rosen’s Correction and Fast Projection is called a retraction [1, 2], different matrix
manifolds implement their own retractions.

1Recall Newton, Lagrange, and Hamilton showed the equations of motion can be derived using different
approaches.

51

2.9 Summary

This chapter described the modelling of ENMs on R3n. The Hookean potential energy
was introduced, this potential has been used in NMA and to interpolate transitional
conformations between a given beginning and ending conformation, as well as for avoiding
atomic collisions.

Enforcing constraints on R3n has also been discussed. A review of Goldenthal et al.’s
derivation of the Fast Projection algorithm was given. Fast Projection was already known
to Rosen as early as 1961. The fact that optimization algorithms in R3n do start with
abstract concepts, and apply these abstract concepts to different problems, is one of the
serious defects of modelling protein ENMs using this space. In this case, Fast Projection
could have been introduced earlier.

52

Chapter 3

Unconstrained Optimization with
Fixed Rank PSD Matrices

3.1 Introduction

This Chapter reviews the result that the EDM completion (EDMC) problem can be
formulated as a fixed rank PSD matrix manifold optimization problem. This Chapter’s
discussion is based on the publication from Mishra et al. [58]. Since a protein structure’s
Gram matrix is a point on Sn,3+ ' Rn×3

∗ /O3, the mathematics reviewed in this Chapter are
fundamental for modelling ENMs on the rank 3 PSD matrix manifold. Despite the close
connection between the EDMC problem and modelling of ENMs, these two areas has to
date developed independently from each other.

This Chapter is organized as follows:

1. Section 3.2 defines the EDMC problem.

2. Section 3.3 introduces the PSD objective function of [3].

3. Section 3.4 reviews the approach from [58] of solving the EDMC problem by solving a
sequence of fixed rank PSD matrix manifold optimization problems. This formulation
is reviewed as an example of formulating optimization problems on the matrix manifold
Sn,r+ ' Rn×r

∗ /Or without any constraints.

4. Section 3.5 introduces the Riemannian trust region (RTR) algorithm which was used
in [58] to solve the fixed rank problems.

53

5. Section 3.6 discusses the geometric objects required by matrix manifold optimization
algorithms, such as the RTR algorithm, for the fixed rank EDMC problem.

Constrained optimization on Sn,r+ has been discussed by Journée et. al. [34] not in the
context of the EDMC problem, but for formulating the max-cut SDP relation problem and
the sparse PCA problem. Journée et. al.’s formulas for geometric objects for constrained
optimization will be discussed in Chapter 6 and modified in order to describe the constraints
of a protein structure. See also Section C.6 for a discussion on facial reduction and the
EDMC problem.

3.2 The EDM Completion (EDMC) Problem

The EDM and its embedding dimension has been defined in Section C.4. The definition
of the EDMC problem is given in Definition 3.2.1. The EDMC problem is an example of
the imputation of missing values task, one of the examples of machine learning problems
given in Goodfellow et al. [32].

Definition 3.2.1 (The EDM Completion (EDMC) Problem). For a collection of n points,
assume some of the quadrances between the points can be specified, while the quadrances
between other pairs of points cannot be specified. The EDM for these points is therefore an
incomplete EDM.

The EDMC problem takes as input an incomplete EDM, D, where some matrix entries
are specified, while other entries are unspecified. The EDMC problem produces an output
EDM, D, such that if the ab-th entry in D is specified, then the ab-th entry in the output
EDM is the same:

Dab = Dab ,

and the unspecified entries in D are determined in the output EDM, D.

The EDMC problem can be defined using the language of graph theory (see for example
[44] page 37). Associated with an n× n incomplete EDM is a weighted undirected graph

G = (N,E,w)

where N is the set of nodes of the graph, defined as:

N = {1, . . . , n} .

54

E is the set of undirected edges, defined as:

E = {ab | a, b ∈ N, a 6= b and Dab is specified.} .

These edges are undirected so that the edge ab is the same as the edge ba. The set w is the
set of weights for the edges.

w = {wab = Dab ∀ab ∈ E} .

The 0− 1 adjacency matrix H for the graph G is defined as:

Hab = Hba =

{
1 if ab ∈ E
0 if ab /∈ E

The graph G is called the input EDM graph.

The EDMC problem takes the input EDM graph G and produces as output a new graph
where all possible pairs of undirected edges are present with their weights. If an edge,
ab ∈ E, is already in the input graph, E, with weight wab, the edge appears in the output
graph with the same weight.

The problem of determining protein structures from Nuclear Magnetic Resonance (NMR)
spectroscopy data can be formulated as an EDMC problem. This problem is defined in
Definition 3.2.2. The Protein Structure-NMR problem is not the problem addressed in this
thesis. It has been formulated as a PSD optimization problem by Alipanahi et al. in [5, 4].

Definition 3.2.2 (Protein Structure Determination from Nuclear Magnetic Resonance
(NMR) spectroscopy data (Protein Stucture-NMR)). Nuclear Magnetic Resonance (NMR)
can be used to measure inter-atomic distances between protein atoms that are within the
range of 5 to 6 Å apart, where 1Å = 10−10m. These are the “specified entries” of a protein’s
EDM. Larger range inter-atomic distances are not known, and are the “unspecified entries”
of a protein’s EDM. These unspecified entries must be determined in order to determine
the position of all of the protein’s atoms.

The EDMC problem has applications for areas outside of protein structure modelling as
well. For example, another application is in sensor network localization. Further discussion
of solving SNL via EDMC can be found in [45, 44, 46].

Definition 3.2.3 (Sensor Network Localization (SNL)). Assume locations of sensors are
given by their 3-D Cartesian coordinates. Assume that sensors are aware of their distances

55

to nearby sensors. Assume also that there is a large number of sensors and the use of a
global positioning system (GPS) to determine all of their locations is very expensive.

The SNL problem takes as input a list of distances between each sensor and its neighbours,
subject to a threshold distance.

The SNL problem outputs the 3-D Cartesian coordinates of all the sensors. Localization
means to determine the 3-D Cartesian coordinate of a sensor.

3.2.1 Low Embedding Dimension EDMC

The SNL problem, given in Definition 3.2.3 and the Protein Stucture-NMR problem, given
in Defintion 3.2.2 are both examples of EDMC problems where a low embedding dimension
solution is required. This is because both sensors and protein atoms are points that exist in
3D space, and thus the EDM has embedding dimension 3, which is small compared to the
total number of points. As discussed in Section 2.6.4 of Krislock [44], the low embedding
dimension EDMC problem is NP-hard in general, but specific instances of this problem
can be solved efficiently, as the work of Krislock and Wolkowicz [44, 45], and Mishra et al.
[58] has shown. Using rank minimizing heuristics to formulate the EDMC problem is one
research direction for finding low rank EDMs. This approach is reviewed in Section 2.6.7
of Krislock [44].

The approach proposed by Mishra et al. [58] finds low embedding dimension EDMs
by solving a sequence of fixed rank PSD matrix manifold optimization problems, starting
with rank 1. Since the mathematics of the fixed rank problem is fundamental for modelling
ENMs, it is used as an example to introduce fixed-rank PSD matrix manifold optimization
in Section 3.4 and Section 3.6.

3.3 The PSD Objective Function for EDMC

Suppose there are n points, and the EDM of these points, D, is incomplete. The EDMC
problem was formulated as a semidefinite optimization problem in Alfakih (1999) [3] with
the objective function:

f(X) =‖ H ◦ (K(X)−D) ‖2F . (3.1)

The matrix X is an n×n PSD matrix, X � 0. The matrix H is the 0−1 adjacency matrix
defined in Definition 3.2.1. The operation ◦ represents element-wise matrix multiplication.

56

The matrix D is the partial EDM whose missing entries needs to be determined, and K(·)
is the linear isomorphism between the PSD cone and the EDM cone, see Section C.5.

The objective function given by Equation (3.1) has the meaning of finding the closest
EDM K(X) to the input incomplete EDM D. The EDM K(X) and D are considered
close if the squared Frobenius norm, ‖ · ‖2F , of their difference is small, which is what the
objective function is measuring.

Other aspects of the EDMC problem discussed in [3] include:

• Ensuring that X is a centered Gram matrix. This means X1n = 0n, this constraint
means the coordinates of the points is centered at the origin. This constraint reduces
the problem from finding an n×n matrix X to a problem of finding an (n−1)×(n−1)
matrix X. That is, the problem is formulated on the cone Sn−1+ rather than Sn+.

Note that this is the same constraint as the constraint for conservation of linear
momentum used in modelling ENMs on R3n, see Section 2.7.

• Quadrance constraints can also be added to the optimization problem.

Finally, a primal-dual interior-point algorithm was developed to solve this optimization
problem. This solution approach is not explored in this thesis.

Meyer [55] pointed out that because of the linear isomorphism K(·), the EDMC problem
when viewed as an optimization problem on Sn+ or Sn,r+ becomes a linear regression problem.
See also Section 8.1.

3.4 Fixed Rank PSD Matrix Manifold Optimization

Solving low rank PSD optimization problems have been examined by Journée et al. [34]
where an algorithm that solves a sequence of fixed rank PSD matrix manifold optimization
problems was introduced. The authors did not give a name to that algorithm, referring to
it only as a “meta algorithm”. For ease of discussion, this meta algorithm is referred to
here as “the rank incremental algorithm”.

Mishra et al. [58] used this rank incremental algorithm to solving the low embedding
dimension EDMC problem, the Matlab code can be found at https://bamdevmishra.in/
codes/edmcompletion/. The geometry of the fixed rank problem is relevant to modelling
protein structures because a protein’s Gram matrix is a fixed rank (rank 3) PSD matrix.
Since Gram matrices of other ranks are not relevant to modelling protein ENMs, the details

57

https://bamdevmishra.in/codes/edmcompletion/
https://bamdevmishra.in/codes/edmcompletion/

of the rank incremental algorithm will not be discussed, see Journée et al. [34], Mishra et
al. [58], and the Matlab code for further details. The discussion from this point on will
focus on solving the fixed rank problem only.

An optimization problem that requires its solution to be a fixed rank Gram matrix is
an optimization problem on the Riemannian manifold Sn,r+ , where r denotes the fixed rank.
Such an optimization problem can be solved using either the gradient descent algorithm
or the trust region algorithm generalized to Sn,r+ [58].

Optimization algorithms on R3n (equivalently Rn) can be generalized to matrix manifolds,
which are Riemannian manifolds where a point on the manifold can be represented by
a matrix, see [1]. Appendix D provides the background needed to define a Riemannian
manifold, and the compact Stiefel manifold, the non-compact Stiefel manifold, the Grassmann
manifold, and the fixed rank PSD matrix manifolds are given as examples of matrix
manifolds.

Absil et al. [1] has used abstract differential geometry as a foundation, and showed how
such abstract ideas can be applied to various matrix manifolds.

The trust region algorithm generalized to Riemannian manifolds is called the Riemannian
trust region (RTR) algorithm. The trust region algorithm has the desirable superlinear
convergence properties of the Newton algorithm, but is much less sensitive to initial
conditions than the Newton algorithm (see [1] Chapter 7). Another advantage of the
trust region algorithm over Newton’s algorithm is that the subproblem is solved by the
tCG algorithm, which does not require the Hessian matrix of the objective function to be
formed explicitly, nor the inverse of the Hessian matrix to be found. This means the tCG
algorithm can be conveniently generalized to the situation where the Riemannian manifold
is not R3n, where the Hessian matrix is instead given as a linear operator acting on a matrix
or vector, as seen in Section 3.6.5. Due to these advantages, the trust region algorithm
will be used in this thesis.

Mishra et al.[58] showed the trust region algorithm is preferable to gradient descent for
the EDMC problem following reasons:

• The trust region algorithm requires less iterations for convergence than gradient
descent in the EDMC problem (see discussion in [58] Section V and VI).

• As the number of points n increases, the trust region algorithm has been observed
to scale better than gradient descent for the EDMC problem. (see discussion in [58]
Section VI).

58

In Section 3.5 and Section 3.6, and the rest of this section, the Gram matrix factorization
will be denoted as:

X = Y Y T ,

instead of:
X = PP T .

The reason for this notation change is that P has been defined to be an n×3 matrix in this
thesis. However, the fixed rank problem currently being discussed is a subroutine called
by the rank incremental algorithm. At the beginning of the rank incremental algorithm,
the Y given as input to the fixed rank problem is n× 1, in the next iteration of the rank
incremental algorithm Y is n×2, and so on. Thus, Y will be defined to be an n×r matrix,
instead of an n× 3 matrix.

The fixed rank problem solved by Mishra et al. [58] is:

min
Y Y T∈Sn,r

+

f(Y Y T) =‖ H ◦ (K(Y Y T)−D) ‖2F , (3.2)

where f(Y Y T) is the objective function for the fixed rank problem. Equation (3.2) means
the optimization problem will find the rank r PSD matrix Y Y T whose corresponding EDM,
K(Y Y T), is closest to D. The is the same objective function as Equation (3.1), except the
Gram matrix is factorized.

The factorization of the Gram matrix as X = Y Y T is invariant to the transformation:

Y → Y Q ,

where Q ∈ Or, and Or = {Q|QTQ = QQT = Ir}, Ir is the r × r identity matrix. Since X
is rank r and Y is an n× r matrix of maximal rank r, Y is an element of the non-compact
Stiefel manifold, Y ∈ Rn×r

∗ . The optimization problem in Equation (3.2) is defined on the
quotient manifold:

Sn,r+ ' Rn×r
∗ /Or

This quotient manifold has equivalence classes [Y] defined as:

[Y] = {Y Q|Q ∈ Or} . (3.3)

That is, the matrix Y Q is the same point as the matrix Y on the quotient manifold
Sn,r+ ' Rn×r

∗ /Or, for any Q ∈ Or.

When solving optimization problems on quotient manifolds, any matrix from an equivalence
class can be used to represent that equivalence class. This is given as the following definition

59

for a point on Sn,r+ ' Rn×r
∗ /Or.

Definition 3.4.1 (A point on the quotient manifold Sn,r+ ' Rn×r
∗ /Or). Sn,r+ ' Rn×r

∗ /Or

is a quotient manifold and each point on the manifold is an equivalence classes given by
Equation (3.3) with potentially an infinite number of elements. In numerical algorithms
and when storing in computer memory, any matrix Y ∈ [Y] can be used to represent
its equivalence class, and mathematical formulas are expressed using this “representative
matrix”. This means a point on Sn,r+ ' Rn×r

∗ /Or can be represented simply by the matrix
Y .

Following Definition 3.4.1, expressions like [Y][Y]T will not appear in the mathematical
formulas relating to the fixed rank EDMC problem. The simpler notation Y Y T will still be
used. The notation f(Y Y T) and f(Y) will both be used to denote the objective function
in Equation (3.2). The notation f(Y) is preferable to f(Y Y T) since it is easier to read.

As discussed in [78] and Section D.6.5, Sn,r+ is diffeomorphic to many geometries. In
this thesis, unless stated otherwise, the diffeomorphism Sn,r+ ' Rn×r

∗ /Or will always be
assumed, similarly for protein ENMs, Sn,3+ ' Rn×3

∗ /O3 is assumed.

3.5 The Riemannian Trust Region (RTR) Algorithm

The RTR algorithm can be used to solve the fixed rank problem posed in Equation (3.2).
The RTR algorithm requires the following geometric objects, they are to be defined in
Section 3.6:

• The Riemannian metric on the tangent space. See Section 3.6.1.

• The tangent space, TY Sn,r+ . See Section 3.6.2.

• A projection to the horizontal space, ΠHY
(·). See Section 3.6.3.

• The Riemannian gradient, gradf(Y). See Section 3.6.4.

• The Riemannian Hessian in a direction η, Hessf(Y)[η]. See Section 3.6.5

• The retraction from the tangent space to the matrix manifold, RY (η). See Section
3.6.6.

60

The reminder of this section presents a review of the RTR algorithm.

Since this optimization problem has no constraints, any point Y ∈ Sn,r+ is a feasible
point, which means a point the optimization algorithm will consider as a candidate solution.
The feasible region, which is the set of all feasible points, is the entire manifold Sn,r+ .
The feasible region is also called the search space since this is the space the optimization
algorithm will search for the optimal Y which will minimize the objective function.

For a given rank r, the RTR algorithm generates a sequence of iterates of n×r matrices,
Y0, . . . , Yk such that:

lim
k→∞

gradf(Yk) = 0n×r . (3.4)

This means Yk approaches a critical point of the objective function f(Y) defined in Equation
(3.2) (see [1] Theorems 7.4.2 and 7.4.4). Y0 is the initial iterate, it is an input to the
algorithm.

At the k-th iteration of the RTR algorithm, an update vector η is found by solving the
trust region subproblem. Let the trust region radius at the k-th iteration be given by ∆k,
the trust region subproblem is the following optimization problem:

min mk(η) = f(Yk) + 〈gradf(Yk), η〉+
1

2
〈η,Hessf(Yk)[η]〉 ,

s.t. 〈η, η〉 ≤ ∆2
k ,

where η ∈ TYkS
n,r
+ .

(3.5)

The tCG algorithm, given in Algorithm 3, is used to solve the trust region subproblem,
this is following the suggestion by Absil et al. , see Algorithm 11 [1], see also page 205 of
[18] which discusses some helpful recurrences.

Let η∗ be the output of the tCG algorithm that solves the trust region subproblem.
This η∗ is accepted or rejected, and the trust region radius is also increased or decreased,
based on the ratio ρk:

ρk =
f(Yk)− f(RYk(η∗))

mk(0)−mk(η∗)
. (3.6)

The meaning of ρk is to compare the decrease between the objective function f(RYk(η∗)),
with the quadratic approximation mk(η

∗). This comparison is an indication of how well
the quadratic model mk(η

∗) is in agreement with the objective function. If the agreement
is “very good”, the trust region radius is increased, if the agreement is “not very good”,
the trust region radius is decreased. “Very good” or not is determined as follows. Let
ρ′ ∈ [0, 1

4
), e.g. ρ′ = 0.1, and consider the following possibilities:

61

• If ρk < ρ′, the objective function, f(RYk(η∗)), changed very little or may have
even increased meaning the quadratic model mk(η

∗) from Equation (3.5) is a very
inaccurate approximation of the objective function. In this case, η∗ is rejected, and
the trust-region radius is decreased.

• If ρk > ρ′ but it is still small (e.g. ρk <
1
4
), the decrease in the objective function is

considered a reasonable progress, but the quadratic model mk(η
∗) is still not a very

good approximation of the objective function f(RYk(η∗)). Therefore η∗ is accepted,
but the trust region radius is still decreased.

• If ρk > ρ′ and ρk ≈ 1, then there is good agreement between the quadratic model
mk(η

∗) from Equation (3.5) and the objective function f(RYk(η∗)). Since ρk > ρ′,
good progress has been made in decreasing the cost function so η∗ is accepted. Since
the quadratic model mk(η

∗) is in close agreement with the objective function, the
trust region radius is increased, with the hope the quadratic model will still be a
good approximation of the objective function for the bigger trust region.

• If ρk � 1, then the quadratic model mk(η
∗) is a very inaccurate approximation of the

objective function f(RYk(η∗)), but nonetheless, the tCG algorithm has found a step
that greatly reduces the objective function. In this case, the trust region radius is
increased, with the hope a big decrease in the objective function can be found again.

The above ideas lead to the RTR algorithm in Algorithm 2. The RTR algorithm stops
when the Riemannian gradient gradf(Yk) has a very small norm, see the condition given
in Equation (3.4).

3.6 Geometric Objects for EDMC on Sn,r+ ' Rn×r
∗ /Or

In Absil et al.’s [1] development of matrix manifold optimization, differential geometry plays
a central role. This abstraction allows the connection between optimization algorithms on
R3n and other matrix manifolds to be made clear. In Nocedal and Wright’s well-known
book [61], the discussion is restricted to R3n, and abstract differential geometry plays a
lesser role.

Matrix manifold algorithms, such as the RTR algorithm discussed in Section 3.5 require
various geometric objects to be defined for the matrix manifold in question. These objects
are discussed in the following subsections for the EDMC problem on the matrix manifold
Sn,r+ ' Rn×r

∗ /Or .

62

Algorithm 2 Riemannian Trust Region (RTR)

INPUT: Initial iterate Y0, ∆ > 0, ∆0 ∈ (0,∆), and ρ′ ∈ [0, 1
4
).

OUTPUT: Sequence of iterates {Yk}
1: for k = 0, 1, 2, . . . do
2: Obtain ηk using Algorithm 3.

3: Evaluate ρk =
f(Yk)−f(RYk

(ηk))

mk(0)−mk(ηk)
.

4: if ρk <
1
4

then
5: ∆k+1 = 1

4
∆k

6: else if ρk >
3
4

and ‖ ηk ‖= ∆k then

7: ∆k+1 = min(2∆k,∆)
8: else
9: ∆k+1 = ∆k

10: end if
11: —————————————————————–
12: if ρk > ρ′ then
13: Accept Yk+1 = RYk(ηk).
14: else
15: Reject Yk+1 = Yk.
16: end if
17: Check stopping criterion, for example:
18: if ‖ gradf(Yk+1) ‖F< ε for small ε then
19: Algorithm Terminates.
20: end if
21: end for

63

Algorithm 3 Truncated Conjugate Gradient (tCG) for the trust-region subproblem

1: Set j = 0, η0 = 0, r0 = gradf(Yk), δ0 = −r0.
2: for j = 0, 1, 2, . . . do
3: Set αj = 〈rj, rj〉/〈δj,Hessf(Yk)[δj]〉.
4: Set ηj+1 = ηj + αjδj.
5: if 〈δj,Hessf(Yk)[δj]〉 ≤ 0 or ‖ ηj+1 ‖≥ ∆ then
6: Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖ η ‖= ∆.
7: τ is given by the positive root of

τ 2〈δj, δj〉+ 2τ〈ηj, δj〉 = ∆2 − 〈ηj, ηj〉 (3.7)

8: Return η
9: end if

10: Set rj+1 = rj + αjHessf(Yk)[δj]
11: if ‖ rj+1 ‖≤ min(‖ r0 ‖θ, κ) then
12: Return ηj+1.
13: end if
14: Set βj+1 = 〈rj+1, rj+1〉/〈rj, rj〉
15: Set δj+1 = −rj+1 + βj+1δj.
16: end for

64

In each subsection, the geometric object for an abstract quotient manifold is presented
first, then the corresponding geometric object for the EDMC problem is presented. This
order of presentation attempts to follow the presentation in Absil et al. [1] to highlight the
importance of abstract differential geometry.

The Notation M vs. M

When discussing an abstract quotient manifold (see definition in Section D.6.4), the overline
notation

x ∈M ,

is used to denote a point on the structure space M, where the line is placed on both the
structure space and the point. The notation

x ∈M =M/ ∼ ,

is used for a point on the abstract quotient manifold. Similarly, an overline is placed on
tangent vectors on the tangent space of the structure space,

η ∈ TxM ,

but not on the tangent space of the quotient manifold:

η ∈ TxM .

However, when discussing Sn,r+ ' Rn×r
∗ /Or in particular, the overline notation will not be

used to differentiate between objects in the structure space and the quotient manifold.
This is to make the notation easier to read, and to emphasize that when implementing
these formulas in a computer program these objects are not differentiated. Recall from
Defintion 3.4.1, a point on Sn,r+ ' Rn×r

∗ /Or is represented by a point Y ∈ Rn×r
∗ with no

overline placed on the matrix.

3.6.1 Riemannian Metric

Riemannian metrics were introduced in Section D.5. For an abstract quotient manifold
M = M/ ∼, let the Riemannian metric defined on the tangent space of a point x ∈ M
be denoted

g(·, ·) ,

65

and the Riemannian metric on the tangent space of x ∈M =M/ ∼ be denoted

g(·, ·) .

If g(·, ·) does not change along the equivalence class π−1(x), then the same metric can be
used for the quotient manifold, see [1] page 49 and [78] page 27. That is:

g(·, ·) = g(·, ·) .

The manifold Sn,r+ ' Rn×r
∗ /Or is a quotient manifold with structure space Rn×r

∗ , which
is an embedded submanifold of the Euclidean space Rn×r. The Euclidean metric from Rn×r

defined by:
Trace(ηT ξ)

where η, ξ ∈ Rn×r, does not depend on Y . This Euclidean metric will be used as the
Riemannian metric on the tangent space of a point Y ∈ Sn,r+ .

3.6.2 Tangent Space

Figure 3.1 is a schematic diagram of a tangent space to an abstract quotient manifold
M =M/ ∼, with structure space M.

In Figure 3.1, x ∈ M = M/ ∼ is a point on the quotient manifold, and x ∈ M
is a point on the structure space. An equivalence class π−1(x) ⊂ M is an embedded
submanifold of M. The tangent space of π−1(x) at a point x ∈ π−1(x) ⊂ M is denoted
VxM and is called the vertical space at x (see for example [1] and [78]). Mathematically,
this is written as:

VxM = Tx(π
−1(x))

The horizontal space is the orthogonal complement of the vertical space:

VxM⊥ HxM

The horizontal space and vertical space together make up the tangent space:

HxM⊕VxM = TxM , (3.8)

A mapping that assigns to each x ∈M a horizontal space HxM at x is called a horizontal
distribution.

66

Figure 3.1: Vertical and horizontal spaces. Figure 2.6 of (Vandereycken, 2010 [78]).

A tangent vector on the tangent space of the quotient manifold, η ∈ TxM, has a
unique horizontal lift vector η ∈ HxM on the horizontal space defined by the horizontal
distribution. Thus, tangent vectors on the tangent space of the quotient manifold are
represented by their horizontal lift in the horizontal space.1

Vectors in the horizontal space point to the direction of interest in optimization algorithms
involving quotient manifolds.

For the quotient manifold Sn,r+ ' Rn×r
∗ /Or, the structure space is Rn×r

∗ . Tangent space
of Rn×r

∗ at a point Y is denoted TYRn×r
∗ . Proposition 3.6.1 shows TYRn×r

∗ is isomorphic to
Rn×r.

Proposition 3.6.1 (TYRn×r
∗ ' Rn×r). Let Y ∈ Rn×r

∗ , the tangent space at the point Y ,
denoted TYRn×r

∗ , is isomorphic to Rn×r, denoted:

TYRn×r
∗ ' Rn×r .

Proof. The first component of the vectors in TYRn×r
∗ are those vertical to the equivalence

1For M =M/ ∼, the notation VxM and HxM are seen in [58], [34], [55] page 28, [78] page 28. This
notation is a bit confusing since the tangent space of a point on the quotient manifold should not have
a vertical space. The notation VxM and HxM emphasizing the structure space seems to be a better
notation.

67

classes defined in Equation (3.3):

[Y] = {Y Q | Q ∈ Or} .

Let VYRn×r
∗ denote the vertical space, these vectors are of the form:

VYRn×r
∗ = {Y Ω | Ω ∈ Rr×r , ΩT = −Ω} . (3.9)

The vertical space has Y pre-determined, so its dimension is determined by the number
of entries in the r × r skew symmetric matrix Ω that can be chosen freely. Thus, the
dimension of VYRn×r

∗ is:

dim(VYRn×r
∗) =

r(r − 1)

2
. (3.10)

Let ξ ∈ HYRn×r
∗ , then ξ is orthogonal to VYRn×r meaning that:

Trace(ξTY Ω) = 0 .

Since Ω is a skew symmetric matrix, this implies ξTY is a symmetric matrix. It follows
then:

HYRn×r
∗ = {ξ | ξTY = Y T ξ} . (3.11)

Let the matrix Y ⊥ the an (n− r)× r matrix whose columns are all orthogonal to Y , that
is:

Y TY ⊥ = 0r×(n−r) and (Y ⊥)TY = 0(n−r)×r . (3.12)

Let ξ = Y ⊥B, where B is any (n− r)× r matrix then

ξTY = Y T ξ = 0r×r ,

hence, Y ⊥B ∈ HYRn×r
∗ . Let ξ = Y (Y TY)−1A, where A is an r× r symmetric matrix, this

expression comes from [78] Section 6.6.2, then:

ξTY = Y T ξ 6= 0r×r ,

Therefore, in general, ξ ∈ HYRn×r
∗ has the expression:

ξ = Y (Y TY)−1A+ Y ⊥B . (3.13)

The dimension of HYRn×r
∗ is determined as follows. Firstly, observe B has (n− r)r entries

that can be chosen freely. Next, recall an r × r symmetric matrix has r(r + 1)/2 entries

68

that can be chosen freely, therefore:

dim(HYRn×r
∗) = (n− r)r +

r(r + 1)

2
. (3.14)

The tangent space at Y ∈ Rn×r
∗ is defined as:

TYRn×r
∗ = VYRn×r

∗ ⊕HYRn×r
∗ .

Equation (3.10) and (3.14) together show:

dim(TYRn×r
∗) =

r(r − 1)

2
+ (n− r)r +

r(r + 1)

2

=
r2

2
− r

2
+ nr − r2 +

r2

2
+
r

2
= nr .

(3.15)

TYRn×r
∗ is a vector space, and it has dimension nr, therefore, it is isomorphic to Rn×r.

Horizontal vectors in HYRn×r
∗ at a point Y make up the tangent space to Sn,r+ at the

point Y . This is formalized in the Definition 3.6.1.

Definition 3.6.1 (The tangent space at Y ∈ Sn,r+ , TY Sn,r+). The tangent space at Y ∈ Sn,r+ ,
denoted TY Sn,r+ , is defined to be the set of all vectors from HYRn×r

∗ :

TY Sn,r+ = {ξ ∈ Rn×r : ξTY = Y T ξ} .

3.6.3 Projection onto the Horizontal Space

For an abstract quotient manifold, since HxM⊕ VxM = TxM, a projection onto these
subspaces can be defined. The horizontal projection is a map:

Πx : TxM→HxM , (3.16)

For Sn,3, the horizontal projection is a map ΠY : TYRn×r
∗ → HYRn×r

∗ , or equivalently
ΠY : Rn×r → HYRn×r

∗ , given by:

ΠY (Z) = Z − Y Ω . (3.17)

69

Equation (3.17) has the meaning that after removing the vertical space, the horizontal
space is what is left. Since Z − PΩ ∈ HYRn×r

∗ ,

(Z − Y Ω)TY = Y T (Z − Y Ω)

holds. Thus, Ω solves:
Y TY Ω + ΩY TY = Y TZ − ZTY . (3.18)

This is a special instance of the Sylvester equation. Solving this form of the Sylvester
equation is discussed in Section E.1.

3.6.4 The Riemannian Gradient

Let f :M→ R be a function whose domain is the structure spaceM. The differential of
f at a point x ∈M in a direction η ∈ TxM is denoted (see Section D.3.2):

Df(x)[η]

The gradient is defined using this directional derivative, see Definition 3.6.2.

Definition 3.6.2 (Gradient of a function). Let gradf(x) be the gradient of f at a point
x ∈M. The gradient gradf(x) is defined as the unique tangent vector:

Df(x)[η] = g(gradf(x), η)

where g(·, ·) is the Riemannian metric on TxM.

Definition 3.6.2 is a generalization of the definition fromM = R3n. Let −→p ∈ R3n, recall
for a function F : R3n → R, its directional derivative in the direction of a vector −→η ∈ R3n,
denoted DF (−→p)[−→η], is defined as the dot product between the gradient and the vector −→η :

DF (−→p)[−→η] = ∇F (−→p)T−→η (3.19)

where ∇F (−→p) is the gradient of F (−→p). The definition for a function on an arbitrary
Riemannian manifold is similar, except the Riemannian metric on the tangent space at the
point −→p is used instead of the dot product.

Consider again the function f : M → R on an arbitrary Riemannian manifold M,
suppose f is constant along each of the equivalence classes (the fibers), i.e. f(x1) = f(x2)
where π(x1) = π(x2), then f is said to induce a function f : M/ ∼→ R on the quotient

70

manifold. The gradient gradf(x) is a vector on the horizontal space at x ∈ M. It is
the horizontal lift of gradf(x), which is the gradient of the induced function f . This
relationship is mathematically expressed as:

gradf(x) = gradf(x) ,

where x ∈ M is a point on the structure space, and x ∈ M/ ∼ is a point on the quotient
manifold, and gradf(x) is the horizontal lift of gradf(x), the gradient of the induced
function f :M/ ∼→ R.

Consider the objective function f(Y) = f(Y Y T) 2 in Equation (3.2), this function is
constant along the equivalence classes [Y] since Y Q(Y Q)T = Y QQTY T = Y Y T for any
Q ∈ Qr. Thus f(Y Y T) induces a function on Sn,r+ .

The differential of f(Y) in Equation (3.2) in a direction η is given as follows:

Df(Y)[η] =D ‖ H ◦ (K(Y Y T)−D) ‖2F [η]

=D〈H ◦ (K(Y Y T)−D), H ◦ (K(Y Y T)−D)〉[η]

=2〈D(H ◦ (K(Y Y T)−D))[η], H ◦ (K(Y Y T)−D)〉
=2〈H ◦ K(Y ηT + ηY T), H ◦ (K(Y Y T)−D)〉
=2〈K(Y ηT + ηY T), H ◦H ◦ (K(Y Y T)−D)〉
=2〈K(Y ηT + ηY T), H(2) ◦ (K(Y Y T)−D)〉
=2〈Y ηT + ηY T ,K∗(H(2) ◦ (K(Y Y T)−D))〉
=2〈Y ηT ,K∗(H(2) ◦ (K(Y Y T)−D))〉

+ 2〈ηY T ,K∗(H(2) ◦ (K(Y Y T)−D))〉
=2Trace(ηY TK∗(H(2) ◦ (K(Y Y T)−D)))

+ 2Trace(Y ηTK∗(H(2) ◦ (K(Y Y T)−D)))

=4Trace(ηY TK∗(H(2) ◦ (K(Y Y T)−D)))

=4Trace(Y TK∗(H(2) ◦ (K(Y Y T)−D))η)

=4Trace(ηTK∗(H(2) ◦ (K(Y Y T)−D))Y)

(3.20)

where H(2) = H ◦H, and K∗ is the adjoint of K. Note that K∗(H(2) ◦ (K(Y Y T)−D)) is a

2As noted before, f(Y Y T) may also be denoted f(Y) to make the notation easier to read.

71

symmetric matrix:

K∗(H(2) ◦ (K(Y Y T)−D)) = K∗(H(2) ◦ (K(Y Y T)−D))T . (3.21)

Definition 3.6.2 together with the Riemannian metric from Section 3.6.1 gives the expression:

Df(Y)[η] = Trace(ηTgradf(Y)) .

It follows gradf(Y) given by:

gradf(Y) = 4K∗(H(2) ◦ (K(Y Y T)−D))Y . (3.22)

Equation (3.2) for the objective function and Equation (3.22) for the gradient suggests
the entired Gram matrix X = Y Y T needs to be formed. For computer implementation,
the following equivalent summation expression have been presented in (Meyer, 2011[55]).
These formulas do not require the Gram matrix X = Y Y T to be formed explicitly. The
objective function is given by the following summation:

f(Y) =
∑

(a,b)∈D

err(a, b)2 , (3.23)

where
err(a, b) = (ea − eb)TY Y T (ea − eb)− qab

= (ya − yb)T (ya − yb)− qab .
(3.24)

The quadrance qab is a specified entry from the incomplete EDM D, the input to the
EDMC problem. Recall ea was defined in Section 1.1, and ya− yb is the difference between
the a-th and b-th row of the matrix Y .

Suppose the specified entries of the incomplete EDMD involve the followingN neighbour
index pairs, where N = |D|:

D = {(a1, b1), . . . , (aN , bN)} ,

72

then, the gradient is given by the following summation:

gradf(Y) = 4
∑

(a,b)∈D

err(a, b)(ea − eb)(ea − eb)TY

= 4
∑

(a,b)∈D

err(a, b)(ea − eb)(ya − yb)T

= 4(EΣET)Y .

(3.25)

The matrix E is an n×|D| sparse matrix with columns given by (ea−eb) for all (a, b) ∈ D.
That is:

E =
(
ea1 − eb1 . . . eaN − ebN

)
.

The diagonal matrix Σ has shape |D| × |D| and its diagonal entries are the errors:

Σ =

err(a1, b1)
. . .

err(aN , bN)

 . (3.26)

The k-th diagonal entry of Σ uses the same (ak, bk) pair as the k-th column of E. The
summation form of the objective function, Equation (3.23) and gradient, Equation (3.25)
have assumed the weight on the error term Hab = 1 if (a, b) ∈ D.

Note that both Equation (3.22) and Equation (3.25) for the gradient has the form:

gradf(Y) = GY

where G is an n×n symmetric matrix. When the gradient has this form the vertical space
does not need to be removed because the gradient is on the horizontal space, see Definition
3.6.1.

Y T (gradf(Y)) = (gradf(Y))TY . (3.27)

However, this thesis will still provide the projection formula which assumes the vertical
space needs to be removed in order to give the most general expression.

3.6.5 The Riemannian Hessian

A vector field η is a map that assigns to each point x ∈ M a point on the tangent space
at x,

η :M→ TxM .

73

Let V(M) denote the set of all smooth vector fields onM, an affine connection is defined
to be a smooth mapping (“smooth” is defined in Section D.2):

∇ : V(M)× V(M)→ V(M) : (ξ, η)→ ∇ξη ,

where ∇ξη is called the covariant derivative of η with respect to ξ for the affine connection
∇. An affine connection ∇ generalizes the idea of taking a directional derivative of a
vector field from R3n to a Riemannian manifold M. It is another structure in addition
to the differentiable structure of a manifold, which is discussed in Section D.2. Every
Riemannian manifold has a preferred affine connection, called the Riemannian connection,
or Levi-Civita connection.

When the Riemannian manifold is Euclidean space, its Riemmanian connection reduces
to the directional derivative (see for example [1] page 94, 98):

∇ξη(x) = Dη(x)[ξ(x)] = lim
t→0

η(x+ tξ(x))− η(x)

t
. (3.28)

This is the case for R3n, and also for Rn×r, the space of n × r matrices. This definition
is called the Euclidean connection. When the Riemannian manifold is an embedded
submanifold or quotient manifold of Rn×r, their Riemannian connection also reduce to
the Euclidean connection, followed by a projection to the tangent space of the embedded
or quotient manifold. The case for a quotient manifold is discussed below. The structure
space of Sn,r+ is Rn×r

∗ , which is an embedded submanifold of Rn×r, therefore both Sn,r+ and
Rn×r
∗ use the Euclidean connection, the Levi-Civita connection is not required and will

not be discussed further in this thesis, further information can be found in for example
[1, 78, 48].

For a Riemannian quotient manifold M = M/ ∼, let ∇ denote the Riemannian
connection for M. For a point x ∈ M, let η, ξ ∈ HxM ⊂ TxM denote the horizontal
tangent vectors. Let x = π−1(x) ∈ M, and let η, ξ ∈ TxM. The horizontal lift of
∇ξη(x) for the quotient manifoldM =M/ ∼ is given by ∇ξη(x) from the structure space,
projected onto the horizontal space using Equation (3.16) (see [1] page 100, [78] page 30):

∇ξη(x) = Πx(∇ξη(x)) . (3.29)

If M is a Euclidean space, Equation (3.29) is written using the directional derivative:

∇ξη(x) = Πx(Dη(x)[ξ]) . (3.30)

74

For Sn,r+ ' Rn×r
∗ /Or the horizontal projection in Equation (3.17) is used to define the

Riemannian connection.
∇ξη(Y) = ΠY (Dη(Y)[ξ]) , (3.31)

where η, ξ ∈ HYRn×r
∗ . Recall from Section 3.6 that for Sn,r+ ' Rn×r

∗ /Or, a bar will not be
used to distinguish between objects in the structure space and quotient space, this is to
make the notation easier to read.

For an abstract quotient manifold, M =M/, the Hessian is a linear operator defined
by the map:

Hessf(x) : TxM→ TxM where x ∈M .

This map is given by the covariant derivative of the gradient with respect to a given tangent
vector η ∈ TxM (see Definition 5.5.1[1] and Definition 2.36 of [78]):

Hessf(x)[η] = ∇ηgradf(x) . (3.32)

Recall in R3n, the Hessian matrix is arrived at from differentiating the gradient.

The Riemannian Hessian of the objective function in Equation (3.2) in a tangent
direction η is given in [58]. The Hessian is defined using the Riemannian connection
from Equation (3.31):

Hessf(Y)[η] = ∇ηgradf(Y) = ΠY (Dgradf(Y)[η]) . (3.33)

Applying this definition to Equation (3.22) gives:

Hessf(Y)[η] = 4ΠY [K∗(H ◦ (K(Y Y T)−D))η +K∗(H ◦ (K(Y ηT + ηY T)−D))Y] . (3.34)

Alternatively, differentiating Equation (3.25) gives (see also [55]):

Hessf(Y)[η] = 4ΠY (EΣETη + EΣ̃ETY) , (3.35)

where Σ̃ is a diagonal matrix whose diagonal entries are given by:

diag(Σ̃) = 2diag((ETY)(ηTE)) . (3.36)

In summary, the Riemannian Hessian for an arbitrary Riemannian manifoldM is a linear
operator. Only in the special case where M = R3n, or M = Rn, does it appear as a
matrix.

75

3.6.6 Retraction

In the context of matrix manifold optimization, a retraction is the notion of mapping from
the tangent space back to the matrix manifold [1, 2]. Figure 3.2 shows an retraction on an
abstract manifold.

Retractions are approximations to the exponential map, see Appendix D Section D.5.1
for a definition of the exponential map, see also [1] Section 4.1, Chapter 5 Section 5.4 and
[48] Chapter 5. Computing the exponential involves solving nonlinear ordinary differential
equations which is a challenging problem in itself.

Figure 3.2: A retraction on an abstract manifold. Figure 1.2 of (Vandereycken, 2010[78]).

The retraction for the EDMC problem maps from TY Sn,r+ to Sn,r+ , and is given by [58]:

RY (η) = Y + η . (3.37)

Note that when Y is full rank, and when the entries in η are small perturbations, Y + η is
still a full rank matrix.

3.7 Summary

This Chapter used the EDMC problem to introduce unconstrained optimization on the
Sn.r+ matrix manifold. The matrix manifold optimization paradigm starts with abstract
differential geometry concepts, and applies these concepts to a wide range of matrix
manifolds.

76

Chapter 4

Normal Mode Analysis and the PSD
Potential

4.1 Introduction

The Hookean potential was first introduced as an efficient potential for finding the normal
modes of a protein structure in [75], where the author showed it produces root mean
squared (RMS) fluctuations in agreement with the semi-empirical potential. The Hookean
potential’s benefit for NMA studies is it allows the costly energy minimization step to be
skipped.

This chapter will also introduce the PSD potential using NMA as the application.

This Chapter does not claim any additional benefit is gained by using the PSD potential
for NMA. Rather NMA is the setting used to introduce the PSD potential.

The purpose of this Chapter is to highlight the agreement between the Hookean potential
and the PSD potential using the density of modes graph and the RMS fluctuation graphs
which were also seen in for example Tirion [75] and Kim’s [37] publications.

Section 4.2 describes the graphs for the density of modes, the RMS fluctuation per
α-carbon due to all modes, and the RMS fluctuation of all α-carbons per mode.

Section 4.3 presents the PSD potential energy, by removing the square-root from the
Hookean potential 1. The density of modes graph and the RMS fluctuation graphs are
presented and compared with the Hookean potential’s graphs.

1In order to compute distance, the dot product is taken first, then the square-root is applied

77

Section 4.4 discusses why quadrance has special significance to the PSD potential.

This Chapter continues to use the assumption discussed in Section 2.1 that a protein
structure is represented as an α-carbon chain.

Some of the discussions in this Chapter has appeared in our previous publication [53].

4.2 Density of Modes and Root Mean Square (RMS)

Fluctuations

4.2.1 Density of modes

The density of normal modes curve for various proteins was compared by ben-Avraham in
[10]. The result was presented in Figure 1 of [10] and is reproduced below in Figure 4.1.
The author observed the shape among different proteins was very similar, suggesting it is
a univeral property shared by proteins, and referred to this curve as a “univeral curve”.

This curve is constructed by grouping the eigenvalues of the Hessian matrix of the
potential energy into bins and counting the number of eigenvalues in each bin. The vertical
axis of this curve, g(ω) is the number of eigenvalues within a range (a bin), divided by the
total number of eigenvalues. The horizontal axis of this curve, ω, represents the range of
eigenvalues. A similar curve is also presented in [37] Figure 2.11, in a histogram form. The
cumulative density version of this universal curve, denoted G(ω), was given in Figure 1 of
Tirion’s publication[75] rather than the density curve, g(ω).

The different points in the curve in Figure 4.1 represent different proteins:

• white circle: g-actin,

• white up-pointing triangle:lysozyme,

• black up-pointing triangle: ribonuclease I,

• white down-pointing triangle: BPTI,

• black circle: crambin.

78

(a) Density of modes for various proteins.

(b) Original caption explaining the meaning of each shape.

Figure 4.1: The shape of the density of normal modes is similar for many proteins. Taken
from [10].

4.2.2 RMS Fluctuations

RMS fluctuations of atoms are statistical measures of atomic displacements from the
equilibrium atomic coordinates and indicates which atoms have more flexibility to move
and which are stationary acting as pivot points. They are calculated using the eigenvalues
and eigenvectors of the Hessian matrix of the potential energy (e.g. Hookean potential or
PSD potential). Two fluctuations can be calculated:

• the fluctuation of the i-th α-carbon due to all modes, denoted σi, and

• the fluctuation of all α-carbons for the k-th mode , denoted σk.

79

The formulas for these values have been described previously, for example [37, 76], and are
summarized next.

The formula for σi is defined as follows, the first 6 eigenvalues are zero representing
rigid motions, and are ignored.

σi =

(
3n∑
k=7

(σik)
2

) 1
2

. (4.1)

The formula for σk, the RMS fluctuation of all α-carbons per normal mode k, is given by:

σk =

(
n∑
i=1

(σik)
2

n

) 1
2

. (4.2)

In the above formulas, σik is given by:

σik =

∣∣∣∣∣∣∣∣vik γk√2

∣∣∣∣∣∣∣∣ , (4.3)

and vk = ((v1k)
T , . . . , (vnk)T)T ∈ R3n is the eigenvector for mode k. The value of γk is given

by[37, 76]:

γk =

(
2kBT

λk

) 1
2

, (4.4)

where λk is the k-th eigenvalue, kB is the Boltzmann constant, and T is temperature. Since
2kBT is a constant, setting this constant to 1 to use the γk value of:

γk =
1√
λk

. (4.5)

will not change the shape of the graphs. Note that γk is a measure of the average amplitude
of vibration of the α-carbon atoms, therefore

√
λk is a measure of the average frequency of

vibration.

80

4.3 The Positive Semidefinite Potential Energy

Removing the square-root in Equation (2.14) gives the following pairwise PSD potential
energy:

Eab,P−NMA(pa(t)− pb(t)) =
1

2

(
‖pa(t)− pb(t)‖2 − dab(0)2

)2
=

1

2

(
‖pa(t)− pb(t)‖2 − qab(0)

)2 (4.6)

Quadrance can be expressed as a linear function of the Gram matrix P (t)P (t)T :

‖pa(t)− pb(t)‖2 = (ea − eb)TP (t)P (t)T (ea − eb)

where P (t) = P (0) + δ(t), and δ(t) is an n× 3 matrix of perturbations, δa(t), a = 1, . . . , n
now appear as the rows of δ(t) (compare this to Equation (2.13)).

δ(t) =
(
δ1(t) . . . δn(t)

)T ∈ Rn×3. (4.7)

The total potential energy is now a function of the time t Gram matrix P (t)P (t)T given
by:

EP−NMA(P (t)) =
∑

(a,b)∈D

Eab,P−NMA(pa(t)− pb(t))

=
1

2

∑
(a,b)∈D

(
(ea − eb)TP (t)P (t)T (ea − eb)− qab(0)

)2
.

(4.8)

Since this potential energy is a function of the PSD Gram matrix, it will be referred to as
the “PSD potential energy”.

As discussed in Section 3.6.5, the Hessian is a linear operator for an arbitrary Riemannian
manifoldM. NMA requires the matrix representation of this linear operator to be found,
which is an 3n× 3n matrix. The process is very similar to that for the Hookean potential
in Section 2.3. The second order Taylor expansion for the pairwise PSD potential energy
near P (0), for a small perturbation δ(t) is found first, the 3 × 3 Hessian matrix for the
pairwise potential will give the blocks for the 3n× 3n Hessian matrix.

A simple way to find the second order expansion for the pairwise potential using the
matrix representation of the Hessian to make the substitution x = P (0)T (ea − eb) ∈ R3,
and apply the formulas in Section B.5.

Firstly note that
Eab,P−NMA(x) = (xTx− qab(0))2 = 0 ,

81

therefore, the constant term in the second order expansion is zero. Next, the gradient is
given by:

∇Eab,P−NMA(x) = 2(xTx− qab(0))x = 03 .

Therefore, only the Hessian matrix is nonzero when evaluated at P (0):

∇2Eab,P−NMA(x) = 2(xTx− qab(0))I3 + 4xxT

= 4xxT

= 4 [pa(0)− pb(0)] [pa(0)− pb(0)]T .

(4.9)

A comparison with Equation (2.16) shows the pairwise Hessian matrix for the Hookean
and PSD potential differ by a division of

4qab(0) = 4 [pa(0)− pb(0)]T [pa(0)− pb(0)] ,

which is a constant depending on the atomic index pair (a, b). Therefore, the two Hessian
matrices can be made equal by multiplying the pairwise interaction weights by the required
scaling factor.

The corresponding second order expansion for the total PSD potential is given by:

EP−NMA(P (t)) ≈ 1

2

∑
(a,b)∈D

(δa(t)− δb(t))T∇2Eab,P−NMA(pa(0)− pb(0))(δa(t)− δb(t))

= 2
∑

(a,b)∈D

(δa(t)− δb(t))T [pa(0)− pb(0)] [pa(0)− pb(0)]T (δa(t)− δb(t)) ,

(4.10)
Equation (4.10) can be expressed in matrix form:

EP−NMA(P (t)) ≈ 1

2
δ(t)T∇2EP−NMA(P (t))δ(t) . (4.11)

where ∇2EP−NMA(P (t)) is the 3n × 3n Hessian matrix, which has the same Laplacian
structure as the Hessian for the Hookean potential.

The density of modes graph and the RMS fluctuations graph will now be compared
between the Hookean and the PSD potential for a number of example proteins. For 1ATN,
all graphs are generated with a 10Å cut-off distance while for the other proteins a 11Å
cut-off distance is used. The cut-off distance is a parameter chosen arbitrarily, it should
not be too small to the extend that some atom’s set of neighbours is disconnected from
another. But a small number is chosen to keep the computational burden small.

82

In Figure 4.2 and 4.3, the density of modes curves is shown for various small proteins
in histogram form. The Hookean potential energy and the PSD potential energy both
produce the similar shape which was observed in [10] and presented in Figure 4.1. Recall
only the α-carbons of the protein are modelled. These histograms are generated using
matplotlib.pyplot’s hist function [33]:

hist(eigval[6:], rwidth = 0.4, bins=40)

The vector eigval contains the eigenvalues from the Hessian matrix of the potential energy.
The first six eigenvalues are zero, and are therefore ignored.

Figures 2 and 3 of [75] showed the root-mean-square (RMS) fluctuation graphs of the
Hookean potential closely matched the semi-empirical L79 potential. Similar graphs are
also seen in [37]. The Hookean potential and the PSD potential are also in agreement.

Figure 4.4 and 4.5, presents the σi graphs for the same proteins in Figure 4.2 and Figure
4.3. It shows that the shape of the σi graph for the original Hookean potential energy and
the PSD potential energy are in agreement.

Figure 4.6 and 4.7, present the σk graphs for the same corresponding proteins. These
graphs decrease very fast indicating large amplitude backbone motions are due to the low
modes. Once again, an agreement between the Hookean potential energy and the PSD
potential energy is seen.

In all the figures, note that the vertical axis between the Hookean (distance) and PSD
(quadrance) graphs are different, this is because the Hookean potential and PSD potential
have different Hessian matrices.

4.4 The PSD Potential Prefers Quadrance

Although the Hookean and PSD potentials provide the same information about the atom’s
RMS fluctuation, these two potentials are very different mathematical models. This section
discusses why quadrance has special significance to the PSD potential.

Let Kab(·) denote the function that maps a rank 3 Gram matrix X ∈ Sn,3+ to the
quadrance between the a-th and b-th atoms.

Kab(X) = (ea − eb)TX(ea − eb) = (pa − pb)T (pa − pb) =‖ pa − pb ‖2 . (4.12)

83

0 5 10 15 20

Modes (Eigenvalues)
0

10

20

30

40

50

Nu
m

be
r o

f M
od

es

1ATN Mode Density (Distance)

(a) Distance

0 1000 2000 3000 4000 5000

Modes (Eigenvalues)
0

10

20

30

40

50

60

Nu
m

be
r o

f M
od

es

1ATN Mode Density (Quadrance)

(b) Quadrance

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Modes (Eigenvalues)
0

2

4

6

8

10

12

Nu
m

be
r o

f M
od

es

2KT6 Mode Density (Distance)

(c) Distance

0 1000 2000 3000 4000 5000 6000

Modes (Eigenvalues)
0

2

4

6

8

10

12

Nu
m

be
r o

f M
od

es
2KT6 Mode Density (Quadrance)

(d) Quadrance

Figure 4.2: Density of normal modes for distance and quadrance.

Consider any two different n × n Gram matrices X1 = P1P
T
1 and X2 = P2P

T
2 . Applying

Kab(X) to X = X1 +X2 gives:

Kab(X1 +X2) = (ea − eb)T (X1 +X2)(ea − eb)
= (ea − eb)TX1(ea − eb) + (ea − eb)TX2(ea − eb)
= Kab(X1) +Kab(X2) .

(4.13)

84

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Modes (Eigenvalues)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f M
od

es

2L3O Mode Density (Distance)

(a) Distance

0 1000 2000 3000 4000 5000

Modes (Eigenvalues)
0

5

10

15

20

Nu
m

be
r o

f M
od

es

2L3O Mode Density (Quadrance)

(b) Quadrance

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Modes (Eigenvalues)
0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f M
od

es

2AVM Mode Density (Distance)

(c) Distance

0 1000 2000 3000 4000 5000 6000

Modes (Eigenvalues)
0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f M
od

es

2AVM Mode Density (Quadrance)

(d) Quadrance

Figure 4.3: Density of normal modes for distance and quadrance (continued).

85

0 50 100 150 200 250 300 350

Residue Index

2

4

6

8

10

i

1ATN i (Distance)

(a) Distance

0 50 100 150 200 250 300 350

Residue Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

i

1ATN i (Quadrance)

(b) Quadrance

0 20 40 60 80

Residue Index
0.5

1.0

1.5

2.0

2.5

3.0

i

2KT6 i (Distance)

(c) Distance

0 20 40 60 80

Residue Index
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

i

2KT6 i (Quadrance)

(d) Quadrance

Figure 4.4: σi graphs for various proteins.

These calculations show that Kab is a linear function on the domain Sn,3+ :

Kab(X1 +X2) = Kab(X1) +Kab(X2) . (4.14)

86

0 20 40 60 80 100 120

Residue Index

2

4

6

8

10

12

i

2L3O i (Distance)

(a) Distance

0 20 40 60 80 100 120

Residue Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

i

2L3O i (Quadrance)

(b) Quadrance

0 20 40 60 80 100

Residue Index
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

i

2AVM i (Distance)

(c) Distance

0 20 40 60 80 100

Residue Index

0.05

0.10

0.15

0.20

0.25

0.30

0.35

i

2AVM i (Quadrance)

(d) Quadrance

Figure 4.5: σi graphs for various proteins (continued).

87

0 200 400 600 800 1000

 Mode
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

1ATN k (Distance)

(a) Distance

0 200 400 600 800 1000

 Mode
0.00

0.01

0.02

0.03

0.04

0.05

k

1ATN k (Quadrance)

(b) Quadrance

0 50 100 150 200 250

 Mode

0.05

0.10

0.15

0.20

0.25

k

2KT6 k (Distance)

(c) Distance

0 50 100 150 200 250

 Mode

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

k

2KT6 k (Quadrance)

(d) Quadrance

Figure 4.6: σk graphs for various proteins.

Let
√
Kab(·) denote the function that maps a rank 3 Gram matrix to the distance between

88

0 50 100 150 200 250 300 350

 Mode
0.0

0.5

1.0

1.5

2.0

k

2L3O k (Distance)

(a) Distance

0 50 100 150 200 250 300 350

 Mode
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

k

2L3O k (Quadrance)

(b) Quadrance

0 50 100 150 200 250 300

 Mode

0.1

0.2

0.3

0.4

k

2AVM k (Distance)

(c) Distance

0 50 100 150 200 250 300

 Mode
0.000

0.005

0.010

0.015

0.020

0.025

0.030

k

2AVM k (Quadrance)

(d) Quadrance

Figure 4.7: σk graphs for various proteins (continued).

the a-th and b-th atoms:

√
Kab(X) =

√
(ea − eb)TX(ea − eb) =

√
(pa − pb)T (pa − pb) =‖ pa − pb ‖ . (4.15)

89

√
Kab(X) is not a linear function on Sn,3+ . Therefore, choosing quadrance leads to a simpler

function on Sn,3+ .

The mapping Kab(X) will produce the same quadrance if P was translated. But if the
points in P have centroid at the origin, that is P T1n = 0n, then X is a centered Gram
matrix, see Equation (C.25), and in this case Kab will be a bijective map. The discussion
in Section C.5 uses the mapping K, this map is a linear isomorphism between Sn+∩SnC and
En, see Krislock [44] Theorem 2.35 and Theorem 2.36.

Now consider the situation on R3n. Define a vector function kab(·) mapping a vector
−→p ∈ R3n to the quadrance between the a-th and b-th atoms.

kab(
−→p) =

(
(ea,I3 − eb,I3)T−→p

)T
(ea,I3 − eb,I3)T−→p

= −→p T (ea,I3 − eb,I3)(ea,I3 − eb,I3)T−→p
= −→p TSab

−→p
= (pa − pb)T (pa − pb) =‖ pa − pb ‖2

(4.16)

Clearly, kab(
−→p) is not a linear function on R3n. Mapping from −→p to:

• the distance between the a-th and b-th atoms, or

• any power of distance larger than 2,

also do not use a linear function of −→p ∈ R3n.

In summary, R3n does not show preference for distance or quadrance, or any higher
power of distance. But Sn,3+ does show a preference for using quadrance because a Gram
matrix can be mapped linearly to quadrance, giving the simplest function when compared
to distance or any higher power of distance.

4.5 Summary

Removing the square-root in the Hookean potential energy results in a PSD potential
energy. The shape of the RMS fluctuations given by the PSD potential energy is observed
to be in agreement with that given by the Hookean potential energy, suggesting both
potentials output the same information about the α-carbon atom’s fluctuations. Despite
the output being equal, the two potential energies are very different mathematical models.
The PSD potential energy is a function on Sn,3+ where quadrance is linearly related to

90

the Gram matrix PP T , choosing quadrance gives a simpler model than other powers
of distance, and hence quadrance is the preferred quantity. However, on R3n, neither
quadrance nor distance has a linear relation with −→p .

91

Chapter 5

The Equations of Motion for the

Riemannian Manifold S
n,3
+ ' Rn×3∗ /O3

5.1 Introduction

An abstract potential energy is a smooth function on a Riemannian manifold, see Definition
D.7.1. The equation of motion for classical mechanics is also formulated on a Riemannian
manifold. Following the introduction of the PSD potential on Sn,3+ in Chapter 4, this
Chapter presents the equations of motion on Sn,3+ .

Let f(P) be a function defined on the rank 3 PSD matrix manifold, f : Sn,3+ → R, P is
an arbitrary n× 3 atomic coordinates matrix.

Definition 5.1.1 (The PSD ENM dynamics (PSD-ENM-D) problem). The PSD ENM
dynamics (PSD-ENM-D) problem is an optimization problem that uses a PSD potential
to model a protein’s dynamics, with the assumption that the protein is represented as an
ENM. The PSD-ENM-D problem seeks to find the n × 3 matrix P of atomic coordinates
of a protein structure by solving a rank 3 PSD matrix manifold optimization problem with
constraints. The generic form of the problem is given as follows:

min f(P)

s.t. Trace(P TAiP) = qaibi i = 1, . . . ,m .
(5.1)

In the above problem, qaibi is the quadrance between the ai-th atom and bi-th atom, and Ai
is the n× n symmetric matrix defined in Equation (1.4).

92

ENI and iENM were introduced in Chapter 2, and can be reformulated as PSD-ENM-
D problems as shown in Chapter 7. The matrix Ai in Equation (5.1) was introduced in
Equation (1.4), note it serves the same purpose on Sn,3+ as the stamp matrix Saibi on R3n.

Modelling ENMs on the rank 3 PSD matrix manifold removes all of the defects of the
current model in R3n as given in Table 1.2.

5.2 Revisiting ENMs in R3n

5.2.1 Revisiting the Rank Deficient Hessian of ENI and iENM

As shown by Equation (2.43) and Equation (2.45), the Hessian matrix for both the ENI
Hookean potential and the iENM Hookean potential required an addition with the identity
matrix, I3n, in order to be invertible.

Consider the time interval [tj, tj+1], let ∆t = tj+1 − tj. Let:

• −→p j = −→p (tj) denote the matrix of atomic coordinates at the beginning of the time
interval,

• −→v j be the velocity at the beginning of the time interval, and

• −→v j+1 be the velocity at the end of the interval.

Let −→p j+1 = −→p (tj+1) be the atomic coordinates at the end of the interval, this is the
unknown to be determined. Consider the following equation of motion where the force due
to the potential is evaluated implicit.

−→v j+1 −−→v j

∆t
= −∇E(−→p j+1) (5.2)

−→p j+1 −−→p j

∆t
= −→v j+1 (5.3)

Substituting Equation (5.2) into Equation (5.3)

−→p j+1 −−→p j

∆t
= −→v j − (∆t)∇E(−→p j+1) (5.4)

93

Rearrange Equation (5.4) by moving all terms to the left hand side gives:

−→p j+1 −−→p j − (∆t)−→v j

(∆t)2
+∇E(−→p j+1) = 03n (5.5)

Let:

f(−→p) =
1

2(∆t)2
〈−→p −−→p j − (∆t)−→v j,

−→p −−→p j − (∆t)−→v j〉+ E(−→p)

=
1

2(∆t)2
‖ −→p −−→p j − (∆t)−→v j ‖2 +E(−→p) .

(5.6)

Equation (5.5) shows −→p j+1 satisfies:

∇f(−→p j+1) = 03n .

Thus, −→p j+1 the the critical point of the following optimization problem:

min f(−→p) . (5.7)

The Hessian matrix of f(−→p) is given by:

∇2f(−→p) =
1

2(∆t)2
I3n +∇2E(−→p) . (5.8)

The resulting Hessian matrix is very similar to Equation (2.43) and Equation (2.45) in that
an identity matrix, I3n, is added to a rank deficient Hessian. While adding I3n seemed very
arbitrary for the ENI and iENM Hookean potential, the discussion above shows the same
conclusion can be arrived at by integrating the equations of motion in classical mechanics,
with the force due to the potential treated implicitly.

5.2.2 The Constraint Force Has Two Purposes

Consider a vector in −→η ∈ R3n, Rosen’s projection, given in Equation (2.52) projects this
vector onto the tangent space of the constraint manifold:

Proj(−→η) = −→η −∇C(−→p)T (∇C(−→p)∇C(−→p)T)−1∇C(−→p)−→η .

This expression can be written using Lagrange multipliers:

Proj(−→η) = −→η −∇C(−→p)Tλ .

94

where λ ∈ Rm with m the number of constraints. λ is given by the solution of the linear
system:

λ = (∇C(−→p)∇C(−→p)T)−1∇C(−→p)−→η . (5.9)

Recall from Equation (2.55) and Equation (2.57) also serves the purpose of ensuring the
atomic coordinates stay on the constraint manifold. Equation (2.57) is repeated below for
convenience:

M
−→v j+1 −−→v j

∆t
= −∇E(−→p j)−∇C(−→p j+1)

Tλ

Therefore, the constraint force:
∇C(−→p)Tλ

serves two purposes :

• Project a vector onto the tangent space of the constraint manifold. In this case, the
Lagrange multipliers of the constraint force are given by Equation (5.9).

• Project (retract) a vector onto the constraint manifold itself. In this case, the
Lagrange multipliers of the constraint force are given by the linear system in the
Fast Projection algorithm, see Algorithm 1 Equation (2.78).

This observation carries over to Sn,3+ as well, see Theorem 5.4.1 where this observation is
applied.

5.3 The Constraint Manifold

When constraints are placed on the manifold Sn,3+ ' Rn×3
∗ /O3, the structure space is no

longer Rn×3
∗ . Rather for an arbitrary n×3 matrix P of atomic coordinates, the constraints

describes a structure space called the constraint manifold, denoted C(Rn×3
∗). It is given by:

C(Rn×3
∗) = {P ∈ Rn×3

∗ | Trace(P TAiP) = qaibi i = 1, . . . ,m} . (5.10)

C(Rn×3
∗) is an embedded submanifold of Rn×3

∗ , see Section D.6. The optimization problem
in Equation (5.1) is formulated on the quotient manifold:

C(Sn,3+) = C(Rn×3
∗)/O3 , (5.11)

where C(Sn,3+) denote the subset of rank 3 PSD Gram matrices from Sn,3+ that satisfy the
constraints described in the set C(Rn×3

∗).

95

Define the m× 1 vector:

C(P) =

C1(P)
...

Cm(P)

 , (5.12)

where

Ci(P) =
1

2

(
Trace(P TAiP)− qaibi

)
=

1

2

(
(eai − ebi)TPP T (eai − ebi)− qaibi

)
=

1

2

(
‖ pai − pbi ‖2 −qaibi

)
,

(5.13)

where Ai is an n× n symmetric matrix, see Equation (1.4). Then P ∈ C(Sn,3+) if and only
if C(P) = 0m.

5.4 Equations of Motion

Informally, the equations of motion for constrained dynamics on Sn,3+ can be arrived at
from the equations of motion for constrained dynamics on R3n by replacing the 3n × 1
vector −→p with the n×3 matrix P (see for example Equation (5.2) and Equation (5.3), and
adding in the constraints). A more formal discussion is presented next.

The constraint manifold C(Sn,3+) is the Riemannian manifold on which the equations of
motion are formulated.

Consider the time interval [tj, tj+1], let ∆t = tj+1 − tj. Let:

• Pj = P (tj) denote the matrix of atomic coordinates at the beginning of the time
interval,

• Vj be the velocity at the beginning of the time interval, and

• Vj+1 be the velocity at the end of the interval.

Let Pj+1 = P (tj+1) be the atomic coordinates at the end of the interval, this is the unknown
to be determined.

Let there be m constraints. The i-th quadrance constraint, i ∈ {1, . . . ,m}, involving
atoms with atomic indices denoted by ai and bi, is given by Ci(P) in Equation (5.13):

96

Theorem 5.4.1 (Equation of Motion for Constrained Dynamics on Sn,3+ ' Rn×3
∗ /O3). Let

the constraint manifold be:
C(Sn,3+) = C(Rn×3

∗)/O3 .

Let

M̂ =

m1

. . .

mn

 , (5.14)

be the n× n matrix of atomic masses, and ma, a = 1, . . . , n be the mass of the a-th atom
(do not confuse ma with m, the total number of constraints).

The following three equations are the equations of motion for the motion of a point on
C(Sn,3+).

M̂

(
Vj+1 − Vj

∆t

)
= −∇E(Pj+1) + Pj+1Ω +

m∑
i=1

λiAiPj+1 , (5.15)

Pj+1 = Pj + (∆t)Vj+1 , (5.16)

Ci(Pj+1) = 0 for i = 1, . . .m. (5.17)

where Ω is a skew symmetric matrix.

Proof. The quantity ∇E(Pj+1) is the force due to the potential energy, while Pj+1Ω is the
component of ∇E(Pj+1) in the direction vertical to the equivalence class at Pj+1. The
component

∑m
i=1 λiAiPj+1 is a direction normal to the tangent space at Pj+1. Therefore,

the force

∇E(Pj+1)− Pj+1Ω−
m∑
i=1

λiAiPj+1

is a projection of ∇E(Pj+1) in the horizontal space at Pj+1. See Section 6.3.1 for a
description of these spaces, recall also Section 3.6.2.

Discretize the Euler-Lagrange Equations using the same approach as seen in Goldenthal
et al. [30] Section 4.1, and also presented in Equations (2.57), (2.58), and (2.59) leads to
Equations (5.15), (5.16), and (5.17).

As discussed in Section 5.2.2, the constraint force serves two purposes: projecting onto
the tangent space of the constraint manifold, and retracting onto the constraint manifold
itself. Therefore, the Lagrange multipliers λi, i = 1, . . . ,m in Equation 5.15 can be broken

97

down to two components: one component projects ∇E(Pj+1) to the horizontal space,
another component ensures Equation (5.17) holds. See Section 6.3.5.

Theorem 5.4.1 motivates the definition of the horizontal projection:

ProjP (η) = η − PΩ−
m∑
i=1

λiAiP ,

where η ∈ Rn×3. This projection will be defined formally in Section 6.3.2 after the tangent
space is discussed.

Proposition 5.4.1. Integrating the equations of motion from Theorem 5.4.1 is equivalent
to solving the following constrained Sn,3+ optimization problem:

min f(P)

s.t. Trace(P TAiP) = qaibi i = 1, . . . ,m .
(5.18)

where

f(P) =
1

(∆t)2
Trace((P − Pj − (∆t)Vj)

TM̂(P − Pj − (∆t)Vj)) + E(P) . (5.19)

The optimal P that minimizes this optimization problem is Pj+1.

Proof. This can be seen as follows. Substituting Vj+1 in Equation (5.15) with Equation
(5.16), then move every term to the left hand side of the equal sign gives:

M̂

(
Pj+1 − Pj − (∆t)Vj

(∆t)2

)
+∇E(Pj+1)− Pj+1Ω−

m∑
i=1

λiAiPj+1 = 0n×3 . (5.20)

The Euclidean gradient ∇f(P) projected in the horizontal direction

gradf(P) = ProjP (∇f(P)) ,

is the definition of the gradient on the constraint manifold C(Sn,3+); it is called the Riemannian
gradient to distinguish it from ∇f(P), see Section 6.3.3. Equation (5.20) shows

gradf(Pj+1) = 0n×3

which means Pj+1 is a critical point of the constrained optimization problem in Equation
(5.18).

98

Recall from Section 2.8.2 that the Fast Projection algorithm finds a sequence of small
steps to the constraint manifold instead of one step. A similar idea is also used by the
RTR algorithm. Recall from Section 3.5 the RTR algorithm generates a sequence of iterates
P

(0)
j , P

(1)
j , . . . such that gradf(P

(k)
j) → 0n×3 as k → ∞ and therefore P

(k)
j → Pj+1. The

following theorem shows the potential energy alone can be minimized to find Pj+1.

Theorem 5.4.2. Suppose the current protein conformation is Pj and Pj+1 is the conformation
to be found using the RTR algorithm (Algorithm 2). Let the sequence of iterates generated

by the RTR algorithm be given by P
(0)
j , P

(1)
j , . . . , such that P

(k)
j → Pj+1 as k → ∞, this

means also that P
(k)
j − P

(k−1)
j → 0n×3.

Pj+1 is a critical point of the optimization problem from Equation (5.18) if and only if
it is a critical point of the optimization problem:

min E(P)

s.t. Trace(P TAiP) = qaibi i = 1, . . . ,m ,
(5.21)

where E(P) is the PSD potential energy.

Proof. Let RP (η) denote the retraction which projects an unconstrained step η onto the
constraint manifold C(Sn,3+), see Section 6.3.5. The RTR algorithm uses the tCG algorithm
(Algorithm 3) to propose an unconstrained step η. Let η(k) denote the k-th accepted
unconstrained step proposed by the tCG algorithm. If Vj 6= 0n×3, then the first constrained
step is

P (1) = RP (0)((∆t)Vj + η(0)) ,

otherwise, the first constrained step is:

P (1) = RP (0)(η(0)) .

Subsequent steps are given by:

P (k) = RP (k−1)(η(k−1))

Starting with P
(0)
j = Pj, the RTR algorithm generates a sequence of iterates P

(0)
j , P

(1)
j , . . .

99

which gives a sequence of gradients:

gradf(P
(1)
j) =

M̂

(∆t)2

(
P

(1)
j − P

(0)
j

)
+∇E(P

(1)
j)− P (1)

j Ω−
m∑
i=1

λiAiP
(1)
j

...

gradf(P
(k)
j) =

M̂

(∆t)2

(
P

(k)
j − P

(k−1)
j

)
+∇E(P

(k)
j)− P (k)

j Ω−
m∑
i=1

λiAiP
(k)
j .

As k →∞, P
(k)
j − P

(k−1)
j → 0n×3. Therefore,

gradf(P
(k)
j)→ 0n×3

if and only if

gradE(P
(k)
j) = ∇E(P

(k)
j)− P (k)

j Ω−
m∑
i=1

λiAiP
(k)
j → 0n×3 .

Therefore, as P
(k)
j → Pj+1, P

(k)
j approaches a critical point of the optimization problem

given in Equation (5.18) if and only if it approaches a critical point of the optimization
problem given in Equation (5.21), which minimizes E(P) only.

5.5 Removing the Conservation of Linear Momentum

Constraint

As discussed in Section 2.7, minimizing the Hookean potential is ill-posed because a
translated solution is also a solution. Note that ill-posed as used here means the solution
is not unique, not that a solution cannot be found.

Kim proposed to add a constraint in order to conserve the linear moment, this constraint
is given in Equation (2.44) and is repeated below for convenience.

n∑
a=1

δa(t) = 03

On Sn,3+ , δ(t) is a n × 3 matrix, whose rows are δa(t) (see Equation 4.7)). Therefore, on

100

Sn,3+ this constraint can be written in matrix notation:

(
δ1(t) . . . δn(t)

)1
...
1

 = δ(t)T1n = 0n (5.22)

On Sn,3+ , facial reduction can be used to remove this constraint. This result is arrived at
from the Centring Constraint Reduction Theorem, from Krislock [44] Theorem 4.13 and
Alipanahi [4] Section 3.3.5).

Recall the problem context is to find Pj+1 from Pj. To simplify the discusion here, let
P = Pj (drop the subscript), and consider δ = δ(t) (drop the time parameter t as well).
Now the problem under discussion is that of finding δ such that (P + δ)T1n = 0n.

Recall Equation (C.25) gives the definition of SnC , the space of centered symmetric
matrices. Let X = PP T ∈ Sn,3+ ∩ SnC be an n× n Gram matrix, this means P T1n = 0n. If
δ satisfies Equation (5.22) then (P + δ)T1n = 0n as well, ensuring the Gram matrix of the
next conformation is centered (P + δ)(P + δ)T ∈ Sn,3+ ∩ SnC .

In order to remove the constraint of Equation (5.22), first factorize P as P = US where
U is an n× (n− 1) matrix, and S is an (n− 1)× 3 matrix. Note that

P T1n = 0n if and only if UT1n = 0n .

This is equivalent to the condition:

range(U)⊥ = range(1n) . (5.23)

The required U can thus be found by first performing QR decomposition on 1n to find an
n×n matrix Q. Next take all columns of Q except the first column and denote this matrix
U , i.e. U = Q[:, 2 : n]. Then the matrix U satisfies Equation (5.23). Define:

δ = UδU

The original problem of finding δ now becomes the problem of finding δU , without the
centering constraint since:

(P + δ)T1n = (US + UδU)T1n = (S + δU)TUT1n = 0n .

Another option to ensure (P + δ)T1n = 0n is to use the “step and project” paradigm, also
mentioned in Section 2.8.2. Proposition 2.30 of Krislock [44] gives the following projection

101

from Sn to SnC :
ProjSn

C
(X) = JXJ

where X ∈ Sn and J is given by:

J = In −
1

n
1n1

T
n .

For the rank 3 Gram matrix X = PP T ∈ Sn,3+ , this projection has the meaning of
subtracting the centroid of the points in P from each row of P , where each row is the
atomic coordinates of one point. This is straightforward to see. Consider:

JPP TJ = (JP)(JP)T ,

then

JP = P − 1

n
1n1

T
nP ,

where
1

n
1TnP

is the centroid. Starting with P , if after taking a step δ, the new Gram matrix

(P + δ)(P + δ)T

does not satisfy (P + δ)(P + δ)T1n = 0n, applying the centering projection

J(P + δ)(P + δ)TJ

will give a new projected Gram matrix that is centered. The step and project method for
ensuring the Gram matrix stays centered has the advantage that the matrix J is easier to
compute than finding the face matrix U explicitly.

5.6 Constraint Reduction for Rigid Groups of Atoms

A clique is defined in the context of the EDMC problem in Definition C.6.1. A clique
is called a rigid cluster by Kim with the introduction of rigid cluster ENI (see Section
C.6.5 and [41, 37]). In the context of protein dynamics, a clique or rigid cluster is a group
of atoms that move concurrently with their mutual distances not changing as a protein
undergoes conformational change.

102

The reformulation of rigid cluster ENI using facial reduction of the PSD ENI potential
[54] shows that modelling of rigid groups of atoms can be accomplished by using faces of
Sn,3+ , whereas faces of R3n have no such meaning. This is reviewed in Section C.6.5.

The assumption about which groups of atoms in a protein structure should be modelled
as rigid is a separate research problem and is not examined in this thesis. Amino acid side
chains that contain aromatic rings are known to be rigid, and well be used as examples of
rigid clusters in the discussion here to make the discussion more concrete (less abstract).

Figure 5.1 presents a number of amino acids with rigid (aromatic) side chains, the atoms
in black make up the aromatic rings. These structures are visualized in UCSF Chimera
[63] and are part of a larger protein, the hydrogen atoms have been omitted from the PDF
file. For each side chain, the bond attaching the side chain to the protein backbone is
made up of the β-carbon (gray atom) and γ-carbon (black atom) bond about which the
side chain rotates. Therefore, the β-carbon is also a part of the side chain clique. Because
these side chains are all 2D, in order to model their rotation in 3D about the β-carbon
γ-carbon bond, one additional out-of-plane “pseudo-atom” is needed, which is also part of
the side chain clique.

(a) Histidine (b) Phenylalanine (c) Tryptophan (d) Tyrosine

Figure 5.1: Amino acids with rigid side chains (aromatic rings are colored in black).

The number of constraints required to keep the aromatic side chain clique, including
the β-carbon and the out-of-plane carbon, rigid is discussed next, and summarized in Table
5.2.

Let C ⊂ {1, . . . , n} denote the subset of atomic indices for the atoms in a clique.
The number of constraints needed on R3n to enforce a rigid group of |C| atoms has been

103

discussed by Plantenga [64, 56]. This number is

3|C| − 6 .

This is because a group of |C| atoms that move rigidly has only 3|C|−6 degrees of freedom.
The total number of possible pairwise constraints without repetition, is

|C|(|C| − 1)

2
.

Therefore, if |C| > 4, some constraints must be discarded. The optimal subset of constraints
to keep is the subset of 3|C|−6 gradients such that their constraint gradients minimize the
condition number of the matrix of constraint gradients:

∇C(−→p)T =
(
∇Cσ(1)(−→p)T . . . ∇Cσ(3|C|−6)(−→p)T

)
where σ(1), . . . , σ(3|C| − 6) are the indices of the constraints kept. The optimal set of
constraints to keep are decided by first assembling all |C|(|C| − 1)/2 constraint gradients,
the 3n × 1 vector ∇Ci(−→p)T as defined in Equation (2.50), in a matrix. The columns can
be arranged in any order. Then perform rank revealing QR factorization on this matrix,
and choose the first 3|C| − 6 columns chosen by this factorization.

Section 2.8.3 discussed two other situations where the matrix ∇C(−→p) can be rank
deficient. Table 5.1 summarizes these discussions.

When is the matrix ∇C(−→p) rank deficient or ill-
conditioned

1 For a constraint on the distance between the a-th and
b-th atom, if pa−pb = 03 , then ∇C(−→p) will have a row
of zeros.

2 For all constraints that the a-th atom is involved in, if
there exists atomic indices b1 and b2 such that, pa−pb1 =
α(pa − pb2) , where α ∈ R is an arbitrary constant.

3 In a clique of size |C|, choosing more than 3|C| − 6
constraints, or choosing 3|C| − 6 constraints which do
not minimize the condition number of ∇C(−→p).

Table 5.1: A summary of when ∇C(−→p) is rank-deficient.

104

On Sn,3+ ∩SnC , the number of constraints required can be reduced by applying Theorem
4.16 of Krislock [44], the Distance Constraint Reduction Theorem. This theorem says
to find a smaller clique Csmall ⊂ C such that the EDM for both cliques have the same
embedding dimension, then enforcing constraints for this smaller clique Csmall is all that is
necessary to ensure the original clique C stays rigid. The smallest number of atoms to have
an embedding dimension of 3 is four atoms, therefore |Csmall| = 4. This is also the number
for which rank-revealing QR factorization is not needed. Thus, the Distance Constraint
Reduction Theorem has removed the need to perform rank-revealing QR factorization.

Amino acid |C| Number of constraints
on R3n (3|C| − 6)

Number of constraints
on Sn,3+ ∩SnC (3(4)−6)

Histidine 7 15 6
Phenylalanine 8 18 6
Tryptophan 11 27 6
Tyrosine 9 21 6

Table 5.2: Number of constraints to enforce rigidity of |C| atoms in aromatic side chain
(includes β-carbon and out-of-plane atom).

5.7 Summary

This Chapter formulated the equations of motion for protein ENMs on Sn,3+ . Facial
reduction theories were also used to remove the constraint for conservation of linear
momentum, and to decrease the number of constraints required to keep a clique rigid.

105

Chapter 6

Constrained Optimization with Fixed
Rank PSD Matrices

6.1 Introduction

The PSD-EDM-D problem, defined in Definition 5.1.1 is a constrained optimization problem
on Sn,3+ . Solving constrained fixed rank PSD matrix manifold optimization problems has
been discussed in Journée et al. [34], where the geometric objects required by matrix
manifold optimization algorithms, such as the RTR algorithm, were presented. The original
discussion assumes matrices Ai in the problem above satisfy:

AiAj = 0n×n if i 6= j , (6.1)

This assumption is given as “Assumption 2” of [34], and is appropriate for the problems
they analyzed. However, this assumption is too restrictive to describe constraints for
ENMs. This Chapter begins with a discussion on why the quadrance constraints of ENMs
do not satisfy Equation (6.1). Thereafter, the geometric objects required by the RTR
algorithm are presented.

This Chapter is organized as follows:

• Section 6.2 describes why protein structure constraints do not satisfy “Assumption
2” of Journée et al.[34].

• Section 6.3 describes the geometric objects required by matrix manifold algorithms,

106

such as the RTR algorithm, for constrained optimization with fixed rank PSD matrices
without “Assumption 2”.

• Section 6.3.1 describes the tangent space.

• Section 6.3.2 presents the horizontal projection.

• Section 6.3.3 presents the Riemannian gradient.

• Section 6.3.4 presents the Riemannian Hessian.

• Section 6.3.5 presents retraction. The full retraction is derived using the retraction
from Journée et al.. The Fast Retraction is then given, which is an approximation to
the full retraction that is more efficient for large n and m, and is derived by linearly
approximating the full retraction.

• Section 6.4 discusses the agreements between constrained optimization on R3n and
Sn,3+ .

The background material from Chapter 3 should be read prior to this Chapter.

6.2 Removing Assumption 2 of Journée et al.

Suppose the i-th quadrance constraint involves atoms with atomic indices ai and bi, and
suppose there are m such pairs of atomic indices:

(a1, b1), . . . , (ai, bi), . . . , (am, bm)

where the subscript i = 1, . . . ,m is used to index the constraints. The matrix Ai for the
i-th quadrance constraint is the n× n symmetric matrix:

Ai = (eai − ebi)(eai − ebi)T ,

first introduced in Equation (1.4) together with the stamp matrix because of their similar
roles.

Let the j-th quadrance constraint involve atomic indices aj and bj. When the i-th
quadrance constraint and j-th quadrance constraint do not share any atom, i.e. they are
not adjacent bonds, then the atomic indices ai, bi, aj, and bj are all different, resulting in

(eai − ebi)T (eaj − ebj) = 0 ,

107

matrices Ai and Aj satisfying Equation (6.1).

A particular atomic index may appear in more than one quadrance constraint when
bonds are adjacent. When the i-th quadrance constraint and j-th quadrance constraint
are sharing one atomic index, one of the following conditions will be true for atomic indices
ai, bi, aj, and bj (despite these indices being labelled differently):

ai = aj or

ai = bj or

bi = aj or

bi = bj .

(6.2)

Since the atomic indices ai, bi, aj, and bj are all labelled differently, the notation does not
indicate which one of the situations in Equation (6.2) holds. This information is not needed
for this discussion. It is only important to note in the situation described by Equation (6.2)
“Assumption 2” does not hold:

AiAj 6= 0n×n if i 6= j . (6.3)

In order to model protein constraints, “Assumption 2” of [34] needs to be removed. This
Chapter will discuss how to remove “Assumption 2” for the geometric objects discussed in
[34].

6.3 Geometric Objects for Constrained Optimization

on Sn,3+ ' Rn×3
∗ /O3

6.3.1 The Tangent Space

The constraint manifold C(Rn×3
∗) was define in Equation (5.10) and C(Sn,3+) was defined in

Equation (5.11). The tangent space of C(Rn×3
∗) at a point P is denoted TPC(Rn×3

∗). It is
given by differentiating the constraint equations describing C(Rn×3

∗) in Equation (5.10):

TPC(Rn×3
∗) = {η ∈ Rn×3 | Trace(ηTAiP) = 0 i = 1, . . . ,m} . (6.4)

108

TPC(Rn×3
∗) can be decomposed into two orthogonal spaces, the vertical space and the

horizontal space. The vertical space, denoted VPC(Rn×3
∗) is given by:

VPC(Rn×3
∗) = {PΩ | Ω ∈ R3×3,Ω = −ΩT} . (6.5)

The horizontal space is denoted by HPC(Rn×3
∗). From the discussion in Section 3.6.2 a

vector in the horizontal space, η ∈ HPC(Rn×3
∗) is orthogonal to PΩ ∈ VPC(Rn×3

∗), meaning
that Trace(ηTPΩ) = 0 holds. This orthogonality in turn requires ηTP to be a symmetric
matrix. Therefore, the horizontal space is given as (see [34]):

HPC(Rn×3
∗) = {η ∈ TPC(Rn×3

∗) | ηTP = P Tη} . (6.6)

The normal space at P , NPC(Rn×3
∗), is orthogonal to TPC(Rn×3

∗) and is given by:

NPC(Rn×3
∗) = {

m∑
i=1

λiAiP | λi ∈ R} , (6.7)

where λi are m Lagrangian multipliers. This definition of the normal space, which is the
definition originally presented in [34], is a subset of the horizontal space:

NPC(Rn×3
∗) ⊂ HPC(Rn×3

∗) . (6.8)

This inclusion can be verified as follows. Consider an arbitrary vector in the normal space:

m∑
i=1

λiAiP ,

this vector satisfies:

(
m∑
i=1

λiAiP)TP = P T (
m∑
i=1

λiAi)P = P T (
m∑
i=1

λiAiP)

and is therefore in HPC(Rn×3
∗) as well. It would be more precise to redefine HPC(Rn×3

∗)
as:

HPC(Rn×3
∗) = {η ∈ TPC(Rn×3

∗) | ηTP = P Tη and Trace(ηTAiP) = 0 i = 1, . . . ,m} .
(6.9)

109

This definition explicitly removes the vectors in the normal space. In practice, to ensure a
tangent vector η satisfies:

Trace(ηTAiP) = 0 i = 1, . . . ,m

its normal space component can be removed using the horizontal projection, which is
discussed in Section 6.3.2.

Note that vectors in the vertical space PΩ ∈ VPC(Rn×3
∗) are already in the tangent

space and not in the normal space since:

Trace(P TAiPΩ) = 0

holds because P TAiP is a symmetric matrix.

Definition 6.3.1. The tangent space at a point P of the quotient manifold C(Sn,3+), denoted
TPC(Sn,3+), is the space of all vectors from the horizontal space HPC(Rn×3

∗).

Corollary 6.3.1 (Corollary to Proposition 3.6.1).

TPC(Rn×3
∗) ' Rn×3 .

Proof. Vectors in the normal space are of the form:

m∑
i=1

λiAiP .

This is a linear combination of {A1P, . . . , AmP}. Hence,

dim(NPC(Rn×3
∗)) = m (6.10)

Equation (3.9) shows VPRn×3
∗ = VPC(Rn×3

∗). Therefore:

dim(VPC(Rn×3
∗)) = dim(VPRn×3

∗) =
3(3− 1)

2
(6.11)

The horizontal space HPC(Rn×3
∗) is defined in Equation (6.9) and HPRn×3

∗ was defined in
Equation (3.11). Therefore,

HPRn×3
∗ = HPC(Rn×3

∗)⊕NPC(Rn×3
∗)

110

and
dim(HPC(Rn×3

∗)) = dim(HPRn×3
∗)− dim(NPC(Rn×3

∗))

= (n− 3)3 +
3(3 + 1)

2
−m

(6.12)

From Equations (6.10), (6.11), (6.12), it follows:

dim(TPC(Rn×3
∗)) = dim(NPC(Rn×3

∗)) + dim(VPC(Rn×3
∗)) + dim(HPC(Rn×3

∗))

= m+
3(3− 1)

2
+ (n− 3)3 +

3(3 + 1)

2
−m

=
3(3− 1)

2
+ (n− 3)3 +

3(3 + 1)

2

=
9

2
− 3

2
+ 3n− 9 +

9

2
+

3

2
= 3n .

(6.13)

Therefore, it follows that:

HPC(Rn×3
∗)⊕NPC(Rn×3

∗)⊕ VPC(Rn×3
∗) ' Rn×3 ,

as required.

6.3.2 Projecting to the Horizontal Space

The horizontal projection is used to map a vector to the tangent space of the constraint
manifold. The horizontal projection produces a vector orthogonal to the vertical space,
HPC(Rn×3

∗), and the normal space, NPC(Rn×3
∗). The horizontal projection map, denoted

ProjP , has domain TPC(Rn×3
∗) ' Rn×3 and image HPC(Rn×3

∗):

ProjP : Rn×3 → HPC(Rn×3
∗) .

The map is given by (see also Theorem 9 of [34]):

ProjP (η) = η − PΩ−
m∑
i=1

λiAiP

= η − PΩ− EbDiag(λ)ET
b P ,

(6.14)

111

where λ = (λ1, . . . , λm)T ∈ Rm. Eb is an n×m sparse matrix defined as:

Eb =
(
ea1 − eb1 . . . eam − ebm

)
(6.15)

where Eb has column i given by eai − ebi , i = 1, . . . ,m. The Diag operator was defined in
Equation (C.31) and (C.32).

The formula for the horizontal projection has the meaning of removing the vertical
space and the normal space, leaving behind only the horizontal space.

Since ProjP (η) ∈ HPC(Rn×3
∗),

P TProjP (η) = ProjP (η)TP

holds, where Ω is a skew-symmetric matrix that solves the Sylvester equation (see Section
E.1) :

ΩP TP + P TPΩ = P Tη − ηTP . (6.16)

Since ProjP (η) ∈ TPC(Rn×3
∗),

Trace(P TAiProjP (η)) = 0 ,

holds, and if AiAj = 0n×n holds, λi in Equation (6.14) is given by:

λi =
Trace(ηTAiP)

Trace(P TA2
iP)

. (6.17)

If AiAj 6= 0n×n, Equation (6.17) cannot be used. Consider writing Equation (6.17) out in
matrix form:λ1

...
λm

 =


1

Trace(PTA1A1P)

. . .
1

Trace(PTAmAmP)


Trace(ηTA1P)

...
Trace(ηTAmP)


This matrix equation shows λ = (λ1, . . . , λm)T ∈ Rm is the solution to the system:Trace(P TA1A1P)

. . .

Trace(P TAmAmP)


λ1

...
λm

 =

Trace(ηTA1P)
...

Trace(ηTAmP)

 . (6.18)

112

Let

Q =

Trace(P TA1A1P)
. . .

Trace(P TAmAmP)

 (6.19)

Q is an m×m matrix, and in additional, Q is a diagonal matrix because the assumption
AiAj = 0n×n when i 6= j holds. When AiAj 6= 0n×n, the matrix Q is given by:

Q =

Trace(P TA1A1P) . . . Trace(P TAmA1P)
...

...
Trace(P TAmA1P) . . . Trace(P TAmAmP)


=

 ε11(pa1b1
Tpa1b1) . . . ε1m(pa1b1

Tpambm)
...

...
εm1(pambm

Tpa1b1) . . . εmm(pambm
Tpambm)


(6.20)

where εij = (eai − ebi)T (eaj − ebj) and paibi
T = (eai − ebi)TP .

Define the m× 1 vector τ as:

τ =

Trace(ηTA1P)
...

Trace(ηTAmP)

 =

 ηa1b1
Tpa1b1
...

ηambm
Tpambm

 , (6.21)

where ηaibi
T = (eai − ebi)

Tη. Then, Equation (6.18) generalizes to the following linear
system if AiAj 6= 0n×n when i 6= j:

Qλ = τ (6.22)

Proposition 6.3.1. The matrix Q defined in Equation (6.20) is a sparse m×m matrix,
with only O(m) nonzero entries. The nonzero entries of Q are the nonzero entries of ET

b Eb.

Proof. The i-th row of Q is

εi1(paibi)
Tpa1b1 . . . εim(paibi)

Tpambm .

The entry εij(paibi)
Tpajbj is nonzero if and only if

εij = (eai − ebi)T (eaj − ebj) 6= 0 ,

which holds when the bond (aj, bj) is adjacent to the bond (ai, bi). Hence, the number of

113

nonzero entries per row is the number of bonds adjacent to the bond (ai, bi). This number
is small for all atoms in a protein’s amino acid. For example, at most four bonds can be
adjacent for the carbon atom. Denote this number by c, compared to the total number of
constraints m, c� m. Since there are m rows in Q, the total number of nonzero entries of
Q is O(cm) = O(m). It follows that Q has many zeros, and requires only O(m) operations
to form the nonzero entries.

Using the definition of Eb, it is straightforward to perform the multiplication ET
b Eb,

and see that the ij-th entries of this product is exactly εij = (eai − ebi)T (eaj − ebj). This
means the position of nonzero entries for Q and ET

b Eb coincide.

The matrix Q is also given by the following matrix expression:

Q = (ET
b Eb) ◦ (ET

b PP
TEb) , (6.23)

The operator ◦ is element-wise multiplication. However, since Q has only O(m) entries,
another way of forming Q is to only calculate these nonzero entries.

The vector τ is also given by the following matrix expression:

τ = sumrow((ET
b η) ◦ (ET

b P)) .

The operator sumrow(·) sums the row of the argument matrix.

6.3.3 The Riemannian Gradient

Let ∇f(P) be the Euclidean gradient of f(P). The Riemannian gradient is a vector on
TPC(Sn,3+) and by Definition 6.3.1 it is orthogonal to the vertical space, VPC(Rn×3

∗) and the
normal space, NPC(Rn×3

∗). The horizontal projection from Equation (6.14) is applied to
the Euclidean gradient to ensure these conditions are satisfied:

gradf(P) = ProjP (∇f(P)) . (6.24)

Let ζ = ∇f(P), the formula for the horizontal projection from Section 6.3.2 gives the
following expression for the Riemannian gradient:

ProjP (ζ) = ζ − PΩ−
m∑
i=1

λiAiP

= ζ − PΩ− EbDiag(λ)ET
b P ,

(6.25)

114

where Ω now satisfies:
ΩP TP + P TPΩ = P T ζ − ζTP . (6.26)

The define the m× 1 vector τgrad by:

τgrad =

Trace(ζTA1P)
...

Trace(ζTAmP)

 =

 ζa1b1
Tpa1b1
...

ζambm
Tpambm

 = sumrow((ET
b ζ) ◦ (ET

b P)) , (6.27)

where ζaibi
T = (eai−ebi)T ζ. Then, the required λ for projecting the gradient is the solution

to the system:
Qλ = τgrad . (6.28)

6.3.4 The Riemannian Hessian

Recall from the discussion in Section 3.6.5, the Riemannian Hessian in the direction η ∈
HPC(Rn×3

∗) is defined using the Riemannian connection. Similar to Equation (3.33) this is
given by:

Hessf(P)[η] = ∇ηgradf(P) = ProjP (D(gradf(P))[η]) . (6.29)

As Equations (6.24) and (6.29) show, evaluating the Hessian require the directional derivative
of the projection operator in the direction η ∈ HPC(Rn×3

∗). Let ζ = ∇f(P) ∈ Rn×3, let
Dζ[η] ∈ Rn×3 be the directional derivative of ζ in the η direction :

D(gradf(P))[η] = D(ProjP (ζ))[η]

= D(ζ − PΩ−
m∑
i=1

λiAiP)[η]

= Dζ[η]− (ηΩ + PDΩ[η])−
m∑
i=1

λiAiη −
m∑
i=1

Dλi[η]AiP ,

= Dζ[η]− (ηΩ + PDΩ[η])− EbDiag(λ)ET
b η − EbDiag(Dλ[η])ET

b P .

(6.30)

115

The skew-symmetric matrixDΩ[η] ∈ R3×3 solves the Sylvester equation given by differentiating
Equation (6.26) in the η ∈ HPC(Rn×3

∗) direction:

DΩ[η]P TP + P TPDΩ[η]

= (ηT ζ − ζTη) + (P TDζ[η]−Dζ[η]TP)

− Ω(ηTP + P Tη)− (ηTP + P Tη)Ω .

(6.31)

The directional derivative Dλi[η], where i = 1, . . . ,m, is obtained by taking the directional
derivative of λi in the η direction. Assuming AiAj = 0n×n holds, then λi is given by (recall
Equation (6.17)):

λi =
Trace(ζTAiP)

Trace(P TA2
iP)

.

Taking the directional derivative gives 1:

Dλi[η] =
1

Trace(P TA2
iP)

Trace(Dζ[η]TAiP + ζTAiη)

− Trace(ζTAiP)

Trace(P TA2
iP)2

Trace(ηTA2
iP + P TA2

i η) .

(6.32)

Consider writing Equation (6.32) out in matrix form:Dλ1[η]
...

Dλm[η]

 = Diag


1

Trace(PTA2
1P)

...
1

Trace(PTA2
mP)


 Trace(Dζ[η]TA1P + ζTA1η)

...
Trace(Dζ[η]TAmP + ζTAmη)



−Diag


1

Trace(PTA2
1P)

...
1

Trace(PTA2
1P)

Diag

 Trace(ηTA2
1P + P TA2

1η)
...

Trace(ηTA2
mP + P TA2

mη)

Diag


1

Trace(PTA2
1P)

...
1

Trace(PTA2
mP)

 τgrad

(6.33)
where

Diag


1

Trace(PTA2
1P)

...
1

Trace(PTA2
mP)

 =

Trace(P TA2
1P)

. . .

Trace(P TA2
mP)


−1

1This equation corrects the error of the corresponding equation in [34]

116

is the inverse of the matrix Q already discussed in Equation (6.19) and Equation (6.20).
The matrix:

Diag

 Trace(ηTA2
1P + P TA2

1η)
...

Trace(ηTA2
mP + P TA2

mη)

 =

Trace(ηTA2
1P + P TA2

1η)
. . .

Trace(ηTA2
mP + P TA2

mη)


has diagonal entries that are given by taking the directional derivative of the diagonal
entries of the matrix Q in the η directon. Therefore, this matrix can be denoted as DQ[η]:

DQ[η] =

Trace(ηTA2
1P + P TA2

1η)
. . .

Trace(ηTA2
mP + P TA2

mη)

 (6.34)

Similar to Q, DQ[η] is a diagonal matrix only if the assumption AiAj = 0n×n when i 6= j
holds, if this does not hold DQ[η] will have off-diagonal terms:

DQ[η]

=

 Trace(ηTA1A1P + P TA1A1η) . . . Trace(ηTA1AmP + P TA1Amη)
...

...
Trace(ηTAmA1P + P TAmA1η) . . . Trace(ηTAmAmP + P TAmAmη)


=

 ε11
[
ηa1b1

Tpa1b1 + pa1b1
Tηa1b1

]
. . . ε1m

[
ηa1b1

Tpambm + pa1b1
Tηambm

]
...

...
εm1

[
ηambm

Tpa1b1 + pambm
Tηa1b1

]
. . . εmm

[
ηambm

Tpambm + pambm
Tηambm

]


= 2

 ε11
[
ηa1b1

Tpa1b1
]

. . . ε1m
[
ηa1b1

Tpambm
]

...
...

εm1

[
ηambm

Tpa1b1
]
. . . εmm

[
ηambm

Tpambm
]


, (6.35)

where ηaibi
T = (eai − ebi)Tη and ηTaibipaibi = paibi

Tηaibi .

Finally, the vector τgrad for projecting the gradient ζ = ∇f(P) is given in Equation
(6.27) and reproduced below:

τgrad =

Trace(ζTA1P)
...

Trace(ζTAmP)

 ,

117

Define Dτgrad[η] to be the m× 1 vector:

Dτgrad[η] =

 Trace(Dζ[η]TA1P + ζTA1η)
...

Trace(Dζ[η]TAmP + ζTAmη)


=

 Dζ[η]a1b1
Tpa1b1 + ζa1b1

Tηa1b1
...

Dζ[η]ambm
Tpambm + ζambm

Tηambm


(6.36)

where ζaibi
T = (eai − ebi)

T ζ, and Dζ[η]aibi
T = (eai − ebi)

TDζ[η]. Note that Dτgrad[η] is
found from taking the directional derivative of the entries of τgrad, in the direction η.

Let Dλ[η] be the m× 1 vector:

Dλ[η] =

Dλ1[η]
...

Dλm[η]

 . (6.37)

Using the matrices defined above, Dλ[η] solves the following system:

Dλ[η] = Q−1Dτgrad[η]−Q−1DQ[η]Q−1τgrad . (6.38)

which is a generalization of Equation (6.33) to the case where AiAj = 0n×n does not hold
when i 6= j.

Equivalently, noting that λ = Q−1τgrad, Dλ[η] solves the linear system:

QDλ[η] = Dτgrad[η]−DQ[η]λ . (6.39)

Proposition 6.3.2. The matrix DQ[η] defined in Equation (6.35) is a sparse m × m
matrix, with only O(m) nonzero entries. The nonzero entries of DQ[η] are the nonzero
entries of ET

b Eb.

Proof. The proof is very similar to the argument provided for Proposition 6.3.1.

The matrix DQ[η] can be defined using the following matrix expression:

DQ[η] = 2(ET
b Eb) ◦ (ET

b ηP
TEb) .

118

Since DQ[η] has only O(m) nonzero entries, only those entries need to be calculated and
stored in a sparse matrix.

The vector Dτgrad[η] can be defined using the following matrix expression:

Dτgrad[η] = sumrow((ET
b Dζ[η]) ◦ (ET

b P)) + sumrow((ET
b ζ) ◦ (ET

b η)) . (6.40)

6.3.5 The Retraction

The retraction of a tangent vector η ∈ TPC(Sn,3+) to the constraint manifold C(Sn,3+), is the
mapping

RP : TPC(Sn,3+)→ C(Sn,3+)

given by [1] :

RP (η) = P + η +
m∑
i=1

λiAi(P + η) , (6.41)

where η is a matrix whose rows are the unconstrained atomic displacements. The retraction
is a projection in the normal direction onto the constraint manifold (see definition of the
normal space, NPC(Rn×3

∗), in Equation (6.7)), after an unconstrained step P+η. Therefore,
the retraction is in agreement with the step and project paradigm.

Recall the discussion in Section 5.2.2 and Theorem 5.4.1 that the constraint force serves
two roles. In the retraction, the constraint force serves the role of projecting from the
tangent space onto the constraint manifold. In the horizontal projection, see Section 6.3.2,
the constraint force projects from Rn×3 onto the tangent space.

The Full Retraction

The Lagrange multipliers, λi i = 1, . . . ,m, for the full retraction simultaneously satisfy m
equations, the h-th equation, h = 1, . . . ,m is given by:

Trace(RP (η)TAhRP (η)) = qahbh , (6.42)

Let P (0) = P + η, then:

Trace((P (0) +
m∑
i=1

λiAiP
(0))TAh(P

(0) +
m∑
j=1

λjAjP
(0))) = qahbh . (6.43)

119

The 0 superscript will become clear in Section 6.3.5. Using the assumption AiAj = 0n×n
when i 6= j from Equation (6.1), Equation (6.43) expands to:

λ2hTrace(P (0)TA3
hP

(0)) + 2λhTrace(P (0)TA2
hP

(0)) + Trace(P (0)TAhP
(0))− qahbh = 0 .

Define the function Φh : R→ R:

Φh(x) = x2Trace(P (0)TA3
hP

(0)) + 2xTrace(P (0)TA2
hP

(0)) + Trace(P (0)TAhP
(0))− qahbh

(6.44)
Solving for λh in Equation (6.43) is equivalent to finding the root of Φh(x):

Φh(λh) = 0 .

If AiAj 6= 0n×n when i 6= j, Equation (6.43) generalizes to:

m∑
i=1

m∑
j=1

λiλjTrace(P (0)TAiAhAjP
(0))

+2
m∑
i=1

λiTrace(P (0)TAhAiP
(0))

+Trace(P (0)TAhP
(0))− qahbh = 0 .

Redefine the function Φh : Rm → R:

Φh(
−→x) =

1

2

m∑
i=1

m∑
j=1

xixjTrace(P (0)TAiAhAjP
(0))

+
m∑
i=1

xiTrace(P (0)TAhAiP
(0))

+
1

2
(Trace(P (0)TAhP

(0))− qahbh)

= −→x T (0)−→x

+ 2
(

Trace(P (0)TAhA1P
(0)) . . . Trace(P (0)TAhAmP

(0))
)−→x

+
1

2
(Trace(P (0)TAhP

(0))− qahbh) .

(6.45)

120

where T
(0)
h , where h = 1, . . . ,m, is an m ×m matrix whose ij-th non-zero entry is given

by:

T
(0)
h,ij =

1

2
Trace(P (0)TAiAhAjP

(0)) =
1

2
εihj(p

(0)
aibi

)Tp
(0)
ajbj

, (6.46)

where:
εihj = (eai − ebi)T (eah − ebh)(eah − ebh)T (eaj − ebj) . (6.47)

and (p
(0)
aibi

)T = (eai − ebi)TP (0). Then, λ = (λ1, . . . , λm)T ∈ Rm satisfies:

Φh(λ) = 0 for h = 1, . . . ,m . (6.48)

Define the function Φ(−→x), Φ : Rm → Rm:

Φ(−→x) =

Φ1(
−→x)
...

Φm(−→x)

 =


−→x TT

(0)
1
−→x

...
−→x TT

(0)
m
−→x

+Q(0)−→x + C(P (0)) . (6.49)

The m×m matrix Q(0) is given by:

Q(0) =

Trace(P (0)TA1A1P
(0)) . . . Trace(P (0)TA1AmP

(0))
. . .

Trace(P (0)TAmA1P
(0)) . . . Trace(P (0)TAmAmP

(0))



=

 ε11(p
(0)
a1b1

)T (p
(0)
a1b1

) . . . ε1m(p
(0)
a1b1

)T (p
(0)
ambm

)
...

εm1(p
(0)
ambm

)T (p
(0)
a1b1

) εmm(p
(0)
ambm

)T (p
(0)
ambm

)

 .

(6.50)

The m× 1 vector C(P (0)) is given by (see also Equation (5.12)):

C(P (0)) =

C1(P
(0))

...
Cm(P (0))

 =


1
2
(Trace(P (0)TA1P

(0))− qa1b1)
...

1
2
(Trace(P (0)TAmP

(0))− qambm)

 .

Then Equation (6.48) is equivalent to:

Φ(λ) = 0m . (6.51)

121

Since the required λ is a root of Φ(−→x), it can be found using Newton’s method iteratively:

λ(k+1) = λ(k) −∇Φ(λ(k))−1Φ(λ(k)) , (6.52)

where λ(k) is the λ vector from the k-th Newton iteration. The m × m gradient matrix
∇Φ(−→x) is defined by:

∇Φ(−→x) =


∂h1(

−→x)
∂x1

. . . ∂h1(
−→x)

∂xm
...

∂hm(−→x)
∂x1

. . . ∂hm(−→x)
∂xm

 . (6.53)

Differentiating Φ(−→x), gives the following gradient matrix:

∇Φ(−→x) = 2


−→x TT

(0)
1

...
−→x TT

(0)
m

+Q(0) . (6.54)

The Newton iteration for finding λ is summarized in Algorithm 4.

Algorithm 4 Full Retraction using Newton’s Algorithm

INPUT: The unconstrained step P (0), an initial iterate λ(0), a small number ε,.
OUTPUT: A point P (k) on the constraint manifold C(Sn,3+).

1: for k = 1, 2, . . . do
2: λ(k+1) = λ(k) −∇Φ(λ(k))−1Φ(λ(k))
3: if ‖ λ(k+1) − λ(k) ‖< ε then
4: Exit loop.
5: end if
6: end for
7: Return P (k+1) = P (0) +

∑m
i=1 λ

(k+1)
i AiP

(0).

122

The Fast Retraction

The matrix equation Φ(−→x) for the Full Retraction, given in Equation (6.49), can take up
to O(m2) computations to evaluate. This bottleneck is caused by the matrix:

−→x TT
(0)
1
−→x

...
−→x TT

(0)
m
−→x

 ,

see Lemma 6.3.1 and Proposition 6.3.3. This means the Full Retraction is very inefficient
to use for large m. It is not uncommon for a protein structure to have near 1000 residues.
Thus, even if only the α-carbons of each residue are modelled, as is the case for ENMs,
m will often be near 1000. One iteration of the Full Retraction is simply too expensive to
evaluate. This section introduces the Fast Retraction, it is so named for two reasons:

• Fast Retraction avoids evaluating the matrix:
−→x TT

(0)
1
−→x

...
−→x TT

(0)
m
−→x

 ,

• this name draws attention to the close connection it has with Fast Projection, see
Section 2.8.2.

Observe the quadratic term in Φh(
−→x) in Equation (6.45) will be very small if ‖ −→x ‖ is

very small, and therefore can be approximated by its linear approximation.

Let −→ε ∈ Rm be a vector where ‖ −→ε ‖ is very close to zero. Define the following linear

approximation of Φh(
−→ε), denoted by Φ̂h(

−→ε):

Φh(
−→ε) ≈ Φ̂h(

−→ε) =
m∑
i=1

εiTrace(P (0)TAhAiP
(0)) + Ch(P

(0)) . (6.55)

Define the matrix function:

Φ̂(−→ε) =

 Φ̂1(
−→ε)
...

Φ̂m(−→ε)

 = Q(0)−→ε + C(P (0)) . (6.56)

123

A vector of small Lagrange multipliers, δλ = (δλ1, . . . , δλm) ∈ Rm, that satisfy:

Φ̂(δλ) = 0m . (6.57)

gives a small retraction called the “Fast Retraction”. This means that δλ is the solution
to the linear system:

Q(0)−→ε = −C(P (0)) . (6.58)

Because the Fast Retraction takes a very small step, the retracted point is likely not on
the constraint manifold C(Sn,3+) yet. Let P (0) be the first unconstrained step. A sequence
of Fast Retractions are needed, P (1), P (2), . . . to incrementally approaching the constraint
manifold C(Sn,3+). At the k-th iteration of Fast Retraction, δλ(k) is found by solving the
linear system:,

Q(k)−→ε = −C(P (k)) . (6.59)

giving a corresponding δP (k):

δP (k) =
m∑
i=1

δλ
(k)
i AiP

(k) .

followed by the update:

P (k+1) = P (k) + δP (k) = P (k) +
m∑
i=1

δλ
(k)
i AiP

(k) , (6.60)

to arrive at P (k+1) which satisfies the constraints a bit better than P (k). The Lagrange
multipliers δλ(k) can be scaled by a parameter α, that the programmer determines, for
example α = 0.1, to ensure ‖ δλ(k) ‖ is small, which is the assumption required by Fast
Retraction. These iterations can stop when the constraints are satisfied to some tolerance
level. Fast Retraction is summarized in Algorithm 5.

The Fast Retraction update at the k-th iteration when integrating the equations of
motion has the constraint force scaled by the matrix (∆t)2M̂−1 (which scales the constraint
force into a displacement):

P (k+1) = P (k) + (∆t)2M̂−1
m∑
i=1

δλ
(k)
i AiP

(k) . (6.61)

124

Substituting Equation (6.61) into the constraint gives:

Trace(P (k+1)TAkP
(k+1))

≈(∆t)2
m∑
i=1

λ
(k)
i Trace(P (k)TAkM̂

−1AiP
(k)) + Trace(P (k)TAkP

(k))− qakbk
(6.62)

Putting all m constraints together shows δλ the following linear system :

Q̂(k)−→ε = −C(P (k)) , (6.63)

where

Q̂(k) = (∆t)2

Trace(P (k)TA1M̂
−1A1P

(k)) . . . Trace(P (k)TA1M̂
−1AmP

(k))
...

. . .
...

Trace(P (k)TAmM̂
−1A1P

(k)) . . . Trace(P (k)TAmM̂
−1AmP

(k))

 ,

which differs from Equation (6.59) in the use of Q̂(k) instead of Q(k).

In the lattice interpolation example discussed in Section 7.2, numerous calls to the
retraction function are needed by the RTR algorithm for each conformation. If the Full
Retraction is used, the maximum number of iterations for each conformation ranges from
3 to 9. But if the Fast Retraction is used, only 1 to 5 iterations were required. Note that
the Full Retraction also requires a random initial guess for the Lagrange multipliers, while
the Fast Retraction does not.

Lemma 6.3.1. The m× 1 vector: 
−→x TT

(0)
1
−→x

...
−→x TT

(0)
m
−→x

 ,

in Φ(−→x) defined in Equation (6.49) requires O(m2) steps to setup, where m is the number
of constraints.

Proof. The ij-th entry of the matrix T
(0)
h , T

(0)
h,ij from Equation (6.46) has nonzero entry if

and only
εihj = (eai − ebi)T (eah − ebh)(eah − ebh)T (eaj − ebj) 6= 0 .

Therefore, T
(0)
h,ij 6= 0 if bond (ah, bh) is adjacent to both bond (ai, bi) and (aj, bj). This

125

Algorithm 5 Fast Retraction

INPUT: Initial iterate P (0) resulting from an unconstrained step, see Equation (2.61). A
small number ε, a small numer α.

OUTPUT: A sequence of iterates P (1), P (2), . . . approaching the constraint manifold
C(Sn,3+).

1: for k = 0, 1, 2, . . . do
2: Solve the linear system for δλ(k).

Q(k)δλ(k) = −C(P (k)) (6.64)

3: Set δλ(k) = αδλ(k) to ensure ‖ δλ(k) ‖ is small.
4: Set the k-th correction δP (k) to be:

δP (k) =
m∑
i=1

δλ
(k)
i AiP

(k) . (6.65)

5: Update P (k+1) = P (k) + δP (k).
6: if ‖C(P (k+1))‖ < ε then
7: Return P (k+1)

8: end if
9: end for

126

means each row of T
(0)
h has very few nonzero elements, hence each row of the multiplication

T
(0)
h
−→x can be achieved in O(1) computations, allowing T

(0)
h
−→x to be constructed in O(m)

computations. Since T
(0)
h
−→x is an m × 1 vector, the multiplication of −→x T

(
T

(0)
h
−→x
)

also

require O(m) computations. The matrix
−→x TT

(0)
1
−→x

...
−→x TT

(0)
m
−→x

 ,

repeats this multiplication m times, hence, requires mO(m) = O(m2) computations to
construct.

Proposition 6.3.3. The Full Retraction system requires O(m2) computations to evaluate,
while the Fast Retraction’s linear system requires only O(m) computations to evaluate.

Proof. As Lemma 6.3.1 has shown, the matrix
−→x TT

(0)
1
−→x

...
−→x TT

(0)
m
−→x

 ,

required to compute Φ(−→x) requires O(m2) computations to set up. The matrix Q(0) from
Equation (6.50) has the same sparsity structure as the matrix Q of Equation (6.20) which
from Proposition 6.3.1 has O(m) entries, and therefore requires O(m) computations to
setup.

6.4 Agreements Between C(R3n) and C(Sn,3+)

This section discusses the agreements between constraint optimization on C(R3n) and
C(Sn,3+). The superscript k will be dropped where it is convenient to do so to make the
expressions easier to read.

Lemma 6.4.1. The matrix:
∇C(−→p)M−1∇C(−→p)T ,

127

and the matrix:

Q̂ =

Trace(P TA1M̂
−1A1P) . . . Trace(P TA1M̂

−1AmP)
...

. . .
...

Trace(P TAmM̂
−1A1P) . . . Trace(P TAmM̂

−1AmP)

 ,

are the same matrix.

Proof. This requires showing the ij-th entry of these two matrices are the same.

From Equation (2.51),

∇C(−→p) =


−→p TSa1b1

...
−→p TSambm

 .

The structure of the matrix:
∇C(−→p)M−1∇C(−→p)T ,

has been discussed in, for example Barth et al. [9]:

∇C(−→p)M−1∇C(−→p)T =


−→p TSa1b1

...
−→p TSambm

M−1 (Sa1b1−→p . . . Sambm
−→p
)

=


−→p TSa1b1M

−1Sa1b1
−→p . . . −→p TSa1b1M

−1Sambm
−→p

...
. . .

...
−→p TSambmM

−1Sa1b1
−→p . . . −→p TSambmM

−1Sambm
−→p


The ij-th entry is:

−→p TSaibiM
−1Sajbj

−→p .

Evaluating this expression gives:

−→p TSaibiM
−1Sajbj

−→p
= −→p T (eai,I3 − ebi,I3)(eai,I3 − ebi,I3)TM−1(eaj ,I3 − ebj ,I3)(eaj ,I3 − ebj ,I3)T−→p
= (pai − pbi)T (eai,I3 − ebi,I3)TM−1(eaj ,I3 − ebj ,I3)(pai − pbi) .

128

For i = j, the diagonal entries are given by:

(pai − pbi)T (eai,I3 − ebi,I3)TM−1(eai,I3 − ebi,I3)(pai − pbi)

=
(

1
mai

(pai − pbi)T . . . − 1
mbi

(pai − pbi)T
) (pai − pbi)

...
−(pai − pbi)


=

1

mai

(pai − pbi)T (pai − pbi)−
1

mbi

(pai − pbi)T (pai − pbi)

=

(
1

mai

+
1

mbi

)
(pai − pbi)T (pai − pbi)

=

(
1

mai

+
1

mbi

)
qaibi

For off-diagonal entries, only the blocks that appear in the same position in (eai,I3 − ebi,I3)
and (eaj ,I3 − ebj ,I3) will contribute to the result. For example, if ai = aj:

(pai − pbi)T (eai,I3 − ebi,I3)TM−1(eaj ,I3 − ebj ,I3)(paj − pbj)

=
(

1
mai

(pai − pbi)T . . . − 1
mbi

(pai − pbi)T
) (paj − pbj)

...
−(paj − pbj)


=

(
1

mai

)
(pai − pbi)T (paj − pbj) .

As another example, if bi = aj,

(pai − pbi)T (eai,I3 − ebi,I3)TM−1(eaj ,I3 − ebj ,I3)(paj − pbj)

=
(

1
mai

(pai − pbi)T . . . − 1
mbi

(pai − pbi)T
) (paj − pbj)

...
−(paj − pbj)


=

(
−1

mbi

)
(pai − pbi)T (paj − pbj)

129

For the matrix Q̂, the ij-th entry simplifies as follows:

Trace(P TAiM̂
−1AjP)

= Trace(P T (eai − ebi)(eai − ebi)TM̂−1(eaj − ebj)(eaj − ebj)TP)

= Trace((eai − ebi)TM̂−1(eaj − ebj)(eaj − ebj)TPP T (eai − ebi))
= Trace((eai − ebi)TM̂−1(eaj − ebj))(paj − pbj)T (pai − pbi)
= Trace(M̂−1(eaj − ebj)(eai − ebi)T)(paj − pbj)T (pai − pbi) .

If i = j,

Trace(M̂−1(eai − ebi)(eai − ebi)T)(pai − pbi)T (pai − pbi)
=Trace(M̂−1(eai − ebi)(eai − ebi)T)qaibi

=

(
1

mai

+
1

mbi

)
qaibi .

For off-diagonal entries, only the entries that appear in the same position in (eaj −ebj) and
(eai−ebi) will contribute to the result. Using the same examples as for∇C(−→p)M−1∇C(−→p)T ,
if ai = aj:

Trace(M̂−1(eaj − ebj)(eai − ebi)T)(paj − pbj)T (pai − pbi)
= Trace(M̂−1(eaj − ebj)(eai − ebi)T)(paj − pbj)T (pai − pbi)

=

(
1

mai

)
(paj − pbj)T (pai − pbi) .

If bi = aj:

Trace(M̂−1(eaj − ebj)(eai − ebi)T)(paj − pbj)T (pai − pbi)
= Trace(M̂−1(eaj − ebj)(eai − ebi)T)(paj − pbj)T (pai − pbi)

=

(
−1

mbi

)
(paj − pbj)T (pai − pbi) .

Therefore, ∇C(−→p)M−1∇C(−→p)T and Q̂ are the same matrix.

130

Proposition 6.4.1. The matrix:

∇C(−→p)∇C(−→p)T ,

and the matrix: Trace(P TA1A1P) . . . Trace(P TA1AmP)
...

. . .
...

Trace(P TAmA1P) . . . Trace(P TAmAmP)

 ,

are the same matrix.

Proof. Apply Lemma 6.4.1 with M = I3n and M̂ = In.

Proposition 6.4.2 (The Agreement between the Lagrange multipliers for projecting onto
the Tangents Space of the Constraint Manifold). The Lagrange multipliers for projecting
onto the tangents space of the constraint manifold C(R3n) given by Equation (5.9) agrees
with the Lagrange multipliers for projecting onto the tangents space of the constraint
manifold C(Sn,3+).

Proof. From Equation (5.9) λ for the projection in −→η ∈ R3n solves:

λ = (∇C(−→p)∇C(−→p)T)−1∇C(−→p)−→η

From Equation (6.22), the Lagrange multiplier for projecting an n× 3 matrix η is

λ = Q−1τ .

where τ is defined in Equation (6.21).

By Proposition 6.4.1,
Q = ∇C(−→p)∇C(−→p)T .

To see that τ and ∇C(−→p)−→η are the same vectors, consider:

∇C(−→p)−→η

From Equation (2.51),

∇C(−→p) =


−→p TSa1b1

...
−→p TSambm

 .

131

Therefore:

∇C(−→p)−→η =


−→p TSa1b1

...
−→p TSambm

−→η
=


−→p TSa1b1

−→η
...

−→p TSambm
−→η

 =

 (pa1 − pb1)T (ηa1 − ηb1)
...

(pam − pbm)T (ηam − ηbm)


This is equivalent to Equation (6.21) which defines τ when projection an n× 3 matrix η.

Therefore, the Lagrange multipliers λ solves the same linear system on both C(R3n)
and C(Sn,3+).

Proposition 6.4.3 (The agreement between the derivative of the Lagrange multipliers).

Let
−→
ζ ,−→η ∈ R3n, and let the projection of

−→
ζ be:

Proj(
−→
ζ) =

−→
ζ −∇C(−→p)Tλ .

Let Dλ[−→η] be the directional derivative of λ in the direction −→η . The linear system for
solving for Dλ[−→η] on C(R3n) is the same linear system used to solve for Dλ[η] on C(Sn,3+)
given in Equation (6.38) and Equation (6.39).

Proof. This proof follows the same approach as the proof for Proposition 6.4.2. Details are
omitted.

Proposition 6.4.4 (The Agreement Between Fast Projection and Fast Retraction). The
linear system solved by Fast Projection and the linear system solved by Fast Retraction are
the same linear systems.

Proof. Fast Projection’s k correction is given by:

−→p (k+1) = −→p (k) − (∆t)2M−1∇C(−→p (k))T δλ .

Fast Retraction has been defined with a sign difference (see Equation (6.61)):

P (k+1) = P (k) + (∆t)2M̂−1
m∑
i=1

δλ
(k)
i AiP

(k) .

132

But since δλ
(k)
i is an unknown vector to be found, the sign difference can be moved to be

associated this unknown vector, so Fast Retraction can be redefined with a minus sign to
be consistent with Fast Projection:

P (k+1) = P (k) − (∆t)2M̂−1
m∑
i=1

(−δλ(k)i)AiP
(k) .

Fast Retraction’s linear system is now:

(∆t)2

Trace(P (k)TA1M̂
−1A1P

(k)) . . . Trace(P (k)TA1M̂
−1AmP

(k))
...

. . .
...

Trace(P (k)TAmM̂
−1A1P

(k)) . . . Trace(P (k)TAmM̂
−1AmP

(k))

 (−δλ(k)) = −C(P (k)) .

After cancelling the minus sign on both sides of the equation, Fast Retraction’s linear
system is then:

(∆t)2

Trace(P (k)TA1M̂
−1A1P

(k)) . . . Trace(P (k)TA1M̂
−1AmP

(k))
...

. . .
...

Trace(P (k)TAmM̂
−1A1P

(k)) . . . Trace(P (k)TAmM̂
−1AmP

(k))

 (δλ(k)) = C(P (k)) .

By Proposition 6.4.1, the matrix on the left hand side of the linear system for Fast
Projection and Fast Retraction are the same.

On the right hand side, Equation 2.49 gives:

Ci(
−→p) =

1

2

(
‖ pai − pbi ‖2 −qaibi

)
,

while Equation 5.13 gives:

Ci(P) =
1

2

(
‖ pai − pbi ‖2 −qaibi

)
.

Fast Projection’s right hand side and Fast Retraction’s right hand side are therefore
equivalent:

C(−→p) = C(P) .

In summary, Fast Projection and Fast Retraction solves the same linear system.

Although Fast Projection and Fast Retraction both solve the same linear system, they

133

are arrived at from different approaches. Table 6.1 provides a comparison of these two
paradigms.

Fast Projection Fast Retraction
Approximates SAP, which solved for both
the Lagrange multipliers and the atomic
positions.

Approximates the full retraction, which was
only solving for the Lagrange multipliers.

The potential energy is a function on R3n The potential energy is a function on Sn,3+

Table 6.1: A comparison of Fast Projection and Fast Retraction.

6.5 Summary

This Chapter presented the gradient, Hessian, horizontal projection, and retraction required
for optimization on C(Sn,3+). Assumption 2 from [34] was removed to describe the constraints
of a protein structure. This Chapter also discussed the agreements between constraint
optimization on C(R3n) and C(Sn,3+).

134

Chapter 7

Interpolating Transitional
Conformations: An Example of

Modelling ENMs on S
n,3
+

7.1 Introduction

This Chapter uses the example of ENI and iENM to illustrate the modelling of protein
dynamics on Sn,3+ . A python implementation is provided, using an object-oriented paradigm,
in Appendix A.

In Section 7.2, a lattice example is used to illustrate interpolating with and without
constraints. A comparison of the PSD ENI and PSD iENM potentials in Section 7.3 shows
that PSD iENM generates local conformational changes before global changes, as was also
seen in the original iENM formulation[74]. This order of change supports the idea that the
active site changes first to drive the protein’s conformational change. PSD ENI however,
does not produce such an order of change.

7.2 Lattice Example

In this section, a lattice model will be used to illustrate using the constraint manifold to
enforce constraints. Section 8.1 discusses that the PSD collision avoidance energy can be
modified to include enforcing equality constraints.

135

Figure 7.1 presented the lattice model, this lattice model is an α-carbon chain. It is
called “lattice1 small” because the atoms are placed 1 Å apart, a shorter distance than the
3.8 Å for a real protein.

(a) (b) (c)

Figure 7.1: The lattice structure “lattice1 small”. a) ball and stick model of the starting
conformation. b) stick model of the starting conformation. c) stick model of the ending
conformation.

Figure 7.1 a) gives the beginning conformation as a “ball and stick” representation,
where the balls represent the α-carbons. Figure 7.1 b) gives the beginning conformation
using a “stick” representation, where the atoms are not visible. The stick representation
allows the orientation of the backbone to be shown. Figure 7.1 c) is the ending conformation,
where the bottom part of the lattice, coloured in black, has undergone a 180◦ rotation.

(a) t = 0.25 (b) t = 0.79 (c) t = 0.80 (d) t = 1.00

Figure 7.2: Transitions generated by Hookean ENI without the constraint manifold for
lattice1 small. The final conformation is in the correct orientation after an abrupt flip at
t = 0.79.

In order for the ending conformation to be in the correct orientation, the part of the
lattice structure coloured in black in Figure 7.1 c) must remain rigid throughout the
interpolation. Let the atoms of this structure be indexed starting from the top from 1

136

to 10, then constraining the bond length between consecutive α carbons, together with
constraining the bottom piece colored in black to be rigid requires the following pairs of
constraints:

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (6, 8), (6, 9), (6, 10), (7, 9), (8, 10)

Figure 7.2 shows the transition generated using Hookean ENI without constraints, but
with the steric collision energy. An interesting observation from this interpolation is that
at t = 0.79, the bottom piece is abruptly flipped to the other side to arrive at the final
conformation. Hookean iENM has generated the same transition and therefore images of
the intermediate conformations will be omitted.

(a) t = 0.25 (b) t = 0.60 (c) t = 0.86 (d) t = 1.00

Figure 7.3: Transitions generated by PSD ENI without the constraint manifold for
lattice1 small. The final conformation is in the wrong orientation.

Figure 7.3 shows the transition generated by PSD ENI without the constraint manifold.
In this case, because the bottom piece has not been constrained to be rigid, the final
conformation generated is in the wrong orientation. PSD iENM has generated the same
transition and therefore images of the intermediate conformations will be omitted.

Figure 7.4 shows the transitions generated by Hookean ENI from moving on the constraint
manifold. The intermediate conformations generated in this case has the bottom piece,
which is coloured in black in Figure 7.4, stay rigid for all intermediate conformations, and
therefore, the ending conformation is in the correct orientation.

Note that the top part of the structure in Figure 7.4, colored gray, does not stay rigid.
Recall from the discussion in Section 2.8.3 that when three atoms are collinear, the matrix
used by Fast Projection to solve for the Lagrange multipliers becomes singular, therefore
the top part of lattice1 small cannot be constrained to be rigid. Since this lattice is not a
real protein, we will not explore this issue further in this thesis.

The transitional conformations generated by Hookean iENM are the same as that
generated by Hookean ENI, the figures have therefore been omitted. The transitions

137

(a) t = 0.25 (b) t = 0.50 (c) t = 0.65 (d) t = 0.99

Figure 7.4: Transitions generated by Hookean ENI with the constraint manifold for
lattice1 small. The black coloured part of the structure is constrained to be rigid to allow
it to rotate 180◦.

generated by PSD ENI, and PSD iENM also show the same principle, and therefore
these images are also omitted. In both cases, the final conformation is in the correct
conformation, unlike in Figure 7.3.

0 20 40 60 80 100
Conformation Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
rm

 o
f

co
n
st

ra
in

t

Hookean_ENI lattice1small_1

(a) Without constraint manifold.

0 20 40 60 80 100
Conformation Index

0.10

0.05

0.00

0.05

0.10

N
o
rm

 o
f

co
n
st

ra
in

t

Hookean_ENI lattice1small_1

(b) With constraint manifold

Figure 7.5: ‖ C(−→p t) ‖ for each transitional conformation −→p t generated by Hookean ENI.
The same graph was generated by Hookean iENM.

Figure 7.5 shows the norm of the constraint, ‖ C(−→p) ‖ for each transitional conformation
generated by Hookean ENI (recall Equation (2.47). Hookean iENM produced the same
graph and is therefore omitted. Figure 7.5 a) shows that despite the final conformation

138

being in the correct orientation, the intermediate conformations do not stay on the constraint
manifold. Note the peak of the graph around t = 0.79 and t = 0.8, where the abrupt flip
happened as shown in Figure 7.2. Figure 7.5 b) shows after enforcing constraints, ‖ C(−→p) ‖
stays very close to zero for each transitional conformation, with no abrupt changes.

0 20 40 60 80 100
Conformation Index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

N
o
rm

 o
f

co
n
st

ra
in

t

PSD_ENI lattice1small_1

(a) Without constraint manifold.

0 20 40 60 80 100
Conformation Index

0.10

0.05

0.00

0.05

0.10

N
o
rm

 o
f

co
n
st

ra
in

t

PSD_ENI lattice1small_1

(b) With constraint manifold

Figure 7.6: ‖ C(Pt) ‖ for each transitional conformation Pt generated by PSD ENI. The
same graph was generated by PSD iENM.

Figure 7.6 shows ‖ C(Pt) ‖ for each Pt generated by PSD ENI. Figure 7.6 a) and b)
show respectively that if enforcing constraints is omitted, the intermediate conformations
are not guaranteed to be on the constraint manifold.

7.3 Local and Global Conformational Changes

The protein structure constraints modelled in this section are the quadrances between
consecutive α-carbons, being fixed at (3.8)2Å apart. Distances between geminal α-carbons
can also be constrained to keep the bond angles fixed, but is omitted in this example to
keep the number of constraints small. The range of motion being interpolated is small,
hence this modelling choice does not have an impact on the result.

The Hookean iENM potential produces intermediate structures that model local conformational
change at an active site before a global conformational change. The ability of the model to

139

distinguish local versus global conformational changes supports the idea that local motions
at an active site drive larger global conformational changes. When the original iENM was
introduced [74], three Adenosine-triphosphate (ATP) driven structural transitions were
modelled to demonstrate iENM can model local change at an active site before a global
change. These three transitions are summarized below, and are used to show PSD iENM
also preserves the order of local change before global change.

CASE 1: MYOSIN Myosin is a superfamily of actin-based Adenosine-triphosphate (ATP)
powered motor proteins involved in diverse functions from muscle contraction to intracellular
transportation. The various biochemical states this protein can have are described in
[74], where the transition from the state given by 1FMW to the state given by 1VOM,
is modelled by the authors. During this transition, ATP hydrolysis is accompanied by
the closing of the active site (local change), and an upward rotation of the converter
subdomain (global change). A difference in the order of local and global conformational
change has been observed by different modelling approaches. The iENM approach produces
the local conformational change before the global change. According to the authors, this
is “consistent with a causal relationship by which ATP hydrolysis causes a subsequent
upward rotation of the converter, which is energetically more favorable than an alternative
order by which an upward rotation of the converter precedes the closing of active site.”
The active site is located at residues 179-186, 233-238, and 454-459. Figure 7.7 shows the
active site residues for 1FMW.

(a) 1FMW (b) Active site circled.

Figure 7.7: 1FMW active site.

CASE 2: 1BMF F1 ATPase (F1) is a globular catalytic moiety of F0F1 ATP synthase,

140

which is a molecular machine that uses the energy of proton motive force across the
mitochondrial membrane to synthesize ATP. It has three β subunits, three α subunits,
and a central stalk of γδε subunits. Three catalytic sites and three non-catalytic sites are
situated at the interface of the β and α subunits. The bovine F1 crystal structure, (PDB
code 1BMF), captures the catalytic sites at the open and close conformations. The empty
E-site, and the associated βE subunit adopted the open conformation. The other two
sites, referred to as the TP-site and DP-site, and their associated βTP and βDP subunits
adopted the closed conformation. The iENM model from the βE open conformation to the
βTP closed conformation shows closing of the catalytic E-site precedes the open-to-close
transition of the β subunit. The catalytic site (active site) is located at residues 159-164,
186-188, 256-259, and 308-309. Figure 7.8 shows the active site for 1BMF.

The βE subunit is captured in chain E of the PDB structure, and the βTP subunit is
captured in chain F of the PDB structure. The conformation given by these two chains
are interpolated.

(a) 1BMF chain E. (b) Active site circled.

Figure 7.8: 1BMF (chain E, βE subunit) active site.

CASE 3: 1AON GroEL is a chaperone protein that assists in protein folding. ATP
binding leads to the transition from the T state to the R state, then binding of the GroES
protein and ATP hydrolysis leads to the R′′ state. Chain H of 1AON is in the T state
conformation, and chain A of 1AON is in the R′′ state conformation. The iENM transition
from the T state to the R′′ state shows the closing of the active site before a global
conformational change, supporting the idea that ATP binding is the cause of the global

141

structural change. The active site is located at residues 31-33, 87, 91, 150, 151, 398, 415,
454, 479-481, 493, 495. Figure 7.9 shows the active site for 1AON.

(a) 1AON chain H. (b) Active site circled.

Figure 7.9: 1AON (chain H) active site.

Let I ⊂ {1, . . . , n}, be a subset of the residue indices for which their progress towards
the end conformation is to be measured. Let P0 be the initial conformation, Pj be the
j-th conformation, and P100 be the final conformation. Let P0[I, :], Pj[I, :], P100[I, :]
be the corresponding submatrices with the rows in I present. The reaction coordinate
formula from [74] for measuring the progress of residues indexed by I towards the ending
conformation can be expressed in the following matrix expression:

RCj
I =

〈Pj[I, :]Qj − P0[I, :], P100[I, :]Q100 − P0[I, :]〉
〈P100[I, :]Q100 − P0[I, :], P100[I, :]Q100 − P0[I, :]〉

j = 0, . . . , 100 . (7.1)

The matrices Q100 and Qj are Procrustes rotations applied to P100 and Pj respectively.
The matrix P100[I, :]Q100 − P0[I, :] measures the total displacement from the beginning
conformation to the end conformation. The matrix Pj[I, :]Qj − P0[I, :] measures the
displacement up to the j-th conformation. RCj

I thus measures how much the j-th conformation’s
residues with indices from I has moved, with respect to how much they need to move in
total.

Figure 7.10 and 7.11 both plot RCj
Local on the horizontal axis versus RCj

Global on the
vertical axis. The local and global residue indices for each protein were discussed previously
in the CASE 1, CASE 2, CASE 3 summaries.

Figure 7.10 shows the local versus global reaction coordinate scatter plot for the transitional
conformations generated by PSD iENM for 1FMW’s and 1BMF’s transitions. For 1FMW,
the global change is measured for residues 81 to 747, following [74]. This figure shows

142

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
local

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g
lo

b
a
l

local vs global change (1FMW iENM PSD)

(a) 1FMW to 1VOM, global motion delayed.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
local

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g
lo

b
a
l

local vs global change (1BMF iENM PSD)

(b) 1BMF chain E to F, global motion delayed.

Figure 7.10: PSD iENM delays global motion for 1FMW and 1BMF, in agreement with
Hookean iENM.

the global motion is delayed until the very end of the interpolation for both proteins, in
agreement with the original Hookean iENM.

Figure 7.11 shows a comparison of the local versus global change for 1AON generated
by PSD ENI and PSD iENM. As can be seen, PSD ENI does not delay the global motion
towards the final stages of the interpolation.

In Figure 7.13, intermediate conformations generated by PSD ENI are presented for
the 1AON chain H to 1AON chain A interpolation. These conformations show the global
movement happens very early. Figure 7.13 is the aligned beginning and ending conformation
before and after interpolation.

Figure 7.14 presents the PSD iENM generated interpolation for 1AON chain A to chain
H. These intermediate structures show PSD iENM delays the global motion towards the
final stages of the interpolation.

7.4 Summary

This Chapter used the transitional conformations problem as an example of modelling
ENMs on Sn,3+ . This Chapter has also observed the agreement between the Hookean iENM
and PSD iENM potentials.

143

(a) PSD ENI does not delay global motion

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
local

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g
lo

b
a
l

local vs global change (1AON iENM PSD)

(b) PSD iENM generates global motion near the end.

Figure 7.11: Local and global motion comparison for 1AON from chain H to chain A.

(a) t = 0.25 (b) t = 0.50 (c) t = 0.70

Figure 7.12: Sample of transitional conformations for 1AON Chain H (black) to Chain A
with PSD ENI showing global motion already at t = 0.50.

144

(a) t = 0.00 (b) t = 1.00

Figure 7.13: 1AON Chain H (black) superimposed onto Chain A before and after
interpolation, showing the range of global motion.

(a) t = 0.25 (b) t = 0.90 (c) t = 0.99 (d) t = 1.00

Figure 7.14: Sample transitional conformations for 1AON Chain H to Chain A with PSD
iENM showing global motion delayed to beyond the 90th transitional conformation.

145

Chapter 8

Conclusion

The R3n Riemannian manifold presents many mathematical defects for modelling ENMs.
These defects are removed by changing to the Sn,3+ Riemannian manifold. Table 8.1
summarizes defects discussed in this thesis.

8.1 Future Research

The Riemannian manifold Sn,3+ opens up many interesting directions of future research.

Meyer[55] generalized linear regression to many matrix manifolds, including Sn,r+ . Recall
in R3n, linear regression is given by the optimization problem:

min
N∑
i=1

(−→w T−→η i − yi)2 , (8.1)

where −→η i ∈ R3n are the training features, yi ∈ R i = 1, . . . , N are the training (expected)
outputs and −→w ∈ R3n are the weights to be learned by the linear regression model. The
generalization of linear regression to Sn,r+ provided by Meyer[55] is given by:

min
N∑
i=1

‖ Trace(W TSym(Ai))− yi ‖2F , (8.2)

where W ∈ Sn,r+ is the low rank weight matrix, and Ai are now matrix inputs, where
sym(A) = (A+AT)/2 ensures Ai is a symmetric matrix, and the expected training output is

146

Considerations Defects of the current approach
using R3n

The new approach in this thesis
using Sn,3+ ∩ SC

Minimizing the
potential is well-posed

No, problem is ill-posed. Yes, problem is well-posed.

Distance or quadrance
in potential

No preference. Quadrance is preferred because of
the Linear isomorphism mapping
K : Sn+ ∩ SnC → En.

Number of constraints
for a rigid group of nq
atoms

3nq − 6, see [64] depends on nq,
i.e. O(nq).

Use facial reduction to further
reduce to 3(4)− 6 = 6 constraints

Rotation of rigid
groups of atoms

Needs rotation matrices, and
Lie group theory, additional
complexity. [17]).

Use a face of the Sn+ cone. No
additional mathematical objects
required, model remains simple.

Conservation of linear
momentum

Additional constraint. Using facial reduction to remove
this constraint.

Enforcing constraints Both implicit and explicit
treatment of the constraint force
has been proposed.

The retraction is by definition
a “step and project” operation,
implicit treatment of constraint
force is the only option.

Redundancy Yes. Mass matrix M repeats
mass of each atom three times,
ea,I3 repeats the 1 three times.

No. See definition of M̂ and ea.

Apply abstract
concepts to different
applications

No. Fast Projection was
already presented by Rosen
in 1961 [66] for general nonlinear
constraints, but re-introduced by
Goldenthal et al. [30] for distance
constraints.

Yes. Matrix manifold
optimization uses abstract
differential geometry as a
foundation.

Table 8.1: The advantages of modelling ENMs using Sn,3+ over R3n is summarized.

yi. Meyer pointed out that the rank r EDMC problem is in fact a linear regression problem
on Sn,r+ , where the specified quadrances, qab, are the expected training outputs, (ea−eb)(ea−
eb)

T for (a, b) ∈ D are the matrix training inputs, W = Y Y T is the rank r weight matrix

147

to be learned. In other words, Meyer [55] has pointed out that the optimization problem:

min
∑

(a,b)∈D

(Trace(Y Y T (ea − eb)(ea − eb)T)− qab)2

= min
∑

(a,b)∈D

((ea − eb)TY Y T (ea − eb)− qab)2 ,
(8.3)

is a linear regression problem on Sn,r+ .

Given input −→η i ∈ R3n, a perceptron in R3n that does not have an activation function
also outputs the calculation:

−→w T−→η i . (8.4)

Therefore, this means the output of a perceptron whose weight matrix is on Sn,r+ is:

Trace(W TSym(Ai)) . (8.5)

The PSD potential uses a perceptron which produces the output

Trace(PP T (ea − eb)(ea − eb)T)

which is of the form given in Equation (8.5) with W = PP T . Therefore, the PSD potential
can be viewed as the sum of squared errors of a perceptron whose training input is given
by the matrices (ea − eb)(ea − eb)T , and whose training output is the reference quadrances
from atomic index pairs in D, from which the rank 3 “weight matrix” PP T of atomic
coordinates is to be learned.

Meyer’s generalization motives Definition 8.1.1 of a rank r PSD perceptron.

Definition 8.1.1 (Rank r PSD Perceptron). A rank r PSD perceptron is a perceptron
whose weight matrix is a rank r PSD matrix. The input to the perceptron is a symmetric
matrix. The output of the perceptron is a scalar real number. There may or may not be an
activation function applied to the output.

The PSD collision avoidance potential can be modified to include checking for violations
of equality constraints. Define the following sets which are evaluated at P . Let qcol be the
threshold quadrance for which atomic collision is assumed. Define Dcol(P) to be the set of
atomic pairs for which the inter-atomic quadrance is less than qcol:

Dcol(P) = {(a, b) | (ea − eb)TPP T (ea − eb) < qcol} .

148

Define DE(P) to be the set of pairs that have violated their equality constraint, given by
q̃ab:

DE(P) = {(a, b) | (ea − eb)TPP T (ea − eb) > q̃ab or (ea − eb)TPP T (ea − eb) < q̃ab} .

These sets can be used to define the activation function of a PSD “penalty perceptron”,
which now penalizes both collisions and violation of equality constraints.

Now consider the situation on R3n. The Hookean potential has no simple relation to a
perceptron whose weight vector is from R3n.

Because the PSD potential uses PSD perceptrons, and minimizing the PSD potential is
equivalent to minimizing the sum of squared errors outputted by these PSD perceptrons,
this problem can be implemented on hardware optimized for neural network training which
are expected to be faster than CPUs This implementation is left as a topic for future
research. Other future research directions include adapting the PSD potential to different
problems in protein dynamics, for example protein-ligand docking [57, 69], and a further
investigation of applying facial reduction to modelling rigid groups of atoms.

149

References

[1] P.A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, Princeton, NJ, 2008.

[2] P.A. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM
Journal on Optimization, 22(1):135–158, 2012.

[3] A. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean distance matrix
completion problems via semidefinite programming. Computational Optimization and
Applications, 12(1-3):13–30, January 1999.

[4] B. Alipanahi. New Approaches to Protein NMR Automation. PhD thesis, University
of Waterloo, 2011.

[5] B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson, and M. Li.
Determining protein structures from noesy distance constraints by semidefinite
programming. Journal of Computational Biology, 20(4):296–310, 2013.

[6] H.C. Andersen. Rattle: A velocity version of the shake algorithm for molecular
dynamics calculations. Journal of Computational Physics, 52(1):24–34, 1983.

[7] V.I. Arnold. Mathematical Methods of Classical Mechanics, Second Edition. Springer-
Verlag, 1989.

[8] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = C [f4].
Commun. ACM, 15(9):820–826, September 1972.

[9] E. Barth, K. Kuczera, B. Leimkuhler, and R.D. Skeel. Algorithms for constrained
molecular dynamics. Journal of Computational Chemistry, 16(10):1192–1209, 1995.

[10] D. ben-Avraham. Vibrational normal-mode spectrum of globular proteins. Physical
Review B, 47(21):14559, 1993.

150

[11] S. Bonnabel and R. Sepulchre. Riemannian metric and geometric mean for positive
semidefinite matrices of fixed rank. SIAM J. Matrix Anal. Appl., 31(3):1055–1070,
August 2009.

[12] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[13] F.J. Burkowski. Structural Bioinformatics: An Algorithmic Approach. Chapman &
Hall/CRC, 2009.

[14] F.J. Burkowski. Computational and Visualization Techniques for Structural
Bioinformatics Using Chimera. CRC Press, 2015.

[15] O. Calin and D.C. Chang. Geometric mechanics on Riemannian manifolds:
applications to partial differential equations. Springer Science & Business Media, 2006.

[16] Y.L. Cheung, D. Drusvyatskiy, N. Krislock, and H. Wolkowicz. Noisy sensor
network localization: robust facial reduction and the pareto frontier. arXiv preprint
arXiv:1410.6852, 2014.

[17] G.S. Chirikjian. Group theory and biomolecular conformation: I. mathematical and
computational models. Journal of Physics: Condensed Matter, 22(32):323103, 2010.

[18] A.R. Conn, N.I.M. Gould, and P.L. Toint. Trust-Region Methods. MPS/SIAM Series
on Optimization, 2000.

[19] G.M. Crippen. Distance geometry and conformational calculations. Research Studies
Press, 1981.

[20] F. Critchley. On certain linear mappings between inner-product and squared-distance
matrices. Linear Algebra and its Applications, 105:91–107, 1988.

[21] G.B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity Analysis of Production and Allocation, 1951.

[22] A. Das, M. Gur, M.H.Y. Cheng, S.H. Jo, I. Bahar, and B. Roux. Exploring
the conformational transitions of biomolecular systems using a simple two-state
anisotropic network model. PLoS computational biology, 10(4):e1003521, 2014.

[23] J. Dattorro. Equality relating Euclidean distance cone to positive semidefinite cone.
Linear Algebra and its Applications, 428(11):2597–2600, 2008.

151

[24] J. Dattorro. Convex optimization and Euclidean distance geometry, 2nd Edition.
MeBoo, 2017.

[25] D. Drusvyatskiy, N. Krislock, Y.-L. Voronin, and H. Wolkowicz. Noisy Euclidean
distance realization: robust facial reduction and the pareto frontier. SIAM Journal
on Optimization, 27(4):2301–2331, 2017.

[26] D. Drusvyatskiy, G. Pataki, and H. Wolkowicz. Coordinate shadows of semidefinite
and Euclidean distance matrices. SIAM Journal on Optimization, 25(2):1160–1178,
2015.

[27] D.Z. Du. Remarks on the convergence of Rosen’s gradient projection method. Acta
Mathematicae Applicatae Sinica, 3(3):270–279, Jul 1987.

[28] D.Z. Du and X.S. Zhang. A convergence theorem of Rosens gradient projection
method. Mathematical programming, 36(2):135–144, 1986.

[29] D.Z. Du and X.S. Zhang. Global convergence of Rosen’s gradient projection method.
Mathematical Programming, 44(1-3):357–366, 1989.

[30] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grinspun. Efficient
simulation of inextensible cloth. ACM Transactions on Graphics (TOG), 26(3):49,
2007.

[31] G.H. Golub and C.F. van Loan. Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[32] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press Cambridge,
2016.

[33] J.D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

[34] M. Journée, F. Bach, P.A. Absil, and R. Sepulchre. Low-rank optimization on the
cone of positive semidefinite matrices. SIAM J. OPTIM, 20(5):2327–2351, May 2010.

[35] A. Kessel and N. Ben-Tal. Introduction to Proteins: structure, function, and motion.
CRC Press, 2011.

[36] M.H. Kim and M.K. Kim. Review: Elastic network model for protein structural
dynamics. JSM Enzymol Protein Sci, 1(1), 2014.

152

[37] M.K. Kim. Elastic Network Models of Biomolecular Structure and Dynamics. PhD
thesis, The Johns Hopkins University, 2004.

[38] M.K. Kim, G.S. Chirikjian, and R.L. Jernigan. Elastic models of conformational
transitions in macromolecules. Journal of Molecular Graphics and Modelling,
21(2):151–160, 2002.

[39] M.K. Kim, Y.H. Jang, and J.I. Jeong. Using harmonic analysis and optimization to
study macromolecular dynamics. International Journal of Control Automation and
Systems, 4(3):382–393, 2006.

[40] M.K. Kim, R. L. Jernigan, and G.S. Chirikjian. Efficient generation of feasible
pathways for protein conformational transitions. Biophysical Journal, 83(3):1620–
1630, 2002.

[41] M.K. Kim, R.L. Jernigan, and G.S. Chirikjian. Rigid-cluster models of conformational
transitions in macromolecular machines and assemblies. Biophysical journal, 89(1):43–
55, 2005.

[42] M.K. Kim, L. Wen, B.A. Shapiro, and G.S. Chirikjian. A comparison between
elastic network interpolation and MD simulation of 16S ribosomal RNA. Journal
of biomolecular structure & dynamics, 21(3):395–405, 2003.

[43] N. Krislock. Numerical solution of semidefinite constrained least squares problems.
PhD thesis, University of British Columbia, 2003.

[44] N. Krislock. Semidefinite facial reduction for Low-Rank Euclidean Distance Matrix
Completion. PhD thesis, University of Waterloo, 2010.

[45] N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite
representations and facial reductions. SIAM Journal on Optimization, 20(5):2679–
2708, 2010.

[46] N. Krislock and H. Wolkowicz. Euclidean distance matrices and applications.
In Handbook on semidefinite, conic and polynomial optimization, pages 879–914.
Springer, 2012.

[47] B.H. Lee, S.J. Seo, M.H. Kim, Y.J. Kim, S.J. Jo, M.K. Choi, H.M. Lee, J.B. Choi,
and M.K. Kim. Normal mode-guided transition pathway generation in proteins. PloS
one, 12(10):e0185658, 2017.

153

[48] J.M. Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer
Science & Business Media, 1997.

[49] J.M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

[50] J.M. Lee. Introduction to Topological Manifolds, Second Edition. Springer, 2010.

[51] X.B. Li and F.J. Burkowski. Conformational transitions and principal geodesic
analysis on the positive semidefinite matrix manifold. In M. Basu, Y. Pan, and
J. Wang, editors, Bioinformatics Research and Applications, volume 8492 of Lecture
Notes in Computer Science, pages 334–345. Springer International Publishing, 2014.

[52] X.B. Li and F.J. Burkowski. Generating conformational transitions using the
Euclidean distance matrix. IEEE transactions on nanobioscience, 2015.

[53] X.B. Li, F.J. Burkowski, and H. Wolkowicz. Protein structure normal mode analysis
on the positive semidefinite matrix manifold. In 8th International Conference on
Bioinformatics and Computational Biology (BICOB 2016), 2016.

[54] X.B. Li, F.J. Burkowski, and H. Wolkowicz. Semidefinite facial reduction and rigid
cluster elastic network interpolation of protein structures. In 2016 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 132–136. IEEE, 2016.

[55] G. Meyer. Geometric optimization algorithms for linear regression on fixed-rank
matrices. PhD thesis, University of Liège, 2011.

[56] J.C. Meza, T.D. Plantenga, and R.S. Judson. Novel applications of optimization to
molecule design. In Large-Scale Optimization with Applications, pages 73–97. Springer,
1997.

[57] H. Mirzaei, D. Beglov, I. Paschalidis, S. Vajda, P. Vakili, and D. Kozakov. Rigid body
energy minimization on manifolds for molecular docking. Journal of chemical theory
and computation, 8(11):4374–4380, 2012.

[58] B. Mishra, G. Meyer, and R. Sepulchre. Low-rank optimization for distance matrix
completion. In 2011 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC), pages 4455–4460, Orlando, FL, USA, December 12-
15 2011.

[59] M. Moakher and P.G. Batchelor. Symmetric positive-definite matrices: From geometry
to applications and visualization. In Visualization and Processing of Tensor Fields,
pages 285–298. Springer, 2006.

154

[60] A. Neumaier. Molecular modeling of proteins and mathematical prediction of protein
structure. SIAM review, 39(3):407–460, 1997.

[61] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 2nd edition,
2006.

[62] R. Parhizkar. Euclidean Distance Matrices: Properties, Algorithms and Applications.
PhD thesis, École Polytechnique Fédérake de Lausanne, 2013.

[63] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng,
and T.E. Ferrin. UCSF chimera a visualization system for exploratory research and
analysis. J Comp Chem, 25(13):1605–1612, 2004.

[64] T.D. Plantenga. Fast energy minimization of large polymers using constrained
optimization. Technical report, Sandia National Laboratories (SNL), Albuquerque,
NM, and Livermore, CA, 1998.

[65] J.B. Rosen. Nonlinear programming. The gradient projection method (abstract 80).
Bulletin of the American Mathematical Society, 63:25–26, 1957.

[66] J.B. Rosen. The gradient projection method for nonlinear programming. part i. linear
constraints. Journal of the Society for Industrial and Applied Mathematics, 8(1):181–
217, 1960.

[67] J.B. Rosen. The gradient projection method for nonlinear programming. part ii.
nonlinear constraints. Journal of the Society for Industrial and Applied Mathematics,
9(4):514–532, 1961.

[68] J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical integration of the
cartesian equations of motion of a system with constraints: molecular dynamics of
n-alkanes. Journal of Computational Physics, 23(3):327–341, 1977.

[69] B. Sadjad. Robust Search Methods for Rational Drug Design Applications. PhD thesis,
University of Waterloo, 2009.

[70] T. Schlick. Molecular modeling and simulation: an interdisciplinary guide, volume 21.
Springer Science & Business Media, 2010.

[71] S.J. Seo, Y.H. Jang, P.F. Qian, W.K. Liu, J.B. Choi, B.S. Lim, and M.K. Kim.
Efficient prediction of protein conformational pathways based on the hybrid elastic
network model. Journal of Molecular Graphics and Modelling, 47:25–36, 2014.

155

[72] V.E. Shestopal. Solution of the matrix equation AX- XB= C. Mathematical notes of
the Academy of Sciences of the USSR, 19(3):275–276, 1976.

[73] J.R. Taylor. Classical Mechanics. University Science Books, 2005.

[74] M. Tekpinar and W.J. Zheng. Predicting order of conformational changes during
protein conformational transitions using an interpolated elastic network model.
Proteins: Structure, Function, and Bioinformatics, 78(11):2469–2481, 2010.

[75] M.M. Tirion. Large amplitude elastic motions in proteins from a single-parameter,
atomic analysis. Physical Review Letters, 77(9):1905–1908, August 1996.

[76] M.M. Tirion and D. ben-Avraham. Normal mode analysis of G-actin. Journal of
molecular biology, 230(1):186–195, 1993.

[77] L. Tu. An Introduction to Manifolds, Second Edition. Springer, 2011.

[78] B. Vandereycken. Riemannian and multilevel optimization for rank-constrained matrix
problems. PhD thesis, Department of Computer Science, KU Leuven, 2010.

[79] N.J. Wildberger. Divine Proportions: Rational Trigonometry to Universal Geometry.
Wild Egg, 2005.

[80] V. Yip and R. Elber. Calculations of a list of neighbors in molecular dynamics
simulations. Journal of Computational Chemistry, 10(7):921–927, 1989.

[81] W.J. Zheng and M. Tekpinar. Analysis of protein conformational transitions using
elastic network model. In D. Livesay (eds), editor, Methods in molecular biology
(Methods and Protocols), volume 1084, pages 159–172. Humana Press, 01 2014.

[82] M. Zvelebil and J. O. Baum. Understanding bioinformatics. Garland Science, 2008.

156

Appendix A

Interpolating transitions: An
Object-Oriented Implementation in
python

Sample python code for implementing ENI and iENM is presented in this Appendix.

A.1 Background

The implementation choice made here is to treat the Hessian as a linear operator as
discussed in Section 3.6.5. In Plantenga’s algorithm for minimizing the semi-empirical
potential, the author used the conjugate gradient algorithm since it only required the
Hessian-vector product, and not the Hessian matrix explicitly. The author proposed to
approximate the Hessian-vector product with a finite difference approximation:

∇2f(−→p)η =
∇f(−→p + ε−→η)−∇f(−→p)

ε
,

where ε = 2 max{1, ‖ −→p ‖}
√

machine precisions/ ‖ −→η ‖. This approximation is motivated
by the definition of the directional derivative of a vector field, see Equation (3.28). Absil
et al.[1] has provided a more formal development for arbitrary Riemannian manifolds.

The generalization of the truncated conjugate gradient algorithm (and the conjugate
gradient algorithm) to an arbitrary Riemannian manifold, and to Sn,3+ in particular, is

157

straightforward because of this “inverse-free” property, which was also noted by Absil et
al. [1] page 144:

Notice that the truncated CG algorithm is “inverse-free”, as it uses Hk only in
the computation of Hk[δk].

Recall from Section 3.6.5, the Riemannian connection generalizes the idea of taking the
directional derivative of a vector field from R3n to an arbitrary Riemannian manifold.
Further, for submanifolds and quotient manifolds of Euclidean space, the Riemannian
connection reduces to the Euclidean connection, which is the directional derivative followed
by the appropriate projection onto the tangent space of the submanifold or quotient
manifold. Therefore, for Sn,3+ , Hessf(P)[η] can be found exactly without the need for
approximation methods. In fact, the same approach can be used for the Hookean potential.
For the Hookean potential and the PSD potential, these directional derivatives have a closed
form and will be presented in this Chapter.

The implementation in this Appendix shows the Hookean potentials can also be minimized
without the regularizations discussed in Section 2.7, ill-posed does not mean a solution
cannot be found, only the solution is not unique. The Hessian-free implementation overcomes
this because the tCG algorithm makes adjustments to the Hessian-vector product, rather
than inverting the Hessian.

As for previous authors in this area, a web server for ENI has been setup at http:

//bioengineering.skku.ac.kr/kosmos/tutorial.php by Kim. Matlab code for ENI is
available from the ”tutorial” tab. This code does form the Hessian matrix explicitly1. A
web server has been set up for iENM at https://enm.lobos.nih.gov, but the source code
is not available.

A.2 Data Input and Data Output

The required input data to the transitional conformations problem are:

1A naive way to interpolate two protein conformations is to interpolate the beginning and ending
conformation’s Gram matrix or atomic coordinates directly, this is called “range interpolation” and was
discussed in our previous publication [51]. A preliminary discussion of generalizing Hookean ENI to PSD
ENI has appeared in our previous publication [52]. When Kim’s matlab code was used to interpolated
the lattice structures in this publication, anomalous stretching of bonds were observed. Implementing
Hookean ENI with the Hessian matrix formed without an intermediate matrix, as was the case in Kim’s
implementation, does not give this stretching. The reason for this difference is unclear, and is not explored
further in this thesis since the implementation here does not form the Hessian matrix explicitly.

158

http://bioengineering.skku.ac.kr/kosmos/tutorial.php
http://bioengineering.skku.ac.kr/kosmos/tutorial.php
https://enm.lobos.nih.gov

• the atomic coordinates of the initial protein structure,

• the atomic coordinates of the ending protein structure, and

• information about which inter-atomic distance of these atoms are constrained.

This information is assumed to be available in textfiles.

This information can be obtained from a protein structure’s Protein databank (PDB)
file. UCSF Chimera [63] can be used to open a PDB file, extract the needed input data,
and print them out to text files, UCSF Chimera allows all these steps to be written using
python.

The output of the transitional conformations problem is a sequence of textfiles, each
file contains the atomic coordinates of one intermediate conformation. These atomic
coordinates can also be visualized using UCSF Chimera by updating the atomic coordinates
of the initial conformation.

For more information on how to use UCSF Chimera to access PDB files and visualize
protein structures see [14].

A.3 The R3n Calculations Class

This class implements calculations related to the generic Hookean potential. The cost

function implements Equation (2.5), the generic Hookean potential:

EH(−→p) =
1

2

∑
(a,b)∈D

wab

(√−→p TSab
−→p − d̂ab

)2
,

where d̂ab is the reference distance defined based on the application. The parameters of
cost are weight L a list of the weights for each pair of neighbours in D, distance ref L

a list of reference distances, nbrs L a list representing the set D, and finally pvec is the
3n× 1 vector −→p .

The function grad implements forming the gradient of EH(−→p), gradEH(−→p), which is a
3n× 1 vector. The presentation of this gradient in Section 2.2 was based on the discussion
in [37] where each 3×1 block was defined. The equation below is a more concise expression
for the gradient, as one summation, derived by taking the vector derivative of the equation

159

for EH(−→p):

gradEH(−→p) =
∑

(a,b)∈D

wab

(√−→p TSab
−→p − d̂ab

) Sab
−→p√−→p TSab
−→p

. (A.1)

The grad function uses a loop to calculate this summation. The definition of the stamp
matrix Sab, shows for each iteration of the loop, the a-th 3× 1 block of the 3n× 1 gradient
vector receives the vector update:

wab

(√−→p TSab
−→p − d̂ab

) (ea,I3 − eb,I3)−→p√−→p TSab
−→p

= wab

(
‖ pa − pb ‖ −d̂ab

) pa − pb
‖ pa − pb ‖

,

whereas the b-th 3× 1 block gets the update with a minus sign:

−wab
(
‖ pa − pb ‖ −d̂ab

) pa − pb
‖ pa − pb ‖

.

The Hessian matrix is not formed. Instead, the Hess function implements the Euclidean
directional derivative of the gradient in the direction −→η , denoted

HessEH(−→p)[−→η] = DgradEH(−→p)[−→η] ,

which is a 3n× 1 vector (Plantenga called this value the “Hessian-vector” product). This
expression is given by:

HessEH(−→p)[−→η] = DgradEH(−→p)[−→η]

=
∑

(a,b)∈D

wab

(√−→p TSab
−→p − d̂ab

)(
√−→p TSab

−→p)Sab
−→η −

(
−→p TSab

−→η√−→p TSab
−→p

)
Sab
−→p

−→p TSab
−→p


+

(−→p TSab
−→η√−→p TSab
−→p

)(
Sab
−→p√−→p TSab
−→p

)]
.

This expression is arrived at using the product rule and the quotient rule for taking

160

derivatives, it can be further simplified as follows:

HessEH(−→p)[−→η]

=
∑

(a,b)∈D

wab

(√−→p TSab
−→p − d̂ab

) Sab
−→η√−→p TSab
−→p
−
−→p TSab

−→η Sab−→p(√−→p TSab
−→p
)3
+

−→p TSab
−→η Sab−→p

−→p TSab
−→p


=
∑

(a,b)∈D

wab

[(
1− d̂ab√−→p TSab

−→p

)(
Sab
−→η −

−→p TSab
−→η Sab−→p

−→p TSab
−→p

)
+
−→p TSab

−→η Sab−→p
−→p TSab

−→p

]

=
∑

(a,b)∈D

wab

[
Sab
−→η −

−→p TSab
−→η Sab−→p

−→p TSab
−→p

− d̂ab√−→p TSab
−→p

(
Sab
−→η −

−→p TSab
−→η Sab−→p

−→p TSab
−→p

)
+
−→p TSab

−→η Sab−→p
−→p TSab

−→p

]

=
∑

(a,b)∈D

wab

[
Sab
−→η − d̂ab√−→p TSab

−→p

(
Sab
−→η −

−→p TSab
−→η Sab−→p

−→p TSab
−→p

)]

The final expression is used to implemented the Hess function, which returns the Hessian-
vector product. This product is implemented using a loop. The definition of the stamp
matrix Sab shows for each iteration of the loop, the a-th 3 × 1 block of the 3n × 1 vector
HessEH(−→p)[−→η] gets the update:

wab

[
(ea,I3 − eb,I3)−→η −

d̂ab√−→p TSab
−→p

(
(ea,I3 − eb,I3)−→η −

−→p TSab
−→η Sab−→p

−→p TSab
−→p

)]

= wab

[
(ηa − ηb)−

d̂ab
‖ pa − pb ‖

(
(ηa − ηb)−

(
(pa − pb)T (ηa − ηb)
‖ pa − pb ‖2

)
(pa − pb)

)]
,

while the b-th 3× 1 block gets the update:

−wab

[
(ηa − ηb)−

d̂ab
‖ pa − pb ‖

(
(ηa − ηb)−

(
(pa − pb)T (ηa − ηb)
‖ pa − pb ‖2

)
(pa − pb)

)]

All summations can be divided by |D| to prevent these terms from getting too big.

class R3n_Calculations:

def __init__(self):

161

pass

def cost(self, weight_L, distance_ref_L, nbrs_L,pvec):

if len(nbrs_L) == 0:

return 0

Total = 0

for i in range(len(nbrs_L)):

nbrsi = nbrs_L[i]

a = nbrsi [0]

b = nbrsi [1]

dab = la.norm(pvec[3*a:3*(a+1),:]-pvec[3*b:3*(b+1),:])

erri = dab - distance_ref_L[i]

Total = Total + weight_L[i]* (erri **2)

return 0.5*Total

def grad(self, weight_L, distance_ref_L, nbrs_L, pvec):

grad =0.0*pvec

if len(nbrs_L)==0:

return grad

for i in range(len(nbrs_L)):

nbrsi = nbrs_L[i]

a = nbrsi [0]

b = nbrsi [1]

pvec_ab = pvec[3*a:3*(a+1),:]-pvec[3*b:3*(b+1),:]

dab = la.norm(pvec_ab)

erri = dab - distance_ref_L[i]

entry = weight_L[i]* erri/dab * (pvec_ab)

update 3 by 1 blocks

grad[3*a:3*(a+1),:] =grad[3*a:3*(a+1),:]+ entry

grad[3*b:3*(b+1),:] =grad[3*b:3*(b+1),:]- entry

return grad

162

def Hess(self, weight_L, distance_ref_L, nbrs_L, pvec, dirvec):

HessDir = 0.0*pvec

if len(nbrs_L) ==0:

return HessDir

for i in range(len(nbrs_L)):

nbrsi = nbrs_L[i]

a = nbrsi [0]

b = nbrsi [1]

pvec_ab = pvec[3*a:3*(a+1),:]-pvec[3*b:3*(b+1),:]

dirvec_ab = dirvec[3*a:3*(a+1),:]-dirvec[3*b:3*(b+1),:]

dab = la.norm(pvec_ab)

cross = sp.sum(sp.multiply(pvec_ab, dirvec_ab))/dab**2

entry = weight_L[i]*(dirvec_ab - (distance_ref_L[i]/dab)*(dirvec_ab

- cross * pvec_ab))

update 3 by 1 blocks

HessDir[3*a:3*(a+1),:] = HessDir[3*a:3*(a+1),:] + entry

HessDir[3*b:3*(b+1),:] = HessDir[3*b:3*(b+1),:] - entry

return HessDir

A.4 The PSD3 Calculations Class

This class implements calculations relating to the generic PSD potential. The cost function
implements calculating the generic PSD potential:

EPSD(P) =
1

2

∑
(a,b)∈D

wab (err(a, b))2 ,

163

where
err(a, b) = (ea − eb)PP T (ea − eb)− q̂ab

where q̂ab is a reference quadrance defined based on the application. The parameters of the
PSD cost function is the same as those used in the R3n Calculations, with the matrix
P replacing the vector −→p .

The grad function implements the calculation:

gradEPSD(P) =
∑

(a,b)∈D

waberr(a, b)(ea − eb)(ea − eb)TP

The Hess function implements the calculation of the Euclidean directional derivative:

HessEPSD(P)[η] = DgradEPSD(P)[η]

which is given by:

DgradEPSD(P)[η] =
∑

(a,b)∈D

wab
[
err(a, b)(ea − eb)(ea − eb)Tη + cross(a, b)(ea − eb)(ea − eb)TP

]
,

where
cross(a, b) = 2(ea − eb)TPηT (ea − eb) = 2(pa − pb)T (ηa − ηb) .

class PSD3_Calculations:

def __init__(self):

pass

def cost(self, weight_L, quadrance_ref_L, nbrs_L,P):

if len(nbrs_L) == 0:

return 0

Total = 0

for i in range(len(nbrs_L)):

a = nbrs_L[i][0]

b = nbrs_L[i][1]

qab = sp.sum(sp.square(P[a,:]-P[b,:]))

erri = qab - quadrance_ref_L[i]

Total = Total + weight_L[i]* (erri **2)

164

return 0.5*Total

def grad(self, weight_L, quadrance_ref_L, nbrs_L, P):

grad =0.0*P

if len(nbrs_L)==0:

return grad

for i in range(len(nbrs_L)):

a = nbrs_L[i][0]

b = nbrs_L[i][1]

qab = sp.sum(sp.square(P[a,:]-P[b,:]))

erri = qab - quadrance_ref_L[i]

entry = weight_L[i]* erri * (P[a,:]-P[b,:])

grad[a,:] =grad[a,:]+ entry

grad[b,:] =grad[b,:]- entry

return 2*grad

def Hess(self, weight_L, quadrance_ref_L, nbrs_L, P, Dir):

HessDir = 0.0*P

if len(nbrs_L) ==0:

return HessDir

for i in range(len(nbrs_L)):

a = nbrs_L[i][0]

b = nbrs_L[i][1]

qab = sp.sum(sp.square(P[a,:]-P[b,:]))

erri = qab - quadrance_ref_L[i]

crossab = 2* sp.sum(sp.multiply(P[a,:]-P[b,:], Dir[a,:]-Dir[b,:]))

entry = weight_L[i]* erri * (Dir[a,:]-Dir[b,:]) + weight_L[i]*

crossab * (P[a,:]-P[b,:])

HessDir[a,:] = HessDir[a,:] + 2*entry

HessDir[b,:] = HessDir[b,:] - 2*entry

165

return HessDir

A.5 The Potential Base Class

The Potential base class is a class from which the Hookean and PSD potentials inherit
from. This class has functions common to both potentials, these functions relate to finding
which atoms are neighbours with which other atom.

A neighbour of an atom is defined to be another atom whose distance is less than
some threshold distance away. The neighbour may be bonded or not bonded. Finding the
neighbours of each atom exhaustively is very inefficient. For a protein with n atoms,
labelled 1, . . . , n, determining the neighbours of the first atom requires a check of its
distance with n − 1 atoms, determining the neighbours of the second atom requires a
check of its distance with n− 2 atoms, for the third atom, there are n− 3 checks, and so
on, resulting in:

(n− 1) + (n− 2) + (n− 3) + · · · = O(n2)

computations. A faster method has been discussed in detail in Chapter 3 Section 3.4
of Burkowski[14] and also appears in other papers, for example Yip and Elber[80]. This
method encloses the protein with a bounding box (bbox) as shown in Figure A.1. The
corners of this bbox are the points

(x, y, z) where x ∈ {xmin, xmax} , y ∈ {ymin, ymax} , z ∈ {zmin, zmax} ,

where xmin is the minimum value of the x coordinate of all atoms in the protein, xmax is the
maximum value of all the x coordinates of the protein rounded up to an exact multiple of
the threshold neighbour distance; ymin, zmin ymax, zmax are defined similarly. This bbox is
then further divided uniformly into a grid of smaller cubes where each side of the cube has
length equal to the threshold distance for an atom to be considered a neighbour. Figure
A.1 a) shows a protein surrounded by a bbox, Figure A.1 b) shows one grid cube. These
cubes are index by 3 coordinates (cx, cy, cz), called the “cube coordinates”. Each cube
coordinate serves as a key into a dictionary (hashmap) with the corresponding value
being a list of atomic indices representing the atoms that are enclosed by this grid cube.
The construction of this dictionary requires iterating through all atoms, and therefore this
method requires O(n) operations to set up.

When determining the neighbours of a particular atom, rather than checking all atoms
to see if they have distance less than the threshold distance, the atoms in this particular

166

atom’s grid cube, and the surrounding grid cubes (at most 26) are the only ones that
needs to be checked. This number is independent of n, therefore, finding the neighbours
of a particular atom requires O(1) operations. Finding the neighbours of all n atoms thus
require O(n) operations.

The Potential class assumes atomic coordinates are given as a list of tuples. It does
not have knowledge of either the R3n or Sn,3+ geometries.

(a) A bounding box. (b) A bounding box with one grid cube.

Figure A.1: A bounding box around a protein.

class Potential(object):

def __init__(self, name, thres):

self.name = name

threshold distance for neighbours

self.thres = thres

Returns the type of potential

def getName(self):

return "potential base class "+self.name+" threshold interaction

distance "+str(self.thres)

--

167

Finds the smallest coords, this is one corner of the bounding box.

def findmintuple(self,coord_L):

initialize to infinity

xmin = ymin = zmin = float(’inf’)

for a in coord_L:

if a[0]< xmin: xmin = a[0]

if a[1]< ymin: ymin = a[1]

if a[2]< zmin: zmin = a[2]

return (xmin, ymin, zmin)

--

Finds the largest coords, this is another corner of the bounding box.

def findmaxtuple(self,coord_L):

initialize to negative infinity

xmin, ymin, zmin = self.findmintuple(coord_L)

xmax = ymax = zmax = -float(’inf’)

for a in coord_L:

if a[0] > xmax: xmax = a[0]

if a[1] > ymax: ymax = a[1]

if a[2] > zmax: zmax = a[2]

multiple_x = sp.ceil((xmax - xmin)/self.thres)

multiple_y = sp.ceil((ymax - ymin)/self.thres)

multiple_z = sp.ceil((zmax - zmin)/self.thres)

xmax_exactmult = xmin + multiple_x * self.thres

ymax_exactmult = ymin + multiple_y * self.thres

zmax_exactmult = zmin + multiple_z * self.thres

return (xmax_exactmult, ymax_exactmult, zmax_exactmult)

Given a list of atomic coordinates, updates which atom belong to which

cube in the grid of cubes and return list of neighbours for each atom.

def updateGrid(self, coord_L):

self.mintuple = self.findmintuple(coord_L)

self.maxtuple = self.findmaxtuple(coord_L)

self.grid = self.buildGrid(coord_L)

nbr_pairs = self.getAllNbrs(coord_L)

168

return nbr_pairs

Get the neighbours of all atoms

def getAllNbrs(self, coord_L):

nbr_L is one big list of pairs, each pair are two neighbour atoms.

nbr_L = []

for i in range(len(coord_L)):

Get atom i’s neighbours.

nbr = self.getListofIndicesOfNbrAtoms(i, coord_L)

Joint the current atom’s neighbour index with the global

neighbour list

nbr_L=nbr_L + nbr

return nbr_L

--

Take a atomic coord convert it to the cube it is in.

def convCoordtoGridCoord(self, coord):

cubex = int(coord[0] - self.mintuple[0])/self.thres

cubey = int(coord[1] - self.mintuple[1])/self.thres

cubez = int(coord[2] - self.mintuple[2])/self.thres

return (cubex, cubey, cubez)

--

Build grid for atomic coords. The grid is a dictionary (hashmap).

key: grid cube coordinates,

values: list of atomic indices for atoms in this cube

def buildGrid(self, coord_L):

grid = {}

for i in range(len(coord_L)):

key = self.convCoordtoGridCoord(coord_L[i])

grid.setdefault(key, []).append(i)

return grid

--

169

Get neighbours using grid cubes around atom index center_ix.

Returns a list of tuples (center_ix, nbr_ix).

def getListofIndicesOfNbrAtoms(self, center_ix, coord_L):

return tuple list, each tuple is (center_ix, nbr_ix) where

nbr_ix is center atom’s neighbour atom index

ngbrpair_L =[]

cube = self.convCoordtoGridCoord(coord_L[center_ix])

center_coord = coord_L[center_ix]

x,y,z = cube[0], cube[1], cube[2] # cube coord

for i in range(x-1, x+2):

for j in range(y-1, y+2):

for k in range(z-1, z+2):

key = (i,j,k)

if self.grid.has_key(key):

ngbr_L = self.grid[key]

sorted(ngbr_L)

for ix in ngbr_L:

if ix <= center_ix:

skip nbrs that are smaller index

skip center_ix as well

continue

nbrcoord =coord_L[ix]

distance = sp.sqrt((center_coord[0] - nbrcoord[0])**2\

+ (center_coord[1] - nbrcoord[1])**2\

+ (center_coord[2] - nbrcoord[2])**2)

if distance < self.thres:

atom ix is within theshold so include

it in nbrs list

ngbrpair_L.append((center_ix, ix))

170

ngbrpair_L = sorted(ngbrpair_L)

return ngbrpair_L

There are three types of Hookean potentials inheriting from the Potential class: the
Hookean ENI potential for Hookean ENI, the Hookean iENM potential for Hookean iENM,
and the Hookean Collision energy for avoiding atomic collisions. All three classes requires
the R3n Calculations class to be imported.

There are also three types of PSD potentials inheriting from the Potential class:
the PSD ENI potential for PSD ENI, the PSD iENM potential for PSD iENM, and the
PSD Collision energy for avoiding atomic collisions. All three classes require the PSD3 Calculations

class to be imported.

These classes are described below. Assume the Potential class is in a file called
potential.py, the R3n Calculations class is in a file called r3nCalculations.py, and
the PSD3 Calculations class is in a file called psd3Calculations.py.

A.6 The Hookean ENI Class

This class implements the Hookean ENI potential calculations, see Section 2.4. The purpose
of this class is to pass the required data to the R3n Calculations class which is performing
the actual calculations.

The parent class is used to determine neighbour atoms. Kim suggests the ENI potential
should use the union of the starting and ending conformation’s neighbour lists, see [37] page
65, this is the convention used for this class.

import r3nCalculations as r3ncalc

from potential import Potential

class Hookean_ENI(Potential):

def __init__(self, name, bonds_L, thres, coord0_L, coord1_L, bondweight,

nonbondweight):

Potential.__init__(self, name, thres)

self.r3ncalc = r3ncalc.R3n_Calculations()

self.bondweight = bondweight

171

self.nonbondweight = nonbondweight

determine neighbours

nbrs0_L = super(Hookean_ENI, self).updateGrid(coord0_L)

nbrs1_L = super(Hookean_ENI, self).updateGrid(coord1_L)

ENI uses the union of the neighbour list.

self.nbrs_L = sorted(list(set().union(nbrs0_L, nbrs1_L)))

self.weight_interactions = []

Convert bonds_L to a set so membership check is O(1),

see "https://wiki.python.org/moin/TimeComplexity".

self.bonds_L = set(bonds_L)

for pair in self.nbrs_L:

if pair in self.bonds_L:

self.weight_interactions.append(bondweight)

else:

self.weight_interactions.append(nonbondweight)

put atomic coordinates into 3n by 1 vectors

self.pvec0 = sp.matrix(coord0_L).reshape(len(coord0_L)*3, 1)

self.pvec1 = sp.matrix(coord1_L).reshape(len(coord1_L)*3, 1)

def getStartConformation(self):

return self.pvec0

def getEndConformation(self):

return self.pvec1

Returns the linearly interpolated reference distance.

def get_distance_ref(self, t):

d_ref = []

for pairs in self.nbrs_L:

a = pairs[0]

b = pairs[1]

dab0 = la.norm(self.pvec0[3*a:3*(a+1),:]-self.pvec0[3*b:3*(b+1),:])

dab1 = la.norm(self.pvec1[3*a:3*(a+1),:]-self.pvec1[3*b:3*(b+1),:])

d_ref.append(dab0 * (1-t)+ dab1 *t)

return d_ref

172

def cost(self, pvec, t):

distance_ref = self.get_distance_ref(t)

return self.r3ncalc.cost(self.weight_interactions, distance_ref,

self.nbrs_L, pvec)

def grad(self, pvec, t):

distance_ref = self.get_distance_ref(t)

return self.r3ncalc.grad(self.weight_interactions, distance_ref,

self.nbrs_L, pvec)

def Hess(self, pvec, dirvec, t):

distance_ref = self.get_distance_ref(t)

return self.r3ncalc.Hess(self.weight_interactions, distance_ref,

self.nbrs_L, pvec, dirvec)

A.7 The Hookean iENM Class

This class implements the linearly interpolated Hookean iENM potential calculations, see
Section 2.5. The required data are passed to the R3n Calculations class which will
perform the actual calculations.

import r3nCalculations as r3ncalc

from potential import Potential

This class implements the Hookean iENM model

class Hookean_iENM(Potential):

def __init__(self, name, bonds_L, thres, coord0_L, coord1_L, bondweights,

nonbondweights):

Potential.__init__(self, name, thres)

Initialize R3n_Calculations isntance for generic Hookean potential

calculations

self.r3ncalc = r3ncalc.R3n_Calculations()

self.bonds_L = bonds_L

self.nbrs0_L = super(Hookean_iENM, self).updateGrid(coord0_L)

173

self.nbrs1_L = super(Hookean_iENM, self).updateGrid(coord1_L)

put atomic coordinates into 3n by 1 vectors

self.pvec0 = sp.matrix(coord0_L).reshape(len(coord0_L)*3, 1)

self.pvec1 = sp.matrix(coord1_L).reshape(len(coord1_L)*3, 1)

set the weight vector for the beginning structure’s interaction pairs

self.weight_interactions0 = self.get_interaction_weights(bondweights,

nonbondweights, self.nbrs0_L)

set the weight vector for the ending structure’s interaction pairs

self.weight_interactions1 = self.get_interaction_weights(bondweights,

nonbondweights, self.nbrs1_L)

set reference distance for the beginning and ending structures

self.distance0 = self.get_distance_ref(self.pvec0, self.nbrs0_L)

self.distance1 = self.get_distance_ref(self.pvec1, self.nbrs1_L)

def getStartConformation(self):

return self.pvec0

def getEndConformation(self):

return self.pvec1

def get_interaction_weights(self, bondweights, nonbondweights, nbrs_L):

weight_L = []

for pair in nbrs_L:

if pair in self.bonds_L:

weight_L.append(bondweights) # weight for bond

else:

weight_L.append(nonbondweights) # weight for nonbonded

interaction

return weight_L

Reference distance based on atomic coordinates in nbrs_L.

def get_distance_ref(self, pvec, nbrs_L):

d_ref =[]

for pairs in nbrs_L:

a = pairs[0]

b = pairs[1]

174

dab = la.norm(pvec[3*a:3*(a+1),:]-pvec[3*b:3*(b+1),:])

d_ref.append(dab)

return d_ref

def cost(self, pvec, t):

cost0 = self.r3ncalc.cost(self.weight_interactions0,self.distance0,

self.nbrs0_L, pvec)

cost1 = self.r3ncalc.cost(self.weight_interactions1,self.distance1,

self.nbrs1_L, pvec)

return (1-t)*cost0 + t*cost1

def grad(self, pvec, t):

grad0 = self.r3ncalc.grad(self.weight_interactions0,self.distance0,

self.nbrs0_L, pvec)

grad1 = self.r3ncalc.grad(self.weight_interactions1,self.distance1,

self.nbrs1_L, pvec)

return (1-t)*grad0 + t*grad1

def Hess(self, pvec, dirvec, t):

Hess0 = self.r3ncalc.Hess(self.weight_interactions0, self.distance0,

self.nbrs0_L, pvec, dirvec)

Hess1 = self.r3ncalc.Hess(self.weight_interactions1, self.distance1,

self.nbrs1_L, pvec, dirvec)

return (1-t)* Hess0 + t * Hess1

A.8 The Hookean Collision Energy

This class implements the steric collision energy of Tekpinar and Zheng [74, 81], which
prevents atoms from colliding by penalizing atoms that are within a given collision threshold
distance as given by the thres parameter, see Section 2.6.

import r3nCalculations as r3ncalc

from potential import Potential

class Hookean_Collision(Potential):

175

def __init__(self, name, bonds_L, thres, weight):

Potential.__init__(self, name, thres)

Convert bonds_L to a set so membership check is O(1),

see "https://wiki.python.org/moin/TimeComplexity".

self.bonds_L = set(bonds_L)

self.weight = weight

self.r3ncalc = r3ncalc.R3n_Calculations()

self.thres = thres

self.checkPairs_L =[]# pairs of atoms within collision threshold

self.collision_weights =[] # weight applied to pairs in

self.checkPairs_L

Check if any atoms have collided, ignore bonded atoms.

def updateCollisionPairs(self, pvec):

Reshape pvec from 3n by 1 to n by 3 in order to convert to list of

coords.

P = pvec.reshape(len(pvec)/3, 3)

coord_L = P.tolist()

pairs_L = super(Hookean_Collision, self).updateGrid(coord_L)

self.checkPairs_L =[]

self.collision_weights =[]

for pair in pairs_L:

if not pair in self.bonds_L:

self.checkPairs_L.append(pair)

self.collision_weights.append(self.weight)

self.distance_ref = [self.thres]*len(self.checkPairs_L)

def cost(self, pvec):

return self.r3ncalc.cost(self.collision_weights, self.distance_ref,

self.checkPairs_L, pvec)

def grad(self, pvec):

return self.r3ncalc.grad(self.collision_weights, self.distance_ref,

176

self.checkPairs_L, pvec)

def Hess(self, pvec, dirvec):

return self.r3ncalc.Hess(self.collision_weights, self.distance_ref,

self.checkPairs_L, pvec, dirvec)

A.9 The PSD ENI Class

This class implements the PSD ENI potential, which is the generic PSD potential with the
reference quadrance set to the linearly interpolated quadrance between the beginning and
ending conformations. Data are passed to the PSD3 Calculations class which performs
the actual calculations.

import psd3Calculations as psdcalc

from potential import Potential

class PSD_ENI(Potential):

def __init__(self, name, bonds_L, thres, coord0_L, coord1_L, bondweight,

nonbondweight):

Potential.__init__(self, name, thres)

self.bondweight = bondweight

self.nonbondweight = nonbondweight

self.psdcalc = psdcalc.PSD3_Calculations()

determine neighbours

nbrs0_L = super(PSD_ENI, self).updateGrid(coord0_L)

nbrs1_L = super(PSD_ENI, self).updateGrid(coord1_L)

ENI uses the union of the neighbour list.

self.nbrs_L = sorted(list(set().union(nbrs0_L, nbrs1_L)))

self.weight_interactions = []

Convert bonds_L to a set so membership check is O(1),

see "https://wiki.python.org/moin/TimeComplexity".

self.bonds_L = set(bonds_L)

177

for pair in self.nbrs_L:

if pair in self.bonds_L:

self.weight_interactions.append(bondweight)

else:

self.weight_interactions.append(nonbondweight)

convert coord to matrix

self.P0 = sp.matrix(coord0_L)

self.P1 = sp.matrix(coord1_L)

def getStartConformation(self):

return self.P0

def getEndConformation(self):

return self.P1

def getBonds(self):

return self.bonds_L

Get interpolated quadrance with parameter t

def get_quadrance_ref(self, t):

q_ref = []

for pairs in self.nbrs_L:

a = pairs[0]

b = pairs[1]

qab0 = sp.sum(sp.square(self.P0[a,:]-self.P0[b,:]))

qab1 = sp.sum(sp.square(self.P1[a,:]-self.P1[b,:]))

q_ref.append(qab0*(1-t) + qab1 * t)

return q_ref

def cost(self,P, t):

quadrance_ref =self.get_quadrance_ref(t)

return self.psdcalc.cost(self.weight_interactions, quadrance_ref,

178

self.nbrs_L, P)

def grad(self, P, t):

quadrance_ref = self.get_quadrance_ref(t)

return self.psdcalc.grad(self.weight_interactions, quadrance_ref,

self.nbrs_L, P)

def Hess(self, P, Dir, t):

quadrance_ref =self.get_quadrance_ref(t)

return self.psdcalc.Hess(self.weight_interactions, quadrance_ref,

self.nbrs_L, P, Dir)

A.10 The PSD iENM Class

The PSD iENM Class implements the linearly interpolated PSD iENM potential. Data are
passed to the PSD3 Calculations class, which performs the actual calculations.

class PSD_iENM(Potential):

def __init__(self, name, bonds_L, thres, coord0_L, coord1_L, bondweights,

nonbondweights):

print "PSD iENM constructor"

Potential. __init__(self, name, thres)

self.psdcalc = psdcalc.PSD3_Calculations()

self.bonds_L = bonds_L

self.nbrs0_L = super(PSD_iENM, self).updateGrid(coord0_L)

self.nbrs1_L = super(PSD_iENM, self).updateGrid(coord1_L)

self.P0 = sp.matrix(coord0_L)

self.P1 = sp.matrix(coord1_L))

set the weight vector for the beginning structure’s interaction pairs

179

self.weight_interactions0 = self.get_interaction_weights(bondweights,

nonbondweights, self.nbrs0_L)

set the weight vector for the ending structure’s interaction pairs

self.weight_interactions1 = self.get_interaction_weights(bondweights,

nonbondweights, self.nbrs1_L)

self.quadrance0 = self.get_quadrance_ref(self.P0, self.nbrs0_L)

self.quadrance1 = self.get_quadrance_ref(self.P1, self.nbrs1_L)

def getStartConformation(self):

return self.P0

def getEndConformation(self):

return self.P1

def get_interaction_weights(self, bondweights, nonbondweights, nbrs_L):

weight_L = []

for pair in nbrs_L:

if pair in self.bonds_L:

weight for bond

weight_L.append(bondweights)

else:

weight for nonbonded interaction

weight_L.append(nonbondweights)

return weight_L

def get_quadrance_ref(self, P, nbrs_L):

q_ref =[]

for pairs in nbrs_L:

a = pairs[0]

b = pairs[1]

qab = sp.sum(sp.square(P[a,:]-P[b,:]))

q_ref.append(qab)

return q_ref

def cost(self,P, t):

180

cost0 = self.psdcalc.cost(self.weight_interactions0,self.quadrance0,

self.nbrs0_L, P)

cost1 = self.psdcalc.cost(self.weight_interactions1,self.quadrance1,

self.nbrs1_L, P)

return (1-t)*cost0 + t*cost1

def grad(self, P, t):

grad0 = self.psdcalc.grad(self.weight_interactions0,self.quadrance0,

self.nbrs0_L, P)

grad1 = self.psdcalc.grad(self.weight_interactions1,self.quadrance1,

self.nbrs1_L, P)

return (1-t)* grad0 + t*grad1

def Hess(self, P, Dir, t):

Hess0 = self.psdcalc.Hess(self.weight_interactions0, self.quadrance0,

self.nbrs0_L, P, Dir)

Hess1 = self.psdcalc.Hess(self.weight_interactions1, self.quadrance1,

self.nbrs1_L, P, Dir)

return (1-t)* Hess0 + t * Hess1

A.11 The PSD Collision Class

This class implements the PSD collision avoidance energy. It is the generic PSD potential
with reference distance equal to the threshold distance for which a collision is assumed to
have occurred between atoms.

The collision threshold distance, thres, is the distance used to construct the grid of
cubes.

import psd3Calculations as psdcalc

from potential import Potential

class PSD_Collision(Potential):

181

def __init__(self, name, bonds_L, thres, weight):

Potential.__init__(self, name, thres)

Convert bonds_L to a set so membership check is O(1),

see "https://wiki.python.org/moin/TimeComplexity".

self.bonds_L = set(bonds_L)

self.weight = weight

self.psdcalc = psdcalc.PSD3_Calculations()

self.thres = thres

pairs of atoms within collision threshold

self.checkPairs_L =[]

weight applied to pairs in self.checkPairs_L

self.collision_weights =[]

Check if any atoms have collided, ignore bonded atoms.

def updateCollisionPairs(self, P):

coord_L = P.tolist()

pairs_L = super(PSD_Collision, self).updateGrid(coord_L)

self.checkPairs_L =[]

self.collision_weights =[]

for pair in pairs_L:

if not pair in self.bonds_L:

self.checkPairs_L.append(pair)

self.collision_weights.append(self.weight)

self.quadrance_ref = [self.thres**2]*len(self.checkPairs_L)

def cost(self, P):

return self.psdcalc.cost(self.collision_weights, self.quadrance_ref,

self.checkPairs_L, P)

def grad(self, P):

return self.psdcalc.grad(self.collision_weights, self.quadrance_ref,

self.checkPairs_L, P)

182

def Hess(self, P, Dir):

return self.psdcalc.Hess(self.collision_weights, self.quadrance_ref,

self.checkPairs_L, P, Dir)

A.12 The Manifold Class

This is the base Manifold class. It implements the functions common to both C(R3n) and
C(Sn,3+), as discussed in Section 6.4.

The adjacency list self.adjacencylist D is a dictionary with key an atomic index,
and the value being a list of atomic indices of atoms that are involved in a constraint with
the key index. This list is used to create self.edgeAdjacencyList D, which is another
adjacency list where the key is a pair of atomic indices for two atoms in a constraint, and
the value is a list of pairs, each pair is a constraint that shares an atom with the key pair.
These lists help to construct the sparse matrix Q and its directional derivative.

class Manifold(object):

def __init__(self, name, constraints_L):

self.name = name

self.constraints_L = constraints_L

self.makeAdjacencyList()

self.makeEdgeAdjacencyList()

Adjacency list of the protein, implemented using a

dictionary.

def makeAdjacencyList(self):

self.adjacencylist_D = {}

for constr in self.constraints_L:

a = constr[0]

b = constr[1]

if a in self.adjacencylist_D:

183

self.adjacencylist_D[a].append(b)

else:

self.adjacencylist_D[a]=[b]

if b in self.adjacencylist_D:

self.adjacencylist_D[b].append(a)

else:

self.adjacencylist_D[b]=[a]

def makeEdgeAdjacencyList(self):

self.edgeAdjacencyList_D = {}

for pair in self.constraints_L:

a = pair[0]

b = pair[1]

nbr_c_L =[]

get edges ajacent to a

for val in self.adjacencylist_D[a]:

nbr_c = tuple(sorted((a, val)))

nbr_c_L.append(nbr_c)

get edges adjacent to b

for val in self.adjacencylist_D[b]:

nbr_c = tuple(sorted((b, val)))

if not nbr_c in nbr_c_L:

nbr_c_L.append(nbr_c)

if pair in self.edgeAdjacencyList_D:

self.edgeAdjacencyList_D[pair]=self.edgeAdjacencyList_D[pair] +

nbr_c_L

else:

self.edgeAdjacencyList_D[pair] = nbr_c_L

Return the Q matrix for solving for Lagrange multipliers

as a sparse matrix

def makeQ(self, p1, p2):

184

reshape to n by 3 arrays for easier handling

r1,c1 = p1.shape

r2,c2 = p1.shape

if c1 != 3:

p1 = p1.reshape((len(p1)/3, 3))

if c2 != 3:

p2 = p2.reshape((len(p2)/3, 3))

const_I_L =[]

const_J_L = []

entry_IJ_L = []

for pairI in self.edgeAdjacencyList_D :

c_i = self.constraints_L.index(pairI)

diff_I = p1[pairI[0],:]-p1[pairI[1],:]

for pairJ in self.edgeAdjacencyList_D[pairI]:

c_j = self.constraints_L.index(pairJ)

diff_J = p2[pairJ[0],:]-p2[pairJ[1],:]

dot = sp.sum(sp.multiply(diff_I, diff_J))

sign = -1

if c_i == c_j:

sign = 2

elif pairI[0]==pairJ[0] or pairI[1]==pairJ[1]:

sign = 1

entry_ij = sign * dot

const_I_L.append(c_i)

const_J_L.append(c_j)

entry_IJ_L.append(entry_ij)

Q = sparse.csc_matrix((entry_IJ_L, (const_I_L, const_J_L)),

shape=(len(self.constraints_L), len(self.constraints_L)))

return Q

185

def make_tau(self, P, Z):

rp,cp = P.shape

rz,cz = Z.shape

if cp != 3:

P = P.reshape((len(P)/3, 3))

if cz != 3:

Z = Z.reshape((len(Z)/3, 3))

tau = []

for pair in self.constraints_L:

a = pair[0]

b = pair[1]

Zab = Z[a,:]-Z[b,:]

Pab = P[a,:]-P[b,:]

tau_ij = sp.sum(sp.multiply(Zab, Pab))

tau.append(tau_ij)

tau = sp.matrix(tau)

tau = tau.T

return tau

def make_dtau(self, P, Z, dEgrad, Egrad):

Ensure arrays are n by 3

rp, cp = P.shape

rz, cz = Z.shape

rgrad, cgrad = Egrad.shape

rdg, cdg = dEgrad.shape

if cp !=3:

P = P.reshape(len(P)/3, 3)

if cz !=3:

Z = Z.reshape(len(Z)/3, 3)

if cgrad !=3:

Egrad = Egrad.reshape(len(Egrad)/3, 3)

if cp !=3:

dEgrad = dEgrad.reshape(len(dEgrad)/3, 3)

dtau = []

186

for pair in self.constraints_L:

a = pair[0]

b = pair[1]

Zab = Z[a,:]-Z[b,:]

Pab = P[a,:]-P[b,:]

dEgrad_ab = dEgrad[a,:] - dEgrad[b,:]

Egrad_ab = Egrad[a,:]-Egrad[b,:]

dtau_ab = sp.sum(sp.multiply(dEgrad_ab, Pab)) \

+ sp.sum(sp.multiply(Egrad_ab, Zab))

dtau.append(dtau_ab)

dtau = sp.matrix(dtau)

dtau = dtau.T

return dtau

def projection_mult(self, P, Z):

tau = self.make_tau(P, Z)

Q = self.makeQ(P,P)

mult = sla.spsolve(Q, tau)

mult = sp.matrix(mult)

mult = mult.T

return mult

def projection_dmult(self, P, Z, Egrad, dEgrad, mult):

dtau = self.make_dtau(P, Z, dEgrad, Egrad)

dQ = self.makeQ(P, Z)*2

dQ_mult = dQ * mult

RHS = dtau - dQ_mult

Q = self.makeQ(P,P)

dmult = sla.spsolve(Q, RHS)

dmult = sp.matrix(dmult)

dmult = dmult.T

return dmult

187

A.13 The R3n manifold Class

This class implements functions relevant for enforcing constraints in C(R3n), for example,
projecting the gradient and Hessian, forming the constraint force, and retracting to the
constraint manifolds. These function names match their corresponding function names
in C(Sn,3+). The optimizer (Section A.15) does not need to known the exact Riemannian
manifold (recall matrix manifold optimization algorithms can be implemented for a variety
of matrix manifolds).

from manifold import Manifold

class R3n_manifold(Manifold):

initialize with a potential energy and a collision energy

def __init__(self, potential, collision, constraints_L):

Manifold.__init__(self, ’R3n Manifold’, constraints_L)

self.potential = potential

self.collision = collision

def getName(self):

return self.name

def getStartConformation(self):

return self.potential.getStartConformation()

def getEndConformation(self):

return self.potential.getEndConformation()

Update which pairs to check for collision

def updateCollisionCheck(self,pvec):

self.collision.updateCollisionPairs(pvec)

def cost(self, pvec, pvec_pre, t):

return self.potential.cost(pvec, t)+self.collision.cost(pvec)

def Egrad(self, pvec, pvec_pre, t):

return self.potential.grad(pvec, t) + self.collision.grad(pvec)

def grad(self, pvec, pvec_pre, t):

return self.projection(pvec, self.Egrad(pvec, pvec_pre, t))

def Hess(self, pvec, pvec_pre, dirvec, t):

Egrad = self.Egrad(pvec, pvec_pre, t)

188

dEgrad = self.potential.Hess(pvec, dirvec, t)+self.collision.Hess(pvec,

dirvec)

mult = self.projection_mult(pvec, Egrad)

dmult = self.projection_dmult(pvec, dirvec, Egrad, dEgrad, mult)

dconstraintForce = self.getConstraintForce(mult,

dirvec)+self.getConstraintForce(dmult, pvec)

return self.projection(pvec, dEgrad-dconstraintForce)

def getConstraintForce(self, mult, pvec):

constraint_force = 0*pvec

for i in range(len(self.constraints_L)):

pair = self.constraints_L[i]

multi = sp.asscalar(mult[i,0])

a = pair[0]

b = pair[1]

entry = multi*(pvec[3*a:3*(a+1), :] - pvec[3*b:3*(b+1), :])

constraint_force[3*a:3*(a+1), :] = constraint_force[3*a:3*(a+1), :]

+ entry

constraint_force[3*b:3*(b+1), :] = constraint_force[3*b:3*(b+1), :]

- entry

return constraint_force

Project to tangent space of constraint manifold and returns 3n by 1 vector

def projection(self, pvec, z):

mult = self.projection_mult(pvec, z)

constraint_force = self.getConstraintForce(mult, pvec)

return z - constraint_force

Implements fast projection and returns 3n by 1 vector

def retraction(self, pvecz):

pveczk = pvecz

189

use the starting conformation’s reference distances

p0 = self.getStartConformation()

for k in range(10):

error = []

for pair in self.constraints_L:

a = pair[0]

b = pair[1]

qab = sp.sum(sp.square(pveczk[3*a:3*(a+1),:]-

pveczk[3*b:3*(b+1),:]))

q0ab = sp.sum(sp.square(p0[3*a:3*(a+1),:]- p0[3*b:3*(b+1),:]))

error.append(0.5*(qab-q0ab))

error = sp.matrix(error)

error = error.T

errornorm = la.norm(error)

if errornorm < 1e-6:

break

#print "norm error ", errornorm

Q = self.makeQ(pveczk, pveczk)

mult = sla.spsolve(Q, error)

mult = sp.matrix(mult)

mult = mult.T

dpveczk = self.getConstraintForce(mult, pveczk)

pveczk = pveczk -dpveczk

return pveczk

def inner_product(self, avec, bvec):

return sp.trace(avec.T*bvec)

A.14 The PSD3 manifold Class

This class implements relevant functions needed for enforcing constraints on C(Sn,3+).

190

The rank 3 PSD manifold provides the geometric objects needed

for optimization algorithms on this manifold.

from manifold import Manifold

class PSD3_manifold(Manifold):

def __init__(self, potential, collision, constraints_L):

Manifold.__init__(self, ’PSD3 Manifold’, constraints_L)

self.potential = potential

self.collision = collision

Return the name of this potential.

def getName(self):

return self.name

Return coordinates of the starting conformation.

def getStartConformation(self):

return self.potential.getStartConformation()

Return coordinates of the ending conformation.

def getEndConformation(self):

return self.potential.getEndConformation()

Update which pairs to check for collision

def updateCollisionCheck(self,P):

self.collision.updateCollisionPairs(P)

def cost(self, P, Ppre, t):

return self.potential.cost(P,t)+self.collision.cost(P)

def Egrad(self, P, Ppre, t):

return self.potential.grad(P, t)+self.collision.grad(P)

def grad(self, P, Ppre, t):

return self.projection(P, self.Egrad(P, Ppre, t))

191

def Hess(self, P, Ppre, Dir, t):

Egrad = self.Egrad(P, Ppre, t)

dEgrad = self.potential.Hess(P, Dir, t) + self.collision.Hess(P, Dir)

mult = self.projection_mult(P,Egrad)

dmult = self.projection_dmult(P, Dir, Egrad, dEgrad, mult)

SS = P.T*P

AS = P.T*Egrad - Egrad.T*P

Omega = self.sylvester(SS, AS)

AS2 = (Dir.T*Egrad - Egrad.T*Dir) + (P.T*dEgrad - dEgrad.T*P) -

Omega*(Dir.T*P+P.T*Dir) - (Dir.T*P+P.T*Dir)*Omega

dOmega = self.sylvester(SS, AS2)

dconstraintforce = self.getConstraintForce(mult,Dir)+

self.getConstraintForce(dmult,P)

dprojgrad = dEgrad-P*dOmega-Dir*Omega - dconstraintforce

return self.projection(P,dprojgrad)

def getConstraintForce(self, mult, P):

constraint_force = 0*P

for i in range(len(self.constraints_L)):

pair = self.constraints_L[i]

multi = sp.asscalar(mult[i])

a = pair[0]

b = pair[1]

entry = multi*(P[a, :] - P[b, :])

constraint_force[a,:] = constraint_force[a,:] + entry

constraint_force[b,:] = constraint_force[b,:] - entry

return constraint_force

192

Projection to tangent space of constraint manifold and returns n by 3

matrix.

def projection(self, P, Z):

SS = P.T*P

AS = P.T*Z - Z.T*P

Omega = self.sylvester(SS, AS)

construct Q matrix

mult = self.projection_mult(P,Z)

constraint_force = self.getConstraintForce(mult,P)

return Z - P*Omega - constraint_force

Retracts to constraint manifold and returns n by 3 matrix

def retraction(self, PZ):

PZk = PZ

use the starting conformation’s reference distances

P0 = self.getStartConformation()

for k in range(10):

error = []

for pair in self.constraints_L:

a = pair[0]

b = pair[1]

qab = sp.sum(sp.square(PZk[a,:]-PZk[b,:]))

q0ab = sp.sum(sp.square(P0[a,:]-P0[b,:]))

error.append(0.5*(qab - q0ab))

error = sp.matrix(error)

error = error.T

errornorm = la.norm(error)

if errornorm < 1e-6:

break

Q = self.makeQ(PZk, PZk)

193

mult = sla.spsolve(Q, error)

mult = sp.matrix(mult)

mult = mult.T

dPZk = self.getConstraintForce(mult, PZk)

PZk = PZk -dPZk

return PZk

def inner_product(self, A, B):

A = sp.matrix(A)

B = sp.matrix(B)

return sp.trace(A.T*B)

Solve Sylvester equation

def sylvester(self, Sym_mat, Asym_mat):

Sym = sp.matrix(Sym_mat)

Asym = sp.matrix(Asym_mat)

row, col = Sym.shape

p = col

V, sig, Vh = la.svd(Sym)

V= sp.matrix(V)

O = sp.zeros((p,p))

O2 = V.T*Asym

O2 = O2*V

for i in range(p-1):

for j in range(i+1, p):

A = sig[i] + sig[j]

if not A == 0:

O[i,j]=O2[i,j]/float(A)

else:

O[i,j] = 0

O = O - O.T

O = sp.matrix(O)

194

omega = V*O*V.T

return omega

A.15 The Optimzer Class

The implementation of the trust region algorithm and the tCG algorithm below is based on
the implementation from Mishra et al. at https://bamdevmishra.in/codes/edmcompletion/.
In the implementation below, the trust region algorithm is using the norm of the gradient
as the stopping criterion. This is based on the theoretical result discussed in Section 3.5,
see Equation (3.4) and related references. However, this is not the stopping criterion used
by Mishra et al.. In their implementation, the stopping criterion is:

if accept && k > min_outer && (abs(rhonum) < epsilon || abs(rhonum)/fx_old <

vepsilon)}

This stopping criterion is checking firstly whether the minimum number of iterations has
been tried, and then checking if rhonum, which is the numerator of ρk is small enough.
Recall from Equation (3.6), the numerator of ρk is defined as the difference between the
function at the current iterate, and the function at the proposed iterate. If this numerator
is very small, it means the RTR algorithm is not making very significant progress in
decreasing the objective function. Therefore, Mishra’s stopping criterion terminates once
it sees the algorithm has decreased the objective function as much as possible.

The RTR Opt class performs RTR optimizer using

geometric objects from the manifold.

class RTR_Opt:

def __init__(self, manifold):

self.manifold = manifold

Given previous conformation xpre at time t-1,

find the next conformation at time t.

def rtr(self, xpre, t):

195

https://bamdevmishra.in/codes/edmcompletion/

Default trust region radius parameters

TR_Radius0 = xpre.shape[1] # initial trust region radius

TR_Radius_max = (2**5)*TR_Radius0 # max trust region radius

rho_prime = 0.1 # accept or reject parameter

#---

initialize trust region radius

TR_Radius = TR_Radius0

initialize cost, grad, and norm of grad

x = xpre

self.manifold.updateCollisionCheck(x)

fx = self.manifold.cost(x, xpre, t)

grad = self.manifold.grad(x, xpre, t)

normgrad = la.norm(grad)

tr_iteration = 0 # track number of iterations

max_tr_iteration = 500 # maximum iterations of RTR

accept = 0

reject_count = 0

tcg_iterations_L =[]

while True:

tr_iteration = tr_iteration + 1

fx_old = fx

eta = self.tCG(x, xpre, t, TR_Radius, grad)

x_prop = self.manifold.retraction(x + eta)

196

Heta = self.manifold.Hess(x, xpre, eta, t)

fx_prop = self.manifold.cost(x_prop, xpre, t)

rho_numerator = fx-fx_prop

rho_denominator is fx - quadratic approximation of fx

rho_denominator = -self.manifold.inner_product(eta, grad)\

- 0.5*self.manifold.inner_product(eta, Heta)

rho = rho_numerator / rho_denominator

if rho < 0.25:

quadratic approximation is inaccurate, decrease radius

TR_Radius = 0.25*TR_Radius

elif rho > 0.75 and self.manifold.inner_product(eta, eta) ==

sp.power(TR_Radius, 2):

quadratic approximation is accurate, increase radius

TR_Radius = sp.minimum(2.0*TR_Radius, TR_Radius_max)

Accept or reject new iterate x_prop

if rho > rho_prime:

accept x_prop

xpre = x

x =x_prop

fx = fx_prop

grad = self.manifold.grad(x, xpre, t)

normgrad = la.norm(grad)

accept = 1

reject_count = 0

else:

accept = 0

reject_count = reject_count + 1

if norm_Rgrad < 1e-4:

break

if tr_iteration > max_tr_iteration :

prevent too many iterations

break

if reject_count > 30:

197

prevent too many rejections

break

return x

The tCG algorithm for solving the trust region subproblem.

def tCG(self, x, xpre, t, TR_Radius, grad):

for evaluating stopping criterion

kappa = 0.1

theta = 1

max_iterations = 500

min_iterations = 0

eta = 0.0*grad

e_e = 0.0

r = grad

r_r = self.manifold.inner_product(r, r)

norm_r = sp.sqrt(r_r)

norm_r0 = norm_r

d_d = r_r

initial search direction

delta = -r

e_d = 0.0

tcg_iteration = 0

while True:

Hd = self.manifold.Hess(x, xpre, delta, t)

dHd = self.manifold.inner_product(delta, Hd)

if dHd <=0:

tau = (-e_d + sp.sqrt(e_d*e_d + d_d *((TR_Radius**2)-e_e)))/d_d

eta = eta + tau* delta

break

alpha = r_r / dHd

e_e_new = e_e + 2.0*alpha * e_d +alpha * alpha *d_d

198

if e_e_new >= TR_Radius**2:

tau = (-e_d + sp.sqrt(e_d*e_d + d_d *((TR_Radius**2)-e_e)))/d_d

eta = eta + tau* delta

break

e_e = e_e_new

eta = eta + alpha * delta

r = r+ alpha * Hd

r = self.manifold.projection(x, r)

r_r_old = r_r

r_r = self.manifold.inner_product(r,r)

norm_r = sp.sqrt(r_r)

check stopping criteria

if tcg_iteration > max_iterations:

break

if tcg_iteration > min_iterations and norm_r <=

norm_r0*sp.minimum(norm_r0**theta,kappa):

break

updates

beta = r_r /r_r_old

delta = -r + beta*delta

e_d = beta*(e_d + alpha*d_d)

d_d = r_r + beta * beta * d_d

tcg_iteration = tcg_iteration + 1

return eta

199

A.16 Running the Interpolation

A main class is needed to run the interpolation. The details are left to the reader. The idea
is that instances of the potentials are created and passed to the manifold, this manifold is
in turn passed to an optimizer, and the optimizer can then call the manifold to calculate
costs, gradients, Hessians in the RTR and tCG algorithms.

200

Appendix B

Derivatives Involving Distance and
Quadrance

B.1 Derivative of Distance

Let x ∈ R3,
d ‖ x ‖
dx

=
d
√
xTx

dx
=

x√
xTx

. (B.1)

B.2 Derivative of Quadrance

Let x ∈ R3,
d ‖ x ‖2

dx
=
d(xTx)

dx
= 2x . (B.2)

B.3 Derivative of Distance times Vector

Let x ∈ R3 and I3 be the 3× 3 identity matrix. Note that ‖ x ‖ is a scalar so the order of
multiplication does not matter. The following expression uses the product rule for taking
derivatives:

d(x ‖ x ‖)
dx

=
d(‖ x ‖ x)

dx
=‖ x ‖ I3 +

xxT

‖ x ‖2
. (B.3)

201

B.4 Second Order Expansion for the Hookean Potential

Energy

Let d ∈ R be a scalar and x, δ ∈ R3 be vectors, and the function to be expanded be:

f(x) =
1

2
(‖ x ‖ −d)2 . (B.4)

The second order expansion near x is:

f(x+ δ) ≈ f(x) + gradf(x)T δ +
1

2
δTHessf(x)δ . (B.5)

The constant term f(x) is given by:

f(x) =
1

2
(‖ x ‖ −d)2 . (B.6)

The gradient gradf(x) is a 3× 1 vector given by:

gradf(x) = (‖ x ‖ −d)
x

‖ x ‖
. (B.7)

The Hessian Hessf(x) is a 3× 3 matrix given by, using the product rule on gradf(x):

Hessf(x) = (‖ x ‖ −d)

(
‖ x ‖ I3 − xxT

‖x‖

‖ x ‖2

)
+

xxT

‖ x ‖2

= I3 −
d

‖ x ‖

(
I3 −

xxT

‖ x ‖2

)
,

(B.8)

B.5 Second Order Expansion for the PSD Potential

Energy

Let d ∈ R be a scalar and x, δ ∈ R3 be vectors, and the function to be expanded be:

f(x) =
1

2

(
xTx− d

)2
. (B.9)

202

The second order expansion near x is:

f(x+ δ) ≈ f(x) + gradf(x)T δ +
1

2
δTHessf(x)δ . (B.10)

The constant term f(x) is given by:

f(x) =
1

2

(
xTx− d

)2
. (B.11)

The gradient gradf(x) is a 3× 1 vector given by:

gradf(0) = 2
(
xTx− d

)
x . (B.12)

The Hessian Hessf(0) is a 3× 3 matrix given by:

Hessf(0) = 2
(
xTx− d

)
I3 + 4xxT . (B.13)

203

Appendix C

The Sn+ Cone and the EDM Cone

The PSD cone and the EDM cone are both examples of convex cones. This Appendix
reviews some basic mathematics relating to convex cones and their faces. The faces of
PSD cones are also described. Further reading can be found in [44]. Matrices whose
entries are distance rather than quadrance are very similar to EDMs, these matrices have
been discussed in for example [24].

C.1 Introduction to Convexity

Let the blackboard bold font denote an arbitrary Euclidean space, e.g. E, and assume an
inner product is defined in E, 〈·, ·〉 : E × E → R. Recall the following familiar Euclidean
spaces:

• Rn, the space of n-vectors, with dot product 〈x, y〉 = xTy =
∑n

i=1 xiyi .

• Rm×n, the space ofm×n real matrices, and 〈A,B〉 = Trace(ATB) =
∑m

i=1

∑n
j=1AijBij.

• Sn = {X ∈ Rn×n : X = XT}, the space of n × n real symmetric matrices, and
〈A,B〉 = Trace(AB) =

∑n
i,j=1AijBij..

Note that R denotes the set of real numbers, and R+ = {x ∈ R : x ≥ 0} denotes the set of
real numbers greater than or equal to zero, and R++ = {x ∈ R : x > 0} denotes the set of
real numbers strictly greater than zero.

204

A set A ⊂ E is affine if:

αx+ (1− α)y ∈ A ∀x, y ∈ A α ∈ R . (C.1)

The affine hull of a set S ⊂ E, denoted aff(S), is the smallest affine set in E containing S.
A set S ⊂ E is convex if:

αx+ (1− α)y ∈ S ∀x, y ∈ S 0 ≤ α ≤ 1 . (C.2)

The convex hull of a set S ⊂ E, conv(S), is the smallest convex set containing S. The unit
ball in E is defined as:

B := {x ∈ E :‖ x ‖≤ 1} . (C.3)

The ball around x ∈ E with radius ε > 0 is then given by:

x+ εB = {y ∈ E :‖ x− y ‖≤ ε} . (C.4)

The relative interior of a convex set S ⊆ E is:

relint(S) := {x ∈ aff(S) : (x+ εB) ∩ aff(S) ⊆ S, for some ε > 0} . (C.5)

An alternative definition of the relative interior is given by [44] Theorem 2.8:

relint(S) := {x ∈ S : ∀y ∈ S,∃µ > 1 such that µx+ (1− µ)y ∈ S}
:= {x ∈ S : ∀y ∈ S,∃µ > 1 such that y + µ(x− y) ∈ S} .

(C.6)

This definition says that in the relative interior, we can move in the direction d = x − y
slightly, and still remain in the set S, when x, y ∈ S.

A set K ⊆ E is a cone if R+K = K, where:

R+K = {αx : α ∈ R+, x ∈ K} . (C.7)

Let 〈·, ·〉 denote the inner product in E. The dual cone K∗ is defined by:

K∗ = {y ∈ E : 〈x, y〉 ≥ 0,∀x ∈ K} . (C.8)

A cone K is self-dual if K∗ = K.

Definition C.1.1 (A Face of a Convex Cone). Let K ⊂ E be a convex cone. F is a face

205

of K, denoted F E K, if F is a convex cone, F ⊆ K, and:

x, y ∈ K and x+ y ∈ F =⇒ x, y ∈ F . (C.9)

If F 6= K, this is denoted by F / K.

Definition C.1.2 (Exposed Face). A face F E K is exposed if:

∃v ∈ K∗, F = {x ∈ K : 〈v, x〉 = 0} = K ∩ {v}⊥ . (C.10)

A cone K is facially exposed if every face F E K is exposed.

A face F E K, has an associated conjugate face F c E K∗ given by:

F c = K∗ ∩ F⊥ . (C.11)

Each point in the conjugate face F c defines an exposed face that contains the face F , see
[44] Proposition 2.11. Mathematically, let K be a convex cone. If F E K and φ ∈ F c,
then

F E K ∩ {φ}⊥ E K . (C.12)

Definition C.1.3 (Minimal Face). The minimal face of a convex cone K containing a set
S ⊆ K is denoted face(S) or face(S,K) if K is to be specified explicitly. It is given by:

face(S) = face(S,K) =
⋂

S⊆FEK

F . (C.13)

C.2 The Rn
+ Cone and its Faces

The nonnegative orthant is defined as:

Rn
+ = {x ∈ Rn : x ≥ 0} , (C.14)

and the positive orthant is defined as:

Rn
++ = {x ∈ Rn : x > 0} . (C.15)

Rn
+ is a convex cone and also self-dual (Proposition 2.1.1 of [43]), and Rn

++ is it’s relative
interior.

206

Faces of Rn
+ are given by:

FI = {x ∈ Rn
+ : xi = 0 ∀i ∈ I} where I ⊆ {1, . . . , n} . (C.16)

That is, a point in Rn
+ has n coordinates: (x1, . . . , xn). The faces of Rn

+ are given by
restricting a subset of these n coordinates to be equal to zero. The faces of Rn

+ are essentially
Rk

+, for k ≤ n.

As an example, R3
+ has the following faces:

• The R2
+ cones: {(x, y)|x ≥ 0, y ≥ 0}, {(y, z)|y ≥ 0, z ≥ 0}, and {(x, z)|x ≥ 0, z ≥ 0}

are all faces of R3
+.

• The R+ cones: {x|x ≥ 0}, {y|y ≥ 0}, and {z|z ≥ 0} are faces of R3
+.

• The point (0, 0, 0) is a face of R3
+.

• The entire cone R3
+ is a face of R3

+.

All of the faces of R3
+ are exposed.

C.3 The PSD Cone and its Faces

The convex cone of n× n PSD matrices, Sn+, is given by:

Sn+ = {X ∈ Sn : vTXv ≥ 0,∀v ∈ Rn} ⊂ Sn . (C.17)

The relative interior of Sn+, denoted Sn++, is given by:

Sn++ = {X ∈ Sn : vTXv > 0,∀v 6= 0, v ∈ Rn} . (C.18)

It is well-known that the cone Sn+ is self-dual, (Sn+)∗ = Sn+, see for example Proposition
2.1.1 of [43].

Just as Rn
+ has faces that are Rk

+, where k ≤ n, the Sn+ cone has faces that are Sk+
cones, for k ≤ n.

A more formal definition is given in Proposition 2.15 from [44], where proofs are also
provided. Some key statements from that Proposition are restated below in Proposition
C.3.1.

207

Proposition C.3.1 (The Faces and Conjugate Faces of PSD Cones). Let Q ∈ Rn×n be
an orthogonal matrix. Partition Q as Q =

(
U V

)
, where U is an n× k full column rank

matrix and V is an n × (n − k) full column rank matrix. The value of k depends on the
application.

1. The PSD cone Sn+ has faces F E Sn+ defined by:

F = USk+U
T =

{
Q

[
A 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

]
QT : A ∈ Sk+

}
, (C.19)

where Sk+ is the cone of k × k PSD matrices.

2. The conjugate face F c E Sn+ is given by:

F c = V Sn−k+ V T =

{
Q

[
0k×k 0k×(n−k)

0(n−k)×k B

]
QT : B ∈ Sn−k+

}
, (C.20)

3. The relative interior of a face F is given by:

relint(F) = USk++U
T . (C.21)

4. The relative interior of a conjugate face F c is given by:

relint(F c) = USn−k++ U
T . (C.22)

Note that F and F c are closely related.

5. Any matrix in the conjugate face F c exposes a face F :

F E Sn+ ∩ {Y }⊥, ∀Y ∈ F c; in addition, F = Sn+ ∩ {Y }⊥, ∀Y ∈ relint(F c).

6. Similar to above, any matrix in the face F exposes a conjugate face F c:

F c E Sn+ ∩ {X}⊥, ∀X ∈ F ; in addition, F c = Sn+ ∩ {X}⊥, ∀X ∈ relint(F).

Y and X are also called exposing vectors.

Proof. Proofs for each of the above statements are given in the proof for Proposition 2.15
in [44].

208

C.4 The Euclidean Distance Matrix

Given a set of points, p1, . . . , pn ∈ Rr, the matrix D ∈ Sn whose (a, b)-th entry is given by
Dab = qab =‖ pa− pb ‖2 is called the Euclidean distance matrix (EDM)[3, 24, 26, 44]. Note
that the EDM’s entries are quadrances and not distances.

The embedding dimension of an EDM D is the smallest r such that the EDM exists,
see [44] Section 2.5.

embdim(D) = min{r : ∃p1, . . . , pn ∈ Rr s.t. Dab =‖ pa − pb ‖2 ∀a, b} . (C.23)

Denote the set of n × n EDMs by En. The rank of the Gram matrix is equivalent to the
embedding dimension of the corresponding EDM D, both are denoted by r.

C.5 The Linear Isomorphism between SnC ∩ Sn+ and En

A Gram matrix X = PP T is centered if the atomic coordinates in P have centroid at the
origin. This can be expressed as X1n = PP T1n = 0n, where X = PP T is an n × n PSD
Gram matrix, 1n is the n × 1 matrix of all ones, and 0n is the n × 1 matrix of all zeros.
For an n × n EDM, D ∈ En, a linear mapping K(·) [20, 23, 44] relates a centered Gram
matrix to its corresponding EDM:

D = K(PP T) = diag(PP T)1Tn + 1ndiag(PP T)T − 2PP T

=

p1
Tp1
...

pn
Tpn

1Tn + 1n
(
p1
Tp1 . . . pn

Tpn
)
− 2

p1
Tp1 . . . pn

Tp1
...

. . .
...

pn
Tp1 . . . pn

Tpn


=

p1
Tp1 . . . p1

Tp1
...

...
pn

Tpn . . . pn
Tpn

+

p1
Tp1 . . . pn

Tpn
...

...
p1
Tp1 . . . pn

Tpn

− 2

p1
Tp1 . . . pn

Tp1
...

. . .
...

pn
Tp1 . . . pn

Tpn


=
(
pa
Tpa + pb

Tpb − 2pa
Tpb
)

=
(
(pa − pb)T (pa − pb)

)
=
(
qab
)
.

(C.24)

Here, diag(·) is an operator that extracts the diagonal of the argument matrix and returns
the n× 1 vector containing the diagonal entries.

The mapping K(·) is a linear isomorphism from SnC ∩ Sn+ to En [26, 44], where

SnC = {X ∈ Sn : X1n = 0n} . (C.25)

209

This linear isomorphism means both SnC ∩ Sn+ and En are convex cones.

The mapping K(·) has a Moore-Penrose pseudoinverse, denoted K†(·), given by:

K†(D) = −1

2
JoffDiag(D)J , (C.26)

where:

J = In −
1

n
1n1n

T , (C.27)

and In is the n× n identity matrix. The operator offDiag(·) is defined as:

offDiag(D)ab =

{
0 if a = b

Dab if a 6= b .
(C.28)

Let A be a linear map A : X→ Y, where X and Y are Euclidean spaces and let 〈·, ·〉 denote
the dot product. The adjoint of A, denoted A∗, is given by:

〈Ax, y〉 = 〈x,A∗y〉 x ∈ X y ∈ Y . (C.29)

The mapping K(·) has an adjoint given by:

K∗(A) = 2(Diag(A1n)− A) , (C.30)

where A is an n × n matrix. The diagonal operator, Diag(·), is the operator that takes
an n× 1 vector x, and returns an n× n diagonal matrix with the vector entries along the
diagonal. The ab-th entry of the matrix Diag(x) is:

[Diag(x)]ab = δabxa , (C.31)

where δab is the Kronecker delta. For example, for the n× 1 vector x = (x1, . . . , xn)T , we
have:

Diag(x) =

x1 . . .

xn

 . (C.32)

Further discussions of K(·) can be found in [3, 16, 20, 26, 44, 45].

210

C.6 EDM Completion and Facial Reduction

The EDMC problem was given in Definition 3.2.1 where the matrix manifold approach
for solving this problem was discussed. The study of the EDMC problem also led to the
study of facial reduction of PSD matrices, which is a research direction that developed
independently of matrix manifold optimization. This Section provides a brief review of
some key results.

This Section is organized as follows:

1. Section C.6.1 discusses the original motivation for facial reduction.

2. Section C.6.2 discusses the application of facial reduction to the SNL problem (Definition
3.2.3) formulated by Krislock and Wolkowicz in [44, 45].

3. Section C.6.3 discusses the application of facial reduction to the protein structure-
NMR problem (Definition 3.2.2) by Alipanahi et al. [5, 4] ,

4. Section C.6.4 discusses facial reduction in the noisy SNL problem, where the sensors
may have noise in their distance measurement with other sensors. The facial reduction
introduced in Cheung et al. [16] and Drusvyatskiy et al. [26] is more robust to noise.

5. Section C.6.5 reviews the connection between Rigid cluster ENI [37, 40, 41, 38], which
is a modification of ENI to interpolate the rotation and translation of rigid clusters
in the protein structure, to facial reduction. We showed in [54] if a protein structure
is represented using a Gram matrix, as a point on Sn,3+ instead of R3n, then rigid
cluster ENI can be reformulated using facial reduction.

These subsections are only a brief review, the interested reader should consult the original
publications for a more detailed discussion. In order to use facial reduction for protein
structures, the information about which groups of atoms in a protein structure are assumed
to be rigid is required to be given as input, this is a separate problem of itself.

C.6.1 The Original Motivation for Facial Reduction

Semidefinite optimization problems are one type of convex optimization problem, this is
because Sn+, with no rank constraint, is a convex cone.

In the semidefinite relaxation of the EDMC problem, the feasible point X can have
potentially any rank (relaxation means remove the rank constraint), and therefore the

211

entire cone Sn+ is the feasible region, provided the specified distances in the input incomplete
EDM D are satisfied by X. In the paper by Alfakih et al.[3], the feasible region for the
EDMC problem as a semidefinite optimization problem is given as follows:

F = {X ∈ Sn+ | Kab(X) = Dab ∀(a, b) ∈ D} ,

where Kab(X) is the mapping defined in Equation (4.15).

For convex optimization in general, Slater’s constraint qualification is a sufficient condition
for strong duality, see for example Boyd and Vandenberghe [12] Section 5.2.3 for more
information on strong duality. Slater’s constraint qualification requires the interior of the
feasible region of the optimization problem to have at least one feasible point, also called
a Slater point, i.e. the interior of the feasible region must be nonempty. For semidefinite
optimization problems in particular, knowing whether the problem being modelled satisfies
Slater’s constraint qualification is not only important for checking whether strong duality
holds, but is also a condition required by interior point algorithms to ensure a solution can
be found.

A Slater point for the EDMC problem is given by:

∃X ∈ Sn++ s. t. Kab(X) = Dab ∀(a, b) ∈ D ,

This definition says that if a full rank, rank n, positive definite matrix X exists that is also
feasible, then the EDMC problem satisfies Slater’s constraint qualification. The full rank
matrix X is an “interior point”, also called a “Slater point” because it is in the relative
interior of the Sn+ cone.

Definition C.6.1 (A Clique in the EDM). A clique is defined as a graph where all nodes
are adjacent, in other words, all possible undirected edges are present. For an EDM matrix,
a clique means the distance between all points have been determined.

Definition C.6.2 (Principal Submatrix). For a n × n matrix A, let C ⊂ {1, . . . , n}, the
matrix A[C, C] formed by taking the rows whose indices are in the set C, and the columns
whose indices are also in the set C is called a principal submatrix.

If the input EDM graph contains subgraphs that are themselves cliques, or equivalently,
if the input incomplete EDM, D, contains principal submatrices that have all entries
specified, then the rank of the feasible matrices is decreased. This means the EDMC
problem will not have a Slater point X ∈ Sn++, and Slater’s constraint qualification is not
satisfied. This result is given as Theorem 4.1 of [44] and Theorem 2.3 [45] for the case of

212

one clique in the EDM graph. This theorem is called the “Single Clique Facial Reducton”
theorem, and is restated below as a definition.

Definition C.6.3 (Single Clique Facial Reduction). Let D be an incomplete input EDM
to the EDMC problem. Suppose the input EDM D has one clique, let C ⊂ {1, . . . , n} be
the set containing the indices of the points in this clique. Since these indices can always
be permuted, assume without loss of generality that C = {1, . . . , q} and |C| = q. Let PC be
the matrix whose rows are the atomic coordinates of the points in clique C. Diagonalize
XC = PCPC

T using either eigendecomposition or singular value decomposition,

XC = PCPC
T = UCDUC

T .

Let:

ŪC =
(k 1

q UC
1q√
q

)
, (C.33)

where 1q is a q× 1 vector of all ones and k is the embedding dimension of the points. The
division by

√
q ensures that ŪC is orthonormal.

Let:

U =

(k + 1 n− q
q ŪC 0q×(n−q)
n− q 0(n−q)×(k+1) In−q

)
. (C.34)

Then, the feasible n × n Gram matrices that solve this EDMC problem are found on the
face:

USn−q+k+1
+ UT

Definition C.6.3 says that if the incomplete EDM has just one clique, Slater’s constraint
qualification cannot be satisfied because the feasible Gram matrix X that solves the
EDMC problem is not in the relative interior Sn++, but rather on a lower dimensional
face. Mathematically, this is expressed as:

X ∈ USn−q+k+1
+ UT X /∈ Sn++

If the input incomplete EDM contains more than one clique, then each clique will define a
face that contains the feasible Gram matrices of the EDMC problem, given by Definiton
C.6.3. Recall the minimal face was defined in Definition C.1.3, facial reduction is the
process of intersecting all these faces to find the one unique minimal face containing the

213

feasible Gram matrices. Suppose there are l cliques:

C1, . . . , Cl .

Using Definition C.6.3, each clique has a subspace representation given by Equation (C.34):

U1, . . . , Ul .

Then, facial reduction finds the subspace U such that:

range(U) =
l⋂

i=1

range(Ui) ,

where range(·) denote the range of a matrix. Once the matrix U has been found, the EDMC
problem can be formulated on a smaller cone. Suppose the resulting U found from facial
reduction is an n× p matrix, then the EDMC problem can be formulated as a semidefinite
optimization problem on the smaller cone:

USp+U .

Slater’s constraint qualification will hold for this smaller cone, i.e. the smaller cone will
have an interior point that is a feasible Gram matrix to the EDMC problem.

C.6.2 Cliques in the SNL problem (Krislock and Wolkowicz [44,
45])

In the SNL problem, a sensor is aware of its neighbours up to a threshold distance called
the “radio range”. There may be many sensors within this radio range, and they all known
each other’s inter-sensor distances, thus forming a clique in the input EDM graph, causing
the Slater’s contraint qualification to fail.

The main contribution of Krislock and Wolkowicz [44, 45] is to show that when the
SNL problem has exact distance data, i.e. no noise in the distance measurements, and
the input incomplete EDM graph has cliques (Slater’s constraint qualification fails), facial
reduction can be used to find a face of the PSD cone where a Slater’s point does exist. It
may even be possible to determine all sensor positions after facial reduction, without the
need for a semidefinite optimization solver.

The idea of Krislock and Wolkowicz’s algorithm is to start with each sensor as a clique

214

Figure C.1: A rigid intersection between two abstract cliques. Figure 2.2 of [45].

Figure C.2: A non-rigid intersection between two abstract cliques. Figure 2.3 of [45].

of one sensor (a trivial clique), it then attempts to make this clique bigger by checking
if there are sensors not in the clique, but is within the radio range of all the sensors in
the clique (adjacent to all the sensors in the clique). After the cliques have achieved a
maximum size the first step of the algorithm is complete.

The next step of the algorithm is to determine the subspace representations of these
cliques using Definition C.6.3.

Thereafter, cliques are checked to see if they have any common sensors, if they do then
these cliques intersect. There are two ways two cliques may intersect: rigidly, as shown in
Figure C.1. “Rigid” intersection means there is only one orientation the two cliques can
intersect, as the triangle in the diagram shows. The other way is to intersect non-rigidly,

215

as shown in Figure C.2, the dotted lines show the second possible orientation to intersect.
This diagram assumes the points are in 2D space, and so intermediate solutions where one
clique is out of the plane, e.g. one clique is oriented 90 degrees with respect to the other
clique, is not possible.

Consider two cliques, Ui and Uj, and suppose they have a subset of points in common,
i.e. they intersect. Let Ui be the subspace of the clique Ci found using Definition C.6.3,
and Uj be the subspace of the clique Cj also found using Definition C.6.3. Let

C = Ci ∩ Cj

denote the indices of the points in their intersection. Let

Ui[C, :]

be the matrix formed from taking the rows of Ui specified in C, and let

Uj[C, :]

be the matrix formed from taking the rows of Uj specified in C. Ui[C, :] and Uj[C, :] are
the subspace representation of the same clique, given by the index set C = Ci ∩ Cj. This
means they should be the same matrix. If they are not, they must differ by a rotation and
translation.

If the intersection of these two cliques is rigid, see Figure C.1, a unique rotation and
translation can be found to rotate one of the matrices, say Uj, so that after the rotation
Ui[C, :] and Uj[C, :] are the same matrix. This idea is explained in more detail in Section
4.8 of [44]. Once the subspace has been rotated, an expression for

range(U) = range(Ui) ∩ range(Uj)

can be found, which leads to finding the Cartesian coordinates of the points in the cliques
themselves. The details for this will not be discussed here, see [44].

If the intersection of these two cliques is non-rigid, see Figure C.2, a similar idea of
rotating one of the subspaces is used in [44], however, now there are two possible solutions
to how the cliques orient with respect to each other, this is given by the dotted lines in
Figure C.2. If one of these two solutions can be determined to be the correct solution, for
example distance constraints can be checked, then the subspace representation of the face
can be found just as in the rigid intersection case and these points can be localized. If the
correct solution cannot be determined, a semidefinite solver may be needed.

216

C.6.3 Cliques in the Protein Structure-NMR problem (Alipanahi
et al. [5, 4])

In [44] the algorithm for localizing sensors with facial reduction was also applied to the
protein structure-NMR problem, where the incomplete input EDM has specified entries if
the inter-atomic distance is within a distance R, the values of R examined were 5Å, 6Å,
7Å, and 8Å.

The protein structure-NMR problem was re-examined by Alipanahi et al.[5, 4]. The
definition of the cliques used in this approach is different from the original approach in [44],
the cliques were defined using the protein structure’s chemical structures. This is shown
in Figure C.3, where three cliques are presented. The two cliques bounded by a square are
peptide planes, and the one clique bounded by a circle is a tetrahedral carbon, the bond
angles of a carbon atom has a tetrahedral shape.

Note that all three cliques intersect non-rigidly, compare Figure C.3 with Figure C.2.
Protein cliques will always intersect nonrigidly about a bond, since any motion of the
protein structure is from rotations about a bond.

Figure C.3: Protein clique example. Figure 3.13 of (Alipanahi, 2011[4]).

The method used for intersecting cliques by Alipanahi [4] is the subspace intersection

217

method, see Theorem 5 of [4] and Algorithm 12.4.3 of [31]. This method is summarize next.

Suppose there are two cliques, whose atomic indices are given by the sets C1 and C2.
Suppose further without loss of generality these two sets form a consecutive set of integers.
In addition, since this discussion only involve two cliques, assume no other cliques in the
protein, such that C1 ∪ C2 = {1, . . . , n}. This approach is applied recursively to intersect
more than two cliques.

Define the following cardinal values:

q1 = |C1|
q2 = |C2|
q = |C1 ∩ C2|
qU = |C1 ∪ C2|

(C.35)

Using Definition C.6.3 and Equation (C.34) when applied to these two cliques gives the
following subspace representation for the clique C1:

U1 =


k1 + 1 qU − q n− qU

q1 ŪC1 0q1×(qU−q) 0q1×(n−qU)

qU − q 0(qU−q)×(k1+1) IqU−q 0(qU−q)×(n−qU)

n− qU 0(n−qU)×(k1+1) 0n−qU×(k2+1) In−qU

 ,
(C.36)

the following subspace representations for the clique C2

U2 =


qU − q k2 + 1 n− qU

qU − q IqU−q 0(qU−q)×(k2+1) 0(qU−q)×(qU−q)

q2 0q2×(qU−q) ŪC2 0q2×(n−qU)

n− qU 0q2×(qU−q) 0n−qU×(k2+1) In−qU

 .
(C.37)

In order to find a matrix U such that range(U) =range(U1)∩ range(U2). Theorem 5 of [4]
and Algorithm 12.4.3 of [31], proceeds as follows:

1. Ensure U1 and U2 have orthonormal columns. If not, find the QR-decomposition for
U1 = Q1R1 and U2 = Q2R2, and use Q1 and Q2 instead.

2. Form the matrix C = UT
1 U2, and find its singular value decomposition: C = Y ΣZT .

3. Let Yσ=1 denote the columns of Y where the singular values are 1, then U = U1Yσ=1

218

is the required matrix U such that range(U) =range(U1)∩ range(U2). The number
of singular values that are 1 therefore determines the number of columns of the
intersected subspace U .

The matrix U is now the subspace representation of the clique C = C1 ∪ C2. In order to
intersect U with another subspace, U3, with clique indices C3, the above method is applied
recursively. Even if the protein has more than two cliques, only two cliques are intersected
at a time and for each intersection, using the same formulas as above.

Note that when intersecting U1 and U2, the last n− qU rows and columns are the same
and therefore, the smaller matrices:

Ũ1 =

(k1 + 1 qU − q
q1 ŪC1 0q1×(qU−q)

qU − q 0(qU−q)×(k1+1) IqU−q

)
,

(C.38)

and

Ũ2 =

(qU − q k2 + 1

qU − q IqU−q 0(qU−q)×(k2+1)

q2 0q2×(qU−q) ŪC2

)
.

(C.39)

can be intersected instead using the above method. Then, suppose the matrix Ũ is the
resulting matrix such that

range(Ũ) = range(Ũ1) ∩ range(Ũ2) ,

it is expanded as follows to arrive at the subspace representation for the face containing
the n× n Gram matrix

U =

(k n− qU
qU Ũ 0qU×(n−qU)

n− qU 0(n−qU)×k In−qU

)
.

The number k is the number of columns of the intersected subspace Ũ , this number was
already discussed above. See also Algorithm 3 of [4] on finding the number of columns of
the intersected subspace.

219

C.6.4 Noisy SNL and Cliques (Cheung et al. [16], Drusvyatskiy
et al. [26, 25])

The conjugate face can also be used for facial reduction.

The face and conjugate of a PSD cone are defined in Proposition C.3.1. The face is
given by:

F = USk+U
T =

{
Q

[
A 0k×(n−k)

0(n−k)×k 0(n−k)×(n−k)

]
QT : A ∈ Sk+

}
and the conjuate face is given by:

F c = V Sn−k+ V T =

{
Q

[
0k×k 0k×(n−k)

0(n−k)×k B

]
QT : B ∈ Sn−k+

}
,

In addition, recall the following statement from the same Proposition:

F E Sn+ ∩ {Y }⊥ ∀Y ∈ F c in addition F = Sn+ ∩ {Y }⊥ ∀Y ∈ relint(F c).

This statement shows the conjugate face can be used to define the face.

Let ŪC be the q × (k + 1) matrix given by Equation (C.33). Let V̄ ∈ Rq×(q−k−1) be the
complement subspace, that is

range(ŪC) = range(V̄)⊥.

The face given by the primal expression F = ŪCS
k+1
+ ŪT

C can be exposed by V̄ V̄ T ∈ F c.
This is mathematically written as:

Sq+ ∩ {V̄ V̄ T}⊥ = ŪCS
k+1
+ ŪT

C . (C.40)

Since the entire protein structure has n atoms, define the matrix:

V =

(q − k − 1

q V̄
n− q 0(n−q)×(q−k−1)

)
. (C.41)

Then the exposing vector for the face containing the Gram matrix of all n atoms as defined

220

just by clique C is:

V V T =

(q n− q
q V̄ V̄ T 0q×(n−q)
n− q 0(n−q)×q 0(n−q)×(n−q)

)
. (C.42)

Let U be defined by equation (C.34), the primal expression for the face USn−q+k+1
+ UT is

related to the exposing vector V V T from Equation (C.42) via the following mathematical
expression:

Sn+ ∩ {V V T}⊥ = USn−q+k+1
+ UT (C.43)

See for example Theorem 1 of [16], Theorem 3.1 of [25].

The exposing vector for the intersection of two cliques is found from adding up the
exposing vectors for both cliques. Consider again the example in Section C.6.3 of two
cliques, with their atomic indices given by the sets C1 and C2. Define matrices V̄1, V̄2 such
that:

range(ŪC1) = range(V̄1)
⊥

and
range(ŪC2) = range(V̄2)

⊥ .

The matrix V1V1
T exposing the face defined by the cliques given by indices C1 is given by:

V1V1
T =

(q1 n− q
q1 V̄1V̄

T
1 0q1×(n−q)

n− q 0(n−q)×q1 0(n−q)×(n−q)

)
,

(C.44)

and the matrix V2V2
T exposing the face defined by the cliques given by indices C2 is given

by:

V2V2
T =


qU − q q2 n− qU

qU − q 0(qU−q)×(qU−q) 0(qU−q)×q2 0(qU−q)×(n−qU)

q2 0q2×(qU−q) V̄2V̄
T
2 0q2×(n−qU)

n− qU 0(n−qU)×(qU−q) 0(n−qU)×q2 0(n−qU)×(n−qU)

 .
(C.45)

Their sum V1V1
T + V2V2

T exposes the subspace representing the intersection of the two
cliques, that is

(V1V1
T + V2V2

T)⊥range(U1) ∩ range(U2) .

If there are l cliques in total, the sum of all their exposing vectors exposes the intersection

221

of all l clique’s subspaces. That is, let

V V T = (V1V1
T + · · ·+ VlVl

T) (C.46)

and let:
range(U) = range(U1) ∩ · · · ∩ range(Ul) .

Then:
V V T⊥range(U) .

The matrix U is found from diagonalizing the matrix V V T given by Equation C.46, then
the eigenvectors that corresponds to eigenvalues that are 0 are used to form the columns
of U .

The main advantage of this method is it is robust to noise in the distance measurements,
see [16] where this type of facial reduction was applied to the noisy SNL problem.

The main disadvantage of this method is the final exposing vector, given by Equation
(C.46), needs to be diagonalized to recover V , from which the subspace of the intersection
of the spaces, U is found.

C.6.5 Rigid Clusters and ENI [41, 37]

Elastic network interpolation (ENI) as proposed by Kim et al. [37, 40, 41, 38] was reviewed
in Chapter 2 Section 2.4. Rigid cluster ENI is a variation of ENI that interpolates the
rotation and translations of rigid groups of atoms in a protein structure [41, 37].

This section discusses the connection between facial reduction and rigid cluster ENI.
This discussion has also appeared in our previous publication [54].

Suppose the a-th atom belongs to the r-th clique, let pa(t) ∈ R3 denote its coordinates
at an arbitrary time t, and let there be q atoms in this clique. Let t1 − t0 be a small time
increment. The position of atom a at time t1, pa(t1), relative to pa(t0) at time t0 is given
by:

pa(t1) = R(ωr(t1 − t0)) (pa(t0)− cr(t0)) + cr(t0) + δcr(t1 − t0) . (C.47)

Here, cr(t) is the r-th clique’s centroid at time t, and δcr(t1 − t0) = cr(t1)− cr(t0) denote
the relative translation of the clique’s centroid from time t0 to t1. The axis-angle vector
for this clique at time t0 is denoted by

ωr(t1 − t0) = θ(t1 − t0)ur(t0) ,

222

Figure C.4: A schematic diagram of a protein with three rigid clusters (a rigid group of
atoms that move concurrently) connected by springs. Figure 6.1 of (Kim, 2004[37]).

where ur(t0) = (xr(t0), yr(t0), zr(t0))
T ∈ R3 is the axis of rotation, ‖ ur(t0) ‖= 1, and

θ(t1 − t0) ∈ R, a scalar, is the counterclockwise angle of rotation from time t0 to time t1.
The rotation matrix R(ωr(t1 − t0)) to rotate any point within the r-th clique from time t0
to t1 is given by the well-known Rodrigues’ rotation formula:

R(ωr(t1 − t0))
= I + (sin(θ(t1 − t0))skew(ur(t0)) + (1− cos(θ(t1 − t0))skew(ur(t0))

2

= exp(θ(t1 − t0)skew(ur(t0)))

= exp(skew(θ(t1 − t0)ur(t0)))
= exp(skew(ωr(t1 − t0))) ,

(C.48)

where for −→x = (x, y, z)T ∈ R3, skew(−→x) is defined as:

skew(−→x) =

 0 −z y
z 0 −x
−y x 0

 , (C.49)

The function exp(·) is the matrix exponential. Since we assumed t1 − t0 is a small time

223

increment, we will also assume the rotation between time t0 and t1 is small, the rotation
matrix can then be approximated as:

R(ωr(t1 − t0)) ≈ I3 + skew(ωr(t1 − t0)) , (C.50)

where I3 is the 3 × 3 identity matrix. This approximation simplifies equation (C.47) for
pi(t1) to:

pa(t1) ≈ (pa(t0)− cr(t0)) + skew(ωr(t1 − t0)) (pa(t0)− cr(t0)) + cr(t0) + δcr(t1 − t0)
= pa(t0) + skew(ωr(t1 − t0)) (pa(t0)− cr(t0)) + δcr(t1 − t0) .

(C.51)
Note that for v, w ∈ R3, skew(w)v = −skew(v)w. More concisely, we can express pi(t1) as:

pa(t1) ≈ pa(t0)− skew (pa(t0)− cr(t0))ωr(t1 − t0) + δcr(t1 − t0)
= pa(t0) +Ha(t0)y(t1)

(C.52)

where:
Ha(t0) =

(
−skew (pa(t0)− cr(t0)) I3

)
∈ R3×6 , (C.53)

and:

y(t1) =

(
ωr(t1 − t0)
δcr(t1 − t0)

)
∈ R6 . (C.54)

The same change y(t1) is applied to all atoms in the clique, so we can form the matrix
expression: p1(t1)...

pq(t1)

 ≈
p1(t0)...
pq(t0)

+

H1(t0)
...

Hq(t0)

 y(t1) . (C.55)

Equation (C.55) shows to find the time t1 coordinates from time t0 for the points in the
clique, we only need to find the much smaller y(t1).

A Second Expression for Rigid Clusters

Consider the transpose of equation (C.51):

pa(t1)
T ≈ pa(t0)

T + (pa(t0)− cr(t0))T skew(ωr(t1 − t0))T + δcr(t1 − t0)T (C.56)

224

Since all atoms that belong to one clique are rotated by the same rotation matrix, skew(ωr(t1 − t0))T ,
and translated by the same vector δcr(t1− t0)T , we can place all q equations into a matrix:p1(t1)

T

...
pq(t1)

T

 ≈
p1(t0)

T

...
pq(t0)

T

+

(pa(t0)− cr(t0))T 1
...

...

(pq(t0)− cr(t0))T 1

(skew(ωr(t1 − t0))T
δcr(t1 − t0)T

)
, (C.57)

Define the matrix Ur:

Ur =

(p1(t0)− cr(t0))T 1
...

...
(pq(t0)− cr(t0))T 1

 . (C.58)

Ur is called the point representation of the face of the r-th clique, see [44] Section 4.12.
Analogous to y(t1), we define Y (t1) as:

Y (t1) =

(
skew(ωr(t1 − t0))T
δcr(t1 − t0)T

)
. (C.59)

Then we have the matrix expression:

P (t1) = P (t0) + UrY (t1) . (C.60)

Equation (C.60) shows that when advancing from time t0 to time t1, if we can factor
P (t0) = UrS(t0), then equaton (C.60) becomes:

P (t1) = Ur(S(t0) + Y (t1)) . (C.61)

Equation (C.61) shows we only need to change S(t0) to arrive at P (t1). Although Ur
has been defined based on time t0, it can be defined with respect to a reference time, for
example t = 0.

Facial reduction only requires the face matrix Ur to be found, rotation matrices or axis
angle vectors do not need to be introduced explicitly.

225

Appendix D

An Introduction to Riemannian
Manifolds

The purpose of this Appendix is to provide enough differential geometry background to
define Riemannian manifolds. Further reading can be found in [50, 49, 48, 1, 77, 78].
Formulating the Euler-Lagrange equations on Riemannian manifolds is also discussed in
this Appendix. Further reading on classical mechanics and Riemannian manifolds can be
found in for example [7, 15].

D.1 Topological Manifolds

Topologies are abstract objects that generalize the notion of open intervals in R. More
precisely, a topology on a space M is a collection T , of subsets of M, these subsets are
called “open sets”. These open sets have the following properties:

1. The subsets M and ∅ belong to T .

2. For subsets U1, U2, · · · ∈ T , their union is also in T , U1 ∪ U2 ∪ · · · ∈ T , the union
may be finite or infinite.

3. For finitely many subsets U1, U2, · · · ∈ T , their intersection is also in T , U1∩· · ·∩Un ∈
T .

226

Elements of M are called points, denoted p ∈ M. A neighborhood of p is an open subset
U ⊂ M that contains p. Neighborhoods give a feel of “nearness” without the need for a
metric. A statement is true “near” a point p if it is true in a neighborhood of p.

Open sets also give a convenient definition of continuity. A map f :M→ N between
topological spaces M and N is continuous if for every open subset U ⊆ N , its preimage
f−1(U) is open in M.

A topological space is Hausdorff if distinct points can always be separated by disjoint
open sets.

A topological space has a non-unique special collection B of subsets ofM called a basis.
This collection has the property that:

1. each x ∈M belongs to at least one element of B

2. if x ∈ (B1∩B2) with B1, B2 ∈ B, then there exists B3 ∈ B such that x ∈ B3 ⊆ B1∩B2

A topological space is second countable if it admits a countable basis.

Two topological spaces M and N are homeomorphic if there is a bijective map ϕ :
M→N such that both ϕ and ϕ−1 are continuous functions.

A topological space M is locally Euclidean of dimension n if every point of M has a
neighborhood homeomorphic to an open subset of Rn.

The special homeomorphism ϕ that maps U ⊂M to Ũ = ϕ(U) ⊂ Rn is called a (local)
coordinate map. The pair (U,ϕ) is called a coordinate chart. U is called the coordinate
domain, or coordinate neighborhood or coordinate ball if ϕ(U) is an open ball in Rn. For a
point p, the component functions of ϕ,

x1 = x1(p), . . . , xn = xn(p) (D.1)

are called the local coordinates of p.

A topological n-manifold is a second countable, Hausdorff space that is locally Euclidean
of dimension n.

D.2 Smooth Manifolds

Recall from calculus a function F is smooth (denoted C∞) if each of its component functions
has continuous partial derivatives of all orders. A smooth manifold is a topological manifold
with extra structure for deciding which functions on the manifold are smooth.

227

An obvious way to extend smoothness to manifolds for a function f :M→ R is to say
f is smooth if and only if f ◦ϕ−1 : Ũ → R is smooth, where ϕ is a coordinate map defined
above. But the choice of ϕ must be limited to only a collection of smooth charts. This
collection is the new structure to be defined.

Given a topological manifold and two charts (U,ϕ), (V, ψ) with U∩V 6= ∅, the transition
map from ϕ to ψ is the composite function

ψ ◦ ϕ−1 : ϕ(U ∩ V)→ ψ(U ∩ V)

A diffeomorphism is a smooth bijective function, with a smooth inverse. If either U∩V = ∅
or ψ ◦ ϕ−1 is a diffeomorphism, then (U,ϕ) and (V, ψ) are smoothly compatible.

An atlas A for a topological manifold M is a collection of charts (Uα, ϕα) such that
the union of the coordinate domains cover M.⋃

α

Uα =M

If in addition, any two charts are smoothly compatible then this atlas A is called a
smooth atlas.

There may be many atlases that give the same collection of smooth functions. This
ambiguity is avoided by defining a maximal smooth atlas A, which is a smooth atlas that
contains all charts that are smoothly compatible; the maximal atlas is not contained in
any strictly larger smooth atlas. A maximal smooth atlas is also called a smooth structure
or a differentiable structure.

A smooth manifold is a pair (M,A), where M is a topological manifold and A is a
smooth structure.

Any chart (U,ϕ) contained in the maximal smooth atlas is called a smooth chart. The
coordinate map ϕ is called a smooth coordinate map, and U is called a smooth coordinate
domain or smooth coordinate neighborhood or a smooth coordinate ball if ϕ(U) is a ball in
Euclidean space.

Finally, given this smooth atlas, define a function f :M→ R to be smooth if and only
if for every p ∈ M there exists a smooth chart (U,ϕ) with p ∈ U , and f ◦ ϕ−1 is smooth
for each coordinate chart (U,ϕ). The set of all smooth real-valued functions f : M→ R
is denoted C∞(M). C∞(M) is a vector space. The function f̂ = f ◦ ϕ−1 is called the
coordinate representation of f . This concept of smoothness generalizes easily to maps
between manifolds. let F : M → N be a map between manifolds M and N . For any

228

p ∈M, let (U,ϕ) be a smooth chart containing p and (V, ψ) be a smooth chart containing
F (p) such that F (U) ⊂ V . F is smooth if for all p ∈M the composite map ψ ◦ F ◦ ϕ−1 is
smooth from ϕ(U) to ψ(V).

Oftentimes, for simplicity, the coordinate domain U is thought of as simultaneously
being an open subset of the manifold M and as an open subset of Rn. As well, the
coordinates (x1, . . . , xn) = ϕ(p) are thought of as being p ∈ U , called the coordinate

representation. Similarly, the notation f̂ may also be suppressed when there is no confusion.

D.3 Geometric Objects

D.3.1 Tangent space

The tangent space to a manifold at a point is a linear approximation of the manifold at
that point.

In Euclidean space, Rn, the tangent space at a point p can be thought of as a “copy”
of Rn with the origin at p. For example, a tangent plane to a sphere in 3D space, S2 ⊂ R3,
at a point p is a copy of R2 centered at p. This motivates the definition of the geometric
tangent space to Rn at a point p ∈ Rn to be the set Rn

p = {p}×Rn (see Chapter 3 page 61
of [49]):

Rn
p = {(p, v) : v ∈ Rn} , (D.2)

(p, v) may be denoted vp or v|p. Note that Rn
p is a vector space:

up + vp = (u+ v)p where up, vp, (u+ v)p ∈ Rn
p

c(vp) = (cv)p where c ∈ R

There is an isomorphism between Rn
p and Rn, Rn

p
∼= Rn.

This geometric view does not generalize to arbitrary abstract smooth manifolds with no
ambient space. For that, the concept of a directional derivative is used. Recall a directional
derivative is a linear map Dv|p : C∞(Rn) → R such that for any p ∈ Rn

p , in the direction
v at p we have:

Dv|p f = Dvf(p) =
d

dt

∣∣∣∣
t=0

f(p+ tv) (D.3)

This linear operator satisfies the product rule

Dv|p (fg) = f(p) Dv|p g + g(p) Dv|p f (D.4)

229

With this motivation, define a new object, called a derivation, which is a linear map
X : C∞(Rn)→ R that satisfies the product rule:

X(fg) = f(p)Xg + g(p)Xf

Let Tp(Rn) denote the set of all derivations of C∞(Rn) at p. Tp(Rn) is a vector space under
the operations:

(X + Y)f = Xf + Y f

(cX)f = c(Xf)

Proposition D.3.1. The geometric tangent space Rn
p is isomorphic to Tp(Rn) (see [49]

Proposition 3.2).

These derivations are used to define a tangent space.

Definition D.3.1 (Tangent Space). The tangent space at a point p is the set of all
derivations at p. This space is a vector space denoted TpM. An element of TpM is
called a tangent vector at p.

Derivations by themselves are abstract. But they can be represented by something
concrete: tangent vectors to curves (see [49] page 75).

Let J ⊂ R be an interval, then a curve is a smooth map γ : J → M. The tangent
vector to γ at t0, denoted γ′(t0), is a derivation at γ(t0) that can act on functions by:

γ′(t0)f =
d

dt

∣∣∣∣
t0

(f ◦ γ) =
d(f ◦ γ)

dt
(t0) (D.5)

Each point p ∈M has its own tangent space, and these spaces are all disjoint. Taking
the disjoint union gives a new object called the tangent bundle:

TM =
∐
p∈M

TpM

The tangent bundle comes with a natural projection π : TM→M given by π(p, η) = p
which sends every vector (p, η) = ηp in TpM to the point p.

Lemma D.3.1. For any smooth n-manifold, the tangent bundle is a smooth 2n-manifold
(see Lemma 4.1 [49]).

230

D.3.2 Pushforwards

A tangent space gives a local linear approximation of the manifold. A map F : M→ N
between two manifolds can also be approximated by a linear map called the pushforward
between the two tangent spaces, near a point p ∈ M and F (p) ∈ N . The pushforward is
a linear map

F∗ : TpM→ TF (p)N

defined by:
(F∗η)(f) = η(f ◦ F)

The pushforward is also called the differential or total derivative of a function F . For
functions mapping from Rn to Rm, F : Rn → Rm, the pushforward is represented by the
Jacobian matrix of F . There are at least two notations for the pushforward:

• F∗ηp is favored by authors like Lee [49] when discussing abstract manifolds,

• DF (p)[ηp] is favored by authors like Absil [1] when discussing matrix manifolds.

See [49] page 65 to 72 for additional discussions of the pushforward. Some properties of
the pushforward are given by Lemma 3.5 of [49], restated below.

Lemma D.3.2. Let F :M→ N and G : N → P be smooth maps for manifolds M, N ,
and P, and p ∈M (see Lemma 3.5 of [49]) .

1. F∗ : TpM → TF (p)N is linear

2. (G ◦ F)∗ = G∗ ◦ F∗ = TpM → TG◦F (p)P

3. (IdM)∗ = IdTpM : TpM → TpM

4. If F is a diffeomorphism, then F∗ : TpM → TF (p)N is an isomorphism.

Using the pushforward notation, a tangent vector to a curve γ at t0 ∈ J is denoted:

γ′(t0) = γ∗

(
d

dt

∣∣∣∣
t0

)
∈ Tγ(t0)M , (D.6)

and the corresponding linear action is:

γ′(t0)f = γ∗

(
d

dt

∣∣∣∣
t0

)
f . (D.7)

231

Lemma D.3.3. Let M be a smooth manifold and p ∈M. Every X ∈ TpM is the tangent
vector to some smooth curve M (see Lemma 3.11 of [49]).

As a consequence of Lemma D.3.3, F∗X can be computed for any X ∈ TpM and smooth
map F :M→N by finding a smooth curve γ such that X = γ′(0)

F∗X = F∗(γ
′(0)) = F∗ ◦ γ∗

(
d

dt

∣∣∣∣
t0

)
= (F ◦ γ)∗

(
d

dt

∣∣∣∣
t0

)
= (F ◦ γ)′(0) (D.8)

The pushforward F∗ can be used to determine the rank of F .

Definition D.3.2 (Rank of a Differentiable Function). Let M1 and M2 denote two
manifolds with dimension d1 and d2 respectively. Consider a differentiable function F :
M1 → M2 with charts ϕ1 and ϕ2 for M1 and M2 respectively. Let the coordinate
representation of F be F̂ = ϕ2 ◦ F ◦ ϕ−11 . The rank of F is the dimension of the range of
DF̂ (ϕ1(x))[·] : Rd1 → Rd2. DF̂ (ϕ1(x)) is the differential of F̂ at ϕ(x).

Definition D.3.3 (Immersions and Submersions). Let M1 and M2 denote two manifolds
with dimension d1 and d2 respectively.

• F is an immersion if its rank is dim(M1) = d1; immersions are locally like injective
linear maps.

• F is a submersion if its rank is dim(M2) = d2; submersions are locally like surjective
linear maps.

D.4 Examples of smooth manifolds

The following are some objects that satisfy the definition of a smooth manifold. These
examples are taken from [49] p 17.

• (Lee[49] Example 1.13) Rn is a smooth n-manifold with the atlas consisting of just a
single chart (Rn, IdRn). This is called the standard smooth structure.

• (Lee[49] Example 1.14) Let ψ : R → R be ψ(x) = x3. The atlas of the single chart
(R, ψ) is a smooth structure on R This chart is not smoothly compatible with the
standard smooth structure IdR because the transition map IdR ◦ ψ−1(x) = x1/3 is
not smooth at the origin.

232

• (Lee[49] Example 1.15) A finite-dimensional vector space V with any norm determines
a topology. V is a smooth manifold where the smooth structure is the atlas with the
single chart (V,E−1), where E : Rn → V is a basis isomorphism given by:

E(x) =
n∑
i=1

xiEi , (D.9)

for any ordered basis (E1, . . . , En) of V . This map is a homeomorphism and so the
single chart (V,E−1) is a smooth structure.

The same element E(x) ∈ V can be expressed in a different ordered basis (Ẽ1, . . . , Ẽn)

so that Ẽ(x̃) = E(x) ∈ V . Let Ei =
∑

j A
j
i Ẽj where A = (Aji) is an invertible matrix.

This means:
n∑
j=1

x̃jẼj =
n∑
i=1

xiEi =
n∑
j=1

n∑
i=1

xiAji Ẽj (D.10)

So it follows:

x̃j =
n∑
i=1

xiAji (D.11)

The transition map between these two charts is:

Ẽ−1 ◦ E(x) = x̃ = (x̃1, . . . , x̃n) = (
∑
i

A1
ix

i, . . . ,
∑
i

Ani x
i) = Ax (D.12)

So the map from x to x̃ is an invertible linear map making the two charts smoothly
compatible. Thus, all bases determine the same smooth structure.

• (Lee[49] Example 1.16, Absil [1] Section 3.1.5) The space of n×m matrices with real
entries, denoted M(n × m,R) or Rn×m [1] is a vector space under matrix addition
and scalar multiplication, and so is a smooth manifold of dimension n ×m. When
m = n, the notation M(n,R) is also used. Note the notation Rnm without the ×
symbol means the space of mn× 1 vectors.

• (Lee[49] Example 1.17) When M is a smooth n-manifold, any open subset U ⊂ M
is a smooth manifold called the open submanifold of M with atlas given by:

AU = {smooth charts (V, ϕ) for M such that V ⊂ U}.

• (Lee[49] Example 1.18) The general linear group, denoted GLn, is the set of invertible

233

n×n matrices. This set is a smooth n2-manifold since it is an open subset of M(n,R),
the set where the determinant is nonzero.

D.5 Riemannian Manifolds

A Riemannian metric is a 2-tensor field that is symmetric, g(X, Y) = g(Y,X), and positive
definite at each point, g(X,X) > 0 if X > 0. This metric is defined on the tangent space
at point p, so X and Y are tangent vectors on this tangent space.

A Riemannian manifold (M, g) is a smooth manifold M with a Riemannian metric
g(·, ·) defined on the tangent space of every point p on the smooth manifold.

D.5.1 The Exponential Map

Exponential maps are defined for an abstract Riemannian manifold M as follows. Let
γ : I → M, where I ⊂ R, be a curve on the manifold M. See Section D.3.1 for the
definition of a curve on a manifold. Define a geodesic to be a curve on a manifold γ with
zero acceleration. This definition depends on the Riemannian connection ∇. Denote the
geodesic with intial point p and initial velocity V by γV . Let TM denote the tangent
bundle of M, see Section D.3.1 for the definition. Define the set:

U = {V ∈ TM : γV is defined on an interval containing [0, 1]} .

Then, the exponential map, is the map Exp : U →M defined by:

Exp(V) = γV (1) . (D.13)

Equation (D.13) means for a point on p ∈ M, the exponential map determines the point
on M away from p, in the direction V ∈ TpM, where the geodesic has travelled by time
t = 1, γV (1) ∈M.

D.6 Matrix Manifolds

A matrix manifold is a manifold as defined in classical differential geometry, each element
of the manifold can be represented by a matrix. Optimization algorithms in Rn work with
inner products and length. Therefore, a Riemannian metric on the tangent space of the

234

matrix manifold needs to be defined when generalizing optimization algorithms in Rn to
matrix manifold. Thus, matrix manifolds are also Riemannian manifolds.

Some examples of matrix manifolds are presented below.

D.6.1 R3n

Recall from the above discussion in Section D.4 that Rn, or equivalently R3n, is a smooth
manifold,

For an arbitrary point −→p ∈ R3n, the tangent space at −→p is another copy of R3n with
the origin at −→p , see for example [49] Chapter 3. The dot product for R3n can be defined
to be the Riemannian metric on the tangent space. The smooth manifold R3n with a
Riemannian metric defined on all its tangent spaces is a Riemannian manifold.

Note that R3n is also a matrix manifold since each point is represented by a 3n × 1
matrix. No constraints are required to describe R3n and R3n also has no quotient structure.

D.6.2 Rn×m

The set of n×m matrices with real entries, Rn×m, discussed above (Lee[49] Example 1.16)
is a matrix manifold. Rn×m is a nm-dimensional vector space, any vector space is a smooth
manifold as discussed above.

Define ϕ(Y) = vec(Y) to be the function that stack the columns of Y below each other
to form an nm × 1 vector. Any matrix Y ∈ Rn×m can be turned into an nm × 1 vectors
y ∈ Rnm, using the function ϕ(Y) = vec(Y). Thus, ϕ(Y) defines a chart for Rn×m.

For two matrix A, B on the tangent space of a point Y , the inner product (Euclidean
metric):

Trace(ATB) = vec(A)Tvec(B)

is defined as the Riemannian metric, making Rn×m a Riemannian manifold.

Two ways to construct matrix manifolds from Rn×m are by the operations of taking
embedded submanifolds and quotient manifolds of this space.

IfM is an embedded submanifold of Rn×m, then Rn×m is referred to as the embedding
space. If M is a quotient manifold of Rn×m, then Rn×m is referred to as the total space.
Following the convention in [1] page 29, both an embedding space and a total space can
also be called a structure space.

235

D.6.3 Embedded Submanifolds of Rn×m

LetM be a manifold with topology T . Let N ⊂M. The subspace topology TN is defined
as:

TN = {U ⊂ N : U = N ∩ V where V ∈ T } .

This expression means the open subsets of in the topology TN are the open subsets of the
bigger space M intersected with N .

Let (M,A) and (N ,B) be manifolds and their respective maximal atlases. If N ⊂M,
and the inclusion map i : N → M : x → x is an immersion, then (N ,B) is an immersed
submanifold. If the manifold topology of N coincides with the subspace topology induced
from the topological space M, then N is called an embedded submanifold.

Embedded submanifolds of Rn×m can be described by constraint sets on the space
Rn×m.

The Compact and Non-compact Stiefel Manifolds are Embedded Submanifold
of Rn×m

Both the compact and non-compact Stiefel manifolds are embedded submanifolds of Rn×m.

Assume m ≤ n. The compact Stiefel manifold, denoted St(m,n), is the set of all n×m
orthonormal matrices. It is described by the following constraint set:

St(m,n) =
{
Y ∈ Rn×m : Y TY = Im

}
=
{
Y ∈ Rn×m : det(Y TY) = 1

}
, (D.14)

where det(·) takes the determinant of the argument.

When m = 1, St(m,n) reduces to the unit sphere. When m = n, St(m,n) becomes
the orthogonal group On.

The noncompact Stiefel manifold Rn×m
∗ (Absil Section 3.1.5 [1] and Lee Example 1.19

[49]) is the set of n×m full rank matrices. The constraint describing this manifold is given
by:

Rn×m
∗ =

{
Y ∈ Rn×m : det(Y TY) 6= 0

}
(D.15)

When m = 1, Rn×m
∗ reduces to the Euclidean space Rn with the original removed, also

known as the real projective space. When m = n, it becomes the general linear group GLn.

236

D.6.4 Quotient Manifolds of Rn×m

LetM be a Riemannian manifold. Let ∼ be an equivalence relation defined between points
on M.

Definition D.6.1 (Equivalence Relation). For a manifold M, an equivalence relation, ∼,
is a relation between points on the manifold M with the following properties:

• Reflexive: x ∼ x, ∀x ∈M.

• Symmetric: x ∼ y if and only if y ∼ x, ∀x, y ∈M.

• Transitive: if x ∼ y and y ∼ z, then x ∼ z, ∀x, y, z ∈M.

An equivalence class is a set where all elements have an equivalence relationship with
each other:

[x] = {y ∈M : x ∼ y}

The quotient of M by ∼ is the set of equivalence classes, and is denoted M/ ∼:

M/ ∼= {[x] : x ∈M} .

If the natural projection π :M→M/ ∼ given by:

π(x) = [x] ,

is also a submersion, then M/ ∼ is a quotient manifold. Each of the equivalence classes
[x] are an embedded submanifold of M (see Proposition 3.4.4 of [1]).

Figure D.1 (taken from Figure 2.5 of [78]) is a schematic diagram representing a quotient
manifold. In this Figure, M is the structure space, M/ ∼ is the quotient manifold, [x] =
π−1π(x) is an equivalence class, with x being a representative element of the equivalence
class. The equivalence class [x] when regarded as a subset of M is called a fiber. A point
on the quotient manifold is denoted π(x).

In applications of matrix manifolds, any matrix from an equivalence class can be used
to represent that equivalence class. Calculations relating to the quotient matrix manifold
are expressed in terms of these “representative matrices”.

237

Figure D.1: A schematic diagram of a quotient manifold. Taken from Figure 2.5 of [78].

The Grassmann manifold is a Quotient Manifold of Rn×m

The Grassmann manifold Grass(m,n) is the set of all m-dimensional subspaces of Rn

(Section 3.4.4 [1]). For n × m matrices X and Y , if Y = XM where M ∈ GLm, then
they describe the same m-dimensional subspace. That is span(Y) = span(X). Any two
matrices that can be expressed by such a relation are in the same equivalence class. Each
of these equivalence classes is one element of the Grassmann manifold. Thus, Grass(m,n)
is a quotient manifold with the quotient structure [1]:

Grass(m,n) ' Rn×m
∗ /GLm (D.16)

D.6.5 The rank r Positive Semidefinite Matrix Manifold Sn,r+

All matrices in the relative interior, Sn++, have full rank n. The boundary of Sn+ is given
by:

Sn+ \ Sn++ =
n−1⋃
r=0

Sn,r+ , (D.17)

where:
Sn,r+ = {X ∈ Sn+ : rank(X) = r} . (D.18)

238

The boundary contains all the rank deficient matrices in Sn+. The notation Sn,n+ is the same
as Sn++

It is also well known that Sn++ is a Riemannian manifold [59]. It was shown in [78]
Section 3.2 that Sn,r+ is a smooth manifold embedded in the set of n × n real matrices,
Rn×n, for every r < n.

The fixed rank PSD matrix manifold does not have a natural geometry. This was
discussed in [78] Section 6.6, where various geometries Sn,r+ is diffeomorphic to has been
presented (see page 17 of [78], where the symbol ' is used to denote diffeomorphism
between two manifolds). Two quotient geometries that Sn,r+ is diffeomorphic to are given
below.

The quotient manifold Sn,r+ ' (St(r, n)× Sr,r+)/Or

A positive semidefinite matrix X can be factored as X = USUT , where U ∈ St(r, n)
is an element of the compact Stiefel manifold, and S ∈ Sr,r+ is a r × r positive definite
matrix. This factorization is unique up to the action of the orthogonal group: U → UQ,
S → QTSQ for Q ∈ Or. See [11] for further discussions.

The quotient manifold Sn,r+ ' Rn×r
∗ /Or

A positive semidefinite matrix X can be factored as X = Y Y T , where Y ∈ Rn×r
∗ . This

factorization is unique up to the action of the orthogonal group: Y → Y Q, where Q is an
r × r orthogonal matrix, Q ∈ Or. This geometry has appeared in [34, 58].

The atomic coordinates of a protein can be represented by a 3n× 1 vector −→p when the
Riemannian manifold R3n is being used to model ENMs.

Alternatively, the atomic coordinates can be represented by an n × 3 matrix P , or
equivalently the Gram matrix PP T , when the Riemannian manifold Sn,3+ ' Rn×r

∗ /Or is
being used to model ENMs.

Define the Riemannian metric on the tangent space at P to be given by Trace(XTY),
where X and Y are n× 3 matrices on the tangent space at P , and Trace(·) takes the trace
of the argument. The manifold Sn,3+ ' Rn×r

∗ /Or together with this metric has the structure
of a Riemannian manifold.

239

D.7 Riemannian Manifolds and Classical Mechanics

The study of the equations of motion for classical mechanics on Riemannian manifolds can
be found in various sources, two examples are [7, 15].

In classical mechanics, the motion of a particle (or particle system) is completely
described by its position, p, and velocity v. The position p belongs to a space called
the coordinate space, which is a Riemannian manifold M. The space of position and
velocity, (p, v) is called the phase space, which is identified with the tangent bundle TM.

Definition D.7.1. The potential energy is defined as a differentiable function mapping
from the Riemannian manifold M to R, U :M→ R.

Definition D.7.2. Let M be a Riemannian manifold. The kinetic energy at a point p is
given by:

T (ξ) =
1

2
g(ξ, ξ) , ξ ∈ TpM , (D.19)

where g(·, ·) is the Riemannian metric defined in Section D.5.

Consider an abstract particle with position p(t) ∈ M, its velocity is given by v(t) =
ṗ(t) ∈ Tp(t)M, where the dot indicates a time derivative. The Lagrangian is a function
from the tangent bundle to the real numbers, L : TM→ R, given by:

L(p(t), ṗ(t)) =
1

2
g(ṗ(t), ṗ(t))− U(p(t)) . (D.20)

The equation of motion of this particle is given:

d

dt

∂L

∂ṗ(t)
=

∂L

∂p(t)
. (D.21)

240

Appendix E

Miscellaneous Mathematics

E.1 Solving the Sylvester Equation via Diagonalization

Let A, B, C, and X be matrices with the appropriate shape. The Sylvester equation given
by:

AX −XB = C

has a solution X, if an only if A and B do not have any eigenvalues in common, see for
example [72, 8]. The Sylvester equation that appears in this thesis has the form:

(Y TY)Ω + Ω(Y TY) = Z , (E.1)

where Y is an n× r matrix, Ω is an r × r skew symmetric matrix, and Z is an r × r skew
symmetric matrix. Note that A = Y TY and B = −A, therefore A and B will not have
any eigenvalues in common.

To solve this form of the Sylvester equation 1, first diagonalize Y TY (e.g. using singular
value decomposition (SVD)) as Y TY = VDiag(σ)V T , where Diag(σ) is a diagonal matrix
with the singular values along the diagonal, and V is an n× r matrix such that V V T = In,
V TV = Ir. Equation (E.1) can now be rewritten as:

Diag(σ)V TΩV + V TΩVDiag(σ) = V TZV (E.2)

1This approach for solving the Sylvester equation is implemented in the matlab code for the EDMC
problem by Mishra’s https://bamdevmishra.in/codes/edmcompletion/

241

https://bamdevmishra.in/codes/edmcompletion/

Define:
Ωv = V TΩV

and
Zv = V TZV

and Equation (E.1) becomes the simpler equation:

Diag(σ)Ωv + ΩvDiag(σ) = Zv (E.3)

Equation (E.3) can be expressed using element-wise matrix multiplication, ◦, as:

Ωv ◦ (σ1T3) + Ωv ◦ (13σ
T) = Zv . (E.4)

Factor out Ωv:
Ωv ◦ (σ1T3 + 13σ

T) = Zv . (E.5)

Let � denote element-wise division, then:

Ωv = Zv � (σ1T3 + 13σ
T) . (E.6)

Since Ωv = V TΩV , Ω is recovered by the matrix multiplication

Ω = V ΩvV
T .

The Python code below implements this approach using scipy. Only the top triangle of
the Ωv matrix is calculated, then the lower triangle of Ωv is determined using:

Ωv = Ωv − ΩT
v .

Solve Sylvester equation

def sylvester(Sym_mat, Skew_mat):

Sym = sp.matrix(Sym_mat)

Skew = sp.matrix(Skew_mat)

row, col = Sym.shape

r = col

V, sig, Vh = la.svd(Sym)

V= sp.matrix(V)

242

O = sp.zeros((r,r))

O2 = V.T*Skew

O2 = O2*V

only the upper triangular portion of O is calculated

for i in range(r-1):

for j in range(i+1, r):

A = sig[i] + sig[j]

if not A == 0:

O[i,j]=O2[i,j]/float(A)

else:

O[i,j] = 0

O = O - O.T

O = sp.matrix(O)

omega = V*O*V.T

return omega

E.2 The Procrustes Problem

Suppose A,B ∈ Rn×m, then the Procrustes problem is to find an orthogonal m×m matrix
Q ∈ Om to rotate B to be as close to A as possible.

For example, suppose A = P1 is an n×3 matrix with rows representing the 3D Cartesian
coordinates of n points. Suppose B = P2 is another n × 3 matrix also with the rows
representing the 3D Cartesian coordinates of another group of n points. The Procrustes
problem is to find an 3 × 3 rotation matrix Q ∈ O3 to rotate B = P2 such that the two
sets of points are as close as possible.

The Procrustes problem can be formulated as the following optimization problem:

min
Q
‖ A−BQ ‖F

s. t. QTQ = Im .
(E.7)

The solution to the optimization problem is:

Q = UV T

where U and V come from the singular value decomposition of BTA = UΣV T . See [44]
Section 3.1.1 and [31] Section 12.4.1 for a proof of this result.

243

Appendix F

Quadrance in Other Research Areas

F.1 The Stress Function and the S-Stress Function

The study of the Hookean potential and the PSD potential is not unique to this thesis. In
(Parhizkar 2013 [62]) the author discussed the stress function and the s-stress function.

244

	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Notation
	Protein Structure Basics
	The Defects of Using Dihedral Angles for Studying Protein Dynamics
	Elastic Network Model and the Hookean Potential
	The Defects of Modelling ENMs on R3n
	Thesis Outline and Contributions

	Elastic Network Models on R3n
	Introduction
	The Generic Hookean Potential
	The Hookean Potential and Normal Mode Analysis
	The Hookean Potential for Elastic Network Interpolation (ENI)
	The Hookean Potential for Interpolated ENM (iENM)
	The Hookean Potential for Avoiding Inter-Atomic Collisions
	Minimizing the Hookean Potential is Ill-Posed
	Enforcing Constraints R3n
	J. B. Rosen's Gradient Projection (1960 and 1961)
	Goldenthal et al.'s Fast projection (2007)
	Benefits of Fast Projection
	Termination of Fast Projection
	Remark: Rosen's Correction and Fast Projection

	Summary

	Unconstrained Optimization with Fixed Rank PSD Matrices
	Introduction
	The EDM Completion (EDMC) Problem
	Low Embedding Dimension EDMC

	The PSD Objective Function for EDMC
	Fixed Rank PSD Matrix Manifold Optimization
	The Riemannian Trust Region (RTR) Algorithm
	Geometric Objects for EDMC on Sn,r+ Rn r* / Or
	Riemannian Metric
	Tangent Space
	Projection onto the Horizontal Space
	The Riemannian Gradient
	The Riemannian Hessian
	Retraction

	Summary

	Normal Mode Analysis and the PSD Potential
	Introduction
	Density of Modes and Root Mean Square (RMS) Fluctuations
	Density of modes
	RMS Fluctuations

	The Positive Semidefinite Potential Energy
	The PSD Potential Prefers Quadrance
	Summary

	The Equations of Motion for the Riemannian Manifold Sn,3+ Rn 3* / O3
	Introduction
	Revisiting ENMs in R3n
	Revisiting the Rank Deficient Hessian of ENI and iENM
	The Constraint Force Has Two Purposes

	The Constraint Manifold
	Equations of Motion
	Removing the Conservation of Linear Momentum Constraint
	Constraint Reduction for Rigid Groups of Atoms
	Summary

	Constrained Optimization with Fixed Rank PSD Matrices
	Introduction
	Removing Assumption 2 of Journée et al.
	Geometric Objects for Constrained Optimization on Sn,3+ Rn 3* / O3
	The Tangent Space
	Projecting to the Horizontal Space
	The Riemannian Gradient
	The Riemannian Hessian
	The Retraction

	Agreements Between C(R3n) and C(Sn,3+)
	Summary

	Interpolating Transitional Conformations: An Example of Modelling ENMs on Sn,3+
	Introduction
	Lattice Example
	Local and Global Conformational Changes
	Summary

	Conclusion
	Future Research

	References
	Interpolating transitions: An Object-Oriented Implementation in python
	Background
	Data Input and Data Output
	The R3n_Calculations Class
	The PSD3_Calculations Class
	The Potential Base Class
	The Hookean_ENI Class
	The Hookean_iENM Class
	The Hookean_Collision Energy
	The PSD_ENI Class
	The PSD_iENM Class
	The PSD_Collision Class
	The Manifold Class
	The R3n_manifold Class
	The PSD3_manifold Class
	The Optimzer Class
	Running the Interpolation

	Derivatives Involving Distance and Quadrance
	Derivative of Distance
	Derivative of Quadrance
	Derivative of Distance times Vector
	Second Order Expansion for the Hookean Potential Energy
	Second Order Expansion for the PSD Potential Energy

	The Sn+ Cone and the EDM Cone
	Introduction to Convexity
	The Rn+ Cone and its Faces
	The PSD Cone and its Faces
	The Euclidean Distance Matrix
	The Linear Isomorphism between SnCSn+ and En
	EDM Completion and Facial Reduction
	The Original Motivation for Facial Reduction
	Cliques in the SNL problem (Krislock and Wolkowicz Krislock:2010, expSNL)
	Cliques in the Protein Structure-NMR problem (Alipanahi et al. alipanahi2013determining, alipanahiphd)
	Noisy SNL and Cliques (Cheung et al. cheung2014noisy, Drusvyatskiy et al. drusvyatskiy2015coordinate, drusvyatskiy2017noisy)
	Rigid Clusters and ENI kim2005rigid, MKKim-thesis

	An Introduction to Riemannian Manifolds
	Topological Manifolds
	Smooth Manifolds
	Geometric Objects
	Tangent space
	Pushforwards

	Examples of smooth manifolds
	Riemannian Manifolds
	The Exponential Map

	Matrix Manifolds
	R3n
	Rnm
	Embedded Submanifolds of Rnm
	Quotient Manifolds of Rnm
	The rank r Positive Semidefinite Matrix Manifold Sn,r+

	Riemannian Manifolds and Classical Mechanics

	Miscellaneous Mathematics
	Solving the Sylvester Equation via Diagonalization
	The Procrustes Problem

	Quadrance in Other Research Areas
	The Stress Function and the S-Stress Function

