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Abstract

Finding software faults is a critical task during the lifecycle of a software system. While
traditional software quality control practices such as statistical defect prediction, static bug
detection, regression test, and code review are often inefficient and time-consuming, which
cannot keep up with the increasing complexity of modern software systems. We argue
that machine learning with its capability in knowledge representation, learning, natural
language processing, classification, etc., can be used to extract invaluable information
from software artifacts that may be difficult to obtain with other research methodologies
to improve existing software reliability practices such as statistical defect prediction, static
bug detection, regression test, and code review.

This thesis presents a suite of machine learning based novel techniques to improve ex-
isting software reliability practices for helping developers find software bugs more effective
and efficient. First, it introduces a deep learning based defect prediction technique to im-
prove existing statistical defect prediction models. To build accurate prediction models,
previous studies focused on manually designing features that encode the statistical charac-
teristics of programs. However, these features often fail to capture the semantic difference
of programs, and such a capability is needed for building accurate prediction models. To
bridge the gap between programs’ semantics and defect prediction features, this thesis
leverages deep learning techniques to learn a semantic representation of programs auto-
matically from source code and further build and train defect prediction models by using
these semantic features. We examine the effectiveness of the deep learning based prediction
models on both the open-source and commercial projects. Results show that the learned
semantic features can significantly outperform existing defect prediction models.

Second, it introduces an n-gram language based static bug detection technique, i.e.,
Bugram, to detect new types of bugs with less false positives. Most of existing static
bug detection techniques are based on programming rules inferred from source code. It
is known that if a pattern does not appear frequently enough, rules are not learned, thus
missing many bugs. To solve this issue, this thesis proposes Bugram, which leverages
n-gram language models instead of rules to detect bugs. Specifically, Bugram models
program tokens sequentially, using the n-gram language model. Token sequences from
the program are then assessed according to their probability in the learned model, and low
probability sequences are marked as potential bugs. The assumption is that low probability
token sequences in a program are unusual, which may indicate bugs, bad practices, or
unusual/special uses of code of which developers may want to be aware. We examine the
effectiveness of our approach on the latest versions of 16 open-source projects. Results
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show that Bugram detected 25 new bugs, 23 of which cannot be detected by existing rule-
based bug detection approaches, which suggests that Bugram is complementary to existing
bug detection approaches to detect more bugs and generates less false positives.

Third, it introduces a machine learning based regression test prioritization technique,
i.e., QTEP, to find and run test cases that could reveal bugs earlier. Existing test case
prioritization techniques mainly focus on maximizing coverage information between source
code and test cases to schedule test cases for finding bugs earlier. While they often do not
consider the likely distribution of faults in the source code. However, software faults are
not often equally distributed in source code, e.g., around 80% faults are located in about
20% source code. Intuitively, test cases that cover the faulty source code should have higher
priorities, since they are more likely to find faults. To solve this issue, this thesis proposes
QTEP, which leverages machine learning models to evaluate source code quality and then
adapt existing test case prioritization algorithms by considering the weighted source code
quality. Evaluation on seven open-source projects shows that QTEP can significantly
outperform existing test case prioritization techniques to find failed test cases early.

Finally, it introduces a machine learning based approach to identifying risky code review
requests. Code review has been widely adopted in the development process of both the
proprietary and open-source software, which helps improve the maintenance and quality
of software before the code changes being merged into the source code repository. Our
observation on code review requests from four large-scale projects reveals that around 20%
changes cannot pass the first round code review and require non-trivial revision effort
(i.e., risky changes). In addition, resolving these risky changes requires 3X more time and
1.6X more reviewers than the regular changes (i.e., changes pass the first code review)
on average. This thesis presents the first study to characterize these risky changes and
automatically identify these risky changes with machine learning classifiers. Evaluation on
one proprietary project and three large-scale open-source projects (i.e., Qt, Android, and
OpenStack) shows that our approach is effective in identifying risky code review requests.

Taken together, the results of the four studies provide evidence that machine learning
can help improve traditional software reliability such as statistical defect prediction, static
bug detection, regression test, and code review.
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Chapter 1

Introduction

Today, software is integrated into every part of our society, which makes building reliable
software an increasingly critical challenge for software developers. As a consequence, the
impact and cost of software bugs increase dramatically, e.g., according to a report by Tri-
centis software bugs cost the worldwide economy around 1.7 trillion dollars in 2017 [1].
Thus, the techniques to help developers detect software bugs for improving software relia-
bility are highly needed.

For building reliable software, many different software reliability practices have emerged
over the last years to help developers improve software reliability by detecting bugs, i.e.,
statistical defect prediction that leverages software metrics to build classifiers and predicts
unknown defects in the source code [82, 104, 138, 183, 189, 220, 326], static bug detection
that uses static code analysis to infer heuristic patterns and detect violations as software
faults [4, 5, 10, 30, 41, 70, 144, 207, 278], regression test that aims to find the broken func-
tionalities earlier by scheduling and running test cases [102, 166, 233–235, 258, 266, 319],
and code review that aims to reveal potential quality issues and improve the maintenance
and quality of software before the code changes being merged into the source code reposi-
tory [62,105,162,182,228,229,264,267], etc.

Although these techniques have already been widely adopted in industry and proven can
help detect bugs [2,3,33,34,127,167], most of the state-of-the-art techniques do not perform
well in terms of effectiveness (i.e., low accuracy) or efficiency (i.e., time-consuming), which
cannot keep up with the increasing complexity of modern software systems.

In this thesis, we argue that machine learning with its capability in knowledge repre-
sentation, learning, natural language processing, classification, etc., can enable software
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engineering researchers to extract invaluable information from software artifacts gener-
ated during software development, including code revision history, issue reports, history
bugs and patches, software documentation, source code, etc., to improve existing software
reliability practices.

This thesis presents four examples of how machine learning techniques can be used to
mine invaluable information about the development of software systems, in aid of improved
software reliability practices. To be precise, the thesis statement of this dissertation is as
follows:

Thesis Statement. Machine learning, with its capability in knowledge representation,
learning, natural language processing, classification, etc., can help improve traditional soft-
ware reliability practices such as statistical defect prediction, static bug detection, regression
test, and code review.

We provide evidence for this thesis by presenting four machine learning based novel
techniques to improve existing software reliability practices for finding bugs more effective
and efficient. First, it introduces a deep learning based defect prediction technique to im-
prove existing statistical defect prediction models. To build accurate prediction models,
previous studies focused on manually designing features that encode the characteristics of
programs. However, these features often fail to capture the semantic difference of programs,
and such a capability is needed for building accurate prediction models. To bridge the gap
between programs’ semantics and defect prediction features, this work leverages deep learn-
ing techniques to learn a semantic representation of programs automatically from source
code and further build and train defect prediction models based on these semantic features.
We examine the effectiveness of the deep learning based defect prediction approaches on
both the open-source and commercial projects. Results show that the learned semantic
features can significantly outperform the existing defect prediction models. Chapter 3 of
the thesis describes this work in detail.

Second, it introduces an n-gram language based static bug detection technique, i.e.,
Bugram, to detect new types of bugs with less false positives. Most of existing static
bug detection techniques are based on programming rules inferred from source code. It
is known that if a pattern does not appear frequently enough, rules are not learned, thus
missing many bugs. To solve this issue, this thesis proposes Bugram, which leverages
n-gram language models instead of rules to detect bugs. Specifically, Bugram models
program tokens sequentially, using the n-gram language model. Token sequences from
the program are then assessed according to their probability in the learned model, and low
probability sequences are marked as potential bugs. The assumption is that low probability
token sequences in a program are unusual, which may indicate bugs, bad practices, or
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unusual/special uses of code of which developers may want to be aware. We examine the
effectiveness of our approach on the latest versions of 16 open-source projects. Results show
that Bugram detected 25 new bugs, 23 of which cannot be detected by existing rule-based
bug detection approaches, which suggests that Bugram is complementary to existing bug
detection approaches to detect more bugs and generates less false positives. Chapter 4 of
the thesis describes this work in detail.

Third, it introduces a machine learning based regression test prioritization technique,
i.e., QTEP, to find and run test cases that could reveal bugs earlier. Existing test case
prioritization techniques mainly focus on maximizing coverage information between the
source code and test cases to schedule test cases for finding bugs earlier. While they often
do not consider the likely distribution of faults in the source code. However, software
faults are not often equally distributed in source code, e.g., around 80% faults are located
in about 20% source code. Intuitively, test cases that cover the faulty source code should
have higher priorities, since they are more likely to find faults. To solve this issue, this thesis
proposes QTEP, which leverages machine learning models to evaluate source code quality
and then adapt existing test case prioritization algorithms by considering the weighted
source code quality. Evaluation on seven open-source projects shows that QTEP can
significantly outperform existing test case prioritization techniques to find failed test cases
early. Chapter 5 of the thesis describes this work in detail.

Finally, it introduces a machine learning based approach to identifying risky code re-
view requests. Code review has been widely adopted in the development process of both
the proprietary and open-source software, which helps reveal bugs, improves the mainte-
nance and quality of software before the code changes being merged into the source code
repository. Our observation on code review requests from four large-scale projects reveals
that around 20% changes cannot pass the first round code review and require non-trivial
revision effort (i.e., risky changes). In addition, resolving these risky changes requires 3X
more time and 1.6X more reviewers than the regular changes (i.e., changes pass the first
code review) on average. This thesis presents the first study to characterize these risky
changes and automatically identify these risky changes with machine learning classifiers.
Evaluation on one proprietary project and three large-scale open-source projects (i.e., Qt,
Android, and OpenStack) shows that our approach is effective in identifying risky code
review requests. Chapter 6 of the thesis describes this work in detail.

Taken together, the results of the four studies provide evidence that machine learning
can help improve software reliability practices such as statistical defect prediction, static
bug detection, regression test, and code review.
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1.1 Organization

The rest of this thesis are organized as follows. Chapter 2 presents the related work
in typical software reliability practices. Chapter 3 shows our work on leveraging deep
learning techniques to generate semantic features to improve software defect prediction.
Chapter 4 describes our work on leveraging n-gram language models to build the probability
distribution of token sequences from source code and detect software bugs that are missed
by rule-based bug detection tools. Chapter 5 describes our work on leveraging machine
learning classifiers to improve test case prioritization in regression test. Chapter 6 describes
our work on leveraging machine learning classifiers to improve the traditional code review
practice. Chapter 7 summarizes this thesis and provides an outlook into future work.

1.2 Thesis Scope

In this thesis, the proposed techniques for improving software reliability are only examined
on projects written by object-oriented programming languages, i.e., Java and C++, they
might not work for other programming languages, e.g., assembly languages and script
languages. In addition, the proposed techniques to predict bugs (in Chapter 3) and detect
bugs (in Chapter 4) are only examined on general software bugs collected from software
history, they might not work for certain types of bugs, e.g., real-time bugs from embedded
systems and concurrency bugs.

1.3 Related Publications

Earlier versions of the work done in this thesis have been published in the following papers
(listed in chronological order). My role in these studies includes raw data collection and
process, conducting experiments, results analysis, and writing. My contributions take up
more than 80% of these studies.

• Song Wang, Adithya Abraham Philip, Chetan Bansal and Nachi Nagappan. Lever-
aging Change Intents for Characterizing and Identifying Risky Changes. 12 pages.
Under Submission.

• Song Wang, Taiyue Liu, Jaechang Nam and Lin Tan. Deep Semantic Feature Learn-
ing for Software Defect Prediction. 27 pages. To appear in the IEEE Transactions
on Software Engineering (TSE 2018).
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• Song Wang, Jaechang Nam and Lin Tan. QTEP: quality-aware test case prioriti-
zation. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (FSE 2017), pp. 523-534. (acceptance rate=24% 72/295)

• Song Wang, Taiyue Liu and Lin Tan. Automatically learning semantic features for
defect prediction. In Proceedings of the 38th International Conference on Software
Engineering (ICSE 2016), pp. 297-308. (acceptance rate=19% 101/530)

• Song Wang, Devin Chollak, Dana Movshovitz-Attias and Lin Tan. Bugram: Bug
Detection with N-gram Language Models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016), pp. 708-
719. (acceptance rate=19% 57/298)

The following papers were published in parallel to the abovementioned publications.
These studies are not directly related to this thesis, however they explored how to leverage
machine learning to improve other software analytic tasks, i.e., bug triage, test selection,
and crowdsourced testing, etc.

• Jaechang Nam, Song Wang, Xi Yuan and Lin Tan. Designing Bug Detection Rules
for Fewer False Alarms. In Proceedings of the 40th International Conference on Software
Engineering (ICSE 2018 Poster).

• Juejie Wang, Song Wang and Qing Wang. Is There A “Golden” Feature Set for Static
Warning Identification? - An Experimental Evaluation. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM
2018).

• Junjie Wang, Qiang Cui, Song Wang and Qing Wang. Domain Adaptation for Test
Report Classification in Crowdsourced Testing. In Proceedings of the 39th International
Conference on Software Engineering (ICSE-SEIP 2017).

• Qiang Cui, Song Wang, Junjie Wang, Yuanzhe Hu, Qing Wang and Mingshu Li. Multi-
Objective Crowd Worker Selection in Crowdsourced Testing. In Proceedings of the 29th In-
ternational Conference on Software Engineering and Knowledge Engineering (SEKE 2017).

• Junjie Wang, Song Wang, Qiang Cui and Qing Wang. Local-based Active Classification
of Test Report to Assist Crowdsourced Testing. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016).
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• Junjie Wang, Qiang Cui, Qing Wang and Song Wang. Towards Effectively Test Report
Classification to Assist Crowdsourced Testing. In Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM
2016).

• Wen Zhang, Song Wang and Qing Wang. KSAP: An Approach to Bug Report Assignment
Using KNN Search and Heterogeneous Proximity. Information and Software Technology
(IST 2016).

• Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu and Lin Tan. DASE: Document-
Assisted Symbolic Execution for Improving Automated Software Testing. In Proceedings
of the 37th International Conference on Software Engineering (ICSE 2015).

• Xinye Tang, Song Wang and Ke Mao. Will This Bug-fixing Change Break Regression
Testing? In Proceedings of the 9th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2015).
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Chapter 2

Background and Related Work

There is much previous work related to our goal of leveraging machine learning techniques
to improve existing software reliability practices. The research problems of this thesis cor-
responds to four research areas: software defect prediction, static bug detection, regression
test, and code review. In this chapter, we provide an overview of the existing research of
leveraging machine learning techniques to improve software reliability.

2.1 Software Defect Prediction

Table 2.1: Defect prediction tasks.

Prediction Level Within-project Cross-project
File WPDP CPDP
Change WCDP CCDP

Table 2.1 shows the investigated defect prediction tasks and their corresponding abbre-
viations in this thesis.

2.1.1 File-level Defect Prediction

Figure 2.1 presents a typical file-level defect prediction process that is adopted by existing
studies [109, 138, 170, 193, 194, 211]. The first step is to label the data as buggy or clean
based on post-release defects for each file. One could collect these post-release defects
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Figure 2.1: Defect Prediction Process

from a Bug Tracking System (BTS) via linking bug reports to its bug-fixing changes. Files
related to these bug-fixing changes are considered as buggy. Otherwise, the files are labeled
as clean. The second step is to collect the corresponding traditional features of these files.
Instances with features and labels are used to train machine learning classifiers. Finally,
trained models are used to predict new instances as buggy or clean.

We refer to the set of instances used for building models as a training set, whereas the
set of instances used to evaluate the trained models is referred to as a test set. As shown in
Figure 2.1, when performing within-project defect prediction (following existing work [193],
we call this WPDP), the training and test sets are from the same project, i.e., project A.
When performing cross-project defect prediction (following existing work [193], we call this
CPDP), the prediction models are trained by a training set from project A (source), and a
test set is from a different project, i.e., project B (target). In this thesis, for file-level defect
prediction, we examine the performance of the learned DBN-based semantic features on
both WPDP and CPDP.

There are many file-level software defect prediction techniques [82, 109, 125, 138, 168,
183, 189, 200, 220, 276, 326]. Most defect prediction techniques leverage features that are
manually extracted from labeled historical defect data to train machine learning based
classifiers [170]. Commonly used features can be divided into static code features and pro-
cess features [169]. Code features include Halstead features [75], McCabe features [163],
CK features [46], and MOOD features [81], which are widely examined and used for defect
prediction. Recently, process features have been proposed and used for defect prediction.
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Moser et al. [183] used the number of revisions, authors, past fixes, and ages of files as fea-
tures to predict defects. Nagappan et al. [189] proposed code churn features, and showed
that these features were effective for defect prediction. Hassan et al. [82] used entropy
of change features to predict defects. Their evaluation on six projects showed that their
proposed features can significantly improve results of defect prediction in comparison to
other change features. Lee et al. [138] proposed 56 micro interaction metrics to improve de-
fect prediction. Their evaluation results on three Java projects shown that their proposed
features can improve defect prediction results compared to traditional features. Other pro-
cess features, including developer individual characteristics [204] and collaboration between
developers [138,170,211,289], were also useful for defect prediction.

Many machine learning algorithms have been adopted for within-project defect predic-
tion, including Support Vector Machine (SVM) [60], Bayesian Belief Network [11], Naive
Bayes (NB) [263], Decision Tree (DT) [67, 118, 276], Neural Network (NN) [206, 218], and
Dictionary Learning [109]. Elish et al. [60] evaluated the capability of SVM in predict-
ing defect-prone software modules, and they compared SVM against eight statistical and
machine learning models on four NASA datasets. Their results shown that SVM was
promising for defect prediction. Amasaki et al. [11] proposed an approach to predicting
the final quality of a software product by using the Bayesian Belief Network. Tao et al. [263]
proposed a Naive Bayes based defect prediction model, they evaluated the proposed ap-
proach on 11 datasets from the PROMISE defect data repository. Wang et al. [276] and
Khoshgoftaar et al. [118] examined the performance of Tree-based machine learning al-
gorithms on defect prediction, their results suggested that Tree-based algorithms could
help defect prediction. Jing et al. [109] introduced the dictionary learning technique to
defect prediction. They proposed a cost-sensitive dictionary learning based approach to
improving defect prediction.

Due to the lack of data, it is often difficult to build accurate models for new projects.
Some work [126, 272, 325] has been done on evaluating cross-project defect prediction
against within-project defect prediction and shows that cross-project defect prediction is
still a challenging problem. The main issue that degrades the performance of cross-project
defect prediction is that, the distribution of data metrics is not shared between projects.
To address this issue, cross-project defect prediction models are trained by using data from
other projects. He et al. [84] showed the feasibility to find the best cross-project models
among all available models to predict testing projects. Watanabe et al. [286] proposed
an approach for CPDP by transforming the target dataset to the source dataset by using
the average feature values. Turhan et al. [272] proposed to use a nearest-neighbor filter to
improve cross-project defect prediction. Nam et al. [193] and Jing et al. [108] used different
approaches to address the heterogeneous data problem in cross-project defect prediction.
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Xia et al. [299] proposed HYDRA, which leverages genetic algorithm phase and ensemble
learning (EL) to improve cross-project defect prediction. Their approach requires massive
training data and a portion (5%) of labelled data from test data to build and train their
model, while in real-world practice, it’s very expensive to obtain labelled data from test
projects, which requires developers to manually inspection, and the ground truth might be
unguaranteed. Nam et al. [194] proposed TCA+, which adopted a state-of-the-art tech-
nique called Transfer Component Analysis (TCA) and optimized TCA’s normalization
process to improve cross-project defect prediction. In this work, we select TCA+ as our
baseline for cross-project defect prediction, since TCA+ is more practical.

2.1.2 Change-level Defect Prediction

Change-level defect prediction can predict whether a change is buggy at the time of the
commit so that it allows developers to act on the prediction results as soon as a commit
is made. In addition, since a change is typically smaller than a file, developers have much
less code to examine in order to identify defects. However, for the same reason, it is more
difficult to predict buggy changes accurately.

Similar to file-level defect prediction, change-level defect prediction also consists of the
following processes:

• Labeling process: Labeling each change as buggy or clean to indicate whether the
change contains bugs.

• Feature extracting process: Extracting the features to represent the changes.

• Model building and testing process: Building a prediction model with the features
and labels and then using the model to predict testing data.

Different from labeling file-level defect data, labeling change-level defect data requires
further linking of bug-fixing changes to bug-introducing changes. A line that is deleted
or changed by a bug-fixing change is a faulty line, and the most recent change that intro-
duced the faulty line is considered a bug-introducing change. We could identify the bug-
introducing changes by a blame technique provided by a Version Control System (VCS),
e.g., git or SZZ algorithm [124]. Such blame techniques are widely used in existing stud-
ies [104, 124, 178, 256, 311]. In this work, the bug-introducing changes are considered as
buggy, and other changes are labeled clean. Note that, not all projects have a well main-
tained BTS, and we consider changes whose commit messages contain the keyword “fix”
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as bug-fixing changes by following existing studies [104, 256]. In this thesis, similar to the
file-level defect prediction, we also examine the performance of DBN-based features on
both change-level within-project defect prediction (WCDP) and change-level cross-project
defect prediction (CCDP).

For change-level defect prediction, Mockus and Weiss [178] and Kamei et al. [115]
predicted the risk of a software change by using change measures, such as the number of
subsystems touched, the number of files modified, the number of lines of added code, and
the number of modification requests. Kim et al. [122] used the identifiers in added and
deleted source code and the words in change logs to classify changes as being defect-prone
or clean. Tan et al. [256] improved the change classification techniques to conduct online
defects prediction for imbalanced data, which applied and adapted time sensitive change
classification and online change classification to address the incorrect evaluation presented
by cross-validation, and applied the resampling techniques and updatable classification to
improve classification performance. Jiang et al. [104] and Xia et al. [300] built separate
prediction models for each developer to predict software defects at change level. Nagappan
et al. [189] leveraged the architectural dependency and churn measures to predict bugs.
Change classification can also predict whether a commit is buggy or not [210,215]. Recently,
Kamei et al. [114] empirically studied the feasibility of change-level defect prediction in a
cross-project context.

The main differences between our approach and existing approaches for defect predic-
tion are as follows. First, existing approaches to defect prediction are based on manually
encoded traditional features which are not sensitive to programs’ semantic information,
while our approach automatically learns semantic features using DBN and uses these fea-
tures to perform defect prediction tasks. Second, since our approach requires only the
source code of the training and test projects, it is suitable for both within-project defect
prediction and cross-project defect prediction.

2.1.3 Deep Learning and Semantic Feature Generation in Soft-
ware Engineering

Recently, deep learning algorithms have been adopted to improve research tasks in soft-
ware engineering. Yang et al. [311] proposed an approach that leveraged deep learning
to generate features from existing features and then used these new features to build de-
fect prediction models. This work was motivated by the weaknesses of logistic regression
(LR), which is that LR cannot combine features to generate new features. They used a

11



DBN to generate features from 14 traditional change level features, including the follow-
ing: the number of modified subsystems, modified directories, modified files, code added,
code deleted, line of code before/after the change, files before/after the change, and several
features related to developers’ experience [311].

Our work differs from the above study mainly in three aspects. First, we use a DBN
to learn semantic features directly from the source code, while features generated from
their approach are relations among existing features. Since the existing features cannot
distinguish between many semantic code differences, the combination of these features
would still fail to capture semantic code differences. For example, if two changes add the
same line at different locations in the same file, the traditional features cannot distinguish
between the two changes. Thus, the generated new features, which are combinations of
the traditional features, would also fail to distinguish between the two changes. Second,
we evaluate the effectiveness of our generated features using different classifiers for both
within-project and cross-project defect prediction, while they only use LR for within-
project defect prediction. Third, we focus on both file and change-level defect prediction,
while they only work on change-level defect prediction.

There also many existing studies that leverage deep learning techniques to address other
problems in software engineering [71, 72, 107, 110, 133, 140, 156, 185, 209, 225, 290, 304, 317].
Mou et al. [185] used deep learning to model programs and showed that deep learning can
capture the programs’ structural information. Deep learning has also been used for malware
classification [209,317], test report classification [110], link prediction in a developer online
forum [304], software traceability [107], etc.

How to explain deep learning results is still a challenging question to the AI community.
To interpret deep learning models, Andrej et al. [116] used character-level language models
as an interpretable testbed to explain the representations and predictions of a Recurrent
Neural Network (RNN). Their qualitative visualization experiments demonstrate that RNN
models could learn powerful and often interpretable long-range interactions from real-world
data. Radford et al. [219] focused on understanding the properties of representations
learned by byte-level recurrent language models for sentiment analysis. Their work reveals
that there exists a sentiment unit in the well-trained RNNs (for sentiment analysis) that
has a direct influence on the generative process of the model. Specifically, simply fixing its
value to be positive or negative can generate samples with the corresponding positive or
negative sentiment. The above studies show that to some extent deep learning models are
interpretable. However, these two studies focused on interpreting RNNs on text analysis.
In this work we leverage a different deep learning model, i.e., the deep belief network
(DBN), to analyze the ASTs of source code. DBN adopts different architectures and
learning processes from RNNs. For example, an RNN (e.g., LSTM) can, in principle, use
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its memory cells to remember long-range information that can be used to interpret data it
is currently processing, while a DBN does not have such memory cells (details are provided
in Section 3.2.1). Thus, it is unknown whether DBN models share the same property (i.e.,
interpretable) as RNNs.

Many studies used a topic model [32] to extract semantic features for different tasks in
software engineering [45,150,197,200,254,302]. Nguyen et al. [200] leveraged a topic model
to generate features from source code for within-project defect prediction. However, their
topic model handled each source file as one unordered token sequence. Thus, the generated
features cannot capture structural information in a source file.

This work shows that DBN is applicable for learning semantic features to improve
software bug prediction, following this work, researches have explored the effectiveness of
other deep learning algorithms on defect prediction [52,56,139,145,288]. For example, Li et
al. [139] proposed to leverage Convolutional Neural Network (CNN) to generate semantic
features for improving software defect prediction. Evaluation on seven open-source projects
showed the CNN-based defect prediction approaches can outperform our DBN-based defect
prediction model. Wen et al. [145] used Recurrent Neural Network (RNN) to learning
features for change-level defect prediction tasks. Their evaluation showed the RNN-based
features could outperform traditional change-level defect prediction features.

2.2 Static Bug Detection

2.2.1 Static Bug Detection Tools

Many static code analysis techniques have been developed to detect bugs based on bug
patterns [4,5,10,30,38,41,70,96,134,143,144,179,207,230,243,255,269,278,285,287,291,301].
Existing static bug detection techniques could be divided into two categories according to
how bug patterns are designed, i.e., manually identified bug patterns and automatically
mined bug patterns from source code.

Two widely used open-source bug detection tools for Java language, FindBugs [4] and
PMD [5], detect real bugs based on manually designed bug patterns by their contributors.
Most manually designed patterns focus on language-specific common bugs in software
projects. Such as buffer overflow, race conditions, and memory allocation errors, etc.
Some other studies leverage particular types of bug patterns to detect special bugs. For
example, Chen et al. [41] proposed six anti-patterns and leveraged these rules to detect log
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related bugs. Palomba et al. [207] propose to detect five different code smells based on five
well-summarized code patterns.

For detecting project-specific bugs, many approaches leveraged rules that are mined
from specific projects. Li et al. [144] developed PR-Miner to mine programming rules
from C code and detect violations using frequent itemset mining algorithm. Benjamin
et al. [30] proposed DynaMine which used association rule mining to extract simple rules
from software revision histories and detect defects related to rule violations. Wasylkowski
et al. [285] and Gruska et al. [70] proposed to detect object usage anomalies by combining
frequent itemset and object usage graph models.

2.2.2 Statistical Language Models

Statistical language models have been successfully used for tasks including code comple-
tion [24, 225, 290], fault localization and coding style consistency checking [10, 85, 242].
Hindle et al. [88] leveraged n-gram language models to show that source code has high
repetitiveness. Han et al. [78] presented an algorithm to infer the next token by using a
Hidden Markov Model. Pradel et al. [213] proposed an approach to generating object usage
specifications based on a Markov Model. Yusuke et al. [202] leveraged n-gram models to
generate pseudo-code from software source code. Ray et al. [224] used n-gram models to
study language statistics of buggy code, which showed that software buggy lines are more
unnatural than non-buggy lines. They also proposed a defect prediction model based on n-
gram models. Specifically, they built n-gram models on an old version of a software project,
and then used entropy from the n-gram models to estimate the naturalness of the source
code lines in a later version, i.e., source code lines with higher entropy values are flagged as
buggy lines. There are three main differences between their approach and Bugram. First,
given a software project, Bugram directly builds n-gram models on it and detect bugs in
this project, while their tool requires an old version of this project as training data. Second,
they build n-gram models at the token level, while we build n-gram models at a higher
level (e.g., statements, method calls, and control flows) (Section 4.3.1) aiming to detect
semantic bugs more effectively. Third, their approach leverages entropy while Bugram uses
probability to detect bugs. Using probability and entropy to rank token sequences are two
different approaches [158]. The entropy used in [224] combines probability and sequence
length. It may worth comparing using entropy versus probability for detecting bugs in the
future.

White et al. [290] and Raychev et al. [225] investigated the effectiveness of language
models, i.e., n-gram and recurrent neural network (RNN), for code completion. Bavishi et
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al. [24] proposed a RNN-based framework to recover natural identifier names from minified
JavaScript code. Movshovitz-Attias et al. [186] leveraged n-gram models to predict class
comments for program source file documents. Campbell et al. [35] built n-gram models
with historical correct source code to locate the cause of syntax errors. Some studies
used n-gram token sequences instead of n-gram models to solve software engineering tasks.
Nessa et al. [196] and Yu et al. [316] leveraged n-gram token sequences to help software
fault localization. Lal et al. [132] combined n-grams with information retrieval techniques
to improve fault localization. Sureka et al. [251] leveraged n-gram-based features to detect
duplicated bug reports. Hsiao et al. [96] proposed to use n-gram token sequences and
tf-idf-style measures to detect code clone and related bugs. In contrast, Bugram is not
limited to detecting clone bugs.

After our study, applications of statistical language models on other topics have been
examined, e.g., program synthesis [53, 305, 322] and code analysis [51, 106, 237, 275], and
bug detection [214].

2.3 Regression Testing Techniques

A typical TCP technique reorders the execution sequence of test cases based on a certain
objective, e.g., fault-detection rate [234]. Specifically, TCP can be formally defined as
follows: given a test suite T and the set of its all possible permutations of test PT ,
TCP techniques aim to find a permutation P

′ ∈ PT that (∀P ′′) (P
′′ ∈ PT ) (P

′′ 6=
P
′
), f(P

′
) ≥ f(P

′′
), where f is the objective function.

Most existing TCPs leverage coverage information, e.g., dynamic code coverage (dy-
namic call graph) from the last run of test cases [102, 233], static code coverage (static
call graph) from static code analysis [43, 101, 166, 244, 266]. The commonly used cover-
age criteria include statement, method, and branch coverages. In this work, we choose to
examine statement and method coverages, since previous work has shown that statement
and method coverages are more effective than other coverage criteria [153, 154, 235]. For
coverage-based TCP techniques, there are two widely used prioritization strategies, i.e.,
total strategy and additional strategy [142,234,312]. The total coverage strategy schedules
the execution order of test cases based on the total number of statements or methods cov-
ered by these test cases. Whereas, the additional coverage strategy reorders the execution
sequence of test cases based on the number of statements or methods that are not covered
by already ordered test cases but covered by the unordered test cases.

Many regression testing techniques have been proposed for improving test efficiency
by test case prioritization [42, 43, 69, 101, 102, 121, 142, 166, 233–235, 258, 266, 312, 313, 319],
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test case selection [21, 232, 241], and test case reduction [31, 240, 321]. In terms of TCP
techniques, Rothermel et al. [234] first presented a family of prioritization techniques in-
cluding both the total and additional test prioritization strategies using various coverage
information. They also proposed the metric APFD for assessing TCPs. Along this line,
TCP techniques with different prioritization strategies, coverage criteria and constraints
are proposed.

A majority of existing TCPs leverage code coverage information to rank test cases.
Dynamic code coverage from the last execution is widely used in existing TCP tech-
niques [102, 142, 233, 312]. Another widely used code coverage is static code coverage,
which is estimated from static analysis rather than gathered through instrumentation and
execution. Mei et al. [166] are the first to prioritize test cases with static coverage infor-
mation. Later, Thomas et al. [266] proposed a static test case prioritization method using
topic models. Some other TCP techniques [50, 99, 201, 235] leveraged similarity between
test cases and source code to prioritize test cases. Specifically, Saha et al. [235] proposed
an information retrieval approach for regression testing prioritization based on program
changes. Noor et al. [201] proposed a similarity-based approach for test case prioritization
using historical failure data.

Instead of using the coverage or similarity information between source code and test
cases, some approaches use other software process information as the proxy to rank test
cases [15,61,130,173–175,270,273,315,319]. Arafeen et al. [15] used software requirements
to group and rank test cases. Mirarab et al. [175] and Zhang et al. [319] proposed to
leverage the source code metric (i.e., McCabe) based coverage information of test cases to
prioritize regression test cases. Engstrom et al. [61] selected a small set of test cases for
regression testing selection based on previously fixed faults. Their work required previously
revealed bugs within a given period. For projects that do not have well-maintained bugs or
new projects (no past bugs are available), their approach cannot work. While our proposed
QTEP does not have such limitation, since it focuses on potentially unrevealed faults. Laali
et al. [130] proposed to utilize the locations of revealed faults of the executed test cases
to rank the remaining test cases. Different from QTEP, they used injected faults, and the
performance of their approach on real-world faults is unknown.

Yu et al. [315] proposed the fault-based prioritization of test cases that is designed by
using the fault-based test case generation models. Different from QTEP, their approach
assumed the fault-detecting ability of each test case is available. Miranda et al. [174] pro-
posed scope-aided TCP for testing the reused code by using possible constraints delimiting
the new input domain scope. On the contrary, QTEP is not limited to testing the reused
code.
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After this study, Liang et al. [147] have applied test case prioritization to continuous
integration environments at Google. Their evaluation on a large data set from Google
showed that test case prioritization techniques can lead to cost-effectiveness improvements
in the continuous integration process.

2.4 Code Review

Code review is a manual inspection of source code by humans, which aims at identifying
potential defects and quality problems in the source code before its deployment in a live
environment [19,25–27,63,68,85,131,157,164,165,172,182,212,246,248,267,274]. In recent
years, Modern Code Review (MCR) has been developed as a tool-based code review system
and becomes popular and widely used in both proprietary software (e.g., Google, Cisco,
and Microsoft) and open-source software (e.g., Android, Qt, and LibreOffice) [76]. Many
studies have examined the practices of code review.

Stein et al. [248] explored the distributed, asynchronous code inspections. They studied
a tool that allowed participants at separate locations to discuss faults. Porter et al. [212]
reported on a review of studies on code inspection in 1995 that examined the effects of
different factors on code inspections. Laitenburger [131] surveyed code inspection methods,
and presented a taxonomy of code inspection techniques. Votta [274] found that 20% of the
interval in a “traditional inspection” is wasted due to scheduling. Rigby et al. [227–229]
have done extensive work examining code review practices in OSS development. Hellen-
doorn et al. [85] used language models to quantitatively evaluate the influence of stylistic
properties of code contributions on the code review process and outcome. Sutherland and
Venolia [252] conducted a study at Microsoft regarding using code review data for later in-
formation needs. Bacchelli & Bird find that understanding of the code and the reason for a
change is the most important factor in the quality of code reviews [19]. Some other studies
focus on accelerating code review process by recommending reviewers [267], decomposing
code review changes with multiple changesets [23,73,128,265].

In this thesis, we explore the feasibility of accelerating code review by identifying the
risky code changes that require multiple rounds of code review or are reverted.
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2.5 Other Applications of Machine Learning for Im-

proving Software Reliability

Besides the four topics mentioned above, machine learning technologies have also been
leveraged to improve other software reliability practices, such as symbolic execution [44,
141, 296], test generation [148, 149, 159, 176, 249], automatic bug repair [119, 137, 151,
152, 181, 303, 307, 309], comment generation [97, 98, 294, 295], bug report triage [14, 100,
187, 282, 283, 306, 324], false static analysis alerts filtering [79, 277], and fault localiza-
tion [18, 94, 135, 226, 297, 298, 323]. For example, for accelerating symbolic execution, our
previous work [296] leveraged NLP technologies to extract input constraints from pro-
gram documents to provide a better guidance during symbolic execution. Along this line,
Chen et al. [44] proposed to accelerate symbolic execution with code transformation and
Li et al. [141] proposed to apply symbolic execution to complex program by using machine
learning based constraint solving.

Note that this thesis is not ambitious to improve all existing software reliability prac-
tices, we demonstrate how to take the advantages of machine learning technologies in
knowledge representation, learning, natural language processing, classification, etc., to im-
prove software reliability practices.
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Chapter 3

Leveraging Deep Learning to
Improve Defect Prediction

This chapter presents our approach to improving software defect prediction by using se-
mantic features learnt with deep learning algorithms, which was presented at the 38th
International Conference on Software Engineering (ICSE’16 [280]) and IEEE Transactions
on Software Engineering (TSE’18 [279]).

3.1 Motivation

Software defect prediction techniques [82,104,109,125,138,168,183,189,220,276,326] have
been proposed to detect defects and reduce software development costs. Defect prediction
techniques build models using software history data and use the developed models to
predict whether new instances of code regions, e.g., files, changes, and methods, contain
defects.

The efforts of previous studies toward building accurate prediction models can be cat-
egorized into the following two approaches: The first approach is manually designing new
features or new combinations of features to represent defects more effectively, and the
second approach involves the application of new and improved machine learning based
classifiers. Researchers have manually designed many features to distinguish defective files
from non-defective files, e.g., Halstead features [75] based on operator and operand counts;
McCabe features [163] based on dependencies; CK features [46] based on function and in-
heritance counts, etc.; MOOD features [81] based on polymorphism factor, coupling factor,
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1 public void copy(Directory to, String

src , String dest) throws IOException

{

2 IndexOutput os = to.createOutput(dest);

3 IndexInput is = openInput(src);

4 IOException priorException = null;

5
6 try {

7 is.copyBytes(os, is.length ());

8 } catch (IOException ioe) {

9 priorException = ioe;

10 }

11 finally {

12 IOUtils.closeSafely(priorException

, os, is);

13 }

14 }

(a) Original buggy code snippet.

1 public void copy(Directory to, String

src , String dest) throws IOException

{

2 IndexOutput os = null;

3 IndexInput is = null;

4 IOException priorException = null;

5 try {

6 os = to.createOutput(dest);

7 is = openInput(src);

8 is.copyBytes(os, is.length ());

9 } catch (IOException ioe) {

10 priorException = ioe;

11 } finally {

12 IOUtils.closeSafely(priorException

, os, is);

13 }

14 }

(b) Code snippet after fixing the bug.

Figure 3.1: A motivating example from Lucene.

etc.; process features [104, 220] (including number of lines of code added, removed, meta
features, etc.); and object-oriented features [22, 57,161].

Traditional features mainly focus on the statistical characteristics of programs and as-
sume that buggy and clean programs have distinguishable statistical characteristics. How-
ever, our observations on real-world programs show that existing traditional features often
cannot distinguish programs with different semantics. Specifically, program files with dif-
ferent semantics can have traditional features with similar or even the same values. For
example, Figure 3.1 shows an original buggy version, i.e., Figure 3.1(a), and a fixed clean
version, i.e., Figure 3.1(b), of a method from Lucene. In the buggy version, there is an
IOException when initializing variables os and is before the try block. The buggy version
can lead to a memory leak1 and has already been fixed by moving the initializing statements
into the try block in Figure 3.1(b). Using traditional features to represent these two code
snippets, e.g., code complexity features, their feature vectors are identical. This is because
these two code snippets have the same source code characteristics in terms of complexity,
function calls, raw programming tokens, etc. However, the semantic information in these
two code snippets is significantly different. Specifically, the contextual information of the
two variables, i.e., os and is, in the two versions is different. Features that can distinguish
such semantic differences are needed for building more accurate prediction models.

To bridge the gap between the programs’ semantic information and defect predic-
tion features, this thesis proposes leveraging a powerful representation-learning algorithm,

1https://issues.apache.org/jira/browse/LUCENE-3251
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namely, deep learning [93], to learn semantic representations of programs automatically.
Specifically, we use the deep belief network (DBN) [92] to automatically learn features from
token vectors extracted from source code, and then we utilize these features to build and
train defect prediction models.

To use a DBN to learn features from code snippets, we first convert the code snip-
pets into vectors of tokens with the structural and contextual information preserved, and
then we use these vectors as the input into DBN for generating features. For the two
code snippets presented in Figure 3.1, the two input vectors are [..., IndexOutput,

createOutput(), IndexInput, openInput(), IOException, try, ...] and [...,

IndexOutput, IndexInput, IOException, try, createOutput(), openInput()...] re-
spectively (details regarding the token extraction are provided in Section 3.3.1). As the
vectors of these two code snippets are different, DBN will automatically learn features that
can distinguish them.

We examine our DBN-based approach to generating semantic features on both file-level
defect prediction tasks (i.e., predict which files in a release are buggy) and change-level
defect prediction tasks (i.e., predict whether a code commit is buggy), because most of
the existing approaches to defect prediction are on these two levels [17, 84, 104, 194, 222,
256, 272, 299, 300]. Focusing on these two different defect prediction tasks enables us to
extensively compare our proposed technique with state-of-the-art defect prediction features
and techniques. For file-level defect prediction, we generate DBN-based semantic features
by using the complete Abstract Syntax Trees (AST) of the source files, while for change-
level defect prediction, we generate the DBN-based features by using tokens extracted from
code changes. In addition, most defect prediction studies have been conducted in one or
two settings, i.e., within-project defect prediction [104, 178, 256, 300] and/or cross-project
defect prediction [84, 194, 272, 299]. Thus, we evaluate our approach in these two settings
as well.

3.2 Background

3.2.1 Deep Belief Network

A deep belief network is a generative graphical model that uses a multi-level neural network
to learn a representation from the training data that could reconstruct the semantic and
content of the training data with a high probability [28]. DBN contains one input layer
and several hidden layers, and the top layer is the output layer that contains final features
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Figure 3.2: Deep belief network architecture and input instances of File1.java and
File2.java. Although the token sets of these two files are identical, the different structural
and contextual information between tokens enables DBN to generate different features to
distinguish these two files.

to represent input data as shown in Figure 3.2. Each layer consists of several stochastic
nodes. The number of hidden layers and the number of nodes in each layer vary depending
on users’ demand. In this study, the size of learned semantic features is the number of
nodes in the top layer. The idea of DBN is to enable the network to reconstruct the input
data using generated features by adjusting weights between nodes in different layers.

DBN models the joint distribution between input layer and the hidden layers as follows:

P (x, h1, ..., hl) = P (x|h1)(
l∏

k=1

P (hk|hk+1)) (3.1)

where x is the data vector from input layer, l is the number of hidden layers, and hk is
the data vector of kth layer (1 ≤ k ≤ l). P (hk|hk+1) is a conditional distribution for the
adjacent k and k + 1 layers.

To calculate P (hk|hk+1), each pair of two adjacent layers in DBN are trained as a
Restricted Boltzmann Machines (RBM) [28]. An RBM is a two-layer, undirected, bipartite
graphical model where the first layer consists of observed data variables, referred to as
visible nodes, and the second layer consists of latent variables, referred to as hidden nodes.
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Figure 3.3: The distribution of DBN-based features of the example code snippets shown
in Figure 3.1.

P (hk|hk+1) can be efficiently calculated as:

P (hk|hk+1) =

nk∏
j=1

P (hkj |hk+1) (3.2)

P (hkj = 1|hk+1) = sigm(bkj +

nk+1∑
a=1

W k
ajh

k+1
a ) (3.3)

where nk is the number of nodes in layer k, sigm(c) = 1
1+e−c , b is a bias matrix, bkj is the

bias for node j of layer k, and W k is the weight matrix between layer k and layer k + 1.
sigm is the sigmod function, which serves as the activation function to update the hidden
units. We use the sigmod function because it outputs a more smooth range of nonlinear
values with a relatively simple computation [77].

DBN automatically learns W and b matrices using an iteration process. W and b are
updated via log-likelihood stochastic gradient descent:

Wij(t+ 1) = Wij(t) + η
∂log(P (v|h))

∂Wij

(3.4)

bok(t+ 1) = bok(t) + η
∂log(P (v|h))

∂bok
(3.5)
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where t is the tth iteration, η is the learning rate, P (v|h) is the probability of the visible
layer of an RBM given the hidden layer, i and j are two nodes in different layers of the
RBM, Wij is the weight between the two nodes, and bok is the bias on the node o in layer
k.

To train the network, one first initializes all W matrices between two layers via RBM
and sets the biases b to 0. They can be well-tuned with respect to a specific criterion, e.g.,
the number of training iterations, error rate between reconstructed input data and original
input data. In this study, we use the number of training iterations as the criterion for
tuning W and b. The well-tuned W and b are used to set up a DBN for generating semantic
features for both training and test data. Also, we discuss how these parameters affect the
performance of learned semantic features in Section 3.4.5.

DBN model generates features with more complex network connections. These network
connections enable DBN models to generate features with multiple levels of abstraction
and high-level semantics. DBN features are weighted combinations/vectors of input nodes,
which may represent patterns of the usages of input nodes (e.g., methods, control-flow
nodes, etc.). We believe such DBN-based features can help distinguish the semantics of
different source code snippets, which traditional features cannot handle well. For example,
Figure 3.3 shows the distribution of the DBN-based semantic features of the two code
snippets shown in Figure 3.1. Specifically, we use the trained DBN model on project
Lucene (details are in Section 3.4.8) to generate a feature set that contains 50 different
features for each of the two code snippets. As we can see in the figure, the distributions
of features of the two code snippets are different. Specifically, most of the features of code
snippet shown in Figure 3.1(b) have larger values than those of the features of code snippet
shown in Figure 3.1(a). Thus, the new features are capable of distinguishing these two code
snippets with a proper classifier.

3.3 Approach

In this work, we use DBN to generate semantic features automatically from source files and
code changes and further leverage these features to improve defect prediction. Figure 3.4
illustrates the workflow of our approach to generating features for both file-level defect
prediction (inputs are source files) and change-level defect prediction (inputs are source
code changes). Specifically, for file-level defect prediction, our approach takes AST node
tokens from the source code of the training and test source files as the input, and generates
semantic features from them. Then, the generated semantic features are used to build the
models for predicting defects. Note that for change-level defect prediction, the input data
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Figure 3.4: Overview of our DBN-based approach to generating semantic features for file-
level and change-level defect prediction.

1 --- a/solr/src/java/org/apache/solr/handler/component/QueryComponent.java

2 +++ b/solr/src/java/org/apache/solr/handler/component/QueryComponent.java

3 @@ -217,14 +217,8 @@ public class QueryComponent extends SearchComponent

4 for (String groupByStr : funcs) {

5 QParser parser = QParser.getParser(groupByStr , "func", rb.req);

6 Query q = parser.getQuery ();

7 - SolrIndexSearcher.GroupCommandFunc gc;

8 - if (groupSort != null) {

9 - SolrIndexSearcher.GroupSortCommand gcSort = new SolrIndexSearcher.

GroupSortCommand ();

10 - gcSort.sort = groupSort;

11 - gc = gcSort;

12 - } else {

13 - gc = new SolrIndexSearcher.GroupCommandFunc ();

14 - }

15 + SolrIndexSearcher.GroupCommandFunc gc = new SolrIndexSearcher.GroupCommandFunc

();

16 + gc.groupSort = groupSort;

17 if (q instanceof FunctionQuery) {

18 gc.groupBy = (( FunctionQuery)q).getValueSource ();

Figure 3.5: A change example from Lucene.

to our DBN-based feature generation approach are changed code snippets. Since building
AST for an incomplete code snippet is challenging, in this work we propose a heuristic
approach to extracting important structural and context information from code change
snippets (details are in Section 3.3.1). DBN requires input data in the form of integer
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vectors, to satisfy this requirement, we first build a mapping between integers and tokens
and then convert the token vectors to integer vectors, to generate semantic features, we
first use the integer vectors of the training set to build and train a DBN. Then, we use the
trained DBN to automatically generate semantic features from the integer vectors of the
training and test sets. Finally, based on the generated semantic features, we build defect
prediction models from the training set, and evaluate their performance on the test set.

Our approach consists of four major steps: 1) parsing source code (source files for
file-level defect prediction and changed code snippets for change-level defect prediction)
into tokens, 2) mapping tokens to integer identifiers, which are the expected inputs to
the DBN, 3) leveraging DBN to automatically generate semantic features, and 4) building
defect prediction models and predicting defects using the learned semantic features of the
training and test data.

3.3.1 Parsing Source Code

Parsing Source Code for Files

For file-level defect prediction tasks, we utilize the Java Abstract Syntax Tree (AST) to
extract syntactic information from source code files. Specifically, three types of AST node
are extracted: 1) nodes of method invocations and class instance creations, e.g., in Fig-
ure 3.2, method createOutput() and openInput() are recorded as their method names,
2) declaration nodes, i.e., method declarations, type declarations, and enum declarations,
and 3) control-flow nodes such as while statements, catch clauses, if statements, throw
statements, etc. Control-flow nodes are recorded as their statement types, e.g., an if

statement is simply recorded as if. In summary, for each file, we obtain a vector of tokens
of the three categories. We exclude AST nodes that are not one of these three categories,
such as assignment and intrinsic type declaration, because they are often method-specific
or class-specific, which may not be generalizable to the whole project. Adding them may
dilute the importance of other nodes.

Since the names of methods, classes, and types are typically project-specific, methods of
an identical name in different projects are either rare or of different functionalities. Thus,
for cross-project defect prediction, we extract all three categories of AST nodes, but for the
AST nodes in categories 1) and 2), instead of using their names, we use their AST node
types such as method declarations and method invocations. Take project xerces as
an example. As an XML parser, it consists of many methods named getXXX and setXXX,
where XXX refers to XML-specific keywords including charset, type, and href. Each of
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these methods contains only one method invocation statement, which is in form of either
getAttribute(XXX) or setAttribute(XXX). Methods getXXX and setXXX do not exist in
other projects, while getAttribute(XXX) and setAttribute(XXX) have different mean-
ings in other projects, so using the names getAttribute(XXX) or setAttribute(XXX)

is not helpful. However, it is useful to know that method declaration nodes exist, and
only one method invocation node is under each of these method declaration nodes, since
it might be unlikely for a method with only one method invocation inside to be buggy.
In this case, compared with using the method names, using the AST node types method

declaration and method invocation is more useful since they can still provide partial
semantic information.

Parsing Source Code for Changes

Different from file-level defect prediction data, i.e., program source files, for which we
could build ASTs and extract AST token vectors for feature generation, change-level defect
prediction data are changes that developers made to source files, whose syntax information
is often incomplete. These changes could have different locations and include code additions
and code deletions, which are syntactic incomplete. Thus, building ASTs for these changes
is challenging. In this study, for tokenizing changes, instead of building ASTs, we tokenize
a change by considering the code addition, the code deletion, and the context code

in the change. Code additions are the added lines in a change, code deletions are the
deleted lines in a change, and the code around these additions or deletions is considered
the context code. For example, Figure 3.5 shows a real change example from project
Lucene. In this change, the code addition contains lines 15 and 16, the code deletion
contains lines 7 to 14, and the context contains lines 4 to 6, 17, and 18. Note that the
contents of the source code lines in the additions, deletions, and context code are often
overlapping, e.g., the deleted line 7 and the added line 15 contain the same line of code
for class instance creation, i.e., SolrIndexSearcher.GroupCommandFunc gc;. Thus, to
distinguish these lines, we add different prefixes to the raw tokens that are extracted from
different types of changed code. Specifically, for the addition, we use prefix “added ”, for
the deletion, we use prefix “deleted ”, and for the context code, we use prefix “context ”.
The details of the three types of tokens extracted from the example change (in Figure 3.5)
are shown in Table 3.1.

From Table 3.1, we could observe that different types of tokens from the changed code
snippets contain different information. For example, the context nodes show that the code
is changed inside a for loop, an if statement is removed from the source code in the
deletions, and an instantiation of class GroupCommandFunc was created in the additions.
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Table 3.1: Three types of tokens extracted from the example change shown in Figure 3.5.

added

added SolrIndexSearcher.GroupCommandFunc
added gc
added SolrIndexSearcher.GroupCommandFunc
added gc.groupSort
added groupSort

deleted

deleted SolrIndexSearcher.GroupCommandFunc
deleted gc
deleted if
deleted groupSort
deleted Notnull
deleted SolrIndexSearcher.GroupSortCommand
deleted gcSort
deleted SolrIndexSearcher.GroupSortCommand
deleted gcSort.sort
deleted groupSort
deleted gc
deleted gcSort
deleted delete else
deleted gc
deleted SolrIndexSearcher.GroupCommandFunc

context

context for
context QParser
context parser
context QParser.getParser
context Query
context q
context parser.getQuery
context if
context q
context FunctionQuery
context gc.groupBy
context FunctionQuery
context q.getValueSource
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Intuitively, DBN-based features generated from different types of tokens may have dif-
ferent impacts on the performance of the change-level defect prediction. To extensively
explore the performance of different types of tokens, we build and evaluate change-level
defect prediction models with seven different combinations among the three different types
of tokens, i.e., added: only considers the additions; deleted: only considers the dele-
tions; context: only considers the context information; added+deleted: considers both
the additions and the deletions; added+context: considers both the additions and the
context tokens; deleted+context: considers both the deletions and the context tokens;
and added+deleted+context: considers the additions, deletions, and context tokens
together. We discuss the effectiveness of these different combinations in Section 3.5.

Note that some of the tokens extracted from the changed code snippets are project-
specific, which means that they are rare or never appear in changes from a different project.
Thus, for change-level cross-project defect prediction we first filter out variable names,
and then use method declaration, method invocation, and class instantiation to
represent a method declaration, a method call, and an instance of a class instantiation
respectively.

3.3.2 Handling Noise and Mapping Tokens

Handling Noise

Defect data are often noisy and suffer from the mislabeling problem. Studies have shown
that such noises could significantly erode the performance of defect prediction [87, 123,
261]. To prune noisy data, Kim et al. proposed an effective mislabeling data detection
approach named Closest List Noise Identification (CLNI) [123]. It identifies the k-nearest
neighbors for each instance and examines the labels of its neighbors. If a certain number
of neighbors have opposite labels, the examined instance will be flagged as noise. However,
such an approach cannot be directly applied to our data because their approach is based on
the Euclidean Distance of traditional numerical features. Since our features are semantic
tokens, the difference between the values of two features only indicates that these two
features are of different tokens.

To detect and eliminate mislabeling data and to help DBN learn the common knowledge
between the semantic information of buggy and clean instances, we adopt the edit distance
similarity computation algorithm [195] to define the distances between instances. The edit
distances are sensitive to both the tokens and the order among the tokens. Given two
token sequences A and B, the edit distance d(A,B) is the minimum-weight series of edit
operations that transform A to B. The smaller d(A,B) is, the more similar A and B are.
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Based on edit distance similarity, we deploy CLNI to eliminate data with potential
incorrect labels. In this study, since our purpose is not to find the best training or test
set, we do not spend too much effort on well tuning the parameters of CLNI. We use the
recommended parameters and find them to work well. In our benchmark experiments with
traditional features, we also perform CLNI to remove the incorrectly labeled data.

In addition, we also filter out infrequent tokens extracted from the source code, which
might be designed for a specific file and cannot be generalized to other files. Given a
project, if the total number of occurrences of a token is less than three, we filter it out.
We encode only the tokens that occur three or more times, which is a common practice
in the NLP research field [158]. The same filtering process is also applied to change-level
prediction tasks.

Mapping Tokens

DBN takes only numerical vectors as inputs, and the lengths of the input vectors must
be the same. To use the DBN to generate semantic features, we first build a mapping
between integers and tokens, and encode token vectors to integer vectors. Each token has
a unique integer identifier. Since our integer vectors may have different lengths, we append
0 to the integer vectors to make all the lengths consistent and equal to the length of the
longest vector. Adding zeros does not affect the results, and it is simply a representation
transformation to make the vectors acceptable by the DBN. Taking the code snippets in
Figure 3.2 as an example, if we only consider the two versions, the token vectors for the
“Buggy” and “Clean” versions would be mapped to [1, 2, 3, 4, 5, 6, ...] and [1, 3, 5, 6,
2, 4, ...] respectively. Through this encoding process, the method invocation information
and inter-class information are represented as integer vectors. In addition, some program
structure information is preserved since the order of tokens remains unchanged. Note that,
in this work we employ the same token mapping mechanism for both the file-level and
change-level defect prediction tasks.

3.3.3 Training the DBN and Generating Features

Training the DBN

As we discussed in Section 3.2, to train an effective DBN for learning semantic features,
we need to tune three parameters, which are: 1) the number of hidden layers, 2) the
number of nodes in each hidden layer, and 3) the number of training iterations. Existing
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studies that leveraged DBN models to generate features for NLP [238, 239] and image
recognition [48, 129] reported that the performance of DBN-based features is sensitive to
these parameters. A few hidden layers can be trained in a relatively short period of time,
but result in poor performance as the system cannot fully capture the characteristics of
the training datasets. Too many layers may result in overfitting and a slow learning time.
Similar to the number of hidden layers, too few or too many hidden nodes or iterations
result in either slow learning or poor performance [239]. We show how we tune these
parameters in Section 3.4.5.

To simplify our model, we set the number of nodes to be the same in each layer.
Through these hidden layers and nodes, DBN obtains characteristics that are difficult to
observe but are capable of capturing semantic differences. For each node, the DBN learns
the probabilities of traversing from this node to the nodes of its top level. Through back-
propagation validation, the DBN reconstructs the input data using generated features by
adjusting the weights between nodes in different hidden layers.

The DBN requires the values of the input data to range from 0 to 1, while the data
in our input vectors can have any integer values due to our mapping approach. To satisfy
the input range requirement, we normalize the values in the data vectors of the training
and test sets by using min-max normalization [293]. In our mapping process, the integer
values for different tokens are just identifiers. One token with a mapping value of 1 and
one token with a mapping value of 2 only means that these two nodes are different and
independent. Thus, the normalized values can still be used as token identifiers since the
same identifiers pertain the same normalized values.

Generating Features

After we train a DBN, both the weights w and the biases b (details are in Section 3.2) are
fixed. We input the normalized integer vectors of the training data and the test data into
the DBN, and then obtain semantic features for the training and the test data from the
output layer of the DBN. Note that the test data (including features and labels) are only
used in the evaluation process not in the training process.

3.3.4 Building Models and Performing Defect Prediction

After we obtain the generated semantic features for each instance from both the training
and the test datasets, we then build defect prediction models by following the standard

31



defect prediction process described in Section 3.2. The test data are used to evaluate the
performance of the built defect prediction models.

Note that, as revealed in existing work [256,260], the widely used validation technique,
i.e., k-fold cross-validation often introduces nontrivial bias for evaluating defect prediction
models, which makes the evaluation inaccurate. In addition, for change-level defect pre-
diction, the k-fold cross-validation may make the evaluation incorrect. This is because the
changes follow a certain order in time. Randomly partitioning the dataset into k folds may
cause a model to use future knowledge which should not be known at the time of predic-
tion to predict changes in the past. Thus, cross-validation may use information regarding
a change committed in 2017 to predict whether a change committed in 2015 is buggy or
clean. This scenario would not be a real case in practice, because at the time of prediction,
which is typically soon after the change is committed in 2015 for the earlier detection of
bugs, the change committed in 2017 is not yet existent. A detailed discussion is provided
in Section 3.6.1.

To avoid the above validation problem, we do not use the k-fold cross-validation in
this work. Specifically, for file-level defect prediction, we evaluate the performance of
our DBN-based features and traditional features by building prediction models with data
from different releases. For change-level defect prediction, we collect the training and test
datasets following the time order (details are in Section 3.4.3) to build and evaluate the
prediction models without k-fold cross-validation.

3.4 Experimental Study

In this section, we describe the detailed settings for our evaluation experiments. All ex-
periments are run on a 2.5GHz i5-3210M machine with 4GB RAM.

3.4.1 Research Questions

Table 3.2: Research questions investigated for defect prediction.

Scope
Within-project Cross-project

Level
File RQ1 RQ2
Change RQ3 RQ4
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Table 3.2 lists the scenarios for the investigated research questions. Specifically, we
evaluate the performance of our DBN-based semantic features by comparing it with tra-
ditional defect prediction features under each of the four different prediction scenarios.
These questions share the following format.

RQi (1 ≤ i ≤ 4): Do DBN-based semantic features outperform traditional features at
the <level> <scope> under the non-effort-aware and effort-aware evaluation scenarios?

For example, in RQ1, we explore the effectiveness of the DBN-based semantic features
for within-project defect prediction at the file-level under both the non-effort-aware and
effort-aware evaluation scenarios.

3.4.2 Evaluation Metrics

Metrics for Non-effort-aware Evaluation

Under the non-effort-aware scenario, we use three metrics: Precision, Recall, and F1.
These metrics have been widely adopted to evaluate defect prediction techniques [109,169,
170,194,256,326]. Here is a brief introduction:

Precision =
true positive

true positive+ false positive
(3.6)

Recall =
true positive

true positive+ false negative
(3.7)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(3.8)

Precision and recall are composed of three numbers in terms of true positive, false positive,
and false negative. True positive is the number of predicted defective files (or changes) that
are truly defective, while false positive is the number of predicted defective ones that are
actually not defective. A false negative records the number of predicted non-defective files
(or changes) that are actually defective. Higher precision is demanded by developers who
do not want to waste their debugging efforts on the non-defective code, while higher recall is
often required for mission-critical systems, e.g., revealing additional defects [326]. However,
comparing defect prediction models by using only these two metrics may be incomplete.
For example, one could simply predict all instances as buggy instances to achieve a recall
score of 1.0 (which will likely result in a low precision score) or only classify the instances
with higher confidence values as buggy instances to achieve a higher precision score (which
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could result in a low recall score). To overcome the above issues, we also use the F1 score
(i.e., F1), which is the harmonic mean of precision and recall, to measure the performance
of the defect prediction.

Metrics for Effort-aware Evaluation

For effort-aware evaluation, we employ PofB20 [104] to measure the percentage of bugs
that a developer can identify by inspecting the top 20 percent lines of code.

To calculate PofB20, we first sort all the instances in the test dataset based on the
confidence levels (i.e., probabilities of being predicted as buggy) that a defect prediction
model generates for each instance. This is because an instance with a higher confidence level
is more likely to be buggy. We then simulate a developer that inspects these potentially
buggy instances. We accumulate the lines of code (LOC) that are inspected and the number
of bugs identified. The process will be terminated when 20 percent of the LOC in the test
data have been inspected and the percentage of bugs that are identified is referred to as
the PofB20 score. A higher PofB20 score indicates that a developer can detect more bugs
when inspecting a limited number of LOC.

Statistical Tests

Statistical tests can help understand whether there is a statistically significant difference
between two results. In this work, we used the Wilcoxon signed-rank test to check whether
the performance difference between prediction models with DBN-based semantic features
and prediction models with traditional features is significant. For example, in RQ3, we want
to compare the performance of DBN-based features and traditional features for change-
level within-project defect prediction for the projects listed in Table 3.5. To conduct
the Wilcoxon signed-rank test, we first run experiments with these two sets of features
and obtain prediction results for each test subject. We then apply the Wilcoxon signed-
rank test on the results of the test subjects. The Wilcoxon signed-rank test does not
require the underlying data to follow any distribution. In addition, it can be applied to
pairs of data and is able to compare the difference against zero. At the 95% confidence
level, p-values that are less than 0.05 indicate that the difference between subjects is
statistically significant, while p-values that are 0.05 or larger indicate that the difference
is not statistically significant.
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Table 3.3: Cliff’s Delta and the effectiveness level [49].

Cliff’s Delta (δ) Effectiveness Level
|δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.33 Small
0.33 ≤ |δ| < 0.474 Medium
|δ| ≥ 0.474 Large

Cliff’s Delta Effect Size Analysis

To further examine the effectiveness of our DBN-based features, following the existing work
in [191, 299], we employ Cliff’s delta (δ) [49] to measure the effect size of our approach.
Cliff’s delta is a non-parametric effect size measure that quantifies the amount of difference
between two approaches. In this work, we use Cliff’s delta to compare the defect prediction
models that are built with our DBN-based features to the defect prediction models that
are built with traditional features. Cliff’s delta is computed using the formula delta =
(2W/mn) − 1, where W is the W statistic of the Wilcoxon rank-sum test, and m and
n are the sizes of the result distributions of two compared approaches. The delta values
range from -1 to 1, where δ = −1 or 1 indicates the absence of an overlap between the
performances of the two compared models (i.e., all F1 values from one prediction model
are higher than the F1 values of the other prediction model, and vice versa), while δ =
0 indicates that the two prediction models completely overlap. Table 3.3 describes the
meanings of the different Cliff’s delta values [49].

3.4.3 Evaluated Projects and Data Sets

In this work, we use different datasets for evaluating file-level and change-level defect
prediction tasks. Specifically, for evaluating the performance of DBN-based features on file-
level defect prediction, we use publicly available data from the PROMISE data repository,
which are widely used for evaluating file-level defect prediction models [84,109,193,194,299].
For change-level defect prediction, we adopt the dataset from previous studies [104, 256,
300].

The main reason for adopting different datasets for file-level and change-level defect
prediction tasks is that using existing widely used datasets enables us to directly compare
our approach with existing defect prediction models on the same datasets, which makes
the comparison more reliable.
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Table 3.4: Evaluated projects for file-level defect prediction. BR is the average buggy rate.

Project Description Releases Avg # Files BR (%)
ant Java based build tool 1.5,1.6,1.7 463.7 21.0
camel Enterprise integration framework 1.2,1.4,1.6 815 22.5
jEdit Text editor designed for programmers 3.2,4.0,4.1 297 27.4
log4j Logging library for Java 1.0,1.1 122 29.1
lucene Text search engine library 2.0,2.2,2.4 260.7 56.0
xalan A library for transforming XML files 2.4,2.5 763 32.6
xerces XML parser 1.2,1.3 446.5 15.7
ivy Dependency management library 1.4,2.0 296.5 9.4
synapse Data transport adapters 1.0,1.1,1.2 211.7 25.5
poi Java library to access Microsoft format files 1.5,2.5,3.0 354.7 62.9

Table 3.5: Evaluated projects for change-level defect prediction. Lang is the programming
language used for the project. LOC is the number of the line of code. First Date is the
date of the first commit of a project, while Last Date is the date of the latest commit.
Changes is the number of changes. TrSize is the average size of training data on all runs.
TSize is the average size of test data on all runs. NR is the number of runs for each
subject. Ch is the number of changes. BR is the average buggy rate.

Project Lang LOC First Date Last Date # Ch TrSize TSize BR (%) # NR

Linux C 7.3M 2005-04-16 2010-11-21 429K 1,608 6,864 22.8 4

PostgreSQL C 289K 1996-07-09 2011-01-25 89K 1,232 6,824 27.4 7

Xorg C 1.1M 1999-11-19 2012-06-28 46K 1,756 6,710 14.7 6

JDT Java 1.5M 2001-06-05 2012-07-24 73K 1,367 6,974 20.5 6

Lucene Java 828K 2010-03-17 2013-01-16 76K 1,194 9,333 23.6 8

Jackrabbit Java 589K 2004-09-13 2013-01-14 61K 1,118 8,887 37.4 10

Evaluated Projects for File-level Defect Prediction

To facilitate the replication and verification of our experiments, we use publicly available
data from the PROMISE data repository. Specifically, we select all the Java projects from
PROMISE2 whose version numbers are provided. We need the version numbers of each
project because we need its source code archive to extract token vectors from the ASTs
of the source code to feed our DBN-based feature generation approach. In total, 10 Java
projects are collected. Table 3.4 lists the versions, the average number of source files

2http://openscience.us/repo/defect
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Figure 3.6: Change-level data collection process [256].

(excluding test files), and the average buggy rate of each project. The average number of
files of the projects ranges from 122 to 815, and the buggy rates of the projects have a
minimum value of 9.4% and a maximum value of 62.9%.

Evaluated Projects for Change-level Defect Prediction

We choose six open-source projects: Linux kernel, PostgreSQL, Xorg, Jdt (from Eclipse),
Lucene, and Jackrabbit. They are large and typical open-source projects covering operating
systems, database management systems. These projects have sufficient change histories
to build and evaluate change-level defect prediction models and are commonly used in
the literature [104, 256, 300]. For Lucene and Jackrabbit, we use manually verified bug
reports from Herzig et al. [87] to label the bug-fixing changes, and the keyword search
approach [245] is used for the others.

Table 3.5 shows the evaluated projects for change-level defect prediction. The LOC and
the number of changes in Table 3.5 include only source code (C and Java) files3 and their
changes because we want to focus on classifying source code changes only. Although these
projects are written in C and Java, our DBN-based feature generation approach is not
limited to any particular programming language. With the appropriate feature extraction
approach, our DBN-based feature generation approach can easily be extended to projects
in other languages.

Change-level defect data are often imbalanced [83, 104, 114, 115], i.e., there are fewer
buggy instances than clean instances in the training dataset. For example, as shown in
Table 3.5, the average ratio of the buggy and the clean changes is 1.0 to 3.1. The imbalanced
data can lead to poor prediction performance [256]. For change-level data, we borrow the

3We include files with these extensions: .java, .c, .cpp, .cc, .cp, .cxx, .c++, .h, .hpp, .hh, .hp, .hxx and
.h++.
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data collection process introduced by Tan et al. [256]. Specifically, a gap between the
training set and the test set (see Figure 3.6) is used because the gap allows more time
for buggy changes in the training set to be discovered and fixed. For example, the time
period between time T2 and time T4 is a gap. In this manner, the training set will be more
balanced, i.e., the training set will have a higher buggy rate. A reasonable setup is to make
the sum of the gap and the test set, e.g., the duration from time T2 to T5, close to the
typical bug-fixing time (i.e., the time from when a bug is introduced until it is fixed). We
use the recommended gap values in [256] to collect multiple runs of experimental data, e.g.,
Linux has four different runs during the given time period (between the First Date and
Last Date) as shown in Table 3.5. Note that our previous study [256] tuned and evaluated
the defect prediction models based on their precision values. In this work, we do not have
a bias on either precision or recall, and we tune and evaluate the prediction models based
on the harmonic of the precision and recall, i.e., F1 (details are in Section 3.4.2).

Imbalanced data issues occur in both the file-level and the change-level defect data,
and as shown in Table 3.4 and Table 3.5, most of the examined projects have buggy rates
less than 50%. To build optimal defect prediction models, we also perform the re-sampling
technique used in existing work [256], i.e., SMOTE [40], on the imbalanced projects.

3.4.4 Baselines of Traditional Features

Baselines for Evaluating File-level Defect Prediction

To evaluate the performance of semantic features for file-level defect prediction tasks, we
compare the semantic features with two different traditional features. Our first baseline
of traditional features consists of 20 traditional features. Table 3.6 shows the details of
the 20 features and their descriptions. These features and data have been widely used in
previous work to build effective defect prediction models [84,109,169,170,194,326].

We choose the widely used PROMISE data so that we can directly compare our ap-
proach with previous studies. For a fair comparison, we also perform the noise removal
approach described in Section 3.3.2 on the PROMISE data.

The traditional features from PROMISE do not contain AST nodes, which were used as
the input by our DBN models. For a fair comparison, our second baseline of traditional
features is the AST nodes that were given to our DBN models, i.e., the AST nodes in all
files after handling the noise (Section 3.3.2). Each instance is represented as a vector of
term frequencies of the AST nodes.
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Table 3.6: Benchmark metrics used for file-level defect prediction.

Metric Description

WMC the number of methods used in a given class [46]
DIT the maximum distance from a given class to the root of an inheritance tree [46]
NOC the number of children of a given class in an inheritance tree [46]
CBO the number of classes that are coupled to a given class [46]
RFC the number of distinct methods invoked by code in a given class [46]
LCOM the number of method pairs in a class that do not share access to any class

attributes [46]
LCOM3 another type of lcom metric proposed by Henderson-Sellers [57]
NPM the number of public methods in a given class [22]
LOC the number of lines of code in a given class [22]
DAM the ratio of the number of private/protected attributes to the total number of

attributes in a given class [22]
MOA the number of attributes in a given class which are of user-defined types [22]
MFA the number of methods inherited by a given class divided by the total number of

methods that can be accessed by the member methods of the given class [22]
CAM summation of number of different types of method parameters in every method

divided by a multiplication of number of different method parameter types in
whole class and number of methods [22]

IC the number of parent classes that a given class is coupled to [111]
CBM the total number of new or overwritten methods that all inherited methods in a

given class are coupled to [111]
AMC the average size of methods in a given class [111]
CA afferent coupling, which measures the number of classes that depends upon a

given class [161]
CE efferent coupling, which measures the number of classes that a given class depends

upon [161]
Max CC the maximum McCabe’s cyclomatic complexity (CC) score [163] of methods in a

given class
Avg CC the arithmetic mean of the McCabe’s clomatic complexity (CC) scores [163] of

methods in a given class

Baselines for Evaluating Change-level Defect Prediction

Our baseline features for change-level defect prediction include three types of change
features, i.e., bag-of-words features, characteristic features, and meta features,
which have been used in previous studies [104,256].

• Bag-of-words features: The bag-of-words feature set is a vector representing the
count of occurrences of each word in the text of changes. We employ the snowBall
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stemmer to group words of the same root, then we use Weka [74] to obtain the
bag-of-words features from both the commit messages and the source code changes.

• Characteristic features: Inspired by the Deckard tool [103], we use characteristic
vectors as features. Characteristic vectors represent the syntactic structure by count-
ing the numbers of each node type in the Abstract Syntax Tree (AST). Bag-of-words
and characteristic vectors have different abstraction levels. Although bag-of-words
can capture keywords, such as if and while, it cannot capture abstract syntactic
structures, such as the number of statements. Suppose that we are using if and else

node types for characteristic vectors, the characteristic vector of the code before the
changes shown in Figure 3.5 is (1, 1). After obtaining the characteristic vectors for
the file before the change and the file after the change, we subtract the two charac-
teristic vectors to obtain the difference. For each change, we use Deckard [103] to
automatically generate two characteristic vectors: one for the source code file before
the change and one for the source code file after the change. We use the difference
between the two characteristic vectors and the characteristic vector of the file after
the change as two sets of features.

• Meta features: In addition to characteristic and bag-of-words vectors, we also use
a set of metadata features, which includes the basic information of changes, e.g.,
commit time, filename, developers, etc. It also contains code change metrics, e.g.,
the added line count per change, the deleted line count per change, etc.

3.4.5 Parameter Settings for Training a DBN

Many DBN applications [48, 129, 180] report that an effective DBN requires well-tuned
parameters, i.e., 1) the number of hidden layers, 2) the number of nodes in each hidden
layer, and 3) the number of iterations. In this section, we study the impact of the three
parameters on defect prediction models.

Setting Parameters for File-level Defect Prediction

For file-level defect prediction, we tune the three parameters by conducting experiments
with different values of the parameters on ant (1.5, 1.6), camel (1.2, 1.4), jEdit (4.0,
4.1), lucene (2.0, 2.2), and poi (1.5, 2.5). Each experiment has specific values for the
three parameters and runs on the five projects individually. Given an experiment, for
each project, we use the older version of the project to train a DBN with respect to the
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Figure 3.7: File-level defect prediction performance with different parameters.

specific values of the three parameters. Then, we use the trained DBN to generate semantic
features for both the older and newer versions of the project. After this, we use the older
version to build a defect prediction model and apply it to the newer version. Finally, we
evaluate the specific values of the parameters by the average F1 score of the five projects
for file-level defect prediction.

Setting the number of hidden layers and the number of nodes in each layer.
Because the number of hidden layers and the number of nodes in each hidden layer interact
with each other, we tune these two parameters together. For the number of hidden layers,
we experiment with 11 discrete values that include 2, 3, 5, 10, 20, 50, 100, 200, 500,
800, and 1,000. For the number of nodes in each hidden layer, we experiment with eight
discrete values i.e., 20, 50, 100, 200, 300, 500, 800, and 1,000. When we evaluate these two
parameters, we set the number of iterations to 50 and keep it constant.

Figure 3.7 illustrates the average F1 scores obtained when tuning the number of hidden
layers and the number of nodes in each hidden layer together for file-level defect prediction.
When the number of nodes in each layer is fixed while increasing the number of hidden
layers, all the average F1 scores are convex curves. Most curves peak at the point where
the number of hidden layers is 10. If the number of hidden layers remains unchanged,
the best F1 score occurs when the number of nodes in each layer is 100 (the top line in
Figure 3.7). As a result, we choose the number of hidden layers as 10 and the number
of nodes in each hidden layer as 100. Thus, the number of the DBN-based features for
file-level defect prediction tasks is 100.
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Figure 3.8: Average error rates and time costs for different numbers of iterations for tuning
file-level defect prediction.

Setting the number of iterations. The number of iterations is another important
parameter for building an effective DBN. During the training process, the DBN adjusts
the weights to narrow down the error rate between the reconstructed input data and
original input data in each iteration. In general, the higher the number of iterations, the
lower the error rate. However, there is a trade-off between the number of iterations and
the computational time cost. For tuning the parameters for file-level defect prediction,
we choose the same five projects to conduct experiments with ten discrete values for the
number of iterations. The values range from 1 to 10,000. We use the error rate to evaluate
this parameter. Figure 3.8 demonstrates that, as the number of iterations increases, the
error rate decreases slowly as the corresponding time cost increases exponentially. In
this study, we set the number of iterations to 200, with which the average error rate is
approximately 0.098 and the time cost is 15 seconds.

Setting Parameters for Change-level Defect Prediction

For change-level defect prediction, we use the same parameter tuning process as the file-
level defect prediction to explore the best parameter values with all the runs of each of the
six projects listed in Table 3.5. For each run of a project, we use its training data to train a
DBN with respect to the specific values of the DBN parameters. Then, we use the trained
DBN to generate semantic features for both the training and test datasets. Afterward, we
use the training dataset to build a defect prediction model and apply it to the test dataset.
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Table 3.7: The comparison of F1 scores among change-level defect prediction with different
DBN-based features generated by the seven different types of tokens. The F1 scores are
measured as a percentage. The best F1 values are highlighted in bold.

Project added deleted context added+deleted added+context deleted+context added+deleted+context

Linux 39.2 39.8 32.5 39.8 40.1 40.6 41.3

PostgreSQL 48.9 49.5 39.6 49.8 51.8 50.1 55.0

Xorg 41.1 38.4 30.2 40.7 41.3 41.2 41.4

JDT 39.5 30.5 18.7 40.1 39.6 33.3 41.4

Lucene 37.2 38.1 31.4 37.8 38.9 38.5 39.7

Jackrabbit 45.3 44.7 39.5 45.6 46.6 47.8 49.9

Average 41.9 40.2 32.0 42.3 43.1 41.9 44.8

Last, we evaluate the specific values of the parameters by using the average F1 score of
the 41 runs from the six projects.

Note that, for change-level defect prediction, as we described in Section 3.3.1, we have
seven different approaches available to extract the source code token vector for a source
code change. Our tuning process considers these different types of tokens, the number
of hidden layers, and the number of nodes in each layer together. Specifically, for each
type of tokens we input them into our DBN model to generate features with different
configurations. Similar to our tuning process of file-level defect prediction, for the number
of hidden layers, we experiment with 11 discrete values, i.e., 2, 3, 5, 10, 20, 50, 100, 200,
500, 800, and 1,000. For the number of nodes in each hidden layer, we experiment with
eight discrete values, i.e., 20, 50, 100, 200, 300, 500, 800, and 1,000. When we evaluate the
seven different types of tokens and the two parameters, we set the number of iterations to
50 and keep it constant.

Table 3.7 shows the F1 scores of the change-level defect prediction with DBN-based
semantic features generated by each of the seven types of tokens. Note that among
the three basic token types (i.e., added, deleted, and context), the DBN-based fea-
tures generated by added and deleted deliver better performance than context on all
six projects. The improvement could be up to 20.8 percentage points (on project Jdt)
and on average the improvement is larger than 8 percentage points. In addition, all the
four different combinations, i.e., added+deleted, added+context, deleted+context, and
added+deleted+context, can generate better performance than the corresponding three
basic token types. This may be because the combinations provide more information to the
DBN model for generating more effective features to capture buggy changes (a detailed dis-
cussion is provided in Section 3.6.3). Among the four combinations, added+deleted+context
achieves the best performance.
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In this work, we use the combination of added, deleted, and context tokens as input
to DBN models to generate features. The corresponding best value of the number of hidden
layers is 5 and the best value of the number of nodes in each hidden layers is 50. This
means that the number of generated DBN-based features for change-level defect prediction
is 50. Additionally, for change-level defect prediction, we also set the number of iterations
to 200, with which the average error rate is less than 0.05 and the time cost for feature
generation is less than 5 seconds.

3.4.6 File-level Within-Project Defect Prediction

To examine the performance of our semantic features on file-level within-project defect
prediction, we build defect prediction models using three machine learning classifiers, i.e.,
ADTree, Naive Bayes, and Logistic Regression, which have been widely explored in previous
work [109, 169, 170, 194, 326]. We use two consecutive versions of each project listed in
Table 3.4 as the training and test data sets. We use the source code of an older version
to train the DBN and generate the training feature set. Then we use the trained DBN to
generate features for instances from a newer version. We compare our semantic features
with the traditional features as described in Section 3.4.4. For a fair comparison, we use
the same classifiers on these traditional features.

3.4.7 File-level Cross-Project Defect Prediction

Due to a lack of defect data, it is often difficult to build accurate prediction models for
new projects. To overcome this problem, cross-project defect prediction techniques train
prediction models using data from mature projects (called source projects), and use the
trained models to predict defects for new projects (called target projects). However, because
the features of source projects and target projects often have different distributions, making
an accurate and precise cross-project defect prediction model is still challenging [193].

We believe that the semantic features can capture the common characteristics of defects,
which implies that the semantic features trained from one project can be used to predict
defects in a different project, and so is applicable in cross-project defect prediction. To
measure the performance of the semantic features in cross-project defect prediction, we
propose a technique called DBN Cross-Project Defect Prediction (DBN-CP). Given a source
project and a target project, DBN-CP first trains a DBN by using the source project and
generates semantic features for both projects. Then, DBN-CP trains an ADTree based
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defect prediction model using data from the source project and uses the built model to
perform defect prediction on the target project.

We choose TCA+ [194] as our baseline. To compare with TCA+, we design two different
experiments. First, for each of the 16 test versions (which are the target versions in cross-
project prediction) from the within-project experiments list in Table 3.8, we randomly
select two source projects that are different from the target projects. Thus, 32 test pairs are
collected. Our first experiment can help evaluate the performance of DBN-CP compared
to TCA+ and the corresponding within-project defect prediction. Then, to extensively
examine the performance of DBN-CP, we use each version from one project as a target
project and each version from the other projects as a source project. In total, 606 test
pairs are formed.

The reason why we use TCA+ for the comparison that TCA+ is one of the state-of-the-
art techniques in cross-project defect prediction [194]. In our reproduction, we follow the
processes described in [194]. We first implement all five of their proposed normalization
methods and assign them the same conditions as given in the TCA+ paper. We then
perform Transfer Component Analysis [208] on the source projects and the target projects
together, and map them onto the same subspace while minimizing the data difference and
maximizing the data variance. Finally, we use the source projects and target projects with
the new features to build and evaluate the ADTree-based prediction models.

3.4.8 Change-level Within-Project Defect Prediction

To examine the effectiveness of the learned DBN-based features for change-level defect
prediction tasks, we compare the performance of the DBN-based features to the three
types of traditional features described in Section 3.4.4. By examining the combination of
these traditional features, we should be able to generate the best performance for change-
level defect prediction [104, 256]. In this work, we use the combination as the benchmark
for change-level defect prediction.

To generate DBN-based semantic features, for each run of a project listed in Table 3.5,
we use its training data to train a DBN (with the combination of all the tokens in a change
as the input to the DBN). Then, we use the trained DBN to generate semantic features
for both the training and test datasets. We then use the training data to build a defect
prediction model and apply it to the test data. For the classification algorithm, we use
ADTree in Weka [74] as the classifier, because it has delivered the best performance in
previous work [104,194,256].
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3.4.9 Change-level Cross-Project Defect Prediction

Similar to file-level defect models, change-level models also require a large amount of train-
ing data to train and build prediction models. However, sufficient training data are not
often available when projects are in their initial development phases. To address this
limitation, cross-project models for change-level prediction tasks are needed [114]. To ex-
plore the performance of the DBN-based semantic features in change-level cross-project
defect prediction, we propose a technique called DBN Change-level Cross-Project defect
Prediction (DBN-CCP). Specifically, given a source project and a target project, DBN-CCP
first trains a DBN by using the source project and generates semantic features for both the
source project and the target project. Then, DBN-CCP trains a defect prediction model
using data from the source project, and uses the built model to perform defect prediction
on the target project.

For evaluating the performance of DBN-CCP, we also choose TCA+ [194] as our base-
line. Note that TCA+ requires that the target and source projects have the same features
for learning TCA+ based features. As described in Section 3.4.4, in this study we lever-
age three different types of features for change-level defect prediction, i.e., bag-of-words
features, characteristic features, and meta features. Both the bag-of-words features and
characteristic features are project-specific and vary for different projects. Thus, for TCA+
on change-level prediction, we only use the meta features.

To extensively evaluate the performance of DBN-CCP, we use each test dataset in
all runs from one project as a target dataset and each training dataset in all runs from
the other projects as a source dataset to form change-level cross-project test pairs. For
example, one test pair could be a training set from Run 1 of Project A and a test set from
Run 1 of Project B, a training set from Run 2 of Project A and a test set from Run 1 of
Project B, etc. In total, 1,380 test pairs are formed.

3.5 Results and Analysis

3.5.1 RQ1: Performance of semantic features for file-level within-
project defect prediction

Non-effort-aware evaluation scenario

We build file-level within-project defect prediction models to compare the impact of three
sets of features: semantic features that are automatically learned by DBN, PROMISE
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features, and AST features. The latter two are the baselines of traditional features. We
conduct 16 sets of file-level within-project defect prediction experiments, each of which
uses two versions from the same project (listed in Table 3.4). The older version is used to
train the prediction models, and the newer version is used as the test set to evaluate the
trained models.

Table 3.8 shows the performance of the file-level within-project defect prediction ex-
periments. The highest F1 values of the three sets of features are shown in bold. For
example, by using ant 1.6 as the training set, and ant 1.7 as the test set, the F1 of using
semantic features is 94.2%, while the F1 is only 54.2% with the first baseline of traditional
features (from PROMISE), and the F1 is 47.0% with the second baseline of traditional
features (AST nodes). For this comparison, the only difference is the three sets of features,
meaning that the same classification algorithm, namely ADTree and the same training and
test sets are used.

The results demonstrate that by using the DBN-based semantic features instead of the
PROMISE features, we can improve the F1 by 14.2 percentage points on the 16 experiment
pairs on average. The average improvements in the precision and recall are 14.7 percentage
points and 11.5 percentage points respectively.

Since the DBN algorithm has randomness, the generated features vary between different
runs. Therefore, we run our DBN-based feature generation approach five times for each
experiment. Among the runs, the difference in the generated features is at the level of
1.0e-20, which is too small to propagate to precision, recall, and F1. In other words, the
precision, recall, and F1 of all five runs are identical.

Effort-aware evaluation scenario

For the effort-aware scenario, we rerun the 16 pairs of file-level within-project defect pre-
diction experiments listed in Table 3.8, and calculate the PofB20 of the test data in each
experiment based on our setup description in Section 3.4.2.

Table 3.9 presents the PofB20 of file-level within-project defect prediction models with
DBN-based semantic features and the PROMISE features. As we can see, in all the
experiments, DBN-based features could achieve better PofB20 than the corresponding
PROMISE features. Compared to the PROMISE features, the improvement could be as
much as 26.7 percentage points (ant 1.6 ⇒ ant 1.7) and is, on average, 13.3 percentage
points.
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Table 3.8: Comparison between semantic features and two baselines of traditional features
(PROMISE features and AST features) using ADTree. Tr denotes the training set version
and T denotes the test set version. P, R, and F1 denote the precision, recall, and F1
score respectively and are measured as a percentage. The better F1 values with statistical
significance (p-value < 0.05) among the three sets of features are shown with an asterisk
(*). The numbers in parentheses are the effect sizes comparative to the Semantic. A
positive value indicates that the semantic features improve the baseline features in terms
of the effect size.

Project
Versions Semantic* PROMISE (0.555) AST (0.656)

(Tr ⇒ T) P R F1 P R F1 P R F1

ant
1.5 ⇒ 1.6 88.0 95.1 91.4 44.8 51.1 47.7 40.5 51.4 45.3
1.6 ⇒ 1.7 98.8 90.1 94.2 41.8 77.1 54.2 41.2 54.7 47.0

camel
1.2 ⇒ 1.4 96.0 66.4 78.5 24.8 75.2 37.3 32.3 55.6 40.2
1.4 ⇒ 1.6 26.3 64.9 37.4 28.3 63.7 39.1 29.7 51.5 38.3

jEdit
3.2 ⇒ 4.0 46.7 74.7 57.4 44.7 73.3 55.6 45.8 47.4 46.6
4.0 ⇒ 4.1 54.4 70.9 61.5 46.1 67.1 54.6 50.4 40.4 44.8

log4j 1.0 ⇒ 1.1 67.5 73.0 70.1 49.1 73.0 58.7 55.4 38.6 45.5

lucene
2.0 ⇒ 2.2 75.9 56.9 65.1 73.3 38.2 50.2 69.5 37.4 48.4
2.2 ⇒ 2.4 66.5 92.1 77.3 70.9 52.7 60.5 65.9 53.1 58.8

xalan 2.4 ⇒ 2.5 65.0 54.8 59.5 64.7 43.2 51.8 60.1 43.5 50.5
xerces 1.2 ⇒ 1.3 40.3 42.0 41.1 16.0 46.4 23.8 25.5 22.0 23.6
ivy 1.4 ⇒ 2.0 21.7 90.0 35.0 22.6 60.0 32.9 31.6 28.6 30.0

synapse
1.0 ⇒ 1.1 46.0 66.7 54.4 45.5 50.0 47.6 51.5 45.7 48.4
1.1 ⇒ 1.2 57.3 59.3 58.3 51.1 55.8 53.3 50.7 40.5 49.0

poi
1.5 ⇒ 2.5 76.1 55.2 64.0 73.7 44.8 55.8 70.0 31.6 43.5
2.5 ⇒ 3.0 81.6 79.0 80.3 75.0 75.8 75.4 72.1 46.3 55.6

Average 63.0 70.7 64.1 48.3 59.2 49.9 49.5 43.0 44.7

We further conduct the Wilcoxon signed-rank test (p < 0.05) to compare the perfor-
mance of the DBN-based semantic features and PROMISE features for file-level within-
project defect prediction with the 16 experiment pairs under both the non-effort-aware
and effort-aware evaluation scenarios. The results suggest that the DBN-based semantic
features are significantly better than the PROMISE features.

Our DBN-based approach is effective in automatically learning semantic features, which
significantly improves the performance of file-level within-project defect prediction under
both non-effort-aware and effort-aware evaluation scenarios with large effect sizes.
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Table 3.9: PofB20 scores of DBN-based features and traditional features for WPDP. The
PofB20 scores are measured as a percentage. The best values are in bold. The better
PofB20 values with statistical significance (p-value < 0.05) between the two sets of fea-
tures are indicated with an asterisk (*). The numbers in parentheses are the effect sizes
comparative to the Semantic.

Project
Versions
(Tr⇒T)

Semantic* PROMISE (0.756)

ant
1.5⇒1.6 44.3 16.3
1.6⇒1.7 50.2 23.5

camel
1.2⇒1.4 33.2 33.8
1.4⇒1.6 30.1 23.4

jEdit
3.2⇒4.0 40.1 29.3
4.0⇒4.1 32.6 17.7

log4j 1.0⇒1.1 25.0 21.6

lucene
2.0⇒2.2 32.1 14.6
2.2⇒2.4 37.9 23.2

xalan 2.4⇒2.5 24.5 8.3
xerces 1.2⇒1.3 9.1 7.2
ivy 1.4⇒2.0 28.3 15.1

synapse
1.0⇒1.1 29.6 13.3
1.1⇒1.2 32.5 12.8

poi
1.5⇒2.5 38.7 26.2
2.5⇒3.0 25.5 13.9

Average 32.1 18.8

RQ1a: Do semantic features outperform traditional features with other classi-
fication algorithms?

To answer this question, we build file-level within-project defect prediction models by using
two alternative classification algorithms, i.e., Naive Bayes and Logistic Regression. We
conduct 16 sets of file-level within-project defect prediction tests, where the training sets
and the test sets are exactly the same as those in RQ1. Table 3.10 shows the F1 scores of
running Naive Bayes and Logistic Regression on semantic features and PROMISE features.
Take ant as an example, when the model is built on Naive Bayes, by choosing version 1.5
as the training set and 1.6 as the test set, the semantic features produce an F1 of 63.0%,
which is 7.0 percentage points higher than using PROMISE features. For the same example
with Logistic Regression as the classification algorithm, the semantic features achieve an
F1 of 91.6%, while using PROMISE features produces an F1 of 50.6% only. Among the
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Table 3.10: Comparison of F1 scores between semantic features and PROMISE features
using Naive Bayes and Logistic Regression. Tr denotes the training set version and T
denotes the test set version. The F1 scores are measured as a percentage.

Project
Version Naive Bayes Logistic Regression
(Tr⇒T) Semantic PROMISE Semantic PROMISE

ant
1.5⇒1.6 63.0 56.0 91.6 50.6
1.6⇒1.7 96.1 52.2 92.5 54.3

camel
1.2⇒1.4 45.9 30.7 59.8 36.3
1.4⇒1.6 48.1 26.5 34.2 34.6

jEdit
3.2⇒4.0 58.3 48.6 55.2 54.5
4.0⇒4.1 60.9 54.8 62.3 56.4

log4j 1.0⇒1.1 72.5 68.9 68.2 53.5

lucene
2.0⇒2.2 63.2 50.0 63.0 59.8
2.2⇒2.4 73.8 37.8 62.9 69.4

xalan 2.4⇒2.5 45.2 39.8 56.5 54.0
xerces 1.2⇒1.3 38.0 33.3 47.5 26.6
ivy 1.4⇒2.0 34.4 38.9 34.8 24.0

synapse
1.0⇒1.1 47.9 50.8 42.3 31.6
1.1⇒1.2 57.9 56.5 54.1 53.3

poi
1.5⇒2.5 77.0 32.3 66.4 50.3
2.5⇒3.0 77.7 46.2 78.3 74.5

Average 60.0 45.2 59.7 49.0

experiments with either Naive Bayes or Logistic Regression as the classification algorithm,
the semantic features outperform the PROMISE features 14 out of the 16 times. On
average, the Naive Bayes based defect prediction model with semantic features achieves an
F1 of 60.0%, which is 14.8 percentage points higher than the Naive Bayes with PROMISE
features. Similarly, the average F1 of using semantic features with Logistic Regression is
59.7%, which is 10.7 percentage points higher than Logistic Regression with PROMISE
features.

The semantic features automatically learned from the DBN improve the file-level within-
project defect prediction and the improvement is not tied to a particular classification
algorithm.
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Figure 3.9: Results of the DBN-CP, TCA+, and Baseline for CPDP.
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Table 3.11: F1 scores of the file-level cross-project defect prediction for target projects
explored in RQ1. The F1 scores are measured as a percentage. Better F1 values with
statistical significance (p-value < 0.05) between DBN-CP and TCA+ are indicated with
an asterisk (*). The numbers in parentheses are the effect sizes comparative to DBN-CP.

Source Target
Cross-Project Within-Project

DBN-CP* TCA+ (0.274) Semantic Features
camel1.4 ant1.6 97.9 61.6

91.4
poi3.0 ant1.6 47.8 59.8
camel1.2 ant1.7 31.2 35.4 94.2
jEdit3.2 ant1.7 41.7 45.5
ant1.6 camel1.4 31.6 29.2

78.5
jEdit4.1 camel1.4 69.3 33.0
ant1.5 camel1.6 49.0 21.3 37.4
lucene2.0 camel1.6 49.2 32.1
xerces1.2 jEdit4.0 51.9 32.7 57.4
ivy1.4 jEdit4.0 35.0 50.2
camel1.4 jEdit4.1 61.5 53.7

61.5
log4j1.1 jEdit4.1 50.3 41.9
jEdit4.1 log4j1.1 64.5 57.4

70.1
lucene2.2 log4j1.1 61.8 57.1
xalan2.5 lucene2.2 59.4 56.1

65.1
log4j1.1 lucene2.2 69.2 52.4
poi2.5 lucene2.4 64.9 54.4 77.3
xalan2.4 lucene2.4 61.6 60.9
lucene2.2 xalan2.5 55.0 53.0

59.5
xerces1.3 xalan2.5 57.2 58.1
xalan2.5 xerces1.3 38.6 39.4

41.1
ivy2.0 xerces1.3 42.6 39.8
xerces1.3 ivy2.0 45.3 40.9

35.0
synapse1.2 ivy2.0 82.4 38.3
ivy1.4 synapse1.1 48.9 34.8

54.4
poi2.5 synapse1.1 42.5 37.6
ivy2.0 synapse1.2 43.3 57.0

58.3
poi3.0 synapse1.2 51.4 54.2
synapse1.2 poi3.0 66.1 65.1

80.3
ant1.6 poi3.0 61.9 34.3
synapse1.1 poi2.5 44.6 40.6 64.0
ant1.6 poi2.5 47.5 44.7

Average 53.9 46.1 64.1
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Table 3.12: F1 scores of file-level cross-project defect prediction for all projects listed in
Table 3.4. The F1 scores are measured as a percentage. Better F1 values with statistical
significance (p-value < 0.05) between DBN-CP, TCA+, and Baseline are shown with an
asterisk (*). Numbers in parentheses are effect sizes comparative to DBN-CP.

Source Target DBN-CP TCA+ Baseline Within-Project

All
Others

ant 57.3* 50.9 (0.638) 38.9 (0.774) 92.8
camel 46.1* 32.7 (0.484) 22.7 (0.685) 57.9
jEdit 49.7* 43.9 (0.405) 44.5 (0.261) 59.4
log4j 56.2* 52.9 (0.231) 38.7 (0.450) 70.1

lucene 43.9* 41.0 (0.522) 31.7 (0.541) 71.2
xalan 46.2* 44.7 (0.363) 35.2 (0.577) 59.5
xerces 39.7* 33.4 (0.570) 34.6 (0.513) 41.1

ivy 41.4* 28.6 (0.148) 31.7 (0.782) 35.0
synapse 50.2* 47.9 (0.336) 35.3 (0.636) 56.4

poi 63.2* 58.1 (0.307) 34.9 (0.592) 72.2

Average 49.4 43.4 (0.401) 34.8 (0.628) 61.6

3.5.2 RQ2: Performance of semantic features for file-level cross-
project defect prediction

Non-effort-aware evaluation scenario

To answer this question, we compare our file-level cross-project defect prediction technique
DBN-CP with TCA+ [194]. DBN-CP runs on the semantic features that are automatically
generated by the DBN, while TCA+ uses the PROMISE features. For a fair comparison, we
also provide a benchmark of within-project defect prediction. As described in Section 3.4.3,
our preliminary experimental evaluation includes a set of 32 cross-project test pairs. Each
experiment takes two versions separately from two different projects, with one used as the
training set and the other used as the test set. The benchmark of the file-level within-
project defect prediction uses the data from an older version of the target project as the
training set.

Table 3.11 lists the F1 scores of the DBN-CP, TCA+, and the benchmark within-
project defect prediction. The better F1 scores between the DBN-CP and TCA+ are in
bold. Regarding the average F1, DBN-CP achieves 53.9%, which is 7.8 percentage points
higher than the 46.1% of TCA+. The statistical test also suggests the DBN-CP is overall
significantly better than TCA+.

As described in Section 3.4.3, to extensively evaluate the performance of DBN-CP, we
use each version from one project as the target project and one version from the other
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projects as the source project to form a file-level cross-project experiment test pair. This
experiment includes 606 test pairs. Specifically, DBN-CP runs on the semantic features
and TCA+ runs on generated features by using the PROMISE features. We also provide
two benchmarks, i.e., Baseline and Within-Project. Baseline is the result of cross-project
defect prediction with the original PROMISE features.

Table 3.12 shows the average F1 scores of the DBN-CP, TCA+, Baseline, and Within-
Project defect prediction on each of the file-level projects. Overall, both DBN-CP and
TCA+ deliver better performance than Baseline. Moreover, DBN-CP generates a better
F1 than TCA+ on all 10 projects listed, and the improvement is as much as 12.8 percentage
points (ivy) and is, on average, 6.0 percentage points higher. Compared with the within-
project defect prediction, DBN-CP improves the cross-project defect prediction by reducing
the gap to approximately 12 percentage points. The statistical tests also show that overall
DBN-CP is significantly better than both TCA+ and Baseline.

Figure 3.9 shows the boxplots of the F1 scores for DBN-CP, TCA+, and Baseline for
the 10 projects listed in Table 3.4. Specifically, each boxplot presents the F1 distribution
(median and upper/lower quartiles) of each of the three approaches for cross-project file-
level defect prediction. The boxplots indicate that overall, both DBN-CP and TCA+
perform better than Baseline, and that DBN-CP performs better than TCA+ and Baseline
on almost all projects.

Effort-aware evaluation scenario

For the effort-aware evaluation, we also calculate the PofB20 for the DBN-CP, TCA+, and
Baseline approaches on each of the target projects.

Table 3.13 shows the PofB20 of the three file-level cross-project defect prediction mod-
els. The highest PofB20 values among the three approaches are shown in bold. In all the
experiments, DBN-CP achieves better PofB20 than both TCA+ and Baseline. The PofB20
scores of DBN-CP vary from 21.8 to 37.6 percentage points across the 606 experiments,
and the average PofB20 score of DBN-CP is 29.5 percentage points. Compared to TCA+,
the improvement is as high as 21.8 percentage points (Poi) and is, on average, 10.3 per-
centage points. The results of the Wilcoxon signed-rank test (p < 0.05) also indicate that
DBN-CP is overall significantly better than both TCA+ and Baseline.
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Table 3.13: PofB20 scores of DBN-based features and traditional features for CPDP.
PofB20 scores are measured in percentage. Better PofB20 values with statistical signif-
icance (p-value < 0.05) among DBN-CP, TCA+, and Baseline are showed with an asterisk
(*). Numbers in parentheses are effect sizes comparative to DBN-CP.

Source Target DBN-CP TCA+ Baseline

All
Others

ant 28.3* 28.1 (0.434) 18.3 (0.888)
camel 32.7* 14.8 (0.982) 10.7 (1)
jEdit 23.2* 21.8 (0.302) 19.6 (0.462)
log4j 28.6* 19.1 (0.787) 18.4 (0.855)
lucene 30.5* 15.6 (1) 10.9 (1)
xalan 37.6* 15.5 (0.900) 14.6 (0.910)
xerces 29.1* 22.5 (0.479) 12.9 (0.855)
ivy 26.5* 20.1 (0.488) 17.9 (0.789)
synapse 21.8* 19.2 (0.133) 15.7 (0.450)
poi 36.7* 14.9 (0.994) 11.2 (1)

Average 29.5 19.2 (0.650) 15.0 (0.821)

DBN-CP significantly improves the performance of file-level cross-project defect predic-
tion under both non-effort-aware and effort-aware evaluation scenarios with a nontrivial
effect. This implies that the semantic features learned by the DBN are effective and are
able to capture the common characteristics of defects across projects.

3.5.3 RQ3: Performance of semantic features for change-level
within-project defect prediction

Non-effort-aware evaluation scenario

To answer this question, we use different features to build change-level within-project defect
prediction models, e.g., DBN-based semantic features, and three change features described
in Section 3.4.4 (i.e., the bag-of-words features, the characteristic features, and the meta
features). As we described in Section 3.4.3, in the change-level dataset, each project has
multiple runs. Thus, we use the training data from each run to build and train the ADTree
based prediction model and evaluate its performance on the test data in this run. To show
the overall performance, we use the weighted average precision, recall, and F1 following
existing work [104,256].
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Figure 3.10: Results of DBN-CCP, TCA+, and Baseline for CCDP.
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Table 3.14: Overall results of the change-level within-project defect prediction. All values
are measured as a percentage. The better F1 values with statistical significance (p-value
< 0.05) between the two sets of features are indicated with an asterisk (*). The numbers
in parentheses are the effect sizes comparative to the Semantic Features in terms of F1.

Projects Features P R F1

Linux
Change Features [104,256] (0.821) 28.7 49.5 36.3

Semantic Features 32.5 56.9 41.3*

PostgreSQL
Change Features (1) 44.1 49.0 46.4

Semantic Features 51.6 58.8 55.0*

Xorg
Change Features (0.653) 29.1 51.5 37.2

Semantic Features 31.7 59.4 41.4*

JDT
Change Features (0.421) 32.5 41.5 36.4

Semantic Features 30.2 65.9 41.4*

Lucene
Change Features (0.136) 33.0 46.8 38.7

Semantic Features 31.4 54.0 39.7*

Jackrabbit
Change Features (0.525) 46.0 44.6 45.3

Semantic Features 49.3 50.4 49.9*

Average
Change Features (0.593) 36.3 50.6 40.1

Semantic Features 37.6 56.6 44.8

Table 3.14 shows the precision, recall, and F1 of the within-project change-level defect
prediction experiments. Overall, the DBN-based features generate better results than the
traditional change features in terms of F1. Specifically, for all the projects, the DBN-based
features could improve the best existing change features up to 8.6 percentage points in F1,
and the improvement is 4.7 percentage points, on average.

Effort-aware evaluation scenario

We further evaluate the DBN-based semantic features and traditional change features for
change-level within-project defect prediction with the PofB20 metric.

Table 3.15 shows the PofB20 of the change-level within-project defect prediction models
with DBN-based semantic features and the traditional change features. The DBN-based
features could achieve better PofB20 scores than the corresponding change features in all
the experiment pairs. The PofB20 scores (measured as a percentage) of DBN-based features
vary from 23.8 to 37.6 across the experiments, and the average PofB20 score of the defect
prediction models with DBN-based features is 29.2. Compared to the change features, the
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Table 3.15: PofB20 scores of the DBN-based features and the traditional features for
WCDP. The PofB20 scores are measured as a percentage. The best values are in bold.
The better PofB20 values with statistical significance (p-value < 0.05) among these two
sets of features are indicated with an asterisk (*). The numbers in parentheses are the
effect sizes comparative to the DBN-based semantic features.

Project Semantic Features Change Features
Linux 28.6* 25.0 (0.324)
PostgreSQL 29.2* 8.1 (1)
Xorg 37.6* 24.8 (0.901)
JDT 23.8* 14.5 (1)
Lucene 28.1* 21.9 (0.887)
Jackrabbit 27.9* 21.3 (0.621)

Average 29.2 19.3 (0.789)

Table 3.16: F1 scores of change-level cross-project defect prediction for all projects. The
F1 scores are measured as percentages. The better F1 values with statistical significance
(p-value < 0.05) between DBN-CCP, TCA+, and Baseline are indicated with an asterisk
(*). The numbers in parentheses are the effect sizes comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline Within

All
Others

Linux 35.1* 32.4 (0.295) 24.7 (0.439) 41.3
PostgreSQL 44.2* 43.6 (0.130) 25.7 (0.370) 55.0
Xorg 31.8* 30.4 (0.128) 22.8 (0.310) 41.4
JDT 33.3* 27.3 (0.360) 22.6 (0.566) 41.4
Lucene 31.3* 30.2 (0.129) 21.3 (0.520) 39.7
Jackrabbit 44.4* 43.3 (0.131) 26.5 (0.463) 49.9

Average 36.7 34.5 (0.196) 23.9 (0.445) 44.7

improvement could be up to 21.1 percentage points (PostgreSQL) and is 9.9 percentage
points, on average. In addition, the statistical test, i.e., the Wilcoxon signed-rank test
(p < 0.05), also suggests that the DBN-based features are overall significantly better than
the change features under both the non-effort-aware and effort-aware evaluation scenarios.

The semantic features automatically learned from the DBN could improve the change-
level within-project defect prediction with statistical significance under both non-effort-
aware and effort-aware evaluation scenarios with nontrivial effect sizes.
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3.5.4 RQ4: Performance of semantic features for change-level
cross-project defect prediction

Non-effort-aware evaluation scenario

To answer this question, we compare our cross-project change-level defect prediction tech-
nique DBN-CCP with TCA+. For a fair comparison, we also provide two benchmarks, i.e.,
Baseline and Within-Project. The Baseline is the result of change-level defect prediction
with the original change features. As we described in Section 3.4.9, we use the test data
of one run from one project as the target project and the training data of one run from a
different project as the source project to form the change-level cross-project test pairs (in
total 1,380 pairs). For each test pair, we build the ADTree based defect prediction model
using the three different sets of features.

Table 3.16 shows the average F1 scores of the DBN-CCP, TCA+, Baseline, and Within-
Project for each of the change-level projects. Overall, both DBN-CCP and TCA+ deliver
better performance than Baseline. Moreover, DBN-CCP generates a better F1 than TCA+
on all the projects on average. The improvement is as high as 6.0 percentage points and is
2.2 percentage points higher, on average. Compared to the within-project defect prediction,
DBN-CCP improves the cross-project defect prediction by reducing the gap to only 8.0
percentage points.

Figure 3.10 shows the boxplots of the F1 scores for DBN-CCP, TCA+, and Baseline for
the six projects listed in Table 3.5. Specifically, each boxplot presents the F1 distribution
(median and upper/lower quartiles) of each of the three approaches for the change-level
cross-project defect prediction. The boxplots show that overall both DBN-CCP and TCA+
perform better than Baseline, moreover DBN-CCP performs better than TCA+ and Base-
line on almost all projects.

Effort-aware evaluation scenario

We also calculate the PofB20 score for the DBN-CCP, TCA+, and Baseline approaches on
each of the target projects when conducting change-level cross-project defect prediction.
Table 3.17 shows the PofB20 values of the three change-level cross-project defect prediction
models. The highest PofB20 values among the three approaches are shown in bold. DBN-
CCP achieves better PofB20 scores than both TCA+ and Baseline. On average, the
PofB20 score (measured as a percentage) of DBN-CCP is 21.9. Compared to TCA+, the
improvement can be up to 3.0 percentage points (Jdt) and is 1.3 percentage points, on
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Table 3.17: PofB20 scores of the DBN-based features and traditional features for CCDP.
The PofB20 scores are measured as a percentage. The best values are in bold. The better
PofB20 values with statistical significance (p-value < 0.05) among the DBN-CCP, TCA+,
and Baseline are indicated with an asterisk (*). The numbers in parentheses are the effect
sizes comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline

All
Others

Linux 24.7* 24.1 (0.255) 18.5 (0.500)
PostgreSQL 20.7 20.3 (0.019) 15.9 (0.438)
Xorg 22.7* 22.0 (0.110) 19.7 (0.511)
JDT 25.6* 22.6 (0.273) 13.5 (0.360)
Lucene 18.1 18.0 (0.030) 17.0 (0.371)
Jackrabbit 19.3* 16.4 (0.352) 16.1 (0.343)

Average 21.9 20.6 (0.180) 16.8 (0.421)

Table 3.18: Time and space costs of generating semantic features for file-level defect pre-
diction (s: second).

Project
Generating Features

Time (s) Memory (MB)
ant 15.5 2.8
camel 32.0 5.5
jEdit 18.1 3.3
log4j 10.1 2.2
lucene 11.1 2.4
xalan 29.6 6.2
xerces 13.9 5.8
ivy 8.0 2.2
synapse 8.5 1.9
poi 11.9 4.4

average. The results of the Wilcoxon signed-rank test (p < 0.05) also indicate that the
performance of DBN-CCP is, overall, significantly better than TCA+ and Baseline under
both the non-effort-aware and effort-aware evaluation scenarios.

DBN-CCP significantly improves the performance of the change-level cross-project de-
fect prediction compared to the traditional change features with a nontrivial effect.
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3.5.5 Time and Memory Overhead

To understand the space cost of file-level defect prediction, during file-level defect prediction
experiments, we keep track of the time cost and memory space cost for our DBN-based
feature generation process (details are in Section 3.3.3). In addition, we also have recorded
the time cost for tuning the DBN models in our experiments. The other processes, including
parsing source code, handling noise, mapping tokens, building models, and predicting
defects, are all common procedures, so we do not analyze their costs.

As described in Section 3.4.5, we tune the three parameters, i.e., the number of hidden
layers, the number of nodes in each layer, and the number of iterations, for the randomly
selected five projects. To find the best combination among the three parameters, we have
11× 8× 10 experiments. In total, the tuning process costs approximately 5 hours.

Table 3.18 shows the time cost and the memory space cost of each project for gener-
ating semantic features. As shown in Table 3.8, ant has two sets of within-project defect
prediction experiments, which are ant 1.5 ⇒ 1.6 and ant 1.6 ⇒ 1.7. On average, it
takes the two experiments 15.5 seconds and 2.8 MB memory for the DBN to generate the
semantic features for both the training data and the test data. Among all the projects, the
time cost of automatically generating the semantic features varies from 8.0 seconds (ivy)
to 32.0 seconds (camel). For the memory space cost, it takes less than 6.5MB for all the
examined projects.

In addition, we also keep track of the time and memory space cost for generating DBN-
based features for the change-level defect prediction during our experiments. Different from
the file-level defect prediction that predicts whether a file contains bugs or not, change-level
defect prediction predicts whether a change is buggy or clean. Source files often contain
hundreds of LOC, while changes often have fewer lines than files. Thus, both the time
and memory costs of generating DBN-based features for changes are smaller than those for
files. In our experiments, the average time cost and memory cost of generating DBN-based
features for changes are 2.4 seconds and 0.6 MB.

Our DBN-based approach to automatically learning semantic features is applicable in
practice.
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Figure 3.11: An example to illustrate the issues of using cross-validation to evaluate change-
level defect prediction. Circles are clean changes and dots are buggy.

Table 3.19: Information gain of different types of tokens and their combinations that are
used for generating DBN-based semantic features in change-level defect prediction. Spear-
man is the Spearman correlation value between the information gain and the prediction
results of different types of tokens on a project.

Project added deleted context added+deleted added+context deleted+context all Spearman

Jackrabbit 8.2 7.4 7.4 8.2 8.6 8.4 8.9 0.96

Lucene 6.9 6.5 6.3 7.1 7.6 7.4 7.7 0.89

Jdt 8.1 7.0 7.1 8.0 9.8 8.4 8.9 0.64

Linux 4.2 3.8 3.0 4.3 5.0 4.9 5.1 0.90

Postgresql 5.9 5.5 5.3 6.0 6.7 6.6 7.6 0.96

Xorg 4.8 4.0 4.9 5.5 6.0 5.9 6.1 0.82

Average 6.4 5.7 5.6 6.5 7.3 6.9 7.4 0.86

3.6 Discussion

3.6.1 Issues of Using Cross-Validation to Evaluate Change-level
Defect Prediction

As described in Section 3.3.4, this work did not use the widely used cross-validation to eval-
uate change-level defect prediction. The main reason is that change-level defect prediction
is time sensitive, i.e., changes follow a certain order in time. For example, in Figure 3.11,
changes C1–C10 are committed chronologically, where C1 is the earliest, and C10 is the
latest. Dots denote the buggy changes and circles denote the clean changes. An arrow links
a buggy change and the corresponding change that fixes the buggy change. For example,
C6 fixes the bugs in C4; therefore, C4 is labeled as a buggy change.
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Because of the characteristic of changes, using cross-validation to evaluate change clas-
sification may introduce the following two issues. First, cross-validation will use future
data for prediction. In this example, 10-fold cross-validation will make each change the
test set in each iteration. For example, it will use C2–C10 to predict whether C1 is buggy
or not, which does not match a real-world usage scenario where we typically want to make
the prediction at the time when C1 is committed and by then C2–C10 are not available
yet. Second, cross-validation could mislabel changes. Using cross-validation, changes will
be labeled as shown in Figure 3.11. For example, C5 will be labeled buggy. However, in
practice, when we predict whether C6 is buggy, we would only have information at time
t predict. Therefore, C5 should be clean at time t predict because C7 was nonexistent at
that time. It is incorrect for cross-validation to consider C5 buggy when we predict the
label of C6 at time t predict, because we would not know that C5 is buggy at time t predict.
Due to the above two issues, cross-validation is inaccurate for evaluating defect prediction
in practice. Thus, in this work, we did not adopt cross-validation to evaluate defect pre-
diction tasks, we divided the data into different folds chronologically and evaluated the
overall performance on all the folds for avoiding bias.

3.6.2 Why Do DBN-based Semantic Features Work?

Our experiments in Section 3.5 show that compared to traditional features, the DBN-based
features that are directly learned from source code deliver significantly better performance
for all the four defect prediction tasks investigated in this work. The probable reasons for
the outstanding performance of DBN-based features are summarized as follows.

First, the DBN models generate features with more complex network connections.
These network connections enable the DBN models to generate features with multiple
levels of abstraction and high-level semantics. In this work, the generated DBN features
are weighted combinations/vectors of original input source code, which could represent
patterns of the usages of the input source code, e.g., method usages, control-flow usages,
etc. While traditional features often focus on statistical information of the source code,
e.g., LOC, the number of function calls, etc., which cannot capture the semantic infor-
mation. Although the Bag-of-words feature or the Characteristic feature (details
are in Section 3.4.4) are derived from the raw programming tokens, they consider each to-
ken as an independent feature element and cannot represent the contextual and structural
information among the raw tokens. Thus, these features have underperformed.

Second, the DBN-based features are more capable of distinguishing between the seman-
tic information of different code snippets, especially for code snippets that have similar
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source code characteristics. For example, as shown in Figure 3.1, the traditional features
(e.g., code complexity) of the two code snippets are identical. Training prediction mod-
els containing them will degrade the discrimination ability of classifiers and consequently
hurt the prediction performance. While the DBN-based features can make a difference, as
shown in Figure 3.3, the different structural and contextual information among tokens of
these two code snippets enables the DBN model to generate different features to distinguish
between these two code snippets.

3.6.3 Efficiency of Different Types of Tokens in Change-level De-
fect Prediction

As described in Section 3.4, to achieve better prediction performance for change-level defect
prediction, we use the combination of the three types of tokens, i.e., added, deleted, and
context, to generate DBN-based semantic features. In this section, we further examine the
reason why the combination outperforms each of the three types of tokens extracted from
changes. One possible reason is that, the combination contains more information than any
of the three types of tokens. To explore this, we leverage the information gain [64], which is
a widely used metric to measure how much information there is in a given event, to measure
the information in each of the three types of tokens and their different combinations.

Specifically, given a document s = {a1 ... an} of length n, a1 to an are tokens in the
document s. The information gain of this document H(s) is measured as follows:

H(s) =
n∑

i=1

−pilog pi (3.9)

where pi is the probability of token ai in the document s. We use the TF (term frequency)
of token ai to represent its probability in the document s.

To calculate the information gain of a specific type of token in changes, we first collect all
seven types of tokens from all the changes in a project. Then, we calculate the information
gain of a specific type of tokens extracted from all changes of a project. Table 3.19 shows
the various information gains of the three types of tokens and their combinations. Overall,
among the basic three types of tokens, added and deleted contain more information than
context. The combination of either two of them could achieve better performance than
either of the two types of tokens. In addition, the combination of all the three types
of tokens contains more information than any other combinations. We further compute
the Spearman correlation between the value of information gain and the prediction result
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of different types of tokens in a project. The high correlation value (on average 0.86)
indicates that the prediction result of DBN-based features generated from a specific type
of token has a positive correlation with its information gain. This explains why DBN-based
features generated from the combination of all the three types of tokens achieve the best
performance.

3.6.4 Analysis of the Performance

In this section, we evaluate the performance of our proposed DBN-based semantic features
on both file-level and change-level defect prediction tasks. We can observe that the im-
provement of DBN-based semantic features on file-level defect prediction is generally better
than change-level defect prediction. The main reason for this phenomenon is that a file
generally contains more information than a change. Thus, file-level defect prediction data
often provide more context to a DBN model, allowing it to learn more accurate features.

We also note that our approach achieves better performance on some projects than
others for file-level with-project defect prediction, e.g., it achieves an F1 of 94.2% on ant

and an F1 of approximately 80% on camel, lucene, poi, and jEdit. This is because
we use these projects, i.e., ant, camel, lucene, poi, and jEdit, as data to train a DBN
model for generating features. During the training process, we tune the DBN parameters
based on the performance of the defect prediction models with the generated features for
the five projects (details are presented in Section 3.4.5). Because the training process is
an optimization task to generate features that may produce the best performance for the
training dataset, the features fit the training dataset better. Thus, our approach achieves
relatively higher F1 values for the five projects (ant, camel, lucene, poi, and jEdit) than
other projects. This may be a risk of overfitting. However, this may also suggest that
training a DBN model by using a project’s own history data is appropriate when applying
our approach to the project.

3.6.5 Performance on Open-source Commercial Projects

In Section 3.4, we evaluated the DBN-based semantic features on 15 open-source projects
(i.e., the projects listed in Table 3.4 and Table 3.5). To explore the performance of the
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Table 3.20: The four open-source commercial projects evaluated. Lang is the programming
language used for the project. LOC is the number of the line of code. First Date is the
date of the first commit of a project, while Last Date is the date of the latest commit.
Changes are the number of changes. TrSize is the average size of the training data on
all runs. TSize is the average size of the test data on all runs. Rate is the average buggy
rate for each project. NR is the number of runs for each subject.

Project Lang LOC First Date Last Date Changes TrSize TSize Rate(%) # NR
Buck (Facebook) JAVA 296K 2013-04-18 2018-03-23 92K 31k 19k 7.2 3
Hhvm (Facebook) C++ 1M 2010-02-03 2018-04-06 120K 51K 14K 11.6 3
Guava (Google) JAVA 380K 2009-06-18 2018-03-21 29K 8.6K 8.8K 4.0 2
Skia (Google) C++ 765K 2006-09-20 2018-04-07 147K 48K 22K 30.6 5

DBN-based semantic features on commercial projects, we apply our approach to four addi-
tional open-source commercial projects, i.e., Buck4, Hhvm5, Guava6, and Skia7. Buck is a
build system developed and used by Facebook. Hhvm is a virtual machine, which was also
developed and is currently used by Facebook. Guava is a set of Google’s core libraries for
Java. Skia is a complete 2D graphics library for drawing text, geometries, and images de-
veloped and used by Google. These four projects were originally developed and maintained
by Facebook and Google and became open-source projects recently. We selected these four
projects, because they are the largest Java/C++ projects (in terms of commit size). To
collect the change-level data, we use the same approaches as we described in Section 2.1.2
and Section 3.4.4 to label the changes and collect the features for each change. The details
of the four open-source commercial projects are listed in Table 3.20.

With these four additional projects, we conduct change-level within-project and change-
level cross-project defect prediction tasks to compare the DBN-based semantic features to
traditional features under both the non-effort-aware and effort-aware scenarios. Note that
we adopt the same procedures to tune the DBN models and generate semantic features as
described in Section 3.4.8 and Section 3.4.9.

Table 3.21 shows the results of the change-level within-project prediction on the four
projects. Overall, the DBN-based features generate better results than traditional change
features in terms of F1, which is consistent with our previous experiment results on pure
open-source projects 3.14. Specifically, for all four projects, DBN-based features could
improve the best existing change features up to 6.6 percentage points in F1, and on average

4https://buckbuild.com/
5https://hhvm.com/
6https://github.com/google/guava
7https://skia.org/
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the improvement is 5.4 percentage points. These improvements are consistent with our
previous experimental results on open-source projects (i.e., the best improvement is 8.6
percentage points and the average improvement is 4.7 percentage points).

Table 3.21: Results of WCDP on the four projects. All values are measured in percentage.
Better F1 values with statistical significance (p-value < 0.05) between the two sets of fea-
tures are showed with an asterisk (*). Numbers in parentheses are effect sizes comparative
to Semantic Features in terms of F1.

Projects Features P R F1

Buck
Change Features (0.542) 10.9 39.9 17.2

Semantic Features 14.0 46.6 21.6*

Hhvm
Change Features(0.477) 14.2 39.8 20.9

Semantic Features 23.6 33.1 27.5*

Guava
Change Features (0.685) 7.4 58.0 13.1

Semantic Features 10.5 63.2 18.1*

Skia
Change Features (0.710) 34.5 40.4 37.3

Semantic Features 45.2 42.9 44.0*

Average
Change Features (0.622) 16.7 44.5 22.4

Semantic Features 23.3 46.5 27.8

Table 3.22: F1 scores of change-level cross-project defect prediction for the four projects.
Better F1 values with statistical significance (p-value < 0.05) between DBN-CCP, TCA+,
and Baseline are showed with an asterisk (*). Numbers in parentheses are effect sizes
comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline Within

All
Others

Buck 14.3* 11.9 (0.459) 10.8 (0.693) 21.6
Hhvm 22.6* 21.7 (0.017) 20.2 (0.112) 27.5
Guava 7.2 7.6* (-0.024) 4.2 (0.407) 18.1
Skia 47.9* 38.0 (0.613) 36.9 (0.765) 44.0

Average 23.0* 19.8 (0.358) 18.0 (0.422) 27.8

Table 3.22 shows the results of the change-level cross-project prediction for the four
projects. Overall, DBN-CCP generates a better F1 than both TCA+ and Baseline for
all four projects on average. The improvement is up to 9.9 percentage points and is 3.2
percentage points on average. The results are also consistent with our previous change-level
cross-project defect prediction results listed in 3.16.
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Table 3.23: PofB20 scores of DBN-based features and traditional features for WCDP on
the four projects. PofB20 scores are measured in percentage. Better PofB20 values with
statistical significance (p-value < 0.05) among these two sets of features are showed with an
asterisk (*). Numbers in parentheses are effect sizes comparative to DBN-based semantic
features.

Project Semantic Features Change Features
Buck 28.2* 14.7 (1)
Hhvm 21.9* 13.3 (0.882)
Guava 17.4* 15.5 (0.351)
Skia 27.0* 21.3 (0.655)

Average 23.6* 16.2 (0.520)

Table 3.24: PofB20 scores of DBN-based features and traditional features for CCDP on the
four projects. Better PofB20 values with statistical significance (p-value < 0.05) among
DBN-CCP, TCA+, and Baseline are showed with an asterisk (*). Numbers in parentheses
are effect sizes comparative to DBN-CCP.

Source Target DBN-CCP TCA+ Baseline

All
Others

Buck 25.0* 17.9 (0.801) 14.2 (1)
Hhvm 13.4 17.4* (-0.653) 12.0 (0.455)
Guava 14.3* 13.0 (0.625) 10.5 (0.746)
Skia 18.2* 17.1 (0.210) 16.9 (0.437)

Average 18.7* 16.4 (0.623) 13.4 (0.766)

We also calculate the PofB20 values for both the change-level within-project and cross-
project approaches. Table 3.23 shows the PofB20 values of the change-level within-project
defect prediction models with DBN-based semantic features and the traditional change
features. DBN-based features achieve better PofB20 values than the corresponding change
features for all experiment pairs. The improvement is up to 13.5 percentage points (Buck)
and is 7.4 percentage points on average. Table 3.24 shows the PofB20 values of the three
change-level cross-project defect prediction approaches. Similar to our previous results,
DBN-CCP achieves better PofB20 values than both TCA+ and Baseline on average. Com-
pared to TCA+, the improvement is as high as 7.1 percentage points and is 2.3 percentage
points, on average.
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DBN-based semantic features outperform traditional features on four open-source com-
mercial projects from Facebook and Google, which indicates that DBN-based semantic
features are also applicable for improving defect prediction for open-source commercial
projects.

Note that the results on commercial open-source projects are worse than that of open-
source projects. One of the possible reasons is that the buggy rates of open-source projects
used in this study are significantly higher than the buggy rates of commercial open-source
projects, i.e., the average buggy rate of open-source projects is 24.4%, while the average
buggy rate of commercial open-source projects is 13.0%. The low buggy rate can hurt the
precision of prediction performance and result in a low F1 measure [256].

3.7 Threats to Validity

Implementation of TCA+

For the comparative analysis, we compare our cross-project defect prediction models with
TCA+ [194], which is the state-of-the-art cross-project defect prediction technique with
traditional features. Since the original implementation is not released, we reimplemented
our own version of TCA+. Although we strictly followed the procedures described in their
work, our new implementation may not reflect all the implementation details of the original
TCA+. We test our implementation with the data provided by their work. Since our
implementation can generate the same results, we are confident that our implementation
reflects the original TCA+.

In this work we did not evaluate our DBN-based feature generation approach on projects
used for evaluating TCA+ [194]. This is because our DBN-based feature generation ap-
proach to within-project defect prediction works on data of two different versions from the
same project. However, the datasets used in [194] only provided one version of defect data
for each of their eight projects, which are unsuitable for evaluating our approach to within-
project defect prediction. To reduce this threat, we evaluated TCA+ and our approach on
the publicly available projects from PROMISE.

Project Selection

The examined projects in this work have a large variance in average buggy rates. We have
tried our best to make our dataset general and representative. However, it is still possible
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that the 15 projects used in our experiments are not generalizable enough to represent all
software projects. Our approach might generate better or worse results for other projects
that are not used in the experiments. We mitigate this threat by selecting projects of
different functionalities (operating systems, servers, and desktop applications) that are
developed in different programming languages (C and Java).

Our approach to generating semantic features is only evaluated on open-source projects.
While we believe that this approach should be generalizable to proprietary software, eval-
uating our approach on proprietary software is challenging, because the approach requires
AST analysis of source code. We mitigate this threat by applying our approach to four
open-source commercial projects that were originally developed and maintained by Google
and Facebook and are open-source now. The performance of these projects suggests our
proposed DBN-based semantic features could deliver better results than traditional fea-
tures.

Labeling Data

Following previous work [124, 245], the labeling process is automatically completed with
the annotating or blaming function in VCS. It is known that this process can introduce
noise [104, 123]. The noise in the data can potentially harm the performance of defect
prediction. Manual inspection of the process shows reasonable precision and recall on open
source projects [104]. To mitigate this threat, we use the noise data filtering algorithm
introduced in [123].

3.8 Summary

In this chapter we introduce an approach that leverages a representation-learning algo-
rithm, i.e., deep learning, to learn semantic representation directly from source code for
defect prediction. Specifically, we deploy a deep belief network to learn semantic features
from programs’ ASTs (for file-level defect prediction models) and source code changes (for
change-level defect prediction models) automatically, and leverage the learned semantic
features to build prediction models.

We examined the effectiveness of the learned DBN-based semantic features on two file-
level defect prediction tasks, i.e., file-level within-project defect prediction (WPDP) and
file-level cross-project defect prediction (CPDP), and two change-level defect prediction
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tasks, i.e., change-level within-project defect prediction (WCDP) and change-level cross-
project defect prediction (CCDP). To conduct comprehensive performance evaluations, we
employed both non-effort-aware and effort-aware evaluation metrics.

For file-level defect prediction tasks, our evaluations were conducted on 26 versions
of data from 10 open-source projects. Our results show that the DBN-based semantic
features improve WPDP on average by 13.3 percentage points (in F1), and outperform the
state-of-the-art CPDP with traditional features on average by 6.0 percentage points. For
change-level defect prediction, our evaluations were conducted on more than 1M changes
from six open-source projects and four open-source commercial projects. The experimental
results indicate that the DBN-based semantic features can improve WCDP on average by
5.1 percentage points, and improve the state-of-the-art CCDP technique with traditional
change-level features, on average, by 2.9 percentage points. In addition, under the effort-
aware evaluation scenario, our DBN-based semantic features can outperform traditional
features for both the file-level and the change-level defect prediction.
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Chapter 4

Leveraging N-gram Language Models
to Improve Rule-based Static Bug
Detection

This chapter presents our approach (i.e., Bugram) that leverages n-gram language models
to detect bugs that cannot be detected by rule-based bug detection tools. Specifically, the
proposed approach leverages n-gram language models to detect bugs by calculating and
ranking the probabilities of program tokens. Bugram was presented at the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE’16 [278]). This work
is an collaboration with Devin Chollak, an early version of detection bugs with N-gram
language models has been presented in Devin’s Master thesis [47]. The differences between
Bugram and Devin’s Master thesis, i.e., NGDetection, include: 1) Bugram and NGDe-
tection are two different approaches to detecting bugs, NGDetection is a rule-based bug
detector, which leverages n-gram to mine rules and detects the violations to these rules
as bugs. While Bugram is a non-rule-based bug detector, which directly detect bugs by
calculating the probabilities of token sequences. 2) We further compare Bugram with five
typical rule-based bug detectors, i.e., PR-Miner, improved PR-Miner, JADET, Tikanga,
and GrouMiner.

4.1 Motivation

Software bug detection techniques have been shown to improve software reliability by
finding previously unknown bugs in mature software projects [80, 95]. Rule-based bug
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detection approaches infer likely programming rules from source code [8, 30, 38, 144, 146,
250, 268, 269, 301], version histories [30, 113, 292], and source code comments [255, 257].
These approaches detect violations of these rules as potential bugs.

Frequent itemset mining techniques were used to mine rules that capture the co-
occurrence of methods and variables. Violations of these rules are reported as bugs [30,38,
144]. Along this line, more complex graph models are combined with frequent itemset min-
ing techniques, which focus on mining programming rules that capture both method order
and control flow information to detect violations of these complex rules [70,199,284,285].

Let ABC denote a sequence of calls to the methods A, B, and C. Imagine a contrived
program that includes 98 occurrences of the sequence ABC, two occurrences of ABD, and
a single occurrence of EFG. Existing rule-based bug detection approaches, such as PR-
Miner [144], JADET [285], Tikanga [284], and GrouMiner [199] infer rules based on the
conditional probabilities of method calls, for example, the conditional probability P (C|AB)
which denotes the likelihood of seeing a call to method C after the sequence of calls AB.
In our example, P (C|AB) = 98

98+2
= 98%. This probability is higher than the threshold

used by PR-Miner, which is 90%, and therefore, the potential rule that C should appear
after AB, denoted as {AB => C}, is selected as a high-probability rule. The confidence
of this rule is its conditional probability, which is 98%. Given this rule, the sequence ABD
is flagged as a bug, because C instead of D is expected to follow AB.

It has recently been demonstrated that n-gram language models [39] can capture the
regularities of software source code [88,224]. To take advantage of the n-gram language
model, which provides us with a Markov model for tokens, we propose an n-gram language
model based bug detection technique, called Bugram. The assumption is that low proba-
bility token sequences in a program are unusual, which may indicate bugs, bad practices, or
unusual/special uses of code of which developers may want to be aware.

While existing studies leverage n-grams for detecting clone bugs [96], localizing faults [196,
316], and code search [117], including some that use the term n-gram models [96, 117],
these studies do not leverage n-gram models. Instead, they use n-grams, which are token
sequences, while n-gram models are Markov models built on n-grams. On the other hand,
n-gram models have been used for code completion and suggestion [78,198,225], fault local-
ization [35], and coding style checking [10,85]. The focus of this work is leveraging n-gram
models for bug detection, which has its own challenges and requires a different design, as
detailed in Section 4.3.

Instead of using conditional probabilities, Bugram highlights suspicious call sequences
based on their absolute probabilities in the program. So in the example above, our approach
evaluates the absolute probability P (ABC) of the full sequence ABC, which is in contrast
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Figure 4.1: Bugs detected by Bugram versus bugs detected by rule-based techniques in the latest
version of Hadoop

to PR-Miner which evaluates the conditional probability of P (C|AB). The two sequences
with the lowest probabilities in the program are EFG and ABD, which have a probability
that is markedly lower than that of ABC. By selecting sequences with low absolute prob-
abilities, Bugram is able to recognize that ABD and EFG are both suspicious sequences.
Notably, EFG is not recognized as a suspicious sequence by PR-Miner, despite having only
a single occurrence in the program, because there are no rules with high confidence related
to EFG. In addition, it is known that even if a rule exists, but the rule pattern does not
appear frequently enough, the rule cannot be learned, thus missing many bugs [144].

More broadly, rule-based approaches detect bugs from common program patterns, while
Bugram detects sequences which are overall uncommon in the program. These two ap-
proaches target different types of program abnormalities, and will ultimately detect dif-
ferent types of bugs, as illustrated in Figure 4.1. The curve shows the probabilities of
sequences in the Java project Hadoop sorted ascendingly. The bars depict examples of
bugs that can be detected by our n-gram-based approaches, while circles represent exam-
ples of bugs that can be detected by rule-based approaches.

In this work, we study whether our n-gram-based approach can detect bugs in real-world
software that rule-based approaches cannot find. In addition, we study whether Bugram is
more precise than rule-based approaches, i.e., whether Bugram reports a smaller portion
of false bugs than rule-based approaches.
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(a) Method call sequence from a buggy code snippet (appears once):
[isDebugEnabled(), debug(), indent(), stringify()]

if (LOG.isDebugEnabled ()) {

LOG.debug(indent(depth)+"converting from

           Pig " + pigType + " " + value +

" using " + stringify(schema));

}

(b) A similar but correct method call sequence (appears three times):
[isDebugEnabled(), debug(), indent(), toString())]

if (LOG.isDebugEnabled ()) {

LOG.debug(indent(depth)+"converting from

            Pig " + pigType + " " + toString(value) +

" using " + stringify(schema));

}

Figure 4.2: A motivating example from the latest version 0.15.0 of the project Pig. Bu-
gram automatically detected a real bug in (a), which has been confirmed and fixed by Pig
developers after we reported it.

4.1.1 A Motivating Example

Existing rule-based techniques detect potential bugs by using mined rules with enough
confidence and support (the number of occurrences) to avoid generating a large number
of false bugs. For example, PR-Miner [144] requires the confidence of a method call se-
quence to be over 90% and the support larger than 15 to be identified as a rule, missing
opportunities to detect many bugs. For example, Figure 4.2 shows a real bug detected by
our tool in the latest version of Pig, which has already been confirmed by Pig developers.
The code snippet in Figure 4.2(a) contains a bug: for the purpose of logging, the code
snippet should convert the object value to a string by calling the toString method, but
it does not. The method call sequence of the buggy code snippet is [isDebugEnabled,

debug, indent, stringify], which appears only once in the program. A similar but
correct code snippet with a method call sequence [isDebugEnabled, debug, indent,

toString] appears three times. One of the appearances is shown in Figure 4.2(b).

Using rule-based bug detection approaches such as PR-Miner, a potential rule that
may detect this bug is [isDebugEnabled, debug, indent => toString]. Since PR-
Miner groups method calls into a set, which means it ignores the order of method calls
for example, all other rules that can potentially detect this bug are [debug, indent =>

toString], [isDebugEnabled, indent => toString], [indent => toString], [debug
=> toString], [isDebugEnabled, debug => toString], and [isDebugEnabled =>
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toString]. The confidence of each potential rule is only 75%, considering only these four
code snippets. If we consider the entire Pig project, the confidences of these rules are even
lower, ranging from 19.5% to 28.8%. Since PR-Miner requires rules to have confidences at
least 90% (to avoid detecting too many false bugs), it filters out all these potential rules,
thus missing this real bug. While it is possible to reduce the confidence requirement, the
bug detection precision will likely be too low given that already 40–86% of bugs reported
by PR-Miner are false bugs with the confidence 90% [144].

Different from these rule-based bug detection approaches, Bugram does not use pro-
gramming rules. Instead, it detects potential bugs by reporting method call sequences of
low probabilities in a project. We detect the real bug shown in Figure 4.2, because the
method call sequence [isDebugEnabled, debug, indent, stringify] has a low proba-
bility of 2.855× 10−5, which is the 13th lowest probability of all 31,204 sequences of length
five using a 3-gram model.

4.2 Background

The n-gram language model has been widely used in modelling natural language [39] and
solving problems such as speech recognition [20], statistical machine translation, and other
related language problems [231]. The n-gram language model typically has two compo-
nents, words and sentences, where each sentence is an ordered sequence of words. A
dictionary D contains all possible words of a language, and each word is represented as w.
The language model can build a probabilistic distribution over all possible sentences in a
language using Markov chains. The probability of a sentence in a language is estimated by
generating the sequence word by word. The probability of each word in a sentence is only
determined by the conditional probabilities of the previous n− 1 tokens. Given a sentence
s = w1w2w3 · · · wm, its probability is estimated as:

P (s) =
m∏
i=1

P (wi|hi−1) (4.1)

where the sequence hi = wi−n · · ·wi is the history. In the n-gram model, the probability of
the next word wi depends only on the previous n− 1 words. For example, if the sequence
length m is four, the probability of the sequence s = w1w2w3w4 using a 4-gram model is:

P (s) = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w1w2w3) (4.2)
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If we use a 3-gram model, the probability of token w4 depends only on the previous
two tokens, and the probability of s is:

P (s) = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w2w3) (4.3)

In this work, we build n-gram models to learn probabilities of using a method given different
contexts. With the learned probability distribution, we further calculate the possibility of
each token sequence and flag low probability token sequences as potential bugs.

4.3 Approach

Source
Files

Tokenization

N-gram
Model

Building

Bug
Detection

Potential Bugs
Tokens

Ranked
Tokens

Figure 4.3: Overview of Bugram

Figure 4.3 shows the overview of Bugram. In this section, we first describe how to parse
a project to convert it into tokens (Section 4.3.1), and then use the tokens to build n-gram
models for the project (Section 4.3.2). Finally, we present how to leverage the n-gram
models to detect bugs in the project (Section 4.3.3).

4.3.1 Tokenization

To build n-gram models, we need to tokenize the source code of a given project. A main
challenge is selecting a suitable level of granularity for tokens when building the n-gram
models. Existing work builds n-gram models at the syntactic level using low-level tokens
to suggest the next tokens for code completion and suggestion [78,88]. For example, after
seeing “for (int i=0; i<n;”, it suggests the tokens “i++) {”. Building n-gram models
at this level is likely to only detect syntactic errors, e.g., missing “;” or “i++” in a for

loop, which will be caught by a compiler.

To detect bugs at the semantic level, we need to build n-gram models at a semantic
level. Bugram selects high-level tokens that represent the structure and context of the
code using a succinct semantic representation. Take the loop “for (int i=0; i<n; i++)
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{ foo(i); }” as an example. Bugram will represent it with the following high-level tokens
[<FOR>, foo(), <END FOR>].

As reported in existing work [284, 285], control flow information is important for the
accuracy of bug detection. Inspired by the above work, during the tokenization pro-
cess, Bugram also considers the control flow information of source code by adding the
control flow elements into the token sequences. Therefore, we focus on method calls
and control flow, i.e., method calls, constructors, and initializers; if/else branches;
for/do/while/foreach loops; break/continue statements; try/catch/finally blocks;
return statements; synchronized blocks; switch statements and case/default branches,
and assert statements. A method call methodA() is resolved to its fully qualified name
org.example.Foo.methodA() to prevent unrelated methods with an identical name from
being grouped together. In addition, the type of exception in the catch clauses are con-
sidered as they provide important context information to help us infer more accurate
contextual information of method sequences.

Bugram uses the Eclipse JDT Core1 to tokenize the source files, construct the abstract
syntax trees (ASTs), and resolve the type information for the tokens. In this work, we
consider both method and control flow as tokens.

4.3.2 N-gram Model Building

In this work, we use n-gram models to learn a probability distribution over token sequences
using all extracted sequences. For every sequence extracted from a method we add all its
subsequences to the model. For example, given a token sequence ABC extracted from a
method, we add all of its ordered subsequences, i.e., A, B, C, AB, BC, and ABC, to the
model. Note that we ignore incontinuous subsequences, such as AC in this example.

Smoothing is a common process for n-gram models to help with handling unknown
sequences. However, since the entire source code of a project is being used, we have the
complete language of all possible sequences. This means smoothing is unnecessary since
there are no unknown sequences.

When building n-gram models, one important parameter is Gram Size (details are in
Section 4.3.3), which defines the length of considered token sequences. N-gram models
assume that each token depends only on the previous n − 1 tokens. To leverage n-gram
models to generate probabilities of token sequences, given a specific gram size n, we build
a set of internal probabilities. For example, the probability of a token sequence ABC

1https://eclipse.org/jdt/core/index.php
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calculated by a 3-gram model is P (ABC) = P (A) ·P (B|A) ·P (C|AB). We refer to P (A),
P (B|A), and P (C|AB) as internal probabilities. These internal probabilities can be reused
to calculate the probabilities of sequences that shared common subsequences. Thus, we
store internal probabilities to cut down the probability calculation time for building n-gram
models of different gram sizes. After obtaining all the internal probabilities for an n-gram
model, we use them to calculate the probabilities of token sequences.

Previous studies that leverage n-gram models for code completion [88, 225, 271] found
that 3-gram, 4-gram, 5-gram, and 6-gram models generated reasonable results. However,
the appropriate n-gram size for detecting bugs is unknown. To answer this question, we
build n-gram models with gram size from two to ten to study the impact of gram size on
the effectiveness of bug detection. The algorithm that we use to build the n-gram model
is standard, which is described in Section 4.2.

4.3.3 Bug Detection

Bugram detects potential bugs by calculating and ranking the probabilities of all sequences.
After obtaining the probabilities of all sequences, Bugram ranks them based on their proba-
bilities in descending order, then reports sequences with the lowest probabilities as potential
bugs.

Configurations

A few important factors affect the effectiveness of Bugram, i.e., the number of bugs Bugram
can find. The four main factors are as follows. Section 4.4.2 describes the setup, tuning,
and impact of these parameters.

• Gram Size - The size of an n-gram model.

• Sequence Length - The length of token sequences to be considered when building
n-gram models and detecting bugs.

• Reporting Size - The number of sequences, in the bottom of the ranked list, which
will be reported as bugs.

• Minimum Token Occurrence - The minimum number of times a token must occur
in the software to be included in an n-gram model.
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Gram Size n. As described in Section 4.2, the gram size is the size n in an n-gram
model. The probability of a sequence is estimated by generating the sequence token by
token, and the probability of each token is determined by the conditional probabilities
using a history of up to n− 1 tokens. For example, given a token sequence S = ABCD, a
2-gram model considers the probabilities of each two sequential tokens, and will calculate
its probability with P (S) = P (A) · P (B|A) · P (C|B) · P (D|C). While a 4-gram model
considers the probabilities of each four sequential tokens, and calculates its probability as
P (S) = P (A) ·P (B|A) ·P (C|AB) ·P (D|ABC). In this work, we build n-gram models with
gram size from two to ten to find an appropriate gram size for detecting bugs.

Sequence Length l. For building n-gram models, token sequences are extracted
from all methods of a project. The length of token sequences extracted from different
methods varies, which can be as small as one, and as large as 200. Breaking these long
token sequences into many small sequences may help us obtain fine-grained method usage
scenarios and detect more bugs. In this work, we evaluate the impact of different sequence
lengths on the performance of Bugram.

Reporting Size s. Different from rule-based bug detection techniques, Bugram de-
tects bugs by identifying token sequences of low absolute probabilities. Thus, an important
question is how to set an appropriate threshold to separate sequences that indicate bugs
from common sequences that are not bugs. We use this parameter to determine the bottom
s sequences in the ranked list and report them as bugs. In general, a larger s allows Bugram
to find more bugs at the cost of examining more sequences that potentially indicate bugs.
We expect that as the probabilities increase in the ranked list, the percentage of true bugs
decreases. An appropriate s should help Bugram find as many bugs without losing much
precision of bug detection.

The task of selecting the parameter s in Bugram is the counterpart of selecting a rule
probability threshold in rule-based bug detection approaches, such as PR-Miner [144]. As
described in Section 1, rule-based approaches select a high-probability rule based on the
conditional probability of tokens. For example, if the probability P (C|AB) is higher than
the threshold, {AB => C} will be selected as a rule, and occurrences of the sequence
AB followed by a call other than C is reported as a bug. According to the definition of
conditional probability, P (C|AB) = P (ABC)/P (AB), meaning that rule-based techniques
consider the probability of the sequence ABC and compare it to the background probabil-
ity of AB. However, when the rule {EF => G} is evaluated, the background probability
is now that of the sequence EF since the conditional probability is P (G|EF ). To achieve
optimal performance, rule-based methods should ideally find the individual correct thresh-
old for each background probability. This is of course not practically feasible, which is the
reason a single threshold is used in practice. In Bugram, we avoid this problem by directly
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String q[] = qqf.bestQueries("body" ,20)

;

for (int i=0; i<q.length; i++) {

System.out.println(newline+

formatQueryAsTrecTopic(i,q[i],

null ,null));

}

Figure 4.4: The filtering based on Minimum Token Occurrence can help Bugram avoid
reporting this false bug from the latest version of Lucene.

evaluating the probability of the entire sequence. In this case, it is more theoretically sound
to select a single threshold.

Minimum Token Occurrence y. After performing the tokenization process described
in Section 4.3.1, Bugram keeps only tokens with occurrences greater than y in the project.
Filtering out uncommon tokens is a standard technique for natural language processing
(NLP) techniques [158]. In this work, the rationale is that some methods are generally
not well used, or too unique, making them corner-cases that are harder to evaluate on a
statistical basis. As such, their inclusion leads to generating false bugs. Take the code
snippet in Figure 4.4 as an example. Using a 3-gram model, the sequence [bestQueries,

println, formatQueryAsTrecTopic] is ranked at the bottom of all token sequences by
their probabilities. However, this token sequence is not a bug. It has a low probability be-
cause it uses two infrequent private methods bestQueries and formatQueryAsTrecTopic,
each of which is used only once in the whole project.

To avoid reporting the above false bug, Bugram performs a token level filtering. It
filters out all tokens that appear fewer than a given y. Such process can help Bugram
avoid reporting many token sequences with low probabilities that are not bugs.

Pruning False Bugs

Bugram identifies token sequences with low probabilities as potential bugs. However, some
low probability token sequences are unusual/special uses of code and are not bugs, they
are false bugs for the purpose of bug detection. To filter out false bugs, we reduce the
number of reported bugs (also called candidate bug set) by keeping only token sequences at
the bottom of at least two ranked lists generated by different n-gram models with different
sequence lengths. The rationale is that if a bug can be detected by multiple ranked lists,
there is a higher chance that it is a true bug. Remember that given a specific gram size,
we generate multiple n-gram models of different sequence lengths ranging from two to ten.
Therefore, we only report token sequences that are at the bottom of at least two different
n-gram models with the same gram size but different sequence lengths.
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For example, if both sequences ABCDE and BCD are ranked at the bottom of the
list of 5-token-sequences and 3-token-sequences respectively, Bugram identifies them as an
overlap (two sequences contain a common substring) and reports ABCDE and
BCD as one bug. More formally, we obtain a new candidate bug set using the following
formula:

C(n, t) =
⋃

∀i,j∈M,i6=j

(Bottom(n, t, i) ∩Bottom(n, t, j)) (4.4)

where C(n, t) is the candidate bug set generated by an n-gram model with the reporting
size of t. M is the set of sequence length, and i and j are two different sequence lengths. n
is the gram size. Bottom(n, t, i) is the bottom t token sequences generated by an n-gram
model with sequence length of i. Note that ∩ denotes the overlaps that are at the bottom
of the two different n-gram models, and

⋃
denotes the union of the overlaps.

4.4 Experimental Study

We evaluate Bugram in terms of the number of detected bugs and detection precision,
and explore appropriate parameters for Bugram. All our experiments are conducted on a
4.0GHz i7-3930K desktop with 64GB of memory.

4.4.1 Evaluated Software

We evaluate Bugram on 16 widely-used open-source Java projects ranging from 36 thousand
lines of code (KLOC) to almost one million lines of code (MLOC). These projects are
selected since they are widely used, also we consider their sizes, both small and large
projects are selected. Table 4.1 lists their versions, numbers of files, lines of code (LOC),
and numbers of methods. We used the latest version of each project. These projects
are selected since they are widely used, also we consider their sizes, both small and large
projects are selected.

4.4.2 Parameter Setting and Sensitivity

To build n-gram models and detect bugs effectively, we need to tune these parameters
proposed in Section 4.3.3. We use three widely-used and representative projects from
Table 4.1, i.e., Pig, Hadoop, and Solr, to study the impact of different parameters on the
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Table 4.1: Projects used to evaluate Bugram

Project Version Files LOC Methods

Elasticsearch 1.4 3,130 272,261 28,950
GeoTools 13-RCI 9,666 996,800 89,505
jEdit 5.2.0 543 110,744 5,548
Proguard 5.2 675 69,376 5,919
Vuze 5500 3,514 586,510 37,939
Xalan 2.7.2 907 165,248 8,965
Hadoop 2.7.1 4,307 596,462 46,104
Hbase 1.1.1 1,392 465,456 42,948
Pig 0.15.0 948 121,457 9,323
Solr-core 5.2.1 1,061 146,749 9,938
Lucene 5.2.1 2,065 293,825 18,078
Opennlp 1.6.0 603 36,328 2,954
Struts 2.3.24 2,022 157,499 15,254
Zookeeper 3.5.0 492 61,708 5,034
Nutch 2.3.1 409 198,560 2,309
Cassandra 2.2.0 1,616 280,716 15,233

performance of Bugram. Specifically, we tune three of the four parameters, i.e., 9 different
gram sizes, 9 different sequence lengths, and 5 different reporting sizes. For minimum
token occurrence, we remove any token that appears fewer than three times [158]. In total,
there are 9*9*5 = 405 possible combinations of the four parameters. Note that, for each
combination, we need to manually examine the reported bugs for each project, which is
prohibitively expensive. To save efforts, we only pick the three representative projects to
tune the four parameters (in total we need to manually examine the reported bugs of 405*3
combinations) in this work. In practice, if users can afford more time, they can tune on
more projects to obtain an optimal parameter combination of Bugram to detect bugs more
effectively.

Setting Gram Size. Different gram sizes enable Bugram to use different internal
probabilities to calculate the probabilities of token sequences. We build n-gram models for
each project, and the gram size ranges from two to ten. To evaluate the performance of n-
gram models of different gram sizes, we calculate the probabilities of all token sequences and
rank them based on their probabilities in descending order, then we examine the bottom
10, 20, 30, 50, and 100 sequences from each n-gram model respectively, and manually verify
whether a token sequence contains a bug or not.
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Figure 4.5: Impact of the gram size on the number of true bugs detected

For each n-gram model, we count the number of real bugs detected in the three projects.
Figure 4.5 shows the results of the three projects combined. The results show that Bugram
finds the most number of true bugs with a 3-gram model. Thus, in this work, we build
3-gram models for Bugram to detect bugs.

Setting Sequence Length. As described in Section 4.3.3, we break long sequences
extracted from a function into small subsequences. Different sequence lengths enable Bu-
gram to capture different program scenarios and further affect the performance of Bugram.
To evaluate the impact of different sequence lengths, we perform Bugram with sequence
length ranges from two to ten. For each sequence length, we build a 3-gram model, then
calculate probabilities of all sequences. Based on generated probabilities, we rank all se-
quences. We examine the bottom 50 sequences with low probabilities to check how many
true bugs are detected.

Table 4.2 shows the results of detected true bugs in the bottom 50 sequences with
different sequence lengths. As we can see, sequence length can significantly affect the
performance of Bugram. N-gram models, with sequence length ranges from three to eight,
enable Bugram to detect bugs effectively. For example, when the sequence length is equal
to five, we find seven true bugs on Hadoop, three on Pig, and one on Solr. When the
sequence length is quite low (e.g., two) or quite big (e.g., nine, and ten), Bugram detects
no bugs in two of the three examined projects. Thus, in this work, sequence length ranges
from three to eight.

Setting Reporting Size. In this work, we use this parameter to limit the number of
sequences in the bottom of ranked sequence list to be reported as bugs. An appropriate
reporting size might help us identify many true bugs with a small number of false positives.
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Table 4.2: Detected true bugs in the bottom 50 token sequences with different sequence
lengths

Sequence Length
Project 2 3 4 5 6 7 8 9 10
Pig 0 1 1 3 2 3 1 1 1
Hadoop 0 3 4 7 3 3 2 0 0
Solr 0 1 1 1 2 0 0 0 0

Figure 4.6: Probabilities distribution of all token sequences in Hadoop, Solr, and Pig

For each examined project, we build 3-gram models with sequence length ranges from three
to eight.

We first examine the probabilities of all sequences, to explore whether there has a clear
cutoff between low probability sequences and high probability sequences. We normalized
the probabilities of all sequences in a project, since the range of sequence probability
distribution varies in different projects, e.g., in Hadoop the sequence probability range is
[1.0 × 10−11 5.4 × 10−4], while this range for pig is [2.84 × 10−5 2.7 × 10−3]. Figure 4.6
shows the normalized probabilities of all sequences (ranked by probability), the X-axis is
the number of sequences in different projects. As we can see, the probability curves are
quite smooth at the bottom ten thousand sequences. However, it is prohibitively expensive
to examine all these sequences.

Next, we narrow down the reporting size by only looking at the bottom 100 sequences.
Specifically, for each project, we examine how many true bugs are detected when the
reporting size is equal to 10, 20, 30, 50, and 100, which means we only examine the
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(a) Results of Hadoop (b) Results of Pig (c) Results of Solr

Figure 4.7: Detection precision and number of detected bugs in the overlaps of bottom s
token sequences with low probability

bottom 10, 20, 30, 50, and 100 sequences in the ranked list. In practice, if developers can
afford more time, they can examine more sequences to find more bugs. The number of
detected true bugs and detection precisions of the three projects are shown in Figure 4.7a,
Figure 4.7b, and Figure 4.7c. As we can see with the increasing of reporting size, the
number of detected bugs increases, while corresponding detection precision declines sharply.
When the reporting size is equal to 100, the corresponding detection precision is smaller
than 20%. In this study, we set reporting size equal to 20, which could enable us to detect
13 true bugs with an average detection precision of 49% on the three examined projects.

Setting Minimum Token Occurrence. This parameter is the minimum number
of times a token is required to appear in a program to be included in sequences. An
appropriate value of this parameter helps filter out token sequences that use unusual/special
methods, thus have low probabilities, but are not bugs.

In this study, we remove any token that appears fewer than three times. This is a
common practice in NLP research, aimed at improving system performance [158].

4.4.3 Comparison with Existing Techniques

We compare Bugram with five existing graph- and rule-based approaches. First, we choose
the most closely related work, PR-Miner [144]. While comparing with PR-Miner allows us
to compare Bugram with an existing approach as is, we also want to study the sole impact of
using n-gram models. In addition to using n-gram models, the differences between Bugram
and PR-Miner include (1) Bugram uses control flow information, but PR-Miner does not,
and (2) Bugram preserves the token order, while PR-Miner ignores the token order. As
discussed in Section 4.3, we use control flow information because it has been shown to
be beneficial for bug detection techniques [38, 285]. Therefore, our second approach for
comparison is identical to PR-Miner except that it considers both the order of tokens and
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control flow information. Since PR-Miner is not publicly available, we have reimplemented
our own version of it. We refer to our implementation of PR-Miner as FIM, which stands for
Frequent Itemset Mining. We call our implementation of the second approach described
above FSM, which stands for Frequent Sequence Mining, because FSM mines rules with
order preserved, which is what frequent sequence mining does.

To implement PR-Miner, we follow each step described in [144], we first parse the
source code and extract variables, method calls, classes in a function. After that, we hash
selected elements into numbers. Next, each function is mapped to an itemset. Then, using
these itemsets, we perform frequent itemset mining, as provided by Weka [74] to mine
frequent itemsets with a specific support and confidence. Finally, these frequent itemsets
are treated as rules, and violations of these rules are identified as bugs.

Note that, FIM does not consider the order of tokens. Therefore, given a frequent
itemset ABC, FIM may generate many rules, e.g., {A => BC}, {B => AC}, {AB =>
C}, {AC => B}, {C => AB}, and {BC => A}. Any violations of these rules will be
reported as potential bugs. While FSM considers the order, thus given the same frequent
itemset ABC, FSM generates at most two rules, i.e., {A => BC} and {AB => C}.
The more rules are inferred, the more potential bugs are likely to be reported. Thus, in
practice, both the number of generated rules and the number of reported bugs of FIM are
significantly larger than those of FSM.

To reduce false positives, PR-Miner set the support threshold to 15 and the confidence
threshold to 90%. With these thresholds, PR-Miner reports many potential bugs, e.g.,
PR-Miner reported 1,447 potential bugs in the Linux kernel [144]. To save effort, they
examined only the top 60 potential bugs ranked by confidence.

These thresholds are only evaluated on three C projects. We find that these thresholds
produce poor results on the Java projects used in this work, e.g., we find 0 true bugs in the
top 60 ranked bugs in the three Java projects, i.e., Hadoop, Solr, and Pig. Therefore, to set
appropriate support and confidence thresholds for FIM and FSM, we have explored FIM
and FSM with different combinations of support and confidence on the three projects. For
FIM, we find that when the support is equal to seven and the confidence is larger than 75%,
it performs the best on the three projects when examining the top 80 sequences ranked by
confidence (we have examined up to the top 100, and found the top 80 gives the highest
precision and recall). For FSM, when the support is equal to five and the confidence is
larger than 85%, it performs the best on the three projects. For a fair comparison, we tune
all four parameters of Bugram on the same three projects and apply the best parameters
on the rest of the evaluated projects.
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Second, we compare Bugram with three graph- and rule-based bug detection ap-
proaches, i.e., JADET [285], Tikanga [284], and GrouMiner [199]. These three approaches
leverage graph models and frequent itemset mining techniques to mine rules that capture
both method order and control flow information to detect bugs. Different from PR-Miner
that was evaluated on C projects, all these three approaches were evaluated on open-source
Java projects. Thus, Bugram can be applied to these projects directly. Since, two of these
three tools, i.e., Tikanga and GrouMiner, are not publicly available, to compare with these
three approaches, instead of implementing our own versions, we perform Bugram on the
14 projects evaluated by these three approaches, and compare our detection results with
the results from these three studies. In addition, since JADET is an open-source tool, we
also apply JADET on projects listed in Table 4.1, and compare its detection results with
Bugram.

4.4.4 Evaluation Measures

We manually examine the reported potential bugs and categorize the bugs into three types:
True Bugs, Refactoring Opportunities, and False Positives. True bugs are faults and can
be fixed by altering the code and correcting its behaviour. Refactoring opportunities are
bad practices and can be fixed by refactoring the infrequent code snippets to make them
more regular. Any reported bugs that do not fit into the above two groups are considered
to be false positives. We refer to the number of true bugs and refactoring opportunities as
True Positives.

To evaluate the performance of a bug detection approach, we use three measures: stan-
dard precision, relative recall [236], and F1. Note that we use relative recall not stan-
dard recall, because it is not practical to know all bugs in a project. The precision is:
(True Positive)/(Reported Potential Bugs); To calculate the relative recall, we first define
the Relative Ground Truth [236] as all the unique true positives reported by Bugram, FIM,
and FSM. For each of the three approaches, we calculate its relative recall as: (True Pos-
itive)/(Relative Ground Truth); F1 is the harmonic mean of the precision and relative
recall.

4.4.5 Manual Examination of Reported Results

Following prior work [30,38,70,144,223,269,284,285], we manually check whether the bugs
reported by Bugram are true positives. For manual evaluation, a token sequence was only
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considered buggy if both the first author and a non-author graduate student agreed. Given
a reported buggy sequence, we consider it a bug if it meets one of the following conditions:

• It has obviously incorrect project specific function calls.

• It violates common API usages, e.g., exception-handling API usages2 and log-related
API usages3. For exception handling APIs, we detect several true bugs that violate
their usages, e.g., in the true bug in Figure 4.8(b), developers did not handle all
potential exceptions that might be thrown by method waitForCompletion, which
may crash the system if any of these exceptions are thrown. For log-related APIs,
one common usage is that the checked log level and the used log level should be the
same. Several of our detected true bugs violate this usage, e.g., in the true bug in
Figure 4.8(c): before calling the method info() to log messages, instead of checking
whether the log level info is available, developers checked whether debug is available,
which is incorrect.

We consider a reported buggy sequence a refactoring issue based on principles of code smells
proposed in [160], e.g., duplicated code—when two code fragments look almost identical.
Duplicated code could hinder maintenance because developers need to track and modify
each repeating fragment. Developers could refactor the duplicated code by extracting it
into a function.

4.5 Results and Analysis

This section presents the results of detected bugs (Section 4.5.1 and Section 4.5.2) including
the comparison with existing graph- and rule-based techniques, detected bug examples
(Section 4.5.3), and the execution time of Bugram (Section 4.5.4).

4.5.1 Comparison with FSM and FIM

Table 4.3 shows the number of bugs detected by Bugram, FSM, and FIM on each evaluated
project. In total, Bugram reported 59 potential bugs, 42 of which are correct and useful—
25 true bugs, and 17 refactoring opportunities. We have reported these true bugs to

2https://docs.oracle.com/javase/tutorial/essential/exceptions
3https://logging.apache.org/log4j/1.2/manual.html
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Table 4.3: Bug detection results. Reported is the number of reported bugs, TBbugs is the
number of true bugs, and Refs is the number of refactoring opportunities. We manually inspect
all reported bugs except for FIM whose ‘Inspected’ column shows the number of bugs inspected.
Numbers in brackets are the numbers of true bugs detected by Bugram that are detected by
neither FIM nor FSM.

Bugram FSM FIM
Project Reported TBugs Refs Reported TBugs Refs Reported Inspected TBugs Refs
Elasticsearch 3 1(1) 0 0 0 0 987 80 0 2
GeoTools 4 2(2) 1 4 0 2 1,203 80 1 2
JEdit 3 0 1 0 0 0 451 80 0 2
Proguard 1 1(1) 0 1 1 0 665 80 1 0
Vuze 2 0 2 0 0 0 435 80 0 4
Xalan 3 2(2) 0 0 0 0 378 80 0 0
Hadoop 13 7(6) 4 13 3 0 869 80 2 3
Hbase 1 1(1) 0 10 2 3 774 80 1 0
Pig 9 3(2) 4 6 0 2 605 80 1 3
Solr-core 5 3(3) 1 0 0 0 787 80 0 1
Lucene 2 0 0 10 2 2 676 80 1 0
Opennlp 6 2(2) 2 3 0 0 806 80 0 2
Struts 5 1(1) 2 9 1 0 232 80 0 0
Zookeeper 0 0 0 3 0 0 442 80 0 1
Nutch 2 2(2) 0 1 0 1 253 80 1 1
Cassandra 0 0 0 7 0 1 324 80 0 2
Total 59 25(23) 17 67 9 11 9,887 1,280 8 23

Relative Recall 54.5% 26.0% 40.3%

Precision 71.2% 29.9% 2.4%

F1 61.7% 27.8% 4.5%

developers, 7 of which have already been confirmed by developers, while the rest await
confirmation. The results suggest that Bugram is effective in finding real bugs in widely-
used mature software projects to improve software reliability.

As described in Section 4.4.4, the relative recall shows the ability of a technique in find-
ing new bugs, while the precision indicates the ability of a technique in avoiding reporting
false bugs. F1 is the harmonic mean of the precision and recall. The relative recall of
Bugram is 54.5%, which is higher than FIM’s relative recall of 40.3% and FSM’s relative
recall of 26.0%. The detection precision of Bugram is 71.2%, which is higher than FIM’s
precision of 2.4% and FSM’s precision of 29.9%. The F1 of Bugram is 61.7%, again higher
than FIM’s F1 of 4.5% and FSM’s F1 of 27.8%. The results suggest that Bugram can find
more bugs than examined rule-based approaches and is more precise than them, suggesting
Bugram complements existing rule-based bug detection techniques.

In addition, as shown in Table 4.3, among the 25 true bugs detected by Bugram, only
two can also be detected by FIM and FSM. The majority (23) of the true bugs can only
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be detected by Bugram, showing that Bugram can find real bugs in real-world software
that examined rule-based approaches cannot find. In comparison, FIM detected eight true
bugs, and 23 refactoring opportunities. FSM reported 67 potential bugs, and nine of which
are true bugs, and 11 are refactoring opportunities. Since six true bugs are detected by
both FIM and FSM, a total of 11 unique true bugs are detected by these two approaches,
nine of which cannot be detected by Bugram. In total, there are 77 unique true positives
generated by the three approaches.

Since FSM considers both the control flow and order of tokens, both the numbers of
rules and bugs discovered by FSM are much smaller than those of FIM. Table 4.3 shows
that FIM reported a total of 9,887 potential bugs, while FSM only reported 67 potential
bugs.

As we described in Section 1, Bugram and FIM detected bugs based on different prob-
ability distributions of token sequences. Bugram identifies token sequences with absolute
low probability as bugs, while FIM and FSM identify token sequences with relatively low
probability as bugs. A relatively low probability token sequence might have a high absolute
probability with a high rank in all token sequences extracted from a project. Thus, our
results suggest that Bugram and rule-based bug detection techniques comple-
ment each other to detect more bugs.

4.5.2 Comparison with JADET, Tikanga, and GrouMiner

As described in Section 4.4.3, we also compare Bugram with three graph- and rule-based
bug detection approaches, i.e., JADET [285], Tikanga [284], and GrouMiner [199]. These
approaches have been evaluated on Java projects, and their authors have presented the
number of detected potential bugs and manually identified true bugs. Since JADET,
Tikanga, and GrouMiner each reported many potential bugs for the evaluated projects, to
save effort, the authors of the three tools manually verified a subset of reported potential
bugs, i.e., top 10 in JADET, top 25% in Tikanga, and top 15 in GrouMiner. For a fair
comparison, we apply Bugram on the projects that are evaluated by these approaches, and
use the same Bugram parameters that are used in the comparison with PR-Miner, meaning
that Bugram parameters are not tuned for these projects. JADET was evaluated on five
projects, Tikanga was evaluated on six projects, and GrouMiner was evaluated on nine
projects. We exclude four projects which are not publicly available anymore. In total, 16
projects (14 unique) are available (Table 4.4).

Table 4.4 shows the detection results of Bugram and these three bug detection ap-
proaches. JADET detected three true bugs on the three projects. Bugram detected five
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Table 4.4: Comparison with JADET, Tikanga, and GrouMiner. ‘Fixed’ denotes the number
of true bugs detected by Bugram that have already been fixed in later versions. * denotes the
number of unique true bugs detected by Bugram that the tools in comparison failed to detect.

Graph-based tools Bugram
Project JADET Reported TBugs Fixed

AZUREUS 2.5.0 1 8 4 4
columba-1.2 0 4 1* 1
aspectj-1.5.3 2 5 0 0

3 17 5 5

Project Tikanga Bugram

aspectj-1.5.3 9 5 0 0
tomcat-6.0.18 0 13 4* 2
argouml-0.26 1 3 1 1
Vuze 3.1.1.0 0 8 0 0
columba-1.4 1 6 1 1

11 35 6 4

Project GrouMiner Bugram

columba-1.4 1 6 1 1
ant-1.7.1 1 3 1 1
log4j-1.2.15 0 7 2* 2
aspectjrt-1.6.3 1 12 2 1
axis-1.1 0 6 3* 1
jedit-3.0 1 5 1 1
jigsaw-2.0.5 1 1 1 1
struts-1.2.6 0 8 0 0

5 48 11 8

true bugs on the same projects, at least one of which cannot be detected by JADET. Since
these papers did not report the full list of detected bugs, we do not know if the bugs
detected by JADET and Bugram overlap. However, since JADET detected 0 true bugs in
columba, while Bugram detected one bug, we know that Bugram detected one bug that
JADET cannot detect. We also found that all five true bugs detected by Bugram are fixed
in a later version by developers. For the same reason as above, we do not know if the bugs
detected by JADET have been fixed in a later version. Tikanga detected 11 true bugs on
the five projects, while Bugram detected six true bugs on the same projects, four of which
are unique to Bugram (detected in tomcat). Four of the six true bugs have already been
fixed. GrouMiner detected five true bugs on the eight projects, while Bugram detected 11
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true bugs on the same projects, five of which are unique to Bugram (detected in log4j and
axis). Eight of the 11 true bugs have already been fixed. In total, the three approaches
detected 19 true bugs in the 14 projects, while Bugram detected 21 true bugs, and we have
manually checked that 16 of them have already been fixed in a later version. In addition,
at least 10 of the 21 true bugs cannot be detected by these three tools.

Since JADET is an open-source tool, we further apply JADET (with recommended
parameters) on the projects listed in Table 4.1. Results shown that JADET did not detect
any true bugs, the top 10 potential bugs detected by JADET are missing method calls of
JAVA library classes, e.g., Map, List, Iterator, etc. JADET, Tikanga, and GrouMiner
are based on object usage graph models, so rules generated by them are method usages of
classes (both library classes and project specified classes). For example, one of JADET’s
representative rules is the method Iterator.next() should always follow the method
Iterator.hasNext(). Violations of this rule will be flagged as potential bugs. However,
it is not necessary to use both the two methods in every scenario. Thus, it is possible for
JADET to report large numbers of false positives related to the Java library classes listed
above. The comparison results show that Bugram is complementary to these graph-
and rule-based approaches.

In addition, the detection precision of Bugram is better than these three techniques.
JADET [285] reported that three of the 30 potential bugs detected in the three projects
listed in Table 4.4 are true bugs. Thus, JADET has a detection precision of 10.0%, while
Bugram achieves a precision of 29.4% on the same projects. Tikanga’s authors manually
examined 118 potential bugs on the five projects, 11 of which are true bugs [284], indicating
a detection precision of 9.3%. While Bugram achieves a precision of 17.1% on the same five
projects. Similarly, GrouMiner has a detection precision of 4.2% on the eight projects [199],
while Bugram achieves a precision of 22.9% on the same projects.

4.5.3 Examples

Example Bugs. We show some of the detected true bugs in Figure 4.8. Specifically,
Figure 4.8 shows three examples of detected true bugs in ProGuard and Nutch that are
detected by our tool. FIM and FSM fail to detect them. We reported the three bugs to
the ProGuard and Nutch developers, and all of them have been confirmed as true bugs. In
addition, the bugs in Figure 4.8(a) and Figure 4.8(c) have already been fixed by developers.

The bug in Figure 4.8(a) is caused by an incorrect API usage. Specifically, the instanti-
ation of ConfigurationWriter (writer) should be closed in a finally block instead of a
try block. To fix this bug, instead of closing the writer in the try block, developers added
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(a) A confirmed and fixed true bug from ProGuard (BugID: 582).

try{

ConfigurationWriter writer = new ConfigurationWriter(file);

writer.write(getProGuardConfiguration ());

writer.close();}

catch (Exception ex){...}}

(b) A confirmed true bug from Nutch (BugID: NUTCH-2076).

try {

currentJob.waitForCompletion(true);

} finally { ...

}}...}

(c) A confirmed and fixed true bug from Nutch (BugID: NUTCH-2256).

if (LOG.isDebugEnabled ()) {

LOG.info("Crawl delay for queue: "...);}

Figure 4.8: True bug examples from version 5.2 of ProGuard (a) and version 2.3.1 of Nutch (b
and c)

a finally block, and closed the writer in it. Figure 4.8(b) also shows a true bug. The
method waitForCompletion might throw several exceptions, e.g., ClassNotFoundException
and IOException, while in this case, developers used this function without handling these
potential exceptions. To fix this bug, developers should either use a catch block to handle
the exceptions or raise the exceptions to be handled by the calling functions. Figure 4.8(c)
shows another true bug. This bug is caused by the inconsistency between the checked
log level (debug) and the used log level (info). To fix this bug, developers replaced the
method info() with the method debug() to make it consistent with the checked log level.
Example Refactoring Opportunities. Figure 4.9 shows an example of refactoring op-
portunity detected by our tool from Pig project. In this example, developers first define
two variables dt1, and dt2 to keep data via method call get() of objects bb1 and bb2.
Next, in the switch block, one of the case branch needs data from objects bb1 and bb2,
while such data already kept in variables dt1 and dt2. Without reusing these two vari-
ables, developers call get() of objects bb1 and bb2 to obtain data again. This costs extra
memory and time and should be refactored by using variables dt1 and dt2 directly in lines
6 and 7.

Some of our detected bugs may appear to be simple, but many (7) of them have
been confirmed or fixed (4 confirmed and fixed, 2 confirmed with patches pro-
posed, 1 confirmed) by the developers of these projects, suggesting the value
of our approach.
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byte dt1 = bb1.get();

byte dt2 = bb2.get();

switch (dt1) {

case BinInterSedes.BIGINTEGER :{

if{

int sz1 = readSize(bb1 , bb1.get());

int sz2 = readSize(bb2 , bb2.get());} }

...}

Figure 4.9: A refactoring bug example from version 0.15.0 of Pig

Table 4.5: Time cost of Bugram (in seconds).

Project Total Tokenization Model Building and
Bug Detection

Elasticsearch 162 160 2
GeoTools 878 872 6
jEdit 86 85 1
Proguard 61 60 1
Vuze 312 310 2
Xalan 80 79 1
Hadoop 447 443 4
Hbase 151 149 2
Pig 93 91 2
Solr-core 97 95 2
Lucene 206 203 3
Opennlp 50 49 1
Struts 223 220 3
Zookeeper 42 41 1
Nutch 36 35 1
Cassandra 157 155 2

4.5.4 Execution Time and Space

We collect the time and space costs for all the 16 projects listed in Table 4.1, and details are
presented in Table 4.5. We can see that the total execution time for tokenization, model
building, and bug detection varies from 50 to 878 seconds. Our largest evaluated project,
GeoTools, uses 2GB of memory. As shown in the table, most of the time is spent building
ASTs with type information with a fraction of the time on building n-gram models and
detecting bugs. The results demonstrate Bugram’s practical value.
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4.6 Threats to Validity

Implementation of PR-Miner To compare Bugram with rule-based bug detection ap-
proaches, we have reimplemented a rule-based approach PR-Miner [144], since PR-Miner
is not publicly available. The PR-Miner paper reported higher precision than what we
reported with our implementation of PR-Miner in this study. One possible reason is that
PR-Miner has only been evaluated on C projects. Its false positive pruning approach, rec-
ommended threshold values of support and confidence may only be effective on C projects,
while in this study we evaluate on Java projects. However, for our implementation of PR-
Miner, we have tried our best to tune parameters, e.g., threshold values of support and
confidence, to obtain the best results. This is our best effort given that PR-Miner is not
publicly available. Our comparison is fair since both Bugram and PR-Miner are tuned and
evaluated on the same projects.

Bugs are verified by the authors Following prior work [30,70,144,223,269,284,285],
we manually check whether the potential bugs reported by the tools are true positives.
Although this approach is a common practice, this process contains bias since we are not
the developers of these projects. We mitigate this threat by sending the bugs to developers
for further confirmation.

4.7 Summary

In this chapter we introduce Bugram, that leverages n-gram models to detect bugs. Bugram
detects potential bugs via calculating and ranking the probabilities of program tokens
based on the probability distribution of program tokens in a project. Low probability
token sequences are flagged as potential bugs. We evaluate Bugram in two ways. First,
we compare it with two rule-based bug detection approaches on 16 projects. Results show
that Bugram detects 25 true bugs, and 23 of which cannot be detected by PR-Miner.
Second, we further apply Bugram on 14 projects evaluated in three graph- and rule-based
tools, i.e., JADET, Tikanga, and GrouMiner. Bugram detects 21 true bugs, at least 10
of which cannot be detected by these three tools. Our results suggest that Bugram is
complementary to existing rule-based bug detection approaches.
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Chapter 5

Leveraging Machine Learning
Classifiers to Improve Regression
Testing

This chapter presents our new test case prioritization technique, i.e., QTEP, which leverages
machine learning models to evaluate source code quality and then adapts existing test case
prioritization algorithms by considering the weighted source code quality. QTEP was pre-
sented at the 11th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE’17 [281]).

5.1 Motivation

Modern software constantly evolves as developers make source code changes such as fixing
bugs, adding new features, refactoring existing code, etc. To ensure that the changes
do not introduce new bugs, regression testing is commonly conducted against existing
functionalities. However, regression testing can be expensive. Especially for large projects,
the regression testing could consume 80% of the overall testing budgets and require weeks
to run all test suites [37, 59, 234]. Intuitively, test cases that could reveal bugs should be
run earlier so that the developers could have more time to fix the revealed bugs and speed
up the system delivery. Along this line, test case prioritization (TCP) has been proposed
and intensively studied for regression testing [36,58,142,147,155,166,173,174,234,235,247,
270,312,315]. TCP techniques reorder test cases to maximize a certain objective function,
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typically exploring faults earlier [234, 314]. Researchers have applied TCP techniques on
projects from Google [59, 147, 314] and Salesforce.com [34] and have shown that TCPs
could significantly improve the efficiency of regression testing.

Most of existing TCPs are coverage-based [43,86,101,102,142,153,154,166,234,312,319].
A typical coverage-based TCP technique leverages coverage information between source
code and test cases, i.e., static code coverage (static call graph from current version) and
dynamic code coverage (dynamic call graph from the last execution), to schedule test cases
by maximizing code coverage with different coverage criteria. Coverage-based TCPs assign
higher priorities to test cases that have higher dynamic or static code coverages.

Existing TCP techniques often do not take the likely distribution of faults in source
code into consideration. In other words, they assume that faults in program source code
are equally distributed. However, as reported in existing work [203, 205, 256], the fault
distribution in source code is often unbalanced, i.e., around 80% faults are located in
about 20% source code [203]. Intuitively, test cases that cover the more fault-prone code
are more likely to reveal bugs so that they should be run with a higher priority.

The goal of this study is to propose a quality-aware TCP technique, QTEP, that addresses
the above limitation of existing TCPs. We evaluate the quality of source code in terms
of fault-proneness and then we further use the quality information to prioritize test cases.
To achieve the goal, QTEP gives more weight to fault-prone source code so test cases that
cover the fault-prone code have a higher priority to be executed. We identify fault-prone
source code in a software project by using defect prediction models, which is widely used
to help developers find bugs [125,221].

In addition, we apply QTEP to both regression and new test cases. Most existing TCP
techniques only focus on prioritizing regression test cases [43,101,102,142,166,234,312,319].
However, in real-world testing practice, the test suite for a modified software system often
consists of: (1) existing test cases, i.e., regression test cases, which are designed to verify
whether the existing functionalities still perform correctly after changed, and (2) new test
cases, which are added to test the modification. During software evolution, these two types
of test cases are essential for testing the modified software and detecting bugs [153]. Thus,
we consider both the two types of test cases in this study.
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Figure 5.1: Overview of the proposed QTEP. Vn and Vn+1 are two versions. C1 to Cm are
consecutive commits between these two versions that introduce changes to the source code and
test cases.

5.2 Approach

Figure 5.1 illustrates that our approach consists of three steps: (1) leveraging the defect
prediction model based code inspection technique to detect fault-prone source code (Sec-
tion 5.2.1), (2) weighting source code based on results from the code inspection approach
(Section 5.2.2), and (3) adapting existing TCP techniques and evaluating the results (Sec-
tion 5.2.3).

5.2.1 Fault-prone Code Inspection with Defect Prediction Model

Software defect prediction techniques (DP) leverage various software metrics to build ma-
chine learning models to predict unknown defects in the source code [82,104,170,190,192,
256, 280, 289, 318, 326]. Based on the prediction results, software quality assurance teams
can focus on the most defective parts of their projects in advance.

Typically, defect prediction models could be categorized as supervised or unsupervised
models. Most of existing defect prediction models are supervised [82, 104, 170, 190, 256,
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280, 289, 326]. These models leverage past defects from software historical data to build
machine learning classifiers and then use the classifiers to predict future bugs. However,
not all projects have enough defect data to build a defect prediction model, so unsupervised
models [192,318] are also proposed based on the characteristics of defect prediction metrics.

To directly compare QTEP to existing TCP techniques, we reuse 33 versions from 7 open
source Java projects from previous TCP studies [55,166,235]. Some of these projects do not
have well-maintained past defects. This means we do not have enough defect data to build
supervised models. Thus, we adopt the state-of-the-art unsupervised defect prediction
model, i.e., CLAMI [192], to detect fault-prone source code in this study. Specifically, to
consider different test case prioritization strategies and scenarios, we build CLAMI models
at both method and class levels and CLAMI directly outputs the lists of predicted bugs at
both levels.

5.2.2 Weighting Source Code Units

We leverage the detection results from CLAMI to weight the fault-prone source code
units. A code unit could be a statement, a branch, a method, or a class, which depends on
different test case prioritization strategies. In this work, we focus on weighting statement-
level and method-level code units since we use statement-level and method-level coverage
criteria to examine coverage-based TCPs (Section 2.3).

Algorithm 1 shows how to weight statement-level and method-level code units by using
detection results (i.e., detected buggy classes and methods) from CLAMI. Initially, the
algorithm assigns a default weight to all code units (i.e., all statements and methods).
Then, given a code unit, if the class or the method that contains this code unit is detected
as buggy, the weight of this code unit will be calculated by accumulating the weights of
the buggy class or the buggy method. Otherwise, if the class or the method that contains
this code unit is identified as clean, its weight will not be updated. Code units that are
not covered by any buggy class or method will be assigned the default weight.

Parameters: In the above algorithm, there are three parameters, i.e., weight base,
weight c, and weight m that could affect the effectiveness of the proposed QTEP. We de-
scribe the setup, tuning, and impact of these three parameters in Section 5.3.6.

• weight base is the base weight for all code units, i.e., the default weight for initializing
the weights of all code units.
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Algorithm 1 Weighting source code units
Input: Inspection results at class level CBuggy and at method level MBuggy . The sets of all methods M and all statements

S to be weighted. Parameters weight base, weight c, and weight m.

Output: Weighted method set MWeighted and statement set SWeighted.

1: //Initialization, set default values for examined code units.
2: for each unweighted method MWeightedi in MWeighted do
3: MWeightedi = weight base;
4: end for
5: for each unweighted statement SWeightedi in SWeighted do
6: SWeightedi = weight base;
7: end for
8: //Weight methods
9: for each unweighted method Mi in M do
10: if Mi in MBuggy then
11: MWeightedi += weight m;
12: end if
13: if CBuggy contains Mi then
14: MWeightedi += weight c;
15: end if
16: end for
17: //Weight statements
18: for each unweighted statement Si in S do
19: if MBuggy contains Si then
20: SWeightedi += weight m;
21: end if
22: if CBuggy contains Si then
23: SWeightedi += weight c;
24: end if
25: end for

• weight c is the weight for detected buggy classes by code inspection techniques.

• weight m is the weight for detected buggy methods by code inspection techniques.

For CLAMI, we use the class-level prediction results as seeds to weight code units using
weight c, and use the method-level prediction results as seeds to weight code units using
weight m.

5.2.3 Quality-Aware Test Case Prioritization

After weighting all the source code units of a project, we then adapt existing coverage-based
TCP techniques using these weighted code units. Comparing to existing coverage-based
TCPs, QTEP leverages the quality-aware coverage information of test cases. As we described
in Section 2.3, QTEP explores two different types of coverages, i.e., method coverage and
statement coverage. In this section, we show how to calculate the quality-aware statement
and method coverages of a test case.
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A project P has m method-level code units, i.e., {mc1,mc2, ...,mcm}, and s statement-
level code units, i.e., {sc1, sc2, ..., scs}. Its test suite T consists of n test cases, i.e.,
{t1, t2, ..., tn}. MWeighted ({mw1,mw2, ..., mwm}) and SWeighted ({sw1, sw2, ..., sws})
are the weight sets for the method-level and the statement-level code units respectively.

Given a test case ti (1 ≤ i ≤ n), we use QMCoverage[ti] and QSCoverage[ti] to denote
its quality-aware method coverage and statement coverage respectively.

QMCoverage[ti] =
m∑
j=1

cover(ti,mcj) ∗mwj (5.1)

QSCoverage[ti] =
s∑

j=1

cover(ti, scj) ∗ swj (5.2)

where, cover(ti,mcj) or cover(ti, scj) is 1, if test case ti covers code unit mcj or scj,
otherwise 0. mwj and swj are the weights for method-level code unit mcj and statement-
level code unit scj respectively.

Note that, to calculate the quality-aware coverages for test cases, one could leverage
different coverage information, i.e., dynamic coverage and static coverage information.
With the quality-aware coverages (i.e., QMCoverage and QSCoverage) of each test case,
QTEP further prioritizes test cases with different prioritization strategies (i.e., total and
additional).

5.3 Experimental Study

5.3.1 Research Questions

We answer the following research questions to evaluate the performance of QTEP.

RQ1. Is QTEP more effective than the state-of-the-art coverage-based TCPs for regres-
sion test cases only?

RQ2. Is QTEP more effective than the state-of-the-art coverage-based TCPs for all test
cases (both regression and new test cases)?

RQ3. How much time can QTEP save for finding bugs comparing to existing TCPs?
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Table 5.1: Experimental subject programs. VPair denotes a version pair. RTC, RTM, and
RF are the number of regression test classes, regression test methods, and regression faults
respectively. NTC, NTM, and NF are the number of new test classes, new test methods, and
mutation faults for new test cases respectively.

No. Project VPair #RTC #RTM #RF #NTC #NTM #NF

P1 Time&Money 3.0-4.0 15 143 1 7 32 1*100
P2 Time&Money 4.0-5.0 16 159 1 8 24 1*100

P3 Mime4J 0.50-0.60 24 120 3 21 139 3*100
P4 Mime4J 0.61-0.68 57 348 4 6 72 4*100

P5 Jaxen 1.0b7-1.0b9 12 24 3 0 0 -
P6 Jaxen 1.1b6-1.1b7 41 243 1 28 250 1*100
P7 Jaxen 1.1b9-1.1b11 69 645 1 7 29 1*100

P8 Xml-Security 1.0-1.1 15 91 2 3 29 2*100

P9 XStream 1.20-1.21 115 637 1 8 38 1*100
P10 XStream 1.21-1.22 124 698 2 7 58 2*100
P11 XStream 1.22-1.30 133 768 11 19 134 11*100
P12 XStream 1.30-1.31 150 885 3 9 76 3*100
P13 XStream 1.31-1.40 140 924 7 18 180 7*100
P14 XStream 1.41-1.42 157 1,200 5 3 23 5*100

P15 Commons-Lang 3.02-3.03 83 1,698 1 7 122 1*100
P16 Commons-Lang 3.03-3.04 83 1,703 2 13 119 2*100

P17 Joda-Time 0.90-0.95 10 219 2 1 43 2*100
P18 Joda-Time 0.98-0.99 71 1,932 2 9 211 2*100
P19 Joda-Time 1.10-1.20 90 2,420 1 3 415 1*100
P20 Joda-Time 1.20-1.30 93 2,516 3 11 532 3*100

5.3.2 Supporting Tools

In this study, we focus on coverage-based TCPs, which require both dynamic and static
code coverage information of test cases. To collect dynamic code coverage, following exist-
ing work [153, 154, 235], we use the ASM bytecode manipulation and analysis framework
under FaultTracer tool [320] to collect the dynamic code coverage information for test
cases. To collect static code coverage, following existing work [154,166], we use the WALA
framework [7] to collect the static call graphs for the test cases, and traverse the call
graphs to obtain the involved methods and statements for each test method and test class.
For the unsupervised defect prediction model, i.e., CLAIM, we use its publicly available
implementation1.

All the test prioritization techniques have been implemented in Java and all the exper-
iments were carried out on a 4.0GHz i5-2400 desktop with 6GB of memory.

1https://github.com/lifove/CLAMI/
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5.3.3 Subject Systems, Test Cases, and Faults

To facilitate the replication and verification of our experiments, we choose 33 versions from
7 open-source Java projects, which are widely utilized as benchmarks to address real-world
test case prioritization problem [55,166,235]. Table 5.1 lists all the projects and the detailed
statistical information. The sizes of these systems vary from 5.7K LOC (Time&Money) to
114.1K LOC (Joda-Time).

For regression test cases, following existing work [166,235], for each listed version-pair,
we use the real-world regression faults for regression test cases. Each version-pair has at
least one real-world regression fault, which will crash at least one regression test case on
the later version. For example, there are 11 regression faults (#RF) in the project P11 in
Table 5.1.

Since not all benchmark projects have faults for new test cases, following existing
work [12, 54, 86, 112, 153], we use mutation faults when considering the new test cases.
We generate mutation faults using a set of carefully selected mutation operators [13], e.g.,
logical, arithmetic, statement deletion, etc. Specifically, we use the Major mutation tool [6]
to generate these mutation faults for new test cases. Note that not all generated mutation
faults can be revealed by test cases, thus we use a subset of detected faults obtained by
further running Major with all test cases. For each project, we randomly select m mutation
faults killed by new test cases only. We set m to be equal to the number of regression faults
to simulate the real-world testing scenario. To mitigate the randomness, we repeat this
process 100 times. For instance, we randomly select 11 mutation faults and repeat this
100 times as 11*100 (#NF of P11 in Table 5.1). Thus, we have 100 fault version-pairs for
each of experimental subjects when considering new test cases.

5.3.4 Evaluation Measure

We use the Average Percentage Fault Detected (APFD) [233], a widely used metric for
evaluating the performance of TCP techniques. APFD measures the average percentage
of faults detected over the life of a test suite, and is defined by the following formula:

APFD = 1−
∑numf

i=1 TFi

numt × numf

+
1

2× numt

(5.3)

where, numt denotes the total number of test cases, numf denotes the total number of
detected faults, and TFi (1 ≤ i ≤ numf ) denotes the smallest number of test cases in
sequence that need to be run in order to expose the fault i. APFD values range from 0 to
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Table 5.2: The experimental scenarios for TCPs.

Test Granularities Test Case Types

Method (M) Regression test cases (R)

Class (C) Regression+ New test cases (RN)

Table 5.3: The experimental independent variables of QTEP.

IV1:
Coverage Techniques

IV2:
Coverage Criteria

IV3:
Prioritization Strategies

Dynamic (D) Method (M) Total (T)

Static-JUPTA (J) Statement (S) Additional (A)

1. For any given test suite, its numt and numf are fixed. The higher APFD value signals
that the average value of TFi is lower and thus represents a higher fault-detection rate.

5.3.5 Experimental Scenarios

Table 5.2 shows the TCP scenario options in our experiments. By combining these options,
four different TCP scenarios can be defined. We first conduct TCP at two different granu-
larity levels, i.e., method (M) and class (C). In addition, following existing work [153], we
also conduct TCP for (1) regression test cases only (R), and (2) all test cases (regression
and newly added test cases, RN). Running regression test cases only or running all the
test cases are two practical testing activities during software evolution [188]. Based on the
combinations of these settings, the four scenarios are defined as follows: regression test
method (M-R), regression test class (C-R), all test method (regression and newly added)
(M-RN), and all test class (regression and newly added) (C-RN). In Section 5.4, we report
APFD values for these four scenarios.

Table 5.3 shows independent variables (IVs) used in the experiments. Before conducting
TCP experiments under the three scenarios, we set four IVs that affect TCP performance
in terms of APFD:

IV1: Coverage Techniques. For examining the TCP performance of QTEP, we use
two representative coverage techniques from the existing coverage-based TCP techniques.

• Dynamic-coverage-based TCP is based on the information of the dynamic call
graph from the latest run of a subject project. We use test coverage information
based on the dynamic call graph to prioritize test cases.
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• Static-coverage-based TCP ranks test cases based on the information from static
call graph. JUPTA is the state-of-the-art static-coverage-based TCP technique [166].
We use JUPTA as a representative static-coverage-based TCP technique for the ex-
periments.

IV2: Coverage Criteria. Since all the studied techniques rely on code coverage
information, we also investigate the influence of coverage criteria. We study two widely
used coverage criteria: (1) Method coverage, (2) Statement coverage.

IV3: Prioritization Strategies. As we described in Section 2.3, the Total strategy
and Additional strategy are widely used in most existing studies to schedule the execution
order of test cases [15, 153, 166, 233, 235]. Thus, we also investigate the influence of these
two different prioritization strategies.

We can form 8 combinations from the above three IVs (IV1 to IV3) from the existing
TCP techniques as baselines. The IV1, IV2, and IV3 in Table 5.3 represent technical
options that we can select from the existing coverage-based TCP techniques. Based on
acronyms for IV options in Table 5.3, we can list the 8 combinations as follows: DMT (i.e.,
dynamic method coverage with total strategy), DMA, DST, DSA, JMT, JMA, JST, and JSA.

We also use the random TCP as a baseline. The random TCP runs all the test cases
randomly, therefore the performance of the random TCP might vary across different runs.
To mitigate the randomness, we run the random TCP 500 times on each subject and obtain
the average performance in APFD. Following existing work [16], we denote the random
TCP technique as RT.

In this work, we use a defect prediction model (DP) to detect buggy code and further
weighting source code units. By combining all IVs with the defect prediction model, we
can define 8 variants of QTEP. Based on acronyms for IV options in Table 5.3, the 8 variants
of QTEP are DMT-DP, DMA-DP, DST-DP, DSA-DP, JMT-DP, JMA-DP, JST-DP, and JSA-DP.

To investigate the TCP performance of QTEP, we compare the 8 combinations from
IV1–IV3 and RT to the 8 variants in Section 5.4.

5.3.6 Parameter Setting

As presented in Section 5.2.2, our algorithm for weighting source code has three parameters,
i.e., weight base (default weight for all code units), weight c (weight for detected buggy
classes), and weight m (weight for detected buggy methods). Different weights of these
parameters could significantly affect the performance of QTEP. In this section, we study the
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Figure 5.2: The distribution of the best weight c (wc) and weight m (wm) for the variants of
QTEP that are adapted from static-cover-based TCPs (a) and dynamic-coverage-based TCPs (b).

impact of the three parameters of QTEP on the performance of prioritizing both regression
and all test cases (both regression and new test cases). Specifically, for regression test
cases, we select the first version-pair from each project listed in Table 3.4 as experimental
subjects. When considering both regression and new test cases, we randomly selected 20
faulty versions from the first version-pair of each project as experimental subjects.

We then tune the parameters for each project (in Table 5.1) using each of the 8 variants
from QTEP (described in 5.3.5) and evaluate the specific values of the parameters by the
average APFD scores at the class level and the method level (with or without new test
cases).

For simplifying the tuning process, we set weight base equal to 1. Then, we set weight c
equal to c×weight base and weight m equal to m×weight base, we experiment c and m
with a range from 1 to 100. We use all the combinations of the three weights in the tuning
process, which includes 100× 100 × 20 (#project) ×16 (#variants of QTEP) experiments
for regression test cases, and 100× 100 × 20 (#project) × 20 (#mutation fault version)
× 16 (#variants of QTEP) experiments for all test cases (regression and new test cases).

Figure 5.2 (a) and Figure 5.2 (b) show the distribution of the best values of parameters
weight c and weight m for all the 8 variants of QTEP on the 20 version-pairs. We could see
that the best values of weight c and weight m vary dramatically for different projects. On
average, for variants of QTEP that are adapted from static-coverage-based TCPs, weight c
is 16.7 times of weight base and weight m is 13.1 times of weight base. For variants
of QTEP that are adapted from dynamic-coverage-based TCPs, weight c is 18.7 times of
weight base and weight m is 11.6 times of weight base.

In this work, we use the best values of weight c and weight m that are obtained from
the first version-pair of a project as default parameters for all the left version-pairs of this
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Figure 5.3: Results of static-coverage-based variants of QTEP and static-coverage-based TCPs,
i.e., random , static coverage-based TCPs , static-coverage-based variants of QTEP .
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Figure 5.4: Results of dynamic-coverage-based TCPs, i.e., random , dynamic-coverage-based
TCPs , dynamic-coverage-based variants of QTEP .

project. Note that since project Xml-Security only has one available version-pair from
the existing benchmark dataset, thus for this project, we tune parameters and report the
performance on the same version-pair.

5.4 Results and Analysis

5.4.1 RQ1 & RQ2: Performance of QTEP for Regression Test
Cases and for All Test Cases

Figure 5.3 and Figure 5.4 show the comparison results in the four scenarios on each of
the 20 version-pairs. Specifically, they show the boxplots of the APFD values for the 8
variants of QTEP, the eight variants of coverage-based TCPs, and the random baseline RT

in the four scenarios. Each sub-figure presents the detailed APFD results of one type
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of QTEP (i.e., static-coverage-based or dynamic-coverage-based variants of QTEP) and the
corresponding baseline TCPs on a specific scenario. For example, Figure 5.3 (a) shows
the C-R (regression test class) scenario of static-coverage-based techniques, RT, and static-
coverage-based variants of QTEP, while Figure 5.4 (a) shows the C-R scenario of dynamic-
coverage-based techniques, RT, and dynamic-coverage-based variants of QTEP. Each boxplot
presents the APFD distribution (median and upper/lower quartiles) of prioritization results
of one variant of QTEP on the 20 version-pairs. We use gray ( ), white ( ), yellow ( ), and
blue ( ) boxes to represent the random, static-coverage-based, dynamic-coverage-based,
and QTEP techniques respectively.

The figures show that overall QTEP could outperform corresponding traditional coverage-
based TCPs ( and ) and RT ( ) for both regression test cases and new test cases at
both method-level and class-level TCPs. In addition, static-coverage-based variants of
QTEP techniques are overall more effective than dynamic-coverage-based variants of QTEP.
Specifically, for C-R, among all examined TCP techniques, JMT-DP produces the best APFD
with a median value of 0.75, which is almost 6% higher than the best traditional coverage-
based technique, i.e., JMT. For M-R, JMT-DP outperforms all other examined TCPs. While
considering new test cases, JMA-DP and JST-DP produce the best performance for C-RN
and M-RN respectively.

We further take a closer look at each individual program. To save space, we only show
the detailed comparison between the results of static-coverage-based variants of QTEP and
the results of the corresponding coverage-based TCPs, since they are overall more effective
than dynamic-coverage-based variants of QTEP.

Table 5.4 shows the average APFD values of all static-coverage-based variants of QTEP
and the corresponding coverage-based TCPs on each project. Numbers in brackets are the
improvements QTEP compared to corresponding coverage-based TCPs. We can see that
QTEP variants improve the APFD values for all the projects. However, the improvement
varies on different projects. For example, on project Time&Money, JMA-DP achieves the
best APFD for C-R (i.e., 0.82), which 23 percentage points higher than the corresponding
JMA (i.e., 0.59). While on XStream, the improvement is only one percentage point. In the
worst case, e.g., JMA-DP, QTEP does not improve traditional coverage-based TCPs. The
same phenomenon is also observed in dynamic-coverage-based variants of QTEP.

Note that we can see that the improvements vary on different projects, this can be be-
cause the performance of CLAMI varies on different projects. To explore this, we further
compute the Spearman correlation between the false positive rates and the improvements
of QTEP on all projects. Results show that the Spearman correlation values for the false
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Table 5.4: Comparison between the static-coverage-based variants of QTEP and the corresponding
coverage-based TCPs for each project

Subject Scenario JMT JMT-DP JMA JMA-DP JST JST-DP JSA JSA-DP

Time&Money

C-R 0.65 0.71(+0.06) 0.59 0.82(+0.23) 0.82 0.82 0.77 0.77
M-R 0.24 0.27(+0.03) 0.49 0.50(+0.01) 0.12 0.29(+0.17) 0.47 0.49(+0.02)
C-RN 0.61 0.62(+0.01) 0.63 0.64(+0.01) 0.64 0.64 0.69 0.69
M-RN 0.36 0.39(+0.03) 0.60 0.59 0.34 0.43(+0.09) 0.57 0.57

Mime4J

C-R 0.65 0.71(+0.06) 0.61 0.62(+0.01) 0.73 0.86(+0.13) 0.59 0.59
M-R 0.71 0.75(+0.04) 0.55 0.55 0.69 0.69 0.55 0.55
C-RN 0.75 0.76(+0.01) 0.65 0.71(+0.06) 0.70 0.71(+0.01) 0.62 0.62
M-RN 0.68 0.70(+0.02) 0.48 0.48 0.63 0.63 0.48 0.48

Jaxen

C-R 0.90 0.95(+0.05) 0.90 0.90 0.90 0.90 0.85 0.85
M-R 0.67 0.69(+0.02) 0.77 0.77 0.73 0.73 0.78 0.78
C-RN 0.80 0.80 0.74 0.75(+0.01) 0.80 0.81(+0.01) 0.65 0.65
M-RN 0.65 0.68(+0.03) 0.66 0.66 0.68 0.71(+0.03) 0.68 0.68

Xml-Security

C-R 0.71 0.73(+0.02) 0.38 0.38 0.71 0.73(+0.02) 0.38 0.38
M-R 0.97 0.97 0.84 0.84 0.97 0.97 0.84 0.84
C-RN 0.50 0.50 0.42 0.42 0.54 0.54 0.50 0.50
M-RN 0.91 0.91 0.83 0.83 0.94 0.94 0.85 0.85

Xstream

C-R 0.72 0.76(+0.04) 0.64 0.65(+0.01) 0.73 0.73 0.66 0.67(+0.01)
M-R 0.66 0.67(+0.01) 0.72 0.73(+0.01) 0.66 0.68(+0.02) 0.73 0.73
C-RN 0.88 0.89(+0.01) 0.82 0.82 0.86 0.87(+0.01) 0.82 0.82
M-RN 0.76 0.76 0.81 0.82(+0.01) 0.76 0.77(+0.01) 0.81 0.81

Commons-Lang

C-R 0.67 0.71(+0.04) 0.75 0.76(+0.01) 0.52 0.55(+0.03) 0.70 0.70
M-R 0.36 0.37(+0.01) 0.37 0.38(+0.01) 0.20 0.24(+0.04) 0.35 0.35
C-RN 0.67 0.67 0.69 0.69 0.70 0.70 0.72 0.72
M-RN 0.67 0.67 0.61 0.62(+0.01) 0.54 0.57(+0.03) 0.62 0.62

Joda-Time

C-R 0.65 0.67(+0.02) 0.61 0.62(+0.01) 0.62 0.62 0.47 0.50(+0.03)
M-R 0.70 0.72(+0.02) 0.76 0.78(+0.02) 0.70 0.70 0.66 0.73(+0.07)
C-RN 0.71 0.71 0.66 0.67(+0.01) 0.72 0.72 0.70 0.70
M-RN 0.83 0.83 0.80 0.80 0.85 0.85 0.78 0.78

positive rates and the improvements of QTEP are -0.50. This indicates that the perfor-
mance of QTEP on each project is negatively correlated with the false positive rate of the
investigated code inspection technique on this project.

In addition, the above figures (i.e., Figure 5.3 and Figure 5.4) show that all static-
coverage-based variants of QTEP generate better results than RT and the improvement ranges
from 9 to 30 percentage points. However, we also note that the performance of dynamic-
coverage-based variants of QTEP has a dramatically decline when considering M-RN and
C-RN compared to static-coverage-based variants of QTEP, and cannot even outperform RT.
For example, the APFD of DSA-DP in M-RN is only 0.28, which is 26 percentage points
lower than RT. This is because the dynamic coverage information comes from the last
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execution of the test suite, which does not contain the new test cases. Thus, the faults
that can be revealed only by the new test cases are ignored since the coverage information
of new test cases is always unavailable in the dynamic-coverage-based TCPs [153, 154].
While, static coverage information of both regression and new test cases could be obtained
by static code analysis. Thus, the performances of static-coverage-based variants of QTEP
are similar between with the new test cases and without the new test cases.

For statistical tests, we also conduct the Wilcoxon signed-rank test (p < 0.05) to
compare the performance of QTEP and existing TCPs. Specifically, we compare each variant
of QTEP with its corresponding coverage-based TCP technique on all projects for both
regression and new test cases. Results show that two of the 8 variants of QTEP could achieve
significantly better performance than the corresponding coverage-based TCPs (i.e., JMT-DP
and DSA-DP). For the other eight variants, their performances are slightly better or equal
to the corresponding coverage-based TCPs.

In summary, QTEP is overall more effective than corresponding coverage-
based TCPs. While dynamic-coverage-based QTEP variants exhibit significantly
better performance on regression test cases than on all test cases, static-
coverage-based QTEP variants produce similarly good performance on both re-
gression test cases and all test cases (both regression and new test cases).

5.4.2 RQ3: Comparison of bug finding times of QTEP and existing
TCPs.

In RQ1 and RQ2, we show that QTEP is more efficient in finding the failed test cases than
traditional TCPs. In this RQ, we further evaluate QTEP and traditional TCPs regarding
the time cost for finding bugs by running test cases with the orders generated by QTEP and
existing TCPs. Specifically, we run test cases with orders generated by the best variant
of QTEP, i.e., JMT-DP and the best traditional TCP, i.e., JMT, on each version pair, during
which we collect the time cost of finding all the bugs on each version pair. The time saved
by JMT-DP on each project compared to JMT is presented in Table 5.5. We can see that QTEP
saves the bug finding time on six of the seven experimental projects and the percentage of
time saved varies from 2% to 45.5%.

5.4.3 Time and Memory Overhead

Comparing with traditional coverage-based TCPs, the extra running overhead of QTEP

depends on the applied code inspection technique, i.e., defect prediction models, and our
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Table 5.5: Time saved by QTEP. Numbers in brackets are the percentages of bug-finding-time
saved by QTEP compared to the best traditional TCP.

Subject Time Saved by QTEP(s)
Time&Money 1.2 (20.1%)
Mime4J 11.1 (8.6%)
Jaxen 13.5 (2.3%)
Xml-Security 0
Xstream 3.5 (6.2%)
Commons-Lang 69.0 (10.0%)
Joda-Time 110.3 (45.5%)

Table 5.6: The average time cost of QTEP on each subject.

Subject
Time (s)

Defect prediction (i.e., CLAMI [192]) Weighting code
Time&Money 0.4 < 0.1
Mime4J 0.4 < 0.1
Jaxen 0.6 < 0.1
Xml-Security 0.2 < 0.1
Xstream 0.9 < 0.1
Commons-Lang 1.2 < 0.1
Joda-Time 1.6 < 0.1

source-code-weight algorithm. To understand the overhead of QTEP, we collect the time
and space costs for all experiments, and details are presented in Table 5.6. We can see that
the execution time for weighting source code is less than 0.1 seconds and the execution time
for running defect prediction models varies from 0.2 to 1.6 seconds. The largest project
(in terms of the number of test cases), Joda-Time, uses 96.5MB of memory. As shown in
the table, code inspection techniques spent more time than weighting source code units.
The total time cost on each project is less than 2 seconds. Overall, the results demonstrate
QTEP’s practical aspect.

5.5 Threats to Validity

To evaluate the quality of prioritization, we choose APFD, which has been extensively used
in the field of TCP. However, APFD cannot reflect time and space costs or the severity
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of faults. We plan to use more metrics, e.g., APFDc [58], to reduce this threat. In this
work, all the experiment subjects are open-source projects and written in Java with JUnit
test cases. Although they are popular projects and widely used in TCP research, our
findings may not be generalizable to commercial projects or projects in other languages.
To mitigate this threat, we plan to explore the effectiveness of QTEP on C/C++ projects
in the future.

5.6 Summary

In this chapter, to address the limitations of existing TCP algorithms, we present a quality-
aware TCP technique named QTEP. Specifically, we leverage code inspection techniques, i.e.,
statistical defect prediction models and static bug detection techniques, to detect fault-
prone source code and then adapt existing coverage-based TCP algorithms by considering
the weighted defectiveness of source code. Our evaluation shows that QTEP could improve
existing coverage-based TCP techniques for both regression test cases and all test cases.
As future work, we plan to explore the impact of fault-revealing capability of test suites
and the severities of different bugs on the performance of QTEP. We also plan to investigate
the different aggregations of code inspection results in QTEP.
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Chapter 6

Leveraging Machine Learning
Classifiers to Automate the
Identification of Risky Code Review
Requests

This chapter presents our approach to improving traditional code review by leveraging
machine learning based classifiers to identify the risky code change requests, i.e., changes
that have multiple rounds of code review or are reverted. This work has been submitted
to the 16th International Conference on Mining Software Repositories (MSR’19).

6.1 Motivation and Background

Code changes could be risky, e.g., they may introduce quality issues such as bugs, improper
implementations, maintenance issues, etc. As a consequence, reviewing them could require
much more code review effort. In this study, we use the code review effort as an indicator to
define the regular and risky changes. Specifically, we define a risky change as a code change
that has multiple rounds of code review or is reverted. All other changes are considered as
regular changes.

Code review is a manual inspection of source code by humans, aims at identifying po-
tential defects and quality problems in the source code before its deployment in a live envi-
ronment [62,162,182,228]. However, such a manual inspection could be a time-consuming
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Figure 6.1: Average time cost for reviewing regular and risky changes.
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Figure 6.2: Average number of reviewers involved for reviewing changes.

and expensive process [105, 162, 182, 228, 229, 264, 267]. For example, to effectively as-
sess a code change, developers are required to read, understand, and critique the code
change [229,267]. Moreover, if the code changes cannot pass the first round of code review,
developers have to conduct a second round of code review and even more rounds until they
resolve all the review suggestions.

In this section, we motivate this study by showing the review effort of regular and risky
changes, i.e., review time cost, the number of reviewers involved on one proprietary project
and three widely-used open-source projects, i.e., Qt, Android, and OpenStack (details are
in Table 6.1). Specifically, for each regular change and risky change from the four projects,
we collect the time reviewers spent on reviewing it and the number of reviewers involved.
Note that we use the difference between the submission timestamp and the resolution
timestamp of a review request of a change to assess the review time, since the exact time
cost is not recorded in the code review systems of the four projects. We then average the
review time and the number of reviewers involved for all changes for each project.

Figure 6.1 shows the average review time for each project. As shown in the figure, the
time cost for reviewing risky changes could be 10X of that for reviewing regular changes
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(in project Android) and on average is 7X across the four projects. Figure 6.2 shows the
average number of reviewers involved to review both the regular and risky changes. As
we can see, reviewing risky changes requires more reviewers to collaborate together than
reviewing the regular changes in each of the four projects. Our manual inspection on
randomly selected 100 risky changes from the four projects shows that after the first round
of code review, the initial reviewers often request reviewers with more experience or higher
permission to double check or approve the updated changes. Overall, the average number
of reviewers for reviewing risky changes is 1.3X as that for reviewing the regular changes.

From Figures 6.1 and 6.2, we can conclude that reviewing risky changes requires signif-
icantly more effort than reviewing regular changes. Intuitively, finding these risky changes
before starting the code review process can provide developers early information about
their changes so that they have a chance to improve the changes and further accelerate the
code review process.

In this work, we first propose a feedback-driven and heuristics-based approach to obtain
change intents for understanding the changes. We then characterize risky changes by using
various features extracted from change metadata and the change intents. We further
explore the feasibility of automatically classifying risky changes. We conduct our study
on a large-scale proprietary project and three large-scale open-source projects, i.e., Qt,
Android, and OpenStack. Our results show that, (i) code changes with specific intents
are more like to be risky, namely new features and refactoring changes have a significantly
higher probability to be risky, (ii) machine learning based prediction models can efficiently
help classify risky changes where the best prediction model using Random Forest, achieves
AUC values larger than 0.71 on each of the four subjects, and (iii) prediction models built
for code changes with specific intents achieve better performance than prediction models
without considering the change intent, the improvement in AUC can be up to 19 percentage
points and is 7.4 percentage points on average.

6.2 Approach

Figure 6.3 illustrates that our approach consists of four steps: (1) labeling each history
change as regular or risky to indicate whether the change has multiple rounds of code review
effort or is reverted (Section 6.2.1), (2) analyzing the change intents (Section 6.2.2), (3)
extracting features to represent the changes (Section 6.2.3), and (4) using the features and
labels to build and train prediction models and apply the models to predict new changes
(Section 6.2.4).
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Table 6.1: Projects used in this study. Lang is the program language of each subject.
#CR is the number of code changes. Rate is the rate of risky changes, which is measured
in a percentage.

Project Lang First Date Last Date #CR Rate
Proprietary C# 5/05/2015 5/22/2018 >100K ∼15
Qt C 5/17/2011 5/25/2012 23,041 39.28
Android JAVA 7/18/2011 5/31/2012 7,120 31.75
OpenStack Python 7/18/2011 5/31/2012 6,430 43.31

Figure 6.3: The overview of our risky change prediction approach.

6.2.1 Labeling Risky Changes

The first step of our approach is to label each change as regular or risky based on its
code review history. Specifically, for the proprietary project, we extracted its code review
database, and checked code review iterations each change has. If the number is larger than
two, we labeled it as risky otherwise we labeled it as regular. For the three open-source
projects, since their code review systems do not maintain the corresponding code review
iteration counts, we use a heuristic approach to collect the regular and risky changes, i.e.,
a code review request of a change may have multiple rounds of code review, for each round
of code review, developers are required to submit a patchset to be reviewed, we counted
the number of patchsets for the code review request of each code change. If the number of
submitted patchsets is larger than one, we labeled the change as risky otherwise we labeled
it as regular. In addition, We also consider the reverted changes as risky.

The reason to use these thresholds is that during our early-stage correlation analysis,
we found there is a strong correlation between the code review iteration larger than two
and introducing bugs or maintenance issues for changes in the code review system of the
proprietary project. We have also observed a similar correlation relation on the open source
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projects, i.e., changes with more than one patchsets have a higher probability to introduce
bugs or maintenance issues.

6.2.2 Intent Analysis

Many approaches have been proposed to characterize and classify changes based on the
change intents [9, 90, 217, 253, 308]. Most of them consider the high-level change intents,
e.g., corrective, adaptive, or perfective [253,308]. In this study, we leverage the fine-grained
change intent categories proposed in Hindle et al. [90], which is showed in its Table 3, to
categorize changes. Note that there are more than 20 different categories described in [90].
We started with manual analysis on randomly selected 200 changes from the proprietary
project, and found that some of the categories have very few number of changes, e.g.,
‘Legal’, ‘Build’, ‘Branch’ have less than 3 changes. We then group the small categories
into larger ones for obtaining more instances. For example, we have grouped ‘Legal’, ‘Data’,
‘Versioning’, ‘Platform Specific’, and ‘Documentation’ into ‘Resource’, grouped ‘Rename’
and ‘Token Replace’ into ‘Refactor’, etc. Finally, we use eight types of change intents to
categorize changes. Note that we also have an ‘Other’ category for changes that do not
fall into any of the eight categories.

Table 6.2 shows the nine types of changes, their descriptions, and the heuristics we
used to automatically classify changes. Instead of manually labeling changes, in this work
we automate the classification process by using well-refined heuristics. Thus, the accuracy
of heuristics could significantly affect the result of this study. To improve the accuracy of
the classification of changes, we used a feedback-driven approach to design and refine the
heuristics for each change intent and the details are as follows:

• Step 1: With a randomly selected 200 instances, the first two authors first classify
them into the nine categories manually and independently. Specifically, after reading
the commit message and checking the changed files of a change, they label the change
based on their experience. For the the classification conflicts (less than 5%), the third
author inspects them independently and the first three authors make a decision for
each conflict together. Then they initialize the heuristics for each category.

• Step 2: With the initialized heuristics, we classify all changes into at least one of the
nine categories. For each category, we randomly collect 50 instances and the authors
work together to manually check its accuracy.
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• Step 3: If the accuracy of a category is lower than 80%, we further refine the
heuristics and then redo Step 2, otherwise we keep the heuristics for classifying
changes.

Taking the ‘Test’ category as an example, in Step 1, we found that most changes
from it have keywords “test” or “testing” in their commit messages. Thus, the initialized
heuristics we designed for ‘Test’ is that the commit message of a change contains the
keywords “test”. In Step 2, we randomly checked 50 of the collected changes labeled as
‘Test’. Our manual inspection revealed that almost a half of them were false positives,
and we also found that most of the false positives have irrelevant commit messages, e.g.,
“... use backup config if test fails ...” and “... send a test message ...”. To improve the
heuristics, in Step 3, we added another heuristic, which is the changed files can only be
test files (e.g., file names or paths contain the keyword “test”) or resource files. Then we
redo Step 2 again, by using the new heuristics, the accuracy of ‘Test’ category is around
90%.

We use the above steps to refine the heuristics of each category to ensure the classifi-
cation of change intents has a higher accuracy. Table 6.2 shows the final heuristics.

6.2.3 Feature Extraction

In this study, we use the following features for building machine learning based risky change
prediction models.

• Change Intent: As code changes could be classified into different categories based
on their intents, we assume that changes with different intents have different impacts
on the quality of changes. We use a vector to represent the change intents of a change.
Each element in the vector is a binary value, i.e., 1 or 0, representing whether the
change has a specific intent or not. The change intents we considered are listed in
Table 6.2.

• Revision History: As presented in previous research [125], the revision history of
a file can be a factor to predict its quality. In this study, we also explore the impact
of revision history on predicting risky changes. Specifically, given a code change, we
consider the number of files in this change that have been revised in the last 30 and
90 days, and the number of revision on all the involved files of this change in the last
30 and 90 days.

120



• Owner Experience: This set of features represent the experience of a change’s
committer. We use a committer’s commit history information to represent her/his
experience, which includes the total number of changes submitted, the total number
of risky changes submitted, etc. We assume that the committer’s experience affects
the quality of the changes submitted.

• Word2Vec Features: Word embedding is a feature learning technique in natural
language processing where individual words are no longer treated as unique features,
but represented as d-dimensional vector of real numbers that capture their contextual
semantic meanings [29, 171]. We train the embedding model by using all data from
each project. With the trained word embedding model, each word can be transformed
into a d-dimensional vector where d is set to 100 as suggested in previous studies [304,
310]. Meanwhile a code change can be transformed into a matrix in which each row
represents a term in its commit message. We then transform the code change matrix
into a vector by averaging all the word vectors the code change contains, as described
in [310].

• Process Features: Various process features have been shown to help predict soft-
ware bugs [104,220,256]. In this study, we also consider the following process features:
code addition, code deletion, number of changed files, and the types of changed files.
Note that for the types of changed files, following existing studies [90, 91], we group
files into source files, test files, configuration files, scripts, documentations, and others
based on their suffixes and file paths. Specifically, we consider files with extensions:
.java, .cs, .py, .js, .c, .cpp, .cc, .cp, .cxx, .c++, .h, .hpp, .hh, .hp, .hxx, and .h++, as
the source files. Among them, files that contain ‘test’ in the paths or file names are
considered as test files. Files with extensions: .script, .sh, .bash are considered as
scripts. Files with extensions: .xml, .conf, .MF are considered as configuration files.
Files with extensions: .htm, .html. .css, .txt, are considered as documentation files.
And, remaining files are considered as others.

• Metadata: In addition to the above features, we also use metadata features. Specif-
ically, given a code change, we collect its commit minute (0, 1, 2, ..., 59), commit
hour (0, 1, 2, ..., 23), commit day in a week (Sunday, Monday, ..., Saturday), commit
day in a month (0, 1, 2, ..., 30), commit month in a year (0, 1, 2, ..., 11), and source
file/path names.

In total, in this study we leverage 132 features to build machine learning based risky
change prediction models, i.e., eight are from change intents, four are from revision history,
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five are from owner experience, 100 are from word2vec features, ten are from process
features, and five are from metadata features.

6.2.4 Building Models and Predicting Risky Changes

After we obtain the features for each code change, we split the data into the training dataset
and test dataset. We build and train the machine learning based prediction models on the
training dataset. Then we use the test dataset to evaluate the performance of the models.

Note that different from classifying code changes in Chapter 3, classifying code review
requests are time independent. There are two reasons, first code changes are committed
chronologically or there can be conflicts while code review requests are independent and
are unnecessary to be chronological. Second, the labelling process of code changes is time
sensitive, e.g., the ground-truth of a code change is obtained by blaming later bug-fixing
changes as shown in Figure 3.11, while the label of a code review request comes from
the real code review actives when a code review is submitted, which does not depend
on other code review requests. In this work, we do not split the dataset by following a
certain order in time as we did in Section 3.4 for change-level defect prediction. Following
existing studies [89, 104, 120,122, 220,262], we use the widely used 10-fold cross-validation
to evaluate the prediction models. The process of 10-fold cross-validation is: 1) separating
the data set into 10 partitions randomly; 2) using one partition as the test data and the
other nine partitions as the training data; 3) repeating step 2) with a different partition
as the test data until all data have a predicted label; 4) computing the evaluation results
through comparison between the predicted labels and the actual labels of the data.

6.3 Experimental Study

6.3.1 Research Questions

RQ1: What are the distributions of risky and regular changes regarding change intents?

RQ2: Is it feasible to predict risky changes by using machine learning based classifiers
with features extracted from change metadata and change intents?

RQ3: Do the specific prediction models (classifiers trained on changes with a specific
intent) outperform the general models (classifiers trained on all changes)?
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RQ4: Does the performance of predicting risky changes with a single intent differ from
predicting risky changes with multiple intents?

In RQ1, we aim at understanding the distributions of changes regarding the change
intents. In RQ2, we explore the feasibility of leveraging machine learning models to predict
risky changes. In RQ3, we aim to explore whether machine learning classifiers built for
changes with a specific intent can generate better performance than classifiers built on
all data without considering the change intents. In RQ4, we investigate the difference in
predicting risky changes with a single intent and changes with multiple intents.

6.3.2 Experiment Data

In order to address our research questions, we perform an empirical study of software
projects that actively adopt the code review process. We begin with the review dataset
of Android, Qt, and OpenStack provided by Hamasaki et al. [76]. The three projects
adopt the Gerrit1 code review system. We also expand the review dataset to include code
review data from a large-scale proprietary project, which uses a custom code review system.
Details of the projects are in Table 6.1.

Android2 is an operating system for mobile devices that is developed by Google. Qt3

is a cross-platform application and UI framework. OpenStack4 is an open-source soft-
ware platform for cloud computing. The last project is a widely used web service from
proprietary.

6.3.3 Evaluation Measures

To measure the performance of predicting risky changes, we use four metrics: Precision,
Recall, and F1. These three metrics are widely adopted to evaluate prediction tasks [170,
190, 326]. AUC is the area under the ROC curve, which measures the overall discrimi-
nation ability of a classifier. It has been widely used to evaluate classification algorithms
in prediction tasks [65, 191, 216, 318]. The AUC is a threshold-independent performance
measure that evaluates the ability of classifiers in discriminating between defective and
clean modules. The AUC score for a perfect model would be 1, for random guessing would

1https://www.gerritcodereview.com/
2https://www.android.com/
3https://www.qt.io/developers/
4https://www.openstack.org/
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be 0.5, and for a model predicting all instances as true or false would be 0. A machine
learning model is considered applicable to classify a given dataset if the AUC score is larger
than 0.7 [262].

6.4 Results and Analysis

Table 6.3: Taxonomy of code changes. #Ch is the number of code changes. Perc is the
percentage of changes with a specific change intent among all the changes. Rate is the
rate of risky changes, which is measured in a percentage. Single contains changes that
have only one intent. Multiple contains changes that have more than one intent.

Change
Intent

Proprietary Qt Android OpenStack
Perc Rate #Ch Perc Rate #Ch Perc Rate #Ch Perc Rate

Bug Fix ∼20 19.1 9,042 39.24 35.43 2,143 30.10 35.88 3,380 52.57 46.95

Resource ∼39 8.98 5,326 23.12 28.56 1,561 21.92 29.66 2,300 35.77 34.26

Feature ∼12 33.55 3,526 15.30 55.05 1,735 24.37 46.63 771 12.00 60.83

Test ∼4 15.14 3,840 16.67 38.75 663 9.31 35.6 1,005 15.63 54.23

Refactor ∼2 41.97 696 3.02 49.28 117 1.64 50.43 195 3.03 65.64

Merge ∼4 14.67 217 0.94 35.02 245 3.44 13.06 31 0.48 48.39

Deprecate ∼6 18.52 3,826 16.61 36.96 752 10.56 37.9 905 14.07 44.75

Auto ∼10 0 / / / / / / / / /

Others ∼15 20.96 4,036 17.52 40.21 1,513 21.25 35.23 577 8.97 34.66

Single ∼87 17.12 17,200 74.65 40.69 5,802 81.50 38.12 4,209 65.47 41.29

Multiple ∼13 14.71 5,841 25.35 35.13 1,317 18.50 32.88 2,220 34.53 47.07

6.4.1 RQ1: Distribution of Changes Regarding Change Intents

Following the change intent taxonomy approach described in Section 6.3.1, we automat-
ically label each change from the four projects. As reported in existing studies [66, 177],
software changes could be made for multiple purposes, e.g., a change could be made for
correcting bugs and refactoring existing code at the same time. Thus, we also consider
labeling changes with multiple intents. Table 6.3 shows the number of changes, the per-
centage among all changes, and the percentage of risky changes for each change intent in
the four projects. In addition, we also show the numbers of changes that have single and
multiple intents. Note that the ‘Auto’ changes only exist in proprietary project and we
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Table 6.4: Comparison of different classifiers on predicting risky code changes. The best
F1 scores and AUC values are highlighted in bold.

Project
ADTree Logistic NB SVM RF
F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

Proprietary 0.40 0.65 0.37 0.72 0.37 0.72 0.41 0.63 0.46 0.76
Qt 0.53 0.62 0.54 0.72 0.41 0.66 0.34 0.59 0.57 0.71
Android 0.58 0.68 0.54 0.71 0.58 0.70 0.50 0.65 0.58 0.74
OpenStack 0.60 0.64 0.64 0.76 0.62 0.68 0.66 0.70 0.66 0.76

find all of them are regular changes, thus we exclude these changes for building change
prediction models. Since there exist overlaps among different change intents, the sum of
percentages of change intents is larger than 1.

As shown in Table 6.3, the distribution of changes regarding intents varies in different
projects. We could also see that changes are unevenly distributed regarding the intents.
For example, changes with intents ‘Bug Fix’ and ‘Resource’ are dominating across the
four projects, e.g., they take up more 50% of all the changes, while the percentages of
changes with intents ‘Refactor’ and ‘Merge’ are less than 4%. Note that the distribu-
tion in our dataset is consistent with that of manually categorized changes from existing
study [90], in which changes under categories Corrective (i.e., addressing failures), Adap-
tive (i.e., changes for data and processing environment), and Perfective (i.e., addressing
inefficiency, performance, and maintainability issues) are dominating with a percentage
higher than 60%, which also confirms the effectiveness of our automated heuristic-based
change classification (details are presented in Section 6.2.2).

While ‘Feature’ and ‘Refactor’ have significantly higher rates of risky changes (Wilcoxon
signed-rank test, p < 0.05), this is reasonable since both the ‘Feature’ and ‘Refactor’
introduce new functionalities or restructure existing code snippets, which are easy to be
risky. Category ‘Resource’ has a significantly lower rate of risky changes across the four
projects (Wilcoxon signed-rank test, p < 0.05). This may be because, compared to all
other categories, changes in the ‘Resource’ category modify the source code rarely.

Software code changes are unevenly distributed regarding change intents. Changes with
specific change intents, i.e., ‘Feature’ and ‘Refactor’, have a significantly higher prob-
ability to be risky.
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Table 6.5: Performance of predicting risky code changes with single and multiple change
intents. Better F1 scores or AUC values are highlighted in bold.

Change Intent
Proprietary Qt Android OpenStack
F1 AUC F1 AUC F1 AUC F1 AUC

Single 0.48 0.78 0.58 0.75 0.58 0.73 0.67 0.80
Multiple 0.41 0.75 0.54 0.70 0.57 0.71 0.66 0.77

6.4.2 RQ2: Feasibility of Predicting Risky Changes

This question explores whether machine learning algorithms can learn models that predict
new risky changes. We use off-the-shelf machine learning algorithms from Weka [74].
We use the change intent, change history, owner experience, Word2Vec features, process
features and metadata features (details are in Section 6.2.3) to build these prediction
models.

We experiment with five widely used [89,104,138,170,280,326] classification algorithms,
i.e., Alternating Decision Tree (ADTree), Logistic Regression (Logistic), Naive Bayes (NB),
Support Vector Machine (SVM), and Random Forest (RF). Note that this work does
not intend to find the best-fitting classifiers or models, but to explore the feasibility of
predicting risky changes by using machine learning algorithms. Existing work [262] showed
that selecting optimal parameter settings for machine learning algorithms could achieve
better performance, thus we tune each of the classifiers with various parameters and use the
ones that could achieve the best AUC value as our experiment settings. For each project,
we build classification models and use the commonly used 10-fold cross-validation method
to evaluate the prediction models [89, 104, 120, 122, 220, 262]. Taking the OpenStack as
an example, for tuning Random Forest, we tune parameter numIterations as suggested
in [74], specifically we experiment with 20 discrete values, i.e., 50, 100, 150, 200, 250, 300,
350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, and 1,000, results show that
when numIterations equals to 900, Random Forest has the best prediction performance
in terms of F1 on OpenStack.

Table 6.4 shows the F1 and AUC values of each machine learning algorithm on the four
experimental projects. Overall, of the five classifiers, RF consistently outperforms the oth-
ers on each project. The improvements of RF compared to the other four classifiers range
from 5.0 percentage points to 13.0 percentage points in AUC and 5.0 percentage points
to 9.0 percentage points in F1. RF achieves similar AUC values on both the proprietary
project and open-source projects, while it has a significantly lower F1 score (Wilcoxon
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signed-rank test, p < 0.05) on the proprietary project. This may be because the Compa-
nyX project has a lower rate of risky changes, e.g., as shown in Table 6.1, the risky rates of
open-source projects are around 20.0 percentage points higher than that of the proprietary
project, which makes the data distribution more unbalanced in the proprietary project.
Previous studies showed that the unbalance issue could decline the F1 scores [256, 259].
As revealed in existing work [259], that the unbalance issue of a dataset does not impact
the AUC measure and they suggested that a machine learning model is considered appli-
cable to classify a given dataset if the AUC is larger than 0.7. Hence, we use the AUC to
compare prediction models. We could find that among the five examined machine learning
classifiers, two of them, i.e., Logistic and RF, achieve AUC values larger than 0.7 on each
of the four experimental projects, which confirms the feasibility of predicting risky changes
by using machine learning algorithms.

Machine learning based prediction models can help predict risky changes. The best
model (i.e., RF) achieves AUC values larger than 0.71 on each experimental project.

6.4.3 RQ3: Specific Models vs. General Models

In RQ2, we show that it is feasible to leverage machine learning classifiers to predict risky
changes with the features extracted from changes’ metadata and intents. In this RQ, we
further explore whether the machine learning classifiers built and trained on changes with a
specific change intent, i.e., specific model, could achieve better performance than machine
learning classifiers built and trained on all changes, i.e., general model. Specifically, for
each project, we build and train the RF-based specific prediction models on changes with
one specific change intent. We tune each of the RF-based classifiers with various parameter
values and use the ones that could achieve the best AUC value as our experiment settings.
In addition, we use 10-fold cross-validation method to evaluate the prediction models. The
general model on the project is trained and evaluated on all changes without considering
the change intents. Note that we exclude the specific model for category ‘Merge’ on the
project OpenStack, because it has very few numbers of instances.

Table 6.6 shows the comparison between the performance of the specific prediction
models and the general models. Regarding F1, we can see that at least half of specific
models outperform the general models across the four experimental projects. For example,
six out of the eight specific models on the proprietary project generate better F1 values than
the general model, the improvement is up to 25.0 percentage points and is 6.0 percentage
points, on average. We observe a similar situation on Qt and OpenStack, i.e., overall
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Figure 6.4: Comparison of perdition performance between the specific models and the general
models. The model with a prefix “G” means using the trained general model to predict changes
with a specific intent and “b” represents ‘Bug Fix’, “re” represents ‘Resource’, “f” represents
‘Feature’, “t” represents “Test”, “r” represents “Refactor”, “m” represents “Merge”, “d” rep-
resents “Deprecate”, and “o” represents “Others”. For example G-b means using the trained
general model to predict changes with the ‘Bug Fix’ intent. S-b is the specific model trained and
evaluated on changes with the ‘Bug Fix’ intent.
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specific models are better than the general models, the improvements are up to 16.0 and
15.0 percentage points on Qt and OpenStack respectively. However, we also observe an
exception in Android, although five out of the eight specific models generate better (or the
same) F1 values than the general model, the overall improvement is negative, the reason
is that the ‘Merge’ category has an F1 value that is 28.0 percentage points lower than
that of the general model. This is because the ‘Merge’ category has a much lower risky
rate (i.e., 13.1%) than that of all other categories (range from 29.0% to 50.4%) in Android,
which makes the ‘Merge’ unbalanced. Previous studies showed that the unbalance issue
of data could decline the F1 scores [256, 259]. Regarding AUC, we can observe that all
the specific models outperform the general models across the four experimental projects.
The improvement could be up to 19.0 percentage points and is 7.4 percentage points on
average. Thus, from the comparison shown in Table 6.6, we conclude that overall the
specific models achieve better prediction performance than the general models.

Above all, we show that the specific models (built on changes with a specific change
intent) are overall better than the general models (built on all the changes). One could
also argue that using the general models to predict changes with a specific intent may have
better performance than the corresponding specific model. To explore this issue, we further
examine the performance of leveraging the general models to predict changes with a specific
intent. Specifically, for each change intent, we randomly divide its changes into training
dataset and test dataset (66% for training, 34% for test). For the specific model, we use
its training data to train the model and evaluate its performance on its test dataset. For
the corresponding general model, we combine the training data from all specific models,
and evaluate its performance on the test dataset of a specific model. We repeat the data
splitting, model training, and evaluation 50 times to reduce bias.

Figure 6.4 shows the boxplots of the 50 times classification for each specific model and
its corresponding general model on each project. In addition, we also show the boxplots of
overall-general models (i.e., using 66% of all changes to train the models and evaluate the
models on the left 34% changes without considering change intents). As we mentioned in
Section 6.4.2, the AUC is more stable for evaluating the performance of machine learning
classifiers, in this RQ, we only use AUC to evaluate the prediction models. Each boxplot
presents the AUC distribution (median and upper/lower quartiles) of a prediction model.
We use gray ( ), light gray ( ), and white ( ) to represent the specific models, correspond-
ing general models, and the overall-general models respectively. We could observe that
overall the specific models outperform the general models on almost all the change intents
across the four experimental projects. Specifically, for the proprietary project, the mean
AUC values of the specific models are around ten percentage points higher than that of
the corresponding general models. For the open-source projects, the mean AUC values of
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the specific modes are around five percentage points higher than that of the corresponding
general models. In addition, all the special models outperform the overall-general models.

Prediction models built on changes with specific change intents achieve better perfor-
mance than the general prediction models that do not consider the change intents.

6.4.4 RQ4: Single Intent vs. Multiple Intents

As showed in RQ1 (Section 6.4.1), in this study we consider labelling changes with multiple
intents. This RQ explores the performance of predicting changes with a single intent and
changes with multiple intents. Specifically, for each project, we build and train the RF-
based prediction models with changes with only a single intent and changes with multiple
intents respectively. We tune each of the RF-based classifiers with various parameter values
and use the ones that could achieve the best AUC value as our experiment settings. We
also use the 10-fold cross-validation method to evaluate the models.

Table 6.5 shows the F1 scores and AUC values of the prediction models for changes with
single and multiple change intents in the four experimental projects. As we can see, the
prediction models for changes with a single intent significantly outperform the prediction
models for changes with multiple intents in both F1 and AUC across the four experimental
projects (Wilcoxon signed-rank test, p < 0.05). In terms of F1, the improvement could
be up to 7.0 percentage points and is 3.3 percentage points, on average. For AUC, the
improvement could be up to 5.0 percentage points and is 3.3 percentage points, on average.
One of the possible reasons for this difference is that changes with a single intent are mainly
made for one specific purpose, which makes them easier to be distinguished by machine
learning classifiers than complex changes with multiple intents.

Machine learning classifiers generate better performance on changes with a single change
intent than changes with multiple change intents.

6.5 Threats to Validity

Internal Validity The main threat to internal validity is about the annotation of change
intents, subjectivity of annotation, and miscategorization. The annotation relied on our
manually refined heuristics, and although this approach is a common practice, this process
contains bias since we are not the developers of these projects. To mitigate this, authors
worked independently to annotated the data and refined the heuristics. In addition, we
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chose a setup that ensures that every heuristic is cross-validated and the classification
conflicts have to pass a third inspection.

External Validity In this work, we use a proprietary project and three open-source
projects to evaluate our proposed approach. Since they adopt different code review systems,
i.e., the proprietary project adopts a custom code review system and the open-source
projects adopt the Gerrit code review system. Thus, the proposed approach might not
work for projects that adopt other code review systems.

6.6 Summary
This chapter presents the first study of risky changes (i.e., changes that have multiple
rounds of code review effort or are reverted) by considering the change intents. We conduct
our study on a large-scale proprietary project, and three open-source projects, i.e., Qt,
Android, and OpenStack. Experiment results show that: (i) changes with specific intents
are more like to be risky, (ii) machine learning based prediction models could help identify
risky changes, and (iii) prediction models built for changes with specific intents achieve
better performance than prediction models without considering the intents.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we demonstrated that machine learning with its capability in knowledge
representation, learning, natural language processing, classification, etc., can be used to
extract invaluable information from software artifacts to improve existing software relia-
bility practices such as defect prediction, static bug detection, regression test, and code
review. We saw four examples that support this claim.

In Chapter 3, we saw that a great deal of defect prediction research relies on manually
designed features that encoding the statistical characteristics of programs. However, these
features often fail to capture the semantic difference of programs, and such a capability
is needed for building accurate prediction models. To bridge the gap between programs’
semantics and defect prediction features, this thesis leverages deep learning techniques to
learn a semantic representation of programs automatically from source code and further
build and train defect prediction models based on these semantic features. We examine
the effectiveness of the deep learning based defect prediction approaches on both the open
source and commercial projects. Results show that the learned semantic features can
significantly outperform existing defect prediction models.

In Chapter 4, we saw that existing rule-based static bug detection techniques often miss
detecting bugs, if patterns do not appear frequently enough and are not inferred. To solve
this issue, this thesis proposes Bugram, which leverages n-gram language models instead of
rules to detect bugs. Specifically, Bugram models program tokens sequentially, using the
n-gram language model. Token sequences from the program are then assessed according
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to their probability in the learned model, and low probability sequences are marked as
potential bugs. The assumption is that low probability token sequences in a program are
unusual, which may indicate bugs, bad practices, or unusual/special uses of code of which
developers may want to be aware. Results on 16 open-source projects show that Bugram

is complementary to existing bug detection approaches to detect more bugs and generates
less false positives.

In Chapter 5, we saw that most of existing test prioritization techniques rely on maxi-
mizing coverage information between source code and test cases to schedule test cases for
finding bugs earlier. While they often do not consider the likely distribution of faults in
source code. However, software faults are not often equally distributed in source code, e.g.,
around 80% faults are located in about 20% source code. Intuitively, test cases that cover
the faulty source code should have higher priorities, since they are more likely to find faults.
To solve this issue, this thesis proposes QTEP, which leverages machine learning models to
evaluate source code quality and then adapts existing test case prioritization algorithms
by considering the weighted source code quality. Evaluation on seven open-source projects
shows that QTEP can significantly outperform existing test case prioritization techniques to
find failed test cases early.

In Chapter 6, we saw that current code review practice relies on manual inspection to
reveal potential quality issues in the submitted code change requests, which is inefficient
and time-consuming. To solve this issue, this thesis presents the first study to understand,
characterize, and automatically predict risky changes (i.e., changes that have multiple
rounds of code review or are reverted) by considering their change intents and various
process features. Evaluation on one proprietary project and three large-scale open-source
projects (i.e., Qt, Android, and OpenStack) shows our approach is effective and can further
improve the current code review process.

Taken together, these four studies provide examples of using machine learning to gen-
erate research results that can improve software reliability.

7.2 Future Work

The approaches that are proposed in this thesis show promising results of leveraging ma-
chine learning technologies to improve software reliability practices. Based on the findings
presented in this thesis, we have identified several possible directions for future research.

Leveraging Deep Learning to Accelerate Software Analytics. Previous studies have
shown that deep learning could help solve many software analytics problems, e.g., software
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defect prediction (Chapter 3), fault localization [133], code and API suggestion [72, 290],
malware classification [209,317], test report classification [110]), software traceability [107],
etc. Along this line, we plan to explore more studies on applications of deep learning
in software analytics. For example, the problem of automatic program, which aims at
automatically finding a solution to software bugs without human intervention, has been
studied for years [136, 181]. However, most of existing approaches are still not applicable
for fixing complex bugs [184]. The intuition of this project is open-source community has
tens of thousands of bug-fixing history records, i.e., patches. These patches can provide
valuable human knowledge, exploiting such human knowledge can help automatically fix
similar bugs in a new program. In this project, we plan to leverage deep learning to
automatically distill expertise and past efforts of developers to help fix new bugs.

In addition, we would also like to explore the potential applications of deep learning
algorithms for improving test case generation, program generation, and code comment
generation.

Learning to Improve Imbalanced Defect Prediction. Software projects typically
have imbalanced data for defect prediction, i.e., low buggy rate or few buggy instances
in training dataset [193, 256], which significantly narrows down the representativeness of
training dataset and induces poor prediction performance. Existing approaches towards
solving this problem fall into two main directions: a) increasing buggy rate via duplicating
buggy instances in training dataset with various re-sample techniques (i.e., resampling). b)
borrowing buggy data from other projects to build the prediction model (i.e., cross-project
prediction). However, resampling techniques simply duplicating existing buggy data, which
cannot introduce new types of bugs or improve the representativeness of training dataset.
Thus, the improvement of resampling techniques on defect prediction is limited. Cross-
project prediction techniques often introduce noises, which limit the expected improvement.
In addition, cross-project prediction requires non-trivial effort to find a similar project with
enough buggy data instances, which means the performance is not guaranteed with different
source projects. To address the imbalanced data problem in defect prediction, different
from the above two approaches, in this project, we propose to leverage mutation generation
techniques to synthesize mutation faults to increase the buggy rate and representativeness
of buggy instances in training data.

Learning to Improve Static Bug Detection. There is a flurry of rule-based static bug
detection techniques [2–4,144], many of which have already been adopted in the industry,
e.g., FindBugs [4], Facebook-Infer [3], and Google Error-Prone [2], etc. One major chal-
lenge of static bug detection techniques is the large number of false positives they report,
i.e., reported bugs are not true bugs. Specifically, 30-90% of reported warnings by static
bug detection tools are false positives [79]. Such a large number of false positives often

135



make developers reluctant to use bug detection tools entirely due to the overhead of alert
inspection. In this project, we focus on the fundamental questions behind the false posi-
tives and answer the following research questions: Why do the rule-based static bug finders
generate so many false positives? How can we improve these patterns and avoid false pos-
itives? This project involves an empirical study to summarize the reasons behind the false
positives and approaches to addressing the false positives. The result of this project will
make existing rule-based bug detection more accurate and also could provide invaluable
guides for both academic researchers and industry developers to build their rule-based bug
detection tools accurately.

Designing An Integrated Software Reliability Assurance Framework. Software
quality assurance is gaining increasing attention throughout the software lifecycle. This
thesis presents four machine learning based techniques to improve existing software re-
liability practices, i.e., software bug detection, static bug detection, regression test, and
code review. However, most of the current widely used software reliability practices are
independent. Developers often have to switch among different tools to conduct different
quality assurance tasks, which is time-consuming and requires non-trivial manual effort.
A framework that integrates existing software reliability assurance tasks used in different
stages of the software development can accelerate the quality assurance throughout the
entire software development cycle. For example, a framework that integrates software bug
detection and automatic bug repair tools can provide developers the integrated software
bug detection and bug repair service. We believe such an integrated software reliabil-
ity assurance framework can help developers deliver high-quality software with speed and
agility.
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[150] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chrisochoides. Modeling class cohesion as
mixtures of latent topics. In ICSM’09, pages 233–242.

[151] F. Long, P. Amidon, and M. Rinard. Automatic inference of code transforms for patch generation.
In FSE’17, pages 727–739.

[152] F. Long and M. Rinard. Staged program repair with condition synthesis. In FSE’15, pages 166–178.

[153] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang. How does regression test
prioritization perform in real-world software evolution? In ICSE’16, pages 535–546.

[154] Q. Luo, K. Moran, and D. Poshyvanyk. A large-scale empirical comparison of static and dynamic
test case prioritization techniques. In FSE’16, pages 559–570.

[155] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta. Assessing test case prioritization on real faults
and mutants. arXiv preprint arXiv:1807.08823, 2018.

[156] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama. Mode: Automated neural network model
debugging via state differential analysis and input selection. In FSE’18.

[157] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka. Code reviewing in the trenches:
Understanding challenges and best practices. IEEE Software, 2017.

[158] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT press,
1999.

[159] K. Mao, M. Harman, and Y. Jia. Sapienz: multi-objective automated testing for android applications.
In ISSTA’16, pages 94–105.

[160] F. Martin et al. Refactoring: Improving the Design of Existing Code. 1999.

[161] R. Martin. Oo design quality metrics. An analysis of dependencies, 12:151–170, 1994.

[162] V. Mashayekhi, J. M. Drake, W.-T. Tsai, and J. Riedl. Distributed, collaborative software inspection.
IEEE software, 10(5):66–75, 1993.

[163] T. J. McCabe. A complexity measure. TSE’76, (4):308–320.

[164] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review coverage and code
review participation on software quality: A case study of the qt, vtk, and itk projects. In MSR’14,
pages 192–201.

[165] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of the impact of modern
code review practices on software quality. Empirical Software Engineering, 21(5):2146–2189, 2016.

[166] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel. A static approach to prioritizing
junit test cases. TSE’12, 38(6):1258–1275.

[167] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco. Taming google-
scale continuous testing. In ICSE’17, pages 233–242.

[168] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures with developer networks
and social network analysis. In FSE’08, pages 13–23.

[169] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors.
TSE’07, 33(1):2–13.

145



[170] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction from static
code features: current results, limitations, new approaches. ASE’10, 17(4):375–407.

[171] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In NIPS’13, pages 3111–3119.

[172] J. Miller, M. Wood, and M. Roper. Further experiences with scenarios and checklists. Empirical
Software Engineering, 3(1):37–64, 1998.

[173] B. Miranda and A. Bertolino. Does code coverage provide a good stopping rule for operational profile
based testing? In AST’16, pages 22–28.

[174] B. Miranda and A. Bertolino. Scope-aided test prioritization, selection and minimization for software
reuse. JSS’16, pages 1–22.

[175] S. Mirarab and L. Tahvildari. A prioritization approach for software test cases on bayesian networks.
FASE’07, pages 4422–0276.

[176] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek. Sig-droid: Automated system input generation
for android applications. In ISSRE’15, pages 461–471.

[177] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic databases. In
ICSM’00, page 120.

[178] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical Journal,
5(2):169–180, 2000.

[179] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur. Decor: A method for the specification
and detection of code and design smells. TSE’10, 36(1):20–36.

[180] A.-r. Mohamed, G. E. Dahl, and G. Hinton. Acoustic modeling using deep belief networks. Audio,
Speech, and Language Processing, IEEE Transactions on, 20(1):14–22, 2012.

[181] M. Monperrus. Automatic software repair: a bibliography. CSUR’18, 51(1):17.

[182] R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact design quality? a case
study of the qt, vtk, and itk projects. In SANER’15, pages 171–180.

[183] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In ICSE’08, pages 181–190.

[184] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun. Do automated program repair techniques
repair hard and important bugs? Empirical Software Engineering, 23(5):2901–2947, 2018.

[185] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. Tbcnn: A tree-based convolutional neural network
for programming language processing. Unpublished manuscript: http://arxiv. org/abs/1409.5718,
2014.

[186] D. Movshovitz-Attias and W. W. Cohen. Natural Language Models for Predicting Programming
Comments. In ACL’13, pages 35–40.

[187] G. Murphy and D. Cubranic. Automatic bug triage using text categorization. In SEKE’04.

[188] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. 2011.

146



[189] N. Nagappan and T. Ball. Using software dependencies and churn metrics to predict field failures:
An empirical case study. In ESEM’07, pages 364–373.

[190] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In ICSE’06,
pages 452–461.

[191] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. Heterogeneous defect prediction. TSE’17, 44(9):874–
896.

[192] J. Nam and S. Kim. Clami: Defect prediction on unlabeled datasets. In ASE’15, pages 452–463.

[193] J. Nam and S. Kim. Heterogeneous defect prediction. In FSE’15, pages 508–519.

[194] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In ICSE’13, pages 382–391.

[195] G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1), 2001.

[196] S. Nessa, M. Abedin, E. Wong, L. Khan, and Y. Qi. Software Fault Localization Using N-gram
Analysis. In WASA’08, pages 548–559.

[197] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. Duplicate bug report detection
with a combination of information retrieval and topic modeling. In ASE’12, pages 70–79.

[198] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A Statistical Semantic Language
Model for Source Code. In FSE’13, pages 532–542.

[199] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Graph-based mining
of multiple object usage patterns. In FSE’09, pages 383–392.

[200] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong. Topic-based defect prediction. In ICSE’11, pages
932–935.

[201] T. B. Noor and H. Hemmati. A similarity-based approach for test case prioritization using historical
failure data. In ISSRE’15, pages 58–68.

[202] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura. Learning to Generate
Pseudo-code from Source Code Using Statistical Machine Translation. In ASE’15, pages 824—829.

[203] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large industrial software system.
In FSE’07, pages 55–64.

[204] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Programmer-based fault prediction. In PROMISE’10,
pages 19:1–19:10.

[205] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number of faults in large
software systems. TSE’05, 31(4):340–355, 2005.

[206] E. Paikari, M. M. Richter, and G. Ruhe. Defect prediction using case-based reasoning: An attribute
weighting technique based upon sensitivity analysis in neural networks. SEKE’12.

[207] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk. Detecting bad
smells in source code using change history information. In ASE’13, pages 268–278.

[208] S. J. Pan, I. Tsang, J. Kwok, and Q. Yang. Domain adaptation via transfer component analysis.
Neural Networks, IEEE Transactions on, pages 199–210, 2011.

147



[209] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas. Malware classification with
recurrent networks. In ICASSP’15, pages 1916–1920.

[210] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar. Vccfinder:
Finding potential vulnerabilities in open-source projects t o assist code audits. In CCS’15, pages
426–437.

[211] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks predict failures? In
FSE’08, pages 2–12.

[212] A. Porter, H. Siy, and L. Votta. A review of software inspections. Advances in Computers, 42:39–76,
1996.

[213] M. Pradel and T. R. Gross. Automatic Generation of Object Usage Specifications from Large Method
Traces. In ASE’09, pages 371–382.

[214] M. Pradel and K. Sen. Deepbugs: A learning approach to name-based bug detection. arXiv preprint
arXiv:1805.11683, 2018.

[215] L. Prechelt and A. Pepper. Why software repositories are not used for defect-insertion circumstanc
e analysis more often: A case study. IST’14, 56(10):1377–1389.

[216] J. C. Pruessner, C. Kirschbaum, G. Meinlschmid, and D. H. Hellhammer. Two formulas for com-
putation of the area under the curve represent measures of total hormone concentration versus
time-dependent change. Psychoneuroendocrinology, 28(7):916–931, 2003.

[217] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of small source code changes.
TSE’05, 31(6):511–526.

[218] T.-S. Quah and M. M. T. Thwin. Application of neural networks for software quality prediction
using object-oriented metrics. In ICSM’03, pages 116–125.

[219] A. Radford, R. Jozefowicz, and I. Sutskever. Learning to generate reviews and discovering sentiment.
arXiv preprint arXiv:1704.01444, 2017.

[220] F. Rahman and P. Devanbu. How, and why, process metrics are better. In ICSE’13, pages 432–441.

[221] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu. Comparing static bug finders and statistical
prediction. In ICSE’14, pages 424–434.

[222] F. Rahman, D. Posnett, and P. Devanbu. Recalling the ”imprecision” of cross-project defect predic-
tion. In FSE’12, pages 61:1–61:11.

[223] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-Sensitive Inference of Function Precedence
Protocols. In ICSE’07, pages 240–250.

[224] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane, A. Bacchelli, and P. Devanbu. On the
”Naturalness” of Buggy Code. In ICSE’16, pages 428–439, 2016.

[225] V. Raychev, M. Vechev, and E. Yahav. Code Completion with Statistical Language Models. In
PLDI’14, pages 419–428.

[226] M. Renieres and S. P. Reiss. Fault localization with nearest neighbor queries. In ASE’03, pages
30–39.

148



[227] P. C. Rigby. Open source peer review–lessons and recommendations for closed source. 2012.

[228] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer review practices: a case
study of the apache server. In ICSE’08, pages 541–550.

[229] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review on open source software
projects. In ICSE’11, pages 541–550.

[230] A. Rimsa, M. d’ Amorim, F. M. Q. Pereira, and R. S. Bigonha. Efficient static checker for tainted
variable attacks. Science of Computer Programming, 80:91–105, 2014.

[231] R. Rosenfield. Two Decades of Statistical Language Modeling: Where Do We Go from Here? 2000.

[232] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. TOSEM’97,
6(2):173–210.

[233] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for regression testing.
TSE’11, 27(10):929–948.

[234] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization: An empirical study.
In ICSM’99, pages 179–188.

[235] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An information retrieval approach for regression
test prioritization based on program changes. In ICSE’15, pages 268–279.

[236] M. Sampson, L. Zhang, A. Morrison, N. J. Barrowman, T. J. Clifford, R. W. Platt, T. P. Klassen,
and D. Moher. An Alternative to the Hand Searching Gold Standard: Validating Methodological
Search Filters Using Relative Recall. BMC Medical Research Methodology, 6(1), 2006.

[237] A. L. Santos, G. Prendi, H. Sousa, and R. Ribeiro. Stepwise api usage assistance using n-gram
language models. JSS’17, 131:461–474.

[238] R. Sarikaya, G. E. Hinton, and A. Deoras. Application of deep belief networks for natural language
understanding. TASLP’14, 22(4):778–784.

[239] F. Seide, G. Li, and D. Yu. Conversational speech transcription using context-dependent deep neural
networks. In INTERSPEECH’11.

[240] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov. Balancing trade-offs in test-suite
reduction. In FSE’14, pages 246–256.

[241] A. Shi, T. Yung, A. Gyori, and D. Marinov. Comparing and combining test-suite reduction and
regression test selection. In FSE’15, pages 237–247.

[242] T. Shippey, D. Bowes, and T. Hall. Automatically identifying code features for software defect
prediction: Using ast n-grams. Information and Software Technology, 2018.

[243] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static Specification Mining Using Automata-Based
Abstractions. In ISSTA’07, pages 174–184.

[244] M. S. Siddik and K. Sakib. Rdcc: An effective test case prioritization framework using software
requirements, design and source code collaboration. In ICCIT’14, pages 75–80.
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