
Probing Accretion Turbulence in the
Galactic Centre with EHT

Polarimetry

by

Chunchong Ni

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics

Waterloo, Ontario, Canada, 2018

c� Chunchong Ni 2018



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

We explore the origin and the influence of the interstellar scattering on the observation
of Sgr A*, and the method to mitigate this scattering via Event Horizon Telescope (EHT)
polarimetry. Interstellar scattering is due to the existence of inhomogeneous plasma screens
between the Earth and Sgr A*. At radio wavelengths, this scattering adds and removes
small structures in the images. In the EHT observation, the scattering contaminates the
image by moving power from long baselines to short baselines in a fashion that may be
described by a linear transformation characterized by the Scattering Shift Kernel. How-
ever, for credible interstellar magnetic field strengths, this transformation is insensitive to
polarization. Therefore, it is possible to distinguish intrinsic and scattered structures via
the image power spectra constructed in di↵erent polarization components.

Via numerical experiments, we demonstrate a method for reconstructing intrinsic struc-
ture information. We do this for two cases: a toy model in which we show that this method
accurately reproduces the characteristics of controlled image fluctuations, and general rel-
ativistic magnetohydrodynamic simulation images. Specifically, we show that the ratio of
the power spectra obtained independently for di↵erent polarization components is inde-
pendent of the scattering screen given the current observational limitations of the EHT.
Therefore, these power spectra ratios provide a window directly into the magnetohydrody-
namic turbulence believed to drive accretion onto black holes.
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Chapter 1

Introduction

Black holes have been implicated as the engines of active galactic nuclei (AGN) and X-ray
binaries [1]. Within these objects, both their extreme luminosities and growth rate are
presumably due to the interaction with the accretion of nearby matter. This occurs via
accretion disks, through which material orbits, cools and falls inward toward the central
object. Accretion flows are generic features in astronomical systems, from the formation
of planets to the powering of AGN, and thus understanding the processes by which they
operate informs astrophysics broadly.

For material to move inward toward a central accreting mass, it must lose both energy
and angular momentum. For geometrically and optically thick flows, the former can be a
limiting factor. However, for AGN it is typically the latter, angular momentum, that is
the practical barrier. Developing the ability to empirically access the processes responsible
for transporting angular momentum through the accretion flow is the topic of this thesis.

There are few candidates to explain the angular momentum transport in the accretion
disk. Molecular viscosity is ruled out, as the theoretical prediction of angular momen-
tum transport rate is orders of magnitude lower than the observed rate [34, 31, 9]. It is
currently widely believed that the main driver of angular momentum transfer is hydrody-
namic viscosity caused by turbulence and magnetic stresses. Both of these are the result
of magnetohydrodynamic (MHD) turbulence with accretion flows, presumably sourced by
the magnetorotational instability [1].

Multiple numerical simulations of the MHD have been performed to study the prop-
erties of accretion flows dominated by magnetic viscosity [see, e.g., 28]. In the cases of
accretion disks around the black holes, general relativity must be included due to the
strong gravitational field. Yet, the general relativisitic MHD (GRMHD) simulations have

1



their own limitations, as all GRMHD simulation tests neglect the turbulence generated
below the grid scale. Computation expense prevents simulations from resolving the Lar-
mour scale, the presumptive dissipation scale within the physical system. The impact
of this oversight remains unclear, as the turbulence generated at such small scales might
influence the results drastically [29]. Thus, to testify the current GRMHD simulations,
it remains necessary to develop empirical methods to probe the nature and properties of
MHD turbulence near black holes.

The supermassive black hole at the Galactic Centre, Sagittarius A* (Sgr A*), o↵ers us
a laboratory in which to study accretion flows in detail. Sgr A* is located at the centre of
the Milky Way, 8 kpc away from the Earth, with a mass of 4.3⇥ 106 M� [11, 4, 14]. Being
a strong, compact radio source, the study of Sgr A* presents an opportunity to test the
theories of astrophysics under extreme conditions.

The Event Horizon Telescope (EHT) o↵ers an unprecedented opportunity to observe
the Galactic centre with sub-horizon resolution. The EHT is an international project com-
prised of a number of radio telescopes across the globe, aiming at probing the two super-
massive black holes, Sgr A* and M87. Telescope sites are located in Hawaii (James Clerk
Maxwell Telescope (JCMT), The Submillimeter Array (SMA)), North America (Arizona
Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT), The Large Millimeter
Telescope (LMT)), Europe (Atacama Pathfinder EXperiment (APEX), IRAM 30-meter
telescope), South America (Atacama Submillimeter Telescope Experiment (ASTE), Ata-
cama Large Millimeter/Submillimeter Array (ALMA)) and Antarctica (South Pole Tele-
scope (SPT)). The technique used by EHT is very long baseline interferometry (VLBI). By
creating a virtual aperture of the size of the Earth with synthesized data from all of the
telescope sites, the EHT is able to achieve a resolution of around 13 microarcseconds at a
wavelength of 1.3 mm (230 GHz). In comparison, the typical angular size of the shadow
for Sgr A* and M87 is 55 and 40 microarcseconds, respectively. With this resolution, it
becomes possible to look into the accretion physics on scales comparable to those relevant
for MHD turbulence. Two observing campaigns have been completed, in April 2017 and
2018, and analysis is underway. In both the full complement of Stokes parameters were
measured at 230 GHz. Future development of the array will include the ability to observe
at 345 GHz.

Sgr A* presents the primary horizon-scale science for the EHT. As the closest super-
massive black hole to the Earth, it presents the largest shadow diameter in angular size.
It is also believed to contain a thick, hot accretion disk. This presents a larger dynamic
range of MHD turbulence phenomena (typically bounded on the largest scales by the disk
height). Thus, it presents a natural target for studying MHD turbulence in astrophysi-
cal systems. Finally, it is optically thin, ensuring that turbulent features throughout the
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accretion flow are visible, and simplifying their interpretation.

However, there are two practical di�culties with observing and characterizing MHD
turbulence within the accretion flow of Sgr A*. First, gravitational lensing distorts the
image of the innermost regions of the accretion flow. This may be modelled and corrected
given the parameters of the central black hole [30, 10, 5, 21]. Second, interstellar scattering
distorts the mm-wavelength images [8, 16, 18, 19]. This scattering is a stochastic e↵ect
caused by the fluctuations of electron density in the interstellar plasma, and the scattering
e↵ect can be modelled by a thin scattering screen. The existence of the scattering screen
between the Earth and Sgr A* severely contaminates the observation in two di↵erent ways.
First, the scattering adds and removes small structures. Second, the image is angularly
broadened, scaling as �2. In EHT observations, there will be an excess power at long
baselines consistent with refractive modes in the screen.

The nature and properties of the scattering screen are not yet fully understood. Most
e↵orts assume a single screen, though this need not be the case. The single scattering
screen model assumes the scattering medium causing the angular broadening of Sgr A*
is located between the galactic centre and Earth [7]. Although we have an estimation
of the size of the screen, which is 59 ± 6µas for the major axis and 60 ± 30µas for the
minor axis, at 1.3 mm observational wavelength, any single realization of the fluctuations
remain unconstrained [20]. That is, the parameters of the region responsible for scattering
images of Sgr A* are poorly constrained, including the location and the structure of the
scattering screen. As a result, it is not straightforward to model and remove the impact of
this scattering from images of Sgr A*.

Quantitative models of the scattering region do exist, comprised of a statistical de-
scription of the fluctuations in the plasma density across a single screen [18]. In these,
the turbulence in the scattering screen is generated at very small scales (as small as the
size of the Earth) and varies on timescales of many hours. E↵orts to constrain the screen
properties have succeeded in modeling its behavior above 3mm [20]. These address the
statistical structure of the scattering screen, i.e. the power law of the structure function
of the scattering screen (one general guess is that the scattering screen is of Kolmogorov),
as well as on the estimation of scale size where the turbulence is generated and damped.

Motivated by the current uncertainty in the screen parameters and structure, we present
a novel way to mitigate the e↵ect of interstellar scattering using polarization. The key phys-
ical input is that the scattering screen is both non-birefringent and linear. In Section 2.1,
we present estimates of the birefringence of the screen given reasonable parameters for
the interstellar medium. In Section 2.2, we review and extend the previous work done on
the interstellar scattering by other research groups, namely laying out the mathematical
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connection between the intrinsic and scattered power spectrum of the VLBI observables,
and define the Scattering Shift Kernel (SSK) that characterizes this relationship. In Sec-
tion 2.3, we explore the behaviour of the SSK, and why our application of non-birefringent
nature of the screen is able to e↵ectively mitigate the contamination from scattering.

Chapter 3 focuses on the numerical simulation and the analysis of the expected results
of a toy model. Section 3.1 shows the step-by-step method of generating toy model images,
with the designated polarizations. Section 3.2 presents the method by which we numerically
simulate EHT observations, in which the scattering model is constructed and coded based
on the EHT-imaging (EHTim) library by Andrew Chael, available at https://github.
com/achael/eht-imaging. In Section 3.3, the analysis of the simulation results of the toy
model is provided.

Chapter 4 shows the simulation results using GRMHD as the intrinsic source image.
The structure of this chapter is parallel to Chapter 3. Sectio 4.1 sets up the GRMHD
data and its feature, which is generated by Roman, McKinney et al. [12]. In Section 4.2,
the same method of simulating the EHT observation is used upon GRMHD data as in
Section 3.2. Section 4.3 provides the method to construct the special polarization modes
based on the GRMHD simulation. Section 4.4 estimates the potential thermal noise and
ensemble noise. Section 4.5 presents the analysis of the simulation results on di↵erent
polarization modes of GRMHD data, parallel to Section 3.3. In the last section of this
chapter, we further explore the reaction of significant variations in the properties of the
scattering.

Finally, conclusions and future prospects are collected in Chapter 5.
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Chapter 2

Scattering and Observation of
Polarized Light

2.1 Limits on the Birefringence of Scattering in the
ISM

The current model for the interstellar scattering is that the scattering is caused by density
fluctuations in the interstellar medium, whose impact is abstracted as a scattering screen
that adds a random phase factor to the incoming signals at di↵erent locations [22, 13]. So
far, this model reproduces the observed scattering of Sgr A* well [27]. Yet, for the case of
Sgr A*, uncertainty regarding the number and location of the scattering screens exists, as
well as their structure [7]. In this thesis, we will neglect the possibility of multiple screens
and hold the screen fixed between the Earth and Sgr A* (in the numerical experiments
in this thesis, the screen is put 2.82kpc away from the Earth and 5.53kpc away from Sgr
A*). The reasons are twofold: simplicity and if our argument holds true for one screen, we
would be able treat multiple screens in a similar manner.

We begin by showing that, for reasonable conditions within the interstellar medium,
the scattering must be non-birefringent, i.e., does not treat di↵erent polarization modes
di↵erently. Note that this does not mean that the substructure induced by scattering
in images made in di↵erent polarizations are identical; this substructure depends on the
structure of the intrinsic image. Rather, it implies that the linear transformation between
the intrinsic image and the scattered image is identical for all polarization modes. The
key idea is to exploit the lack of birefringence in the scattering screen to leverage both

5



polarized and unpolarized observations to construct a scattering-independent measure of
turbulence in the source.

The dispersion relation for the electromagnetic waves at a plasma background with
magnetic field is:

k2
±c

2 = !2 � !2
P ± !2

P

!B

!
, (2.1)

where !2
P = 4⇡e2n/me is the plasma frequency, and !B = eB/mec is the cyclotron fre-

quency. By defining X = !2
P/!

2 and Y = !B/!, we can solve for the momentum, k, as a
function of !, X and Y .

k± =
!

c

p
1 � X ± XY . (2.2)

In the first order approximation, as ! � !P ,!B,

k± ⇡ !

c

✓
1 � 1

2
X ± 1

2
XY

◆
. (2.3)

The impact of the scattering on the electromagnetic wave is that the screen adds an
extra phase to it. The phase delay, �, due to the scattering screen, is:

� = Lk � L
!

c
, (2.4)

where L is the physical scale of the scattering screen, as illustrated in Fig. 2.1. Thus, the
phase delay due to the scattering screen for di↵erent polarization modes, k+ and k�, is:

�± = �1

2

!

c
XL ± 1

2

!

c
XY L. (2.5)

The first term, �!XL/2c, is the residual phase delay even without the background mag-
netic field; therefore, we define this term as �0 = �!XL/2c. Under this notation, the
phase delay can be described in terms of two variables, �0 and Y :

�± = �0 (1 ± Y ) . (2.6)

The di↵erence in the phase delay due to the scattering screen for di↵erent polarization
modes is:

�+ � �� = 2�0Y. (2.7)

To assess the magnitude of this phase di↵erence, and thus address the birefringence
of the scattering screen, it is necessary to compute Y (which depends solely on magnetic
field strength and is generally small) and �0. To find �0, we relate the magnitude of the
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phase shift to the refraction of radio waves through the screen, and therefore the size of
the di↵ractive component, which is well measured. The dispersion relationship for the
electromagnetic waves at a plasma background in the absence of a magnetic field is:

!2 = k2c2 + !2
P . (2.8)

Hamilton’s equations connect the time-evolution of position and momentum with the en-
ergy and the momentum:

dx

dt
= c,

dk

dt
= �r!(k, x).

(2.9)

Considering an electromagnetic plane wave initially propagating along the x-axis that
after passing through the scattering screen is deflected in the y-axis, in the weak deflection
limit, justified by the small scattering angles observed (<10 µas at 1.3 mm), we can
estimate the refraction angle:

✓ =
�ky
kx

. (2.10)

In the x-axis, if we expand Equation 2.9 with the dispersion relationship, and adopt the
assumption that the electron density remains close before and after scattering, the following
approximation can be applied, up to the first-order correction:

dkx
dt

= � 1

2!

@

@x
!2
P (2.11)

= �!2
P

2!

@

@x
lnn (2.12)

⇡ �!2
P

2!

1

L
. (2.13)

In the y-axis, as the scattering screen is isotropic, the derivative of ky over time follows
the same relation as kx:

dky
dt

= �!2
P

2!

1

L
. (2.14)

The derivative of ky along the direction of propagation is:

dky
dx

=
k̇y
ẋ

(2.15)

= � !2
P

2!c

1

L
. (2.16)

7



Thus, the change of momentum perpendicular to the direction of propagation is

�ky =

Z
dx

dky
dx

= � !2
P

2!c
. (2.17)

Thus, the refraction angle due to scattering is

✓ =
�ky
kx

= �1

2
X. (2.18)

In reality, we already have an idea what the value of ✓ is, as it is a function of the
observational wavelength �. For Sgr A*, the scattering kernel is anisotropic. The minor
axis of the scattering kernel is approximately half the size of the major axis. As we are
only making an estimate of the refraction angle, it is su�cient to adopt either one of the
two axes. For example, the refraction angle in the direction of the major axis in the unit
of micro-arcsecond is:

✓ ⇡ 1.309
⇣ �

1 cm

⌘2
mas. (2.19)

Knowing the refraction angle ✓, we can estimate the phase delay, �0, in terms of the
ratio of !2

P and !, X, and the physical size of the scattering screen, L. For X, it is easy
to make a direct calculation from Equation 2.18. For the physical size of the scattering
screen, if we take the assumption that the scattering screen is 2 kpc away from us, the
upper limit for the physical size of the scattering screen would be

L  ✓D, (2.20)

where D is the distance from the scattering screen to us.

For sub-milimetre observations, under the conditions that the scattering screen is lo-
cated 2 kpc away and there is no background magnetic fields, the phase delay is calculated
up to the first order approximation:

�0 = �1

2

!

c
XL ⇡ 20. (2.21)

Therefore, for the case when a background magnetic field is present, the di↵erence between
phase delays in the two di↵erent polarization modes is:

�+ � �� = 2�0Y = 2 ⇥ 10�9

✓
B

µG

◆
. (2.22)

In general, �+ � �� ⌧ 2⇡, with an ordinary interstellar magnetic field. Thus, we can
conclude that the di↵erence in the phase delay of two polarization modes is small, whereas
the non-birefringence feature holds true with the ordinary interstellar magnetic field.
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Figure 2.1: The scattering screen is put at distance R to Sgr A*, and distance D to
the Earth. The scattering screen is generated through the fluctuation of electrons. Two
parallel radiations of di↵erent polarization modes from Sgr A* travel through the scattering
screen, and undergo the refraction caused by the scattering screen. The di↵erence of
the refraction angle between these two polarization modes, ✓, is tiny under any credible
interstellar magnetic field.
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2.2 Polarization in the Scalar Light Approximation

Instead of using electromagnetic waves, we apply the scalar light approximation. The
benefit of this scalar light approximation is that we are able to retain the propagation
property of the electromagnetic wave, while the calculation is simplified. Although we
lose the ability to express the polarization information in one wave amplitude function,
we are able to recover the polarization information with multiple independent scalar elec-
tric fields, as di↵erent modes of polarizations (both left-handed and right-handed) can be
described by separate scalar fields. Thus, the scalar light approximation is good enough
at capturing the key features of scattering. In this subsection, we are going to review the
interstellar scattering of Sgr A* with the scalar light approximation. We will see that the
non-birefringence feature discussed in the previous subsection plays an important role in
mitigating the interstellar scattering of Sgr A*.

Thus, we can write down the scalar electric field If we consider an extended intrinsic
source,  int(s), where s is the transverse coordinate in the source plane, we are able to cal-
culate calculate the scalar electric field  (b) after scattering, where b is the EHT baseline
coordinate, via the Huygens-Fresnel principle [15, 22, 13]. According to the Huygens-
Fresnel principle, both the emission in the source and at the scattering screen are decom-
posed into spherical wavelets, which are then summed to produce the electric field at the
observer, integrating over both the extended radiation source and the scattering screen
plane. We can apply the far field approximation, and thus the integral can be approxi-
mated by a twofold Fourier transform of the intrinsic source,  int(s). The geometry of the
problem is shown in Fig. 2.1. The expression for the interstellar scattering is:

 scatt(b) =
1

2⇡r2F

Z
d2xei[k/(2D)|b�x|2+�(x)]

Z
d2sei[k/(2R)]|x�s|2 int(s). (2.23)

Here, �(x), a Gaussian random variable with zero-mean value, is the extra phase factor
from the scattering screen at location x in the scattering screen plane. The screen is
placed at the distance D from the Earth and distance R to the galactic centre, and rF
is the Fresnel scale. The Fresnel scale, defined by following equation, quantifies the extra
phase delay due to the geometry of observation.

rF ⌘
r

DR

D +R

1

k
, (2.24)

where k = 2⇡/� is the wavenumber of the scalar electric field, and � is tits wavelength of
our observing waveband.
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The chief observable in radio astronomy is the visibility, also known as the correlated
flux density. The visibility is the expectation value of the product of electromagnetic fields
at two di↵erent locations connected by the given baseline, which is centred at r

V (b, r) =
D
 scatt

�
r � b/2

�
 ⇤

scatt

�
r+ b/2

�E
. (2.25)

Similarly, the definition of the total intensity is given by the product of the electromag-
netic fields at the same location, I (b) =

⌦
 scatt (b) ⇤

scatt (b)
↵
. With Van Cittert-Zernike

Theorem, the intensity and the visibility are connected with Fourier transformation [36].
For the intrinsic source, adopting the incoherence property, the intrinsic total intensity and
the intrinsic visibility is:

I
�
s, s0
�
�(s � s0) =

D
 scatt (s) 

⇤
scatt

�
s0
�E

. (2.26)

Vint[ ( 1 +M) (x2 � x1) ] =

Z
d2seik/R(x2�x1)·sIint(s), (2.27)

where M = D/R. Thus, the visibility domain and image domain can be connected through
the Fourier transformation.

If we construct the coordinate system such that the baseline is centred at zero in the
coordinate system, i.e. r = 0, the visibility of a given baseline b is the product two electric
fields at b/2 and �b/2 from Equation 2.23:

V (b) =
D
 scatt

�
�b/2

�
 ⇤

scatt

�
b/2

�E

=
1

4⇡2r4F

Z
d2x1d

2x2

⇥ ei/2r
�2
F [ (x2

1�x2
2)+b/(1+M)(x1+x2) ]

⇥
D
ei[�(x1)��(x2) ]

E
Vint[ ( 1 +M) (x2 � x1) ] . (2.28)

Note that there are two sources of variability due to refraction in the scattering screen.
One is the variability of the scattering screen, the other is the variability of the source. The
expression above is the average over both the variabilities, as both the scattering screen
and the radiating source vary on a timescale of hours. For each observational night, we
would have several independent snapshots of the visibility. Yet, what we are interested in
is the statistical structure of the intrinsic visibility of the source, which encodes the physics
of the disk turbulence around Sgr A*. If we are to explore the behaviour of the visibility in
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the ensemble average regime, i.e., the average over many realizations of both the scattering
disk and the source, we need to describe the statistical structure of the scattering screen.

The Gaussianity feature of �(b) gives a convenient identity:
D
ei[�(x1)��(x2) ]

E
= e�1/2h[�(x1)��(x2)]2i. (2.29)

The average over the scattering screen is described the structure function, D�, whose
definition is:

D�(x1 � x2) =
D⇥

�(x1) � �(x2)
⇤2E

. (2.30)

The detailed information of this structure function is going to be discussed in the next
section, but if we apply this definition to Equation 2.28, we will have an expression for the
ensemble average of the scattered visibility:

hVscatt(b) iea,turb = e�D�(b/(1+M)) hVsrc(b) iea,turb, (2.31)

as well as the ensemble average of the averaged visibility squared:

h|Vscatt|2 (b) iea,turb =
1

( 2⇡r2F )
2

Z
d2ud2z ⇥ eir

�2
F [u+( 1+M)�1b] ·z

⇥ e�1/2[ 2D�( z)+2D�(u)�D�(u+z)�D�( z�u) ]

⇥ h|Vint|2 [ ( 1 +M)u] iea,turb, (2.32)

which we will refer to as appropriate as the “power spectrum” of the image as it encodes
in a statistical fashion the variations in the image structure.

Conventionally, the structure function is assumed to be quadratic [13, 15]. Under this
assumption, the two equations above can be further simplified. For Equation 2.32, the
exponent, 2D�(z) + 2D�(u)�D�(u+ z)�D�(z�u), becomes zero; thus, the exponential
term, e�1/2[ 2D�( z)+2D�(u)�D�(u+z)�D�( z�u) ] , becomes one, and the rest part of the integral
can be done analytically, which gives:

h|Vscatt|2 (b) iea,turb = h|Vint|2 (b) iea,turb. (2.33)

Since the scattering screen is non-birefringent, if we take the ratio of the di↵erent
power spectra of di↵erent polarization modes, we should be able to retrieve some intrinsic
information from the ratio of the scattered power spectra:
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h
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i

h
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���
2

i
. (2.34)
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Here, both the power spectrum and the variance have the statistical information, yet
our choice of the power spectrum as the averaged visibility squared is made based on the
desire to construct a quantity that may be robustly related to the intrinsic properties of
the image. Instead, if the ratio of di↵erent variances is taken, even for an ideal (quadratic)
structure function, the ratio for intrinsic variance does not equal to the ratio of the scattered
ones:

⌃2
L1

⌃2
L2

=
�2
L1

+
⇣
1 � e�b2/(1+M)2r20

⌘D
V L1
int (b)

E

�2
L2

+
⇣
1 � e�b2/(1+M)2r20

⌘D
V L2
int (b)

E , (2.35)

where L1 and L2 are two di↵erent polarization modes (the detailed calculation of this
quantity is shown in the Appendix).

If the approximation that the structure function is quadratic is relaxed, the exponential
term in Equation 2.32 no longer vanishes. Therefore, the integral may no longer be solved
analytically. For the exponent, 2D�(u) + 2D�(z) � D�(u+ z) � D�(z � u), the last three
terms reduce to the second-order derivative of D�(z) when |u| is much smaller than |z|.
Thus, if we define the scattering Scattering Shift Kernel (SSK) as:

K(u,b) =
1

( 2⇡r2F )
2

Z
d2zeir

�2
F z(u+b/(1+M))1

2
u2D

00

�(z), (2.36)

we are able to separate Equation 2.32 into two di↵erent parts, one with the integral of the
SSK and the other independent of the SSK:

h|Vscatt|2 (b)i = e�D�(�b/(1+M))h|Vint|2 (b)i +
Z

d2uK(u,b)e�D�(u)h|Vint|2 [(1 +M)u]i.
(2.37)

The first term here is proportional to the intrinsic power spectrum, and the second term
is the correction from scattering through the SSK.

2.3 Scattering Shift Kernel and its Properties

From the previous two sections, we have reached two conclusions: the scattering screen
is well-approximated as being non-birefringent, and the scattered power spectrum is a
function of the intrinsic power spectrum plus a correction from the integration over the SSK.
Therefore, the ratio of the image power spectra for two di↵erent polarization components
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is generally,
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(2.38)
where L1 and L2 are the two di↵erent polarization modes and can be any linear combina-
tions of the four Stokes parameters, (I,Q, U, V ).

If in the SSK, the second-order derivative is a constant, i.e., the structure function
D� is quadratic, then the problem becomes trivial: K(u,b), becomes proportional to the
Dirac-delta function, and the second term in Equation 2.37 can be integrated analytically
(see Equation 2.39). Thus, the two terms on the right-hand-side of Equation 2.37 can be
grouped together, and the ratio of power spectra is identical before and after scattering:

K(u,b) ⇠ �

✓
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b
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◆
1

2
u2 (2.39)
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and Equation 2.40 recovers Equation 2.33.

The other trivial case is when the second term in Equation 2.37 is small. In that
case, the second term in Equation 2.37 becomes secondary compared to the first term and
negligible. Thus, the first term dominates, and the ratio between di↵erent power spectra
is the same before and after scattering:
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These two cases correspond to two independent features of the scattering. The ratio of
power spectrum will remain unchanged even after scattering, if the scattering screen is ideal
with the quadratic structure function, or the magnitude of the intrinsic power spectrum is
small. Note that the latter illustrates that the SSK shifts power among di↵erent baselines.
This property is going to be used in the following Chapters to optimize power spectra
ratios that employ constructed polarization modes.

The SSK is a direct function of D�, and where D�(x) / x2 is trivial. This is generally
true for small argument (i.e., short baselines). Frequently, D� is characterized by the power
spectrum of phase delays due to the scattering screen, i.e.,

Qq ⌘
���q

��2 where �q ⌘
Z 1

�1
e�2⇡iqx�(x)dx, (2.42)

where �q is the Fourier transform of the phase delay field. These two descriptions are related
through van Cittert-Zernike theorem, if we introduce a two-point correlation function R(x):

R(x) ⌘ h�(y + x)�(y)i thus D�(x) = 2(R(0) � R(x))

where R(x) =

Z
dqe2⇡iqxQq.

(2.43)

The integral limit in Equation 2.43 is determined by two scales, the inner scale and the
outer scale. The inner scale, rin, is the scale where the turbulence is generated, while the
outer scale, rout, is the scale where the turbulence is damped. Under Fourier transform, the
corresponding limit in q is qmax = 2⇡/rin and qmin = 2⇡/rout. There are two limits, first
of which is when the physical scale is between the inner and outer scale. In this case, the
scattering becomes isotropic and the structure function follows the power law, D�(x) ⇠ |x|↵.
The scattering parameter ↵ usually takes the Kolmogorov value, i.e., ↵ = 5/3, but recently
it has been suggested the value of ↵ can be smaller than Kolmogorov [20]. In the second
limit where the inner scale is much larger than the actual physical sizes we are interested
in, i.e., |r| ⌧ rin, then the Fourier phase is much less than 1, namely 2⇡qx ⌧ 1. Therefore,
we may Taylor expand the Fourier phase:

e2⇡iqx ⇡ 1 + 2⇡iqx � 4⇡2q2x2. (2.44)

If we insert the above equation to back to acquire the structure function D�(x):

D�(x) ⇡ 8⇡2x2

Z qmax

qmin

dqq2Qq. (2.45)

15



Therefore, in the case where the inner scale is larger than the actual physical scale
(projected baseline length onto the screen), the structure function is indeed quadratic.
When the physical scale is larger than the inner scale, the structure function follows a
power law, whose power is smaller than two. This result is illustrated in Fig. 2.2 for two
di↵erent scattering screen models with di↵erent inner scale values. Thus, when the physical
scale is within the inner scale, the ratio of the scattered power spectrum should be the same
as the ratio of the intrinsic power spectrum, as the structure function is quadratic. We
will further discuss the influence of the size of the inner scale on the power spectrum ratio
in Chapter 4.6.2.
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Figure 2.2: The structure function D�(r). When the physical scale is smaller than the
inner scale, D�(r) is quadratic, while the physical scale is larger than the inner scale,
D�(r) follows an isotropic power law. In this plot, we choose the index to be Kolmogorov
and show di↵erent values of the inner scale.
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Chapter 3

Reconstructing Intrinsic Structure:
Toy Model

3.1 Constructing Structured Intrinsic Images

To explore how well the ratios between scattered power spectra of di↵erent polarization
modes introduced in Chapter 2 encode the structure of the intrinsic ratios, i.e., before
the imposition of additional structure due to refractive scattering, we construct a set of
toy models. These toy models must satisfy a number of requirements: First, the model
must generate predictions for the total intensity and multiple polarizations. Second, it
must exhibit the typical scales anticipated in forthcoming EHT images of Sgr A*. Third,
it must be able to accommodate a variety of distinct random fluctuations, i.e., with a
number of di↵ering intrinsic power spectra.

The intrinsic intensity without fluctuations is simulated by a Gaussian distribution:

Ī(x, y) = I0e
�(x2+y2)/2�2

, (3.1)

where �, the variance of the Gaussian distribution, is chosen to reproduce the typical scale
of 1.3mm images of Sgr A*. In our toy model case, we choose the typical image size to be
24.4M , and the corresponding � for the Gaussian distribution is 1. The reason of choosing
this size for the toy model is that this size is close to the physical size of Sgr A*. In making
the picture from this Gaussian distribution, we choose 152 pixels in each axis. Similarly,
the value of I0 is chosen to present the total flux as a simulation to the total intensity of
Sgr A* at 1.3mm wavelength. Confining both I0 and �, the requirements needed to exhibit
the typical EHT total intensity and image scale at 1.3mm are fulfilled.
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The next step is to add distinct random fluctuations to the Gaussian distribution above,
to which a Gaussian random field component, g(x, y) is added. The Gaussian random field,
g(x, y) has the power spectrum:

Pg(k, l) = N↵ukl(k
2 + l2 + 1)↵/2, (3.2)

where k and l are the two-dimensional spatial frequencies in the sky, covering the whole
range of image size of the toy models. ukl is a Gaussian distribution independent from
Ī(x, y). N↵ is the normalization value for the power spectra. The choice of N↵ is set
such that the RMS fluctuation has an amplitude of 0.1I0, creating a uniform set of models
di↵ering only in the structure of the fluctuations. ↵ is the power index which determines
the colour of the power spectra. Blue power spectrum has more fluctuations at large
frequencies, while red power spectrum has the more fluctuations at small frequencies.
With positive ↵s, the colour of the power spectra are blue, i.e. the toy model would have
many fluctuations at larger spatial frequencies. Similarly, the red power spectra are with
negative ↵s, and the fluctuations mainly reside at shorter wavelengths for the toy model.
The factor of 1/2 in the power index is for numerical calculation reason. Similarly, the
00 + 100 in the bracket comes from algorithmic consideration such that k2 + l2 + 1 is always
larger than zero. Otherwise, when ↵ is negative, the power spectrum Pg is not well-defined.

In this definition of the Gaussian random field, g(x, y), with the given power spectrum,
the Gaussian random field is the real part of the 2-dimensional Fourier transform of a
Gaussian random distribution with power spectrum Pg:

g(x, y) = Re [
X

k,l

(Pg(k, l))
1/2eikx+ily ]. (3.3)

Then, the intrinsic intensity with fluctuation is the Gaussian random distribution without
fluctuation, ī(x, y), multiplied by the exponential of the Gaussian random field, g(x, y):

I(x, y) = Ī(x, y)e�g(x,y). (3.4)

Typically, the value of the Gaussian random field, g(x, y) is small, as the normalization
factor, N↵, is chosen to be small. Therefore, the definition of I(x, y) is equivalent to being
I(x, y) = Ī(x, y)[1 � g(x, y)].

There are a few parameters controlling the the shape of our simulated total intensity.
First, we could change the size of the original Gaussian distribution through �, which
changes the size of the image. Second, we could change the normalization factor N↵,
depending on the RMS fluctuation of the Gaussian random distribution, i.e. how much
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Figure 3.1: The power spectra for the toy models with di↵erent fluctuations. The red,
blue and black lines represent di↵erent power spectra of fluctuation, whose features are
manifested in the tail of the power spectra. It can also be noted that the total flux of these
three power spectra is the same, as the value at zero, h|V (0)|i is the same.
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fluctuation is needed. Last, and the most important, is ↵, which controls di↵erent types
of the power spectrum of the Gaussian random field. Fig. 3.1 below shows the behaviour
of the intrinsic intensity with di↵erent power spectra. In Fig. 3.1, the central bump is
from the background Gaussian distribution, Ī(x, y), as the average value of the Gaussian
distribution is non-zero. In the tails, the shapes follow the anticipated shapes from the
Gaussian random field, g(x, y), in which the red, white and blue spectrum corresponds to
less fluctuation, no fluctuation and more fluctuation at long baselines respectively. Note
that 50 G� is really large, whereas the EHT observation limit is about 10 G�; thus, the
visibility is largely dominated by the background Gaussian at short baselines.

With a given I(x,y) we construct polarized images by specifying a polarization fraction.
To simulate the polarization fraction we construct another independent Gaussian random
field gL(k, l), from which the polarized image is obtained via

L(x, y) = I(x, y)gL(x, y), (3.5)

where gL(x, y) is an independent Gaussian random field. The independence depends on the
independent construction of the power spectrum and its corresponding fluctuation, whose
definition is similar to Pg:

PL(k, l) = NLvk,l(k
2 + l2 + 1)↵L/2. (3.6)

In the following numerical experiments on the toy model, we use two independent
polarization modes, L1 and L2. L1 and L2 have di↵erent power indexes, ↵L1 and ↵L2 , so
they have di↵erent power spectra. The Gaussian random field here, gL(x, y) is obtained
in a fashion identical to g(x, y), but with independent variables: normalization NL, power
index ↵L and realization vk,l.

The most significant distinction between the total intensity and the polarization in the
way they are generated is that on average, the total polarized intensity vanishes, while the
total intensity does not, because the total intensity is built upon a Gaussian distribution
whose mean value is non-zero, while the total polarized intensity is generated by multiplying
gL(x, y) whose mean is zero. From the previous discussion about the SSK in Chapter 2,
this will naturally suppress the shifting of power from short to long baselines. In the case of
the toy model with polarization, as it has zero-mean value, the values of the power spectra
at short baselines are tiny, which substantially lessens the contamination from scattering.
By using the toy model with polarizations, the ratio of two polarized power spectra exhibit
higher fidelity than that from two di↵erent unpolarized power spectra, as we will see in
the following sections.
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3.2 Simulated Observations

Our toy model produces the total intensity map and the di↵erent polarization modes corre-
sponding to it. The statistical features of the toy model, including the power spectrum and
the total intensity, are controlled by a set of parameters, ↵, ↵L1, ↵L2 and I0. For di↵erent
realizations of the toy model, there are independently generated fluctuations corresponding
to it.

To simulate observations, we must generate scattered images of the toy model. For
this, we use the scattering functionality in the EHT-imaging (EHTim) library, which is an
imaging producing Python module using VLBI data. The scattering model in the EHTim
library is presented in the paper, [6], and is characterized by an inner scale, rin, outer scale,
rout and power-law index of the phase fluctuations, ↵s.

Applying the EHTim library, we are able to construct an anisotropic scattering screen
with random fluctuations. The screen parameters set the scale limit for the scattering pro-
cedure. The emission from the accretion disk of Sgr A* changes at the timescale of minutes
[21], and the scattering screen varies at the timescale of hours to days [8]. Therefore, for
one single EHT observation over one night, we shall have a constant scattering screen with
a varying source. For multiple nights of observation, we shall have multiple snapshots, with
the varying source and the varying scattering screen. Thus, in our simulation, there are
two di↵erent types of fluctuations, which needs to be treated separately. The fluctuation
in the source simulates the intrinsic fluctuation in the accretion disk, while the fluctua-
tion in the scattering function simulates the time-variability of the scattering screen. The
fluctuations are independently generated for each realization of the scattering screen and
the intrinsic source. In our simulation, with the screen and source parameters fixed, we
pass one realization of the source to one realization of the scattering screen, whose result
is called a ”snapshot” of the observation. Therefore, for every simulation, both the source
and the scattering screen fluctuate independently. The average over many snapshots is the
simulation of the ensemble average in the real observation. The procedure is detailed as
follows:

1. The first step is to generate the total intensity and its di↵erent polarization signals.
Following the definition of the total intensity (Equation 3.4) and the add-on fluc-
tuation (Equation 3.3) in Chapter 3.1, we generate the normalized total intensity
with fluctuations. Similarly, the polarized signals with zero-mean value can be gen-
erated via the definition given in Chapter 3.1 (Equation 3.5). In the simulation, we
have di↵erent sets of parameter ↵, ↵L1 and ↵L2, so the total intensity and the two
polarization modes corresponding to it have di↵erent features. To make the image,
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we set 152 pixels on both axes, and the size of view is 24.4 Schwarzschild radius,
which corresponds to 130 µas. The statistics of the add-on fluctuation is that the
fluctuation variance is set to be one. For each realization of the source, the source is
independently and randomly generated.

2. As the total intensity and all its polarized signals are in the image plane, the next
step is to convert them to the visibility plane. By Fourier transforming the total
intensity and the polarization maps, i.e., I(x, y), L1(x, y) and L2(x, y), we produce
the associated intrinsic visibilities, Vint,I , Vint,L1 and Vint,L2, respectively. Note that
the EHT covers the baseline up to the size of the Earth, corresponding to 10 G�,
where � = 1.3cm is the observing wavelength. All the figures below will be focusing
on the baseline range from 0 to 15 G�, which slightly goes beyond the size of the
Earth.

3. From the EHTim library, we used the built-in function to generate a scattering screen,
fixing parameter values. For our default image simulations, the inner scale and the
outer scale are fixed to be 8⇥ 107 cm and 1020 cm respectively, and power-law index
of the phase fluctuations ↵s is set to be Kolmogorov, 5/3. We ensure that the screen
is randomly and independently generated for each realization.

4. For one realization of the intrinsic source, we pass it along to one realization of the
scattering screen. Thus we have obtained one snapshot of the scattered images for
I(x, y), L1(x, y) and L2(x, y).

5. We convert the scattered snapshots into the visibility domain, as we have done in
step 2, to obtain the observed visibility (Vobs,I , Vobs,L1 and Vobs,L2).

6. Finally, we repeat this procedure with 100 independently generated intrinsic source
and 100 independently generated scattering screen. We take the average of the
realizations of both the screen and the intrinsic source to obtain the ensemble average
of V 2

obs,I , V
2
obs,L1 and V 2

obs,L2, that is, produce the various power spectra.

Fig. 3.2 shows intrinsic and scattered pictures of both the total intensity and its polar-
ization part. The fluctuation here has a red spectrum, and there are extra substructures
introduced by the scattering in both the total intensity picture and polarization picture.
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Figure 3.2: The scattered and intrinsic snapshot of the polarized intensity in the toy model.
The top row from left to right are the pictures of the total intensity without fluctuation,
with fluctuation and scattered intensity with fluctuation. The bottom row from left to
right are the pictures of the Gaussian random field that generates the fluctuation gL1, the
intrinsic polarized intensity and the scattered polarized intensity.
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3.3 Results and Analysis

After setting up the simulated observation, we calculate both the snapshots and ensemble
average of the intrinsic and scattered visibility and power spectrum for both total intensity
and polarizations.

Table 3.1: Parameter Choice for each Simulation
Type of fluctuations ↵ ↵L

Blue Total Intensity 2 -
White Total Intensity 0 -
Red Total Intensity -2 -

L1 -2 -2
L2 0 -2

Fig. 3.3 shows the result of the simulation. The top left panel is the power spectra
for two di↵erent total intensities, whose parameters are listed in Table 3.1 as Blue Total
Intensity and Red Total Intensity. Similarly, the top right panel is the power spectra for
two di↵erent polarization modes listed in Table 3.1, which are L1 (in the red line) and L2 (in
the blue line). L2 is based on a white total intensity, with a blue fluctuation in polarization.
L1 is based on a red total intensity , with the same blue fluctuation in polarization. Both
the two panels on the top are the ensemble average over 100 realizations on both the screen
fluctuation and the intrinsic fluctuation. The solid lines and the dashed lines correspond
to intrinsic signals and scattered signal respectively.

In the top right panel, we can see that scattered and intrinsic polarizations preserve
the colour of the noise, i.e., preserve the power-law wing with the anticipated colours.
In contrast, in the top left panel, we can see that there is bump in the centre for total
intensity, which covers the most important information (the preservation of the power law
wing) as we read o↵ the top right panel of Fig. 3.3. The reason for this is, as we have
discussed in section 3.1, that the total intensity has non-zero mean while polarization has
zero mean value. The bump we see in the top left panel of Fig. 3.3 is exactly the bump
from Gaussian distribution, Ī(x).

With this in mind, if we calculate the ratio for power spectra between the intrinsic
total intensity and its corresponding intrinsic polarization mode, and between the di↵erent
intrinsic polarization modes before scattering in one chord of the u � v plane. We also
calculate the ratio for the scatted quantities in the same way, whose only di↵erence is they
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Figure 3.3: The top left panel is the power spectrum of the total intensity before and after
scattering. The top right panel is the power spectrum of the polarized signals before and
after scattering. The bottom left panel is the ratio of the power spectra between total
intensity and polarization. The bottom right is the ratio of the power spectra between two
independent polarization modes.
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are all after scattering. We find the results shown in the bottom two panels in Fig. 3.3,
which we calculate in the u-axis.

In the bottom left panel in Fig. 3.3, we take the ratio of the a polarization component
against the total intensity it is based on. The red line corresponds to the ratio between
L1 and the Red Total Intensity in Table 3.1, and the blue line corresponds to the ratio
between L2 and the White Total Intensity in Table 3.1. In the bottom right panel, we
take the ratio of two independent polarized signals, L1 and L2. The result shows that the
ratio for the power law tail after the bump are very close to each other before and after
scattering, but there is an obvious deviation. This is because of the SSK we have discussed
in Section 2.3.

In the bottom left panel of Fig. 3.3, at short baselines, in the short baseline regime the
structure of the ratio is not clear due to the non-zero mean value of the total intensity;
however, at longer baselines, we see a deviation. This deviation is a result of the SSK
moving the large power at zero-baseline to long baselines. In contrast, the bottom right
panel in Fig. 3.3 shows excellent agreement at all baseline lengths. Here, both polarizations
have zero-mean values. That is, by carefully choosing the quantities from which we extract
structural information so that they have zero means, we drastically improve the fidelity of
their power spectra ratios.
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Chapter 4

GRMHD simulation

4.1 Constructing the GRMHD model

We now turn to the GRMHD simulation data. The GRMHD images simulates the syn-
chrotron emission in the accretion disk, which provides constraints on the structure and
strength of the magnetic field in the accretion disk model, as well as other quantities. De-
pending on the magnitude of the total magnetic flux in the accretion disk, the GRMHD
simulations are divided into two categories, the Standard and Normal Evolution (SANE)
and the Magnetically Arrested Disk (MAD) models. In both, depending on the prop-
erties of the magnetic field, the scheme of radiative transfer is determined to be either
disk model or jet model, which are di↵erentiated by the models for non-thermal electrons
[12, 32]. These are approximations of the potential observation data from EHT. Unlike
the toy model, we have no control over the intrinsic signals, yet we are able to retrieve key
information about intrinsic structures after scattering.

We use the simulated images sets presented in Gold, Mckinney et al. [12]. There are
four sets of GRMHD simulation data, MAD disk, MAD jet, SANE disk and SANE jet. All
of the simulation data contain the total intensity map and the polarization (both linear and
circular), i.e., the four Stokes parameter, I, Q, U and V. Each category of GRMHD data
contains at least hundreds, and up to one thousand snapshots of the simulation results
of Sgr A*. However, for the GRMHD images we have used, the timespan is relatively
short; hence, it might not estimate the full ensemble average. As a result, the shape of
the power spectra ratios is not indicative of underlying physical structures. Nevertheless,
each GRMHD simulation types is significantly di↵erent from each other, and contains very
di↵erent turbulence properties. In principle, we could apply any accretion disk model of
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Sgr A*, as we are not trying to di↵erentiate di↵erent accretion disk models, but rather to
retrieve information after scattering.

4.2 Simulated Observation

The steps of setting up the simulated observation for GRMHD simulation is similar to the
setup procedure in the toy model case. For each GRMHD simulation category separately
we:

1. The first step is to generate the total intensity and its corresponding polarization
parts. For each GRMHD simulation category, there are four separate data sets,
namely the four Stokes parameter (I, Q, U and V). The first parameter, I, encodes
the total intensity, and the latter three parameters, Q, U and V, encode three di↵erent
polarization modes. Similarly, we can construct the polarization so that they have
zero-mean value as in the toy model. The detailed method of doing so is described in
Section 4.3. Unlike in the toy model, we have no control over the statistical structure
of the intrinsic source, as we are now using the GRMHD simulation data.

2. The GRMHD simulation data is converted from the image domain to the visibility
domain using the same method in the toy model, i.e., we compute Vint for each
snapshot in the four polarization modes, Vint,I , Vint,Q, Vint,U , Vint,V , Vint,L1 and Vint,L2.
Similarly, the baselines in our later plots in the Chapter covers from 0 to 15 G�, at
� = 1.3cm.

3. We construct the scattering screen from EHTim library with the same parameter
configuration as for the toy model.

4. For each snapshot of one GRMHD simulation data category, it is passed through a
fixed but independently generated scattering screen with random refractive modes.

5. The scattered intensities are converted from image domain to visibility domain; i.e.,
we compute Vscatt for each snapshot in the four polarization modes, Vscatt,I , Vscatt,Q,
Vscatt,U , Vscatt,V , Vscatt,L1 , Vscatt,L2.

6. We repeat this procedure until we have covered all the snapshots in one GRMHD
simulation data category, and for each snapshot, it is passed through ten indepen-
dently generated scattering screen.All the parameters in the screen is set to be fixed,
leaving the only change in each run of the screen to be some random fluctuation, as a
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Figure 4.1: The figure shows the images of di↵erent polarization modes and their corre-
sponding scattered images. The first line of panels are the intrinsic images for four Stokes
parameters, I, Q, U and V . The second line of panels are their corresponding scattered
images. The left two panels in the third line are the intrinsic images of the constructed
polarization modes, L1 and L2, whose mean values are zero. The right two panels in the
third line are the corresponding scattered images of L1 and L2.
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simulation of the intrinsic fluctuation in the screen. Then, we take the ensemble aver-
age, as a simulation of the realization of both the fluctuations in the intrinsic source
and in the scattering screen to obtain the ensemble average of the power spectrum.

We repeat this for each class of GRMHD data category (SANE jet model, SANE disk
model, MAD jet model and MAD disk model), after which we have the statistics for all
four GRMHD simulations with the information of polarizations before and after scattering.
The intrinsic and scattered image is shown in Fig 4.1.

4.3 Construction of Specific Polarization modes

In the toy model, we have shown that the ratio for scattered power spectra of any two
di↵erent polarization modes is the same as the ratio for intrinsic power spectra of the same
polarization modes, up to the limit of some certain length of baselines. From the discussion
in Section 2.2, we know that the SSK, K(u, b), moves power from short baselines to long
baselines. Thus, we notice a deviation in the power spectra ratio at shorter baselines,
when the mean intensities are large (i.e., large V (0, 0)). Thus, the polarization modes are
constructed such that they have zero-mean value (zero flux), the scale of baseline limits go
beyond the actual size of the Earth, which sets a limit for the current EHT observations.
In the toy model, we constructed the two polarization modes with zero-mean value simply
by multiplying two independent Gaussian random fields with zero-mean values.

In the GRMHD simulation case, we need to show that the same conclusion holds true
in the same way, and we need to find a better way to construct the two polarization modes.
To manifest that, we construct the polarization modes in the following way:

1. Present the visibility of the total intensity in the Stokes sphere (Q-U-V) Fig 4.2,
Vtotal(VQ(0, 0), VU(0, 0), VV (0, 0))

2. Construct the first polarization mode VL1 in the Q-U plane such that it is perpen-
dicular to Vtotal.

3. Construct the second polarization mode VL2 such that it is simultaneously perpen-
dicular to both Vtotal and VL1.

As we construct the two polarization modes in the way that VL1 and VL2 are both
perpendicular to the visibility of total intensity VI in the Stokes Sphere, both VL1 and
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VL2 have zero-mean flux. However, there are infinity many such pairs of VL1 and VL2

perpendicular to Vtotal. The extra requirement that VL1 and VL2 are perpendicular to each
other gives physical interpretation on the choice of these two polarization modes. Because
VL1 lives in the Q-U plane, it is the measure of the fluctuation in the linear polarization.
Similarly, VL2 is the measure of the fluctuation in both the ellipticity. This construction is
shown explicitly in Fig 4.2.

4.4 Noise Estimates

The sources of noises are twofold when calculating the ratio of di↵erent power spectra with
di↵erent polarization modes: the thermal noise of the telescope sites and the statistical en-
semble average sampling uncertainty due to observation (rms error). Here is the procedure
to calculate the two di↵erent kinds of noise.

4.4.1 Thermal Noise Estimates

The thermal error is due to the power generated by the resistors in the antenna, which is
persistent with non-zero mean value. The standard deviation of the thermal error for one
radio telescope is:

�T1 =
SEFD1p
⌧�B

, (4.1)

where ⌧ is the observational time. �B is the observational bandwidth, and SEFD is the
system equivalent flux density, a measurement of the typical thermal noise in the telescope.

The correlated standard deviation for two di↵erent radio telescopes is

�hV i =
p
�T1�T2. (4.2)

SEFDs for EHT stations are listed in EHTim, ranges from 220 Jy for ALMA to 22000 Jy
for APEX. We adopt, for illustration, ALMA and LMT, for which the SEFDs are 220 Jy
and 560 Jy, respectively. In our illustration, ALMA and LMT have the two lowest value
of SEFDs. If we are to choose di↵erent SEFD values for di↵erent telescope sites (e.g. SPT
with 1600 Jy and SMT with 11900 Jy), the overall estimation of the standard deviation
could be raised by one order of magnitude. The value of observational bandwidth and scan
time we adopt here are 4 GHz and 10 min.
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Figure 4.2: The Stokes sphere where VI , VL1 and VL2 live. The three visibilities are
constructed such that they are perpendicular to each other. As VL1 and VL2 are both
perpendicular to the VI at zero baselines, VL1 and VL2 have zero-mean values.
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The noise can be averaged down by increasing the number of observations, whose
standard deviation goes down by N�1/2. The standard deviation above is for the hV i of
any baseline of our choice. The standard deviation for hV 2i can be calculated as follows:

hV 2i = 1

N

X

i

V 2
i (4.3)

�hV 2i =

vuutX

j

 
@hV 2i
@Vj

!2

�2
hV i (4.4)

= 2

r
hV 2i
N

�hV i. (4.5)

As we want to calculate the ratio for power spectra with di↵erent polarization modes
(e.g., A and B), the standard deviation for the ratio is:

�hV 2
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Ai
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Bi

vuut
 
�hV 2
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hV 2
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+

 
�hV 2

Bi

hV 2
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. (4.6)

4.4.2 Ensemble Noise Estimates

The ensemble noise encodes the fluctuation from the turbulence in both the source and
the scattering screen.

As stated in the introduction section, the rms error is due to the intrinsic fluctuation
in the source and the scattering screen. Unlike the case in the thermal error, the standard
deviation of the averaged visibility is polarization mode dependent. The variance of the
averaged visibility with di↵erent polarization is:

⌃2
hV i = hV 2i � hV i2. (4.7)

Thus, the standard deviation for the power spectra ratio is:

⌃hV 2
Ai/hV 2

Bi =
hV 2

Ai
hV 2

Bi

vuut
 
⌃hV 2

Ai

hV 2
Ai

!2

+

 
⌃hV 2

Bi

hV 2
Bi

!2

, (4.8)

where ⌃hV 2
A,Bi is the standard deviation from Equation 4.7
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4.5 Results and Discussion

Having repeated all the calculations above, we take the ratio of scattered and intrinsic
power spectra for di↵erent polarization modes in one dimension in one GRMHD data
category. As with the toy model, we find it generally possible to faithfully reconstruct the
power spectra ratio of polarized observations. In Fig. 4.3 and Fig. 4.4, we take the u-axis
as the chord.

In Fig. 4.3 and Fig. 4.4, we show the ratio for polarization mode Q against three other
polarization modes I, U and V respectively in all the four GRMHD simulation categories.
The error band is the range where the power spectra ratio fluctuates due to the statistical
ensemble average sampling uncertainty, while the error bar presents the thermal error from
the observational telescope sites. All of the error bars are averaged 25 observational nights.

As is shown in Fig. 4.3 and Fig. 4.4, all of the intrinsic and scattered ratios are in-
distinguishable from their counterparts at short baselines. For EHT, this result is good
enough, as 6 � 8 G� already covers most of the accessible baselines. However, after this
threshold, deviation starts to appear after 6�8 G�. The reason for this deviation is exactly
the same as in the toy model, as the SSK, K(u, b), moves power from short baselines to
long baselines. The ratio between polarization Q and I is the worst among all three ratios
against Q, U and V , because the total intensity is two to three orders of magnitude larger
than its polarized components; thus, the power moved from short baselines by the SSK is
relatively large.

Instead of using the given four polarization modes with the given Stokes parameters,
we can use the constructed polarization modes , VL1 and VL2, from Section 4.3. As stated
in Section 4.3, VL1 and VL2 are chosen in such a way that they have zero-mean value, the
contamination from scattering on the power spectra ratio at long baselines is tiny, which
is supported by the bottom right panel in Fig. 4.3 and Fig. 4.4, as the power spectra ratio
is indistinguishable until over 10 G�.

4.6 Screen Sensitivity with the Inner Scale

As we have discussed in the previous chapters that the inner scale and outer scale are
the physical scales where the turbulence in the scattering screen is generated and damped
respectively. The typical values of inner scale, outer scale and power parameter we used
in this numerical experiment are 8 ⇥ 107cm, 1020cm and Kolmogorov, 5/3. Arguments do
exist on the exact numbers of these values (e.g., see [20]). Some research suggests that the
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Figure 4.3: The ratio of power spectra for di↵erent polarization modes in di↵erent disk
models, SANE disk model and MAD disk model. The top left, top right and bottom left
panels are the ratio of power spectra with Stokes parameter Q over Stokes parameter I,
U and V, respectively. The bottom right is the ratio of power spectra with constructed
polarization modes VL1 and VL2. The error bar is the thermal error, as described in
Section 4.4.1, and the error band is the ensemble error, as described in Section 4.4.2
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Figure 4.4: The ratio of power spectra for di↵erent polarization modes in di↵erent jet
models, SANE jet model and MAD jet model. he top left, top right and bottom left panels
are the ratio of power spectra with Stokes parameter Q over Stokes parameter I, U and V,
respectively. The bottom right is the ratio of power spectra with constructed polarization
modes VL1 and VL2. The error bar is the thermal error, as described in Section 4.4.1, and
the error band is the ensemble error, as described in Section 4.4.2
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inner scale can be as law as 107cm, while others suggest that the inner scale can be so large
that the entire observation lies within the inner scale. Thus, it is interesting to explore
how the power spectra ratio behaves in response to di↵erent inner scale values. Within the
scattering model in EHTim library, we explored the behaviour of the power spectra ratio
for di↵erent polarization modes when changing the values of inner scale.

4.6.1 Simulation Results with Di↵erent Inner Scales

In this subsection, we present the numerical simulation results with varying scattering the
inner scale. We explore the behaviour of the power spectra ratio for di↵erent polarization
modes in response to di↵erent inner scale value, varying from 105cm to 1013cm. Three
typical values of inner scale were compared, tiny inner scale (e.g. 105cm), typical inner
scale (e.g. 109cm) and large inner scale (e.g. 1013cm), with the test GRMHD simulation
data category to be the MAD disk model. The procedure of reconstructing the simulated
observation is the same as described in Section 4.2.

The results of the numerical simulation is as follows. First, in the case of the large
inner scale, the scattered power spectrum ratio is indistinguishable from the intrinsic ratio.
Second, with the intermediate inner scale, as we have presented in the previous section, the
scattered power spectrum ratio starts to deviate from the intrinsic power spectrum ratio
at long baselines, typically 8 G�. Last, with small inner scale, the scatted power spectrum
ratio matches the intrinsic ratio again (see Figure 4.5). Therefore, the scattering screen
is only sensitive to intermediate inner scales.

4.6.2 Analysis of the Influence of Varying Inner Scale on the
Power Spectra Ratios

The result we have acquired from the above numerical simulation shows that the scattering
is significant only at intermediate inner scales. When the inner scale is either tiny or large,
the scattering e↵ect is not evident. The reason for the case with large inner scale can be
directly understood, as all the EHT-accessible baselines are within the inner scale, so the
structure function, D�(r), completely falls into the regime of quadratic form. Under this
circumstance, the scattered power spectrum is indistinguishable from the instrinsic one
(see Equation 2.33). Thus, the power spectrum ratio between di↵erent polarization modes
is preserved after scattering, even at long baselines.

For the case where the inner scale is intermediate, the structure function would become
a piecewise function (See Fig. 2.2): within inner scale it is quadratic, and beyond inner
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Figure 4.5: These three figures are the power spectrum ratio between Stokes parameter Q
and I in the MAD disk model. The di↵erence between these three figures is that they are
generated under di↵erent inner scales. From left to right, the inner scales are 2 ⇥ 105 cm,
109 cm and 1019 cm.

scale it satisfies power law relation (in this test case, we have chosen the power law to be
Kolmogorov). In this case, the scattered power spectrum can be divided into two parts,
first of which is proportional to the intrinsic power spectrum, and the second of which is
an integration over the SSK (see Equation 2.36 and Equation 2.37). Therefore, the SSK is
the reason why we see a deviation of the power spectra ratio at intermediate inner scales.

For the case with tiny inner scale, however, we do not see a deviation of the power
spectrum ratio. The reasoning is as follows:

The integrand of Equation 2.37 can be separated into two di↵erent parts, the part only
as a function of u:

K1(u) =
1

2
u2e�D�(u)h|Vint|2(u)i, (4.9)

and the part as a function of z:

K2(z) = ei[z(u+b)]/r2FD
00

�(z). (4.10)

There are two limits from these two equations. The first limit is on u that e�D�(u)

exponentially decays when |u| is too large. This limit on u is defined as ū such that if |u| >
|ū|, K1(u) will vanish. The second limit is that the exponent in K2(z), ei[z(u+b)]/r2F , should
be definite and of order one; otherwise, the power spectrum will have violent fluctuations.
Thus, [z(u+ b)]/r2F < 1.
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There are also two extreme situations here: |u| ⌧ |b| and |u| � |b|. In the first
situation, [z(u + b)]/r2F ⇡ (zb)/r2F , which sets limit on z that |z|max = r2F/|b|. Similarly,
in the second situation, [z(u + b)]/r2F ⇡ (zu)/r2F , which sets limit on z that |z|max =
r2F/|u| > r2F/|ū|. This sets constraint of z on b, based on the value of u, which is shown
in Fig 4.6.

As rin is tiny, |z|max � rin. In Fig 4.6, rin,2 is much smaller than |z|max, which sets a
limit on the value of |b|, |b|max. The corresponding limit on |b|, |b|max, is large when rin
is tiny. Within this limit of |b|, the power spectrum is not a↵ected by the scattering.

Fig 4.6 shows two cases, rin,1 corresponds to intermediate inner scale, and rin,2 corre-
sponds to tiny inner scale. For rin,1, once it moves out of |b|max,1, the inner scale is larger
than |z|max, and the SSK starts to contaminate the power spectrum; thus, the scattered
power spectrum starts to deviate from the intrinsic one at certain baselines. Similarly, as
rin,2 is much smaller than rin,1, the corresponding limit on |b|, |b|max,2 is much larger than
|b|max,1; hence, the deviation of the scattered power spectrum ratio happens at much longer
baselines. Therefore, the deviation of the scattered power spectrum cannot be observed at
the EHT-accessible baselines in Fig 4.5.

40



Figure 4.6: The plot shows the constraint of z on b. The top left plateau happens when
u � b, while the right curve happens when u ⌧ b. For a given inner scale smaller than
|z|max, there is a corresponding upper limit |b|max such that within the baseline |b|max,
the power spectrum is not a↵ected by the scattering.
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Chapter 5

Conclusion

5.1 Current Conclusions

We have reached four main conclusions based on our exploration of methods to mitigate
interstellar scattering using polarization observations.

First, the interstellar scattering is generally non-birefringent. To observe a distinctive
di↵erence among di↵erent polarizations after interstellar scattering, a magnetic field at
least 107 mG is required, much larger than any credible estimates of the magnetic field
strengths in the interstellar medium. Therefore, key aspects of the relative information
between di↵erent polarization modes is preserved even after scattering.

Second, the SSK that we have defined characterizes the influence of scattering on the
power spectrum of intensity fluctuations within images (in all Stokes parameters). We find
that typically the SSK shifts power from short baselines to long baselines, i.e., large angular
scales to small angular scales, which contaminates the power spectra of image fluctuations.
This is true for all Stokes parameters. However, for a wide range of potential scatter-
ing screen properties, the ratios of power spectra for appropriately defined polarization
quantities are only weakly a↵ected.

Third, based on the numerical simulations using toy models, we have confirmed ex-
plicitly that the statistical information of the intrinsic image structure is preserved after
scattering. The ratio for power spectra produced from di↵erent polarizations is indistin-
guishable before and after scattering. This match between the statistical description of
observed and intrinsic image structure is significantly improved when polarization modes
are constructed to have zero-mean values, mitigating the contamination from the SSK.
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Last, using numerical simulations of images produced from GRMHD simulation data,
we demonstrated the ability of polarimetric power spectra ratios to convey practical infor-
mation about the underlying intrinsic image structure for realistic scenarios. Testing out
di↵erent combinations of polarization modes in four di↵erent intrinsic GRMHD simulation
data categories, the ratio of the scattered power spectra is still closely matched to the ratio
of the intrinsic ones, up to long baselines. If constructing the polarized signals (L1 and L2)
with polarization modes chosen such that total L1 and L2 have zero-mean value, we can
substantially reduce the contamination from scattering via the SSK. Physically, these two
finely constructed polarized signals characterize the fluctuation in the linear and elliptical
polarizations. Di↵erences among the power spectra ratios for di↵erent underlying models,
indicative of the range we may anticipate from di↵erent models of MHD turbulence, con-
tinue to be clearly distinguishable even when thermal and ensemble noise are included for
typical EHT observations.

5.2 Future Plans

Motivated by the success of our attempts to mitigate interstellar scattering with polarimet-
ric observations, there are a number of natural future projects. These focus on extending,
characterizing, and applying the results of this thesis.

First, while we have shown that intrinsic information may be robustly reconstructed,
the implication of a given power spectra ratio remains to be understood physically. For the
numerical experiments we have performed using the GRMHD simulation data, the power
spectra ratios are very distinct. However, it is unclear how much of this is a result of the
short run time (and thus lack of independent intrinsic image realizations) and how much is
indicative of the MHD turbulence. This can be explored using both longer-time GRMHD
simulations, and more accurate toy models that utilize structured emission regions and
fully general relativistic ray tracing.

Second, we have developed the ability to access intrinsic information about the spatial
power spectrum of fluctuations in the emission region. However, more powerful would
be a measure of the full spatiotemporal power spectrum. Currently, our method e↵ec-
tively produces the spatial power spectrum at zero time lag. In the future we will explore
the prospects for producing estimates of the spatial power spectra that include temporal
structure that are robust to scattering.

Third, and perhaps most important, is the application of this to existing and forth-
coming EHT observations. In 2017, 2018 and expected in 2019, the EHT observed the full
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set of Stokes parameters. This has been supplemented with a large library of GRMHD
simulations. The calibration and analysis of this data is currently underway, and we ex-
pect to apply the methods developed here to both the observations and simulation library,
addressing the self-consistency of modern accretion models of Sgr A*.

44



References

[1] Steven A. Balbus and John F. Hawley. Instability, turbulence, and enhanced transport
in accretion disks. Reviews of Modern Physics, 70:1–53, January 1998.

[2] Amitai Y. Bin-Nun. Strong gravitational lensing by Sgr A*. Classical and Quantum

Gravity, 28:114003, June 2011.

[3] RD Blandford and DG Payne. Hydromagnetic flows from accretion discs and the pro-
duction of radio jets. Monthly Notices of the Royal Astronomical Society, 199(4):883–
903, 1982.
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Appendix A

Calculating of visibility, power
spectrum and variance with scalar
light approximation

For an extended source with scalar light approximation, the electromagnetic wave is:

 (~b) =
1

2⇡r2F

Z

screen

d2~x ⇥ ei[(
k
2D )|~b�~x|2+�(~x)]

⇥
Z

src

d2~sei(
k
2R )|~x�~s|2 src(~s).

The corresponding visibility for this electromagnetic wave with arbitrary polarization
AB is:

VAB,obs(~b) =
1

4⇡2r4F

Z
d2 ~x1d

2 ~x2

⇥ei
1
2 r

�2
F [(x2

1�x2
2)+

~b
1+M ( ~x1+ ~x2)]

⇥ei[�( ~x1)��( ~x2)]VAB,int((1 +M)( ~x2 � ~x1)).

The source has intrinsic structure, i.e. variance, so we can take two averages for an extended
source: the turbulence average and the screen average. The turbulence average of the

50



visibility is:

hVAB,obs(~b)iturb =
1

4⇡2r4F

Z
d2 ~x1d

2 ~x2

⇥ei
1
2 r

�2
F [(x2

1�x2
2)+

~b
1+M ( ~x1+ ~x2)]

⇥ei[�( ~x1)��( ~x2)]hVAB,int((1 +M)( ~x2 � ~x1))iturb.

The square of the visibility is:

V 2
AB,obs(~b) =

1

(4⇡2r4F )
2

Z
d2 ~x1d

2 ~x2d
2 ~x3d

2 ~x4

⇥ei
1
2 r

�2
F [(x2

1�x2
2)+

~b
1+M ( ~x1+ ~x2)�(x2

3�x2
4)�

~b
1+M ( ~x3+ ~x4)]

⇥ei[�( ~x1)��( ~x2)��( ~x3)+�( ~x4)]

VAB,int((1 +M)( ~x2 � ~x1))VAB,int((1 +M)( ~x4 � ~x3)).

Then, we can take the turbulence average of the squared visibility:

hV 2
AB,obsiturb =

1

(4⇡2r4F )
2
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d2 ~x1d

2 ~x2d
2 ~x3d

2 ~x4
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⇥[�2((1 +M)(x2 � x1), (1 +M)(x4 � x3))

+hVAB,int((1 +M)( ~x2 � ~x1))i ⇥ hVAB,int((1 +M)( ~x4 � ~x3))i],

where � is:

�2(x2 � x1, x4 � x3) = hV (1 +M)(x2 � x1)V (1 +M)(x4 � x3)i
�hV (1 +M)(x2 � x1)ihV (1 +M)(x4 � x3)i

We will later see that x2 � x1 has to be the same as x4 � x3 to have non-zero � In order
to simplify it, we apply the following change of variables:

2

6664
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z4
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7775
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1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3

7775

2

6664

x1

x2

x3

x4

3

7775

51



Two identities which are going to be used are:

z2 + z4 = x1 � x2

z4 � z2 = x4 � x3.

The first term in the turbulence average of the squared visibility is:

hfirsttermiturb =
1

(4⇡2r4F)
2

Z
d2zi

⇥eir
�2
F [z1z4+z2z3+

b
1+M z3]

⇥ei� ⇥ �2[�(1 +M)(z2 + z4)]
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1

4⇡2r4F
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b
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1
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⇥�2[�(1 +M)z2].

Then we can take the screen average, the only term to do with the screen is the phase
change �. And also, if we take result that z4 equals 0, then we can relate the change of the
phase to the correlation function:

hei[�(x1)��(x2)]iea = e�
1
2 h[�(x1)��(x2)]2iea = e�

1
2D�(x1�x2).

So, the first term is after taking two averages is:
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If we take the approximation that:

D�(x) =
x2

r20
.

Then,

hfirsttermiturb,ea =
1

4⇡2r4F
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d2z2d
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�2
F [z2z3+

b
1+M z3]
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= �2(b).

Following the same logic, we can calculate the second term as follows:
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So,

hV 2
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If we apply the same logic to the average of visibility instead of visibility squared, we
would have:

hVAB(b)iea,turb = e
� 1

2
b2

(1+M)2
1
r20 hVAB(b)iturb.

Therefore, the variance can be written as:

⌃2(b) = �2(b) + (1 � e
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1
r20 )hVAB(b)iturb.
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