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ON AN OPERATIONAL MATRIX METHOD BASED ON
GENERALIZED BERNOULLI POLYNOMIALS OF LEVEL m

YAMILET QUINTANA(®), WILLIAM RAMIREZ®, AND ALEJANDRO URIELES®)

ABSTRACT. An operational matrix method based on generalized Bernoulli polynomials
of level m is introduced and analyzed in order to obtain numerical solutions of initial
value problems. The most innovative component of our method comes, essentially, from
the introduction of the generalized Bernoulli polynomials of level m, which generalize
the classical Bernoulli polynomials. Computational results demonstrate that such oper-
ational matrix method can lead to very ill-conditioned matrix equations.

1. INTRODUCTION

It is well known that differential equations and their solutions play a prominent role in
fields related with science and engineering; for example, when some boundary conditions
are imposed, differential equations can be used to model many natural phenomena. Unfor-
tunately, it might be difficult (or even impossible) to find the analytical solution to some
initial value problems and, for this reason, some approximation method is often needed.
The so-called operational matrix method is one of the numerical methods available to
solve a wide class of differential equations. This technique turns the differential equation
problem into a system of algebraic equations by means of a finite set of orthogonal basis
functions, which simplifies the problem (see [1, 3-5, 7-9]). Furthermore, the requirement
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of orthogonality for the basis can be skipped when formulating those algebraic equations
and, therefore, the problem is significantly simplified (cf. [10, 16, 19]).

This paper uses the generalized Bernoulli polynomials of level m € N as basis functions
in order to construct a numerical technique based on the operational matrix method men-
tioned above. This class of polynomials was firstly introduced by Natalini and Bernardini
in [14], as a generalization of the classical Bernoulli polynomials and they represent a
particular case of the so-called extensions of generalized Apostol-type polynomials [11].
The interested reader can find recent literature which contains a large number of new and
interesting properties involving these polynomials (see for instance, [11] and the references
therein).

The outline of the paper is as follows. In Section 2 some relevant properties of the
generalized Bernoulli polynomials of level m are given. Section 3 contains the basic
ideas to describe for a fixed m € N, the best projection of elements in L?[0,1] onto

the subspace ‘BK’,%_”, generated by the generalized Bernoulli polynomials of level m,
{Bgm_l}(:):),Bgm_”(x), ..., B (x)} In Section 4 the operational matrices of differ-
entiation, integration and product are defined, and explicit representations of the entries
of these matrices (see Theorems 4.1 and 4.2) are established. Finally, Section 5 pro-

vides examples to demonstrate the use of the proposed method and how it leads to very
ill-conditioned matrix equations.

2. SOME PROPERTIES OF THE GENERALIZED BERNOULLI POLYNOMIALS OF LEVEL m

For a fixed m € N, the generalized Bernoulli polynomials of level m are defined by
means of the following generating function [17]

(2.1) e =Y B ), Jel <2
e — =0 v n=0 s
and, the generalized Bernoulli numbers of level m are defined by Bl = Bilm_l}(()),

for all n > 0. It is clear that if m = 1 in (2.1), then we obtain the definition of the
classical Bernoulli polynomials B, (x), and classical Bernoulli numbers, respectively, i.e.,

B,(z) = BY }(93), and B, = BY| respectively, for all n > 0.

The generalized Bernoulli polynomials of level m and the generalized Bernoulli numbers
of level m were introduced by Natalini and Bernardini in [14] as a generalization of the
classical Bernoulli polynomials, and classical Bernoulli numbers, respectively. In that
paper, some algebraic and differential properties satisfied by those polynomials are studied
as well.

For example, the first four generalized Bernoulli polynomials of level m are:
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By @) =

By = ml (:B - %H) ;

Bém_l}(:)s) = m! (372 - mi 1" + (m + 1)§(m + 2)) ’

B" @) = ml (xg - mi i 1)S(m 2"t 1)Sé: v ;))(m + 3>) |

The following proposition summarizes some properties of the generalized Bernoulli poly-
nomials of level m (cf. [11, 14]).

PROPOSITION 2.1. For a fized m € N, let {Bkm_l} (SL’)} be the sequence of generalized
n>0

Bernoulli polynomials of level m. Then the following statements hold:
a) Summation formula. For everyn >0,

(2.2) Blml(z) = Z(Z)Bgm—llxn—k.

k=0
b) Differential relations (Appell polynomial sequences). Forn,j > 0 with 0 < j <n,
we have

1)) ) — M gim-1l,
(2.9 B @) = s B ).

¢) Inversion formula. [14, Equation (2.6)] For every n > 0,

" /n k! me1
(2.4) =y (k) mBL_k J(2).

k=0
d) Recurrence relation. [14, Lemma 3.2] For every n > 1,

n—2
1 _ 1 n _ _
Blm=1 _ _ B[m 1] _ E B[m HB[m 1] )

e) Integral formulas.

o 1 — m—
(25) [ B = g (B e - B )
z0

n+1

- 1 n\ im— - e
=Y e () B = e,
k=0
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(2.6) BMl(z) = n / BI" M #)ydt + B1.
0

) [14, Theorem 3.1] Differential equation. For everyn > 1, the polynomial B (x)
satisfies the following differential equation

B[m—l] B[m_l} B[m—l} 1
n (n) n—1 (n—l) . 2 1 _ 1 ' _ / _ 1 ' — O
IR oy A IR Gl (m+1 x)y”(m )y

In what follows, we denote by P, the linear space of polynomials with real coefficients
and degree less than or equal to n. Notice that the inversion formula (2.4) immediately
implies that

PROPOSITION 2.2. For a fitedm € N and eachn > 0, the set {B([)m_l} (z), B U(z), ... BI"Y (x)}

is a basis for P,, i.e.,

P, = B = span {Bgm—”(x), BI" z),..., Bm=1 (g;)} .

From the summation formula (2.2) we can obtain the following matrix form of BimU (x),
r=0,1,...,n.

BIm(z) = (;)Blgm—l]xr_k
k=0
— (:)B,[m—1]+ (ril)BT[njl_l}z‘F + (g)B([)m—l] o
1
xr
= (OB ()BT e @B 0 o) |
:L;n
- e
where
en M= (OB (2B (B 0 o),

the null entries of the matrix MI™ " appear (n—r)-times and T (z) = (1 z - a" - a").
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T
Analogously, by (2.7) the matrix B ~1(z) = (Bgm_l} (7) Bgm_l] (x) - g1 (x)) ;
can be expressed as follows:

B (z) = MM UT(2)

pim1 0 0 0 0
OB ()BT 0 0 0
B N L L 0
o esmt B QB OB 0
(B (MBS (MBS ()BT e (B
Notice that according to (2.7) the rows of the matrix MI™~1 are precisely the matrices
MLm_H for r = 0,...,n. Furthermore, the matrix MI™~1 is a lower triangular matrix, so
that
det (M1 = (B}{”‘”)"+1 I1 <§) = (Bé””)"“ = ()",
k=1

Therefore, MI™~1 is an invertible matrix.
Let WI™=1 be the inverse matrix of M™~!. For any P(z) € IP,, there exist 0 < s < n
such that deg(P(x)) = s, and a unique (Cy, ..., C,) € R\ {0} such that
(2.9) P(z) =Y Ca* = CT(x),
k=0
where C' is the matrix given by

C:(Co ¢, - Cy 0 - 0)7

and the null entries of the matrix C' appear (n—s)-times. According to (2.8) the expression
(2.9) becomes

(2.10) P(z) = C WmIBIm=1 (),

Using the inversion formula (2.4) it is possible to find an explicit expression for the
matrix W™= In order to do this, we rewrite (2.4) in matrix form as follows:
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w0 0 0 0

i 1

(m+1)! P 0 0 0
2!2' 2!1l =4 0 0

(2.11) S R 3 1 o | B ).
nt 7;! nl n! 1
(m+n)l  (mtn—1)1 2A(m+n—2)! 3lm+n—3)1 = ml

Since the matrix Q™= is a lower triangular matrix, we have
1 n+1
det (QM1) = (ﬁ) :
Therefore, Q1 is an invertible matrix. Finally,
wln-1gm-1] (z) = T(z) = Q[m—I]B[m—I] (z),
and consequently,

(M[m—u)—l — Wim-1 = Qlm-1,

It is well known that using the Euler-Maclaurin summation formula (cf. [2, 13, 18], and
[15, Chap. 2, Sec. 3, p. 30]) it is possible to deduce the following formula for the integral
of the product of two classical Bernoulli polynomials

slr!
(s+1)!

(2.12) /1 B,(t)B,.(t)dt = (—1)***

We are interested in a similar formula for the integral of the product of two generalized
Bernoulli polynomials of level m. In order to establish a formula like (2.12), we will deduce
a summation formula of Euler-Maclaurin type based on generalized Bernoulli polynomials
of level m.

For an integer s > 0 and a closed interval [a, b], let C*[a, b] denote the set of all s-times
continuously differentiable functions defined on [a,b]. The integration by parts formula
asserts that the following result holds.

LEMMA 2.1. Let s > 1 and f € C*[0,1]. For a fited m € N, we have

s

S A+ S8 [ rowse <t>dt] ,

k=1

(2.13) /0 F(#)dt = %
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where

Ay = X (penops - pe-vr ), k=1

Proof. Since the integral on the left-hand side of (2.13) can be expressed as

[ =5 [ s

it suffices to apply repeated integration by parts on the right-hand side of the equation
above, using a suitable form of (2.3) in each step.

Applying the substitution f(t) = BLT;” (t) into (2.13) and taking into account (2.3),
(2.6) and some straightforward calculations, we can show that

(2.14)
1 s+1 [m 1] [m— 1] s
—1)s*slrim! | B, - B (1) 1 .
/0 s ()r () (8-'-7")' 8+7’+1 +m'§ k ) rs =1,
where
m—1 (_l)k r+s m—1 m—1 m—1
AL = L <k‘ - 1) <B£+r £+1B[ ] B£+r—}k+1(1)Bl[f }(1)) , k=15

The expression (2.14) is our desired analogue of (2.12) in the setting of the generalized
Bernoulli polynomials of level m.

3. THE BEST PROJECTION OF ELEMENTS IN L2[0,1] ONTO THE SUBSPACE Bl "

Let L?]0,1] be the space of the square-integrable functions on [0, 1], endowed with the

norm
2

£l = ( / 1 |f(t)|2dt> "

) / f(t)g(t)dt, for every f,g € L*[0,1].

where

Let us consider N > 0. Since L?[0, 1] is a uniformly convex Banach space and %K]n—l} is

a closed convex set in L2[0,1], for f € L2[0,1] there exists a unique &x(f) € B such
that (see e.g., [6, Chap. 1, Sec. 6, p. 22]).

(3.15) inf {1/ = plla:p € BF} = 17 = ex (Dl



8 Y. QUINTANA, W. RAMIREZ, AND A. URIELES

The element Ex(f) € %K'f—l] is called the best projection of f onto ‘BK’,%_”. Furthermore,
if we define g := f — &n(f), then for every p(z) € %K'f—l] \ {0} we have

lgli2 = {9:22
e

-6

- < llgll2-
113 ’

Thus, taking ¢ = &x(f) + $22p € %K'f—l] we see that

IpI3
1f=dally < IF=&x(lly-

But, as a consequence of (3.15) we obtain that necessarily (g,p) = (f — &{n(f),p) = 0.
More precisely,

(f —en(f).p) = 0, forevery pe By,
or equivalently,

(3.16) <f —&n(f), B[m_l](:c)> =0, foreveryr=20,...,N.

T

Since Ex(f) € BUY, there exists (ag, aq, .. ., ay) € RN such that

N
(3.17) Ev(N@) =Y anB" N(x) = AB" H(a),

k=0
where A is the matrix given by

A= (CLQ a; --- aN).

Thus,
(3.18) Ev (@) (B ()" = A [BI () (B ()]
then

(3.19) / 1 En(f)(@) (B U(2))" de = A / 1 [B[m_” () (B[m‘”(x))T] d,

where the matrix fol En(f)(z) (B[m_l](:zs))T dr is an 1 X (N + 1) matrix with entries given

by
/0 Ex (@) B @) do = ([ (1)) B e - f) en(H@)BY " ()dz)



OPERATIONAL MATRIX METHOD BASED ON BERNOULLI POLYNOMIALS OF LEVEL m 9

and the matrix fol [B[m—l}(g:) (Bm—1 (:c))T} dr is an (N +1) x (N +1) matrix with entries
given by

1
dm=1 — / B (z)Bm U (z)dx, 0<s,r<N.

S,T
0

Therefore, the entries of the matrix A on the right-hand side of (3.19) can be obtained
by means of the following expression

(3.20) [ / n(f )dx] [ /0 1 [B[m—” () (Bl (x))ﬂ d:c} B ,

provided that the matrix fo [B[m_l] () (B[m_l}(x))T] dr is an invertible matrix.

Remark 3.1 Notice that
(a) The matrix fol [B[m_”(x) (BIm-1] (iE))T} dr is symmetric and its entries can be

obtained by (2.14).
(b) If m = 1, by (2.12) and the properties of the classical Bernoulli numbers it is

possible to check that the matrix fol [B[O](x) (B[O](aj))T] dx is invertible (cf. [16]).

Now, we denote by

(3.21) RIm-1 — / 1 [B[m_l](x) (B~ (x)ﬂ dz.

Since RI™1 is a real symmetric matrix, the Principal Axis Theorem guarantees that
R can be written as

RIm-1 — Qlm=1] plm-1] (O[m—u)T7

where the matrix O™~ is orthogonal and the matrix A1 = diag()\gm_l], )\[lm—u’ . AE?‘”),
with ™ € R an eigenvalue of RI™Y, for r = 0,..., N.
Thus,

det (RI™~1) Hw 1]

Hence, for determining the nonsingularity of the matrix R~ it suffices to see that
A=t # 0 for all » = 0,...,N. To the best of our knowledge, this property is not
available in the literature, not even for the case m =1 (cf. [16]), and to find eigenvalues
of the matrix RI™! for a fixed m € N, and show that these eigenvalues are different
from zero can be a tedious and cumbersome task, except possibly for N =1 or N = 2.
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A similar situation occurs when criteria involving diagonal dominance are imposed (cf.,

e.g., [12]). However, one simple way to explore the non-singularity of the matrix RI™=1

is to carry out numerical simulations (with the help of MAPLE, for instance).

ExamMpPLE 3.1. Form =2 and N =9, we have that

4 0.666 0.222 0.044 —-0.014
0.666 0.044 0.148 0.029 —0.009
0.222 0.148 0.148 0.020 —0.002
0.044 0.029 0.020 0.008 0.0008
R[l] ~ —0.014 —0.009 —0.002 0.0008  0.0009

—0.017 —0.011 —0.006 —0.002 0.0002
—0.0007 —0.0004 —0.001 —0.001 —0.0003
0.011 0.007 0.003 0.0007  —0.0003
0.007 0.004 0.003 0.001 0.0001
—0.009 —0.006 —0.001 0.0001  0.0005

—0.017  —0.0007
—0.011  —0.0004
—0.006  —0.001

—0.002  —0.001

0.0002 —0.0003
0.0007  0.0002

0.0002 0.0003
—0.0003 —0.159 x 10~
—0.0004 —0.0002
0.0001 —0.0001

0.011 0.007
0.007 0.004
0.003 0.003
0.0007 0.001
—0.0003 0.0001
—0.0003 —0.0004
—0.159 x 10~5  —0.0002
0.0002 0.0001
0.0001 0.0003
—0.0002 0.00004

—0.009
—0.006
—0.001
0.0001
0.0005
0.0001
—0.0001
—0.0002
0.00004
0.0002

det (RM) ~ 0.136427477242195 x 10~*2, and the eigenvalues of the matriz R are the

following

Eigenvalues of R ~

4.136818498
0.3733056185
0.08678164218
0.006714935295
0.0008408259139

0.00003826222613

0.00000246716679
0.000000050804729
0.000000002135169
0.000000000017607

ExXAMPLE 3.2. Form =5 and N = 8, we have

14400 4800 2514.285 1400

4800 2800 1638.095 975.238
2514.285 1638.095 1052.335 663.492
1400 975.238  663.492 436.791

R[4] ~ 771.156 563.718  400.043 272.751
394.104  300.302 221.117 155.716
167.438 133.817 102.780 75.165
39.256 35.360 29.905 23.712
—21.283 —13.727 —8.209 —4.382

771.156 394.104 167.438
563.718 300.302 133.817
400.043 221.117 102.780
272.751 155.716  75.165
175.577 103.219 51.586
103.219  62.468 32.323
51.586  32.323 17.428
17.467 11.707  6.805
—1.920 —-0.48 0.215

39.256
35.360
29.905
23.712
17.467
11.707
6.805
3.003
0.427

—21.283
—13.727
—8.209
—4.382
—1.920
—0.486
0.215
0.427
0.349

det (R[‘”) ~ 0.267549566246871 x 10™*, and the eigenvalues of the matriz R are the

following.

Eigenvalues of R ~

16940.98768
1844.198384
150.3436662
11.51349907
0.8573769742
0.05105520057
0.001725633103
0.00002963569967
0.0000002209988277
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Notice that in the two previous examples RI™1 is close to a singular matrix and
therefore it could be ill conditioned. This fact has a negative impact on the numerical
simulations that involve that matrix.

4. OPERATIONAL MATRICES OF DIFFERENTIATION, INTEGRATION AND PRODUCT

In this section, we are going to provide operational matrices of differentiation, integra-
tion and product in the setting of the generalized Bernoulli polynomials of level m. The
outlines of the method are the same as that in [16]. The technical details, however, are
much more demanding than in the Bernoulli case.

DEFINITION 4.1. For a fited m € N and N > 0, let us consider the matrix
T
B ) = (B @) B ) e B )

We say that the matrices D™~ and Y are the operational matrices of differentiation
and integration, respectively, if and only if

(422) %B[m—l] (SL’) — D[m—l] B[m—l] (I),
(4.23) / BMU(t) dt ~ 7m= U BIm=1(g),
0
where
d m— m— M m— T
%B[ U(z) = (%B([) ) 4B gy ... dpl 1}@)) |
and
’ T
/0 B U(tyat = (f7 B wde [T B wdr - 7B Nor)

DEFINITION 4.2. For a fited m € N and N > 0, let us consider the matrix
T
B () = (8" ) B @) o BY )

Suppose that C € RWNTUXL 4s an arbitrary vector. We say that the matriz C™ is the
operational matriz of the product for the vector C, if and only if

(4.24) B (z) (BI"(2))" € ~ I B ().
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THEOREM 4.1. For any m € N and N > 0, let D" and ™Y be the operational
matrices of differentiation and integration, respectively. Then, the entries of D1 are
given by

m-1 _ ) &, 1=j+1,
(4.25) Dij _{ 0, otherwise,

with 0 <1,7 < N.
While the operational matriz I is given by
(4.26) zim= = glm=tiQm—1
where QY s the lower triangular matriz (2.11) and UMY is the matriz whose rows
are given by

oir = (00 1B ()BT e LB 0 0), s=1 N,

s \s—1

m—1 m— m— m— m—
i = (A A ) e

[m—1] [m—1]
N+l (@®) =By

N+1

being 5][-7”_” the coefficients of the best projection of b onto ‘BK?_”, j =

0,...,N, and MI™U the lower triangular matriz (2.7).
Proof. For the sake of clarity and readability, we have decided to include the details of

the proof of this theorem. However, one can check that it suffices to follow the reasoning
in [16, Subsections 4.1 and 4.2], making the appropriate modifications.

By (2.3) with j = 1, we have

d m— m— m— m— T
—B @) = (LB ) LB @) o LB W)
T
= (0 By @) 28" @) - NBE(@)

000 0 0

100 0 0

020 00| oy
020 - N O

It is clear that the matrix on the right-hand side of (4.27) satisfies (4.22) and consequently,
it also satisfies (4.25).
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From (2.6) we can deduce that

z T
/0 Byt = ([ By Nwdr [y BN wdr - [y BY 0t
_ m—1 m—1 Bl () —pglm—1l B[ml](w)—B[ml])T
- (B£ (@) — Bir=t B N@op B @B
On the one hand, using the summation formula (2.2) for each s =1,..., N, we get
1] 1] s
B () - B _ Ly (5) Bl g - L g
s s k) k s °
k=0
1/ s (m—1] L/ s (m—1] 2 1T -
= - B - B ...+ -B s
s(s—l) o1 $+s(s—2) 2 T +s o ¥
= (0 ()BT LB e B 0 - 0) ()
(4.28) = UmUT(g),

where the last null entries of the matrix UV appear (N — s)-times, and

Tz)=(1 = 2* -- SL’N)T.

[m—1] (z) B[mfl]

: . B -
On the other hand, by taking the best projection of —=+—F—5—+

obtain that there exists a unique ( ([]m_l], e S[Nm_”) € RY*! such that

m—1 m—1 N
Bz[v+1 ](x) — Bz[v+1] - Z 3
N+1 o -

(4.29) = HmmUBM=l(y),

Then in view of (2.11), (4.28) and (4.29), we see that

onto ‘BE?_”, we
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U[m—l] Q [m—1]glm—1] (SL’) U[m—l]
. [m I]Qm 1 [m— 1}(:(:) U[m 1]
/ B (1) dt ~ _ - QI IBIm1(z)
0 — m—
U][\;n 1]Q[m—1}B[m—l}(x> U[ 1]
H[m—lll\/[[m—I]Q[m—I]B[m—I](x) F[m— I]M[m 1]
(4.30) = Ulm-lQm-tgln=i(y),

where U1 is the matrix given by
m—1] pm=1]  7lm1] m—1] | e
U = (U Us o Uy Hm=1nlm— }> )

Finally, from (4.30) we obtain (4.27).

Our next goal is to obtain an explicit formula for the operational matrix of the product
(4.24).

THEOREM 4.2. For a fited m € N, N > 0 and C € RNTUX1 et CIm=11 pe the operational
matriz of the product for the vector C. Then C'™ 1 is given by

(4.31) clm=1 = plm-UNm=1l,
where NI™=U s the (N + 1) x (N + 1) matriz whose rows are given by
R N e N TR ) ST
being 773 r the coefficients of the best projection of the s-th row of T(x)TT (x) (M[m_”)T C
onto ‘B , 0 <r <N, and M™Y the lower triangular matriz (2.7).

Remark 4.1 This theorem is virtually a reflex of [10, Subsection 2.3]. Although our
approach is slightly different in this paper, the argument given here is based on the
one appearing in [10, Subsection 2.3] and it uses again the best projection of elements
in L?[0,1] onto the subspace %E@l_l}. Next, the details of the proof are provided for
the readers convenience. However, we would like to emphasize that the formula for the
operational matrix of the product obtained now is completely different from the results
given in [16, Subsection 4.3].
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Proof. Let C = (C’o c, - C'N)T € RW+DX1: from (2.7) we see that
(4.32) B (z) (B (z))" € = M IT(z) (T(x))” (M) ¢

Then, the factor T(z) (T(z))" (M[m_l])TC' on the right-hand side of (4.32) has the fol-
lowing form

>toay ()l
B DY i i (S
(4.33) T(x) (T(z))" (M) C = | ,

where ag-m_l](C) are determined by

N
m— k m ,
al ”(C):§:<k )Ck B, j=0,...,N.

=y \" T

The rows of the matrix on the right-hand side of (4.33) are polynomials with degrees

varying from N to 2N. Therefore, for each row we can consider its corresponding best

projection onto %K'f—l]

, le.,
(134)
Za[msl] :cJNZT][m IR (z) = (nﬁ’ﬁ Doty ”) B (x),

where s =0,..., N.

Substituting (4.34) into (4.33) yields

[m—1] [m—1] [m—1]
Moo Mo,1 ULRY
T T n% Dot gt )
T(x) (T(z)" (MIm1)" ¢~ [ ! N B,

m—1 m—1 m—1
nEVO] 771[\7,1} n][V,N}
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or equivalently,

[m—1] [m—-1] [m—1]
10,0 o1 Mo, N
- n[m—l] n[m—l} . n[m—l}
BI"(z) (B (z))” € ~ MmO T MY B ()
S R
77Ev,o ! nz[v,1 b nz[v,N }

Summarizing, we have shown that

clm=1 = ppim-1Nim-1,

with
m—1 m—1 m—1
77([),0 ] 77([),1 b U([),N }
[m—1] [(m—-1] [m—1]
N1 — [ o Tha .~
S S S
77Ev,0 ! m[m b nz[v,N }

then (4.31) follows.

5. SOME EXAMPLES

In this section, four numerical examples are examined to illustrate that the proposed
method can lead to very ill-conditioned matrix equations. All the numerical experiments
are performed using MAPLE 15. Also, we would like to point out that some of these
examples have previously been used in [16, Section 5].

ExAaMPLE 5.1. Consider the following Bessel differential equation of order 2.
xd2u(:)s) N du(x)

(5.35) T2 Ir + zu(x) =0,
with initial conditions

du(x)
5.36 0)=1 =0.
(5.30) w0 =1 GF

The exact solution of this problem is

- (_l)n 2n
ues(z)zz4n(n!)2x :

n=0

To solve this problem we propose the following steps:
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Step 1. Approzrimate 2d 5~ by the generalized Bernoulli polynomials of level m. This
step requires to choose speczﬁc values for m and N

(5.37) de ZA BI" U (z) = ATBIU(z),

where A = (Ao A - AN)T is a vector with unknown components that will need to
be determined.

Step 2. Use the initial conditions (5.36) and the opemtional matriz of integration (4.23)
in order to obtain approximate expressions for dw and u(x).

From (5.36) we have
T g2
/ d*u(t) gt — du(x)
0

dt? dx
Hence, from (5.37) and (4.23) we have
(5.38) dz;x) ~ / ATBI(¢) dt = AT / B (t) dt ~ ATZmU B ().
0 0

Again, from (5.36) we have

“ du(t)
dt = -1
| =t
Hence, from (5.38) and (4.23) we get
u

dt+1 ~ ATz / B U(t) dt + VIBM=U(g)
0

(539) AT (_’Z’[m—l})z B[m—l](x) + yIglm—1 (l’),
where V = (% 0 --- O)T.
Step 3. Transform the differential equation into a suitable matriz equation.

The substitution of (5.38) and (5.39) into (5.35) yields
ATBI (@) + ATT U B (@) + o (AT (T00) B (@) + VIBI () o,

12

and this last equation can be rewritten as
0 = ETBM™U@)ATBM(g) + ATZ=1 BIm=1 ()
2
+ETB (@) AT (zim1) B () + TR @) v B (@),

m!

T
where E = (ﬁ L0 - 0) , or equivalently,
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T
(5400 = ETBM(2) (B[m—l}(x)) A+ ATZm=1 Blm=1](g)

+ETBI () (B () [(z[m—ﬂ) 1 AL BB () (B 1) v,

Step 4. Use the operational matriz of the product.

T
From (4.24) the operational matrices of the product for the vectors A, G = [(I[m_”)ﬂ A,
and V' are given by

(5.41) B (z) (B (z))" A ~ AM-UBImU(y),

(5.42) B (z) (B (2)) ¢ ~ g UBI(a),

(5.43) B (z) (B (z)) V.~ YImIBml(y),

Hence, the substitution of (5.41)-(5.43) into (5.40) yields

(5.44) (BT A=Y ATZIm=Y  pTgln=ll o pTylm=th Bin=l(z) = 0

Step 5. Go back to the Galerkin method.

Now, we proceed as in the Galerkin method [8]: multiplying (5.44) by (BI™~1 (SL’))T and
integrating on the interval [0, 1], we obtain

1
0 = / (ETA[m—l] +ATI[m—1] +ETg[m—1} +ETV[m_1]) B[m_l](l’) (B[m_l}(x))TdI
0

1
_ (ETA[m—l] +ATI[m—1} _'_ETg[m—l] +ETV[m_1])/ B[m_l](l’) (B[m_l}(x))Td;L’
0

(545): (ETA[m—l] _i_ATI[m—l} _'_ETg[m—l] +ETv[m—1]) R[m—l]’
where RI™=U is the matriz given in (3.21).

Step 6. Determine the unknown components of the vector A and calculate the approxi-
mate solution uas(x).

Since R™=Y is a nonsingular matriz (at least the numerical experimentation verifies
this fact), we deduce from (5.45) that

(5.46) ETAlm=1 o AT7im=t o pTglm=t] 4 pTym=1 —
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and this last matriz equation generates a linear system of N+1 equations where, of course,
the N + 1 components of vector A are the unknowns. Consequently, solving the system
generated by (5.46) and using (5.39) the approximate solution uas(x) can be calculated.

Following the previous six steps with m =1 and N = 10, we get

Ag —0.4398
Ay 0.1771
Ao 0.1786
As 9.7191 x 10~3
Ay 5.5216 x 102
A= 45 | ~ | 6.892x102
Ag 5.5349 x 102
Az 4.7603 x 10~2
Ag 3.2582 x 1072
Ag 1.3713 x 102
Ao 8.8693 x 1073

Finally, using (5.39) we obtain the approximate solution of (5.35):

1
T (710]\2 R0 TR0 r|
(5.47) uas(z) = AT ()" B%z) + V' BY(z) = B |,
210
where
By 1
B 1.0387 x 10~%
By —0.25
Bs —4.4402 x 1077
By 1.778 x 102
B =1 Bs ~ 3.6898 x 10~3
Bg —2.1682 x 103
By 1.3656 x 103
Bsg 4.9502 x 10~4
By —1.6387 x 10~3
Bio 4.5268 x 105

While for m =2 and N = 10, we have
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Ao —1.1535
Ay —4.9657
Az —10.5765
As —12.5315
_ Ay —17.1534
A= | 4 | ~ | 168326 |,
Ag —65.1876
Ar 128.704
Asg —141.573
Ao 81.7372
Ao —44.8865

and the approximate solution of (5.35) is given by

1
i (7102 gl TR 0
(5.48) uas(z) = A (I ) BY(z)+ V'BY(z) =B R
210
where
Bo 0.9996
B, 4.1595 x 1072
By ~0.1919
B —0.7265
- By —0.9144
B=| B | ~ 1.1818
Bs 1.3515
By 7.6945
Bs —17.2239
Bo 13.1319
Bio —3.2078

Figure 1 shows the plots for the absolute error between the exact solution of the problem
(5.35) and the approzimate solutions (5.47) and (5.48), respectively.
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FIiGURE 1. Graphs of the absolute error between the exact solution of
the problem (5.35) and the approximate solutions (5.47) (left) and (5.48)
(right), respectively.

ExAMPLE 5.2. Consider the following Lane-Emden type equation

d? d
(5.49) x u(z) +8 u() + 2?u(z) = 2% — 2° + 442° — 3027,
dzx? dz
with initial conditions
du(x)
5.50 0)=0 = 0.
(5.50) wo =0, 2

The exact solution of this problem is

ues(z) = o* — 2%

In order to solve this example, we take m = 5, N = 6 and follow the siz steps as in
FExample 5.1. Making the suitable modifications, from the steps 1 — 3 we obtain that
(5.49) can be transformed into the following equation

(5.51)  xATBU(z) + 8ATTH BM () 4 22 AT (1[4})2 BY(z) = 2% — 2° + 4423 — 3022,

where A = (Ao A - AG)T s a vector with unknown components.
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Also, the polynomials x, 2, and 2% — 2° + 442® — 3022 can be expressed in terms of
B (z) as follows:

= E{ Bl(z),
> = ETBW(z),
28 — 2% 4 442% — 3022 = EI'BY(2),

where

FE = L 1OOOOOT
1 — 72071207 s Uy Uy Uy 9

11 1 4
B = (— —
? <2520’36O’120’0’0’0’0) ’
g (78T a7 677 1843 1 1\
S 332640° 1512 10080’ 5040° 1008" 120

The substitution of ET B¥(z) (j = 1,2,3) into (5.51) yields

ET B (2) (B[‘*] (x))T A+8ATTH BW ()4 ET B (2) (BW (g;)) ! [(1[41) 2} : A-ETBH(z) = 0.

Next, the steps 4 — 6 allow us to determine the unknown components of the vector
A and calculate the approximate solution ugg(z). Summarizing, it suffices to solve the
linear system associated to the following matrix equation

(5.52) ET AW 4 8ATTHW + EIGW — ET =0,

where A and G are the operational matrices of the product for the vectors A and
T

G = [(1[4])2] A, respectively.

So, computing the solution of the linear system associated to (5.52) with the aid of
MAPLE we get

Ao —3.6439 x 10~3

A —1.3536 x 10~2

Ao 0.1134
A= 43| ~ | —6.4221 x 102

Ay 0.1438

As —0.1705

Ag 0.1569

And consequently,
Uas(l’) = AT (1[4})2 B[4] ([L’) = BQ + Blllj' + Bgl’2 + Bg[lfs + B4[L’4 + B5[L’5 + BGZIZ'G,
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where

Bo 3.4049 x 10~ 4
B 5.1303 x 10—°
Bo 3.8604 x 102

B — Bs ~ —1.0199
By 1.4472
Bs —0.8341
Bg 0.4925

If we take m = 5 and N = 4, then

Uas(llf) = AT (1[4])2 B[4} ([L’) == B() + Bll’ + Bg[lf2 + Bgl’g + B4I4,

with
Ay —3.9737 x 1073 Bo 6.1511 x 10~8
- Ay —1.0028 x 102 - By —4.8212 x 10~4
A=A | ~ | 82594x1072 | and B= | Bo | >~ | —9.8039 x 1072
As 3.9931 x 102 Bs —0.7541
Ay —7.8268 x 1072 By 0.8288

Finally, if we take m = 1 and N = 4, then

Uas(llf) = AT (1[01)2 B[O} ([L’) = B() + Bll’ + Bg[lf2 + Bgl’g + B4I4,

with
Ao —0.8557 Bo 8.3483 x 1018
R Ay —2.5344 . B 3.7777 x 1075
A=A | ~ 23844 | and B= | B | >~ | 1.3048x 1072
As 4.7599 x 1073 Bs —2.5133 x 1072
Ay —7.5712 By 1.161 x 102

Figure 2 shows the plots for the absolute error between the exact solution of the problem
(5.49) and two approximate solutions for different levels.
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FIGURE 2. Graphs of the absolute error between the exact solution of the
problem (5.49) and the approximate solutions for different levels with N = 4
(left: m =5 and right: m = 1, respectively).

ExamMpLE 5.3. Consider the following nonlinear Riccati equation
du(x)
dx

(5.53) = 2u(z) — u?(x) + 1,

with initial condition
(5.54) u(0) = 0.
The exact solution of this problem is

1 (vV2-1
tes(z) = 14+ v/2tanh (\/iar—l— §1n (W)) .

In order to solve this example, we take m = 1 N = 7 and follow the six steps as in
Example 5.1 with dZ—(zm) ~ ATBU(z), where A = (AO A - Ag)T is a vector with
unknown components. So,

(5.55) u(z) ~ ATZ[0]B(x),

and we can deduce the following matriz equation:

(5.56) —AT 4 2ATTO — ATT(0)G1) + T =0,

where G is the operational matriz of the product for the vector G = (I[O})T A and
er=(10 - 0).
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The matriz equation (5.56) generates a nonlinear system of 8 equations. With the aid
of MAPLE, the solution of the nonlinear system associated to (5.56) is shown to be

Ao 1.6609
Ay 0.26018
As —3.1014
As —2.7939
A= A | = | 18719
As —1.1758
As —3.4717
Ay ~0.9226

Finally, by (5.55) the approzimate solution uas(x) is given by

1
T
22
T z?
(5.57) uas(z) = B 24
25
26
27
where
Bo —3.0753 x 1073
B1 0.9936
By 1.0808
| Bs 0.3178
B=15 1%~ —0.2193
Bs —1.5223
Bg 1.7121
By —0.4959

Figure 3 shows the plot for the absolute error between the exact solution of the problem
(5.53) and the approzimate solution (5.57).
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FiGURE 3. Graph of the absolute error between the exact solution of the
problem (5.53) and the approximate solution (5.57).

ExAMPLE 5.4. Consider the following initial value problem

du(x) { x(1+2In|x|), if x # 0,2 € [0, 1],

(5.58) dr T 0, ife=0,

u(0) = 0.

This example obviously fulfills the assumptions of the existence and uniqueness theorem,
so there is exactly one solution. It can be easily checked that the exact solution is given

by

2?In|z|, if z #0,

(5.59) ues(x) = { 0, ifz =0.
This function is non analytic in any neighborhood of x = 0. In order to solve this ezample,
we approximate ——= by the generalized Bernoulli polynomials of level m.

du(x)
5.60 —— 2~ ATBI
(5.60) - (@),
where A = (Ao Ay oo AN)T s a vector with unknown components. So,

560 utn)= [ s ar [T ATT B ),



OPERATIONAL MATRIX METHOD BASED ON BERNOULLI POLYNOMIALS OF LEVEL m 27

Hence, the differential equation (5.60) can be transformed into the following matriz
equation

ATBIM1(z) = (E" —2In|z|ET) B (x),

T
where E = <m % 0o - 0) . The previous equation can be rewritten as

(5.62) (AT — ET)BI"(2) — 2E7 (CI™Y(z)) =0,
where C™~U(z) = In |z|B™(x). Now, we proceed as in the Galerkin method [8]: mul-

tiplying (5.62) by (B[m_l](x))T and integrating on [0, 1], we obtain

0 = (AT E) / "B () (B ()" d — 2B / L (Cm () (B (a)) da

0
(5.63) (AT — ET)RI™Y —2pTRIMY,

where R™Y s the matriz given in (3.21) and R™1 is the matriz given by

R = /0 1 (Cm 1 (x)) (B (x))" da.

Since R is a nonsingular matriz (at least the numerical simulation satisfies this prop-
erty), we deduce from (5.63) that

AT — 9ETRIm-1] (R[m—l})—l 1 ET.
Form =1 and N = 10, we get the condition number of the matriz 2R™1] (R[m_l])_1+
I s
oo (2RI (RI™1) ™ 4 1) = 1254012426 x 10",

where I is the identity matriz, and the approximate solution of (5.58) is given by

Uas(.ﬁlf) = BTB[m_l] (.CL’),
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with

By —20.7979163822070
B, —124.884720872938
Bs —312.475202424591
Bs —414.941535634544
B, —322.968758389248

B=| Bs | ~ | —100.298624469552
Bs —130.391215933618
By 75.1317393558092
By —286.444942862447
By 29.7443777765990
By —89.4231482966264

6. CONCLUSION

A new operational matrix method based on generalized Bernoulli polynomials of level
m € N has been presented in order to obtain numerical solutions of initial value prob-
lems. We show that equations systems associated to the new scheme are very similar to
those obtained from standard operational matrix methods. Unfortunately, the numerical
evidence suggests that this operational matrix method can lead to very ill-conditioned
matrix equations, even when m = 1, i.e., when the associated matrices are best handled
from a computational point of view.
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