
ON AN OPERATIONAL MATRIX METHOD BASED ON

GENERALIZED BERNOULLI POLYNOMIALS OF LEVEL m
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Abstract. An operational matrix method based on generalized Bernoulli polynomials
of level m is introduced and analyzed in order to obtain numerical solutions of initial
value problems. The most innovative component of our method comes, essentially, from
the introduction of the generalized Bernoulli polynomials of level m, which generalize
the classical Bernoulli polynomials. Computational results demonstrate that such oper-
ational matrix method can lead to very ill-conditioned matrix equations.

1. Introduction

It is well known that differential equations and their solutions play a prominent role in
fields related with science and engineering; for example, when some boundary conditions
are imposed, differential equations can be used to model many natural phenomena. Unfor-
tunately, it might be difficult (or even impossible) to find the analytical solution to some
initial value problems and, for this reason, some approximation method is often needed.
The so-called operational matrix method is one of the numerical methods available to
solve a wide class of differential equations. This technique turns the differential equation
problem into a system of algebraic equations by means of a finite set of orthogonal basis
functions, which simplifies the problem (see [1, 3–5, 7–9]). Furthermore, the requirement
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of orthogonality for the basis can be skipped when formulating those algebraic equations
and, therefore, the problem is significantly simplified (cf. [10, 16, 19]).

This paper uses the generalized Bernoulli polynomials of level m ∈ N as basis functions
in order to construct a numerical technique based on the operational matrix method men-
tioned above. This class of polynomials was firstly introduced by Natalini and Bernardini
in [14], as a generalization of the classical Bernoulli polynomials and they represent a
particular case of the so-called extensions of generalized Apostol-type polynomials [11].
The interested reader can find recent literature which contains a large number of new and
interesting properties involving these polynomials (see for instance, [11] and the references
therein).

The outline of the paper is as follows. In Section 2 some relevant properties of the
generalized Bernoulli polynomials of level m are given. Section 3 contains the basic
ideas to describe for a fixed m ∈ N, the best projection of elements in L2[0, 1] onto

the subspace B
[m−1]
N , generated by the generalized Bernoulli polynomials of level m,

{

B
[m−1]
0 (x), B

[m−1]
1 (x), . . . , B

[m−1]
N (x)

}

. In Section 4 the operational matrices of differ-

entiation, integration and product are defined, and explicit representations of the entries
of these matrices (see Theorems 4.1 and 4.2) are established. Finally, Section 5 pro-
vides examples to demonstrate the use of the proposed method and how it leads to very
ill-conditioned matrix equations.

2. Some properties of the generalized Bernoulli polynomials of level m

For a fixed m ∈ N, the generalized Bernoulli polynomials of level m are defined by
means of the following generating function [17]

(2.1)
zmexz

ez −∑m−1
l=0

zl

l!

=

∞
∑

n=0

B[m−1]
n (x)

zn

n!
, |z| < 2π

and, the generalized Bernoulli numbers of level m are defined by B
[m−1]
n := B

[m−1]
n (0),

for all n ≥ 0. It is clear that if m = 1 in (2.1), then we obtain the definition of the
classical Bernoulli polynomials Bn(x), and classical Bernoulli numbers, respectively, i.e.,

Bn(x) = B
[0]
n (x), and Bn = B

[0]
n , respectively, for all n ≥ 0.

The generalized Bernoulli polynomials of level m and the generalized Bernoulli numbers
of level m were introduced by Natalini and Bernardini in [14] as a generalization of the
classical Bernoulli polynomials, and classical Bernoulli numbers, respectively. In that
paper, some algebraic and differential properties satisfied by those polynomials are studied
as well.

For example, the first four generalized Bernoulli polynomials of level m are:
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B
[m−1]
0 (x) = m!,

B
[m−1]
1 (x) = m!

(

x− 1

m+ 1

)

,

B
[m−1]
2 (x) = m!

(

x2 − 2

m+ 1
x+

2

(m+ 1)2(m+ 2)

)

,

B
[m−1]
3 (x) = m!

(

x3 − 3

m+ 1
x2 +

6

(m+ 1)2(m+ 2)
x+

6(m− 1)

(m+ 1)3(m+ 2)(m+ 3)

)

.

The following proposition summarizes some properties of the generalized Bernoulli poly-
nomials of level m (cf. [11, 14]).

Proposition 2.1. For a fixed m ∈ N, let
{

B
[m−1]
n (x)

}

n≥0
be the sequence of generalized

Bernoulli polynomials of level m. Then the following statements hold:

a) Summation formula. For every n ≥ 0,

B[m−1]
n (x) =

n
∑

k=0

(

n

k

)

B
[m−1]
k xn−k.(2.2)

b) Differential relations (Appell polynomial sequences). For n, j ≥ 0 with 0 ≤ j ≤ n,
we have

(2.3) [B[m−1]
n (x)](j) =

n!

(n− j)!
B

[m−1]
n−j (x).

c) Inversion formula. [14, Equation (2.6)] For every n ≥ 0,

(2.4) xn =

n
∑

k=0

(

n

k

)

k!

(m+ k)!
B

[m−1]
n−k (x).

d) Recurrence relation. [14, Lemma 3.2] For every n ≥ 1,

B[m−1]
n (x) =

(

x− 1

m+ 1

)

B
[m−1]
n−1 (x)− 1

n(m− 1)!

n−2
∑

k=0

(

n

k

)

B
[m−1]
n−k B

[m−1]
k (x).

e) Integral formulas.
∫ x1

x0

B[m−1]
n (x)dx =

1

n+ 1

[

B
[m−1]
n+1 (x1)−B

[m−1]
n+1 (x0)

]

(2.5)

=

n
∑

k=0

1

n− k + 1

(

n

k

)

B
[m−1]
k ((x1)

n−k+1 − (x0)
n−k+1).
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B[m−1]
n (x) = n

∫ x

0

B
[m−1]
n−1 (t)dt+B[m−1]

n .(2.6)

f) [14, Theorem 3.1] Differential equation. For every n ≥ 1, the polynomial B
[m−1]
n (x)

satisfies the following differential equation

B
[m−1]
n

n!
y(n)+

B
[m−1]
n−1

(n− 1)!
y(n−1)+ · · ·+ B

[m−1]
2

2!
y′′+(m−1)!

(

1

m+ 1
− x

)

y′+n(m−1)!y = 0.

In what follows, we denote by Pn the linear space of polynomials with real coefficients
and degree less than or equal to n. Notice that the inversion formula (2.4) immediately
implies that

Proposition 2.2. For a fixedm ∈ N and each n ≥ 0, the set
{

B
[m−1]
0 (x), B

[m−1]
1 (x), . . . , B

[m−1]
n (x)

}

is a basis for Pn, i.e.,

Pn = B
[m−1]
n = span

{

B
[m−1]
0 (x), B

[m−1]
1 (x), . . . , B[m−1]

n (x)
}

.

From the summation formula (2.2) we can obtain the following matrix form ofB
[m−1]
r (x),

r = 0, 1, . . . , n.

B[m−1]
r (x) =

r
∑

k=0

(

r

k

)

B
[m−1]
k xr−k

=

(

r

r

)

B[m−1]
r +

(

r

r − 1

)

B
[m−1]
r−1 x+ · · ·+

(

r

0

)

B
[m−1]
0 xr

=
(

(

r
r

)

B
[m−1]
r

(

r
r−1

)

B
[m−1]
r−1 · · ·

(

r
0

)

B
[m−1]
0 0 · · · 0

)



















1
x
...
xr

...
xn



















= M[m−1]
r T(x),

where

(2.7) M[m−1]
r =

(

(

r
r

)

B
[m−1]
r

(

r
r−1

)

B
[m−1]
r−1 · · ·

(

r
0

)

B
[m−1]
0 0 · · · 0

)

,

the null entries of the matrixM
[m−1]
r appear (n−r)-times andT(x) =

(

1 x · · · xr · · · xn
)T

.
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Analogously, by (2.7) the matrixB[m−1](x) =
(

B
[m−1]
0 (x) B

[m−1]
1 (x) · · · B

[m−1]
n (x)

)T

,

can be expressed as follows:

B[m−1](x) = M[m−1]T(x)

=





















B
[m−1]
0 0 0 0 · · · 0

(

1
1

)

B
[m−1]
1

(

1
0

)

B
[m−1]
0 0 0 · · · 0

(

2
2

)

B
[m−1]
2

(

2
1

)

B
[m−1]
1

(

2
0

)

B
[m−1]
0 0 · · · 0

(

3
3

)

B
[m−1]
3

(

3
2

)

B
[m−1]
2

(

3
1

)

B
[m−1]
1

(

3
0

)

B
[m−1]
0 · · · 0

...
...

...
...

. . .
...

(

n
n

)

B
[m−1]
n

(

n
n−1

)

B
[m−1]
n−1

(

n
n−2

)

B
[m−1]
n−2

(

n
n−3

)

B
[m−1]
n−3 · · ·

(

n
0

)

B
[m−1]
0





















T(x).(2.8)

Notice that according to (2.7) the rows of the matrix M[m−1] are precisely the matrices

M
[m−1]
r for r = 0, . . . , n. Furthermore, the matrix M[m−1] is a lower triangular matrix, so

that

det
(

M[m−1]
)

=
(

B
[m−1]
0

)n+1
n
∏

k=1

(

k

0

)

=
(

B
[m−1]
0

)n+1

= (m!)n+1.

Therefore, M[m−1] is an invertible matrix.

Let W[m−1] be the inverse matrix of M[m−1]. For any P (x) ∈ Pn there exist 0 ≤ s ≤ n

such that deg(P (x)) = s, and a unique (C0, . . . , Cs) ∈ R
s+1 \ {0} such that

(2.9) P (x) =
s
∑

k=0

Ckx
k = CT(x),

where C is the matrix given by

C =
(

C0 C1 · · · Cs 0 · · · 0
)

,

and the null entries of the matrix C appear (n−s)-times. According to (2.8) the expression
(2.9) becomes

(2.10) P (x) = CW[m−1]B[m−1](x).

Using the inversion formula (2.4) it is possible to find an explicit expression for the
matrix W[m−1]. In order to do this, we rewrite (2.4) in matrix form as follows:
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T(x) = Q[m−1]B[m−1](x)

=





















1
m!

0 0 0 · · · 0
1

(m+1)!
1
m!

0 0 · · · 0
2!

(m+2)!
2!

(m+1)!
1
m!

0 · · · 0
3!

(m+3)!
3!

(m+2)!
3

(m+1)!
1
m!

· · · 0
...

...
...

...
. . .

...
n!

(m+n)!
n!

(m+n−1)!
n!

2!(m+n−2)!
n!

3!(m+n−3)!
· · · 1

m!





















B[m−1](x).(2.11)

Since the matrix Q[m−1] is a lower triangular matrix, we have

det
(

Q[m−1]
)

=

(

1

m!

)n+1

.

Therefore, Q[m−1] is an invertible matrix. Finally,

W[m−1]B[m−1](x) = T(x) = Q[m−1]B[m−1](x),

and consequently,
(

M[m−1]
)−1

= W[m−1] = Q[m−1].

It is well known that using the Euler-Maclaurin summation formula (cf. [2, 13, 18], and
[15, Chap. 2, Sec. 3, p. 30]) it is possible to deduce the following formula for the integral
of the product of two classical Bernoulli polynomials

(2.12)

∫ 1

0

Bs(t)Br(t)dt = (−1)s+1 s!r!

(s+ r)!
Bs+r, r, s ≥ 1.

We are interested in a similar formula for the integral of the product of two generalized
Bernoulli polynomials of level m. In order to establish a formula like (2.12), we will deduce
a summation formula of Euler-Maclaurin type based on generalized Bernoulli polynomials
of level m.

For an integer s ≥ 0 and a closed interval [a, b], let Cs[a, b] denote the set of all s-times
continuously differentiable functions defined on [a, b]. The integration by parts formula
asserts that the following result holds.

Lemma 2.1. Let s ≥ 1 and f ∈ Cs[0, 1]. For a fixed m ∈ N, we have

(2.13)

∫ 1

0

f(t)dt =
1

m!

[

s
∑

k=1

A
[m−1]
k (f) +

(−1)s

s!

∫ 1

0

f (s)(t)B[m−1]
s (t)dt

]

,
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where

A
[m−1]
k (f) =

(−1)k

k!

(

f (k−1)(0)B
[m−1]
k − f (k−1)(1)B

[m−1]
k (1)

)

, k = 1, . . . , s.

Proof. Since the integral on the left-hand side of (2.13) can be expressed as
∫ 1

0

f(t)dt =
1

m!

∫ 1

0

f(t)B
[m−1]
0 (t)dt,

it suffices to apply repeated integration by parts on the right-hand side of the equation
above, using a suitable form of (2.3) in each step.

Applying the substitution f(t) = B
[m−1]
s+r (t) into (2.13) and taking into account (2.3),

(2.6) and some straightforward calculations, we can show that

(2.14)
∫ 1

0

B[m−1]
s (t)B[m−1]

r (t)dt =
(−1)s+1s!r!m!

(s+ r)!

[

B
[m−1]
s+r+1 − B

[m−1]
s+r+1(1)

s + r + 1
+

1

m!

s
∑

k=1

A
[m−1]
k

]

, r, s ≥ 1,

where

A
[m−1]
k =

(−1)k

k

(

r + s

k − 1

)

(

B
[m−1]
s+r−k+1B

[m−1]
k − B

[m−1]
s+r−k+1(1)B

[m−1]
k (1)

)

, k = 1, . . . , s.

The expression (2.14) is our desired analogue of (2.12) in the setting of the generalized
Bernoulli polynomials of level m.

3. The best projection of elements in L2[0, 1] onto the subspace B
[m−1]
N

Let L2[0, 1] be the space of the square-integrable functions on [0, 1], endowed with the
norm

‖f‖2 :=
(
∫ 1

0

|f(t)|2dt
)1/2

= 〈f, f〉1/2,

where

〈f, g〉 :=
∫ 1

0

f(t)g(t)dt, for every f, g ∈ L2[0, 1].

Let us consider N ≥ 0. Since L2[0, 1] is a uniformly convex Banach space and B
[m−1]
N is

a closed convex set in L2[0, 1], for f ∈ L2[0, 1] there exists a unique ξN(f) ∈ B
[m−1]
N such

that (see e.g., [6, Chap. 1, Sec. 6, p. 22]).

(3.15) inf
{

‖f − p‖2 : p ∈ B
[m−1]
N

}

= ‖f − ξN(f)‖2.
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The element ξN(f) ∈ B
[m−1]
N is called the best projection of f ontoB

[m−1]
N . Furthermore,

if we define g := f − ξN(f), then for every p(x) ∈ B
[m−1]
N \ {0} we have

∥

∥

∥

∥

g − 〈g, p〉
‖p‖22

p

∥

∥

∥

∥

2

= ‖g‖22 −
〈g, p〉2
‖p‖22

≤ ‖g‖22.

Thus, taking q = ξN(f) +
〈g,p〉

‖p‖22
p ∈ B

[m−1]
N we see that

‖f − q‖2 ≤ ‖f − ξN(f)‖2 .

But, as a consequence of (3.15) we obtain that necessarily 〈g, p〉 = 〈f − ξN(f), p〉 = 0.
More precisely,

〈f − ξN(f), p〉 = 0, for every p ∈ B
[m−1]
N ,

or equivalently,

(3.16)
〈

f − ξN(f), B
[m−1]
r (x)

〉

= 0, for every r = 0, . . . , N.

Since ξN(f) ∈ B
[m−1]
N , there exists (a0, a1, . . . , aN) ∈ R

N+1 such that

(3.17) ξN(f)(x) =

N
∑

k=0

akB
[m−1]
k (x) = AB[m−1](x),

where A is the matrix given by

A =
(

a0 a1 · · · aN
)

.

Thus,

(3.18) ξN(f)(x)
(

B[m−1](x)
)T

= A
[

B[m−1](x)
(

B[m−1](x)
)T
]

,

then

(3.19)

∫ 1

0

ξN(f)(x)
(

B[m−1](x)
)T

dx = A

∫ 1

0

[

B[m−1](x)
(

B[m−1](x)
)T
]

dx,

where the matrix
∫ 1

0
ξN(f)(x)

(

B[m−1](x)
)T

dx is an 1× (N +1) matrix with entries given
by
∫ 1

0

ξN(f)(x)
(

B[m−1](x)
)T

dx =
(

∫ 1

0
ξN(f)(x)B

[m−1]
0 (x)dx · · ·

∫ 1

0
ξN(f)(x)B

[m−1]
N (x)dx

)

,
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and the matrix
∫ 1

0

[

B[m−1](x)
(

B[m−1](x)
)T
]

dx is an (N+1)×(N+1) matrix with entries

given by

d[m−1]
s,r =

∫ 1

0

B[m−1]
s (x)B[m−1]

r (x)dx, 0 ≤ s, r ≤ N.

Therefore, the entries of the matrix A on the right-hand side of (3.19) can be obtained
by means of the following expression

(3.20) A =

[
∫ 1

0

ξN(f)(x)B
T (x)dx

] [
∫ 1

0

[

B[m−1](x)
(

B[m−1](x)
)T
]

dx

]−1

,

provided that the matrix
∫ 1

0

[

B[m−1](x)
(

B[m−1](x)
)T
]

dx is an invertible matrix.

Remark 3.1 Notice that

(a) The matrix
∫ 1

0

[

B[m−1](x)
(

B[m−1](x)
)T
]

dx is symmetric and its entries can be

obtained by (2.14).
(b) If m = 1, by (2.12) and the properties of the classical Bernoulli numbers it is

possible to check that the matrix
∫ 1

0

[

B[0](x)
(

B[0](x)
)T
]

dx is invertible (cf. [16]).

Now, we denote by

(3.21) R[m−1] =

∫ 1

0

[

B[m−1](x)
(

B[m−1](x)
)T
]

dx.

Since R[m−1] is a real symmetric matrix, the Principal Axis Theorem guarantees that
R[m−1] can be written as

R[m−1] = O[m−1]Λ[m−1]
(

O[m−1]
)T

,

where the matrixO[m−1] is orthogonal and the matrix Λ[m−1] = diag(λ
[m−1]
0 , λ

[m−1]
1 , . . . , λ

[m−1]
N ),

with λ
[m−1]
r ∈ R an eigenvalue of R[m−1], for r = 0, . . . , N .

Thus,

det
(

R[m−1]
)

=

N
∏

r=0

λ[m−1]
r .

Hence, for determining the nonsingularity of the matrix R[m−1] it suffices to see that

λ
[m−1]
r 6= 0 for all r = 0, . . . , N . To the best of our knowledge, this property is not

available in the literature, not even for the case m = 1 (cf. [16]), and to find eigenvalues
of the matrix R[m−1] for a fixed m ∈ N, and show that these eigenvalues are different
from zero can be a tedious and cumbersome task, except possibly for N = 1 or N = 2.
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A similar situation occurs when criteria involving diagonal dominance are imposed (cf.,
e.g., [12]). However, one simple way to explore the non-singularity of the matrix R[m−1]

is to carry out numerical simulations (with the help of MAPLE, for instance).

Example 3.1. For m = 2 and N = 9, we have that

R[1] ≃





















4 0.666 0.222 0.044 −0.014 −0.017 −0.0007 0.011 0.007 −0.009
0.666 0.044 0.148 0.029 −0.009 −0.011 −0.0004 0.007 0.004 −0.006
0.222 0.148 0.148 0.020 −0.002 −0.006 −0.001 0.003 0.003 −0.001
0.044 0.029 0.020 0.008 0.0008 −0.002 −0.001 0.0007 0.001 0.0001
−0.014 −0.009 −0.002 0.0008 0.0009 0.0002 −0.0003 −0.0003 0.0001 0.0005
−0.017 −0.011 −0.006 −0.002 0.0002 0.0007 0.0002 −0.0003 −0.0004 0.0001
−0.0007 −0.0004 −0.001 −0.001 −0.0003 0.0002 0.0003 −0.159× 10−5 −0.0002 −0.0001

0.011 0.007 0.003 0.0007 −0.0003 −0.0003 −0.159× 10−5 0.0002 0.0001 −0.0002
0.007 0.004 0.003 0.001 0.0001 −0.0004 −0.0002 0.0001 0.0003 0.00004
−0.009 −0.006 −0.001 0.0001 0.0005 0.0001 −0.0001 −0.0002 0.00004 0.0002





















,

det
(

R[1]
)

≃ 0.136427477242195 × 10−42, and the eigenvalues of the matrix R[1] are the
following

Eigenvalues of R[1] ≃





















4.136818498
0.3733056185
0.08678164218
0.006714935295
0.0008408259139
0.00003826222613
0.00000246716679
0.000000050804729
0.000000002135169
0.000000000017607





















.

Example 3.2. For m = 5 and N = 8, we have

R[4] ≃

















14400 4800 2514.285 1400 771.156 394.104 167.438 39.256 −21.283
4800 2800 1638.095 975.238 563.718 300.302 133.817 35.360 −13.727
2514.285 1638.095 1052.335 663.492 400.043 221.117 102.780 29.905 −8.209
1400 975.238 663.492 436.791 272.751 155.716 75.165 23.712 −4.382
771.156 563.718 400.043 272.751 175.577 103.219 51.586 17.467 −1.920
394.104 300.302 221.117 155.716 103.219 62.468 32.323 11.707 −0.486
167.438 133.817 102.780 75.165 51.586 32.323 17.428 6.805 0.215
39.256 35.360 29.905 23.712 17.467 11.707 6.805 3.003 0.427
−21.283 −13.727 −8.209 −4.382 −1.920 −0.486 0.215 0.427 0.349

















,

det
(

R[4]
)

≃ 0.267549566246871 × 10−4, and the eigenvalues of the matrix R[4] are the
following.

Eigenvalues of R[4] ≃

















16940.98768
1844.198384
150.3436662
11.51349907
0.8573769742

0.05105520057
0.001725633103

0.00002963569967
0.0000002209988277

















.
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Notice that in the two previous examples R[m−1] is close to a singular matrix and
therefore it could be ill conditioned. This fact has a negative impact on the numerical
simulations that involve that matrix.

4. Operational matrices of differentiation, integration and product

In this section, we are going to provide operational matrices of differentiation, integra-
tion and product in the setting of the generalized Bernoulli polynomials of level m. The
outlines of the method are the same as that in [16]. The technical details, however, are
much more demanding than in the Bernoulli case.

Definition 4.1. For a fixed m ∈ N and N ≥ 0, let us consider the matrix

B[m−1](x) =
(

B
[m−1]
0 (x) B

[m−1]
1 (x) · · · B

[m−1]
N (x)

)T

.

We say that the matrices D[m−1] and I [m−1] are the operational matrices of differentiation
and integration, respectively, if and only if

(4.22)
d

dx
B[m−1](x) = D[m−1]B[m−1](x),

(4.23)

∫ x

0

B[m−1](t) dt ≃ I [m−1] B[m−1](x),

where
d

dx
B[m−1](x) :=

(

d
dx
B

[m−1]
0 (x) d

dx
B

[m−1]
1 (x) · · · d

dx
B

[m−1]
N (x)

)T

,

and

∫ x

0

B[m−1](t) dt :=
(

∫ x

0
B

[m−1]
0 (t)dt

∫ x

0
B

[m−1]
1 (t)dt · · ·

∫ x

0
B

[m−1]
N (t)dt

)T

.

Definition 4.2. For a fixed m ∈ N and N ≥ 0, let us consider the matrix

B[m−1](x) =
(

B
[m−1]
0 (x) B

[m−1]
1 (x) · · · B

[m−1]
N (x)

)T

.

Suppose that C ∈ R
(N+1)×1 is an arbitrary vector. We say that the matrix C[m−1] is the

operational matrix of the product for the vector C, if and only if

(4.24) B[m−1](x)
(

B[m−1](x)
)T

C ≃ C[m−1] B[m−1](x).



12 Y. QUINTANA, W. RAMÍREZ, AND A. URIELES

Theorem 4.1. For any m ∈ N and N ≥ 0, let D[m−1] and I [m−1] be the operational
matrices of differentiation and integration, respectively. Then, the entries of D[m−1] are
given by

(4.25) D[m−1]
i,j =

{

i, i = j + 1,
0, otherwise,

with 0 ≤ i, j ≤ N .

While the operational matrix I [m−1] is given by

(4.26) I [m−1] = U[m−1]Q[m−1],

where Q[m−1] is the lower triangular matrix (2.11) and U[m−1] is the matrix whose rows
are given by

U [m−1]
s =

(

0 1
s

(

s
s−1

)

B
[m−1]
s−1

1
s

(

s
s−2

)

B
[m−1]
s−2 · · · 1

s
B

[m−1]
0 0 · · · 0

)

, s = 1, . . . , N,

U
[m−1]
N+1 =

(

β
[m−1]
0 β

[m−1]
1 · · · β

[m−1]
N

)

M[m−1],

being β
[m−1]
j the coefficients of the best projection of

B
[m−1]
N+1 (x)−B

[m−1]
N+1

N+1
onto B

[m−1]
N , j =

0, . . . , N , and M[m−1] the lower triangular matrix (2.7).

Proof. For the sake of clarity and readability, we have decided to include the details of
the proof of this theorem. However, one can check that it suffices to follow the reasoning
in [16, Subsections 4.1 and 4.2], making the appropriate modifications.

By (2.3) with j = 1, we have

d

dx
B[m−1](x) =

(

d
dx
B

[m−1]
0 (x) d

dx
B

[m−1]
1 (x) · · · d

dx
B

[m−1]
N (x)

)T

=
(

0 B
[m−1]
0 (x) 2B

[m−1]
1 (x) · · · NB

[m−1]
N−1 (x)

)T

=

















0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
0 3 · · · 0 0
...

...
...

. . .
...

...
0 2 0 · · · N 0

















B[m−1](x).(4.27)

It is clear that the matrix on the right-hand side of (4.27) satisfies (4.22) and consequently,
it also satisfies (4.25).
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From (2.6) we can deduce that

∫ x

0

B[m−1](t) dt =
(

∫ x

0
B

[m−1]
0 (t)dt

∫ x

0
B

[m−1]
1 (t)dt · · ·

∫ x

0
B

[m−1]
N (t)dt

)T

=
(

B
[m−1]
1 (x)−B

[m−1]
1

B
[m−1]
2 (x)−B

[m−1]
2

2
· · · B

[m−1]
N+1 (x)−B

[m−1]
N+1

N+1

)T

.

On the one hand, using the summation formula (2.2) for each s = 1, . . . , N , we get

B
[m−1]
s (x)−B

[m−1]
s

s
=

1

s

s
∑

k=0

(

s

k

)

B
[m−1]
k xs−k − 1

s
B[m−1]

s

=
1

s

(

s

s− 1

)

B
[m−1]
s−1 x+

1

s

(

s

s− 2

)

B
[m−1]
s−2 x2 + · · ·+ 1

s
B

[m−1]
0 xs

=
(

0 1
s

(

s
s−1

)

B
[m−1]
s−1

1
s

(

s
s−2

)

B
[m−1]
s−2 · · · 1

s
B

[m−1]
0 0 · · · 0

)

T(x)

= U [m−1]
s T(x),(4.28)

where the last null entries of the matrix U
[m−1]
s appear (N − s)-times, and

T(x) =
(

1 x x2 · · · xN
)T

.

On the other hand, by taking the best projection of
B

[m−1]
N+1 (x)−B

[m−1]
N+1

N+1
onto B

[m−1]
N , we

obtain that there exists a unique
(

β
[m−1]
0 , . . . , β

[m−1]
N

)

∈ R
N+1 such that

B
[m−1]
N+1 (x)− B

[m−1]
N+1

N + 1
≃

N
∑

k=0

β
[m−1]
k B

[m−1]
k (x)

=
(

β
[m−1]
0 β

[m−1]
1 · · · β

[m−1]
N

)

B[m−1](x)

= H [m−1]B[m−1](x).(4.29)

Then in view of (2.11), (4.28) and (4.29), we see that
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∫ x

0

B[m−1](t) dt ≃















U
[m−1]
1 Q[m−1]B[m−1](x)

U
[m−1]
2 Q[m−1]B[m−1](x)

...

U
[m−1]
N Q[m−1]B[m−1](x)

H [m−1]M[m−1]Q[m−1]B[m−1](x)















=















U
[m−1]
1

U
[m−1]
2
...

U
[m−1]
N

H [m−1]M[m−1]















Q[m−1]B[m−1](x)

= U[m−1]Q[m−1]B[m−1](x),(4.30)

where U[m−1] is the matrix given by

U[m−1] =
(

U
[m−1]
1 U

[m−1]
2 · · · U

[m−1]
N H [m−1]M[m−1]

)T

.

Finally, from (4.30) we obtain (4.27).

Our next goal is to obtain an explicit formula for the operational matrix of the product
(4.24).

Theorem 4.2. For a fixed m ∈ N, N ≥ 0 and C ∈ R
(N+1)×1, let C[m−1] be the operational

matrix of the product for the vector C. Then C[m−1] is given by

(4.31) C[m−1] = M[m−1]N[m−1],

where N[m−1] is the (N + 1)× (N + 1) matrix whose rows are given by

N [m−1]
s =

(

η
[m−1]
s,0 η

[m−1]
s,1 η

[m−1]
s,2 · · · η

[m−1]
s,N

)

, s = 0, . . . , N,

being η
[m−1]
s,r the coefficients of the best projection of the s-th row of T(x)TT (x)

(

M[m−1]
)T

C

onto B
[m−1]
N , 0 ≤ r ≤ N , and M[m−1] the lower triangular matrix (2.7).

Remark 4.1 This theorem is virtually a reflex of [10, Subsection 2.3]. Although our
approach is slightly different in this paper, the argument given here is based on the
one appearing in [10, Subsection 2.3] and it uses again the best projection of elements

in L2[0, 1] onto the subspace B
[m−1]
N . Next, the details of the proof are provided for

the readers convenience. However, we would like to emphasize that the formula for the
operational matrix of the product obtained now is completely different from the results
given in [16, Subsection 4.3].
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Proof. Let C =
(

C0 C1 · · · CN

)T ∈ R
(N+1)×1; from (2.7) we see that

(4.32) B[m−1](x)
(

B[m−1](x)
)T

C = M[m−1]T(x) (T(x))T
(

M[m−1]
)T

C.

Then, the factor T(x) (T(x))T
(

M[m−1]
)T

C on the right-hand side of (4.32) has the fol-
lowing form

(4.33) T(x) (T(x))T
(

M[m−1]
)T

C =























∑N
j=0 α

[m−1]
j (C)xj

∑N+1
j=1 α

[m−1]
j−1 (C)xj

...

∑2N
j=N α

[m−1]
j−N (C)xj























,

where α
[m−1]
j (C) are determined by

α
[m−1]
j (C) =

N
∑

k=j

(

k

k − j

)

CkB
[m−1]
k−j , j = 0, . . . , N.

The rows of the matrix on the right-hand side of (4.33) are polynomials with degrees
varying from N to 2N . Therefore, for each row we can consider its corresponding best

projection onto B
[m−1]
N , i.e.,

(4.34)
2N
∑

j=s

α
[m−1]
j−s (C)xj ≃

N
∑

r=0

η[m−1]
s,r B[m−1]

r (x) =
(

η
[m−1]
s,0 η

[m−1]
s,1 · · · η

[m−1]
s,N

)

B[m−1](x),

where s = 0, . . . , N .

Substituting (4.34) into (4.33) yields

T(x) (T(x))T
(

M[m−1]
)T

C ≃













η
[m−1]
0,0 η

[m−1]
0,1 · · · η

[m−1]
0,N

η
[m−1]
1,0 η

[m−1]
1,1 · · · η

[m−1]
1,N

...
... · · · ...

η
[m−1]
N,0 η

[m−1]
N,1 · · · η

[m−1]
N,N













B[m−1](x),
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or equivalently,

B[m−1](x)
(

B[m−1](x)
)T

C ≃ M[m−1]













η
[m−1]
0,0 η

[m−1]
0,1 · · · η

[m−1]
0,N

η
[m−1]
1,0 η

[m−1]
1,1 · · · η

[m−1]
1,N

...
... · · · ...

η
[m−1]
N,0 η

[m−1]
N,1 · · · η

[m−1]
N,N













B[m−1](x)

Summarizing, we have shown that

C[m−1] = M[m−1]N[m−1],

with

N[m−1] =













η
[m−1]
0,0 η

[m−1]
0,1 · · · η

[m−1]
0,N

η
[m−1]
1,0 η

[m−1]
1,1 · · · η

[m−1]
1,N

...
... · · · ...

η
[m−1]
N,0 η

[m−1]
N,1 · · · η

[m−1]
N,N













,

then (4.31) follows.

5. Some examples

In this section, four numerical examples are examined to illustrate that the proposed
method can lead to very ill-conditioned matrix equations. All the numerical experiments
are performed using MAPLE 15. Also, we would like to point out that some of these
examples have previously been used in [16, Section 5].

Example 5.1. Consider the following Bessel differential equation of order 2.

(5.35) x
d2u(x)

dx2
+

du(x)

dx
+ xu(x) = 0,

with initial conditions

(5.36) u(0) = 1,
du(x)

dx

∣

∣

∣

∣

x=0

= 0.

The exact solution of this problem is

ues(x) =

∞
∑

n=0

(−1)n

4n(n!)2
x2n.

To solve this problem we propose the following steps:
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Step 1. Approximate d2u(x)
dx2 by the generalized Bernoulli polynomials of level m. This

step requires to choose specific values for m and N

(5.37)
d2u(x)

dx2
≃

N
∑

k=0

AkB
[m−1]
k (x) = ATB[m−1](x),

where A =
(

A0 A1 · · · AN

)T
is a vector with unknown components that will need to

be determined.

Step 2. Use the initial conditions (5.36) and the operational matrix of integration (4.23)

in order to obtain approximate expressions for du(x)
dx

and u(x).

From (5.36) we have
∫ x

0

d2u(t)

dt2
dt =

du(x)

dx
.

Hence, from (5.37) and (4.23) we have

(5.38)
du(x)

dx
≃
∫ x

0

ATB[m−1](t) dt = AT

∫ x

0

B[m−1](t) dt ≃ ATI [m−1] B[m−1](x).

Again, from (5.36) we have
∫ x

0

du(t)

dt
dt = u(x)− 1.

Hence, from (5.38) and (4.23) we get

u(x) =

∫ x

0

du(t)

dt
dt+ 1 ≃ ATI [m−1]

∫ x

0

B[m−1](t) dt+ V TB[m−1](x)

≃ AT
(

I [m−1]
)2

B[m−1](x) + V TB[m−1](x),(5.39)

where V =
(

1
m!

0 · · · 0
)T

.

Step 3. Transform the differential equation into a suitable matrix equation.

The substitution of (5.38) and (5.39) into (5.35) yields

xATB[m−1](x) + ATI [m−1] B[m−1](x) + x
(

AT
(

I [m−1]
)2

B[m−1](x) + V TB[m−1](x)
)

= 0,

and this last equation can be rewritten as

0 = ET
B

[m−1](x)AT
B

[m−1](x) +ATI [m−1]
B

[m−1](x)

+ET
B

[m−1](x)AT
(

I [m−1]
)2

B
[m−1](x) + ET

B
[m−1](x)V T

B
[m−1](x),

where E =
(

1
(m+1)!

1
m!

0 · · · 0
)T

, or equivalently,



18 Y. QUINTANA, W. RAMÍREZ, AND A. URIELES

0 = ET
B

[m−1](x)
(

B
[m−1](x)

)T
A+ATI [m−1]

B
[m−1](x)(5.40)

+ET
B

[m−1](x)
(

B
[m−1](x)

)T
[

(

I [m−1]
)2
]T

A+ ET
B

[m−1](x)
(

B
[m−1](x)

)T
V.

Step 4. Use the operational matrix of the product.

From (4.24) the operational matrices of the product for the vectors A, G =
[

(

I [m−1]
)2
]T

A,

and V are given by

B[m−1](x)
(

B[m−1](x)
)T

A ≃ A[m−1]B[m−1](x),(5.41)

B[m−1](x)
(

B[m−1](x)
)T

G ≃ G[m−1]B[m−1](x),(5.42)

B[m−1](x)
(

B[m−1](x)
)T

V ≃ V [m−1]B[m−1](x).(5.43)

Hence, the substitution of (5.41)-(5.43) into (5.40) yields

(5.44)
(

ETA[m−1] + ATI [m−1] + ETG[m−1] + ETV [m−1]
)

B[m−1](x) = 0

Step 5. Go back to the Galerkin method.

Now, we proceed as in the Galerkin method [8]: multiplying (5.44) by
(

B[m−1](x)
)T

and
integrating on the interval [0, 1], we obtain

0 =

∫ 1

0

(

ETA[m−1] + ATI [m−1] + ETG[m−1] + ETV [m−1]
)

B[m−1](x)
(

B[m−1](x)
)T

dx

=
(

ETA[m−1] + ATI [m−1] + ETG[m−1] + ETV [m−1]
)

∫ 1

0

B[m−1](x)
(

B[m−1](x)
)T

dx

=
(

ETA[m−1] + ATI [m−1] + ETG[m−1] + ETV [m−1]
)

R[m−1],(5.45)

where R[m−1] is the matrix given in (3.21).

Step 6. Determine the unknown components of the vector A and calculate the approxi-
mate solution uas(x).

Since R[m−1] is a nonsingular matrix (at least the numerical experimentation verifies
this fact), we deduce from (5.45) that

(5.46) ETA[m−1] + ATI [m−1] + ETG[m−1] + ETV [m−1] = 0,
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and this last matrix equation generates a linear system of N+1 equations where, of course,
the N + 1 components of vector A are the unknowns. Consequently, solving the system
generated by (5.46) and using (5.39) the approximate solution uas(x) can be calculated.

Following the previous six steps with m = 1 and N = 10, we get

A =























A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10























≃























−0.4398
0.1771
0.1786

9.7191 × 10−3

5.5216 × 10−2

6.892 × 10−2

5.5349 × 10−2

4.7603 × 10−2

3.2582 × 10−2

1.3713 × 10−2

8.8693 × 10−3























.

Finally, using (5.39) we obtain the approximate solution of (5.35):

(5.47) uas(x) = AT
(

I [0]
)2

B[0](x) + V TB[0](x) = BT









1
x
...

x10









,

where

B =























B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10























≃























1
1.0387× 10−4

−0.25
−4.4402 × 10−5

1.778 × 10−2

3.6898× 10−3

−2.1682 × 10−3

1.3656× 10−3

4.9502× 10−4

−1.6387 × 10−3

4.5268× 10−5























.

While for m = 2 and N = 10, we have
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Ã =

























Ã0

Ã1

Ã2

Ã3

Ã4

Ã5

Ã6

Ã7

Ã8

Ã9

Ã10

























≃























−1.1535
−4.9657
−10.5765
−12.5315
−17.1534
16.8326
−65.1876
128.704
−141.573
81.7372
−44.8865























,

and the approximate solution of (5.35) is given by

(5.48) uas(x) = ÃT
(

I [1]
)2

B[1](x) + V TB[1](x) = B̃T









1
x
...

x10









,

where

B̃ =

























B̃0

B̃1

B̃2

B̃3

B̃4

B̃5

B̃6

B̃7

B̃8

B̃9

B̃10

























≃























0.9996
4.1595× 10−2

−0.1919
−0.7265
−0.9144
1.1818
1.3515
7.6945

−17.2239
13.1319
−3.2978























.

Figure 1 shows the plots for the absolute error between the exact solution of the problem
(5.35) and the approximate solutions (5.47) and (5.48), respectively.
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Figure 1. Graphs of the absolute error between the exact solution of
the problem (5.35) and the approximate solutions (5.47) (left) and (5.48)
(right), respectively.

Example 5.2. Consider the following Lane-Emden type equation

(5.49) x
d2u(x)

dx2
+ 8

du(x)

dx
+ x2u(x) = x6 − x5 + 44x3 − 30x2,

with initial conditions

(5.50) u(0) = 0,
du(x)

dx

∣

∣

∣

∣

x=0

= 0.

The exact solution of this problem is

ues(x) = x4 − x3.

In order to solve this example, we take m = 5, N = 6 and follow the six steps as in
Example 5.1. Making the suitable modifications, from the steps 1 − 3 we obtain that
(5.49) can be transformed into the following equation

(5.51) xATB[4](x) + 8ATI [4] B[4](x) + x2AT
(

I [4]
)2

B[4](x) = x6 − x5 + 44x3 − 30x2,

where A =
(

A0 A1 · · · A6

)T
is a vector with unknown components.
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Also, the polynomials x, x2, and x6 − x5 + 44x3 − 30x2 can be expressed in terms of
B[4](x) as follows:

x = ET
1 B[4](x),

x2 = ET
2 B[4](x),

x6 − x5 + 44x3 − 30x2 = ET
3 B[4](x),

where

E1 =

(

1

720
,

1

120
, 0, 0, 0, 0, 0

)T

,

E2 =

(

1

2520
,

1

360
,

1

120
, 0, 0, 0, 0

)T

,

E3 =

(

− 1787

332640
,− 47

1512
,− 677

10080
,
1843

5040
,− 1

1008
, 0,

1

120

)T

.

The substitution of ET
j B[4](x) (j = 1, 2, 3) into (5.51) yields

ET
1 B

[4](x)
(

B
[4](x)

)T
A+8AT I [4]

B
[4](x)+ET

2 B
[4](x)

(

B
[4](x)

)T
[

(

I [4]
)2
]T

A−ET
3 B

[4](x) = 0.

Next, the steps 4 − 6 allow us to determine the unknown components of the vector
A and calculate the approximate solution uas(x). Summarizing, it suffices to solve the
linear system associated to the following matrix equation

(5.52) ET
1 A[4] + 8ATI [4] + ET

2 G[4] − ET
3 = 0,

where A[4] and G[4] are the operational matrices of the product for the vectors A and

G =
[

(

I [4]
)2
]T

A, respectively.

So, computing the solution of the linear system associated to (5.52) with the aid of
MAPLE we get

A =













A0

A1

A2

A3

A4

A5

A6













≃













−3.6439× 10−3

−1.3536× 10−2

0.1134
−6.4221× 10−2

0.1438
−0.1705

0.1569













.

And consequently,

uas(x) = AT
(

I [4]
)2

B[4](x) = B0 +B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 +B6x
6,



OPERATIONAL MATRIX METHOD BASED ON BERNOULLI POLYNOMIALS OF LEVEL m 23

where

B =













B0

B1

B2

B3

B4

B5

B6













≃













3.4049 × 10−4

5.1303 × 10−5

3.8604 × 10−2

−1.0199
1.4472
−0.8341
0.4925













.

If we take m = 5 and N = 4, then

uas(x) = ÃT
(

I [4]
)2

B[4](x) = B̃0 + B̃1x+ B̃2x
2 + B̃3x

3 + B̃4x
4,

with

Ã =







Ã0

Ã1

Ã2

Ã3

Ã4






≃







−3.9737× 10−3

−1.0028× 10−2

8.2594 × 10−2

3.9931 × 10−2

−7.8268× 10−2






, and B̃ =







B̃0

B̃1

B̃2

B̃3

B̃4






≃







6.1511 × 10−8

−4.8212× 10−4

−9.8039× 10−2

−0.7541
0.8288






.

Finally, if we take m = 1 and N = 4, then

uas(x) = ÂT
(

I [0]
)2

B[0](x) = B̂0 + B̂1x+ B̂2x
2 + B̂3x

3 + B̂4x
4,

with

Â =







Â0

Â1

Â2

Â3

Â4






≃







−0.8557
−2.5344
−2.3844

4.7599 × 10−3

−7.5712






, and B̂ =







B̂0

B̂1

B̂2

B̂3

B̂4






≃







8.3483× 10−18

3.7777× 10−5

1.3048× 10−2

−2.5133 × 10−2

1.161 × 10−2






.

Figure 2 shows the plots for the absolute error between the exact solution of the problem
(5.49) and two approximate solutions for different levels.
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Figure 2. Graphs of the absolute error between the exact solution of the
problem (5.49) and the approximate solutions for different levels withN = 4
(left: m = 5 and right: m = 1, respectively).

Example 5.3. Consider the following nonlinear Riccati equation

(5.53)
du(x)

dx
= 2u(x)− u2(x) + 1,

with initial condition

(5.54) u(0) = 0.

The exact solution of this problem is

ues(x) = 1 +
√
2 tanh

(

√
2x+

1

2
ln

(√
2− 1√
2 + 1

))

.

In order to solve this example, we take m = 1 N = 7 and follow the six steps as in

Example 5.1 with du(x)
dx

≃ ATB[0](x), where A =
(

A0 A1 · · · A9

)T
is a vector with

unknown components. So,

(5.55) u(x) ≃ ATI[0]B[0](x),

and we can deduce the following matrix equation:

(5.56) −AT + 2ATI [0] −ATI[0]G[0] + eT1 = 0,

where G[0] is the operational matrix of the product for the vector G =
(

I [0]
)T

A and

e1 =
(

1 0 · · · 0
)T

.
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The matrix equation (5.56) generates a nonlinear system of 8 equations. With the aid
of MAPLE, the solution of the nonlinear system associated to (5.56) is shown to be

A =















A0

A1

A2

A3

A4

A5

A6

A7















≃















1.6609
0.26018
−3.1014
−2.7939
−1.8719
−1.1758
−3.4717
−0.9226















.

Finally, by (5.55) the approximate solution uas(x) is given by

(5.57) uas(x) = BT























1
x

x2

x3

x4

x5

x6

x7























,

where

B =















B0

B1

B2

B3

B4

B5

B6

B7















≃















−3.0753 × 10−3

0.9936
1.0808
0.3178
−0.2193
−1.5223
1.7121
−0.4959















.

Figure 3 shows the plot for the absolute error between the exact solution of the problem
(5.53) and the approximate solution (5.57).
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Figure 3. Graph of the absolute error between the exact solution of the
problem (5.53) and the approximate solution (5.57).

Example 5.4. Consider the following initial value problem

du(x)

dx
=

{

x(1 + 2 ln |x|), if x 6= 0, x ∈ [0, 1],
0, if x = 0,

(5.58)

u(0) = 0.

This example obviously fulfills the assumptions of the existence and uniqueness theorem,
so there is exactly one solution. It can be easily checked that the exact solution is given
by

(5.59) ues(x) =

{

x2 ln |x|, if x 6= 0,
0, if x = 0.

This function is non analytic in any neighborhood of x = 0. In order to solve this example,

we approximate du(x)
dx

by the generalized Bernoulli polynomials of level m.

(5.60)
du(x)

dx
≃ ATB[m−1](x),

where A =
(

A0 A1 · · · AN

)T
is a vector with unknown components. So,

(5.61) u(x) =

∫ x

0

du(t)

dt
dt ≃ AT

∫ x

0

B[m−1](t)dt ≃ ATI [m−1]B[m−1](x).
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Hence, the differential equation (5.60) can be transformed into the following matrix
equation

ATB[m−1](x) =
(

ET − 2 ln |x|ET
)

B[m−1](x),

where E =
(

1
(m+1)!

1
m!

0 · · · 0
)T

. The previous equation can be rewritten as

(5.62)
(

AT −ET
)

B[m−1](x)− 2ET
(

C[m−1](x)
)

= 0,

where C[m−1](x) = ln |x|B[m−1](x). Now, we proceed as in the Galerkin method [8]: mul-

tiplying (5.62) by
(

B[m−1](x)
)T

and integrating on [0, 1], we obtain

0 =
(

AT − ET
)

∫ 1

0

B[m−1](x)
(

B[m−1](x)
)T

dx− 2ET

∫ 1

0

(

C[m−1](x)
) (

B[m−1](x)
)T

dx

=
(

AT − ET
)

R[m−1] − 2ET R̃[m−1],(5.63)

where R[m−1] is the matrix given in (3.21) and R̃[m−1] is the matrix given by

R̃[m−1] =

∫ 1

0

(

C[m−1](x)
) (

B[m−1](x)
)T

dx.

Since R[m−1] is a nonsingular matrix (at least the numerical simulation satisfies this prop-
erty), we deduce from (5.63) that

AT = 2ET R̃[m−1]
(

R[m−1]
)−1

+ ET .

For m = 1 and N = 10, we get the condition number of the matrix 2R̃[m−1]
(

R[m−1]
)−1

+
I is

κ∞

(

2R̃[m−1]
(

R[m−1]
)−1

+ I
)

= 1.254012426× 1011,

where I is the identity matrix, and the approximate solution of (5.58) is given by

uas(x) = BTB[m−1](x),
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with

B =



































B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10



































≃



































−20.7979163822070
−124.884720872938
−312.475202424591
−414.941535634544
−322.968758389248
−100.298624469552
−130.391215933618
75.1317393558092
−286.444942862447
29.7443777765990
−89.4231482966264



































.

6. Conclusion

A new operational matrix method based on generalized Bernoulli polynomials of level
m ∈ N has been presented in order to obtain numerical solutions of initial value prob-
lems. We show that equations systems associated to the new scheme are very similar to
those obtained from standard operational matrix methods. Unfortunately, the numerical
evidence suggests that this operational matrix method can lead to very ill-conditioned
matrix equations, even when m = 1, i.e., when the associated matrices are best handled
from a computational point of view.
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