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Abstract— This paper shows the design and simula-
tion results of a hybrid Doherty power amplifier. The 
amplifier has been designed at 2,4 GHz, obtaining pow-
er-added efficiency above 70 % for 6 dB output power 
back-off, together with a small signal gain of 17 dB. 
Design and analysis equations are presented consid-
ering class AB bias conditions for the main amplifier 
and class C for the peak one in back-off larger than 6 
dB, and FET device assumption. An additional control 
on the bias point of the peak device has been carried 
out, in order to increase the gain on the Doherty re-
gion and ease the design of the peak branch. A Cree’s 
GaN-HEMT CGH40010F device has been used with a 
nonlinear model guarantied up to 6 GHz and with an 
expected output power of 10 W. The obtained output 
power is higher than 25-W. The simulation has been 
carried out using Agilent ADS CAD tools. The present 
design could present the state of the art in terms of 
continuous-wave (CW) characterization.

Key Words-- Power Amplifier, High Efficiency, GaN De-
vices, Doherty, Microwave Circuits.

Resumen-- Este artículo muestra el diseño y los resulta-
dos de simulación de un amplificador de potencia Doherty 
sobre tecnología híbrida. El amplificador fue diseñado a 2,4 
GHz, obteniendo una eficiencia de potencia aditiva arriba 
del 70 % a 6-dB debajo de saturación, junto con una ganan-
cia a pequeña señal de 17 dB. Las ecuaciones de análisis 
y diseño son presentadas considerando polarización clase 
AB para el amplificador principal y clase C para el am-
plificador auxiliar a 6-dB debajo de saturación, y disposi-
tivos FET. Un control adicional sobre el punto de polar-
ización del dispositivo auxiliar se ha llevado a cabo, para 
incrementar la ganancia en la región Doherty y facilitar 
el diseño de la rama auxiliar. Un dispositivo GaN-HEMT 
CGH40010 de Cree ha sido usado con un modelo no-lineal 
garantizado hasta 6-GHz y con una potencia de salida es-
perada de 10-W. La potencia de salida obtenida es mayor a 
25-W. La simulación ha sido llevada a cabo usando Agilent 
ADS. El presente diseño representaría el estado del arte en 
términos de caracterización de onda continua (OC).

Palabras claves-- Amplificador de potencia, alta eficien-
cia, dispositivos GaN, Doherty, circuitos de microondas.
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I. IntroductIon

The modulated signals driving the power amplifier 
in a modern wireless communication system trans-
mitter are typically characterized by their high Peak-
to-Average Power Ratio -PAPR. An example of this 
is the Universal Mobile Telecommunications System 
–UMTS, a Wideband Code Division Multiple Access 
-WCDMA standard application with PAPR ranging 
from 3 dB to more than 10 dB [1].

In Fig. 1, a typical simplified block scheme of a 
transmitter in a wireless communication system is 
shown. The function of the Power Amplifier (PA) is to 
increase the power of the modulated signal in order 
to be transmitted by the antenna. A single stage PA 
has an efficiency that is maximized just in saturation 
[2], [3]. Accordingly, the PA exploits its maximum 
efficiency only when the modulated signal presents 
the maximum amplitude. But, most of the time, the 
PA works in a large region of output power back-off, 
leading to very poor average efficiency [4] even if the 
PA presents a very high efficiency in saturation. Fig. 
2 shows an example of typical distribution in power 
generation and efficiency as functions of output power 
in a single stage PA, for the sake of comparison.

Fig. 1.  Simplified block scheme of a transmitter in a 
wireless communication system. 

Source: Authors.

In order to increase the average efficiency, which 
means a lower transmission cost and avoiding energy 
loss, the Doherty Power Amplifier (DPA) [5] appears 
as one of the most common solutions [6] due to its sim-
plicity when compared to others. In fact, a DPA keeps 
a maximized efficiency in a large output back-off as 
shown in Fig. 3.

Fig. 2. Typical distribution in power generation and 
efficiency in a single stage PA vs. Pout output power. 

Source: Authors.

Fig. 3. Typical distribution in power 
generation and efficiency in a DPA.

Source: Authors.

This paper shows the design of a DPA with 6 
dB output back-off -OBO, using a GaN HEMT 
CGH40010 device (the same for main and peak am-
plifiers) with more than 20 W of output power. The 
second harmonic tuning -2nd HT method [3], has 
been performed at main and peak amplifiers in or-
der to increase the efficiency on the Doherty region, 
which ranges from OBO to saturation. Also, a con-
trol over the gate voltage (VGS,PEAK) of the peak 
device has been included. An RF35 substrate from 
Taconic Company has been used together with an 
ADS (Advanced Design System) as simulation tool. 
The second section of this paper presents a general 
explanation of the Doherty Power Amplifier concept; 
the third section shows the design strategy that has 
been carried out in this work. Finally, the results 
obtained and conclusions are presented in sections 
IV and V respectively.

II. doherty Power AmPlIfIer concePt

The general DPA scheme is shown in Fig. 4, in order 
to explain its behavior. In terms of efficiency, three 
power regimes are taken into account; these are: low 
power, Doherty and saturation regions.

Fig. 4. General scheme of a DPA.
 Source: Authors.
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At the low power region, the main amplifier is 
on, whereas the peak amplifier is totally off. In 
this way, no current is injected to the common load 
RL from the peak amplifier, which has an output 
reflection coefficient of S22=1, therefore, the load 
for the main RM, LP is given by the transformation 
of the common load through the Z0 impedance in-
verter –90 degrees transmission line in Fig. 4; this 
means 

   
L

LPM R
Z

R
2
0

, =   (1)

The value given by (1) for the characteristic im-
pedance Z0 is equal to the real optimal load for the 
main amplifier Ropt, while the common load RL is 
typically a half of it for a 6 dB OBO, considering 
the same device for main and peak amplifiers, as 
shown in [3]. Thus, the resulting value of RM,LP is 
shown by (2):

  optLPM RZR 22 0, ==   (2)

Increasing the input power, the dynamic load 
line for the main device “grows up” until reaching 
the knee voltage Vk (Pout=Psat-OBO) constraint, as 
shown in Fig. 5. At this point, called “break point”, 
the main amplifier will reach its maximum drain 
efficiency, and at the same time, it will be the who-
le DPA’s efficiency because the peak device is off.

Fig. 5.  Load modulation for a typical DPA.
 Source: Authors.

After the break point, if the input power is con-
tinuously increased, the peak amplifier turns on. 
Therefore, a current is injected to the common load 
from the peak amplifier producing load modula-
tion for the main device, as represented in Fig. 5 
by the dotted arrow. In other words, the dynamic 
load line slope increases with the input power. At 
that moment, the DPA efficiency will be given by 

the weighted efficiency of the main and peak am-
plifiers. The current’s phase from main and peak 
amplifiers must be equal at the common load node 
(combining point).

Finally, with the input power increase, the load 
line of the main amplifier also reaches its maxi-
mum current limitation IMax,m (see Fig. 5). Here, 
the complete saturation of the DPA occurs. The ex-
pected drain efficiency η (%) is shown in Fig. 6, as 
a function of the output power.

Fig. 6.  Efficiency vs output power 
for a Doherty power amplifier. 

Source: Authors.

III. doherty Power AmPlIfIer desIgn

A Cree’s GaN CGH40010F device has been selec-
ted accordingly with the advantage in power de-
livered by this kind of devices [7]. In this case, a 
cold FET simulation [8] has been carried out in or-
der to extract the device’s drain-source capacitan-
ce and the parasites due to the package, allowing 
the identification of the device’s intrinsic drain 
(see Fig. 7). Therefore, the output matching net-
work must be designed to produce the real optimal 
load in the intrinsic drain of the device. In Fig. 
7, LOUT and COUT provide an approximation of the 
equivalent output parasite network (COUT includes 
the CDS effect).

Fig. 7. Intrinsic drain identification for the GaN device.
 Source: Authors.
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As main branch, an inverse class F amplifier 
has been designed. In this case, the inverse class 
F configuration has been considered as a second 
harmonic tuned one [3].

On the other hand, the peak amplifier is just a 
replica of the main one, but the bias point is con-
trolled depending on the power regime. In other 
words, at 6 dB OBO the peak amplifier is a deep 
class C power amplifier, while at 0 dB OBO, its 
bias point is changed to be identical to the main 
amplifier’s one. This has been carried out by in-
creasing, in a linear way, the gate’s DC voltage in 
the peak device (VGS,PEAK) from -6V to -2.73V. The 
initial value VGS,PEAK = -6 V is selected using the 
trans-conductance method as shown in [3].

The control on VGS for the peak branch elevates 
the total gain on the Doherty region in comparison 
with one without this kind of control [9], [10]. In 
other words, the conduction angle of the peak de-
vice is increased up to reach the same as the main 
device. Therefore, given that the fundamental dra-
in current for both main and peak amplifiers must 
be the same in saturation, the peak amplifier can 
be exactly identical to the main one. In addition, 
in saturation, main and peak amplifiers have the 
same gain, accordingly a one-to-one input power 
ratio has to be implemented [11]. DC VGS,PEAK as 
a function of the output power is shown in Fig. 8.

The output matching networks –OMN of both 
amplifiers (main and peak) have been designed as 
shown in Fig. 9. The bias T is implemented using 
a λ/4 transmission line, which is also used in or-
der to produce the second harmonic load at the in-
trinsic drain of the device -a very large magnitude 
load. At the fundamental frequency, the OMN is 
designed for compensating the equivalent output 
parasite network as presented in [10].

Fig. 8. Peak device DC gate-source 
voltage vs. output power. 

Source: Authors.

Fig. 9. Output matching network of both 
main and peak amplifiers.

 Source: Authors.

The input matching network –IMN has been 
designed for small signal matching. Also, a stabi-
lization network is included at the input network 
to ensure unconditional stability at all frequencies. 
Fig. 10 shows the scheme of the designed IMN and 
the final scheme of the designed DPA is shown in 
Fig. 11.

Fig. 10. Input matching network of 
both main and peak amplifiers.

 Source: Authors.

Fig. 11. Scheme of the designed DPA. 
Source: Authors.

IV. results

A simulation using Advanced Design System soft-
ware is carried out in order to obtain the results. 
Gain and drain efficiency as a function of the out-
put power POUT are shown in Fig. 12. As can be 
noticed, the obtained gain on the Doherty region is 
between 12.5 and 14 dB (AM/AM of 1.5 dB), and 
the power-added efficiency (PAE) is higher than 
70%, whereas at saturation is 75%. A maximum 
output power of 45 dBm has been obtained as 
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well. These results are considered by the authors 
as being competitive with the state-of-art in terms 
of CW characterization. The implemented DPA is 
shown in Fig. 13. And currently it is waiting for a 
measurement run.  

Fig. 12. PAE (%, squares), Drain Efficiency (%, circles), 
Transducer Gain Gt (dB, stars) and Operation Gain Gp 
(dB, diamonds) as function of Output Power Pout (dBm). 

Source: Authors.

Fig. 13. Implemented circuit.
Source: Authors.
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VI. conclusIon

A high efficiency Doherty Power Amplifier with con-
trolled gate-voltage has been designed, obtaining 
more than 70% of power-added efficiency on Doherty 
region (6-dB) and 45 dBm of output power at 2.4 GHz. 
These performances place this amplifier in possible 
applications for systems operating in the 2.4 GHz 
band with high peak-to-average power ratios. 
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