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JUMP LINEAR SYSTEMS AND THE LINEAR MINIMUM MEAN
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Abstract. In this paper we study the average reachability gramian for continuous-time linear
systems with additive noise and jump parameters driven by a general Markov chain. We define a
rather natural reachability concept by requiring that the average reachability gramian be positive
definite. Aiming at a testable condition, we introduce a set of reachability matrices for this class
of systems and employ invariance properties of the null space of the noise coefficient matrices to
show that the system is reachable if and only if these matrices are of full rank. We also show for
reachable systems that the state second moment is positive definite. One consequence of this result
in the context of linear minimum mean square state estimation for reachable systems is that the
expectation of the error covariance matrix is positive definite. Moreover, the average boundedness of
the error covariance matrix is invariant to a type of perturbation in the noise model, meaning that
the estimates are not overly sensitive, which consists in a property that is desirable in applications
and sometimes referred to as stability of the estimator.
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1. Introduction. Practical systems are frequently vulnerable to abrupt changes
in their behavior due to, for example, component failures or sudden environmental
disturbances. In this paper, we address Markov jump linear systems (MJLSs) whose
parameters are governed by the state of a Markov chain {θ(t)}t≥0. Applications
of MJLSs include systems with random failures and plants composed of subsystems
whose interaction changes abruptly, as frequently found in the context of networked
control systems, which have been attracting increasing attention in recent years. Ex-
amples of applications are given in [19, 20, 30, 32].

Some structural properties of MJLSs, such as stochastic controllability and
stochastic stabilizability, have been studied in great detail in the seminal paper [22] as
well as in [6, 7, 9, 13, 14, 15, 23, 25]. There is a series of notions under the denomina-
tion of weak concepts, like weak observability and weak detectability [3, 4, 5, 12], which
involve cost functionals that can be expressed in terms of the average observability
gramian. The role of these concepts in control is now well known. Recently we have
introduced the idea of weak controllability [26, 27] relying on the average controllabil-
ity gramian, obtaining a few preliminary results for that notion. A similar notion of
weak reachability is largely unexplored, both in terms of definition/characterization
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and of its role in control and filtering.
In this paper, we introduce some notions of average reachability (AR).1 AR is

defined in a control-free setup, with a clear, marked dissimilarity in its conception
with available notions of stochastic reachability (SR) which play an important role in
control problems aiming to bring the initial state to a prespecified set; see, e.g., [1].
The fact that AR and SR are in general not comparable is illustrated in Examples 2
and 3. Regarding the relation between AR and the aforementioned weak notions, they
are not comparable since the average positiveness of the observability, controllability,
reachability, and reconstructibility gramians is not comparable in the sense that the
positiveness of one gramian does not imply positiveness of another gramian. It is
worth mentioning that another situation may be found when comparing gramians for
different systems; e.g., it is widely known in the case of linear deterministic systems
that the reachability gramian of (A,B) equals the observability gramian of (A′, B′),
and we employ this type of construction in section 2.3 in order to explore results for
weak observability derived in [26].

This work adds to the theory of MJLSs by developing computational simple tests
for the AR notions and studying their role in the filtering of MJLSs. We study the
relation between AR and the positiveness of the conditional second moment matrices,
with the interpretation that there is a “minimal level of noise” in the state, as detailed
in section 4.1. In the context of linear minimum mean square estimation (LMMSE)
of the continuous-valued component of the state x(t) with observation of the jump
variable, as proposed for MJLSs in [8, 17], we show that AR ensures two properties:
(i) the error covariance matrix Q(t) is a positive definite matrix (essentially meaning
that the estimate has a minimal level of noise), and (ii) the property that Q(t) is
average bounded from above is invariant to certain perturbations on the noise model,
which is sometimes referred to as stability of the filter.

In contrast to the fact that AR is defined in a simple manner in terms of the
reachability gramian, the tasks of obtaining an efficient test and studying the charac-
terization of noise diffusion are quite complex. The main issues and ideas are briefly
discussed below. Consider the system defined on the fundamental space of probability
(Ω,F,P) by

dx(t) = Aθ(t)x(t)dt +Bθ(t)dw(t), x(0) = x0, θ(0) ∼ π,(1.1)

where x(t) ∈ Rn, x0 is a random variable, and {w(t)}t≥0 is a Wiener process. Here,
{θ(t)}t≥0 is a general Markov chain, and we only require finite dimension for its
state space S. At each time instant t, we have that Aθ(t) = Ai whenever θ(t) =
i, and similarly for the other parameter matrix in (1.1). The AR notions for the
system (1.1) require that the expected value of the reachability gramian be positive,
E{Υrch(0, t)} > 0 for some t > 0, i ∈ S, where the reachability gramian is defined
according to [10],

(1.2) Υrch(t0, t1) =

∫ t1

t0

Φ(t1, τ)Bθ(τ)B
′
θ(τ)Φ(t1, τ)

′dτ.

We shall consider two notions of AR requiring positiveness of the gramian in different
senses: AR requires positiveness for any initial distribution π of the Markov chain; π-
AR considers a particular given initial distribution π. We also devote a small portion

1We use the terminology average instead of weak as it is more accurate in regard to the studied
notion. The word weak has different usages in applied mathematics, having little relation with this
work; moreover, AR does not necessarily weaken previous reachability notions; see Example 2.
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AVERAGE REACHABILITY FOR CONTINUOUS-TIME MJLS 2065

of the paper to Π-AR, which assumes π ∈ Π in such a manner that transient states
are never visited; see Corollary 4.7.

Checking AR directly by definition is obviously inadvisable. A first attempt to
obtain a testable condition is via the second moment matrix Xi = E{x(t)x(t)1{θ=i}},
i ∈ S; however, the equation describing its evolution involves the distribution of the
Markov chain at time instant t, pi(t), and the conditions that can be directly obtained
in this fashion turn out to be dependent on pi(t). To overcome this, we study an
equation in certain variables Si that dismisses terms related to pi(t); see Remark 3
for an interpretation of Si. The next step is to show that the null space of Si is
identical to the null space of E{Υrch(0, t)|θ(0) = i}. This involves the time derivatives
of Si, evaluated by recasting invariance properties in [27], that in turn require using
an auxiliary system involving matrices A′, B′ and a “time-reverse” Markov chain to
explore the dual relation with weak observability, as mentioned before. The time
derivatives of Si allow for the construction of a collection of matrices whose rank is
central to the test of AR as presented in Theorem 3.6.

The positiveness of X is then tackled using a different approach. We show that
Si is positive definite whenever i is a recurrent Markov state. A positive lower bound
for Si(t) in a finite time interval is then obtained by using the Weierstrass extreme
value theorem together with a procedure of “restarting” S (as in (4.10)), yielding
S(t) ≥ γI. Unfortunately, X is not an upper bound for S, obliging us to introduce
a scaling factor δ to get that δ−1X > S(t); see Lemma 4.4 for details. This allows
us to demonstrate that E{x(t)x′(t)} and Xi, i recurrent, are bounded from below by
positive definite matrices; see Theorem 4.5.

Positiveness of X has some relevant implications in filtering for x(t), and in par-
ticular for the LMMSE proposed for MJLSs in [17, 8]. This estimator is attracting
considerable attention in applications as it is much easier to implement than the
Kalman filter due to the fact that the Kalman filter gains require solving a differen-
tial equation online, while the gains of the LMMSE can be precomputed. Apart from
that, the LMMSE is optimal in the class of Markovian linear estimators. We show
average positiveness for the error covariance of the LMMSE with the interpretation
that its estimates contain a “minimum level of randomness” for AR systems, which
can be extended to any linear Markovian filter. This could seem as a drawback for
the LMMSE; however, it is precisely this property which provides the arguments to
study the so-called stability of the estimator, a relevant feature for filters employed
in practical systems [2, 28, 29]. In essence, stability means that an estimator whose
error covariance is average bounded from above keeps the boundedness even under
perturbations on the initial covariance matrix; otherwise the error covariance could
tend to infinity, leading the estimate quality to quickly deteriorate. We show that the
LMMSE for AR systems is stable.

The paper is organized as follows. Section 2 presents notation and our first
results on the reachability gramian for MJLSs. The π-AR, a computational test for
its characterization, and examples compared with other reachability notions are given
in section 3. The AR and the positiveness of the state second moment is studied in
section 4, and its application in filtering for MJLSs is presented in section 5. Section
6 gives concluding remarks.

2. Preliminaries. Basic assumptions and notation used throughout the paper
are presented next. Preliminary results on the reachability gramian and an invariance
property of the null space of matrices Bj are also presented.
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2066 ALFREDO R. R. NARVÁEZ AND EDUARDO F. COSTA

2.1. Basic assumptions. The following hypotheses are considered in this pa-
per.

Assumption 1. {θ(t)}t≥0 is a Markov chain with finite state space denoted by
S = {1, . . . , N}. The transition rate matrix of the chain is denoted by Λ = [λij ], with
λij = lim∆t→0

[
P(θ(t+∆t) = j|θ(t) = i)− 1{i=j}

]
/∆t.

Assumption 2. {w(t)}t≥0 is a Wiener process of dimension nw with incremental
covariance operator Iwdt, where Iw is the identity matrix of dimension nw × nw.

Assumption 3. x0 is a random variable satisfying E{x0} = x̄0 and E{x0x′
0} = Ψ.

x0, θ(0), and the process {w(t)}t≥0 are mutually independent.

Assumption 4. A = (A1, . . . , AN ) is a set of matrices of dimensions n× n, and
B = (B1, . . . , BN ) is made of matrices of dimensions n × nw. These sets are given
and fixed, and the same is valid for Λ.

Remark 1. Assumptions 1–3 represent minimal properties of the stochastic pro-
cesses in the plant. Assumption 1 indicates that the variable θ(t) is the state of a
standard homogeneous Markov chain with finite dimension, and it allows for rather
general setups containing transient states, cemetery states, and noncommunicating
groups of states, and of course the chain is not required to be ergodic, which signif-
icantly enlarges the set of applications for our results when compared with works
that require ergodic chains. Assumptions 2 and 3 impose basic regularity hypotheses
frequently found in the literature; there is no loss of generality in assuming unitary
covariance for w as other cases are covered by adjusting B. Assumption 4 is standard
in the context of MJLSs with known parameters.

2.2. Notation. Let Z0 be the nonnegative integers. Let Rn,q (respectively, Rn)
be the linear space formed by all matrices of size n×q (respectively, n×n) and Rr0 the
closed convex cone of symmetric positive semidefinite matrices {U ∈ Rr : U = U ′ ≥ 0}
(Rr+ when all matrices are positive definite). For U ∈ Rn,q, N (U) and Im(U)
represent the null and the image space of U , respectively. U ′ denotes the transpose
of U ; U ≥ V means that U − V ∈ Rr0, and U > V means that U − V ∈ Rr+. The
operator 1{.} is the indicator function, E{·} is the expectation operator, and tr{.}
denotes the trace. Let Mr,n be the linear space formed by a number N of matrices
such that Mr,n = {U = (U1, . . . , UN ) : Uj ∈ Rr,n, j = 1, . . . , N}; also, Mr ≡ Mr,r.
We denote by Mr0 (Mr+) the set Mr when it is formed by Uj ∈ Rr0 (Uj ∈ Rr+) for
all j = 1, . . . , N . Mr,n with the inner product given by

⟨U, V ⟩ =
N∑

j=1

tr{U ′
jVj}

is a Hilbert space. We use the norm ||U || = ⟨U, I⟩ in Mn0. Following [7], we employ
the linear and invertible operators vec and ϕ, where vec is the operator that stacks
the columns of a matrix in a single column vector, and ϕ is defined in such a manner
that, for U ∈ Mn, ϕ(U) = [vec(U1)′ vec(U2)′ · · · vec(UN )′]′.

Regarding the Markov chain, we consider P(t) = [pij(t)], t ≥ 0, the transi-
tion semigroup on S, where pij(t) = P(θ(t + s) = j|θ(s) = i), i, j ∈ S. We set
p(t) = [p1(t), . . . , pN (t)] with pi(t) = P(θ(t) = i) and p(0) = π the initial distribution
probability of the Markov chain. For a given π we denote

Sπ = {j ∈ S : ∃s ≥ 0 such that P(θ(s) = j) > 0},

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 1

43
.1

07
.1

83
.2

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AVERAGE REACHABILITY FOR CONTINUOUS-TIME MJLS 2067

which comprises Markov states with positive initial distribution along with the ones
that can be reached from them. Sπ,rec stands for the subset of Sπ formed by its
recurrent Markov states.

Now, let the operators LA : Mn −→ Mn and TA : Mn −→ Mn be defined as
(2.1)

LA,j(U) = A′
jUj + UjAj +

N∑

i=1

λjiUi, TA,j(U) = AjUj + UjA
′
j +

N∑

i=1

λijUi

for j = 1, . . . , N . We denote L0
A(U) = U and, for k ≥ 1, Lk

A(U) = LA(Lk−1
A (U)), and

we use similar notation for TA. TA and LA are self-adjoint operators. For U, V ∈ Mn

it is simple to check that ⟨U, V ⟩ = ϕ(U)′ϕ(V ). As in [3], using this notation, we can
write

(2.2) ϕ(LA(U)) = Aϕ(U) and ϕ(TA(U)) = A′ϕ(U),

where

(2.3) A =

⎡

⎢⎢⎢⎢⎣

Â1 + λ11Î . . . λ1N Î

λ21Î
. . . λ2N Î

...
...

...
λN1Î . . . ÂN + λNN Î

⎤

⎥⎥⎥⎥⎦
,

with Î = I ∈ Rn2
, Âj = V ⊗ A′

j + A′
j ⊗ V , where V = I ∈ Rn and ⊗ stands for the

Kronecker product.

2.3. An invariance result. In this section we obtain an invariance property
for the null space of matrix Bj . We proceed by exploring a connection between the
reachability and observability gramians via the auxiliary system (Ã, B̃ = 0, C̃, D̃ =
0, Λ̃),

(2.4) ẋ(t) = Ãθ̃(t)x(t), x(0) = x0, θ̃(0) ∼ π̃,

y(t) = C̃θ̃(t)x(t),

and the associated observability gramian

(2.5) Υobs(0, t) =

∫ t

0
Φ̃(τ, 0)′C̃′

θ̃(τ)
C̃θ̃(τ)Φ̃(τ, 0)dτ,

where Φ̃(τ, 0) is the state transition matrix linked with the solution of (2.4). Consider

(2.6) W t(x, j) = x′E
{
Υobs(0, t) | θ̃(0) = j

}
x

for all x ∈ Rn and j ∈ S, which is usually interpreted as a cost functional. Consider
also the sequence of sets of matrices O(k) ∈ Mn, defined recursively by

(2.7)
Oj(k + 1) = LÃ,j(O(k)), k ∈ Z0, j ∈ S,

Oj(0) = C̃′
jC̃j .

Matrices O are associated to the observability of (Ã, 0, C̃, 0, Λ̃), as explained in [3].
The following is a direct adaptation of results in [26], linking O with W and giving an
invariance property for the null space of C̃ that resembles a result for systems with
general switching rules [31, Theorem 4.26].

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 1

43
.1

07
.1

83
.2

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2068 ALFREDO R. R. NARVÁEZ AND EDUARDO F. COSTA

Proposition 2.1. Consider the system (Ã, B̃ = 0, C̃, D̃ = 0, Λ̃). For each x ∈
Rn, the following statements are equivalent:

(i) W t(x, j) = 0, t ≥ 0, j ∈ Sπ.
(ii) x′Oj(k)x = 0, k ∈ Z0, j ∈ Sπ.
(iii) C̃iÃ

p0
im
Ãp1

im−1
· · · Ãpm

j x = 0 for any sequence of Markov states j, i1, . . . , im, i

contained in Sπ such that λ̃j, i1 λ̃i1, i2 · · · λ̃im , i ̸= 0 with pℓ ≥ 0, ℓ = 0, . . . ,m.

Proof. (i) ⇔ (ii). [3, Proposition 5(ii)] and [3, Lemma 8(i),(ii)] lead to the result.
(ii) ⇒ (iii). See [26, Corollary 3]. (iii) ⇒ (ii). We have

(2.8) x′Ã′qk
j · · · Ã′q1

jk−1
Ã′q0

jk
C̃′

iC̃iÃ
p0
im
Ãp1

im−1
· · · Ãpm

j x = 0

for any sequences of Markov states j, i1, . . . , im, i and j, j1, . . . , jk, i such that
λ̃j, i1 λ̃i1, i2 · · · λ̃im, i ̸= 0 and/or λ̃j, j1 λ̃j1, j2 · · · λ̃jm, i ̸= 0, with pℓ, qν ≥ 0, ℓ = 0, . . . ,m,
ν = 0, . . . , k. By expanding x′Oj(k)x using (2.7) one gets sums of expressions like the
left-hand side of (2.8) (each one multiplied by a product of probability rates), so that
employing (2.8) yields x′Oj(k)x = 0.

In the particular case of “no jumps” where N = 1, Λ̃ = Λ = 0 and Ã1 = A′
1,

C̃1 = B′
1, it is well known that Υobs(0, t) = Υrch(0, t) (perhaps it is more disseminated

that reachability of (A1, B1) is equivalent to observability of (A′
1, B

′
1) in the standard

sense for deterministic systems). Next we extend this property to MJLSs. We will
consider the system in (2.4) with the setting

(2.9)

⎧
⎨

⎩
Ã = A′, B̃ = 0, C̃ = B′, D̃ = 0,

λ̃κℓ = λℓκ for κ ̸= ℓ, and λ̃ℓℓ = −
∑
κ ̸=ℓ

λ̃ℓκ.

Lemma 2.2. Consider the system (1.1) and the system (2.4) with the parameters
in (2.9). Then, for each realization of the Markov chain starting at i and visiting j
at time t ≥ 0, with i, j ∈ Sπ communicating Markov states, we have

Υrch(0, t) = Υobs(0, t).

Proof. Let us consider the sequence j =: i0, i1, . . . , im−1, im := i such that
λ̃j, i1 λ̃i1, i2 · · · λ̃im−1, i ̸= 0 with its respective sequence of jump times 0 ≤ s1 ≤ . . . ≤
sm ≤ t. By denoting s0 := 0 and sm+1 := t, we have
(2.10)

Υobs(0, t) =
q∑

k=0

∫ sk+1

sk

Φ̃(s, 0)′C̃′
ik C̃ik Φ̃(s, 0)ds =

∫ s1

0
eÃ

′
jsC̃′

jC̃je
Ãjsds

+ · · ·+ eÃ
′
js1 · · · eÃ

′
im−1

(sm−sm−1)
[∫ t

sm

eÃ
′
i(s−sm)C̃′

iC̃ie
Ãi(s−sm)ds

]

× eÃim−1 (sm−sm−1) · · · eÃjs1 .

Define t0, . . . , tm+1 satisfying 0 = t0 ≤ (t−sm = t1) ≤ · · · ≤ (t−s1 = tm) ≤ t = tm+1.
Since Ã = A′, C̃ = B′, B̃ = 0, D̃ = 0, and the transition matrix Λ̃ is such that
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λ̃κℓ = λℓκ for κ ̸= ℓ, we obtain from (2.10) with τ = t− s
(2.11)

Υobs(0, t) =eAij (t−tm) · · · eAim−1(t2−t1)

[∫ t1

0
eAi(t1−τ)BiB

′
ie

A′
i(t1−τ)dτ

]

× e
A′

im−1
(t2−t1) · · · eA

′
j(t−tm) + · · ·+

∫ t

tm

eAj(t−τ)BjB
′
je

A′
j(t−τ)dτ

=
m∑

k=0

∫ tk+1

tk

Φ(t, τ)Bim−kB
′
im−k

Φ(t, τ)′dτ = Υrch(0, t),

where λi, im−1 · · ·λi1, j ̸= 0.

We need to compare the set {x : W t(x, j) = 0} with the null space of
E{Υrch(0, t)|θ(0) = i}. One difficulty is that the initial conditions of the Markov
chain may be different, i ̸= j, so that Lemma 2.2 alone does not answer this question.

Proposition 2.3. Consider the hypothesis of Lemma 2.2. Then, for a given t > 0
and each x ∈ Rn and j ∈ Sπ, we have that W t(x, j) = 0 and x′E{Υrch(0, t)|θ(0) =
i}x = 0 are equivalent whenever i and j are communicating states.

Proof. We present the proof of necessity only, as the sufficiency is quite similar.
Assume x′E{Υrch(0, t)|θ(0) = i}x = 0, where j is reached from i. One can check for
any tf ≥ 0 that x′E{Υrch(0, tf)|θ(0) = i}x = 0. This leads to x′E{Υrch(0, tf)|θ(0) =
i, θ(tf ) = j}x = 0, which from Lemma 2.2 is equivalent to x′E{Υobs(0, tf)|θ̃(0) =
j, θ̃(tf ) = i}x = 0. This and the inequality Υobs(0, tf ) ≥ Υobs(0, t) (when tf ≥ t)
yield x′E{Υobs(0, t)|θ̃(0) = j, θ̃(tf ) = i}x = 0. Since i, j are communicating, any
θ(t) that can be reached from θ(0) = j can in turn reach θ(tf ) = i, which allows
us to conclude that the information θ̃(tf ) = i is irrelevant when computing the last
expected value, leading to x′E{Υobs(0, t)|θ̃(0) = j}x = 0, and from (2.6), we have
that W (x, j) = 0.

Consider the sequence of sets of matrices R(k) ∈ Mn, k ∈ Z0, satisfying

(2.12)
Rj(k + 1) = TA,j(R(k)), k ∈ Z0, j ∈ S,

Rj(0) = 1{j∈Sπ}BjB
′
j .

R(k) can be interpreted as a dual of O(k) defined in (2.7) and will play an important
role in the computational test for AR. Proposition 2.3 allows for extending the results
of Proposition 2.1 to the original system, leading to an invariance property for matrices
Bi.

Lemma 2.4. Consider the system (A,B,C = 0, D = 0,Λ). For each x ∈ Rn and
i, j ∈ Sπ communicating Markov states, the following statements are equivalent:

(i) x′E{Υrch(0, t)|θ(0) = i}x = 0, t ≥ 0.
(ii) x′Rj(k)x = 0, k ∈ Z0.
(iii) B′

iA
′p0
ι1 A′p1

ι2 · · ·A′pm
j x = 0 for any sequence of Markov states i, ι1, . . . , ιm, j

contained in Sπ such that λi, ι1λι1, ι2 · · ·λιm, j ̸= 0 with pℓ ≥ 0, ℓ = 0, . . . ,m.

Proof. (i) ⇔ (iii). Considering the system (2.4) with the parameters in (2.9), we
conclude that statement (i) of Proposition 2.1 holds true. Consequently, we have that
(iii) of Proposition 2.1 holds true, and, in turn, it can be rewritten as (iii) above.

(iii) ⇒ (ii). This is similar to the proof of implication (iii) ⇒ (ii) of Proposition
2.1. (ii) ⇒ (i). Considering the system (2.4) with the parameters in (2.9), from (2.12)
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we can write

(2.13)

Rj(k + 1) = Ã′
jRj(k) +Rj(k)Ãj +

∑

i∈S
λ̃jiRi(k) + λjjRj(k)− λ̃jjRj(k)

= Ā′
jRj(k) +Rj(k)Āj +

∑

i∈S
λ̃jiRi(k)

= LĀ,j(R(k)),

where Āj = Ãj + κjI, with κj = 1
2 (λjj − λ̃jj) =

1
2

∑
i∈S λij . This means that R(k)

satisfies (2.7) (with matrix Ã replaced with Ā), and we can use Proposition 2.1 to
conclude that

(2.14) C̃iĀ
p0
im
Āp1

im−1
· · · Āpm

j x = 0

for any sequence of Markov states j, i1, . . . , im, i such that λ̃j, i1 λ̃i1, i2 · · · λ̃im, i ̸= 0
with pℓ ≥ 0, ℓ = 0, . . . ,m. Expanding the expression C̃iÃ

q0
im
Ãq1

im−1
· · · Ãqm

j x with

qℓ ≥ 0, ℓ = 0, . . . ,m, by substituting Ãj = Āj − κjI for each j ∈ Sπ, we obtain a
sum of expressions exactly as in the left-hand of (2.14), and each one of them equals
to zero. This yields C̃iÃ

q0
im
Ãq1

im−1
· · · Ãqm

j x = 0, and from Proposition 2.1 we have

W t(x, j) = 0. The result follows directly by Proposition 2.3.

Corollary 2.5. Consider j ∈ Sπ and v ∈ Rn. Then, for all k ∈ Z0,

v′Rj(k)v = 0 is equivalent to Rj(k)v = 0.

Proof. The implication (⇐) is trivial, and the reverse one can be obtained using
the equivalence in (ii) and (iii) of Lemma 2.4.

Remark 2. Reasoning similar to that in the proof of (ii) ⇒ (i) of Lemma 2.4
allows us to conclude that AR is invariant to perturbations of the form κjI in matrix
Aj , with κj ∈ R. In particular, (A,B,Λ) is AR if and only if (A+ κI, B,Λ) is AR.

3. π-AR and a computational test. When seeking conditions for positiveness
of the average second moment of x, it is important to note that this quantity depends
not only on the structure of A and Λ but also on the initial probability distribution π,
because the visited Markov states are “selected” essentially by π and Λ, as illustrated
in the next example.

Example 1. Consider the system (A,B,Λ) with A1 = A2 = B2 = 0, B1 = 1,
Λ = 0, and x0 = 0. For any 0 ≤ α ≤ 1 we have E{x(t)x′(t)|π = [α 1 − α]} =
αE{w(t)w′(t)} = α. Then E{x(t)x(t)′|π} > 0 if and only if α ̸= 0.

Definition 3.1 (π-AR). The triple (A,B,Λ) is π-average reachable (π-AR) if
there exists t > 0 such that E{Υrch(0, t)|θ(0) = i} > 0 for all i ∈ Sπ.

Next we introduce a quite standard ordinary differential equation (ODE) whose
solution Sj(t), j ∈ S, t ≥ 0, is linked with reachability gramian via R defined in (2.12)
and Lemma 3.2. S(t) satisfies

(3.1) Ṡj(t) = TA,j(S(t)) + 1{j∈Sπ}BjB
′
j , Sj(0) = 0, j ∈ S.

The easy-to-handle exponential solution of (3.1) is employed as a tool in what follows.
The interpretation for S is postponed to section 4.1, when we study its relation to
the conditional second moment Xi = E{x(t)x(t)1{θ=i}}. Using the operators vec and
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ϕ, we can vectorize (3.1) to obtain a standard linear time invariant system of the
form σ̇(t) = A′σ(t) + b, where A is as in (2.3) and b = ϕ(BπB′

π), where BπB′
π is

the set formed by the matrices 1{j∈Sπ}BjB′
j . By noting that there are n(n− 1)N/2

repeated entries in both σ and b (arising from the symmetry of Sj(t), TA(·), and BjB′
j

in (3.1)), we set N̄ := n2N − n(n−1)N
2 = n(n+1)N

2 and consider the projection matrix

P ∈ Rn2N,N̄ that eliminates these entries. We define σ̂ ∈ RN̄ , b̂ ∈ RN̄ , and Â ∈ RN̄,N̄

given as σ̂ = Pσ, b̂ = Pb, and Â = P′AP, respectively, leading to the reduced order
system

(3.2) ˙̂σ(t) = Â′σ̂(t) + b̂, σ̂(0) = 0.

Note that the kth order derivatives, k ≥ 1, of σ̂(t) calculated at t = 0 are given by

(3.3)
dkσ̂

dtk
(0) = Â′k−1b̂.

The next result gives the relation between the function S and its derivatives.

Lemma 3.2. Let j ∈ Sπ,rec and v ∈ Rn. Define V = (V1, . . . , VN ) such that
Vj = vv′ and, if i ̸= j, Vi = 0 and ŵ = Pϕ(V ). The following assertions are
equivalent:

(i) v′Sj(s)v = 0 or, equivalently, ŵ′σ̂(s) = 0 for some s > 0.

(ii) ŵ′ dk+1σ̂
dtk+1 (0) = 0 for k ∈ Z0.

(iii) v′Sj(t)v = 0 or, equivalently, ŵ′σ̂(t) = 0 for all t ≥ 0.
(iv) v′E{Υrch(0, t)|θ(0) = i}v = 0 for all i ∈ Sπ communicating with j and all

t ≥ 0.

Proof. (i) ⇒ (ii). Suppose that there exists s > 0 such that v′Sj(s)v = 0. Then,

(3.4)
ŵ′σ̂(s) = 0 ⇒ ŵ′

∫ s

0
eÂ

′(s−τ)b̂ dτ = 0 ⇒ ŵ′eÂ
′(s−τ)b̂ = 0, 0 ≤ τ ≤ s,

⇒ ŵ′Â′keÂ
′(s−τ)b̂ = 0, 0 ≤ τ ≤ s.

In particular, for τ = s we have ŵ′Â′k b̂ = 0, or equivalently ŵ′ dk+1σ̂
dtk+1 (0) = 0, for all

k = 0, 1, . . . . Note that eÂ
′(s−τ)b̂ = Pϕ(SBπ(t)), where SBπ is a set of matrix functions

defined in a manner that satisfies ϕ(ṠBπ (t)) = A′ϕ(SBπ (t)), with SBπ (0) = BπB′
π.

Thus, SBπ ∈ Mn0, and hence v′SBπ, j(s − τ)v = ⟨V, SBπ(s − τ)⟩ ≥ 0, leading to

ŵ′eÂ
′(s−τ)b̂ ≥ 0, which brings us to the second implication in (3.4).

(ii) ⇒ (iii). Using the power series expansion, we obtain eÂ
′(t−τ) =

∑∞
k=0 α̂k(t− τ)Â′k, where α̂k(t− τ) = (t−τ)k

k! for each k ∈ Z0. Then,

(3.5) ŵ′σ̂(t) =

∫ t

0
ŵ′

∞∑

k=0

α̂k(t− τ)Â′k b̂ dτ =
∞∑

k=0

(∫ t

0
α̂k(t− τ) dτ

)
ŵ′Â′k b̂,

and, since (3.3) and (ii) together yield ŵ′Â′k b̂ = 0, we obtain ⟨S(t), V ⟩ = ŵ′σ̂(t) = 0.
Equivalently, v′Sj(t)v = 0 for all t ≥ 0.

(iii) ⇒ (i). This part of the proof is trivial.
(iii) ⇔ (iv). This part of the proof follows from Lemma 2.4 and the equivalence

between (ii) and (iii) above.
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Now we can employ Lemma 3.2 in the study of the null space of R and its role
in testing π-AR. The link between the function S and R follows quite directly from
(2.12) and (3.1):

(3.6) Rj(k) =
dk+1Sj

dtk+1
(0), k ∈ Z0, j ∈ S.

In order to ease notation, let us define the reachability matrices Rj ∈ Rn,nN̄ by

(3.7) Rj =
[
Rj(0) Rj(1) · · · Rj

(
N̄ − 1

)]

for all j ∈ Sπ,rec. We write Rj(A,B,Λ,π) in some passages to emphasize the param-
eters required to calculate Rj .

Proposition 3.3. Let j ∈ Sπ,rec. We have that v ∈ N (Rj(k)), k = 0, . . . , N̄ − 1,
is equivalent to v ∈ N (Rj(k)), k = 0, . . . ,m, for m ≥ N̄ .

Proof. We shall only show the direct equivalence implication, as the converse

one is trivial. From the hypothesis and (3.6) it follows that v′ d
k+1Sj

dtk+1 (0)v = 0, k =

0, . . . , N̄ − 1, which is equivalent to w′Â′k b̂ = 0, k = 0, . . . , N̄ − 1, where ŵ is defined
as in Lemma 3.2. Using the Cayley–Hamilton theorem, we obtain that w′Â′mb̂ = 0
for m ≥ N̄ . That is, v′Rj(m)v = 0 for m ≥ N̄ . Corollary 2.5 completes the proof.

Proposition 3.4. Im (Rj) = Im ([Rj(0)Rj(1) · · · Rj(m)]) for all m ≥ N̄ .

Proof. For brevity denote Qm = [Rj(0)Rj(1) · · · Rj(m)], m ≥ N̄ . Assume v ∈
Im(Qm), so that v = Qmξ for some ξ ∈ Rn(m+1). Now, we take an arbitrary
η ∈ N (R′

j), and, by definition of Rj , we have Rj(k)η = 0, k = 0, . . . , N̄ − 1. Then,
Proposition 3.3 produces Rj(k)η = 0, k = 0, . . . ,m, where m ≥ N̄ , yielding η′Qm = 0
and η′v = 0, in such a manner that v ∈ (N (R′

j))
⊥. From the fundamental theorem

of linear algebra we have that v ∈ Im(Rj). The converse implication can be shown
in a similar manner.

Proposition 3.5. For any i and j communicating Markov states in Sπ we have

Im (E{Υrch(0, t)|θ(0) = i}) = Im(Rj).

Proof. Let us assume v ∈ Im(Rj). Then there exists ξ ∈ RnN̄ such that v = Rjξ.
Moreover, for any η ∈ N (E{Υrch(0, t)|θ(0) = i}), Lemma 3.2 implies η′Sj(t)η =
0. From Lemma 3.2 and Corollary 2.5 we obtain η′Rj(k) = 0, k = 0, . . . , N̄ − 1.
Consequently, we have that η′Rj = 0 and hence η′Rjξ = 0, leading in turn to
η′v = 0. Thus, by the fact that η is arbitrary in N (E{Υrch(0, t)|θ(0) = i}) we
conclude that v ∈ (N (E{Υrch(0, t)|θ(t) = i}))⊥. Therefore, the fundamental theorem
of linear algebra yields v ∈ Im(E{Υrch(0, t)|θ(0) = i}). The converse implication can
be shown in a similar manner, replacing Rj by E{Υrch(0, t)|θ(0) = i} (and vice-versa)
in the above.

Theorem 3.6. (A,B,Λ) is π-AR if and only if rank(Rj) = n for all j ∈ Sπ,rec.

Proof. Necessity. It is straightforward from the definition of π-AR and Proposi-
tion 3.5 that Im(Rj) = Rn for any j such that i, j are communicating and i ∈ Sπ.
This yields rank(Rj) = n, j ∈ Sπ,rec.

Sufficiency. Since rank(Rj) = n, we have from Proposition 3.5 that

(3.8) E{Υrch(0, t̄)|θ(0) = i} > 0
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for any t̄ > 0 and i ∈ Sπ communicating with j. It remains to show positiveness of
the gramian for initial Markov states that do not communicate with j, that is, for
θ(0) = ℓ being a transient state reaching j. Let T ∗ be the first visit time to the
recurrent class in Sπ,rec containing j, and let s ≥ 0. Then,
(3.9)
E{Υrch(0, t̄+ s)|θ(0) = ℓ} = E{Υrch(0, t̄+ s)|θ(0) = ℓ, T ∗ ≤ s}P(T ∗ ≤ s|θ(0) = ℓ)

+ E{Υrch(0, t̄+ s)|θ(0) = ℓ, T ∗ > s}P(T ∗ > s|θ(0) = ℓ).

It is evident that P(T ∗ ≤ s|θ(0) = ℓ) > 0; moreover, E{Υrch(0, t̄ + s)|θ(0) = ℓ, T ∗ ≤
s} ≥ E{Υrch(T ∗, t̄ + s)|θ(0) = ℓ, T ∗ ≤ s} = E{Υrch(T ∗, t̄ + s)|θ(T ∗) = i ∈ Sπ,rec} ≥
E{Υrch(T ∗, T ∗ + t̄)|θ(T ∗) = i ∈ Sπ,rec} > 0, where the last inequality comes from
the use of time translation and homogeneity properties in (3.8). Substituting these
inequalities into (3.9) yields E{Υrch(0, t̄ + s)|θ(0) = ℓ} > 0 for arbitrary s, t̄ > 0,
concluding the proof.

Example 2. Consider the system (A,B,Λ) with

(3.10)

A1 =

(
0 0
1 0

)
, A2 =

(
1 0
0 0

)
, B1 =

(
0
0

)
, B2 =

(
1
0

)
,

Λ =

(
0 0
0.1 −0.1

)
, x(0) =

(
1
1

)
, π =

(
0 1

)
.

Note that Sπ,rec = {1}. We compute the reachability matrices (3.7) to check that
rank(R1) = 2 and conclude from Theorem 3.6 that the system is π-AR. We have sim-
ulated the variable x(t) for 1.000 Markov state realizations, and the result is depicted
in Figure 1, which illustrates that π-AR does not mean that x(t) eventually reaches
the entire state space (dissimilarly to linear systems with no jumps; see [11]). We also
note from Figure 1 that if we consider as a “target state” xtgt = (10 0)′, then the
ball {x : ∥x− xtgt∥∞ < 1/2} is visited with zero probability by x(t), t ≥ 0, meaning
that the system is not SR in the usual sense (e.g., as defined in [1, 22, 24]).

−0.5

2.5

15−15 x1(t)

x
2
(t
)

xtgt

Fig. 1. Portion of phase plots of 1000 realizations for the process {x(t)}, t ≥ 0, of the system
in Example 2.
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Example 3. Consider the system (A,B,Λ) with A1 = A2 = B1 = 0, B2 = 1, and
Λ and π as in Example 2. By implementing the rank test of Theorem 3.6 we conclude
that the system is not π-AR, as R1 = 0. Now, considering the SR problem of driving
x(t) to an ϵ-neighborhood of a “target state” at a fixed time instant, ∥x(t)−xtgt∥ < ϵ,
in finite time with positive probability, as studied in [1], we can show that the system
is SR. In fact, since the subsystem (A2, B2) is controllable in the standard sense for
deterministic linear systems, it is simple to design a deterministic input function w(t),
0 ≤ t ≤ tf , resulting in x(tf ) = xtgt provided there is no jump in this time interval,
thus yielding P(∥x(t)− xtgt∥ < ϵ) ≥ P(θ(t) = 2, 0 ≤ t ≤ tf ) = e−tf .

4. AR and positiveness of the state second moment. At times, the initial
probability distribution π can be unknown, forcing us to consider a general π.

Definition 4.1 (AR). The triple (A,B,Λ) is average reachable (AR) if there
exists t > 0 such that E{Υrch(0, t)|θ(0) ∼ π} > 0 for every initial distribution π.

A rank test for AR can be obtained in a rather direct manner based on the test
for π-AR given in Theorem 3.6. The idea is to check if the system is π(ℓ)-AR for
certain initial distributions π(ℓ), each of them “exciting” one set of recurrent Markov
states. Formally, let the irreducible sets of recurrent Markov states be denoted by

(4.1) Srec,1, . . . ,Srec,m̄

(so that the Markov chain is composed by a total of m̄ blocks of recurrent states plus
the transient states) and take associated initial distributions

(4.2) π(1), . . . ,π(m̄),

where each π(ℓ) is concentrated on an arbitrary state belonging to Srec,ℓ, i.e., π
(ℓ)
iℓ

=
P (θ(0) = iℓ) = 1 for some iℓ ∈ Srec,ℓ.

Theorem 4.2. Consider the initial distributions π(1), . . . ,π(m̄) as defined above.
The following statements are equivalent:

(i) (A,B,Λ) is AR.
(ii) (A,B,Λ) is π(ℓ)-AR for all ℓ = 1, . . . , m̄.
(iii) (A,B,Λ) is π-AR for all probability distribution π ∈ RN .

Proof. The facts that (iii) and (i) are equivalent and that (iii) implies (ii) are
trivial. We show (ii) ⇒ (iii) by contradiction. First, we deny (iii) by assuming that
the system is not π-AR for some π, and from Theorem 3.6 we have

(4.3) rank(Rj∗(A,B,Λ,π)) < n for some j∗ ∈ Sπ,rec.

Now, assume that (ii) is valid, and consider ℓ ∈ {1, . . . , m̄} for which j∗ ∈ Srec,ℓ.
Theorem 3.6 yields rank(Rj(A,B,Λ,π(ℓ))) = n for all j ∈ Sπ(ℓ),rec, and, in particular
for j = j∗,

(4.4) rank(Rj∗(A,B,Λ,π(ℓ))) = n.

Since j∗ ∈ Srec,ℓ, we have Sπ(ℓ),rec ⊂ Sπ,rec, leading to

(4.5) rank(Rj∗(A,B,Λ,π(ℓ))) ≤ rank(Rj∗(A,B,Λ,π)).

Combining (4.4) and (4.5) produces rank(Rj∗(A,B,Λ,π)) = n, which is absurd in
view of (4.3).
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4.1. The function S(t) and the positiveness of the second moment.

Lemma 4.3. The following assertions hold:
(i) For a given initial probability distribution π we have that (A,B,Λ) is π-AR

if and only if Sj(t) > 0 for all t > 0 and j ∈ Sπ,rec.
(ii) (A,B,Λ) is AR if and only if for each initial probability distribution π we

have that Sj(t) > 0 for all t > 0 and j ∈ Sπ,rec.

Proof. (i) We prove necessity by contradiction. By supposing that there exist
j ∈ Sπ,rec and t̃ > 0 such that Sj(t̃) is not positive definite, we have v′Sj(t̃)v = 0 for
a certain v ∈ Rn different from zero. Then, the equivalence between (i) and (iii) of
Lemma 3.2 yields v′Sj(t)v = 0 for all t ≥ 0, which in turn, by the equivalence between
(iii) and (iv) of Lemma 3.2, leads to v′E{Υrch(0, t)|θ(0) = i}v = 0 whenever i ∈ Sπ

and j are communicating Markov states. Thus, we have that (A,B,Λ) is not π-AR.
The proof of sufficiency is similar.

(ii) Here we prove sufficiency by contradiction. Let us suppose that (A,B,Λ) is
not AR. Then, by Theorem 4.2 there exists π(ℓ) as in (4.2) such that (A,B,Λ) is
not π(ℓ)-AR. Thus, by Definition 3.1, for all t > 0 there exists v ̸= 0 in Rn such
that v′E{Υrch(0, t)|θ(0) = i}v = 0 for some i ∈ Sπ(ℓ) = Srec,ℓ. Consider a fixed
t > 0 and j ∈ Sπ(ℓ),rec = Srec,ℓ. The equivalence (iii)–(iv) of Lemma 3.2 leads to
v′Sj(t)v = 0, t > 0, which concludes the proof of the sufficiency. Necessity follows in
a straightforward manner from Lemma 3.2 (iii), (iv).

Next we extend the positiveness of S to the function X(t) ∈ Mn0. Recall that
X(t) is associated with the second moment of the process x(t) by

(4.6) Xj(t) = E{x(t)x(t)′1{θ(t)=j}}, t ≥ 0, j ∈ S,

and satisfies the linear matrix differential equations (see, e.g., [16])

(4.7) Ẋj(t) = TA,j(X(t)) + pj(t)BjB
′
j , with Xj(0) = pj(0)Ψ.

Remark 3. By direct comparison between (3.1) and (4.7) one can conclude that, if
x(0) = 0 and the noise w(t) is multiplied by 1/

√
pθ(t)(t) whenever θ(t) ∈ Sπ (otherwise

it is multiplied by zero), then S coincides with X . This gives an interpretation for S as
the conditional second moment of the system when the noise amplitude is conveniently
“modulated” and the initial condition is set to zero.

In view of Remark 3 , it is not a surprise that pj(t) is required in our analysis
(so that 1/

√
pθ(t)(t) is well posed). It is a well-known property of finite-dimension

Markov chains that by the continuity of its probability distribution p(t) there exist
δ > 0 and a finite closed interval [T1, T2], 0 < T1 < T2, such that

(4.8) pj(t) ≥ δ, j ∈ Sπ, t ∈ [T1, T2]

(and pj(t) = 0, j /∈ Sπ), for Markov states that can be reached from the initial state.
For t ∈ [T1, T2] we define U(t) ∈ Mn0 satisfying

(4.9) U̇j(t) = TA,j(U(t)) + pj(t)BjB
′
j , with Uj(T1) = 0.

Also, for an arbitrary fixed time instant t̃ > 0, we define an auxiliary variable V (t) ∈
Mn0 for t ≥ t̃ via

(4.10) V̇j(t) = TA,j(V (t)) + 1{j∈Sπ}BjB
′
j , with Vj(t̃) = 0.

The relation between S, V , U , and X is given next.

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 1

43
.1

07
.1

83
.2

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2076 ALFREDO R. R. NARVÁEZ AND EDUARDO F. COSTA

Lemma 4.4. Let j ∈ Sπ,rec. For δ and [T1, T2] as in (4.8) the following assertions
hold:

(i) Vj(t̃+ s) = Sj(s) for all s ≥ 0.
(ii) If Sj(t) > 0 for all t > 0, then for any fixed t̃ > 0 there exists γ > 0 such that

Sj(t) ≥ γI for all t ≥ t̃.
(iii) Uj(t) ≥ δVj(t) for all t ∈ [T1, T2].
(iv) Xj(t) ≥ Uj(t) for all t ∈ [T1, T2].
(v) If for any fixed T ∗ ∈ R such that 0 < T ∗ < T2 − T1 there exists γ > 0 such

that Sj(s) ≥ γI for all s ≥ T ∗, then there exists ρ > 0 such that Xj(t) ≥ ρI
for all t belonging to an interval J ⊂ [T1, T2].

Proof. (i) This part of the proof is immediate from (3.1) and (4.10).
(ii) Consider the function Vj in (4.10). The function defined as S̃j = Sj − Vj

evolves, for t ≥ t̃, according to

(4.11) ˙̃Sj(t) = TA,j(S̃(t)), with S̃j(t̃) = Sj(t̃).

From (4.11) and the fact that S(t̃) ∈ Mn0 we have that S̃j(t) ≥ 0. This means that
Sj(t) ≥ Vj(t) for all t ≥ t̃, and, consequently,

(4.12) Sj(t̃+ s) ≥ Sj(s)

for all s ≥ 0. Now, let us consider j ∈ Sπ,rec and the compact set D0 := S1 ×
[t̃, 2t̃] where S1 = {v ∈ Rn : ||v|| = 1} in order to define for each j the function
gj : D0 −→ R+ as gj(v, s) = v′Sj(s)v. The function gj is continuous, and, by the
Weierstrass extreme value theorem, there exists (v̄, s̄) ∈ D0 such that γ = v̄′Sj(s̄)v̄ =
min(v,s)∈D0

gj(v, s). Recall that Sj(t) > 0 for all t > 0; then we have that γ > 0. This
yields

(4.13) Sj(s) ≥ γI, s ∈ [t̃, 2t̃].

From (4.12) and (4.13) we have that Sj(2t̃+ ζ) ≥ Sj(t̃+ ζ) ≥ γI, where ζ is any real
number such that 0 ≤ ζ ≤ t̃. Consequently, we obtain Sj(s) ≥ γI for all s ∈ [2t̃, 3t̃],
and recursively we obtain the result.

(iii) Consider Vj in (4.10) with t̃ = T1. For t ∈ [T1, T2], we define Z(t) = δV (t),
which evolves according to

(4.14) Żj(t) = TA,j(Z(t)) + δ1{j∈Sπ}BjB
′
j , with Zj(T1) = 0.

Now, the function defined as Z̃j = Uj − Zj satisfies

(4.15) ˙̃Zj(t) = TA,j(Z̃(t)) + (pj(t)− δ1{j∈Sπ})BjB
′
j , with Z̃j(T1) = 0,

where pj(t) − δ1{j∈Sπ} ≥ 0. Then we have that Z̃j(t) ≥ 0 for all t ∈ [T1, T2]. Hence
Uj(t) ≥ δVj(t) for all t ∈ [T1, T2].

(iv) The function defined as Ũj = Xj − Uj evolves for t ∈ [T1, T2] according to

(4.16) ˙̃Uj(t) = TA,j(Ũ(t)), with Ũj(T1) = Xj(T1),

yielding Ũj(t) ≥ 0 for all t ∈ [T1, T2]. Thus, we obtain that Xj(t) ≥ Uj(t) for all
t ∈ [T1, T2].
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(v) Given a fixed T ∗ ∈ R such that 0 < T ∗ < T2 − T1, assume that there exists
γ > 0 such that Sj(s) ≥ γI for all s ≥ T ∗. Now by considering the function Vj

as in (4.10) with t̃ = T ∗ and using (i), we obtain Vj(T1 + s) = Sj(s) ≥ γI for all
s ∈ [T ∗, T2 − T1], noticing that t = T1 + s ∈ J = [T1 + T ∗, T2] ⊂ [T1, T2] whenever
s ∈ [T ∗, T2−T1]. Then by multiplying V and γI in the last inequality by δ and using
(iii), we obtain Uj(t) ≥ δVj(t) ≥ ρI for all t ∈ J where ρ = δγ. Finally, using (iv),
we conclude the proof.

Remark 4. Note that, when considering an initial probability distribution π(ℓ) as
in (4.2) for some ℓ ∈ {1, . . . , m̄}, we haveXj(t) = 0 for all t ≥ 0 and j /∈ Srec,ℓ. Indeed,
for such a j, pj(t) = 0 for all t ≥ 0, and from (4.6) we have Xj(t) = E{x(t)x(t)′|θ(t) =
j}pj(t) = 0.

Theorem 4.5. The following statements are equivalent:
(i) The tuple (A,B,Λ) is AR.
(ii) There exists ρ > 0 such that for each initial condition x0 and π we have

Xj(t) ≥ ρI for all t belonging to an interval J ⊂ [T1, T2] and all j ∈ Sπ,rec.
(iii) There exists ρ > 0 such that for each initial condition x0 and π we have

E{x(t)x(t)′} ≥ ρI for all t belonging to an interval J ⊂ [T1, T2].

Proof. (i) ⇒ (ii). Suppose that (A,B,Λ) is AR. From Lemma 4.3(ii) we obtain
Sj(t) > 0 for all t > 0 and j ∈ Sπ,rec, for each initial probability distribution π.
Statement (ii) of Lemma 4.4 implies that for any fixed t̃ > 0 there exists γ > 0 such
that Sj(s) ≥ γI for all s ≥ t̃. In particular, consider t̃ such that 0 < t̃ < T2 − T1. By
Lemma 4.4(iv) there exists ρ > 0 such that Xj(t) ≥ ρI for all t ∈ J ⊂ [T1, T2].

(ii) ⇒ (iii). The fact that E{x(t)x(t)′} =
∑

i∈S Xi(t) ≥ Xj(t) leads to the result.
(iii) ⇒ (i). We proceed by contradiction, assuming that (A,B,Λ) is not AR.

Then, by Theorem 4.2 there exists π(ℓ) as in (4.2) such that (A,B,Λ) is not π(ℓ)−AR.
Lemma 4.3(i) implies that Sj(t̄) is not positive definite for a certain t̄ > 0 and some
j ∈ Sπ(ℓ),rec = Srec,ℓ; that is, there exists v ∈ Rn different from zero such that
v′Sj(t̄)v = 0. This equality can be extended to a general t ≥ 0 using the equivalence
of (i) and (ii) of Lemma 3.2, and differentiation yields v′Ṡj(t)v = 0 for all t ≥ 0. Note
that, by the extension of the Cholesky decomposition result for positive semidefinite
matrices, we have that for each t > 0 there exists an appropriate matrix Yt ∈ Rn such
that Sj(t) = YtY ′

t , which can be employed to show that Sj(t)v = 0. In this manner,
the terms v′(AjSj(t) + Sj(t)A′

j)v and λjjv′Sj(t)v become zero for all t ≥ 0 in the

derivative v′Ṡj(t)v (see (3.1)). Hence we have
∑

i∈Srec,ℓ, i̸=j v
′λijSi(t)v+v′BjB′

jv = 0,

which is a sum involving positive semidefinite matrices. Then we obtain v′Si(t)v = 0
for all t ≥ 0 and all i ∈ Srec,ℓ. Now, assume x0 = 0, yielding X(0) = 0. Thus
X(t) ≤ S(t), which in turn implies v′Xi(t)v = 0 for all t ≥ 0 and all i ∈ Srec,ℓ.
Finally, we obtain Xj(t) = 0 for all t ≥ 0 and j /∈ Srec,ℓ (see Remark 4), and then
v′E{x(t)x(t)′}v =

∑
i∈Srec,ℓ

v′Xi(t)v = 0 for all t ≥ 0.

The single reason we cannot take T2 to infinity in the previous results is that
(4.8) holds for finite T2 only. However, if we restrain the analysis to the situation
where only recurrent Markov states are visited, we can replace Sπ by Sπ,rec in (4.8)
(and in other relevant passages including (3.1)), which now holds for all t ≥ T1. In
the particular case where we only require positiveness (not uniform) of the second
moment average, we could set T1 = 0. Joining these arguments, we get the following
result. Let Π be the set of distributions “exciting recurrent Markov states only”;
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formally, if we set Srec =
⋃m

ℓ=1 Srec,ℓ, with Srec,ℓ as in (4.1), then

(4.17) Π =

{
π ∈ RN :

∑

i∈Srec

πi = 1

}
.

Definition 4.6. The system (A,B,Λ) is Π-AR if and only if it is π-AR for all
π ∈ Π.

Corollary 4.7. The following statements are equivalent:
(i) The tuple (A,B,Λ) is Π-AR.
(ii) There exist ρ > 0 and T > T1 such that for each initial condition x0 and

π ∈ Π we have Xj(t) ≥ ρI for all t ≥ T and all j ∈ Sπ,rec.
(iii) There exist ρ > 0 and T > T1 such that for each initial condition x0 and

π ∈ Π we have E{x(t)x(t)′} ≥ ρI for all t ≥ T .
(iv) For each initial condition x0 and π ∈ Π we have Xj(t) > 0 for all t > 0 and

all j ∈ Sπ,rec.

000 5 55
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Fig. 2. Smallest eigenvalue of Xj(t), j ∈ S = {1, 2, 3}, for the system in Example 4(a).

Example 4 (AR and the Markov chain structure). Consider the system
(A,B,Λ) with

A1 =

(
−1 0.05
10 −1

)
, A2 =

(
1 −0.9
1.1 0.6

)
, A3 =

(
0 −1.7
1.4 −0.5

)
,

B1 =

(
1 0.2 −1.9

−0.1 1.4 −0.3

)
, B2 = B3 = 0,

x(0) with Gaussian distribution with zero mean and covariance matrix 100I. We shall
consider different values for π and Λ. Let πa = πc = (0 0 1), πb = (0 1 0),

Λa =

⎛

⎝
−1 0.5 0.5
0.5 −2 1.5
0.9 0.1 −1

⎞

⎠ , Λb =

⎛

⎝
−1 1 0
2 −2 0
0.9 0.1 −1

⎞

⎠ , Λc =

⎛

⎝
−1 1 0
2 −2 0
0 0 0

⎞

⎠ .D
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(a) Let π = πa and Λ = Λa. The Markov chain is ergodic so that we have only
one irreducible set (m̄ = 1), given by Srec,1 = {1, 2, 3}. We take, e.g., π(1) = (1 0 0)
and compute the reachability matrices by (3.7) to find that rank(Rj) = 2 for j ∈
S = {1, 2, 3}. From Theorem 4.2 we conclude that the system is both π(1)-AR and
AR. Note from Figure 2 that Xj(t) is positive for t > 0 and j ∈ S, and consequently
E{x(t)x(t)′} > 0, confirming Theorem 4.5. AR implies Π-AR, and Figure 2 also
confirms Corollary 4.7 (we have obtained ρ ≈ 45 and T = 2.5).

(b) Consider π = πb and Λ = Λb. We have m̄ = 1, Srec,1 = {1, 2}. For π(1) =
[1 0 0] we compute the reachability matrices by (3.7) and conclude that (A,B,Λ) is
π(1)-AR and AR. We obtain that X3(t) = 0 and Xj is positive definite for recurrent
Markov states only (as seen in Figure 3), confirming Theorem 4.5 and Corollary 4.7.

(c) Let π = πc and Λ = Λc. In this case we have m̄ = 2, Srec,1 = {1, 2}, and
Srec,2 = {3}; we can set π(1) = [1 0 0] and π(2) = [0 0 1] and use (3.7) to obtain
that rank(Rj) = 2 for j ∈ Sπ(1),rec = Srec,1, and rank(R3) = 0, thus concluding that

the system is π(1)-AR and not π(2)-AR. Consequently, (A,B,Λ) is not AR. Note also
that E{x(t)x(t)′} tends to zero when t increases, as illustrated in Figure 4. In this
example, π /∈ Π; hence Corollary 4.7 does not apply.

00 55

140004500

tt

λ
(X

1
(t
))

λ
(X

2
(t
))

Fig. 3. Smallest eigenvalue of Xj(t), j ∈ {1, 2}, for the system in Example 4(b).

5. Error boundedness of linear state estimation. The concept of AR can
be applied in state estimation problems to characterize stability of the estimator and
the positiveness of the covariance matrix of the estimation error. Therefore, in this
section we assume that the variable x is indirectly observed as described by the system

dx(t) = Aθ(t)x(t)dt +Bθ(t)dw(t),

dy(t) = Cθ(t)x(t)dt+Dθ(t)dv(t),

(5.1)

where y(t) ∈ Rny is the measurement process and Dθ(t)D
′
θ(t) > 0 (nonsingular mea-

surement noise) for each t ≥ 0. In this section we study the LMMSE proposed in [8],
which is one of the most successful filters for continuous-time MJLSs. To be consistent
with [8] we consider the following.
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0 10

100

t

λ
(E
{x

(t
)x
(t
)′
})

Fig. 4. Smallest eigenvalue of E{x(t)x(t)′}, t ∈ [0, 5], for the system in Example 4(c).

Assumption 5. The Markov chain is ergodic, and pj(t) is positive for all j ∈ S
and t ≥ 0.

Assumption 6. {v(t)}t≥0 is a Wiener process of dimension nv with incremental
covariance operator Ivdt (Iv is the identity matrix of dimension nv × nv) satisfying
E{w(t)v(t)′} = 0 and E{x0v(t)′} = 0.

Remark 5. Assumptions 5 and 6 appear in the derivation of the LMMSE in [8].
Although some results and most of the elements in the proofs of this section are
irrespective of these assumptions, or may be adapted to situations where they are
void, we are inevitably tied to them when using the LMMSE, because Assumption 5
ensures existence of the estimator and Assumption 6 is linked with the optimality.

By defining x̂(t) as the state estimate at time instant t and setting x̃(t) = x(t)−
x̂(t), it is shown in [8] that

(5.2) dx̃(t) = (Aθ(t) −Kθ(t)(t)Cθ(t))x̃(t)dt +Bθ(t)dw(t) −Kθ(t)(t)Dθ(t)dv(t),

where K(t) = (K1(t), . . . ,KN (t)) is a certain set of gains of appropriate dimensions.
We define Q(t) = E{x̃(t)x̃(t)′|Ft,Gt}, where Ft = σ{y(s) : 0 ≤ s ≤ t} and Gt =
σ{θ(s) : 0 ≤ s ≤ t} are the σ-fields generated by the measurement process and the
Markov chain until the time instant t, respectively. Using standard machinery from
filtering theory for time varying linear systems theory, we can derive the following
linear differential equation related to Q:

(5.3)
Q̇(t) = (Aθ(t) −Kθ(t)(t)Cθ(t))Q(t) +Q(t)(Aθ(t) −Kθ(t)(t)Cθ(t))

′ +Bθ(t)B
′
θ(t)

+Kθ(t)(t)Dθ(t)D
′
θ(t)K

′
θ(t)(t), t ≥ 0,

with Q(0) = Ψ− x̄0x̄′
0 ∈ Rn0. We also introduce the average matrix

Qj(t) = E{Q(t)1{θ(t)=j}}, j ∈ S.
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Now, when differentiating the average matrix Qj(t) we obtain

(5.4)
Q̇j(t) = (Aj −Kj(t)Cj)Qj(t) +Qj(t)(Aj −Kj(t)Cj)

′ +
N∑

i=1

λijQi(t)

+ (BjB
′
j +Kj(t)DjD

′
jK

′
j(t))pj(t).

Proposition 5.1. If (A,B,Λ) is AR, then Qj(t) > 0 for all t > 0 and j ∈ S, or,
equivalently, there is no nontrivial projection operator P such that P(x̃(t)) = 0 (a.s.).

Proof. In this proof, for brevity we write E (a.s. t, j) for any event E such that
P (E|θ(t) = j) = 1. We proceed by contradiction supposing that there exist t > 0 and
v ̸= 0 such that vQj(t)v = 0 for some j ∈ S. Recalling that we have assumed pj(t) > 0,
this is equivalent to v′E{Q(t)|θ(t) = j}v = 0, yielding P (v′Q(t)v = 0|θ(t) = j) = 1,
that is, v′Q(t)v = 0 (a.s. t, j). Consider Γ(·, ·) the transition matrix of ż = (Aθ(s) −
Kθ(s)(s)Cθ(s))z. For each realization of {θ(t)}t≥0 the estimation error matrix Q(t)
can be written as

Q(t) =Γ(t, 0)Q(0)Γ(t, 0)′ +

∫ t

0
Γ(t, τ)B̃(τ)W̃ (τ)B̃(τ)′Γ(t, τ)′dτ,

where B̃(t) =
[
Bθ(t) −Kθ(τ)(τ)Dθ(t)

]
and

(5.5) W̃ (t) =

[
Iw 0
0 Iv

]
,

where 0 represents a null matrix of appropriated dimensions. Thus, v′Q(t)v = 0 (a.s.
t, j) yields W̃ (τ)B̃(τ)′Γ(t, τ)′v = 0 (a.s. t, j) for all τ ∈ [0, t], which in turn leads to
Q(0)Γ(t, 0)′v = 0 and

(5.6) B′
θ(τ)Γ(t, τ)

′v = 0 and Kθ(τ)(τ)
′Γ(t, τ)′v = 0 (a.s. t, j) for 0 ≤ τ ≤ t,

due to the positiveness of both W̃ (t) and Dθ(t)D
′
θ(t) for each t. Noting that

dΓ(t, τ)

dτ
= −Γ(t, τ)(Aθ(τ) −Kθ(τ)(τ)Cθ(τ))

and using (5.6), one obtains

(5.7) v′
dΓ(t, τ)

dτ
= −v′Γ(t, τ)Aθ(τ) (a.s. t, j) for 0 ≤ τ ≤ t.

Now consider the state transition matrix Φ linked with the solution of (1.1). It is
simple to check for each realization of the chain that

(5.8) v′
dΦ(t, τ)

dτ
= −v′Φ(t, τ)Aθ(τ) for 0 ≤ τ ≤ t.

From (5.7) and (5.8), and the fact that Γ(t, t) = Φ(t, t) = I, we obtain

(5.9) Γ(t, τ)′v = Φ(t, τ)′v (a.s. t, j) for 0 ≤ τ ≤ t.

Next we shall show that (A,B,Λ) is not AR, considering a version of system (1.1)
with different statistics for the initial condition; in order to avoid any confusion with
(1.1), we will introduce the system

(5.10) dζ(t) = Aθ(t)ζ(t)dt+Bθ(t)dw(t),

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 1

43
.1

07
.1

83
.2

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2082 ALFREDO R. R. NARVÁEZ AND EDUARDO F. COSTA

with initial condition satisfying E{ζ(0)} = 0 and E{ζ(0)ζ(0)′} = Ψ − x̄0x̄′
0. Note

that (5.10) is AR because the AR notion is irrespective of the statistics of the initial
condition. We also introduce the process X (t) = E{ζ(t)ζ(t)′|Gt}, which satisfies for
each realization of the chain

X (s) = Φ(s, 0)(Ψ − x̄0x̄
′
0)Φ(s, 0)

′ +

∫ s

0
Φ(s, τ)Bθ(τ)B

′
θ(τ)Φ(s, τ)

′dτ for all s > 0.

Then, since Q(0)Γ(t, 0)′v = 0, the first equality in (5.6) and that in (5.9) produce
v′X (t)v = 0 (a.s. t, j). Hence we have 0 = v′E{X (t)|θ(t) = j}v = v′E{ζ(t)ζ(t)′|θ(t) =
j}v = v′E{ζ(t)ζ(t)′1{θ(t)=j}}v, which is a contradiction with the AR of system (5.10)
(see Corollary 4.7(iv)). Thus, we have shown that

(5.11) Qj(t) > 0 for all t > 0, j ∈ S.

It remains to prove that for any nontrivial projection operator P acting on subspaces
of Rn we obtain Px̃(t) ̸= 0 for all t > 0. In fact, let us suppose that there exists P
such that Px̃(t) = 0 (a.s.) for some t > 0. That is, there exists v ∈ Rn, v ̸= 0, such
that (v′x̃(t))v = vv′x̃(t) = 0 (a.s.) for some t > 0 and v ̸= 0, which is equivalent to
v′x̃(t) = 0 (a.s.). This is equivalent to v′Qj(t)v = v′E{x̃(t)x̃(t)′|θ(t) = j}pj(t)v = 0
for some t > 0 and v ̸= 0, which is absurd in view of (5.11).

Apart from characterizing positiveness of the average error covariance, a natural
question refers to its boundedness. [17] provides an answer by showing that Qj(t)
converges as time tends to infinity whenever the system is mean square detectable, ir-
respective of AR of (A,B,Λ). In the remainder of this section we assume boundedness
of Q.

Assumption 7. There exists a matrix Q∗ ∈ Rn0 such that Qj(t) ≤ Q∗ for all
t ≥ 0 and j ∈ S.

Expanding on the boundedness of Q, we study its invariance under perturbations
on the model. This issue has been addressed in the filtering literature, with some
variations, under the general denomination of filter stability and error bound filter or
error sensitivity; see, e.g., [21, 28] for systems without Markov jumps. For discrete-
time MJLSs some preliminary studies were presented in [18]. Here, we introduce
perturbations on the initial condition of (5.3) and study its new solution, denoted by
P (t), which satisfies

(5.12)

Ṗ (t,Σ) = (Aθ(t) −Kθ(t)(t)Cθ(t))P (t,Σ) + P (t,Σ)(Aθ(t) −Kθ(t)(t)Cθ(t))
′

+Bθ(t)B
′
θ(t) +Kθ(t)(t)Dθ(t)D

′
θ(t)Kθ(t)(t)

′,

P (0,Σ) = Σ,

where Σ ∈ Rn0. If P is average bounded for any Σ ∈ Rn0, we say that the filter
is stable. Stability is relevant when implementing the filter because the modeled
initial condition Ψ− x̄0x̄′

0 may contain errors, and even infinitesimal errors may cause
fast divergence of P ; see Example 6. Q(t) can be interpreted as the “modeled error
covariance” linked with (1.1), based on which the gain function K(t) is designed
(in fact, Kj(t) = Qj(t)C′

j(DjDjpj(t))−1, j ∈ S, as prescribed in [8]), while P (t) is
interpreted as the “actual error covariance” of the estimates obtained with this gain
function.

Definition 5.2. We say that the LMMSE is stable if, for each Σ ∈ Rn0, there
exists P ∗ ≥ 0 such that E{P (t)} ≤ P ∗ for all t ≥ 0, where P (t) is given by (5.12).
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Theorem 5.3. If Assumption 7 holds and Qj(t) > 0 for all t > 0 and j ∈ S, then
the LMMSE is stable.

Proof. For a fixed t∗ > 0 we have Q(t∗) ≥ µI for some µ > 0. By differentiating
E{P (t)1{θ(t)=j}} and denoting Ṗj(t) = d

dt

(
E{P (t)1{θ(t)=j}}

)
, j ∈ S, we obtain

(5.13)

Ṗj(t,Σ) = (Aj −Kj(t)Cj)Pj(t,Σ) + Pj(t,Σ)(Aj −Kj(t)Cj)
′ +

N∑

i=1

λijPi(t,Σ)

+ (BjB
′
j +Kj(t)DjD

′
jKj(t)

′)pj(t).

For each Σ there exists a sufficiently small ϵ > 0 such that the following inequalities
hold: ϵµ < 1 and ϵPj(t∗,Σ) ≤ I; the later inequality allows us to write

(5.14) ϵµPj(t
∗,Σ) ≤ µI ≤ Qj(t

∗).

Now, consider the functions Zj(t) = Qj(t) − ϵµPj(t,Σ) for each j ∈ S and t ≥ t∗

satisfying

(5.15) Żj(t) = TA−K(t)C,j(Z(t)) + (BjB
′
j +Kj(t)DjD

′
jKj(t)

′)(1 − ϵµ)pj(t).

From (5.14) and 1−ϵµ > 0, one can check that the solution of (5.15) is positive definite
for t ≥ t∗ and j ∈ S. This fact and Assumption 7 lead to Pj(t) ≤ P ∗ for t ≥ t∗ and
all j ∈ S, where P ∗ = (ϵµ)−1Q∗. Finally we have E{P (t)} =

∑
i∈S Pi(t) ≤ NP ∗,

concluding the proof.

The above result and Proposition 5.1 lead to the following.

Corollary 5.4. If Assumption 7 holds and (A,B,Λ) is AR, then the LMMSE
is stable.

Remark 6. The arguments in the proof of Theorem 5.3 are irrespective of As-
sumptions 5 and 6, so the result can be directly extended to other linear estimators.

Remark 7. It is shown in [8] for a mean square- (MS-) detectable and MS-
stabilizable system that Q(t) converges and the associated gains given by
K∗

i = limt→∞ Ki(t), i ∈ S, yield an MS-stable limiting dynamics Ai −K∗
i Ci, which

can be employed to show that the LMMSE is stable. This means that MS-detectability
and MS-stabilizability work together as a sufficient condition for the stability of the
filter, in this sense competing with AR; in fact, there are systems that are AR and not
MS-stabilizable; see Example 5. Note that the proof of Theorem 5.3 is irrespective
of the limiting dynamics of the system, which may allow for future extensions. As a
simple example, we can replace matrices Ci by periodic matrices Ci(t + δ) = Ci(t)
(with period δ > 1), thus avoiding the convergence of Q(t), and still keep Theorem
5.3 unaltered. Another example is given in Remark 9 and Example 7.

Remark 8 (plant with correlated noise). The noise processes affecting variables x
and y may be correlated in many applications. With this motivation, and as an illus-
tration of a simple extension of our results, we address here the case of correlated noise
processes (weakening Assumption 6). The same formulation for the estimator given
in [8] is considered here because it is still appealing due to its relative simplicity (gains
can be precomputed and stored) and the fact that the degree of suboptimality may be
relatively small depending on how correlated the noises are. Let E{w(t)v(t)′} = W (t).
The single change we have in Proposition 5.1 is that instead of (5.5) we have

W̃ (t) =

[
Iw W (t)

W (t)′ Iv

]
.
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Then, a sufficient condition for the result of Proposition 5.1 to remain valid is

W (t) is such that W̃ (t) > 0, t > 0.

Note that positiveness of W̃ was automatically granted when W (t) = 0; this is also
true when ∥W (t)∥ is small enough. Theorem 5.3 is valid in this setup, as mentioned
in Remark 5. Then, we conclude that the filter is stable provided the MJLS is AR
and the above additional condition is valid.

Remark 9 (plant with time-varying noise covariance). We give here an extension
of our stability result to a class of systems featuring time-varying intensity of the
additive noise in the variable x, modeled as

dx(t) = Aθ(t)x(t)dt + Fθ(t)(t)dw(t),

dy(t) = Cθ(t)x(t)dt +Dθ(t)dv(t).

Consider the same filter formulation of the LMMSE, except that F is now time de-
pendent, and consider Assumptions 1–3 and 5–7 (Assumption 4 is relaxed to cope
with the above setup). It is well known that the error covariance matrix increases
with the intensity of the additive noise, or, formally, if we denote by Q(t, F ) the error
covariance to emphasize the dependence on F , and if we denote by G a set of matrices
of the same dimension as F , then it can be shown that Q(t, F ) ≥ Q(t, G) whenever
FF ′ ≥ GG′. Then, provided we find a set of matrices G such that Fi(t)Fi(t)′ ≥ GiG′

i

for all t ≥ 0 and check that (A,G,Λ) is AR, from the above relation and Proposition
5.1 we obtain Q(t, F (t)) ≥ Q(t, G) > 0. Moreover, one can easily check that Theorem
5.3 remains valid for the above system, allowing us to conclude that the filter is stable
whenever (A,G,Λ) is AR and G fulfils Fi(t)Fi(t)′ ≥ GiG′

i, t ≥ 0. An illustration is
given in Example 7.

Example 5. Let A and B be as in Example 4(a), and let

C1 =
(
1 1

)
, C2 =

(
0 −0.5

)
, C3 =

(
1 0

)
, D1 = D2 = D3 = 1,

Λ =

⎛

⎝
−1 0.5 0.5
0.5 −2 1.5
0.01 0.99 −1

⎞

⎠ , π = 1/3 (1 1 1) , x̄0 =

(
1.1
−1.5

)
, and Ψ = I ∈ R2.

First, we consider Ψ − x̄0x̄′
0 as the initial covariance matrix for the LMMSE design

(“nominal setup”), and, in a second step, we employ this filter for estimating the
state of a system with initial covariance Σ (“actual setup”). We have computed
Qi(t) via (5.4) and checked Assumption 7 by direct inspection of the “nominal” error

Q(t) =
∑N

i=1 Qi(t). AR of (A,B,Λ) has been checked in Example 4, so that Theorem
5.3 ensures that the filter is stable. Figure 5 illustrates the norm of the “actual” error
P (t) for five different initial conditions P (0) = Σ, confirming that P (t) is bounded. We
mention in connection with Remark 7 that, by applying the linear matrix inequalities
test appearing in [8], the system is not MS-stabilizable.

Example 6. Consider the system (A,B,C,D,Λ) with

A1 =

(
0 0
0 −1

)
, A2 = 0, A3 = I, C1 = C3 = 0, C2 =

(
0 0

−10 0

)
,
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000000000
1

10

6

t

Fig. 5. Norm of the matrices E{P (t)} for different values of Σ (solid lines) and E{Q(t)} (dashed
line) on the interval [0, 10] for the LMMSE of Example 5.

0 30
10−6

1012

t

||E
{P

(t
)}
||

Fig. 6. Norm of the matrix E{P (t)} (logarithmic scale) on the interval [0, 30] for the LMMSE
of Example 6(a).

Bj = 0 ∈ R2,3, Dj = I ∈ R2, j ∈ S, and Λ, π, and x̄0 are as in Example 5. By
applying the rank test in Theorem 3.6, we check that the system is not AR. Now we
present the following two cases.

(a) Q(0) = 0 ∈ R2. The filter presents bounded nominal error Q(t) = 0, while
the actual error P (t) diverges exponentially as illustrated in Figure 6, where we have
considered Σ = 10−6I.

(b) Q(0) = I. We note from simulations with Σ = 1.7I that both the nominal
error Q(t) and the actual error P (t) are bounded; see Figure 7.

Example 7. We illustrate the stability conditions given in Remark 9 in a numer-
ical example. Consider parameters as in Example 5, and assume that F changes
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0

1.7

100.9 t

Fig. 7. Norm of the matrix E{P (t)} (solid line) and E{Q(t)} (dashed line) on the interval
[0, 10] for the LMMSE of Example 6(b).

periodically with period 5 according to the following rule. For each ℓ = 0, 1, . . . ,

F1(t) =

{
B1, 10ℓ ≤ t ≤ 10ℓ+ 5,

2B1 otherwise,

where B is as given in Example 5 (also Example 4(a)). Moreover, Fi(t) = Bi for i =
2, 3, t ≥ 0. Recall from Example 5 that (A,B,Λ) is AR, and note that F (t) ≥ B > 0,
so that from the results given in Remark 9 we conclude that the filter is stable. In
order to check this fact, similarly to Example 5, we show in Figure 8 the norm of
E{Q(t)} and E{P (t)} with different initial conditions, confirming that P is bounded,
as expected for a stable filter. Note that one would not be able to check stability of
the filter via its limiting behavior, as Q(t) does not converge.

6. Conclusions. We have studied the average reachability gramian for MJLSs
with emphasis on its nonsingularity. Systems featuring nonsingular average gramian
are referred to as AR (average reachable), and we introduce three notions of AR
depending on the initial distribution of the Markov state, ranging from the weaker
π-AR for situations when π is known, Π-AR when π excites recurrent Markov states
only, and AR when no information is available on π. A testable, necessary, and
sufficient condition for π-AR has been obtained in Theorem 3.6, based on which a
testable condition for AR is derived; see Theorem 4.2. The role of the AR notion in
the structure of the system excited by a Wiener process is explored, seeking positive-
ness of the state second moment E{x(t)x(t)′} and of the conditional second moment
Xj(t) for recurrent Markov states j. One difficulty is that Xj(t) is described by the
nonhomogeneous differential equation (4.7) involving the distribution πt, and we do
not assume any hypothesis on the Markov chain, which has forced us to introduce a
“modulated” second moment Sj(t) (see Remark 3) that plays a key role in linking
the definition of AR with the rank test of Theorem 3.6 and with the positiveness of
X , as stated in Theorem 4.5. Positiveness of the state second moment of an MJLS
does not mean that the state x(t) eventually reaches any neighborhood of Rn as it
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01

10

25t

Fig. 8. Norm of the matrices E{P (t)} for different values of Σ (solid lines) and E{Q(t)} (dashed
line) on the interval [0, 25] for the LMMSE of Example 7.

does in linear deterministic systems [11]; an illustration of a possible behavior of x(t)
is given in Example 2. The role of AR is studied in the context of linear filtering
to show that the error covariance matrix is positive with the interpretation that the
estimate is “never precise” in the sense of Proposition 5.1. We also show that AR
ensures stability of the LMMSE in [8], as stated in Corollary 5.4, meaning that the
error covariance matrix remains bounded under arbitrary perturbations on the initial
condition Ψ. The key passages in our analysis of the LMMSE are (5.6), which may
be interpreted as the filter gain not acting on subspaces where there is no noise in the
variable x, and the order preserving property of the differential equation (5.15), which
enabled us to employ the positiveness of Q in a productive way in (5.14); note also
that ergodicity of the Markov chain has never been employed in the arguments. As
illustrated in Remarks 8 and 9, these properties may remain unaltered or be adapted
when dealing with other problems, so that future work may look into extensions to
other systems and filters.
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