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1 Introduction
Let X be a Banach reflexive space, let us assume that A : D(A) ⊂ X → X is a closed densely
defined operator, η > 0, and θ ∈ [1/2, 1]. Let us suppose that (η, θ , A) is an admissible triple
in the sense of [4]. That is, there exist ψ ∈ (0,π/2) and M > 0 such that

∥
∥(λ – A)–1∥∥ ≤ M

1 + |λ|

for all λ ∈ S0,ψ :=
∑

ψ ∪{0}, where
∑

ψ := {λ ∈C : ψ ≤ | argλ| ≤ π} and either
(i) θ ∈ (1/2, 1], or

(ii) θ = 1/2 and π/2 > ψ/2 + arg(η +
√

η2 – 1).
If θ = 1/2, then we denote (η, 1/2, A) by (η, A).

For the admissible triple (η, 1/2, A) = (η, A), we consider the power space Xα associated
with A, following [14]. The main purpose of this paper is the study of existence and unique-
ness of weighted pseudo almost automorphic mild solutions of the abstract Cauchy prob-
lem

⎧

⎨

⎩

utt + 2ηA1/2ut + Au = f (t, u, ut), t > 0,

u(0) = u0 ∈ X1/2, ut(0) = v0 ∈ X,
(1.1)

where f is a Stepanov weighted pseudo almost automorphic function. Note that the wave
equation with structural damping

utt + 2η(–�)1/2ut + βut – �u = f (u), η,β > 0,
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can be represented in the abstract form (1.1). In this case, one can verify that (η, A) is
admissible.

The space of weighted pseudo almost automorphic functions was introduced by Blot
et al. in [3]. They gave some basic properties of this space and proved the existence and
uniqueness of weighted pseudo almost automorphic mild solutions for the problem u′(t) =
Au(t) + f (t, u(t)), when f is a weighted pseudo almost automorphic function. After that,
several papers about the existence of weighted pseudo almost automorphic mild solutions
to semilinear evolution equations when the nonlinearity is of weighted pseudo almost
automorphic type were written, see for example [11, 12] and the references therein.

On the other hand, the concept of Stepanov weighted pseudo almost automorphic
functions, which is more general than the weighted pseudo almost automorphic one,
was proposed by Xia and Fan in [19]. This time, the authors studied weighted pseudo
almost automorphic mild solutions of partial neutral functional differential equations
and integral equations with delay when the nonlinear term f is a Stepanov weighted
pseudo almost automorphic function. Later, Zhang et al. proved composition theorems
of Stepanov weighted pseudo almost automorphic functions and applied their results
to the existence and uniqueness of weighted pseudo almost automorphic mild solutions
to a class of nonautonomous evolution equations with Sp-weighted pseudo almost au-
tomorphic coefficients in [25]. In [16] the authors showed the existence and unique-
ness of a weighted pseudo almost automorphic solution of an integro-differential equa-
tion with weighted Sp-pseudo almost automorphic forcing term in a Banach space X.
Alvarez and Lizama in [1] proved the existence and uniqueness of weighted pseudo al-
most automorphic mild solutions for the two-term fractional order differential equation
Dα

t u′(t) + μDβ
t u(t) = Au(t) + Dαf (t, u(t)), where 0 < α ≤ β < 1, μ ≥ 0 and the nonlinear

forcing term is Sp-weighted pseudo almost automorphic. Otherwise, when the weight
is replaced by a suitable measure μ, there are works with similar results, see for exam-
ple [6, 7]. Also, Xia et al. in [20] worked with two suitable measures and they investi-
gated the existence and uniqueness of (μ,ν)-pseudo almost automorphic mild solutions
to a semilinear fractional differential equation with Riemann–Liouville derivative in a Ba-
nach space, where the nonlinear perturbation is of (μ,ν)-pseudo almost automorphic type
or Stepanov-like (μ,ν)-pseudo almost automorphic type. Yang and Zhu investigated the
properties of the p-mean Stepanov-like doubly weighted pseudo almost automorphic pro-
cesses and their application to Sobolev-type stochastic differential equations driven by
G-Brownian motion, see [24]. Cuevas et al. in [2] studied the asymptotic periodicity, Lp-
boundedness, classical (resp., strong) solutions, and the topological structure of solutions
set of strongly damped semilinear wave equations. Recently, Xia et al. in [22] introduced
and investigated the (μ,ν)-pseudo S-asymptotically ω-periodic functions of class r and
gave some applications. For related works, see [8, 13, 21] and the references therein.

Cuevas et al. in [9] studied asymptotic almost periodic mild solutions of problem (1.1).
However, to the best of our knowledge, the fact that the existence and uniqueness of
weighted pseudo almost automorphic mild solutions to (1.1) with the forcing term f be-
long to the space of Stepanov weighted pseudo almost automorphic functions is an un-
treated original problem, which constitutes one of the main motivations of this work.

In this article, we succeed in proving the existence of a unique weighted pseudo almost
automorphic mild solution for (1.1) when the nonlinear term f is a Stepanov weighted
pseudo almost automorphic function writing (1.1) as a first order abstract Cauchy prob-
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lem. Then, we use the fact that the associated semigroup (e–tA1/2 )t≥0 is exponentially
bounded in a suitable Banach space in order to prove that the mild solutions satisfy the
required regularity.

We point out that the definition of weight carries implicitly a measure μ-absolutely con-
tinuous with respect to the Lebesgue measure and its Radom–Nikodym derivative is ρ

since dμ(t) = ρ(t) dt. Then, the results of this paper can be extended to more general and
recent concepts of weighted pseudo almost automorphic functions in the context of mea-
sure theory [6, 7].

This paper is organized as follows. In Sect. 2 we recall some definitions, lemmas, and
preliminary results. In Sect. 3 we recall some composition theorems. Furthermore, we give
two convolution theorems. In Sect. 4 we give our main result and an application.

2 Preliminaries
In this section, we present some concepts and properties in order to develop the following
sections. Let X be a reflexive complex Banach space. For an interval I ⊂R, Cb(I, X) denotes
the space formed by the bounded and continuous functions from I into X, endowed with
the norm of uniform convergence. When X = R, we denote Cb(I) instead of Cb(I,R). The
notation C0(R+, X) stands for the subspace of Cb(R+, X) consisting of functions that vanish
at infinity. We denote by L(X) the Banach algebra of bounded linear operators defined
on X.

We recall some definitions about sectorial operators and fractional powers associated
with this type of operators.

Definition 2.1 (Sectorial operator [14]) We call a linear operator A in Banach space X a
sectorial operator if it is a closed densely defined operator such that, for some φ ∈ (0,π/2)
and some M ≥ 1 and real a, the sector

∑

a,φ := {λ ∈C : φ ≤ | arg(λ – a)| ≤ π} ⊂ ρ(A) and

∥
∥(λ – A)–1∥∥ ≤ M/|λ – a|

for λ ∈ ∑

a,φ \{a}.

Example 2.2 ([14]) If A is a bounded linear operator on a Banach space, then A is sectorial.

Definition 2.3 (Fractional powers of operators [14]) Suppose that A is a sectorial operator
and Reσ (A) > 0; then for any α > 0

A–α =
1

�(α)

∫ ∞

0
tα–1e–At dt.

Define Aα as the inverse of A–α(α > 0), D(Aα) = R(A–α).

Definition 2.4 (Fractional power space [14]) If A is a sectorial operator on a Banach space
X, define for each α ≥ 0

Xα = D
(

Aα
1
)

,

with the graph norm ‖x‖α = ‖Aα
1 x‖, x ∈ Xα . Here A1 = A + aI and a is chosen such that

Reσ (A1) > 0.
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On the other hand, note that problem (1.1) can be written as

⎧

⎨

⎩

[ u
v]t + A1/2[ u

v] = F(t, [ u
v]), t > 0,

[ u(0)
v(0) ] = [ u0

v0 ],
(2.1)

where

A1/2 =

[

0 –I
A 2ηA1/2

]

: D(A1/2) ⊆ X × X1/2 → X × X1/2 (2.2)

is defined by

⎧

⎨

⎩

A1/2[ ϕ

ψ ] = [ –ψ

Aϕ+2ηA1/2ψ
], [ ϕ

ψ ] ∈ D(A1/2) ⊂ X × X1/2,

F(t, [ u
v]) = [ 0

f (t,u,v) ].
(2.3)

If (η, A) is admissible, then by [4, Proposition 2.1] the following properties hold:
(i) A1/2 is a closed operator;

(ii) 0 ∈ ρ(A1/2);
(iii) If A has a compact resolvent, then A1/2 has a compact resolvent.

Moreover, by [4, Theorem 2.3] the operatorA1/2 is sectorial in X1/2 ×X and the semigroup
{e–A1/2t : t ≥ 0} is exponentially bounded, that is, there exist K ≥ 1 and C > 0 such that

∥
∥e–A1/2(t)∥∥

L(X1/2×X) ≤ Ke–Ct , t ≥ 0. (2.4)

Now, we present some definitions and main results of Stepanov weighted pseudo almost
automorphic functions.

Definition 2.5 Let f : R → X be a continuous function. We say that f is almost auto-
morphic if for every sequence of real numbers (s′

n), there exists a subsequence (sn) such
that

g(t) = lim
n→∞ f (t + sn)

is well defined for each t ∈R and

lim
n→∞ g(t – sn) = f (t)

for each t ∈R.

If the convergence in the above definition is uniform on R, we get almost periodicity in
the sense of Bochner and von Neumann.

Let Y be a Banach space. We have the following concept of parameter-dependent almost
automorphic function.

Definition 2.6 A continuous function F : R× Y → X is said to be almost automorphic if
F(t, u) is almost automorphic in t ∈R uniformly for all u ∈ K in any bounded subset of Y .
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Almost automorphic functions (denoted by AA(R, X)) (resp. AA(R× Y , X)) constitute a
Banach space when it is endowed with the sup norm. They naturally generalize the concept
of almost periodic functions. But the inverse is not true. A typical example of an almost
automorphic function which is not almost periodic (see [18]) is given by

ψ(t) =
2 + eit + e

√
2t

|2 + eit + e
√

2t| .

Lemma 2.7 ([17]) If f , f1, f2 ∈ AA(R, X), then
(i) f1 + f2 ∈ AA(R, X);

(ii) λf ∈ AA(R, X);
(iii) fα ∈ AA(R, X), where fα : R → X is defined by fα(·) = f (· + α),α ∈R;
(iv) The range Rf = {f (t) : t ∈R} is relatively compact in X , thus f is bounded in norm;
(v) If fn → f uniformly on R, where each fn ∈ AA(R, X), then f ∈ AA(R, X).

Definition 2.8 ([23]) A function f ∈ C(R, X) (resp. C(R× Y , X)) is called pseudo almost
automorphic if it can be decomposed as f = g +ϕ, where g ∈ AA(R, X) (resp. AA(R×Y , X))
and ϕ ∈ BC(R, X) with

lim
T→∞

1
2T

∫ T

–T

∥
∥ϕ(s)

∥
∥ds = 0

(resp. ϕ ∈ BC(R× Y , X) with

lim
T→∞

1
2T

∫ T

–T

∥
∥ϕ(s, u)

∥
∥ds = 0

uniformly for u in any bounded subset of Y ).

Denote by PAA(R, X) (resp. PAA(R × Y , X)) the collection of such functions, and
(PAA(R, X),‖ · ‖PAA) (resp. (PAA(R × Y , X),‖ · ‖PAA)) is a Banach space when endowed
with the sup norm. The function

fα,β ,γ (t) = cos

(
1

3 – sin t – 2 sinβt

)

+
e–|t|γ

(1 + |t|γ )α
, t ∈R,

is a pseudo almost automorphic function, where α ∈ (1,∞), β ∈ R/Q and γ ∈ [0,∞)
(see [19]).

Let U be the set of all functions ρ : R→ (0,∞) which are positive and locally integrable
over R. For a given T > 0 and each ρ ∈ U , set

μ(T ,ρ) =
∫ T

–T
ρ(t) dt.

Define

U∞ =
{

ρ ∈ U : lim
T→∞μ(T ,ρ) = ∞

}

,

Uβ =
{

ρ ∈ U∞ : ρ is bounded and inf
x∈R

ρ(x) > 0
}

.
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It is clear that Uβ ⊂ U∞ ⊂ U .
For ρ ∈ U∞, define

PAA0(R, X,ρ) =
{

f ∈ BC(R, X) : lim
T→∞

1
μ(T ,ρ)

∫ T

–T
ρ(s)

∥
∥f (s)

∥
∥ds = 0

}

,

PAA0(R× Y , X,ρ) =
{

f ∈ BC(R× Y , X) : lim
T→∞

1
μ(T ,ρ)

∫ T

–T
ρ(s)

∥
∥f (s, u)

∥
∥ds = 0

uniformly in u ∈ Y
}

.

Definition 2.9 ([3]) Let ρ ∈ U∞. A function f ∈ C(R, X) (resp. C(R × Y , X)) is called
weighted pseudo almost automorphic if it can be decomposed as f = g + ϕ, where g ∈
AA(R, X) (resp. AA(R× Y , X)) and ϕ ∈ PAA0(R, X,ρ) (resp. PAA0R× Y , X,ρ). Denote by
WPAA(R× Y , X,ρ) (resp. WPAA(R× Y , X,ρ)) the set of such functions.

Definition 2.10 The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function f : R → X
is defined by f b(t, s) = f (t + s).

Definition 2.11 Let p ∈ [1,∞). The space BSp(R, X) of all Stepanov bounded func-
tions, with the exponent p, consists of all measurable functions f : R → X such that
f b ∈ Lp(R, Lp([0, 1], X)). It is a Banach space with the norm

‖f ‖Sp =
∥
∥f b∥∥

L∞(R,Lp) = sup
t∈R

(∫ t+1

t

∥
∥f (τ )

∥
∥

p dτ

)1/p

.

Definition 2.12 ([5]) The space SpAA(R, X) of Stepanov-like almost automorphic func-
tions consists of all f ∈ BSp(R, X) such that f b ∈ AA(R, Lp([0, 1], X)).

Definition 2.13 ([19]) Let ρ ∈ U∞. A function f ∈ BSp(R, X) is said to be weighted
Stepanov-like pseudo almost automorphic if it can be decomposed as f = g + ϕ, where
gb ∈ AA(R, Lp([0, 1], X)) and ϕb ∈ PAA0(R, Lp([0, 1], X),ρ). Denote by SpWPAA(R, X,ρ)
the collection of such functions.

Definition 2.14 ([19]) Let ρ ∈ U∞. A function F : R × Y → X, (t, u) → F(t, u) with
F(·, u) ∈ Lp

loc(R, X) for each u ∈ Y is said to be weighted Sp-pseudo almost automor-
phic if it can be decomposed as F = G + H , where Gb ∈ AA(R × Y , Lp([0, 1], X)) and
Hb ∈ PAA0(R × Y , Lp([0, 1], X),ρ). The collection of such functions will be denoted by
SpWPAA(R× Y , X,ρ).

3 Convolution and composition results
In this section, we recall some well-known composition results in the context of almost
automorphic and weighted pseudo almost automorphic functions. Also, we give two con-
volution results, which are part of the new contributions of this work.

Lemma 3.1 If h : R → X1/2 × X is an almost automorphic function and

u(t) =
∫ t

–∞
e–A1/2(t–s)h(s) ds, t ∈R, (3.1)

then u is almost automorphic.
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Proof Let (s′
n) be a sequence in R. From Definition 2.5 there exists a subsequence (sn) such

that g(t) = limn→∞ h(t + sn) is well defined. Now, by (3.1),

∥
∥u(t + sn)

∥
∥ ≤

∫ ∞

0
Ke–Cβ

∥
∥h(t – β + sn)

∥
∥dβ .

It follows from Lemma 2.7 that u(t + sn) is well defined. On the other hand, we define

g̃(t) =
∫ ∞

0
e–A1/2(β)g(t – β) dβ .

Since g(t) = limn→∞ h(t + sn), given ε > 0, there exists Nε ∈N such that

∥
∥h(t + sn) – g(t)

∥
∥ < ε

for all t ∈ R, whenever n ≥ Nε . Then, for n ≥ Nε , we obtain

∥
∥u(t + sn) – g̃(t)

∥
∥ ≤

∫ ∞

0

∥
∥e–A1/2(β)[h(t – β + sn) – g(t – β)

]∥
∥dβ

≤
∫ ∞

0
Ke–Cβε dβ =

K
C

ε.

Therefore

lim
n→∞ u(t + sn) = g̃(t).

Analogously, we can show that

lim
n→∞ g̃(t – sn) =

∫ ∞

0
e–A1/2(β)h(t – β) dβ = u(t).

It follows that u is almost automorphic. �

Next, we recall the following composition theorems (see [15, Lemma 2.2] and [25, The-
orem 3.2], respectively).

Lemma 3.2 If f : R × X → X is almost automorphic, and assume that f (t, ·) is uniformly
continuous on each subset K ⊂ X uniformly for t ∈ R, that is, for any ε > 0, there exists δ > 0
such that x, y ∈ K and ‖x – y‖ < δ imply that ‖f (t, x) – f (t, y)‖ < ε for all t ∈R. Let φ : R → X
be almost automorphic. Then the function F : R → X defined by F(t) = f (t,φ(t)) is almost
automorphic.

Lemma 3.3 Let ρ ∈ U∞ and let f = g + ϕ ∈ SpWPAA(R × X, X,ρ) with gb ∈ AA(R ×
X, Lp([0, 1], X)),ϕb ∈ PAA0(R×X, Lp([0, 1], X),ρ). Suppose that f and g satisfy the following
conditions:

(i) f (t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for t ∈R;
(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for t ∈R;

(iii) For every bounded subset K ′ ⊂ X, {f (·, x) : x ∈ K ′} is bounded in SpWPAA(R, X).
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If x = α + β ∈ SpWPAA(R, X,ρ), with α ∈ SpA(R, X), βb ∈ PAA0(R, Lp([0, 1], X),ρ) and K =
{α(t) : t ∈R} is compact, then the function f (·, x(·)) belongs to SpWPAA(R, X).

The next lemma is one of our main results.

Lemma 3.4 If h : R+ → X1/2 × X is a Sp-weighted pseudo almost automorphic function
and

u(t) =
∫ t

0
e–A1/2(t–s)h(s) ds, t ≥ 0,

then u is weighted pseudo almost automorphic.

Proof Let X := X1/2 × X and h(s) = ψ1(s) + ψ2(s), where ψb
1 ∈ AA(R, Lp([0, 1], X)) and ψb

2 ∈
PAA0(R, Lp([0, 1], X),ρ). Consider the integrals

u(t) =
∫ t

0
e–A1/2(t–s)h(s) ds =

∫ t

0
e–A1/2(t–s)ψ1(s) ds +

∫ t

0
e–A1/2(t–s)ψ2(s) ds.

Thus

u(t) =
[∫ t

–∞
e–A1/2(t–s)ψ1(s) ds –

∫ 0

–∞
e–A1/2(t–s)ψ1(s) ds

]

+
[∫ t

–∞
e–A1/2(t–s)ψ2(s) ds –

∫ 0

–∞
e–A1/2(t–s)ψ2(s) ds

]

.

By [10, Lemma 11.2] and by [19, Lemma 4.1], we have that

∫ t

–∞
e–A1/2(t–s)ψ1(s) ds ∈ AA(R, X)

and
∫ t

–∞
e–A1/2(t–s)ψ2(s) ds ∈ PAA0(R, X,ρ),

respectively. Next, let us show that

G1(t) =
∫ 0

–∞
e–A1/2(t–s)ψ1(s) ds ∈ AA(R, X)

and

G2(t) =
∫ 0

–∞
e–A1/2(t–s)ψ2(s) ds ∈ PAA0(R, X,ρ).

Set

Xn(t) =
∫ –n+1

–n
e–A1/2(t–s)ψ1(s) ds, Yn(t) =

∫ –n+1

–n
e–A1/2(t–s)ψ2(s) ds.

Next we show that Xn ∈ AA(R, X). By Holder’s inequality, we obtain

∥
∥Xn(t)

∥
∥ ≤ K

∫ –n+1

–n
e–C(t–s)∥∥ψ1(s)

∥
∥ds
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≤ K
(∫ –n+1

–n
e–qC(t–s) ds

) 1
q
(∫ –n+1

–n

∥
∥ψ1(s)

∥
∥

p ds
) 1

p

≤ K
q√qC

(

e–qC(t+n–1) – e–qC(t+n)) 1
q ‖ψ1‖Sp

≤ Ke–Cte–Cn q

√

eqC – 1
qC

‖ψ1‖Sp , (3.2)

where q = p/(p – 1). Since the series K q
√

eqC –1
qC

∑∞
n=1 e–Cn is convergent, by the Weierstrass

test,
∑∞

n=1 Xn(t) is uniformly convergent on R
+.

Let X(t) =
∑∞

n=1 Xn(t), t ∈ R+, then

X(t) =
∫ 0

–∞
e–A1/2(t–s)ψ1(s), t ∈R

+.

Fix n ∈N. For each t ∈ R
+, we have

∥
∥Xn(t + h) – Xn(t)

∥
∥ ≤

∫ –n+1

–n

∥
∥e–A1/2(t–s)[ψ1(s + h) – ψ1(s)

]∥
∥ds

≤ K
∫ –n+1

–n
e–C(t–s)∥∥ψ1(s + h) – ψ1(s)

∥
∥ds −→ 0, as h → 0.

Thus, Xn(t) is continuous for each t ∈R+.
Next, we prove that Xn ∈ AA(R, X) for n ∈N. Let (s′

m)m∈N be a sequence of real numbers.
Since ψb

1 ∈ AA(R, Lp([0, 1], X),ρ), then there exist a subsequence (smk )k∈N and a function
v ∈ Lp

loc(R, ) such that, for any t ∈R
+,

(∫ t+1

t

∥
∥ψ1(s + smk ) – v(s)

∥
∥

p ds
) 1

p
−→ 0 as k → ∞.

Note that

Xn(t) =
∫ –n+1

–n
e–A1/2(t–s)ψ1(s) ds =

∫ –n+1

–n
e–A1/2(ξ )ψ1(t – ξ ) dξ

and define wn(t) =
∫ –n+1

–n e–A1/2(ξ )w1(t – ξ ) dξ . Then, by Holder’s inequality, we have

∥
∥Xn(t + smk ) – wn(t)

∥
∥

=
∥
∥
∥
∥

∫ –n+1

–n
e–A1/2(ξ )[ψ1(t + smk – ξ ) – v(t – ξ )

]
∥
∥
∥
∥

dξ

≤ K
∫ –n+1

–n
e–Cξ

∥
∥ψ1(t + smk – ξ ) – v(t – ξ )

∥
∥dξ

≤ K
(∫ –n+1

–n
e–qCξ dξ

) 1
q
(∫ –n+1

–n

∥
∥ψ1(t + smk – ξ ) – v(t – ξ )

∥
∥

p dξ

) 1
p

≤ Cq(K , C)
(∫ –n+1

–n

∥
∥ψ1(t + smk – ξ ) – v(t – ξ )

∥
∥

p dξ

) 1
p

→ 0,
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as k −→ ∞. Similarly, we obtain that ‖wn(t – smk ) – Xn(t)‖ → 0, when k → ∞. There-
fore, Xn(t) ∈ AA(R, X) for n ∈N. By Lemma 2.7, we have X(t) =

∑∞
n=1 Xn(t) ∈ AA(R, X). To

complete the proof, we shall prove Yn ∈ PAA0(R, X,ρ). By carrying out similar arguments
as above, we know that Yn ∈ BC(R, X) and

∑∞
n=1 Yn(t) is uniformly convergent on R. Let

Y (t) =
∑∞

n=1 Yn(t), then

Y (t) =
∫ 0

–∞
e–A1/2(t–s)ψ2(s) ds, t ∈R

+.

It is obvious that Y (t) ∈ BC(R, X). So, we only need to show that

lim
T→∞

1
μ(T ,ρ)

∫ T

–T
ρ(t)

∥
∥Y (t)

∥
∥dt = 0.

In fact, first of all, we have the following estimate:

∥
∥Yn(t)

∥
∥ ≤ K

∫ –n+1

–n
e–C(t–s)∥∥ψ2(s)

∥
∥ds

≤ K
(∫ –n+1

–n
e–qC(t–s) ds

) 1
q
(∫ –n+1

–n

∥
∥ψ2(s)

∥
∥

p ds
) 1

p

≤ Ke–Cte–Cn q

√

eqC – 1
qC

(∫ –n+1

–n

∥
∥ψ2(s)

∥
∥

p ds
) 1

p

≤ Cq(K , C)
(∫ –n+1

–n

∥
∥ψ2(s)

∥
∥

p ds
) 1

p
.

Then

1
μ(T ,ρ)

∫ T

–T
ρ(t)

∥
∥Y (t)

∥
∥dt ≤ Cq(K , C)

μ(T ,ρ)

∫ T

–T

(∫ –n+1

–n

∥
∥ψ2(s)

∥
∥

p ds
) 1

p
dt.

Consequently, Yn ∈ PAA0(R, X,ρ) since ψb
2 ∈ PAA0(R, Lp([0, 1], X),ρ). From Yn ∈ PAA0(R,

X,ρ) and

1
μ(T ,ρ)

∫ T

–T
ρ(t)

∥
∥Y (t)

∥
∥dt ≤ 1

μ(T ,ρ)

∫ T

–T
ρ(t)

∥
∥
∥
∥
∥

Y (t) –
N
∑

n=1

Yn

∥
∥
∥
∥
∥

dt

+
N
∑

n=1

1
μ(T ,ρ)

∫ t

–T
ρ(t)

∥
∥Yn(t)

∥
∥dt,

it follows that Y (t) ∈ PAA0(R, X,ρ). Therefore, u ∈ WPAA(R, X,ρ). �

4 Weighted pseudo almost automorphic mild solutions
We introduce the definition of mild solution to problem (2.1) (or (1.1)).

Definition 4.1 Let [ u0
v0

] be in X1/2 ×X. We say that [ u(·)
v(·) ] : R+ → X1/2 ×X is a mild solution

to (2.1) if it satisfies
[

u(t)
v(t)

]

= e–A1/2(t)

[

u0

v0

]

+
∫ t

0
e–A1/2(t–s)F

(

s,

[

u(s)
v(s)

])

ds (t ≥ 0).
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The next theorem is the main result of this paper.

Theorem 4.2 Let f : R+ × X1/2 × X → X be a weighted Stepanov-like pseudo almost auto-
morphic function as in Lemma 3.3, and assume that there exists a locally integrable func-
tion Lf : R →R satisfying

∥
∥f (t, u1, v1) – f (t, u2, v2)

∥
∥

X ≤ Lf (t)
[‖u1 – u2‖X1/2 + ‖v1 – v2‖X

]

(4.1)

for all [ ui
vi

] ∈ X1/2 × X, i = 1, 2, and each t ≥ 0. If

K sup
t≥0

∫ t

0
e–C(t–s)Lf (s) ds < 1, (4.2)

where K and C are given in (2.4), then (2.1) (and hence (1.1)) has a unique weighted pseudo
almost automorphic mild solution.

Proof We define the map F : WPAA(R+ × (X1/2 × X), X) → WPAA(R+ × (X1/2 × X), X) by
the expression

F

([

u
v

])

(t) = e–A1/2t

[

u0

v0

]

+
∫ t

0
e–A1/2(t–s)f

(

s,

[

u(s)
v(s)

])

ds, t ∈R
+, (4.3)

where [ u(·)
v(·) ] is a weighted pseudo almost automorphic function.

Since f ∈ WPAA(R+ × (X1/2 × X), X) ⊂ SpWPAA(R+ × (X1/2 × X), X), by Lemmas 3.3
and 3.4 we have that

G(t) =
∫ t

0
e–A1/2(t–s)f

(

s,

[

uaa(s)
vaa(s)

])

ds ∈ WPAA
(

R
+ × (

X1/2 × X
)

, X
)

. (4.4)

On the other hand, by (2.4) we have that

B(t) = T(t)

[

u0

v0

]

∈ C0
(

R
+, X1/2 × X

)

. (4.5)

Hence B ∈ WPAA(R+ × (X1/2 × X), X). In consequence, we get that F(WPAA(R+ ×
(X1/2 × X)) ⊂ WPAA(R+ × (X1/2 × X), X). It is enough to show that the operator F has
a unique fixed point in WPAA(R+ × (X1/2 × X), X). For this, we consider that [ u1

v1
], [ u2

v2
] ∈

WPAA(R+ × (X1/2 × X), X). We can deduce that
∥
∥
∥
∥
∥
F

[

u1

v1

]

– F

[

u2

v2

]∥
∥
∥
∥
∥∞

= sup
t>0

∥
∥
∥
∥
∥
F

[

u1

v1

]

(t) – F

[

u2

v2

]

(t)

∥
∥
∥
∥
∥

X1/2×X

≤ K sup
t≥0

∫ t

0
e–C(t–s) · ∥∥f

(

s, u1(s), v1(s)
)

– f
(

s, u2(s), v2(s)
)∥
∥

X ds

≤ K sup
t≥0

∫ t

0
e–C(t–s)Lf (s) · [∥∥u1(s) – u2(s)

∥
∥

X1/2 +
∥
∥v1(s) – v2(s)

∥
∥

X

]

ds
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≤
(

K sup
t≥0

∫ t

0
e–C(t–s)Lf (s) ds

)
∥
∥
∥
∥
∥

[

u1

v1

]

–

[

u2

v2

]∥
∥
∥
∥
∥∞

.

By the contraction principle, F has a unique fixed point in WPAA(R+ × (X1/2 × X), X).
This completes the proof. �

Next, we give an application to our main result.

Example 4.3 Suppose that h, g ∈ C(R,R), a : R →R (b : R+ →R) is a bounded continuous
function, ν,μ ∈ R, δ > 0 and ρ1,ρ2 ∈ (1, +∞). In a bounded smooth domain � ⊆ R

N , we
consider the following partial differential equation:

utt + νb(t)ut + �2u – δut = μa(t)
(

h(u)∇ · u + g(u)�u
)

, x ∈ �, t ≥ 0,

u = �u = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ �,

(4.6)

where h and g satisfy the following growth conditions:

∣
∣h(s1) – h(s2)

∣
∣ ≤ Ch|s1 – s2|

(

1 + |s1|ρ1–1 + |s2|ρ1–1), s1, s2 ∈R,
∣
∣g(s1) – g(s2)

∣
∣ ≤ Cg |s1 – s2|

(

1 + |s1|ρ2–1 + |s2|ρ1–1),
(4.7)

where Ch and Cg are positive constants. To model this problem in the abstract form
(1.1), we set that η = δ/2, p > N/2, the operator A is defined in Lp(�) by Au = �2

D (�D is
the Dirichlet Laplacian in �) on the domain

D
(

�2
D
)

=
{

φ ∈ H4
p (�) : φ = �φ = 0 on ∂�

}

, (4.8)

where H4
p (�) = W 4,p(�) is the standard Sobolev space. With this specification, problem

(4.6) will fall into the abstract formulation (1.1). Since A1/2 = –�D, we can choose the
angle ψ for the sector

�ψ/2 =
{

λ ∈C :
ψ

2
≤ | argλ| ≤ π with ψ ∈ (0,π/2)

}

(4.9)

as small as needed, and therefore (see [2], Example 4.3) (η, A) will be an admissible pair
for any η > 0. From [21, Sect. 3], we get that

[

Lp(�)
]1/2 =

{

φ ∈ H4
p (�) : φ = �φ = 0 on ∂�

}

. (4.10)

We define f : R+ × [Lp(�)]1/2 × Lp(�) −→ Lp(�) by

f (t,ϕ1,ϕ2) = μa(t)
(

he(ϕ1)∇ · ϕ1 + ge(ϕ1)�ϕ1
)

– νb(t)ϕ2

t ∈ R
+,ϕ1 ∈ [

Lp(�)
]1/2,ϕ ∈ Lp(�), (4.11)

where θ e is the Nemytskii operator associated with θ , and ∇ϕ represents the divergence
of ϕ. For ϕ1 ∈ [Lp(�)]1/2 and ϕ2 ∈ Lp(�), using Minkowski’s and Sobolev embedding, we
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have the estimate

∥
∥f (t,ϕ1,ϕ2)

∥
∥

Lp(�) ≤ |μ|∣∣a(t)
∣
∣
(∥
∥he(ϕ1)

∥
∥

L∞(�) +
∥
∥ge(ϕ1)

∥
∥

L∞(�)

)

× ‖ϕ1‖H2
p (�) + |ν|∣∣b(t)

∣
∣‖ϕ2‖Lp(�),

whence f is well defined. Let K be a compact subset of [Lp(�)]1/2 × Lp(�). For ϕ1 ∈
[Lp(�)]1/2 and ϕ2 ∈ Lp(�), we set that

faa(t,ϕ1,ϕ2) = μa(t)
(

he(ϕ1)∇ · ϕ1 + ge(ϕ1)�ϕ1
)

,

�f (t,ϕ1,ϕ2) = νb(t)ϕ2,

MK := sup

{∥
∥
∥
∥
∥

[

ϕ1

ϕ2

]∥
∥
∥
∥
∥

[Lp(�)]1/2×Lp(�)

:

[

ϕ1

ϕ2

]

∈ K

}

.

We have the following estimates:

∥
∥�f (t,ϕ1,ϕ2)

∥
∥

Lp(�) ≤ |ν|∣∣b(t)
∣
∣MK , (4.12)

∥
∥faa(t + τ ,ϕ1,ϕ2) – faa(t,ϕ1,ϕ2)

∥
∥

Lp(�)

≤ |μ|∣∣a(t + τ ) – a(t)
∣
∣

× (∥
∥he(ϕ1)

∥
∥

L∞(�) +
∥
∥ge(ϕ1)

∥
∥

L∞(�)

)‖ϕ1‖H2
p (�)

≤ C̃|μ|∣∣a(t + τ ) – a(t)
∣
∣

× (

1 + ‖ϕ‖H2
p (�) + ‖ϕ1‖ρ1

H2
p (�) + ‖ϕ1‖ρ2

H2
p (�)

)‖ϕ1‖H2
p (�)

≤ C̃(K)
∣
∣a(t + τ ) – a(t)

∣
∣, (4.13)

where C̃(K) is a constant depending on K . Now, if a ∈ AA(R), from (4.13) we get faa ∈
AA(R× [Lp(�)]1/2 × Lp(�), Lp(�)). On the other hand, if b ∈ PAA0(R+,R), from (4.12) we
get

�f ∈ PAA0
(

R
+ × [

Lp(�)
]1/2 × Lp(�), Lp(�),ρ

)

. (4.14)

Hence

f ∈ WPAA
(

R
+ × [

Lp(�)
]1/2 × Lp(�), Lp(�),ρ

)

. (4.15)

Applying Theorem 4.2, we have the following result.

Proposition 4.4 Under the previous conditions, if a ∈ AA(R), b ∈ PAA0(R+,R), and |μ| +
|ν| is small enough, then problem (4.6) has a weighted pseudo almost automorphic mild
solution.

Proof For the previous results, it suffices to show that f satisfies (4.1). In fact, for ϕ1,ϕ2 ∈
[Lp(�)]1/2 and ϕ̃1, ϕ̃2 ∈ Lp(�), we have

∥
∥f (t,ϕ1, ϕ̃1) – f (t,ϕ2, ϕ̃2)

∥
∥

Lp(�)
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≤ ∣
∣μa(t)

∣
∣
∥
∥
[(

he(ϕ1)∇ · ϕ1 – he(ϕ2)∇ · ϕ2
)]∥
∥

Lp(�)

+
∣
∣μa(t)

∣
∣
∥
∥
[(

ge(ϕ1)� · ϕ1 – ge(ϕ2)� · ϕ2
)]∥
∥

Lp(�)

+
∣
∣νb(t)

∣
∣
∥
∥(ϕ̃1 – ϕ̃2)

∥
∥

Lp(�). (4.16)

However, by (4.7) we have

∥
∥
(

he(ϕ1) – he(ϕ2)
)∇ · ϕ1

∥
∥

Lp(�)

≤ Ch‖ϕ1 – ϕ2‖H2
p (�)

× (

1 + ‖ϕ1‖ρ1–1
H2

p (�) + ‖ϕ2‖ρ1–1
H2

p (�)

) · ‖ϕ1‖H2
p (�), (4.17)

∥
∥he(ϕ2)∇ · (ϕ1 – ϕ2)

∥
∥

Lp(�) ≤ Ch
(

1 + ‖ϕ2‖H2
p (�) + ‖ϕ2‖ρ1

H2
p (�)

) · ‖ϕ1 – ϕ2‖H2
p (�), (4.18)

∥
∥
(

ge(ϕ1) – ge(ϕ2)
)

� · ϕ1
∥
∥

Lp(�)

≤ Cg‖ϕ1 – ϕ2‖H2
p (�)

× (

1 + ‖ϕ1‖ρ2–1
H2

p (�) + ‖ϕ2‖ρ2–1
H2

p (�)

) · ‖ϕ1‖H2
p (�) (4.19)

and

∥
∥ge(ϕ2)� · (ϕ1 – ϕ2)

∥
∥

Lp(�) ≤ Cg
(

1 + ‖ϕ2‖H2
p (�) + ‖ϕ2‖ρ2

H2
p (�)

) · ‖ϕ1 – ϕ2‖H2
p (�). (4.20)

Now, if

‖ϕi‖[Lp(�)]1/2 + ‖ϕ̃i‖Lp(�) ≤ r, i = 1, 2,

and

Lf (r) = C̃
(|μ| + |ν|)(‖a‖∞ + ‖b‖∞

)× (

1 + 2r + 3
(

rρ1 + rρ2
))

,

where C̃ is a positive constant independent of ϕ1,ϕ2 ∈ [Lp(�)]1/2.
By (4.16) to (4.20) we have that f satisfies ((4.1) with the Lf give above. Hence the con-

clusion of proposition follows. �
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