
T ECHN I CAL PA P ER

Determination of volume and distribution of pores of concretes
according to different exposure classes through 3D
microtomography and mercury intrusion porosimetry

Fernanda Pacheco1 | Rodrigo Périco de Souza1 | Roberto Christ1 | Clarissa Argenti Rocha1 |

Luis Silva2 | Bernardo Tutikian1

1Universidade do Vale do Rio dos Sinos, São
Leopoldo, Brazil
2Universidad de la Costa, Barranquilla, Colombia

Correspondence
Bernardo Tutikian, Universidade do Vale do Rio
dos Sinos, UNISINOS, Avenida Unisinos, no
950, CEP 93.022-750, São Leopoldo, RS, Brasil.
Email: bftutikian@unisinos.br

Diagnosing and understanding the properties of concrete structures allows its use
in more effective ways that neither compromise application nor impose safety risks
or waste materials. Several tests can be performed for this purpose, differing with
regards to diagnostic precision, complexity of execution, costs, need of specific
apparatus, and others. Specifications from standards must be followed to assure the
durability of concrete structures, such as Eurocode 1 (EN 1992-1) and EN 206 in
Europe. This study determined the volume and the distribution of pores of four
concrete compositions with distinct water/cement ratio, cement consumption, and
compressive strength, through tests of mercury intrusion porosimetry (MIP) and
3D microtomography. Results showed high correlation coefficients between the
tests for assessing voids and compressive strength. Comparatively, the 3D microto-
mography test presented linear relation to the specifications of mixtures, although
MIP indicated discrepancies for mixture 2.
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1 | INTRODUCTION

The durability of structures is described as the period during
which there is no loss of performance or functional capacity
due to environmental characteristics.1 According to Gjorv,2

such aspect not only impacts the state of design of structures,
but is also influenced by the quality of the concrete used on
the structures, being a safeguard to its use.

Changes resulting from the development of cities led to
more abundant deteriorations of structures, mainly due to the
influx of carbon dioxide and chloride ions.3 The diffusion of

these agents within concretes depends of its composition
characteristics established by national and international stan-
dards, taking into account the influence exerted by cement
consumption, water/cement ratio and compressive strength
and the durability of the structures (EN 1992-1).4–8

Considering the impact caused by buildings, whether
through energy for producing inputs, the construction pro-
cess itself or by extracting raw materials from nature, it is
mandatory to evaluate the durability of buildings to achieve
a relation between lifespan requirements and environmental
impact of its outset.9

Structures design present limitations regarding to the
structural components type and use of and environmental
characteristics of their zones of insertion, in addition to con-
stant weather condition changes.10 And so, the specification
of mixtures may be an inefficient way to ensure durability,

Discussion on this paper must be submitted within two months of the print
publication. The discussion will then be published in print, along with the
authors' closure, if any, approximately nine months after the print publication.

Received: 14 March 2018 Accepted: 26 June 2018

DOI: 10.1002/suco.201800075

Structural Concrete. 2018;1–9. wileyonlinelibrary.com/journal/suco © 2018 fib. International Federation for Structural Concrete 1

http://orcid.org/0000-0003-1319-0547
mailto:bftutikian@unisinos.br
http://wileyonlinelibrary.com/journal/suco


which in turn is related to compressive strength.11 In fact,
porosity and interconnectivity of concrete pores are indis-
pensable characteristics certifiable through correct specifica-
tion and composition of mixtures.12 Some relations can be
proposed, such as those that relate buildings' susceptibility
to attack by carbon gas to their initial water absorption rate,
which is directly influenced from the elements porosity.13

In terms of specification seeking durability, the need to
correctly proportionate the mixtures although amount of
water and reduction of porosity should be emphasized14

Moreover, a cement adequate for chemically protecting rein-
forcements should be used, along with minimal fines
content.15

These characteristics of composition can foresee durabil-
ity and can be assessed though advanced diagnostic tests.
Such analyses can be used for quality control of materials
during production and development.

The mercury intrusion porosimetry (MIP) test was used
before for comparing concrete compositions and correlating
the compressive strength of such compositions.16 The pur-
pose of this method was to validate the pozzolans usage and
measure their effect on the microstructure of the concretes.17

Imaging diagnostic tests also turn out to be an option for
identifying distribution and quantity of pores with higher
precision. The most commonly used for durability of con-
crete structures is the 3D microtomography, which has wide
range of uses in materials science. It consists of a technique
that verifies images of the sample's total volume sequen-
tially.18 Moreover, this technique has been used as a means
to identify the formation of cracks on cementitious materials
and correlate the results to the lifespan of the structure.19

Considering the need to understand properties of con-
crete through diagnostic tests, four concrete compositions
were mixed under parameters set by Eurocode
1 (EN 1992-1) and EN 206-1, according to the aggressive-
ness of the environment that the structure is exposed to. The
aim was to assess the relation between tests of MIP and 3D
microtomography and the mechanical properties of the
material.

2 | ADVANCED DIAGNOSTIC TESTS

2.1 | Mercury intrusion porosimetry

For this test, mercury is injected into a sample and its pene-
tration is forced by applying pressures, which yield the vol-
ume of voids within the material. It is mainly a technique for
diagnosing cementitious composites as it reveals porosity
and the consequent susceptibility to attacks by deterioration
agents.20,21

In this context, MIP was used for relating characteristics
of concrete to results of accelerated carbonation tests, con-
firming the relation between porosity and fronts of aggres-
sion, which proved to be a coherent estimation of

durability.22 Water absorption tests also aimed to evaluate
concretes produced in laboratory and at construction site, so
these methods consisted of a way for approving the concrete
used, guaranteeing the quality of the elements.11 Another
advantage is the test samples are smaller, allowing their use
for lifespan analyses.

Concerning size of pores of concrete samples, it was
found out that there is a relation between their diameter,
measured by the porosimetry test, and the type of mass
transportation that occurs inside the material, as the dimen-
sions of these physical phenomena were identifiable.23

Moreover, the phenomena of gaseous diffusion and ionic
migration occur in pores with sizes between 10−2 and
10−9 m, whereas pores with size of 10−7 m or higher can
allow permeability of concrete, and capillarity occurs in
pores with sizes between 10−3 and 10−7 m.24

2.2 | 3D microtomography

The 3D microtomography technique is used for analyzing
and diagnosing the microstructure of several materials
although a series of images that devise the sample's volume-
try, identifies its voids and aligns fibers, for materials of
diverse densities. It is also possible to detect areas of pastes,
dense and porous and voids between aggregates for cementi-
tious materials.25

The graphical depiction of different components of a sin-
gle matrix is made possible by analyzing the difference of
density between its ingredients. Nonetheless, X-ray absorp-
tion, which differs from material to material, allows contrast
to be seen and exposes its existence and distribution along
the sample.26

An evaluation of cement pastes at different ages combin-
ing the techniques of 3D microtomography and scanning
electron microscopy pointed out the presence of voids and
anhydrous cement.27 Such techniques were also used for
assessing a matrix of advanced cementitious composites,
whereas focusing on the interface between fibers and cement
paste.23 The procedure turned out to be appropriate for ana-
lyzing the transitioning zone between paste and fiber, point-
ing towards an adequate adherence with no void
agglomerations. Finally, this procedure was put into use for
measuring and analyzing the distribution of voids with
respect to pore size of a fiber-reinforced concrete, resulting
in a void diameter preponderantly between 0.39 and
0.77 mm.28

The technique can be applied for evaluating pore con-
nectivity, thus allowing the understanding of its relation with
characteristics such as water absorption and durability of the
material.29 An experimental procedure was then carried out
comprising diagnostic tests on concretes specified in accor-
dance with EN 1992-1 and EN 206 to validate conclusions
drawn by other studies.
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3 | EXPERIMENTAL PROCEDURES

3.1 | Crafting concrete mixtures

Distinct exposure classes were adopted when crafting the
mixtures under the specifications of EN 1992-1 and EN
206, so that classes that endure effects from various damag-
ing agents could be observed, which are listed as follows:

• Mixture 1: specified for X0 exposure class, regarding
structures exposed to dry weathers.

• Mixture 2: Specified for XC2 exposure class, allusive to
structures that undergo water forces.

• Mixture 3: specified for XD3 exposure class, concerning
structures subjected to environments with salty fog.

• Mixture 4: specified for XA3 exposure class, namely
structures within environments that pose chemical
aggression.

Table 1 summarizes the characteristics of the mixtures.
Portland cement with addition of 5% carbonate material was
used as binding agent in this study. Figure 1 depicts the
cement particle-size distribution.

The parameters of the cement evaluated are noteworthy,
considering, for instance, the average diameter of particles

of 16.77 μm, D10 of 5.34 μm, D50 of 15.21 μm, and D90
of 33.95 μm.

The fine aggregate was natural river quartz sand, while
the coarse aggregate had basalt origin. The physical proper-
ties of the aggregates used are presented in Table 2.

A superplasticizer based on polycarboxylates was used
to increase slump of the samples, which was fixed in
100 mm, for every water/cement ratio. The mixing was per-
formed in a vertical axis mixer with mixing time of
16 minutes. The specimens were stored in a climate chamber
with 23 �2 �C and humidity of 100%.

The mixtures were crafted according to the characteris-
tics stated above, with specimen dimensions of 100 x
200 mm for the compressive strength test at 28 days of cure
and 5 × 20 mm for the mercury intrusion test, which were
fragments from the specimens molded. For the 3D microto-
mography analysis, the sample presented approximate vol-
ume of 1 cm3.

TABLE 1 Composition characteristics of mixtures

Mixture
Compressive
strength (MPa)

Cement
consumption
(kg/m3)

Water/
cement
ratio Exposure

M1 25 260 0.65 Dry weather

M2 30 280 0.60 Water forces

M3 35 320 0.55 Salty fog

M4 40 360 0.45 Chemical
aggression

FIGURE 1 Composition characteristics of mixtures

TABLE 2 Particle-size distribution of aggregates

Sieve opening
(mm)

Fine aggregate Coarse aggregate

% Retained
% Retained
accumulated % Retained

% Retained
accumulated

9.5 0 0 20 20

6.3 0 0 48 68

4.8 1 1 18 86

2.4 3 4 13 99

1.2 7 11 1 100

0.6 11 22 0 100

0.3 26 48 0 100

0.15 51 99 0 100

Bottom 1 100 0 100

Characteristics Maximum size 4.8 mm Maximum size 12.5 mm

Fineness modulus: 2.85 Fineness modulus: 3.73
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3.2 | Mercury intrusion porosimetry test

The porosity of concretes was determined through the MIP test.
The sample was dried in an oven until reaching constant mass.
The apparatus used was Porosimetry model Pore Master 33,
which quantifies the volume of pores from 200 to 0.0070 μm
by applying variable pressures. The test was performed at 84
days, so that the compressive strength would be stabilized as
well, and with the purpose of comparing the mixtures.

3.3 | 3D microtomography test

The 3D microtomography test for samples was conducted in an
electrical characterization laboratory. A tomograph that makes
X-ray images of samples with total volume of 1.0 cm3 was
used for such test. The sample underwent a pre-drying proce-
dure and the test was performed at 28 days of cure. The images
were generated by the CTPRO 3D software (Volume Graphics,
Germany), which also made the volumetry, as shown in
Figure 2. The Vg Studio Maxx software (Volume Graphics,
Germany) was used in sequence, with the tools of Surface
determination and Analysis. This software follows a color chart
to evaluate voids of different sizes found in the volumetry.

4 | RESULTS AND DISCUSSION

4.1 | Compressive strength

Table 3 presents the compressive strength values of each of
the four mixtures at 28 days. As noticed, the compressive
strength values remained close to those specified by EN
1992-1, considering the exposure classes mentioned previ-
ously. Higher values of cement consumption, added to a
reduction of the water/cement ratio led to an increase of
compressive strength.

4.2 | Mercury intrusion porosimetry

Figure 3 depicts values for volume of mercury accumulated
within the samples of mixtures, through which the highest

volume was achieved by M2. A relation between compres-
sive strength and porosity was noted for the other mixtures,
so M4 is characterized as the one with the least volume of
mercury accumulated, indicating less pores. Analyzing the
compositions that yielded the highest and the lowest vol-
umes accumulated (M2 and M4, respectively), the volume
of mercury for M4 was 11% smaller.

Figure 4 depicts the distribution of volumes with respect
to the diameter of pores. Hence, the distribution of the vol-
ume of mercury intruded struck pores smaller than 0.1 μm.
M2, whose behavior differed from the other samples, pre-
sented a peak of intrusion for pores with sizes 1 to 10 μm. It
should be noted that this point of greater mercury penetra-
tion might have caused the difference of sample 2, consider-
ing both the distribution of pores and the total porosity
presented in Figure 4. This point might also have been
caused by a mistake in the composition of the original sam-
ple, from damages during consolidation, for example.

The results for M1, M3, and M4 are consistent with
models proposed in other studies,26 as porosity was
inversely proportional to the samples' compressive strength.
Total porosity has been known for being less related to com-
pressive strength if compared to the influence exerted by
pore size distribution, considering that this distribution var-
ies with respect to the water/cement ratio and the paste's
hydration degree.30 The cement consumption also varied
between these mixtures, so it might have influenced
porosity.

Following a classification method proposed by Mehta
and Monteiro,1 it can be stated that the volume of mercury
intruded struck pores with diameters between 10−7 and
10−3 m, which end up representing the physical phenome-
non of capillary absorption.

4.3 | 3D microtomography

The images presented in Figure 5 were generated by proces-
sing the samples during the 3D microtomography test. These
identify pores and their diameter, presented in scale, and
yield the volumes with the respective calculation of voids
within each specimen, as depicted in Figures 6 and 7.

Now, Figure 5 denotes a predominance of voids with
volumes between 10 and 25 mm3. Considering spherical
volumes, the pores presented sizes by 10−3 m, in accordance
with what had been assessed during the MIP test.FIGURE 2 Volumetry made for the analysis of voids

TABLE 3 Compressive strength at 28 days

Mixture

Compressive strength (MPa) at 28 days

28 days As per EN 1992-1

M1 23.8 25

M2 28.7 30

M3 34.4 35

M4 41.2 40
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As checked in Figure 7, M1 had its pores distributed
homogeneously, mainly because there was little concentra-
tion around the coarse aggregates. M2 displayed similar

behavior, as neither samples yielded volumes above
35 mm3.

Comparing Figures 6 and 7, less voids can be noted for
M3 and M4, and the volumes of voids remained at the outer
edge of the coarse aggregates. Table 4 presents the sequence
of results, referring to the total percentage of voids measured
by the software.

The difference between mixtures was greater for the 3D
microtomography test than for the MIP test, varying propor-
tionally to higher values of cement consumptions and lower
water/cement ratio, while being inversely proportional to the
mixtures' compressive strength. No outliers were spotted
during this analysis.

Upon examining the compositions, it is noteworthy that
the volume yielded by M4 was 27.5% lower than that of M1,
whereas the percentages of reduction were 22.3% and 13%
for M3 and M2, respectively.

Particularly in terms of voids index, the use of microto-
mography is recommended to distinguish materials whose

FIGURE 3 Results for volumes of mercury accumulated within each sample

FIGURE 4 Volume distribution with respect to diameter of pores of each sample

FIGURE 5 Void ratio identification
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specific gravity shows significant differences, as this is the
procedure followed by the software for comparing specific
gravity and quantifying different materials or voids.31 It is
difficult to analyze images from sample cuts, as is often con-
fusion to identify its outlines and voids on its borders, what
can impact the total volume observed, as Figure 8 shows.
Such effect has already been identified on the border of
images of concrete mixtures and turned out to be a likely
spot of water accumulation during the molding process.32

4.4 | Comparative analysis

The relation presented in Figure 9 comes in handy for clari-
fying the comparative analysis between mixtures and the
variables studied. It demonstrates that the mixture with the
lowest compressive strength yielded the highest volume of
voids for 3D microtomography, and the second highest for
the porosimetry test. For the others, a linear relation was
maintained between mixtures and measurements, compris-
ing: as compressive strength increases, the volume of voids
decreases for both methods of verification.

Taking into account the similarity between the tests per-
formed with respect to identification of voids, Figure 10 pro-
poses a relation between the mixtures' compressive strength
and the tests for quantifying voids. Hence, both of the

FIGURE 6 Identification of voids contained by each composition

FIGURE 7 Identification of voids contained by each composition

TABLE 4 Void ratio of the mixtures

Mixture M1 M2 M3 M4

Void ratio 12.39 10.78 9.62 8.98
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methods applied turned out to be strongly correlated to com-
pressive strength, whereas 3D microtomography performed
superiorly in the comparative analysis. The relation for both
tests was obtained by means of a polynomial function.
Lastly, it is noticeable that the void ratio results vary
between methods, since the porosimetry test does not

identify pores that do are not interconnected, while the 3D
microtomography method does.

5 | CONCLUSION

This paper development made it possible to observe the
assertive nature of specifications set by technical standards,
especially by EN 1992-1. The specification of the character-
istics of cement consumption and water/cement ratio led to
compressive strengths close to those required by this stan-
dard, aiming to ensure durability.

The advanced characterization tests showed a relation
between the existence of voids and compressive strength, the
exception being M2, which turned out to be an outlier com-
pared with the other observations from the MIP test. An
inversely proportional relation between compressive strength
and volume of material intruded was observed for the other
samples.

Given the characteristic size of pores, which left no signs
that capillary absorption could occur, and considering that
these samples might have pores aligned that allow deteriora-
tion agents to act, it was assessed within a scale of intensity
that M1 is more likely to be attacked, and the likelihood
reduces until M4, excluding the intrusion point of M2.

FIGURE 10 Relation between tests for quantifying voids and compressive strength

FIGURE 8 Identification of voids contained by each composition

FIGURE 9 Comparative analysis of variables studied
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The 3D microtomography test was shown to be pertinent
and effective for analyzing voids, as several authors had
already reported, but attention should be drawn towards the
bordering effect that may affect the images generated.

Overall, these diagnostic tests allow the characterization
of structures regarding the existence of voids and may simul-
taneously determine the likelihood of the mixtures being
damaged by these voids, consequently indicating how the
durability of the material in use is going to behave.

It is also important to emphasize that the relation
between tests of advanced diagnostic and compressive
strength was determined in this study through simple low-
cost methods, whereas without damaging the structure and
with reduced scale samples, allowing for tests on structures
that already were already built.
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