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Abstract

Directional well planning has gained special attention in the Alaska North Slope (ANS) as 

operators are being compelled to drill increasing numbers of wells from already congested 

pads because of low oil prices, Capex restrictions, and environmental regulations. This 

research focuses on two major components of directional well planning: anti-collision and 

torque and drag analysis in Schrader Bluff, Milne Point. The drilling pattern at the ANS 

implies very high wellbore collision risk, especially at the shallower section, which affects 

the safety of drilling operations. However, satisfying anti-collision norms is not the solitary 

step towards successful well planning. Integration of anti-collision results with torque and 

drag analysis is essential in evaluating the safety and feasibility of drilling a particular well 

path and avoiding drill string failures.

In the first part of the study, three well profiles (horizontal, slant, and s-shaped) were 

planned for each of the two new targets selected in the Schrader Bluff OA sand. Initially, 

this part of the research compared the performance of the newly developed Operator 

Wellbore Survey Group (OWSG) error model and the industry-standard Industry Steering 

Committee for Wellbore Surveying Accuracy (ISCWSA) error model. To provide effective 

guidelines, the results of error model comparison were used to carry out sensitivity 

analyses based on four parameters: surface location, well profiles, survey tools, and 

different target locations in the same sand. The results of this study aid in proposing an 

improved anti-collision risk management workflow for effective well planning in Arctic 

areas.

The second part of the study investigates the drillability of the well paths planned using 

the improved anti-collision risk management workflow. Furthermore, this part of the 

research aims at defining the end point limits for critical well planning parameters, 

including inclination and dogleg, such that within these limits, the well path satisfies anti­

collision as well as torque and drag considerations. These limits were generated using a 

drill string optimized in terms of steerable tool, drill pipe size, mud rheology, trip speed, 

rotational speed, and weight on bit (WOB) during drilling and tripping out operations. The



results of this study would help reduce the cumbersome iterative steps and narrow down 

the design domain for any well to be drilled on the North Slope of Alaska.
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1.1 Overview

CHAPTER 1: INTRODUCTION

This report is divided into four chapters. Chapter 1 describes the operational issues 

related to drilling in the Alaska North Slope (ANS). It also discusses the conventional well 

planning steps undertaken incorporate these issues and to make a well plan executable. 

However, it focuses on the well planning steps considered in the current study, namely, 

anti-collision and torque and drag analysis. This chapter briefly introduces these concepts 

and states the motivation for selecting these specific well planning steps. Finally, it 

describes the objectives of the project.

Chapter 2 addresses three research objectives. First, it shows how the confidence level 

in wellbore positioning degrades in higher latitude areas like Alaska. Second, it analyzes 

the effects of location, survey tools, and well profiles as a function of error model to 

determine the best survey tool that will help well planners increase their confidence in 

wellbore positioning. As a final point, Chapter 2 puts forth an improved anti-collision risk 

management workflow that would aid effective well planning in Arctic areas.

Chapter 3 is a follow up study and challenges the drillability of the well paths planned 

using the improved anti-collision workflow proposed in Chapter 2. During this process, it 

addresses the remaining two goals of the research. Initially, it optimizes the drill string 

design for its operational limits as a function of steerable tool, drill pipe size, mud rheology, 

and trip and rotational speed. In the second phase, it uses this optimized drill string to 

define the limits for variation of inclination and dogleg for the present well density scenario 

in Milne Point, S-Pad.

Finally, Chapter 4 discusses the overall conclusions drawn from the study with future 

recommendations for carrying forward the present research.

1.2 Features of Drilling in the Alaska North Slope

The oil and gas operations, particularly the drilling operations, in the ANS are constrained

by the rigorous Arctic climate and the presence of thick permafrost (Davies et al., 1979).
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The climate in the ANS is classified as Arctic. Figure 1.1 shows the annual average 

temperature variation observed at Prudhoe Bay, from a maximum of 55°F during the 

summer to a minimum of -23°F during the winter, for one climate normal (period of 30 

years) from 1971 to 2000. This type of extreme climate has many limitations on oil and 

gas operations in Alaska. One of the major limitations is that the drilling operations are 

restricted to the winter months, i.e., October through March (Zarling, 2016). This limitation 

can be described by two terms: first, the active layer, which is the layer (or depth from the 

surface) that freezes in winter and thaws in summer; and second, the Arctic rule of thumb: 

"If it is frozen, keep it frozen” and "If it is thawed, keep it thawed” (Zarling, 2016). These 

two conditions describe the limitations of the drilling operations in any Arctic conditions 

because during the winter, the active layer is frozen and thus, the operational challenges 

and permafrost-related hazards like thermokarst and thermal erosion are less severe. 

This is because there is no phase change through the vertical section, as both the active 

layer and permafrost are frozen. However, the severity of the operational challenges and 

the permafrost hazards increases greatly during the summer because the active layer is 

thawed, causing a phase change through the vertical section and thus making it difficult 

to set up a rig to commence the drilling operations. To solve such problems, drilling pads 

are developed so that the operations can be carried out year-round. The rig and the 

equipment are also protected from the rigorous climate with the help of rig winterization, 

which works on the basis of covering and subsequently warming the equipment. The rig 

floor is covered with wind walls which are insulated and coated with an anti-freezing foam 

to ensure the safety of the rig, as well as the personnel working on the rig, from the Arctic 

climate (Fletcher, 2011). The equipment on the rig or the pad generally consists of 

pipelines, for example mud line, electrical line, stand pipe line, etc., and the well control 

and the drilling equipment. To protect the various pipelines, special containers called as 

rig suitcases are used. These containers are kept warm with the help of heated air blowers 

installed at specific intervals. Degassers are used to protect the equipment related to well 

control and are kept warm with the help of tarpaulin and hot air blowers (Fletcher, 2011).

1.2.1 Climate
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Figure 1.1: Variation of annual average temperature observed at Prudhoe Bay (Zarling, 

2016).

1.2.2 Permafrost

Permafrost is defined as soil that is frozen continuously for two or more years (Zarling,

2016). Figure 1.2 shows the distribution of permafrost in Alaska. This figure also shows 

that all the oil and gas operations in Alaska are in the region of continuous permafrost, 

defined as the area in which permafrost is present in all directions (Everdingen, 1998). 

The presence of continuous permafrost creates limitations for well trajectory planning. To 

maintain permafrost stability, all the wells from a pad are drilled in close proximity, up to 

2500 ft. As a result, anti-collision (or collision avoidance) becomes a primary challenge 

in such areas. Although most of the research about permafrost stability and challenges 

faced during the drilling operations has been carried out in Prudhoe Bay, the results can 

be applied in Milne Point. This is because first, the thickness of the permafrost in Milne 

Point (~ 1800 ft) is similar to that observed in Prudhoe Bay (Smith and Clegg, 1971) and 

second, the lithology through the permafrost is same as observed in Milne Point as well 

as in Prudhoe Bay (Shur, 2016).

3



Figure 1.2: Distribution of permafrost in Alaska (USGS, 2017a).

In order to overcome these constraints, it is important to understand the typical challenges 

encountered while drilling a new well in the ANS so that these challenges can be 

incorporated in the planning phase to ensure that the drilling operations can be carried 

out with minimal impact on permafrost.

1.3 Operational Challenges While Drilling Through the Permafrost

1.3.1 Permafrost Thaw Subsidence

The major operational challenge for drilling operations in thick permafrost is the thawing 

of the frozen permafrost, called as permafrost thaw subsidence. This is a four-step 

process beginning with melting of excess ice, followed by thaw consolidation and fluid 

expulsion, which cause pore pressure reduction as well as stiffness reduction (Goodman, 

1978). As a result, the casing losses its stability either due to collapse or buckling 

(Goodman, 1978).

Melting of excess ice is a phenomenon that occurs near the surface. For the frozen soils, 

ice acts as a cementation material, keeping the pores together. During drilling operations, 

the soils containing excess ice near the surface are heated due to the circulation of drilling
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mud. This causes melting of excess ice as well as cementation ice, which reduces the 

strength of the soils around the wellbore (Kutasov and Caruthers, 1988). This process 

causes a phase change of soil from the frozen state to the thawed state, and subsequent 

reduction in the volume by ~9%. Due to this, the weak thawed soil tries to slump 

downwards (Goodman, 1978).

The phase change from a frozen state to a thawed state leads to the second step, where 

the thawed state consolidates followed by fluid expulsion. In this step, pressures greater 

than the hydrostatic pressures are generated, causing the fluid to expel out of thawed 

state leading to soil compaction.

The third and most crucial step is the pore pressure reduction. Thawing of pore ice in the 

shallow permafrost causes an increase in pore pressure due to thaw consolidation and 

fluid expulsion, but in the deep permafrost causes a decrease in the pore pressure 

(Goodman, 1978). This process causes intergranular stresses and soil compaction, which 

in turn generate loads on the casing in the vertical direction.

According to Goodman (1978), stiffness reduction is believed to be the result of all three 

mechanisms discussed above. As pore ice melts, it causes soil consolidation 

accompanied by fluid expulsion because of pore pressure reduction. All these processes 

cause the soil to become weak and soft because the soil loses its support from the pore 

ice and deforms easily.

1.3.2 Hole Stability

Due to the complex interactions between the casing and the formation (permafrost), 

drilling operations face other operational challenges like washout or hole enlargement. 

Hole washout is generally experienced within the first 500 ft of the permafrost and can 

extended up to 4 ft in radius (Goodman, 1978). The main reason for this phenomenon is 

the presence of excess ice in the soils near the surface. During the drilling operation, heat 

transfer between the circulating drilling fluid and the soils near the surface causes the 

excess ice to melt. This creates a situation of hole enlargement which is technically called 

washout (Kutasov and Caruthers, 1988). According to Kutasov and Caruthers (1988), the 

diameter of hole enlargement depends on the properties of the drilling fluid and the soil
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in contact with the drilling fluid, temperature, duration of mud circulation, and, most 

importantly, the amount of fluid infiltration from the drilling fluid into the frozen soil. 

Washouts not only create issues related to hole stability, but also affect hole cleaning and 

solid control. Furthermore, they can also cause problems for mud displacement, 

positioning of insulating packer fluid, and placing of the cement behind the casing also 

arise due to washout (Goodman, 1978).

1.3.3 Sloughing

Sloughing in the permafrost is a process in which the thawed unconsolidated soil falls 

down in the hole, causing problems like blocked circulation and fill on the bottom (Kutasov 

and Caruthers, 1988). From a drilling operation standpoint, frozen soil impermeability and 

lateral loads are the two main causes of sloughing (Goodman, 1978).

1.3.3.1 Frozen Soil Impermeability

Frozen soil has limited permeability. This restricts the penetration of the filtrate from the 

drilling mud into the thawed section. As a result, inadequate amount of filter cake is 

formed on the surface of the wellbore. This causes issues related to hole stability, as hole 

stability is directly proportional to the amount of mud cake formed on the walls of the 

wellbore (Rabia, 1985). Hole stability is also related to the pressure differential between 

the hydrostatic pressure and the formation pressure across the mud cake. However, as 

the filtrate penetrates into the thawed zone, the pore pressure in the section increases, 

which in turn increases the formation pressure. Thus, the resulting pressure differential is 

negative, which causes the wellbore to lose its stability and collapse, leading to sloughing 

(Goodman, 1978).

1.3.3.2 Lateral Loads

These loads arise from the pore pressure reduction across the frozen soil-thawed soil 

interface, causing the thawed zone to apply compressive forces on the casing in the 

inward direction. During the drilling operation, the thaw zone created is very small. As a 

result, field data regarding the lateral load during drilling operations is not available 

(Goodman, 1978). Thus, to estimate the effect of lateral loads on hole stability, Goodman 

(1978) considered a system, shown in Figure 1.3, where the thawed zone across an open
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hole is represented as a thick elastic cylinder. The radial inward displacement of the 

thawed zone, u, caused by the lateral load acting across the thaw front, AL is given by 

Eq. 1.1 (Goodman, 1978)

AL 2 a

where, a is the wellbore radius, b is the radius of the thaw front, and Et is the Young’s 

modulus of the thawed material. As seen from Figure 1.3, radial inward displacement, u, 

will destabilize the hole by exerting the lateral loads on the casing. This is also clear from 

Eq. 1.1, which shows that as the radius of the thaw front, b, increases, the radial inward 

displacement, u, decreases (Goodman, 1978). This indicates that when the radius of the 

thaw front is small, i.e., small thaw, the lateral loads acting on the casing will be large, 

and thus the radial inward displacement will be large. Since such small thaw zones are 

encountered only in the drilling operations, the lateral loads pose a significant challenge 

to hole stability over the total depth of permafrost.

Figure 1.3: Representation of a system of wellbore and surrounding thawed zone to 

estimate the effect of lateral load during drilling operations (Goodman, 1978).
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1.4 Well Planning

As design and operations go hand in hand, it is very important to design a well 

incorporating all the challenges mentioned in the previous section. This goal is achieved 

with the help of a thorough and orderly well planning process. Well planning is defined as 

a process which describes the geometry, orientation, depth, completion and evaluation 

of a proposed wellbore (Schlumberger glossary, 2017). It is an integrated process which 

requires a team wherein the geologists work with the drilling engineers to understand the 

subsurface lithology and its specific characteristics like formation tops, presence of 

shales, abnormal conditions (pressures and temperatures), and possible production 

zones (Azar and Samuel, 2007). The drilling engineers subsequently work with the well 

planning engineers to develop the well plan, with the help of their experience related to 

the different aspects of drilling operations, engineering tools, and specific well planning 

software.

1.4.1 Objectives of Well Planning

Apart from designing the well for all operational challenges, the objective of formulating 

an orderly and step-wise process of well planning is to make sure that the resultant drilling 

program has the following characteristics (Adams, 1985):

1.4.1.1 Safety

In all the drilling operations, safety of the personnel and rig equipment is considered the 

most important aspect. Amongst these, the first priority is assigned to the personnel, over 

all other aspects of the plan (Shanker and Saktavat, 1994). In unfavorable situations, the 

well plan must be altered to ensure the safety of the personnel. The second priority is 

assigned to the safety of rig equipments and the well. The well plan must be designed to 

minimize the risk of blowouts by designing an appropriate size and quality of a blowout 

preventer (BOP).

1.4.1.2 Minimum Costs

Figure 1.4 describes this objective of well planning accurately. It indicates that if the time 

required for well planning is long, it will reduce well cost, as the plan will incorporate all
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the expected challenges and thus the chances for deviation from the plan and the 

corresponding increases cost will be eliminated (Adams, 1985).

W ell p lann ing effort

Figure 1.4: Minimized well costs as a result of effective well planning (Adams, 1985). 

1.4.2 Conventional Steps of Well Planning

Figure 1.5 outlines the general flow path as well as the steps involved in the process of 

conventional well planning. However, this order can be altered for various cases 

depending upon the terms of operator companies (Adams, 1985). This section briefly 

describes a few of the important steps in this process in terms of their functions and widely 

used procedures.

1. Data Collection: Data collection is the first step and involves a team of drilling 

engineers and geologists completing two objectives. First, to understand the sub­

surface geology with the help of seismic maps and geological anomalies (for example, 

faults) with the help of contour maps and correlation logs that would be encountered 

while drilling the prospect well. Second, to select a suitable offset well based on the 

similarity of geology expected to be encountered in the prospect well, which can be 

used as a reliable source for the data requirements during drilling.

9



Figure 1.5: Steps involved in conventional well planning (Adams, 1985).

2. Pore and Fracture Pressure Analysis: The next step is to carry out pressure analysis 

to obtain near accurate values of formation pore pressures and fracture pressures for 

the expected geology of the prospect well. Estimation of formation pore pressure is 

critical not only for developing the mud and cement program, but also for classifying 

the areas in terms of sub-normal and abnormal pressured zones, which possess a 

great level of difficulty during the drilling operations. Similarly, estimation of the 

fracture pressure is important for determining the casing setting depths to prevent the 

formation from getting fractured at the casing shoe while drilling through the next 

section. When both these pressures are estimated properly, challenges such as lost 

circulation, stuck pipe, and blowouts can be prevented (Adams, 1985).
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3. Casing Setting Depth: Deciding the casing setting depth is the first actual task of a 

well planning engineer wherein he must select a depth to which the necessary casing 

will be run and cemented. According to Rabia (1985), the most important geological 

parameters required for selection of casing setting depths are obtained from pressure 

analysis. In most of the cases, the process of selecting the casing setting depth has 

three objectives. First, to cover the zones of lost circulation; second, to cover the zones 

where differential sticking is likely to be encountered; and third, to protect the weak 

shallow zones from abnormal pressures (Shanker and Saktavat, 1984).

4. Hole Geometry Selection: The purpose of hole geometry is to select the appropriate 

bit and casing or liner sizes. According to Rabia (1985), improper size selection can 

result in small holes which may lead to abandonment of the well. Figure 1. 6  describes 

the combinations of casing and bit sizes generally used in the industry.

Casing  
and inft-r 
size, irv

Bit and 
ho le 

s i r * ,  in.

Casing 
and liner 
size. tn.

Bit an d  
note 

s iz e , in

Casing 
size, rv

Bil and 
hole 

sure in­

casing 
size, m

Bit ana 
hole 

size. m.

C asng
size, in

Figure 1.6: Casing and bit sizes chart (Adams, 1985).
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5. Mud Design: The first part of mud design deals with estimating the mud weight 

required to drill through a particular formation. This part depends on the accuracy of 

the pore pressure data, obtained from either offset well data or seismic analysis. The 

second part deals with selection of the type of mud that will exert the determined 

pressures. According to Siddique, Mangla, and Pandey (1985), mud selection 

depends on factors like clay composition, formation temperature, water content, 

degree of compaction, and tectonic stresses.

6 . Drill String Design: According to Dhar and Gandhi (1985), designing the drill string 

depends on anticipated depth of the string, expected mud weight, hole size, and size, 

length, and weight of drill pipe and drill collars. However, the conventional process of 

drill string design involves designing only the drill pipe and the drill collar (Rabia, 1985 

and Adams, 1985).

A similar planning sequence is followed in the ANS (AOGCC, 2017). However, while 

drilling through the permafrost, there are additional recommendations that are required to 

be followed to maintain its integrity. These recommendations include (AOGCC, 2017):

1. Maintain low temperature of drilling mud (less than 60°F)

2. Circulate the connections thoroughly

3. Limit Rate of Penetration (ROP)

4. Reduce pump rates

1.5 Well Planning Steps Considered in the Study

1.5.1 Anti-Collision

All the steps mentioned in the previous section can be carried out under the assumption 

that the well path is executable. In other words, these steps are used to condition the well 

path so that the target can be reached. However, before questioning the drillability of the 

planned well path, it is imperative to study how the existing well paths affect the 

inclination, dogleg, and azimuth of the new planned well trajectories. In this research, this 

was studied through a pre-conventional well planning step called anti-collision using 

COMPASS©, a Landmark-Halliburton software.
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1.5.1.1 What is Anti-Collision?

In simple words, anti-collision is a process that helps well planning engineers design the 

inclination, azimuth, and dogleg of the planned (or reference) well path such that it does 

not collide with the existing (or offset) wells which are already drilled in its vicinity. This 

points out the fact that the results of anti-collision are greatly dependent on the accuracy 

of measuring the subsurface wellbore position, which is accomplished by survey 

measurements (Bang et al., 2009; Bang and Torkildsen, 2011). The inclination, azimuth, 

and dogleg of the reference well path are planned for each section and are converted to 

continuous and definitive measurements using surveys. Thus, anti-collision helps in 

checking the separation between these surveyed wellbores and the offset wellbores 

wherein the definition of limits for separation vary from company to company. This is 

because every operator has different error models, which define how positional 

uncertainty is calculated, and different scanning methods, which define how well path 

separation is calculated (Compass User Guide, 2011). This process becomes even more 

complicated because the surveys themselves are a function of error models and survey 

tools. Hence, it becomes essential to study anti-collision as a function of these properties, 

such that the best error model and survey tool can be selected to decrease the 

uncertainties and thus increase the positional accuracy of the wellbore.

1.5.1.2 Importance of Anti-Collision Study

Anti-collision studies are important for a variety of reasons. The most important reasons 

are increased resource value which causes operators to increase the complexity of well 

trajectories and lack (or inaccuracy) of survey data for previously drilled wells (Poedjono 

et al., 2009).

For most cases in the past, operators could tap the reservoirs by drilling vertical wells 

without being concerned about their surface locations and subsequent anti-collision 

issues. However, with the wide growth in directional drilling activities, operators are now 

encountering increasingly complex drilling environments to tap the same reservoirs. This 

has become a prominent scenario for mature fields like Milne Point, where the existing 

well density is high, and several wells are often drilled from a single pad. Furthermore,
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the operational constraints surrounding the stability of continuous permafrost in Milne 

Point force the operators to plan and drill wells at very close proximities in a congested 

environment, potentially leading to wellbore collisions at shallow depths. Hence, in such 

areas, anti-collision studies become even more crucial, because the well planners have 

very limited abilities to vary the inclination, azimuth, and dogleg of the reference well path. 

The entire process occupies a significant portion of the non-productive time (NPT), which 

might delay the actual drilling process. For multilateral wells in Milne Point, the collision 

risk scenarios are not confined to shallow depths but extend to the lower 6 - 1 /8 ” hole 

section of the wells. In the case of wellbore collision, this combined with the location of 

Milne Point can cause safety, environmental and financial consequences ranging from 

minor to catastrophic leading to huge economic losses for the operators (Poedjono et al., 

2006; Poedjono et al., 2007a, b).

Many researchers have also stated that the old wells of mature fields like Prudhoe Bay 

and Milne Point lack the survey data or have very low-quality survey data (Poedjono et 

al., 2006; Poedjono et al., 2007a, b; Poedjono et al., 2009). In many cases, such data 

were recorded by hand, which raises questions about their accuracy. To add to this, 

majority of the wells in Milne Point were surveyed using a magnetic survey tool (AOGCC,

2017). Such tools depend on the geomagnetic properties of the Earth, which changes 

with time. When the borehole position of such wells is mapped in the present time frame, 

it may not indicate its actual location. Hence, evaluation of potential hazards is extremely 

difficult and, in some cases, requires a complete resurvey of the nearby offset wells, which 

again adds to the NPT. In such scenarios, anti-collision studies are essential so that the 

uncertainties associated with the reference well can be reduced and can be used to 

compensate for the unknown uncertainties of the offset wells.

1.5.1.3 Current Anti-Collision Risk Management Models in the Industry

According to Chatar and others (2015), the industry uses two anti-collision risk 

management models. The first is the risk-based collision avoidance model and the 

second is the hazard and risk management model.
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The risk-based collision avoidance model is followed via an anti-collision policy, a 

governing document for wellbore collision risk management (Hawkinson, 2014). This 

policy includes a set of rules that describe how closely a reference well can be drilled to 

an offset well (McNair et al., 2005). These rules are based on the separation factor (SF) 

criterion, defined in Eq. 1.2 as (Samuel and Liu, 2009):

C — C Distance
Separation Factor (SF) = -------------------------------  (1.2)

Minimum Separation

where, C -- C distance is the center to center distance between the reference and offset 

wells in ft and minimum separation is the sum of the radii of the Ellipse(s) of Uncertainty 

(EoU) of both wells in ft.

Figure 1.7 shows the SF and EoU used to describe the uncertainties at a particular depth. 

For the case shown in Figure 1.7, the SF will be 1, which indicates a very high probability 

of the subject well colliding with the offset well.

Figure 1.7: Separation Factor (SF) calculation (Poedjono et al., 2007a).

Table 1.1 shows the well planning matrix for the risk-based collision avoidance model and 

its corresponding limiting SF values. This model is used in the well planning phase 

because it does not require any additional actions, like drilling manager approval, and the 

collision issues can be resolved by changing the well trajectory (McNair et al., 2005).

15



During the planning phase, most of the operators and directional drilling companies plan 

well paths with a standard SF cut-off value of 1.5.

Table 1.1: Well planning matrix for risk-based collision avoidance model with limiting SF 

values (Modified from McNair et al., 2005).

Level/Category Limiting SF value Action

3
>1.5

Safe to drill. (Standard SF cut-off value used 

in the study)

2
1.5 to 1.0

Drillable with mitigation. Mitigation polices 

vary from company to company.

1 < 1 . 0 Not drillable. Risk to personnel or facility.

The hazard and risk management model deals with the likelihood and severity of risks 

expected during the drilling phase. This model is followed via a Hazard Analysis and Risk 

Control (HARC) matrix, shown in Figure 1.8 (Poedjono et al., 2007a). The main purpose 

of the HARC matrix is to quantify the severity of every risk associated with drilling a well 

(HSE, financial, planning, and operational). Another objective of the HARC matrix is to 

provide solutions on how to reduce these potential risk levels which vary from -25 

(maximum risk) to -1 (minimum risk). For the purpose of this study, the potential risk is 

focused on the probability of collision, whereas the severity of the risk deals with the 

remedial actions that can be implemented during the operational phase (Chatar et al.,

2015). According to Chatar and others (2015), this potential risk of wellbore collision can 

be reduced either by reducing the likelihood or the severity. In other words, the likelihood 

of collision can be lowered by reducing the uncertainties associated with wellbore position 

and the severity can be reduced by shutting the offset wells. However, this process can 

lead to significant financial loss to the operators. Hence, Chatar and others (2015) have 

specified various operational remedies which can be used to reduce the severity.
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Figure 1.8: Hazard Analysis and Risk Control (HARC) Matrix (Poejdono et al., 2007a).

In summary, the hazard and risk management model is a mix of well planning 

considerations to reduce the uncertainties and operational considerations to mitigate the 

problem in real time. Even though this model has been implemented successfully in the 

industry, it is very subjective and time-consuming, as it requires authorization from the 

drilling manager at all times. Since this study focuses on well planning considerations, the 

risk-based collision avoidance model was used. Furthermore, due to the presence of 

permafrost, this study focuses on anti-collision considerations in the shallower surface 

hole sections. In such cases, the risk-based collision avoidance model is superior to the 

hazard and risk management model because mitigation techniques like well control may 

not be possible in shallower sections (McNair et al., 2005). Moreover, the risk-based 

collision avoidance model was applied at low latitude, in the Gulf of Thailand (McNair et 

al., 2005). According to Chatar and others (2015), anti-collision risk management
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strategies cannot be transferred directly from low to high latitudes. Hence, this model was 

selected to examine its performance at high latitude areas like the ANS.

1.5.2 Torque and Drag

During the anti-collision study, azimuth, inclination, and dogleg were used to define the 

planned well paths. In certain cases, setting a particular magnitude of these quantities 

would yield a satisfactory well path from the anti-collision standpoint, but the critical 

question to be answered is the drillability of that well path. Torque and drag is one of the 

first parameters used to check the drillability of a well path. This study used the torque 

and drag module of WELLPLAN©, a Landmark-Halliburton software.

However, checking the drillability and optimizing the drill string was not sufficient, because 

a significant amount of time would be required to perform anti-collision analysis and 

finalize the azimuth, inclination, and dogleg of the planned well paths. Thus, using the 

optimized drill string, torque and drag analysis was also used to find the limits for azimuth, 

inclination, and dogleg such that within these limits, the well path will not only satisfy anti­

collision considerations, but will also be drillable from the torque and drag standpoint.

1.5.2.1 Torque

Torque is the moment required to rotate the pipe and is only observed when the pipe is 

rotated. During drilling operations, this rotational force is usually generated from three 

sources within the wellbore. These are: 1) frictional torque; 2) mechanical torque; and 3) 

bit torque (Mims and Krepp, 2003).

Frictional torque is generated by the contact load between the drill string and casing or 

open hole section. Since the contact load is the major cause of frictional torque, all the 

parameters which cause contact load to increase will determine the magnitude of frictional 

torque. Some of these parameters are tension/compression in the drill string, string 

weight, dogleg severity, inclination, and friction factor (Payne and Abbassian, 1997). 

Mechanical torque is generated by the interaction of the drill string with cutting beds and 

unstable formations like sloughing and swelling formations (Caglayan, 2014).
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Bit torque or torque at the bit is generated by the interaction between the drilling bit and 

the formation being drilled. Payne and Abbassian (1997) showed that bit torque is 

influenced by parameters such as weight on bit (WOB), RPM, formation characteristics, 

bit design variations, bit wear and hydraulics. Since these are real-time parameters, 

downhole torque subs are used to measure the torque at the bit. Due to unavailability of 

real-time data, Eq. 1.3 was used to estimate the torque at the bit (Ulterra, 2017):

u * Din * WOB
Torque at bit =  --------—-------- (1.3)

where, torque at bit is in ft-lbf, j  is friction factor, Db is the bit diameter in inches, and WOB 

is weight on bit in lbf.

In this study, mechanical torque was considered to be negligible. Hence, the torque 

values generated in this study are a function of frictional and bit torque.

1.5.2.2 Drag

Drag force is an axial force that replaces torque when the drill string stops rotating and, 

when the pipe is moved in the axial direction only (Mims and Krepp, 2003). It always acts 

in the opposite direction to that in which the drill string moves. In other words, drag is the 

amount of drill string weight being supported by the formation due to friction and contact 

forces (WellPlan User Guide, 2014).

There are two types of drag forces, depending upon the motion of the drill string: 1) 

upward drag; and 2) downward drag. Upward drag is experienced during tripping out 

operations of the drill string, which increase the measured weight of the string at the 

surface. Upward drag forces are influenced by well trajectory, lubricity, friction factor, 

wellbore condition, and tortuosity (Payne and Abbassian, 1997). Downward drag is 

experienced during tripping in operations. Downward drag forces are even more critical 

during motor drilling operations because they tend to lower the measured weight of the 

drill string at the surface which limits the motor drilling operations.

In this research, downward drag is studied during drilling operations explicitly using mud 

motor BHA, whereas upward drag is studied as a function of effective tension and Margin
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of Overpull (MOP) during tripping out operations for mud motor as well as Rotary 

Steerable System (RSS) BHA.

1.5.2.3 Torque and Drag Models

There are numerous mathematical models developed to evaluate the torque and drag 

behavior of the drill string inside the wellbore. Even though these models are 

predominantly used in well planning before spudding, they also aid the well planners and 

directional drillers in troubleshooting during unfavorable situations (McCormick et al., 

2011). The industry uses only two types of models for torque and drag analysis: 1) soft 

string model; and 2 ) stiff string model.

The soft string model, also called the cable or chain model, is the most commonly used 

torque and drag model. This model was developed by Johancsik and others (1984) and 

is based on the assumption that the entire drill string is supported by the wellbore, which 

makes the drill string behave like a cable or chain. To model torque and drag, the drill 

string (or cable) is divided into small elements, typically 30 ft intervals. The tension, 

compression, and torsional forces acting on the entire drill string are calculated by 

summing up these forces generated across the small elements from the bottom of the 

drill string to the surface (McCormick et al., 2011). The major disadvantage of the soft 

string model is the fact that it does not consider the stiffness of the drill string (WellPlan 

User Guide, 2014). As a result, the bending moment, a function of drill string stiffness and 

radial clearance of the drill string, is also disregarded which leads to overestimation of the 

torque and drag estimations (Tikhonov et al., 2014).

The stiff string model, as the name suggests, accounts for the bending moment by taking 

into consideration the actual stiffness and radial clearance of the drill string (WellPlan 

User Guide, 2014). Even though there have been many stiff string models developed, 

none of them have been used as a standard in the industry (Ho, 1988; Cernocky and 

Scholibo, 1995; Menand et al., 1996; Rezmer-Cooper et al., 1999; Aslaksen et al., 2006; 

McSpadden et al., 2012; Tikhonov et al., 2014). The requirement of additional inputs and 

calculations to incorporate the bending forces increases the complexity of the stiff string 

model. According to Mason and Chen (2007), the majority of stiff string models use either
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finite difference, finite element analysis or semi analytical techniques, which leads to their 

complexity. Hence, the use of such models is justified for wells with high tortuosity, high 

doglegs, or stiff tubulars (McCormick et al., 2011).

Even though the stiff string models are designed to be more accurate than the soft string 

model, their disadvantages include selection of appropriate model and high computational 

time. Hence, in this study, the soft string model is used to predict the torque and drag 

behavior of the drill string because of its simplistic algorithm, rapid calculation time, and 

sufficiently accurate results for most common drilling situations (Tikhonov et al., 2014).

1.6 Objectives of the Study

The main aim of this research was to put forth end-to-end well planning guidelines for the 

directional wells to be drilled in the ANS using Milne Point S-pad as the focal point. This 

research was carried out in two phases. The initial phase couples the uncertainties 

associated with wellbore positioning with the risk-based collision avoidance model for 

Milne Point, S-Pad as a function of survey tools and error models. The second phase 

deals with checking the drillability of the well paths planned to satisfy the anti-collision 

criteria using torque and drag analysis. Thus, the key objectives of this research were to:

1. Investigate the effect of location and survey tool on positional uncertainties for all the 

planned trajectories of horizontal, s-shaped, and slant wells.

2. Examine the performance of the risk-based collision avoidance model at high latitude 

areas like the ANS.

3. Develop an improved anti-collision risk management workflow for effective well 

planning in Arctic areas.

4. Narrow down the design search domain of the operational drilling parameters by 

optimizing the drill string design in terms of steerable tool, drill pipe size, mud rheology, 

trip speed, and rotational speed.
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5. Develop a systematic approach to determine the end point limits for variation of 

inclination and dogleg such that, within these limits, the well paths satisfy anti-collision 

and torque and drag considerations.
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CHAPTER 2: ANTI-COLLISION RISK MANAGEMENT GUIDELINES FOR ALASKA

NORTH SLOPE DIRECTIONAL WELLS1

2.1 Abstract

The complex process of anti-collision in directional well planning has gained attention in 

the Alaska North Slope (ANS) as economic and environmental constraints have 

compelled operators to drill from already congested pads. The accuracy of the anti­

collision study is highly dependent on the positional accuracy of the wellbore, which is 

associated with the ellipse of uncertainty (EoU). The dimensions of the EoU are based 

on the error models assigned to the survey tools. Initially, this study compares the 

performance of the newly developed Operator Wellbore Survey Group (OWSG) error 

model and the industry-standard Industry Steering Committee for Wellbore Surveying 

Accuracy (ISCWSA) error model to address their software validation challenges. The 

main goal of the study was to develop potential anti-collision guidelines for the ANS. To 

achieve this, the results of the error model comparison were coupled with a thorough 

sensitivity analysis based on four parameters. First, location, to understand the effect of 

latitude on the ellipse of uncertainty. Second, type of well to be drilled, to understand if 

anti-collision considerations are well-type specific. Third, survey tools, to understand the 

limits of the specific survey tool to be used. Fourth, different target locations in the same 

sand, to understand the differences, if any, among the first three parameters. There are 

two substantial findings from the study. First, there is a significant change in positional 

uncertainty with a change in latitude, which implies that higher separation factors should 

be used for high latitude areas. Second, the uncertainties for the gyroscopic tool are 

greater than for the Measurement While Drilling (MWD) tool for Arctic locations. The 

results of this study can serve as potential guidelines for anti-collision planning strategy 

in the ANS.

1 Published as Mahajan N.H., Khataniar, S, Patil. S.L., Dandekar, A.Y., Fatnani, A.K. 
2017. "Anti-collision risk management guidelines for Alaska North Slope directional wells” 
J. Petrol. Sci. Eng. 2018 March 20. doi.org/10.1016/j.petrol.2018.03.069 (Modified)
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2.2 Introduction

Anti-collision (also called collision avoidance) is a measure taken by every drilling 

operator to ensure that wells are drilled in a safe manner. Anti-collision monitoring is a 

complex and demanding process that often was not given the high priority it required in 

drilling programs. However, as well density increased from one well per 25 acres (101171 

m2) to one well per 5 acres (20234 m2), anti-collision monitoring was considered a prime 

objective of well planning (Poedjono et al., 2007a). Generally, this process is carried out 

via a set of rules called collision avoidance policies. In most cases, the industry uses the 

separation factor (SF) as the leading collision avoidance indicator. The separation factor 

is defined in Chapter 1 by Eq. 1.2.

Table 1.1 shows the limiting SF values and subsequent actions that should be carried out 

to mitigate them. However, like the SF criterion, all other collision avoidance policies 

require an accurate understanding of the magnitude of uncertainty associated with the 

positioning of planned (or reference well) and offset wells. These uncertainties are defined 

and measured by a combination of survey tool that measures inclination, azimuth, and 

depth of the wellbore, and error model which is applied to the survey tool to quantify the 

uncertainties. In terms of wellbore placement, the uncertainties are represented by the 

ellipse of uncertainty (EoU). This EoU is generated at every survey station, usually 

defined as a point at every 100 ft of measured depth. As seen from Figure 2.1, there are 

five components of this EoU (Bang et al., 2009). These are:

1. Vertical, uncertainty in depth measurement

2. Horizontal, uncertainty in determining the size of the EoU

3. Along-hole, uncertainty in determining the stretch of the EoU

4. High-side, uncertainty in determining the high side of the borehole

5. Lateral, uncertainty in determining the orientation of the EoU
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Figure 2.1: Components of Ellipse of Uncertainty (Modified from Bang et al., 2009).

The actual location of the wellbore could be anywhere within this EoU. Thus, smaller the 

uncertainties, smaller are the dimensions of the EoU and more accurate the positioning 

of the wellbore. The vertical uncertainties, corresponding to depth measurements, and 

high-side uncertainties, corresponding to inclination measurements, are independent of 

geographic location (Bang et al., 2009; Bang and Torkildsen, 2011). However, the 

horizontal, lateral, and along-hole uncertainties, which correspond to azimuth 

measurements, depend on geographic location and hence are considered more critical 

than other types of uncertainties (Bang et al., 2009; Bang and Torkildsen, 2011; Chatar 

et al., 2015).

Several researchers have described uncertainties associated with survey tools at the well 

planning phase (Maus and DeVerse, 2015; Bang et al., 2009) and anti-collision 

considerations in the operational phase using the hazard and risk management model 

(Poedjono et al., 2009; Chatar et al., 2015; McNair et al., 2005). However, there was a 

need to integrate these aspects at the core well planning level. In other words, there was 

a need to understand how the uncertainties in the survey tool affect the SF limits as 

defined by the risk-based collision avoidance model at higher latitude areas. To fill this 

gap, the objective of this work was to select new and realistic targets in an actual oil field, 

namely, Schrader Bluff, Milne Point, and carry out a thorough sensitivity analysis with the 

goal of developing potential guidelines that can be followed for any well to be drilled in 

the ANS.
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2.3 Anti-Collision in the Alaska North Slope

A critical concern in directional drilling is ensuring collision avoidance while drilling multi­

well scenarios from pad locations. Figure 2.2 highlights the importance of anti-collision in 

the ANS. The existence of several wellbores from one pad implies very high collision risk 

at the shallower section (Costeno et al., 2014). From the standpoint of well design, this is 

a unique feature of the ANS because of the presence of permafrost up to ~ 1800 ft. As a 

result, almost all wells are drilled in close proximity to each other up to 2500 ft. Hence, all 

our results are defined for the depth of 2500 ft. Due to the constraints of the Arctic location 

(defined as regions having latitude greater than 66.5°N), including environmental, 

economic and lack of infrastructure, the operators are forced to drill from already 

congested pads. To top this, the recent decline of the oil market and subsequent capex 

restrictions have forced the operators to drill very tortuous well paths from these already 

congested pads, which further complicates the safety of drilling new wells. Hence, an 

improved process of anti-collision risk management has become essential in ANS as well 

as in other areas requiring directional drilling.

Figure 2.2: Well density of S-Pad, Schrader Bluff, Milne Point.
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Along with such complexities, the ANS possess challenges in terms of azimuthal (or 

lateral) uncertainty because of its latitude and magnetic dip. The changes in azimuthal 

uncertainty for magnetic survey tools and gyroscopic survey tools are a function of 

magnetic dip and latitude and are given by Eq. 2.1 and Eq. 2.2, respectively (Bang et al., 

2009; Bang and Torkildsen, 2011):

I I
cosine (Magnetic Dip)AAMagnetic = __ .■__rn/i____ i.2.1)

K2_
cosine (Latitude)AAcyroscopic = ___■__n  __ i ̂  (2 .2)

where, Ki and K2 are constants and magnetic dip and latitude are in degrees.

Table 2.1 shows the geomagnetic properties for the two locations considered in the study. 

The high latitude of 70°N corresponds to Prudhoe Bay, Alaska, whereas the low latitude 

of 55°N corresponds to a field in Africa. From Table 2.1, the values of magnetic dip and 

location for the higher latitude show that azimuthal uncertainties are going to be high for 

both tools compared to values at the lower latitude. For higher latitude areas like Alaska, 

this indicates that the type of tool used influences the uncertainties and the subsequent 

anti-collision considerations. Hence, in such areas, it becomes critically important to 

select the appropriate survey tool, not only to increase the positional accuracy, but also 

to avoid enormous economic losses due to wellbore collisions.

Table 2.1: Geomagnetic properties for the locations considered in the study.

Parameter
Higher Latitude 

(70°N)

Lower Latitude 

(55°N)

Magnetic Dip (deg) 81 70

Magnetic Declination (deg) 17.63 16.69

Horizontal Component of Magnetic Field

(Bh , nT)
8792 17863

Horizontal Component of Earth’s 

Rotation (Eh , deg/hr)
5.14 8.63
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2.4 Methodology

We chose a sensitivity analysis approach to develop potential anti-collision guidelines. 

Location was selected as the first important parameter to understand the severity of 

uncertainties as a function of survey tool in higher latitude areas like Alaska. For this 

parameter, the tools taken into consideration were legacy tools, generic gyroscopic tools, 

and magnetic tools. The working principles and reasons for their selection will be 

discussed in the later sections. The second parameter focused on evaluation of the risk- 

based collision avoidance model at higher latitude locations as a function of survey tools. 

The third parameter was well profile, to understand if the survey tools have any preference 

towards a particular well profile. The fourth parameter was different targets in the same 

sand, to investigate if we can generalize the uncertainty characterization for a particular 

sand. A summary of parameters for sensitivity analysis is given in Table 2.2.

Table 2.2: Summary of parameters for sensitivity analysis considered in the study.

Parameter Approach Aim

Location (Latitude)
High latitude (70°N) vs. 

Low latitude (55°N)

Investigate the effect of lateral and 

horizontal uncertainty.

Survey tool

Legacy vs. Generic 

Gyroscopic vs. 

Magnetic

Evaluate the performance of the 

model as a function of survey tools for 

high latitude areas.

Types of wells

Horizontal Well vs. 

Slant Well vs. S- 

Shaped Well

Check preference for uncertainties as 

a function of well type.

Different targets in 

same sand
Target 1 vs. Target 2

Analyze the variation in uncertainties 

for Target 2 for scenario 3.
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2.4.1 Selection of Targets

Selection of target is the first and the foremost step in well trajectory planning and hence 

in anti-collision monitoring. However, due to the unavailability of seismic and geological 

data for Schrader Bluff OA sand, the target selection was based on the following 

assumptions:

1. The entire surface of the Schrader Bluff OA sand satisfies all the geologic settings 

required to classify it as an oil reservoir.

2. The Schrader Bluff OA sand does not contain any faults.

3. The average thickness of the OA sand pay zone is 27 ft. Thus, the new target to be

selected should have a thickness of at least 27 ft.

4. The selected target should have maximum possibility of oil accumulation. For

example, the selected target should be in the vicinity of a well that is already

producing.

Based on the assumptions stated above, the details of the targets selected are described 

in Table 2.3. Figure 2.3 shows the location of both targets on the OA structure map.

Table 2.3: Position details of selected targets in OA sand.

Target

No.

Northing

(ft)

Easting

(ft)

Depth

(ft)

Thickness

(ft)

Comments on 

Location

1 6004166.03 570249.37 4276 43.6 Extended reach target

2 6001316.03 569949.37 4250 29.4 Between two producers
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Target Locations on Structure Top

Easting (ft)

Figure 2.3: Location of targets on 2-D structure map of Schrader Bluff, Milne Point.

2.4.2 Anti-Collision Parameters Considered in the Study

2.4.2.1 Survey Tools

As mentioned in section 2.2, survey tools are used not only to characterize the position 

of the well path, but also to quantify the corresponding positional uncertainty so that this 

information can be utilized for collision avoidance among planned and offset wells. The 

knowledge of positional uncertainty will help the well planners and directional drillers to 

plan and drill relief wells safely, minimize the risk of crossing lease lines, and hit the target 

accurately to maximize production (Samuel and Liu, 2009). Hence, it is critical to select 

the appropriate survey tool that will generate minimum uncertainties and therefore 

increase the confidence level of positional accuracy.

To determine best survey tool, a broad range of survey tools was chosen spanning from 

the old legacy tools to recently used generic north seeking gyroscopic and magnetic tools. 

The legacy tools, including camera based gyroscopic multi shot (CB-Gyro-MS) and 

camera based magnetic multi shot (CB-Mag-MS), were selected based on the well history 

report for Schrader Bluff, Milne Point, which indicates that these tools, though considered 

outdated, were still used in the ANS (AOGCC, 2017). The generic gyroscopic tools 

included in the study were north seeking gyro (NS-Gyro) and continuous gyro (Gyro-CT).
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These tools were selected to compare the functioning of stationary and continuous 

gyroscopic tools, respectively, especially at high latitude. The magnetic tools include a 

standard MWD tool and an improved MWD tool with enhanced geomagnetic in-field 

referencing (IFR) and multi-station analysis (MSA). The main reason for selecting these 

specific magnetic tools was the fact that improved MWD gives higher positional accuracy 

than the standard MWD tool (Lowdon and Chia, 2003; Miller et al., 2003; Maus and 

DeVerse, 2015). However, in our approach, the objective was to check the validity of 

these results at higher latitudes. Hence, by comparing the uncertainties generated by 

each tool at higher latitudes, we will be able to determine which survey tool should be 

used to increase positional accuracy.

The CB-Mag-MS survey tool uses a combination of film disc, pendulum, ring glass with 

scale, and a compass card to measure the inclination and azimuth by referencing itself to 

Magnetic North (Inglis, 1987). This tool is greatly affected by nearby magnetic instruments 

like casing (Inglis, 1987). Furthermore, since this tool uses Magnetic North to measure 

the azimuth, it must be corrected for magnetic declination which is defined as the angle 

between True North and Magnetic North. The CB-Gyro-MS survey tool consists of a 

spinning wheel driven by an electric motor which generates speeds up to 40,000 rpm. 

The axis of gyroscope is aligned to the True North using an onsite telescope which 

overcomes the disadvantages of CB-Mag-MS (Inglis, 1987).

The standard MWD tool uses the horizontal component of Earth’s main magnetic field to 

measure the azimuth (Bang et al., 2009). However, like the CB-Mag-MS tool, standard 

MWD tool must also be corrected for magnetic declination. COMPASS© uses Eq. 2.3 to 

measure the horizontal component of Earth’s magnetic field, Bh , corrected for magnetic 

declination:

Bh =  Bequator * Cosine ( latitude) * Cosine (declination) (2.3)

where, Bequator is the magnetic field at the equator in nanoTesla (nT) and declination is in 

degrees.
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In our study, the horizontal component of Earth’s main field and magnetic declination were 

estimated using the International Geomagnetic Reference Field (IGRF) 2015 predictive 

model.

The improved MWD tool works on the similar principles of standard MWD tool. However, 

it uses local in-field referencing (IFR) as opposed to the main magnetic field used by 

standard MWD and CB-Mag-MS tool to measure azimuth. Apart from the main magnetic 

field, the IFR measurements are dependent on Earth’s crustal field and are derived from 

magnetic surveys by vessels or airplanes that are location specific (Bang et al., 2011). 

For high latitude areas, these measurements are derived from magnetic observatories 

which allow for the treatment of magnetic storms caused due to Earth’s crustal field by 

accurate estimation of magnetic declination (Lowdon and Chia, 2003). In Alaska, the 

observatories at Barrow and Dead horse are used for this purpose (USGS, 2017b). As a 

result, this method reduces the global magnetic anomalies, which gives more accurate 

positioning of the wellbore. This tool also uses MSA to reduce the uncertainties arising 

from axial magnetization. Nyrnes and others (2009) give a detailed mathematical 

description of the working of the improved MWD tool with MSA correction.

The NS and CT gyroscopic tools use the horizontal component of Earth’s rotation to 

measure the azimuth (Bang et al., 2009; Chatar et al., 2015). This component, Eh , is a 

function of Earth’s rotational rate and is given by Eq. 2.4 (Hawkinson and Mullin, 2014).

dea
Eh =  15.041 —— * Cosine (latitude) (2.4)

nr

2.4.2.2 Error Model

The error model is a mathematical framework for evaluating position uncertainty at every 

survey station (Jamieson, 2012). Tool error models (also called Instrument Performance 

Model (IPM) in Compass©, Landmark) provide an estimate of uncertainty of wellbore 

location based on survey tools (ICF International, 2016). Every survey tool has a discrete 

error model based on a standardized error model framework defined by Williamson 

(2000) for MWD and Torkildsen (2008) for gyroscopic tools. For example, there are a total 

of 27 terms that define the OWSG standard MWD tool error model. However, the critical
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terms are azimuthal errors for axial interference (AMIL) and Bh  dependent declination 

(DBHR), given by Eq. 2.5 and Eq. 2.6, respectively:

Sin (Inclination) * Sin (Azimuth)
AMIL =  -f—  ---------------- -   7  (2.5)

(BTotai * Cosine (Magnetic Dip))

1
DBHR = - ---------------------------------------------- 7  (2.6)

(BTotai * Cosine (Magnetic Dip))

where, Brotai is the total magnetic field of the Earth, which is a combination of the main, 

crustal and external fields, in nanoTesla; and inclination and azimuth are in degrees.

Even though the ISCWSA error models have been standardized in the industry, there 

have been many issues in their implementation for common practice (Okewunmi and 

Brooks, 2011; Grindrod et al., 2016). Some of the issues include an excessive number of

models (4 revisions for MWD error model and 5 for gyro error model), the complexity

associated with each respective model, and the validity of the models (Grindrod et al.,

2016).

To overcome these issues, OWSG, a subcommittee of SPE-Wellbore Positioning 

Technical Section (WPTS), developed a standardized series of five sets of error models 

called OWSG error models (Grindrod, 2017). In our study, we focus on set A, which is a 

standard set including the tools that we have selected for the study. However, we use 

IGRF, a low definition geomagnetic model, as opposed to the default British Geologic 

Survey Global Geomagnetic Model (BGGM) used in set A of the OWSG error model. 

Furthermore, one of the challenges mentioned by Grindrod and others (2016) was 

comparison of the ISCWSA standard error model and the OWSG error model. To address 

this challenge, we compared the error sources and their magnitudes for both error 

models. These differences for the respective survey tools are outlined in Table 2.4. For 

the remaining survey tools, there were no changes in parameters or magnitudes for both 

the ISCWSA and OWSG error models.
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Table 2.4: Differences in parameters and their magnitude for ISCWSA and OSWG error 

model.

Tool Terms ISCWSA Error 

Model

OWSG Error 

Model

Standard MWD

AMIL 300 nT 220 nT

DECR - 0 . 1  deg

DBHR - 3000 dnT

CB-Gyro-MS DRFS 3.28084 ft 0.656168 ft

Improved MWD 

(MWD + IFR1 + MS)

DECG 0.36 deg 0.15 deg

DBHG 5000 dnT 1500 dnT

AMIL 200 nT 100 nT

mbxy 70 nT 35 nT

mbz 70 nT 35 nT

msxy 0.00016 0.0008

msz 0.00016 0.0008

Next, we compared the performance of both error models. Figures 2.4 and 2.5 highlight 

the comparison results for lateral and horizontal uncertainties generated by both error 

models at 95% confidence level for a Target 1 horizontal well at 70°N. It is important to 

note that all the horizontal uncertainties shown in this chapter are generated at 2500 ft. 

These results indicate that the OWSG error model is in compliance with the ISCWSA 

error model. However, we prefer the OWSG error model as the default model because it 

provides a complete range of error model modifications used in the industry and delivers 

an equivalent single model for both gyroscopic and MWD tools.
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Figure 2.4: Lateral uncertainty comparison, ISCWSA vs. OWSG error model for target 1 

horizontal well at 70°N.

Figure 2.5: Horizontal uncertainty comparison, ISCWSA vs. OWSG error model for target

1 horizontal well at 70°N.
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2.4.3 Well Trajectory Planning for Target 1 and Target 2

Before designing the well trajectory, COMPASS© requires the well planner to define the 

anti-collision settings to be followed while generating the SF plot. Table 2.5 defines the 

settings used in this study.

Table 2.5: Anti-collision settings used in the study.

Setting name Aim Model selected for well planning

Error model How is positional uncertainty 
evaluated?

OWSG error model

Survey tool How is positional uncertainty 
quantified?

Improved MWD survey tool

Scan method How is well path separation 
calculated?

3-D closest approach

Warning type What criteria is used to issue 
warnings?

Ratio based (or SF) warning

Error surface How is SF calculated? Elliptical conic

This section discusses well trajectory design for slant, s-shaped, and horizontal wells for 

target 1. A similar approach was used to design the wells for target 2.

2.4.3.1 Slant Well

Slant well design is also called hold-build-hold well design. COMPASS© requires any two 

parameters from kick-off point (KOP), build-up rate (BUR), maximum inclination, and 

length of tangent to define the slant well trajectory. In the initial stages of slant well 

trajectory design, an average KOP and BUR of 473 ft and 3.84 deg/100ft, respectively, 

were selected from slant well offset data for S-Pad. However, this approach was not able 

to satisfy the SF plot, as shown in Figure 2.6. Figure 2.6 shows that when the slant well 

trajectory is planned using the offset data, four of the existing wells will collide with the
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well path, because the SF value falls below the acceptable risk levels defined in Table 

1.1. This indicates a need to change the planning method. To address such scenarios, 

nudging is used to offset the trajectory so that it can land at the desired MD, azimuth, or 

inclination (Compass User Guide, 2011). These properties are finalized based on a trial 

and error approach.

Plan: Target 1, S lant W ell Design (Proposed W ell #1/P lanned W ellbore  #1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Measured Depth [usft]

Figure 2.6: Initial SF plot for slant well design for target 1.

Figure 2.7 shows the finalized plan section for a Target 1 slant well generated using 

nudging technique.

Figure 2.7: Final plan section for slant well design for target 1.
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This plan section is finalized based on Figure 2.8, which shows that none of the existing 

well paths fall below the cut-off SF value of 1.5 used in the study.

Plan Target 1, Slant W ei Design, Mix Different Planning Methods (Proposed W ei #1/Planned Wetoore #1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500

Measured Depth [usft]

Figure 2.8: SF plot for finalized slant well design for target 1.

2.4.3.2 S-Shaped Well

An S-shaped well design is typically called a build-hold-drop-hold well profile. 

COMPASS© requires any two parameters from KOP, BUR, maximum inclination, length 

of tangent, drop rate, final inclination, and length of final hold to define the S-shaped well 

trajectory. In the initial stages, an average KOP of 404 ft, BUR of 3.73 °/100 ft, drop rate 

of -3.37 °/100 ft (negative for drop), final inclination of 32°, and length of final hold length 

of 400 ft were selected from S-shaped well offset data for S-Pad. However, similar to the 

slant well design, this approach was not able to satisfy the SF plot. Next, a nudging 

technique was used to plan the well trajectory from an anti-collision standpoint. Figure 2.9 

shows the resulting SF plot generated using the nudging technique. As seen from Figure 

2.9, this technique was unable to clear the SF criterion due to the very high density of 

existing wells in the shallower section (~1200 ft MD).
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Figure 2.9: SF plot generated using nudging technique for target 1 S-shaped well.

Hence, a new optimum align technique was used to plan the S-shaped well for target 1. 

This is a curve-hold-curve technique and allows the well planner to reach a target at a 

specific inclination or azimuth by changing either the dogleg for each curve, TVD for start 

and end of hold, or length of the hold (Compass User Guide, 2011). The S-shaped well 

was designed using 4.2 °/100 ft and 3.0 °/100 ft as the doglegs for the build and drop 

sections, respectively, with a final inclination of 32°. Figure 2.10 shows the plan section 

generated using the optimum align method.

Figure 2.10: Plan section using optimum align method for target 1 S-shaped well.
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Figure 2.11 shows the anti-collision results for this well plan. Since no existing well paths 

fall below the SF value of 1.5, the well path shown in Figure 2.10 is finalized from an anti­

collision standpoint.

Pten: Target 1, S-Shaped Design. OPT A L (Proposed W e i #1/Planned W ei>ore#1)
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Figure 2.11: SF plot using optimum align method for target 1 S-shaped well.

2.4.3.3 Horizontal Well

COMPASS© does not offer a pre-defined technique for planning a horizontal well. Hence, 

a combination of nudging and the optimum align method was used to plan the horizontal 

well. The approach for planning the horizontal well was similar to that for the slant and S- 

shaped wells. The planning of a horizontal well is based on two assumptions. First, the 

targets defined in section 2.4.1 are considered the heel of the horizontal well, and second, 

the length of the horizontal lateral was assumed to be 4500 ft MD (Dunn et al., 2005). 

Like the S-shaped well, the section above KOP required nudging to prevent collisions 

with existing wells. The section from KOP to heel was planned using the optimum align 

method with a desired inclination of 88°, which was achieved using doglegs of 4.5 °/100 

ft for the first build section below the KOP and 8.0 °/100 ft for the second build section 

above the heel. Figures 2.12 and 2.13 show the final plan section and corresponding SF 

plot for the horizontal well.
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Figure 2.12: Plan section using nudge and optimum align method for target 1 horizontal 

well.

Figure 2.13: SF plot using nudge and optimum align method for target 1 horizontal well. 

2.5 Results and Discussion

2.5.1 Effect of Location

Figure 2.14 shows the variation of lateral uncertainty as a function of location and survey 

tools for a horizontal well. As seen from the figure, the lateral uncertainties at higher 

latitudes are almost double than those at lower latitudes. The exponential nature of the
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curve implies that the uncertainties increase rapidly as MD increases. Figure 2.15 shows 

the variation of horizontal uncertainty as a function of location and survey tool for a 

horizontal well. Like the lateral uncertainties, the horizontal uncertainties are also greater 

at higher latitudes. This is critical because the higher the horizontal uncertainty, higher 

will be the size of the EoU, which indicates a reduced safety margin for drilling new wells.

In case of magnetic tools, the improved MWD tool generates least uncertainties. This is 

because it uses both, main and crustal field to measure the horizontal component of 

Earth’s magnetic field. Furthermore, the azimuth measurements are based on real-time 

declination measurements that are location specific which leads to near accurate 

uncertainty quantification. On the other hand, standard MWD tool uses only the main field 

to measure the horizontal component of Earth’s magnetic field. As a result, the resolution 

of the estimated magnetic field is weak. Although the readings for this tool are corrected 

for magnetic declination, the correction is static. In other words, a single, constant 

declination value is used to correct these measurements. Hence, the systematic errors 

which are a function of continuous declination measurements are not accounted in case 

of standard MWD tool. The CB-Mag-MS tool generates very high uncertainties. This is 

because COMPASS© does not correct its azimuth measurements for declination error 

since it falls under the category of legacy tools (Compass User Guide, 2011).

In case of gyroscopic tools, NS-Gyro generates very high uncertainties compared to the 

other tools. This is due to the combination of Earth’s rotation rate and the tool’s operating 

principle. As shown in Table 2.1, Earth’s rotation rate decreases at high latitude areas, 

and, this coupled with the stationary operating mode of NS-Gyro tool, affects its ability to 

seek North, which decreases its accuracy to measure the azimuth (Bang et al., 2009; 

Buchanan et al., 2013). The Gyro-CT tool generates least uncertainties because this tool 

directly and continuously measures the Earth’s rotation by finding the True North in real­

time. The continuous operating principle overcomes the effect of decrease in Earth’s 

rotation rate which lead to reduced uncertainties (Stockholm Precision Tool, 2017; 

Huracan, 2017). Furthermore, since the measurements are based on True North, the 

errors due to magnetic field are eliminated. On the other hand, CB-Gyro-MS tool uses 

indirect methods to measure True North because the tool is aligned to onsite True North
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before running in the wellbore. As a result, the drift errors, which arise when the True 

North alignment changes, are significant leading to greater uncertainties than Gyro-CT. 

Furthermore, the drift errors lead to magnetic declination errors, which also contributes to 

the increased uncertainties.

As shown in Table 2.1, the magnitude of the properties defined by Eq. 2.3 and 2.4 

respectively, decreases at higher latitudes. This coupled with the findings from Figures 

2.14 and 2.15 indicates that the uncertainties associated with the measurement of 

azimuth increase in such areas. Hence, Figures 2.14 and 2.15 can be used to conclude 

that wellbore positioning accuracy degrades in areas of higher latitudes because of 

increased uncertainties.

Figure 2.14: Lateral uncertainty as a function of location and survey tools with OWSG 

error model.
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Horizontal Uncertainty, Low Latitude (55°N) vs. High Latitude (70°N) 

Improved MWD 

Standard MWD 

CB-Mag-MS 

NS-Gyro 

CB-Gyro-MS 

Gyro-CT
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Horizontal Uncertainty (ft)

■ High Latitude (70°N) ■ Low Latitude (55°N)
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Figure 2.15: Horizontal uncertainty as a function of location and survey tools with OWSG 

error model.

Although several researchers have concluded that Gyro-CT tool generates higher 

positional accuracy than both, standard MWD and improved MWD, our results show that 

these magnetic tools provide more reliable positional accuracy, which is similar to the 

results reported by Miller and others (2003) and ICF International (2016). We attribute the 

validity of our results to the working principle of these tools. As mentioned previously, 

Gyro-CT, standard MWD, and improved MWD use the horizontal component to measure 

azimuth. From Table 2.1, when we compare the magnitude of Eh  and Bh  for the same 

latitude, Bh  is significantly higher, meaning that the horizontal component of Earth’s 

magnetic field is significantly stronger than that of its rotation. This indicates that for any 

latitude where Bh  is higher than Eh , the uncertainties generated by magnetic tools will be 

smaller than those of gyroscopic tools.

Previous studies have shown that gyroscopic tools not only cause cessation of drilling 

operations, but also require additional rig costs (Miller et al., 2003; Chia and de Lima, 

2004; Poedjono et al., 2010). These reasons can have negative impacts on drilling 

economics, especially in the Arctic, where the average rig cost is around $350,000 per 

day. Hence, the results presented in the study are critical for economic drilling
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considerations in the Arctic, allowing operators to have greater confidence in positional 

accuracy during real time drilling operations using a magnetic MWD tool.

To keep our study universal, we selected one tool from each of the survey tool categories 

explained in section 2.4.2.1, which generated smaller uncertainties. This includes CB- 

Mag-MS from legacy tools, Gyro-CT from generic gyroscopic tools, and improved MWD 

from magnetic tools.

2.5.2 Evaluation of Risk Based Collision Avoidance Model

As mentioned in section 1.5.1.3, the risk-based collision avoidance model is studied using 

a ratio-based SF defined by Eq. 1.2. Figure 2.16 shows that the minimum separation for 

a set of horizontal reference and offset well is higher at higher latitude. This points out 

that the anti-collision criterion given by the risk-based collision avoidance model will give 

results, but at a very high risk. The results shown in Figure 2.16 are for a constant c-c 

distance of 26 ft. Even though this number was arbitrarily chosen, the same trend is seen 

for all other distances, provided that they are kept constant for both reference and offset 

wells at high latitude and low latitude, respectively. The higher minimum separation 

implies that the size of the associated EoU at that depth is high. Thus, based on Eq. 1.2, 

the SF will be smaller for high latitude areas, which ultimately increases the risk of 

collision. As shown in Table 1.1, the SF cut-off limit for safe planning, defined at the well 

planning level by the risk-based collision avoidance model, is 1.5. However, this limit does 

not incorporate the effect of the increase in minimum separation because its value used 

in the industry remains the same (1.5) irrespective of location. Hence, these results 

indicate that the industry should use a SF greater than 1.5 as the cut-off limit for safe well 

planning, especially in areas like Alaska, the North Sea, and the Barents Sea.
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Figure 2.16: Minimum separation for different survey tools at 70°N and 55°N.

Bang and Torkildsen (2009) have shown a way to address the large uncertainties 

associated with high latitudes using the concept of the wellbore separation expansion 

factor (F). They defined F as the ratio of the minimum separation at high latitude (75°N) 

to the minimum separation at low latitude (60°N), with an average magnitude of 1.70. The 

magnitude of F can be considered the new SF cut-off limit because it scales the smaller 

uncertainties associated with lower latitudes to higher latitudes, provided that the c-c 

distance and the confidence level remain constant. In our study, generating an F value 

for the ANS was not possible for several reasons. Firstly, Bang and Torkildsen (2009) 

were able to derive this value from a very large data set (281 cases) as a function of 

various well profiles (spanning vertical to deviated to horizontal) and four combinations of 

survey tools. In our case, we only had access to one horizontal well with three 

combinations of survey tools. Secondly, the choice of lower latitude plays a crucial role in 

determining the value of F. The lower the latitude, the smaller the minimum separation, 

which will increase the magnitude of F. In some cases, it might also lead to a very 

unrealistic value. The choice of lower latitude can vary from company to company, but we 

recommend selecting the latitude based on similarity of well density. For example, based 

on the well density of Milne Point S-Pad, any field from the Gulf of Mexico with 25°N 

latitude can serve as a good lower latitude candidate. Thirdly, the value of minimum 

separation for both latitudes changes with the c-c distance. Bang and Torkildsen (2009) 

did not provide any justification for selecting 196.8 ft and 492 ft as the two choices for c­

c distances for the 281 cases. One way to solve this dilemma is evaluating the minimum 

separation at minimum c-c distance (Chatar et al., 2015). However, even though F = 1.70

Minimum Separation, Low Latitude (55°N) vs. High Latitude (70°N)
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cannot be used for the ANS directly, it can serve as a base for a new SF cut-off value to 

be used in higher latitude areas.

2.5.3 Effect of Well Profiles

Figures 2.17 and 2.18 indicate the variation of horizontal and lateral uncertainties at 70°N 

with survey tools and well profiles including horizontal, slant, and S-shaped wells. By 

comparing them with Figures 2.14 and 2.15, it is clear that even though there is a slight 

change in the magnitude of uncertainties, the trend is similar. Hence, we can conclude 

that both uncertainties are independent of well profile and depend only on survey tool. 

Regarding the survey tool, the improved MWD tool outperforms all the other tools as it 

decreases the uncertainties by an average of 73% for all well profiles when used with the 

OWSG error model. This average decrease to 63% when used in conjunction with the 

ISCWSA error model. This not only highlights the better performance of the OWSG error 

model, but also clarifies the reason for using it as a default error model.
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Figure 2.17: Lateral uncertainty for all well profiles for target 1 at 70°N.

Figure 2.18: Horizontal uncertainty for all well profiles for target 1 at 70°N.

48



2.5.4 Different Targets in same Sand

Next, to investigate if we could generalize the uncertainties in the same sand, we selected 

two targets. The locations of these targets are shown in Figure 2.3. Both targets are 

realistic from the standpoint of drilling engineering, having an MD/TVD ratio of 2.84. 

Figure 2.19 shows that we can generalize the uncertainties to some extent because the 

lateral and horizontal uncertainties for each target overlap. However, this is possible only 

in 2-D wellbores where the semi-major axis is equal to the lateral axis (Bang et al., 2011). 

For Figure 2.19, our results are focused on the horizontal well because 47% of the wells 

drilled in S-Pad are horizontal (AOGCC, 2017). The uncertainties are characterized only 

by the improved MWD tool because of its performance superiority over other tools as 

shown by Figures 2.17 and 2.18.
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Figure 2.19: Horizontal and lateral uncertainty for horizontal well at target 1 vs. target 2.

2.6 Application

The results of this study have led to the development of an improved flowchart to integrate 

anti-collision and survey tools at the well planning level for higher latitude areas (Figure 

2.20). In the initial stages, well planners design the well paths to the targets assigned by 

geologists. These well paths can either be horizontal, slant, or S-shaped. Our results
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indicate that the uncertainties have no preference over a particular well profile. Hence, 

there is no limitation over selection of a specific well path. In the next step, the well planner 

will select the appropriate survey tool and error model that will characterize the 

uncertainties at every survey station. For the survey tool, our results show that the 

magnetic tools provide higher positional accuracy than the gyroscopic tools do for higher 

latitude areas. In terms of economics, operators can combine the results of this study with 

their proprietary cost data to optimize their choice of tools. Though this would depend on 

company policies, we recommend using the improved MWD tool throughout the entire 

drill path. For error model, we recommend using the OWSG error model with the 

magnitudes defined by Grindrod (2017). Once the survey tool and error model have been 

selected, the next step for the well planner would be to select the offset wells that are in 

close proximity to the planned well. The most critical step in terms of anti-collision would 

be to check the SF between the planned and offset wells using the SF plot. In this step, 

we recommend using a higher SF than the widely-used value of 1.5, however, the actual 

value may vary from company to company. It is important to note that directly using the 

SF cut-off limit of 1.70, as defined by Bang and Torkildsen (2009) could lead to a 

conservative well planning approach. If the SF criterion is satisfied for all survey stations, 

all the anti-collision criterions are satisfied, and the well is ready to drill. However, if the 

SF is not satisfied, the well planners should optimize the well path by changing either 

azimuth, inclination, or dogleg. Simultaneously, the well planner should recheck the 

optimized well path for the acceptable separation factor.

This procedure will serve as an effective well planning workflow, as it highlights all the 

crucial steps involved in the process, including selecting the appropriate survey tool, error 

model, and separation factor required for well planning in Arctic areas like the ANS, the 

Barents Sea, and the North Sea. It also states the minimum requirements essential for 

mitigating the high risks associated with such areas. In case of unfavorable scenarios 

from the anti-collision standpoint, this procedure shows the corrective measures that can 

be adopted by the well planner to maintain safety standards in drilling operations.
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Figure 2.20: Improved anti-collision workflow for well planning at high latitude areas.

2.7 Conclusion

The following findings can be put forward for high latitude areas like ANS with 2-D well 

profiles:

1. The OWSG error model agrees with the ISCWSA error model. However, the OWSG 

error model should be used for two reasons:

a. It provides a complete range of error model modifications used in the industry.

b. It delivers an equivalent single model for both gyroscopic and MWD tools.
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2. The lateral and horizontal uncertainties increase by a factor of approximately 2 at 

higher latitudes due to Earth’s geomagnetic properties. This shows that the positional 

accuracy of the wellbore degrades in such areas.

3. The improved MWD tool should be employed throughout because it reduces the 

uncertainties by almost 73% compared to legacy and generic gyroscopic tools.

4. The separation factor criterion should be higher than the industry standard of 1.5 for 

enhanced safety of operations at higher latitude areas like Alaska, the North Sea, and 

the Barents Sea.

5. The nature of uncertainties is almost independent of well profiles but strongly 

dependent on the survey tool.

6. The uncertainties for targets in the same sand can be generalized for 2-D wellbores 

because the lateral uncertainty is equal to the horizontal uncertainty.
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CHAPTER 3: OPTIMIZED WELL PLANNING USING TORQUE AND DRAG 

ANALYSIS FOR ALASKA NORTH SLOPE DIRECTIONAL WELLS2

3.1 Abstract

The geo-environmental constraints of the Alaska North Slope (ANS), including surface 

location and well proximity issues, have compelled well planners to plan tortuous well 

paths with large departures, high inclinations, and doglegs. As a result, accurate torque 

and drag analysis of these well paths is an absolute necessity to prevent drill string 

failures and premature termination of drilling operations. In this study, we use a soft string 

model to investigate the drillability of the well paths planned to satisfy the anti-collision 

criterion in Schrader Bluff, Milne Point. There were two objectives of the study: first, to 

narrow down the design search domain of the drilling parameters; and second, to define 

the end point limits for critical well planning parameters, including inclination and dogleg, 

such that within these limits, the well path satisfies anti-collision as well as torque and 

drag considerations. In our approach to reduce the design search domain, we optimized 

the drill string in terms of its operational parameters for steerable tool, drill pipe size, mud 

rheology, trip speed, rotational speed, and weight on bit (WOB) for drilling and tripping 

out operations. The optimized drill string design was then tested on three different well 

profiles: horizontal, s-shaped, and slant. The surface torque parameter was identified as 

the crucial indicator for initiating the change in well planning parameters. The inclination 

and dogleg of the well profiles were varied only when the surface torque rating exceeded 

the API recommendation. In other cases, the drillability of the well path was confirmed 

using the optimized drill string design. The results show higher WOB capacity for the 

Rotary Steerable System (RSS) BHA than mud motor BHA. The analysis of combined 

motion for both BHAs indicated that optimal combination was possible with low trip 

speeds and high rotational speeds. In terms of drill pipe sizing, the results show that 

higher margin of overpull (MOP) and lower torque and drag were obtained for larger drill

2 Submitted as Mahajan N.H., Khataniar, S, Patil. S.L., Dandekar, A.Y., Fatnani, A.K. 
2018. "Optimized well planning using torque and drag analysis for Alaska North Slope 
directional wells” J. Petrol. Sci. Eng. Under Review. (Modified)
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pipes. Overall, the results indicated superiority of RSS BHA over mud motor BHA. The 

most significant result was the formulation of optimized drill string design in terms of 

operational parameters for the most common 9-7/8” hole section in Schrader Bluff, Milne 

Point for all well profiles. The results of this study would help reduce the cumbersome 

iterative steps involved not only in anti-collision planning strategies but also in torque and 

drag considerations in Arctic.

3.2 Introduction

Torque and drag refers to the effects encountered during rotating and pulling the drill 

string from or into a wellbore during the operating modes of drilling and tripping (Mitchell, 

1995). The drilling operation is carried out in two modes. The first is slide drilling, wherein 

the drill string undergoes only axial movement and no rotation. Since the drill string is not 

rotated, the torque is expected to be low, equal to the torque at bit. However, due to the 

axial movement, the axial drag is expected to be high. This indicates a possibility of drill 

string buckling, causing problems related to the weight transfer to the bit. The second 

mode is rotary drilling, wherein the drill string undergoes continuous rotation from the 

surface. As a result, the torque is expected to be high, but the drag and subsequent 

buckling forces are expected to be insignificant. In the case of tripping, the two operating 

modes are tripping in and tripping out. During these operations, if the drill string is rotated, 

a significant amount of torque is expected due to rotation. As a result, the drill string can 

undergo fatigue and twist off failures. When the drill string is not rotated, the axial drag 

determines the measured weight at the surface depending on the type of mode in 

consideration. During tripping in, the drag will lower the measured weight at the surface, 

whereas during tripping out, the drag will increase the measured weight at the surface. In 

such a scenario, the drill string can undergo tensile failures. It is also important to note 

that the drag forces during tripping in and out operations are not exact counterparts of 

each other because of the different contact points (Ismayilov, 2012).

Aarrestad and Blikra (1994) showed that excessive torque and drag are associated with 

each other and are expected to play a major role in extended-reach and horizontal wells. 

In most of the cases, the causes for excessive torque and drag are hole instabilities, key 

seating, differential sticking, poor hole cleaning, and wellbore friction (Johancsik et al.,
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1984; Sheppard et al., 1987, Lesage et al., 1988). For extended reach and horizontal 

wells, Rae and others (2005) showed that high friction factors generate higher drag 

forces, which ultimately limits the ability to push the drill string to the target depth (TD). In 

the case of torque, Johancsik and others (1984) showed that sliding friction was the 

primary factor causing increased surface torque. Such scenarios can lead to problems 

like fatigue and twist off failures of the drill string in the operational phase or changing the 

rig capabilities in the well planning phase to accommodate the large make up torque 

(MUT), which may not be feasible during real time operations.

To overcome these challenges, torque and drag modeling is considered a primary step 

which allows well planners to not only foresee possible problematic areas but also 

optimize the drill string to reduce the surface torque (Rae et al., 2005; Ugochukwu et al., 

2014). During this process, parameters such as casing and open hole depths, drill string 

components and their weights, friction factors, drilling fluid density and its composition, 

well profile, and rig capabilities are considered to make a realistic and effective torque 

and drag model. Even in the case of extended reach and horizontal drilling, close 

monitoring and accurate calculations are necessary to keep torque and drag within 

permissible limits to prevent drill string failures.

3.3 Objective of the Study

In the North Slope of Alaska, the geo-environmental constraints of location and anti­

collision issues have compelled well planners to plan tortuous well paths with large 

departures, high inclinations, and dogleg. Furthermore, in Schrader Bluff, the shallow 

depth of the reservoir (~ 4000 ft TVD) has forced operators to drill shallow extended reach 

wells. This might create situations wherein setting a particular magnitude of azimuth, 

inclination, and dogleg would yield a satisfactory well path from the anti-collision 

standpoint, but the critical question is the drillability of a particular well path. Hence, the 

main purpose of torque and drag analysis was to check the drillability of the well paths 

planned in the previous study through the anti-collision phase. This was done using the 

Torque and Drag Module of WELLPLAN©, a Landmark-Halliburton software. Thus, this 

process would not only lead to optimization of the drill string but would also help narrow 

down the design search domain for drilling parameters.
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However, checking the drillability of the planned well paths and optimizing the drill string 

is not sufficient, because a significant amount of time is required to perform anti-collision 

analysis and finalize the well planning parameters, viz., azimuth, inclination, and dogleg. 

Thus, using the optimized drill string, torque and drag analysis was also aimed at finding 

the limits for azimuth, inclination, and dogleg such that when these parameters are varied 

within specified limits, the well path will not only satisfy anti-collision considerations but 

will also be drillable from a torque and drag standpoint.

3.4 Methodology

We identified two methods to investigate the drillability of the planned well paths. In the 

first approach, the well path is kept constant and the drill string is optimized. In the second 

approach, the drill string is kept constant and the well planning parameters, including 

inclination and dogleg, are varied to satisfy the surface requirements. In our study, we 

adopted a combined approach to solve the problem on a case-by-case basis.

In order to simulate drilling operations, we focused on the drilling and tripping modes of 

the drill string. In the drill string optimization process, we used a soft string model and 

integrated it with the effects of weight on bit (WOB), trip and rotational speed, mud 

rheology, and drill pipe size. We used WELLPLAN© to simulate each of these parameters 

separately as a function of rotary steerable system (RSS) and mud motor BHAs to cover 

the complete spectrum of torque and drag issues associated with their use. The WOB 

parameter was selected based on a study conducted in Alpine, Alaska, which concluded 

that WOB was one of the leading cause for wear and failure of the drill string (Alvord et 

al., 2007). Hence, the objective of studying the effects of WOB was to generate a range 

that would allow operators to reach the TD for the given configuration of the drill string. 

Due to inaccessibility of historical torque and drag data, the trip and rotational speeds 

were derived from previous studies. The trip speeds used in the study were based on the 

study conducted by Fazaelizadeh (2010), whereas the rotational speeds were based on 

the study conducted by Hoan Van Luu (2015). Mud rheology was studied by analyzing 

the effect of hydrodynamic viscous force. The selection was based on the study 

conducted by Mason and Chen (2007), which showed that in the case of soft string

56



models, the effects of mud rheology should be included to make a more realistic torque 

and drag model. The drill pipe sizes and grades were selected based on case studies 

conducted in Umiat and Nikaitchuq, Alaska by Sayers and others (2015) and Chaudhary 

and others (2016), respectively. These case studies verified the availability and usability 

of the selected drill pipe sizes and grades in the ANS.

The optimized drill string design was then tested on the three different well profiles. During 

this process, the surface torque parameter was identified as the crucial indicator in 

changing the well planning parameters. The limits for well planning parameters were 

defined for the well profiles in which the surface torque rating exceeded the API 

recommendation which states that the surface torque rating should be less than 80% of 

the MUT of the drill string. In the case of the remaining well profiles, the drillability of the 

well path was confirmed using the optimized drill string design. A summary of all the 

parameters considered in the study in given in Table 3.1.

Table 3.1: Summary of parameters considered in the study.

Parameter Cases

Directional tool Mud Motor (Bent housing and PDM)

Rotary Steerable System (RSS)

Combined Motion

RSS BHA Mud Motor BHA

Trip speed 

(ft/min)

Rotary Speed 

(rpm)

Trip speed 

(ft/min)

Rotary Speed 

(rpm)

60 50 60 20

180 100 180 40

300 200 300 80

Mud Rheology

Yield Point (lb/100 ft2) Plastic Viscosity (cP)

20 10

24 12

40 25
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4 %” S-135, 22.8 ppf

Drill Pipe size 5” S-135, 25.6 ppf

6-5/8” S-135, 27.7 ppf

Horizontal Well

Well Trajectories S-shaped Well

Slant Well

3.5 Well Design

Figures 3.1a, 3.1b, and 3.1c show the planned trajectories of the horizontal, S-shaped, 

and slant wells used in the study. All the wells were planned for Target 1 described in 

section 2.4.1, with a drill floor elevation (DFE) of 71 ft. To compare the performance of 

the well profiles as a function of the drilling parameters mentioned in the previous section, 

we used a common 9-7/8” vs. 7-5/8” hole section in our torque and drag analysis for all 

the well profiles.
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Figure 3.1: Well trajectories and planned sections for a) Horizontal b) S-shaped c) Slant 

well profiles.
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The horizontal well for a 9-7/8” vs. 7-5/8” hole section was planned for a MD/TVD ratio of 

2.4. The hole depths, casing grade, and mud weight were derived from the offset well, 

MPU SB 01 (AOGCC, 2017). The selection of the offset well was based on well trajectory 

and distance. A 20”, H-40, 94 ppf driver pipe was set at 112 ft MD. The 13-1/2” surface 

hole was drilled and cased with 10-3/4” , H-40, 32.75 ppf casing at 3100 ft MD. The 

planned intermediate 9-7/8” open hole section extended from 3100 ft MD to 9700 ft MD. 

Based on the offset well data for the intermediate hole section, we used the Bingham 

Plastic fluid model for a water-based mud of density 9.5 ppg to design the torque and 

drag considerations for the worst case. Figures 3.2a and 3.2b show the RSS and mud 

motor BHA for this horizontal well, which was designed to check the efficiency of these 

steerable tools.

Figure 3.2: Drill string design for the horizontal well with a) RSS BHA b) Mud motor BHA.

The S-shaped well for a 9-7/8” vs. 7-5/8” hole section was planned for a MD/TVD ratio of 

1.85 with a Directional Difficulty Index (DDI) of 6.263, indicating a short but tortuous well 

path. A 20”, H-40, 94 ppf driver pipe was set at 112 ft MD. All the S-shaped offset wells 

in S-pad were drilled and cased with a single string from the surface to TD (AOGCC, 

2017). We followed a similar approach and planned a 9-7/8” vs. 7-5/8” production hole
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from the surface to TD using a water-based mud of density 9.5 ppg. Figures 3.3a and 

3.3b show the RSS and mud motor BHA used for the S-shaped well.

Figure 3.3: Drill string design for the s-shaped well with a) RSS BHA b) Mud motor BHA.

The slant well for a 9-7/8” vs. 7-5/8” hole section was planned for an Extended Reach 

Drilling (ERD) ratio of 1.51 with a DDI of 6.148, indicating a short but tortuous well path. 

Similar to the S-shaped wells, all the slant wells in S-pad were also drilled and cased with 

a single string from the surface to TD (AOGCC, 2017). On the similar basis, we planned 

a 9-7/8” vs. 7-5/8” production hole from the surface to TD using a water-based mud of 

density 9.5 ppg. Figures 3.4a and 3.4b show the RSS and mud motor BHA for the slant 

well.

Based on results given by Mason and Chen (2006) for wells in Alaska, we used an open 

hole friction factor of 0.4 and a cased hole friction factor of 0.3. The RSS BHA for the hole 

section used in this study was adopted from Chaudhary and others (2016), whereas the 

mud motor BHA was adopted from Sayers and others (2015). The initial drill string was 

designed for a horizontal well because 47% of the wells in S-pad are horizontal (AOGCC, 

2017). For S-shaped and slant well profiles, the changes in terms of TD for the 9-7/8” hole

RSS and Mud Motor BHA for S-Shaped Well
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were incorporated in the length of the drill pipe from the surface. We used the Doyon 15 

rig package for this study. The rig is pre-equipped with 5”, 25.6 ppf, S-135 drill pipe 

(Abahusayn et al., 2012). In terms of mechanical specifications, the rig has a block rating 

of 1,000 klbf along with a Varco 8SA top drive capable of producing 63,000 ft-lbf 

continuous torque.

Figure 3.4: Drill string design for the slant well with a) RSS BHA b) Mud motor BHA.

3.6 Results and Discussion

3.6.1 Effect of Weight on Bit

In terms of the sequence of drilling operations, the first and the foremost objective of 

drilling a hole is achieved by applying compressive forces on the bit. In other words, a 

certain WOB is applied that will allow the given configuration of drill string to reach the 

desired depth. To follow this sequence, we chose WOB as the first parameter in the 

optimization process.

Figure 3.5 shows the variation of axial load as a function of WOB for a horizontal well with 

RSS BHA. As the WOB increases, the neutral point moves upward from the bit. During
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this process, the compressive load acting on the drill string also increases, which makes 

it more susceptible to buckling. For example, for WOB of 59 klbf, the increase in the 

compressive load is large enough to cause the heavy weight drill pipe (HWDP) placed 

above the BHA to buckle. In terms of buckling, this is a critical location, as the HWDP 

provides support to the BHA for optimal directional control, which may not be achieved in 

this case. Figure 3.5 also indicates that for a horizontal well with RSS BHA in S-pad, Milne 

Point, the WOB can be varied safely until the value of WOB is 59 klbf. The limiting value 

of WOB is also acceptable from the standpoint of torque rating, as the surface torque 

generated using WOB of 59 klbf encompasses 73% of the MUT, which is less than the 

80% suggested by API RP7G. Table 3.2 outlines the comparative results for all well 

profiles, including horizontal, S-shaped, and slant wells with RSS BHA. Table 3.2 

indicates that as the DDI and, in turn, the well complexity decreases, higher values of 

WOB can be applied before causing buckling failure. This is attributed to the contact force 

(or side force) generated at the point where the drill string first buckles. The contact force 

is the force exerted by the wellbore on the drill string. This force acts to stabilize the string 

against buckling. Hence, higher the contact force, higher is the support exerted by the 

wellbore against buckling, which allows additional WOB to be applied on the drill string.

Table 3.2: Comparative results for effect of WOB for all well profiles with RSS BHA.

Well

Profile

Limiting value 

of WOB

(klbf)

Location of 

Buckling

% of Make- 

Up-Torque 

(MUT)

Contact

Force

(lb/30 ft)

Directional 

Difficulty 

Index (DDI)

Horizontal 59 HWDP above 

BHA

74% 1060 6.830

S-Shaped 67 HWDP above 

BHA

60% 1314 6.263

Slant 69 HWDP above 

BHA

57% 2015 6.148
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Effect of WOB on Horizontal well RSS BHA 

Axial Load (1000 Ibf)
■600 -500 -400 -300 -200 -100 0 100 200

900 3 

10000
—  Sinusoidal Buckling  Helical Buckling  WOB = 0  WOB = 20 —  WOB = 40 —  WOB = 59

Figure 3.5: Variation of axial load as a function of WOB on horizontal well with RSS BHA.

Figure 3.6 shows the variation of axial load as a function of WOB for a horizontal well with 

mud motor BHA. Since there is no rotation compared to the RSS BHA, the main issue 

with the mud motor BHA is the ability to overcome drag forces. Hence, the results with 

mud motor BHA are focused on obtaining the workable WOB limits based on feasibility 

of slide drilling rather than the buckling criterion used in RSS BHA. Figure 3.6 shows that 

as the WOB increases, the cumulative drag force also increases, which lowers the 

measured axial load (or weight) of the drill string, causing negative axial load at the 

surface. This indicates a limiting value for WOB which causes negative weight at the 

surface. This situation prevents slide drilling due to inability of the mud motor BHA to 

overcome drag and advance the mud motor forward (Abahusayn et al., 2012). Thus, for 

a horizontal well with mud motor BHA, the maximum WOB of 15 klbf can be applied for 

conventional drilling to proceed. Table 3.3 outlines the comparative results for all well 

profiles, including horizontal, S-shaped, and slant wells with mud motor BHA. Similar to 

the RSS BHA, Table 3.3 indicates that as well complexity decreases, higher values of

64



WOB can be applied before the drill string enters the negative weight condition. During 

the same time, the increase in drag relative to the drag experienced for zero WOB also 

decreases due to the decrease in well complexity. It is important to note that the 

acceptable WOB values for RSS BHA are greater than the WOB values for mud motor. 

This phenomenon can be attributed to the magnitude of axial forces generated using both 

BHAs. When the magnitudes of axial forces are smaller, the drill string is oriented towards 

compression, which is responsible for buckling. As seen from Figure 3.6, the smaller 

magnitudes of axial forces generated using mud motor allow small margins for additional 

compressive forces to be applied as WOB. This results in smaller acceptable WOB 

magnitudes for mud motor BHA compared to RSS BHA.

Effect of WOB on Horizontal Well Mud motor BHA 

Axial Load (1000 Ibf)
■600 -500 -400 -300 -200 -100 0 100

90db

10000

Sinusoidal Buckling  Helical Buckling  WOB = 0  WOB = 5  WOB = 10 — WOB = 15

Figure 3.6: Variation of axial load as a function of WOB on horizontal well with mud 

motor BHA.
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Table 3.3: Comparative results for effect of WOB for all well profiles with motor BHA.

Well Profile Limiting value of WOB 

(kips)

% Increase in Drag Directional 

Difficulty Index 

(DDI)

Horizontal 15 15% 6.830

S-Shaped 45 8% 6.263

Slant 47 7% 6.148

According to Cunningham (1960), the relationship between the rate of penetration (ROP) 

and applied WOB is given by Eq. 3.1:

ROP =  K * W a * N  (3.1)

where, ROP is the rate of penetration in ft/hr, W  is WOB in kips, N is the rotary speed in 

rpm, and K and a are constants of proportionality.

Eq. 3.1 indicates that ROP is directly proportional to WOB. Our results show that higher 

WOB for RSS BHA will provide higher ROP, which points out the superiority of RSS BHA 

over the motor BHA.

3.6.2 Effect of Combined Motion

The next step in the drilling sequence was to analyze the tripping out process and select 

the optimum parameters that will allow the drill string to be pulled out from the hole without 

undergoing drill string failures.

In the previous years, the tripping out process was carried out using variable trip speed 

as the only parameter, with the motive that the drill string should not undergo tensile 

failures. However, this method caused problems like higher drag and subsequently higher 

measured hook loads at the surface as the trip speed was increased. During tripping out, 

the higher measured hook load is due to the higher effective tension in the string (Aadnoy 

et al., 2010). Figure 3.7 illustrates this problem for a horizontal well with RSS BHA. Figure

3.7 shows that as the tripping speeds are increased, the effective tension in the string
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also increases. The main purpose of selecting a particular tripping speed was not only to 

maximize the margin of overpull (MOP) but also reduce the effective tension, which in 

turn decreases the measured hook loads at the surface. However, for all the trip speeds 

shown in Figure 3.7, there is no significant change in the effective tension at the surface. 

Also, the average change in the MOP during such scenarios was very small (2.42%).

Effect of Trip Speed on Effective Tension
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Figure 3.7: Variation of effective tension as a function of trip speed.

To overcome the problem of higher hook load and smaller MOP, Aadnoy and others 

(2010) suggested a combined motion solution, wherein trip speed is combined with pipe 

rotation. During combined motion, the tripping out process of the drill string consists of 

two operational components: first, trip speed in ft/min, and second, pipe rotation in rpm. 

In previous studies, Aadnoy and Anderson (2001) found that the total drag during 

combined motion is a function of axial drag caused by tripping speed and rotational drag 

caused by pipe rotation. They showed that during such motion, for a constant trip speed, 

the rotational speed helps reduce the effective tension by reducing the axial drag, which 

also reduces the measured hook load. However, there was a need to study the combined 

effect of varying trip and rotational speeds, which would aid in selection of their optimal
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values to not only reduce the measured hook load but also increase the MOP, which will 

help overcome scenarios like stuck pipe, slip/stick, etc. To achieve this, the RSS and mud 

motor BHA for each of the three well profiles were simulated for all the combinations of 

trip speed and rotational speed, as outlined in Table 3.1.

Figures 3.8a, 3.8b, and 3.8c show the effect of rotational speeds combined with trip 

speeds of 60 ft/min, 180 ft/min, and 300 ft/min, respectively, on effective tension of a 

horizontal well with RSS BHA. These figures indicate that using combined motion, the 

effective tension can be reduced significantly compared to the effective tension measured 

for the same trip speed without rotation. These figures also indicate that for a particular 

rotary speed, as the tripping speed increases, the effective tension also increases. For 

example, the effective tension measured at the surface for a combination of 300 ft/min 

and 50 rpm is 44% greater than the effective tension for a combination of 60 ft/min and 

50 rpm. In other words, for the same rotary speed, higher the trip speed, lower is the 

reduction in effective tension as compared to the effective tension measured with same 

trip speed without rotation.

Figure 3.8: Effect of rotational speeds on effective tension combined with trip speed of 

a) 60 ft/min b) 180 ft/min c) 300 ft/min.

Figures 3.9a, 3.9b, and 3.9c show the effect of rotational speeds combined with trip speed 

of 60 ft/min, 180 ft/min, and 300 ft/min, respectively, on torque limits of the same 

horizontal well as above. These figures indicate that for a particular rotary speed, as the 

tripping speed increases, the rotary table torque decreases significantly. For example, the 

torque required at the rotary table for a combination of 300 ft/min and 50 rpm is 56% less
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than the torque required for a combination of 60 ft/min and 50 rpm. In other words, for the 

same rotary speed, higher the trip speed, lower is the torque requirement.

Figure 3.9: Effect of rotational speeds on torque combined with trip speed of a) 60 ft/min 

b) 180 ft/min c) 300 ft/min.

The reason for such behavior can be attributed to the angle made by the resultant of axial 

and tangential velocities. This angle is defined by Eq. 3.2 (Aadnoy et al. 2010):

^  = tan 1 ( -—) =  tan 1 ( - ----- — )
\ V j  \ 2 n * N * r J

(3.2)

where, ^  is the angle between the axial and tangential velocities, Vh is the axial velocity 

(or trip speed) in ft/min, N is the pipe rotary speed in rpm, and r is the pipe radius in ft.

Aadnoy and others (2010) have shown the dependency of this resultant angle on torque 

and drag calculations during tripping out operations in straight and curved sections of the 

well through Eq. 3.3 and Eq. 3.4, respectively:

T =  r * ^ * p * w * A L *  sina * cos^

F2 =  F1 + p * w * A L *  cosa +  ^ * p * w * A L *  sina * sin

T =  r  * ^ * F1 * \02 — 6-^* cosip

F2 =  Fi  +  F1( \e2-e 1\ \  (  1) * sinp +  p *w  * AL * (
sin a2 — sin a1> 

a2 — a1 >

(3.3a)

(3.3b)

(3.4a)

(3.4b)
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where, T is the torque in the string in ft-lbf, F2 is the force due to static w e igh t at the top 

o f the string e lem ent in consideration in lbf, F1 is the force due to static weight at the 

bottom of the string e lem ent in consideration in lbf, r is the pipe radius in ft, p is the 

coeffic ient o f friction, p is the buoyancy factor, w  is unit pipe weight in lb/ft, AL is length of 

pipe segm ent in consideration in ft, a is wellbore inclination, ^  is the angle between axial 

and tangentia l velocities, and 102 -  61l is the absolute change in direction.

In our study, fo r a trip speed of 300 ft/m in and rotational speed of 50 rpm, the resultant 

angle, ^ ,  is 77°, whereas fo r a trip speed of 60 ft/m in and rotational speed of 50 rpm, the 

resultant angle, ^ ,  is 42°. Since both com binations are analyzed fo r the sam e well profile, 

hole section, drill string, and mud weight, all the properties defined in Eqs. 3.3a, 3.3b and 

Eqs. 3.4a, 3.4b are constant except fo r the resultant angle. This points out that fo r our 

case, the torque is d irectly proportional to the cosine o f the resultant angle and drag is 

d irectly proportional to the sine of the resultant angle. Hence, based on the m athem atical 

properties of the sine and cosine functions, the drag fo r a com bination o f 300 ft/m in and 

50 rpm will be greater than that fo r a com bination o f 60 ft/m in and 50 rpm, which is 

reflected by the behavior o f effective tension. On a sim ilar basis, the torque fo r a 

com bination of 300 ft/m in and 50 rpm will be sm alle r than that fo r a com bination o f 60 

ft/m in and 50 rpm.

The optim al com bination of trip and rotational speed should result in h igher reduction in 

effective tension and lower torque requirements. However, the results presented in the 

study show that the effects of com bined motion on effective tension and torque are 

opposite to each other. Hence, it was necessary to add a third param eter in this process 

to narrow down the design dom ain for the num ber o f com binations. This param eter was 

the fatigue ratio, which is defined as the sum m ation o f bending and buckling stress divided 

by the fa tigue endurance lim it of the drill string section under consideration. Since the 

results of th is section are focused on the tripping out process, the buckling stress is zero. 

Hence, the fa tigue ratio fo r the tripping out process signifies the location and relative 

m agnitude o f the bending stress that will cause fatigue fa ilure of the drill pipe.

Figures 3.10a, 3.10b, and 3.10c show the variation o f the fa tigue ratio w ith the rotational 

speeds and trip speeds considered in the study fo r the sam e horizontal well as above.
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These figures are useful in reducing the acceptable design domain for the number of 

combinations of trip and rotational speed because they indicate all the combinations 

which cause the fatigue ratio to be greater than 1 which will ultimately lead to fatigue 

failures of the drill pipe. Hence using this criterion, the design domain for the number of 

combinations reduces to that shown in Table 3.4.

Effect of Combined Motion on Fatigue
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Figure 3.10: Effect of rotational speeds on fatigue ratio combined with trip speed of a) 60 

ft/min b) 180 ft/min c) 300 ft/min.

Table 3.4 Possible combinations and their properties for a horizontal well with RSS BHA. 

Favorable values in red.

Combination Max.

Fatigue

Ratio

Dec. in 

Effective 

Tension

Torque

utilized

Inc. in 

MOP

(%) (%)
(%)

60 ft/min, 50 RPM 0.98 31.2 71.9 37.3

60 ft/min, 100 RPM 0.85 43.8 74.9 52.4

60 ft/min, 200 RPM 0.78 50.8 74.1 60.8

180 ft/min, 200 RPM 0.93 37.1 74.6 45.5
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Table 3.5: Possible combinations and their properties for a horizontal well with mud motor

BHA. Favorable values in red.

Combination Max.

Fatigue

Ratio

Dec. in 

Effective 

Tension

Torque

utilized

Inc. in 

MOP

(%) (%) (%)
60 ft/min, 40 RPM 0.97 25.8 63.7 15.5

60 ft/min, 80 RPM 0.84 39.4 69.0 23.7

In other words, Table 3.4 shows the combinations that will not cause fatigue failure of the 

drill string. Similarly, Table 3.5 shows the combinations for a horizontal well with mud 

motor BHA. The optimal combination should have maximum increase in MOP along with 

minimum fatigue ratio, indicating small chances of the drill string undergoing fatigue 

failure; maximum reduction in effective tension, indicating reduction in axial drag; and 

minimum torque utilized, indicating small chances of drilling undergoing twist off failure. 

From Tables 3.4 and 3.5, the combinations of 60 ft/min and 200 rpm and 60 ft/min and 

80 rpm give the required results for a horizontal well with RSS BHA and mud motor BHA, 

respectively, except for the torque ratings. However, the torque at the rotary table satisfies 

the API RP7G recommendation, hence, the torque rating results are considered 

acceptable. A similar trend was observed for slant and S-shaped well profiles. These 

results show that optimal combinations are possible with low trip speeds and high 

rotational speeds as long as the drill string does not undergo fatigue and twist off failures. 

Furthermore, the RSS BHA outperforms the motor BHA because of higher reduction in 

effective tension and higher increase in MOP.

3.6.3 Effect of Hydrodynamic Viscous Forces

In continuation of the tripping out sequence, Maidla and Wojtanowicz (1987b) showed 

that the hydrodynamic viscous forces resulting due to the properties of drilling fluid affect 

the drag forces which arise due to the pipe movement in opposite direction to that of the 

drilling fluid. They presented a procedure for calculating the viscous pressure gradient for
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each pipe element based on the fluid model, which was then translated into calculating 

the hydrodynamic viscous forces given by Eq. 3.5:

where, Fd is the hydrodynamic viscous drag force in lb, —  is the viscous pressure
AL

gradient in psi/ft, AL is the length of pipe segment in ft, and d is the outer diameter of the 

pipe segment in inches.

In our study, we interpreted the effect of hydrodynamic viscous forces as a way to 

enhance the results of the tripping out process. To achieve this, previous results of 

optimum combinations of trip and rotational speeds were coupled with the Bingham 

Plastic drilling fluid model with three different plastic viscosities (mentioned in Table 3.1), 

keeping the mud weight of 9.5 ppg constant at all times. Figures 3.11 and 3.12 show the 

variation of hydrodynamic viscous force as a function of plastic viscosity for a horizontal 

well with RSS BHA and mud motor BHA, respectively. These figures indicate that as the 

viscosity of the drilling fluid increases, the viscous drag associated with it also increases. 

Since the fluid model, mud weight, hole section, and trip speed are constant, the increase 

in viscosity causes the Reynold’s number to decrease. As a result, flow becomes laminar, 

which causes the friction factor and subsequently the viscous pressure gradient to 

increase, leading to increased viscous drag. The simultaneous analysis of Figures 3.11 

and 3.12 for a particular value of plastic viscosity and drill string element points out that 

the length of the drill string element and the clearance between the wellbore diameter and 

outer pipe radius are additional critical parameters causing increases in viscous drag 

forces. The smaller clearance implies a higher viscous pressure gradient and the longer 

length implies a larger spread of viscous drag forces over the length of the drill string. In 

terms of performance comparison, the RSS BHA is considered better than the motor 

BHA, as it generates smaller viscous forces. However, it is important to note that though 

the magnitude of the viscous drag is very small, it should not be neglected because it 

increases the robustness of the soft string model.

(3.5)
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Figure 3.11: Variation of hydrodynamic viscous forces as a function of mud rheology on 

the horizontal well with RSS BHA.

Effect of Mud Rheology on Hydrodynamic Viscous Forces for Motor BHA

Hydrodynam ic Viscous Forces (lbs)
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Figure 3.12: Variation of hydrodynamic viscous forces as a function of mud rheology on 

the horizontal well with mud motor BHA.
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3.6.4 Effect of Drill Pipe Size

As a final step in the drill string optimization process, we checked the effect of drill pipe 

size on drilling and tripping out operations and asked whether the estimated torque and 

drag could be reduced. We selected a 4-1/2”, 22.82 ppf, S-135 drill pipe with NC 50 

connection for comparison with the previous results which were generated using a 5” ,

25.6 ppf, S-135 drill pipe with 5-1/2 FH connection. We also selected a 6-5/8” , 27.70 ppf, 

S-135 drill pipe with FH connection to check the validity of the results. Tables 3.6 and 3.7 

compare the results for a horizontal well with RSS and mud motor BHA, respectively.

Table 3.6: Comparison of 5” drill pipe vs. 4%” drill pipe for a horizontal well with RSS 

BHA. Favorable values in red.

Parameter
6 5/8”, S-135, 

27.7 ppf, FH

5”, S-135, 25.6 

ppf, 5 /  FH

4 / ”, S-135, 

22.82 ppf, NC 50

Drilling

WOB Limit 59 kips 59 kips 55 kips

Drilling torque rating 63.8 % 74.6 % 84 %

Tripping Out

Combined Motion
60 ft/min, 200 

RPM

60 ft/min, 200 

RPM

60 ft/min, 200 

RPM

Reduction in Effective 

Tension

50.8 %
50.8 % 51.1 %

Increase in MOP 64.6 % 60.8 % 56.3 %

Tripping torque rating 62.8 % 74.1 % 80.3 %

75



Table 3.7: Comparison of 5” drill pipe vs. 4%” drill pipe for a horizontal well with mud

motor BHA. Favorable values in red.

Parameter 6 5/8”, S-135, 27.7 

ppf, FH

5”, S-135, 25.6 

ppf, 5 1/ 2 FH

4 / ”, S-135, 

22.82 ppf, NC 50

Drilling

WOB Limit 15 kips 15 kips 10 kips

Increase in Drag 19.1 % 15.8 % 11.6 %

Tripping Out

Combined Motion 60 ft/min, 80 RPM 60 ft/min, 80 RPM 60 ft/min, 80 RPM

Reduction in Effective 

Tension

41.9 % 39.4 % 38.1 %

Increase in MOP 26.8 % 23.7 % 22.1 %

Tripping torque rating 59.7 % 69.0 % 66.5 %

Eq. 3.6a, 3.6b and Eq. 3.7a, 3.7b are the modified forms of Eq. 3.3a, 3.3b and Eq. 3.4a, 

3.4b, respectively, and are considered to be the governing equations for torque and drag 

during drilling operations.

T =  r * ^ * p * w * A L *  sina (3.6 a)

F2 =  F1 + ( 3 * w * A L *  cosa — ^ * p * w * A L *  sina (3.6 b)

T =  r  * ^ * F1 * |02 — 61I (3.7a)

s n i % /sin a2 — sina-iN
F2 =  F1 + F 1(e -I02- ^  — 1 )+  f i * w * A L * -I ------ 2----------- - )  (3.7b)

\  ̂ 2 — ^1 '

The first modification is that the drilling operations considered in the study are 

independent of the resultant angle, ^ ,  because the pipe rpm and speed are exclusive 

properties of tripping out operation. Second, the force F  in the string is not the static weight 

but the static weight minus the WOB (Aadnoy et al., 2010).
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Our results show that the 5” drill pipe performs better than the 4-1/2” drill pipe for both 

BHAs. In terms of drilling performance for both BHAs, the 5” drill pipe provides higher 

WOB limits because of its larger size, which increases the resistance to buckling forces, 

ultimately preventing failure. However, for both BHAs, the WOB limit for 5” and 6-5/8” drill 

pipe is the same. In the case of RSS BHA, this can be attributed to the location of buckling. 

For RSS BHA, the WOB limit is reached at the first point of buckling, in which case the 

axial force (Faxial) generated using that value of WOB is greater than the resisting 

sinusoidal buckling force (Fsin). In our study, all the changes for the drill pipe are made by 

keeping the BHA and HWDP above the BHA constant. In other words, Faxial and Fsin are 

independent of drill pipe change up to 2750 ft from the bottom. The location of buckling 

for both 5” and 6-5/8” drill pipe occurs at 347 ft from bottom, which means that, 

theoretically, the same amount of WOB must be applied to cause the buckling at the same 

point where Faxial and Fsin do not change. Since these are the first points of buckling for 

both drill pipes, the WOB limit remains the same. In the case of mud motor BHA, the WOB 

limit is the value which causes Faxial to be negative, because at this condition, the drag is 

large enough to lower the measured weight at the surface, causing it to experience 

compression throughout the entire length of the drill string. Hence, the resisting force in 

this case is Faxial, whose maximum value is achieved when the applied WOB is zero. For 

5” and 6-5/8” drill pipes, the change in Faxial for a zero WOB is 0.8 klbf. Since this difference 

is very small, they offer the same resisting forces, reflected by their equal WOB limits.

Based on Eq. 3.6b and Eq. 3.7b, for mud motor BHA, the increase in drag is higher for a 

5” drill pipe because of higher WOB capabilities, larger radius, and higher unit weight. 

The 5” drill pipe, being larger in size and heavier in unit weight, has a higher MUT. The 

higher MUT indicates higher resistance to drilling and/or tripping torque (Boonsri, 2014). 

Hence, for a RSS BHA, it is important to note that even though the 4-1/2” drill pipe 

generates smaller drilling torque due to smaller radius and unit weight (Eq. 3.6a and Eq. 

3.7a), its torque rating, defined as the ratio of drilling and/or tripping torque to MUT, is 

higher due to small MUT.

The comparison of the tripping out performance also indicates the superiority of the 5” 

drill pipe. In the case of RSS BHA, the 4-1/2” drill pipe has a greater reduction in the
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effective tension due to the smaller initial value generated for no rotation. The 4-1/2” drill 

pipe will have smaller initial effective tension because of small drag due to its smaller unit 

weight compared to 5” drill pipe. Even though this case is favorable for the 4-1/2” drill 

pipe, the marginal difference is very small. On the other hand, the 5” drill pipe increases 

the MOP significantly at a lower torque rating. In the case of mud motor BHA, the 5” drill 

pipe outperforms the 4-1/2” drill pipe due to larger reduction in effective tension and 

greater increase in MOP. Even though the tripping torque rating for the 5” drill pipe was 

comparatively higher, it was considered acceptable from the standpoint of the API RP7G 

torque recommendation.

In all cases, the validity of the results generated using a 5” and 4-1/2” drill pipe is 

confirmed by a 6-5/8” drill pipe, wherein the results generated using a 6-5/8” drill pipe are 

greater than the 5” drill pipe owing to its larger radius and unit weight.

3.7 Optimization of Well Path for Inclination and Dogleg

The results in the above section indicate that the optimized drill string consists of RSS 

BHA as the steering unit coupled with a 5” , 25.6 ppf, S-135 drill pipe. The WOB limits 

generated using this optimized drill string vary with the well profile. During tripping out, 

the optimized operating parameters for this drill string were found to be 60 ft/min as the 

trip speed and 200 rpm as the rotating speed. The next step was to check the drillability 

of the three well profiles, viz., horizontal, S-shaped, and slant wells, with this optimized 

drill string. Since the optimized drill string consisted of RSS BHA, we identified surface 

torque as the validating parameter for this process.

The results shown for 5”, 25.6 ppf, S-135 drill pipe in Table 3.7 were obtained for the 

horizontal well with the optimized drill string. These results confirm the drillability of the 

horizontal well, as the surface torque for both drilling and tripping operations was 

acceptable from the standpoint of API recommendations. Table 3.8 shows the variation 

of drilling and tripping torque for all three well profiles generated using the optimized drill 

string. In terms of drilling operations, the torque required at the rotary table increases with 

well complexity because of the smaller WOB limits. Based on Eq. 3.7a, which gives the 

torque required in the curved section, smaller WOB limits will cause higher static force
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during drilling, leading to higher torque. A similar trend for torque behavior was expected 

for tripping out, because during such operations, the entire static weight, a function of the 

length of the drill pipe, is used in Eq. 3.7a. However, based on the well design for the 

horizontal well, 44% of the drill pipe experiences a smaller cased hole friction factor (^ =

0.3). This results in lower torque values. On the other hand, Table 3.8 also shows that for 

S-shaped and slant wells, the optimized drill string generates excessive torque. This 

suggests that to reduce the torque requirements, there was a need to optimize the well 

path for S-shaped and slant wells.

Table 3.8: Variation of drilling and tripping out torque for all well trajectories generated 

using optimized drill string.

Well Profile Drilling

torque

(ft-lbf)

Tripping 

out torque 

(ft-lbf)

WOB limits 

(kips)

Drill pipe 

length 

(ft)

DDI

Horizontal 35256 35015 59 6953 6.830

S-shaped 28387 43004 67 5815 6.263

Slant 27881 41265 69 5744 6.148

Based on the previous anti-collision study, we optimized the well path by varying the 

inclination, dogleg, and azimuth. The main objective of this process was to set end point 

limits for the variation of inclination, dogleg, and azimuth such that within these limits, the 

well path will not only satisfy the anti-collision considerations but also be drillable from the 

standpoint of torque and drag considerations. Eqs. 3.3a, 3.3b, Eqs. 3.4a, 3.4b, Eqs. 3.6a, 

3.6b, and Eqs. 3.7a, 3.7b show that torque increases as inclination increases. Hence, we 

adopted the following trial and error approach to determine the limits:

Step 1: Keeping the dogleg constant, reduce the inclination to a critical inclination (ac) 

which passes the anti-collision criterion measured by the separation factor plot. Hence, 

the inclination values from the initial value to ac become the range for varying inclination. 

If, due to the existing wells, the inclination cannot be reduced, then the initial value 

becomes ac. In such a scenario, the range for inclination cannot be determined. Since the
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inclination is being reduced, the torque for drilling and tripping out operations should 

decrease.

Step 2: Keeping the inclination constant at ac, step 1 was repeated for dogleg. Hence, all 

the dogleg values satisfying the anti-collision criterion will act as a range for dogleg 

variation. Similar to inclination, as the dogleg decreases, the torque also decreases.

The above procedure can be applied to all sections of well design. However, in our study, 

we applied this procedure in the initial section above the KOP because of the large side 

forces generated in this section during the tripping out operations. During this process, it 

is important to note that both inclination and dogleg are azimuth dependent. In other 

words, as the direction of the wellbore changes, the inclination and dogleg values that the 

wellbore can achieve also change. Hence, the range for inclination and dogleg will exist 

for every azimuth that satisfies the separation factor plot.

Figure 3.13 shows the variation of torque at 0° azimuth as a function of ac and dogleg for 

S-shaped and slant wells. In both cases, ac is equal to the initial planned inclination. 

Hence, there was no range for variation of inclination. The dogleg variation for an S- 

shaped well ranged from 1.8 °/100 ft to 2 °/100 ft and that for a slant well ranged from 

1.05 °/100 ft to 2.05 °/100 ft. The torque values generated using ac and smallest dogleg 

represent the maximum reduced torque values obtained by optimizing the well path at 0° 

azimuth. However, Figure 3.13 also shows that even with optimized drill string and well 

path, the tripping out torque in both S-shaped and slant wells exceeds the API 

recommendation. This points out that additional torque-reducing equipment is necessary 

for the drill string design of S-shaped and slant wells in Milne Point.
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Figure 3.13: Torque variation as a function of dogleg for slant well (0° azimuth, critical 

inclination 4.25°) and for S-shaped well (0° azimuth, critical inclination 6°).

In Alaska, non-rotating drill pipe protectors (NRDPP) are the most commonly used friction 

reducing devices because of their ability to reduce the effective diameter, which ultimately 

lowers the torque (Moore et al., 1996; Aston et al., 1998). In some cases, non-rotating 

subs are also used, however, their applicability is limited to cased hole lengths (Thomas 

et al., 2008). Figure 3.14 shows a schematic of NRDPP, which is a sleeve placed on a 

bearing surface that becomes the point of contact for torque generation (WellPlan User 

Guide, 2014). The outer diameter of the sleeve is greater than that of the drill pipe, which 

creates the required standoff, and the diameter of the bearing surface becomes the 

effective diameter considered in torque calculations.

1.3 1.6 1.9 2.2
Dogleg (deg/100 ft)
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Figure 3.14: Schematic of NRDPP (WellPlan User Guide, 2014).

In this study, we used a WWT Super Slider 3 as the NRDPP. The selection was based 

upon the tool’s usability in open hole applications, small (less than one minute) connection 

time, and ability to withstand a rotary speed of 200 rpm as designed for the optimized drill 

string. The NRDPPs were placed in the initial build section, as well as in the final drop-off 

section for S-shaped wells, to overcome the high contact forces generated in this section. 

For slant wells, they were placed between 416 ft MD and 2140 ft MD with 1 unit per 3 

joints. In the case of S-shaped wells, they were placed between 358 ft MD and 1907 ft 

MD in the initial build section and from 6444 ft MD and 7465 ft MD in the final drop-off 

section, with 1 unit per 3 joints in both sections. Figure 3.15 shows the torque variation 

as a function of the NRDPP’s effective friction factor for slant and S-shaped wells. The 

reduction in the torque is due to relative radial friction of the bearing surface, which acts 

as a multiplier to reduce the hole friction factor, which in this case is 0.4. For WWT SS3, 

the relative radial friction of the bearing surface ranges from 0.5 to 0.1 (WWT 

International, 2015). The results shown in Figure 3.15 show that by using NRDPP with 

the optimized drill string, the torque rating for both S-shaped and slant wells can be 

decreased, as per API recommendations. Moreover, since NRDPP is only additional 

equipment and does not have any impact on dogleg and inclination, we can conclude that 

the range defined for variation of dogleg for S-shaped and slant wells satisfies both the 

anti-collision considerations and the torque and drag requirements.
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Figure 3.15: Torque variation as a function of effective friction factor generated by

NRDPP for slant well with DLS of 1.05°/100 ft and 4.25° inclination and for S-shaped well

with DLS of 1.8°/100 ft and 6° inclination, in the final drop-off section, when relative radial

friction in the build section was set at 0.5.

3.8 Conclusions

The following conclusions can be made for the soft string model used in the study:

1. As the well complexity measured by DDI decreases, higher WOB can be applied on 

the same bit type, indicating higher ROP.

2. During tripping out with combined motion, the optimal combination is achieved for low 

trip speeds and high rotational speed.

3. The magnitude of hydrodynamic viscous forces and, in turn, the effect of mud rheology 

is very small to affect the tripping out drag for both the RSS and the motor BHA. 

However, they should still be considered in the soft string model for realistic and 

practical purposes.

4. Higher reduction in effective tension and greater MOP is achieved for a larger and 

heavier drill pipe.

5. The optimized drill string in terms of operational parameters consists of:

a. RSS BHA as the steerable tool
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b. 5” , 25.6 ppf, S-135 drill pipe

c. 60 ft/min and 200 rpm as the optimal tripping and rotational speeds respectively

6. A generalized trial and error approach has been proposed for optimizing the range for 

variation of inclination and dogleg as a function of azimuth.

7. Based on the existing well paths and well design in Schrader Bluff, a 9-7/8” hole 

section can be drilled for all well profiles, with their respective RSS BHAs used in the 

study. However, in the case of S-shaped and slant well profiles, NRDPPs must be 

used in the build sections to reduce the torque ratings as per API standards.
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CHAPTER 4: GENERAL CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

This research focused on two of the most important aspects of directional well planning, 

namely, anti-collision and torque and drag analysis.

Chapter 2 shows that using nudging and optimum align technique can overcome wellbore 

collision scenarios during the well planning phase. Furthermore, the performance of the 

newly developed OWSG error model was compared to the long term industry standard, 

the ISCWSA error model. These results demonstrate that the OWSG error model 

performs better and should be preferred during the anti-collision study based on its 

conciseness. The results of sensitivity analysis on location highlight the fact that positional 

uncertainty degrades approximately by a factor of 2 in high latitude areas like Alaska, the 

North Sea, the Barents Sea, and the Beaufort Sea. Moreover, these results highlight that 

the improved MWD tool generates 73% smaller uncertainties than the gyroscopic tools 

which were the preferred option in such areas. The poor quality of wellbore positioning 

led to the investigation of the risk-based collision avoidance model in such areas. The 

results showed that for enhanced safety of drilling operations, well planners working in 

high latitude areas should increase the cut-off limits for the risk-based collision avoidance 

model. The results presented in this chapter led to the formulation of an improved and 

detailed anti-collision risk management workflow for Arctic areas, including the crucial 

steps of selection of survey tool, error model, and SF magnitude.

Chapter 3 was a follow-up study to understand the torque and drag perspective of the 

well paths planned using the improved anti-collision workflow. The drill string design 

required to understand this behavior was optimized in terms of operational parameters 

for WOB, trip and rotational speed, mud rheology, drill pipe size, and steerable tool. The 

results indicate that the RSS BHA performs better than mud motor BHA because of higher 

WOB capabilities, higher reduction in effective tension and higher increase in MOP at 

comparatively lower torque ratigs, and lower hydrodynamic viscous loss. The overall 

optimization results demonstrate that RSS BHA with 5” , 25.6 ppf, S-135 drill pipe should 

be used to drill most common 9-7/8” intermediate hole section in Schrader Bluff and the

85



drill string should be pulled out at the 60 ft/min and 200 rpm to minimize the effective 

tension and increase the MOP. To reduce the torque requirements of this optimized drill 

string as per API standards, a generalized procedure to optimize the well path as a 

function of azimuth was proposed. Using this process, a range of inclination and dogleg 

for a particular azimuth was generated. Since the acceptable values of inclination and 

dogleg are generated by keeping anti-collision as the focal point, this process will reduce 

a significant amount of time required by the well planners to finalize a well plan. 

Furthermore, in cases where optimization of well path does not reduce torque ratings, this 

procedure shows the corrective measures, via the use of NRDPP, that can maintain the 

safety standards as per API recommendations.

In summary, the results of this research highlight the planning considerations required for 

horizontal, slant, and S-shaped wells, and demonstrates how each of these wells can be 

drilled and tripped out as per API recommendations.

4.2 Recommendations

The scope for further research in this area includes:

1. During the anti-collision study, only mother wellbores from S-pad were classified as 

existing wellbores. However, the presence of laterals from these wellbores can be 

considered to evaluate the hazard and risk management model at higher locations.

2. The torque and drag analysis in this study was carried out using the soft string model. 

It would be interesting to compare these results to those generated by a stiff string 

model.

3. The initial drill string used in Chapter 3 was adapted from the literature. However, 

using the actual drill string design for Milne Point would give more realistic and 

accurate results for the torque and drag analysis.

4. A complete economic evaluation is required for selection of the survey tool in anti­

collision study and feasibility of the optimized drill string in torque and drag study.
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5. Using the results of trip and rotational speed presented in Chapter 3, along with the 

actual drill string design, the hydraulics of the system, including flow rate and pressure 

losses, can also be optimized.

6. To complete the study from well planning to well construction, the thermal effects of 

permafrost on well design should also be analyzed. This can be achieved using 

WellCat©, which will simulate a downhole temperature profile and the corresponding 

loads and stresses on casing during drilling operations.
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