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Abstract

An optimal algorithm for solving a problem with m degrees of freedom is one that com
putes a solution in O(m ) time. In this paper, we discuss a class of optimal algorithms for 
the numerical solution of PDEs called multigrid methods. We go on to examine numerical 
solvers for the obstacle problem, a constrained PDE, with the goal of demonstrating optimal
ity. We discuss two known algorithms, the so-called reduced space method (RSP) [BM03] 
and the multigrid-based projected full-approximation scheme (PFAS) [BC83]. We compare 
the performance of PFAS and RSP on a few example problems, finding numerical evidence 
of optimality or near-optimality for PFAS.

iii





T able o f  C on ten ts

Page

T itle  P a g e ......................................................................................................................................  i

A b s t r a c t ..........................................................................................................................................  iii

C h apter 1: I n t r o d u c t io n ......................................................................................................... 1
1.1 Introduction ....................................................................................................................  1

A ck n o w le d g m e n ts ........................................................................................................................  0

C h apter 2: B ack grou n d  and th eory  for obstacle  p r o b le m s ..................................  5

C h apter 3: M u ltigrid  ............................................................................................................  11
3.1 Geometric M u lt ig r id .................................................................................................... 11

3.1.1 Smoothing and Error M o d e s ..........................................................................  12
3.1.2 Coarse Grid Correction....................................................................................  19
3.1.3 Multigrid Cycles ..............................................................................................  23

3.2 Algebraic Multigrid .......................................................................................................  28

C h apter 4: A lgorith m s ............................................................................................................. 31
4.1 Reduced Space M eth od ................................................................................................  31
4.2 Projected Full-Approximation Scheme ..................................................................  35

C h apter 5: N um erica l im p le m e n t a t io n ............................................................................. 37
5.1 A general 2D obstacle problem solver .......................................................................  39
5.2 PFAS implementation ................................................................................................  40
5.3 Reduced space m e th o d ................................................................................................  42

C h apter 6: R esu lts and a n a ly s i s ........................................................................................... 43
6.1 PFAS results .................................................................................................................  45
6.2 Reduced space m e th o d ................................................................................................  48

R e f e r e n c e s ...........................................................................................................................................49

v







C h apter 1 

In trod u ction

1.1 In trod u ction

The classical obstacle problem seeks the equilibrium position of a membrane stretched over 
a convex 3-dimensional obstacle ^  sitting on a precompact domain Q C R 2. The membrane 
is assumed to exhibit no resistance to bending, so that the only force interior to the system 
of obstacle and membrane comes from the uniform tension created by fixing the edges of the 
membrane to the boundary of Q.

Figure 1.1: Solution to an obstacle problem.
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The obstacle problem can be formulated as the constrained minimization of the potential

In the context of the classical obstacle problem, v gives the position of the membrane, f  
describes a force on the membrane, where a downward force is negative, ^  describes the 
obstacle, and g is a boundary condition.

Obstacle problems of the type described by (1.1) occur naturally in various fields of 
applied mathematics, from engineering applications like the modeling of filtration through a 
porous medium 1 to problems in economics and financial mathematics such as the pricing of 
American options.2

The motivation of this paper is to provide a rigorous analysis of computationally feasible 
algorithms that solve the obstacle problem numerically. The ultimate goal is to solve the 
problem in optimal time complexity, meaning roughly that the time to solve the problem (i.e. 
the number of floating point operations) scales linearly with the size of the problem (i.e. the 
number of unknowns in a discretization). A main idea underlying the most promising algo
rithms presented here is called multigrid ( [TSO01], [BHM00]), which was introduced around 
1960 specifically as a method for solving the Poisson problem on a unit square ( [Fed01]). 
About 10 years later, Achi Brandt, who would become the champion of multigrid methods 
and famously claimed that multigrid was the solution to every problem (including making 
goat cheese) ,3 applied multigrid to a more general class of partial differential equations. The 
study of multigrid methods has since flourished, being applied to an increasingly broad range 
of problems, in particular as a solver for general linear systems. Moreover, multigrid meth
ods have been applied to nonlinear problems, eigenvalue problems, bifurcation problems, 
parabolic problems, hyperbolic problems and mixed elliptic/hyperbolic problems, optimiza
tion problems, and constrained PDEs (as in this paper) etc. (see, e.g., [Bor03]) (but as far 
as the author knows, not yet toward making goat cheese).

The organization of this paper is as follows. In the next chapter, we briefly discuss 
some theory of the obstacle problem, including the proof of a well-known formulation of the 
obstacle problem as a linear complementarity problem (LCP). We go on in Chapter 3 to 
give a somewhat detailed but introductory description of multigrid methods. In Chapter 4, 
we describe the main algorithms considered in this paper, the projected full approximation

1E.g. the example in [BC83], used in this paper as well.
2[FLMN10], for example
3See https://www.youtube.com /watch?v=psRA0pHA_Zo, or youtube search Achi Brandt goat cheese.

energy functional J  [v] and generalized to R d, given by the formula

v >
subject to

v|sn= g.
(1.1)

2

https://www.youtube.com/watch?v=psRA0pHA_Zo


scheme (PFAS) due to [BC83] and the reduced space Newton method [BM03]. In Chapter 5, 
we give a few details of our Python-based implementation of these algorithms. We present 
numerical results and analysis for PFAS and the reduced space method in Chapter 6.
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C h apter 2

B ack grou n d  and th eory  for obstacle  p rob lem s

The derivation of the classical obstacle problem from the previous chapter, which we have 
described mathematically by (1.1) , goes as follows. The problem is to minimize the potential 
energy of a membrane subject to the constraint imposed by the obstacle and boundary 
conditions. Assuming that the potential energy is proportional to the increase in the area 
of the membrane surface, this takes the form

g the boundary condition. Expanding the function under the integral in Taylor series and 
dropping higher order terms gives us

Hence, in the case of small first derivatives, minimizing the Dirichlet energy f Q 2 |Vv|2 is 
equivalent to minimizing potential energy for the membrane in a closed system. If we then 
consider work done by external forces, given by

we see that the solution to (1.1) minimizes the potential energy of deformation, given by the 
functional

Intuitively, the Dirichlet energy provides a measure of the “smoothness” of a function u. We

v >  >̂,
subject to

v|sn= g,

where the functional I  [v] is the surface area integral again ^  represents the obstacle and

will see that the solution u to the obstacle problem, i.e., the minimizer of (1.1) in the special
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case ^  =  — to, also solves the Poisson equation

Au =  —f, u =  g on dQ, (2.1)

where Au =  n=i J22 is the Laplacian. In the case f  =  0, the solution is harmonic.

The obstacle problem with an arbitrary obstacle is also closely related to the Poisson
equation, as we see from the following well-known theorem which characterizes the obstacle 
problem as an energy minimization problem (2.3) , a variational inequality (2.4) , and infinite
dimensional linear complementarity problem (LCP) (2.5) - (2.7) . This particular proof follows 
the strategy outlined in the monograph [ Rod87], whose argument specifies d = 2  but has 
been generalized here with little effort to arbitrary d.

where the inequalities and the operator A  are taken in a distributional sense, i.e., 
q(x) >  0 on Q if and only if

T h eorem  2.1. Fix g,^>,f E C ^ (Q ). Define

K  =  {v  e H  1(Q) : v >  ^  on Q ,v =  g on dQ}. (2.2)

The following two statements are equivalent for a function u E K :

(a) u is a solution to the energy minimization problem

(2.3)

(b) u solves the variational inequality

for all v E K. (2.4)

If in addition u E C (Q), then (a) and (b) are equivalent to a third condition:

(c) u solves the linear complementarity problem

u(x) — ^ (x ) >  0 , 

— f  (x) — A u(x) >  0 , 

[—f  (x) — Au(x)][u(x) — ^(x)] =  0,

(2.5)

(2.6) 

(2.7)
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for all compactly supported nonnegative test functions <p E C ^(Q ).

Proof. First, suppose that u solves (2.3) , so that u minimizes the energy functional J[v] over 
K The set K is convex, so u +  e(v — u) E K for any e E [0,1] and any v E K. Hence, if v E K, 
the (continuous) function h : [0, 1] ^  Q defined by

h(e) =  J  [u +  e(v — u)]

has a minimum at e =  0, which implies h'(0) >  0. Thus, we have

/  Vu - V( v  — u) — f  (v — u)
Jn Jn

=  lim 1 ( e [  |V(v — u)|2+2 [  V u  ■ V (v  — u) ) — [  f  (v — u) 
e^o+ 2 Vy Jn Jn J Jn

=  lim 2 ( /n |Vu|2+ e2 /n |V(v — u)|2+ 2e In V u ■ V (v  — u )) — 2 /n |Vu|2— In u f  +  In u f  +  e In f  (v — u)
e^0+ e

=  lim 2 In |V(u +  e(v — u))|2— In (u +  e(v — u) ) f  — (2 In |Vu|2— In u f )
e^0+ e

J [u +  e(v — u)] — J  [u]
=  lim ---------------------------------

e^0+ e
h(e) — h(0)

=  lim ^  =  h '(0).
e^0+ e

Hence
/  V u  ^V( v — u) — f  (v — u) >  0,
n n

so u solves (2.4) .

Conversely, let u be a solution of (2.4) . Then we have

J [v] =  J  [u +  (v — u)]

= 2  Jn |V(u+ ( v —u))|2—( u + ( v —u )f)

=  2 Jn|Vu +  V (v — u)|2 —(u +  (v — u) f )

1 jT |Vu|2—u f  +  1 jT |V(v — u)|2+ V u ■ V (v  — u) — (v — u ) f
n

J [u] +  2 J |V(v — u)|2+

Hence (2.3) and (2.4) are equivalent.

Vu ■ V (v  — u) — (v — u ) f >  J  [u].
n

7



Now suppose that u is continuous. We will show that u solves (2.5) - (2.7) if and only if 
u solves (2.4) . Assume u solves (2.4) . It will be sufficient to show

1. Au =  — f  outside of the open set

Eu =  {x  E Q : u(x) =  ^ (x )} ;  (2.8)

2. f  +  Au <  0;

3. [f(x ) +  Au(x)][u(x) — ^(x)] =  0

in the sense of distributions.
For claim 1, choose a function ^ E C ^ (Q ) with compact support on (Eu)c. By continuity 

of u there exists e >  0 such that u +  t<£ E K whenever |t|< e. Hence, for any t E (0, e) we 
have

t ( f  +  Au, <̂ ) =  t f<£ — V u ■ V ^
(Eu)c

=  f  ((u +  t^) — u) — V u ■ V ((u  +  t^) — u) <  0.
n

Since this is also true for —t,

( f  +  A u ,^ ) =  °

and claim 1 is proven.
Moreover, if we take ^ E C ^ (Q ) to be compactly supported on Q and positive, then 

u +  E K, and by the same method we find that claim 2 holds:

( f  +  A u ,^ ) =  /  f ^ — Vu - V ^
Jn

=  f  ((u +  ^) — u) — V u ■ V ((u  +  <̂ ) — u) <  0,
n

which is what we needed to show.
Finally, for claim 3 we have for any compactly supported test function ^

([f  (x ) +  A u (x )][u (x ) — ^ (x ) ] ,^ ) =  [  f  (u — — V u - V ( (u — ^ )^ )
Jn

=  /  f  [(u — — V u  ̂ V[(u — ^ M  =  0,
J(Eu)c

where the second equality follows from the fact that u — ^  =  0 on E u and the third follows 
by the argument from claim 1, noting that (u — ^ )^  E H  (EU).
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Conversely, assume (2.5) - (2.7) hold. Note that on (Eu)c, u >  f , and this combined 
with the conditions (2.6) and (2.7) imply that Au =  — f  on (Eu)c. We call the property that 
either u — f  =  0 or — Au — f  =  0 on all of Q the complementarity condition.

For any v G K we find

(by (2.6) , recalling v — f  >  0) 

(because u — f  =  0 on Eu) 

(Au =  —f  on (Eu)c) 

(again, u — f  =  0 on Eu)

□

The region Eu =  {u (x ) =  f ( x ) }  defined in (2.8) is known as the contact region or 
coincidence set for the solution u, while the boundary of the contact set dEu =  r u is known 
as the free boundary or the dynamic interface. In general, a free boundary problem is a 
partial differential equation whose solution consists of an unknown region Eu and a function 
u which are computed simultaneously. Often, if the region Eu is known, the free boundary 
problem reduces to a nonlinear partial differential equation. The obstacle problem (2.3) , for 
example, reduces to solving

A { \ N K- 4. 4. u(x) =  f ( x ) > x G r WA u(x) =  — f (x) subiect to
u(x) =  g(x), x G dQ

on (Eu)c. The LCP formulation of the obstacle problem is particularly useful for numerical 
solvers, since it does not require explicit computation of the free boundary.

As promised, (2.5) - (2.7) show that the solution u of the obstacle problem satisfies the 
Poisson equation on the entire domain in the case f  =  —ro, since in that case inequality
(2.5) is always strict. Moreover, even in the generic case the obstacle satisfies the Poisson 
equation everywhere outside the contact set. Thus an understanding of the Poisson equation 
is necessary to solving the obstacle problem, and is sufficient if we know the location of the

Vu ■ V (v  — u) =  / V u  ■ V (v  — f  f  — u)
JQ

=  V u  -V (v  — f ) +  /  V u - V ( f  — u)

f  (v — f  

f  (v — f

f  (v — u

+  Vu ■ V ( f  — u)
JQ

+  V u  - V ( f  — u)

+  /  f  ( f  — u)
J (Eu)c

+  f  f  ( f  — u)
Q

Q Q

Q

Q

Q
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free boundary. One might imagine an iterative method for solving the obstacle problem that 
first approximates the free boundary, and reverts to a Poisson solver once the contact set 
has been established.

The constraint imposed by the Poisson equation for the solution of the obstacle problem 
implies that we cannot possibly expect continuous second derivatives except in the case 
where the obstacle itself satisfies —A f  =  f . However, it is well-known that solutions for 
obstacle-type problems share regularity properties with the obstacle for lower derivatives; 
for example, it is known that u G C : (Q) if and only if f  G C : (Q) [Rod87].

As mentioned earlier, the proof of Theorem 2.1 was adapted from the monograph [Rod87], 
which also gives a nice introduction to general free boundary problems that arise in physics: 
the bending of a plate over an obstacle and the closely-related minimal surface equation, 
elastoplastic torsion of a cylindrical bar, the cavitation problem in hydrodynamic lubrication, 
the dam problem (filtration through a porous medium) are just a few examples from the 
first chapters of his book. Since our focus is on numerical methods, rather than proving any 
more results about obstacle problems, we encourage the interested reader to consult [Rod87] 
for a rigorous introduction to the continuous theory of obstacle-type problems.
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C h apter 3

M u ltigrid

The standard algorithms for solving a dense linear system with n unknowns have O (n3) com
plexity. However, for a number of specific cases, there are more efficient methods. Multigrid 
is an algorithmic framework for solving large linear systems Ax =  b with optimal or near- 
optimal complexity. In this context, this means that an effective multigrid algorithm solves 
a linear system with n unknowns in just O(n) time, i.e., multigrid methods scale linearly 
with the number of unknowns.

There are two broad types of multigrid methods: geometric multigrid (GM G), which is 
only applicable to those linear systems which have a geometric interpretation, e.g. those aris
ing from a mesh-based solution of a PDE, and algebraic multigrid (AM G), which generalizes 
the ideas from geometric multigrid to problems with no geometric structure at all. We deal 
mostly with the former in this chapter, since the underlying ideas are easier to visualize and 
the analysis more established, before talking about AMG, which tends to be more abstract 
and heuristic rather than theory based.

This chapter gives a basic introduction to multigrid ideas with the intent of understanding 
the ideas underlying certain multigrid-based obstacle problem solvers. For a comprehensive 
introduction to multigrid algorithms, the reader is encouraged to consult the texts [BHM00] 
and [TSO01] on which much of the discussion in the following section is heavily based.

3.1 G eom etr ic  M u ltigrid

In this section, we will consider the solution of an invertible linear equation Ahuh =  f h arising 
from the discretization of a PDE Lu =  f  occurring on a domain Q C R d, with the imposed 
boundary condition u|dQ=  g. Here L is a linear differential operator, and f  : Q ^  R is a 
function independent of the unknown u. The discretization occurs on a grid Gh, by which 
we mean a finite subset of Q. The h superscripts indicate the grid spacing, i.e, the distance 
between adjacent grid points, which we assume for now is uniform.

11



Suppose vh is an approximation to the continuum solution u on some grid

Gh =  {x 0, x i , ..., xN} C Q.

We make some algebraic error eh =  uh — vh, where uh is the exact solution vector (Ah) - 1f h. 
We emphasize that uh should not be confused with the exact solution to the continuum 
problem imposed on the grid,

u (x1) u (x2) ... u (xN) .

The residual rh associated with the approximation vh is defined as rh =  f h — Ahvh. This 
quantity describes in some sense how closely vh approximates the exact solution, since 
||fh — Ahvh|| =  0 if and only if vh =  uh. In fact, we can say even more about the rela
tionship between the error eh and the residual rh. The following derivation is a common one 
in numerical analysis, and is particularly useful to multigrid ideas:

A heh =  Ah(uh — vh) =  A huh — A hvh =  f h — A hvh =  rh.

That is, solving the error equation
Aheh =  rh (3.1)

for eh is equivalent to computing the exact solution uh on Gh. However, (3.1) shows that 
rh ~  0 does not necessarily imply eh ~  0 without some assumptions on the size of ||A-1 ||.

3.1.1 S m ooth in g  and E rror M o d e s
A multigrid solver consists of two important pieces of machinery. The first is a smoother, 
which generally refers to an iterative relaxation scheme for solving linear systems, but really 
encompasses any method for “smoothing” errors in a linear system. We focus on smoothers 
in this section. The other is a coarse grid correction scheme, which will be considered later.

The two most well-known relaxation schemes are the Gauss-Seidel and the Jacobi itera
tions. The smoothing property that these methods exhibit, and that multigrid methods take 
advantage of, will be described algebraically and numerically below. The basic idea is that 
these methods, when applied to the equation Au =  0, effectively reduce ‘oscillatory’ compo
nents in an initial guess u. This makes u smoother in a geometric sense without necessarily 
making much progress toward a global solution. In this paper, we will only discuss and use 
the Gauss-Seidel iterative relaxation scheme.

In this section, we will describe the smoothing property in detail, motivated by numerical 
examples, but supported by rigorous theoretical work. This will come in handy later when 
we consider the problem of applying multigrid to constrained PDEs.

12



M o d e l P ro b le m  3.1.1. Our model problem for the remainder of the section on geometric 
multigrid is the Poisson equation (2.1) . In particular, because of the simplicity of representing 
one-dimensional problems, we will deal here with the one-dimensional problem u"(x) =  0 on 
some closed interval with zero Dirichlet boundary conditions. This problem has a unique 
exact solution of u(x) =  0 on Q. The standard finite difference discretization for this problem 
is as follows.

D iscretiza tion

Consider a grid of N  points in R with uniform grid spacing h =  n+ i . The second order 
differentiation operator dX2 can be approximated at each point by the finite difference scheme

,, u(x — h) — 2u(x) +  u(x +  h)
u (x) ~ --------------------h2--------------------

with truncation error O (h2). The associated system of linear equations is represented by the 
(negative-definite) matrix

- 2 1 
1 —2 1

1 —2 1 
1 —2

The error analysis is easy in this case, since with a zero right hand side, the current 
iterate is the error; that is, uh =  eh.

B asic  Iterative  M eth od s
The Gauss-Seidel iteration for a general linear system M x =  b is given by

A lg o r ith m  1 Gauss-Seidel Iteration

Given M  G Rnxn; x (0) G Rn; b G Rn;
x (k) ■(— x (0)
for k =  1, 2,... do

for i =  1, 2,..., n do

C +1> =  A  (b. — E j-1  x$k+1)M ij — E "= i+i (3.2)
end for 

end for

Formula (3.2) approximately solves the linear equation represented by the coefficients 
in the ith row of the matrix M  for the ith unknown x(k) by using the current iterate as a 
guess for the values of the other variables. The Gauss-Seidel iteration can also be expressed

A h2

13



using the matrix splitting M  =  U +  L +  D, where U is the upper-triangular part of M , L 
is the lower-triangular part, and D  is the diagonal part. The resulting formula is given by 
x(fc+i) =  ( d  +  L )- 1 (6 -  Ux(k)).

It can be shown that iterative methods for solving a linear system M x =  6 that can be 
written in the form

x (fc+1) =  R x(k) +  d, (3.3)

where x solves x =  Rx +  6 if and only if M x  =  6, converge for all initial iterates and all data 
d if and only if the spectrum of R is within the unit circle, i.e., p(R) <  1.

L oca l Fourier A nalysis

In this section we discuss the smoothing property through numerical examples before 
taking a more analytical approach to describing the action of Gauss-Seidel on an arbitrary 
vector. If the Gauss-Seidel iteration has the properties we claim, we expect oscillatory 
components to be quickly eliminated and smooth components to persist. We apply local 
Fourier analysis to distinguish between oscillatory and smooth components of a vector. To 
start, we take an initial iterate u G Rn and express it as a linear combination of Fourier 
modes:

n— 1^ ^  2 nijk
Uj =  2 ^  cfce n , j  =  0 ,1 ,..., n -  1 (3.4)

fc=0

for some scalar coefficients ck G C (where i is the complex unit and the subscripts j  represent 
components of u). This should be compared with infinite-dimensional Fourier analysis, where 
a function is locally written as a linear combination of countably many complex exponential 
functions. The n x n matrix with columns { e } n —0 for j  =  0 ,1 ,..., n — 1 has orthogonal 
columns so the expansion (3.4) exists and is unique for any u G Cn [Koh15]. We will refer 
to the number k G {0 ,1 ,..., n — 1} associated with the Fourier mode {e n } " —01 as its wave 
number.

The advantage of describing a vector using Fourier modes is that we are able to distinguish 
between oscillatory (n /4  <  k <  3n/4) and smooth components (k <  n /4  or k >  3n/4). For 
example, taking ck =  0 except when k =  1 in the previous equation, we have Uj =  e ^  and 
one sees that the real and imaginary components of u are smooth, in the sense that their 
values do not fluctuate wildly from one grid point to the next. On the other hand, if only 
cn/ 2 is nonzero, then the vector u is extremely oscillatory. In this analysis, the reader should 
note the that the descriptors “smooth” and “oscillatory” are largely grid dependent. If we 
think of our vector as a discretization of a function (which we should), then a function that 
seems relatively smooth on one grid may appear highly oscillatory on another.

14



E xam ple 3.1 (Gauss-Seidel smoothing). For a concrete example, we apply the Gauss-Seidel 
iteration to the vectors v(1), v (2), and v (3) defined componentwise by

' 3 jV
vj 1) sin j ^

12
(2) sin

12
(3) . j 11 jnv;- =  — sin -------
j 1 12

and the vector v (4) which is a linear combination of the first three:

v (4)
1 3
1 W  v (i).
3 f e

Figures 3.1 and 3.2 plot these vectors on a 13-point grid (black). Note that while v(1), 
v(2), and v(3) correspond to imaginary parts of our original Fourier modes, we have dropped 
a factor of two in the numerator inside the sine functions which has the effect of shifting 
oscillatory modes to the top half of the spectrum. Larger wave numbers then correspond 
to more oscillatory Fourier modes. For example, the highly oscillatory behavior of the grid 
function v (3) is apparent (on this grid). Fluctuations in its value from one grid point to the 
next are proportional to its infinity norm llv(3)ll .

Figure 3.1: Imaginary parts of discrete Fourier modes for the grid {0 ,1 ,..., 11,12} with wave 
numbers k = 1  (top) and 3 (bottom). Higher wave numbers k correspond to more oscillatory 
modes. Superimposed are the grid functions after 3 iterations (blue), 15 iterations (red), and 
25 iterations (green) of Gauss-Seidel relaxation on the equation Au =  0. Relaxation is less 
effective on the smooth modes pictured here.
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Superimposed on the vectors v(i) in Figures 3.1 and 3.2 are the smoothed functions after 
3 iterations (blue), 15 iterations (red), and 25 iterations (green). Table 3.1 tracks the ro- 
norm of the grid functions shown in Figures 3.1 and 3.2. The most oscillatory vector, v (3), is 
reduced in ro-norm by nearly two orders of magnitude after two Gauss-Seidel sweeps while 
the smooth modes, v(1) and v(2), are eliminated much more slowly. Comparing the linear 
combination vector v(4) with v(1), we can see that the remaining error after 25 GS sweeps 
(green on the first and last plots) for v(4) is largely due to the original smooth component 
v(1).

,(3)

V (4)

10 11 12

Figure 3.2: Imaginary part of discrete the 11th Fourier mode v(3) (top) and the linear 
combination of Fourier modes v(4) (bottom) on the grid {0 ,1 ,..., 11,12} . Superimposed 
are the grid functions after 3 iterations (blue), 15 iterations (red), and 25 iterations (green) 
of Gauss-Seidel relaxation on the equation Au =  0. Relaxation is more effective on the 
oscillatory mode v(3), while smooth modes are more slowly eliminated from v (4).

Table 3.1: Infinity norm of the vectors plotted in (3.1) and (3.2) . Relaxation is less effec
tive on the smooth modes: 25 Gauss-Seidel sweeps reduces ||v(1)|| by only one order of 
magnitude.

l|v(1)IU Iiv(2)i n I|v(3)IU l|v(4)||II  ̂ II ̂
initial 1.0 1.0 1.0 00 bo o 1

3 iters 8.2 ■ 10- 1 CO I—1 o 1 5.1 ■ 10- 2 3.7 ■ 10- 1
15 iters 3.6 ■ 10- 1 1.5 ■ 10- 2 5.4 ■ 10- 4 1.2 ■ 10- 1
25 iters 1.8 ■ 10- 1 5.1 ■ 10- 3 2.2 ■ 10- 4 5.9 ■ 10- 2
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Figure 3.3: The coefficients ck in the discrete Fourier expansion for a random initial vector u 
after zero (black), one (blue), and four (red) Gauss-Seidel relaxations. The components with 
wave numbers toward the middle of the spectrum (oscillatory modes) are quickly eliminated, 
while the smooth modes near the extremes persist.

We can compute the coefficients ck in the discrete Fourier expansion for any vector using 
a matrix inversion, which we have done here for a Gaussian white noise vector u, shown 
in black in Figure 3.3. Also shown are the Fourier coefficients of u after one (blue) and 
four (red) iterations of Gauss-Seidel smoothing. The oscillatory modes, which correspond 
to wave numbers on the middle of the spectrum, are quickly eliminated, while the smooth 
modes toward the extremes persist, hardly reduced at all from their original magnitude.

Taking a more analytical approach to local Fourier analysis, the Gauss-Seidel iteration 
applied to a linear equation with zero right-hand side is a power iteration on an initial 
iterate v(0) using the matrix R =  (D +  L )- 1U. We define the asymptotic convergence rate 
of a relaxation scheme with iteration matrix R to be the number of iterations required to 
reduce the error of the equation Au =  f  by one digit, given by the formula — log(p (R ))-1 . 
This formula is derived by observing that the reduction in error norm after m iterations is 
related to p(R) by

lle(m) II
[p(R)]m -  C L ) J , m ^ r o .

We might anticipate the damping that occurs if the Fourier modes are eigenvectors of 
the Gauss-Seidel iteration matrix. In fact, the Fourier modes (3.4) are eigenfunctions of any 
matrix arising from, say, the discretization of an elliptic PDE with constant coefficients and
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periodic boundary conditions. The Gauss-Seidel iteration matrix in our model problem is
not itself the discretization of an elliptic operator, but, as we will see shortly, the Fourier

modes e a r e  eigenfunctions of this matrix. The corresponding eigenvalues Ak de
L J j=o

termine how much the kth component in the Fourier expansion is damped, so we expect 
smooth modes to have large eigenvalues relative to oscillatory modes. The maximum of the 
eigenvalues corresponding to oscillatory modes (recall that these occur in the middle of the 
spectrum), is called the smoothing factor of the iteration and is denoted by

hioc(R) =  max A I
f  <k<

where R is the iteration matrix.

For example, the difference equations corresponding to the matrix A from our model 
problem are given by the formula

1 /  ,(k+1) 0„.(fc+1) i „.(fc)
h2 u ^  — 2u( +  u Z )  = 0 ,  (3.5)

where subscripts represent vector components and superscripts give the iteration number for 
Gauss-Seidel. The action of the Gauss-Seidel matrix can be described locally by solving this

(k)equation for u) ) . One may use also use the splitting D  +  L +  U to write this equation in 
the intermediate form (D +  L )u(k+1) =  Uu(k). The eigenvalues of R =  (D +  L )-1 U can be 
found by substituting an exponential u)k) =  he into (3.5) . The result is

e -1\ \ h/ + 1 =  A (2pe — pe-1) , A -1

In particular, for =  e 22rfk, i.e. the kth Fourier mode, we have

IAfcI =
2 nik

e r
- 2ni2 — e r

1.

By eliminating £, we have shown that these really are eigenvalues of the iteration. The 
eigenvalues are important in the sense that applying the iteration to Fourier modes on the 
interior nodes damps (or magnifies, if IAkI> 1) errors uniformly across components by a 
factor of Ak. For n /4  <  k <  3n/4, we compute I2 — e ^ r̂ I >  -\/5, and hence IAkI< ^75. The
bound is achieved at , for example. Note that the iteration does not converge for all
starting vectors since A0 =  1.

In the remainder of this paper, we will be mostly working with the two-dimensional 
Laplace equation uxx +  uyy =  0 on a rectangular domain 0  C R 2, with the matrix equation
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given by the finite-difference discretization

u(x — hx, y) — 2u(x, y) +  u(x +  hx, y) +  u(x, y — hy) — 2u(x, y) +  u(x, y +  hy) =  0

hX h2

and the lexicographical ordering of unknowns (details in Chapter 5). It can be shown using a 
similar analysis that the Gauss-Seidel iteration matrix R associated with this discretization 
has hloc(R) =  1 [TSO01 ]. It should be noted that in this case and for higher dimensional 
analogues, the smoothing factor hloc is bounded independent of the grid spacing h. This 
does not hold in general [TSO01].

3.1.2 C oarse G rid  C orrection

The coarse grid correction is the second major component of a multigrid algorithm after 
the smoother. The coarse grid correction works in complement with the smoother with the 
following principle in mind:

An iterative method whose convergence toward a solution of a problem stalls is 
no longer efficiently capturing the essential features of the original problem.

This hints toward Achi Brandt’s “golden rule” of computational mathematics [BEL11]:

“The amount of computational work should be proportional to the amount of 
real physical changes in the computed solution. ”

Concretely, when we apply an iterative method to solve a linear system, we have observed 
that while the errors decrease slowly in a global sense, the oscillatory components are rapidly 
damped. As a result of smoothing, grid points become more similar to their neighbors. Hence 
the amount of information needed to describe the system is reduced. Defining a coarser grid 
to be a (strict) subset GH of Gh (so H  >  h), we see that a smooth error can be transferred 
to a coarser grid without losing much in translation.

Now the question is, will the error be reduced on a coarse grid? Thinking back, the 
answer again follows from our discussion of smoothers. These methods stall when the error 
is too smooth, i.e., grid points are too closely approximated by their neighbors. Transferring 
a smooth error to a coarse grid causes it to become more oscillatory and hence susceptible 
to relaxation methods.

In a multigrid framework, the grid Gh is said to be finer than GH if GH C Gh. Passing 
from GH to Gh is then referred to as a refinement while passing from Gh to GH is referred 
to as a coarsening. Although these terms are relative, we sometimes refer to Gh as the fine
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grid and GH as the coarse grid in the context of a particular algorithm. Using this language, 
the following recursive algorithmic framework emerges for the solution of a linear system 
Ahuh =  0 (e.g. the model problem):

A lg or ith m ic  Fram ew ork 2 Coarse grid correction +  smoothing (CGCSm)

uh, an initial approximation 
w hile iteration has not stalled do 

relax on A huh =  0 
end w hile
transfer uh to coarse grid 
if grid is coarsest permissible then 

transfer uh to fine grid 
relax on Ahuh =  0 

else
apply CGSm to current approximation uh on the coarse grid 

end if

This model will be fleshed out more concretely before we proceed with a full analysis of 
a multigrid algorithm. We have a number of practical issues to address. We first discuss the 
problem of how to translate grid functions between grids.

G rid  Transfers

The transfer from a fine grid to a coarse grid is done by an restriction operator R. 
Similarly, a prolongation or interpolation operator P  is used to transfer from a coarse grid 
to a fine grid. If the grids have uniform spacing, that is, h =  hx =  hy, then the prolongation 
operator is sometimes denoted PH and the restriction operator is written RH, where h is the 
fine grid spacing and H  is the coarse grid spacing. That is, if vh is a fine grid function, then 
the operation RHvh =  vH transfers the vector vh on the grid Gh to the grid GH. Applying 
the prolongation operator PHvH =  vh transfers a coarse grid function to the fine grid. A 
standard method of coarsening is by doubling the grid spacing on the coarse grid, so that 
H  =  2h.

The coarsening operator depends closely on the choice of the coarse grid. The canonical 
method of restriction is called injection, which preserves fine grid function values exactly. 
That is, for any x, we have

vH (x) =  RH vh (x) =  vh(x).

On a one-dimensional grid with fine grid spacing hx =  hy =  h, coarse grid spacing H  =  2h, 
and a coarsening scheme that preserves every other grid point, this means that v|h =  v̂ j- for 
j  =  0,1, 2,..., n. This scheme is depicted in Figure 3.4 (below).
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Figure 3.4: vh, the fine grid representation of v (solid), superimposed on its coarse grid 
counterpart, v2h (dashed). Here vh has been transferred to the coarse grid by injection, and 
hence the function values at every other node have been preserved.

The other commonly used method is called full weighting, which involves writing the 
node vh as a weighted average of its neighbors. In one dimension, the full-weighting formula 
is given by

22 =  v2j -1 +  2v2j +  v2j+1
v  =  4 .

In two dimensions, the formula is similar, except that 8 points are used in the linear combi
nation: v|h, and its neighbors above, below, and diagonal.

Figure 3.5: vh, the fine grid representation of v (solid), superimposed on its coarse grid 
counterpart, v2h (dashed), the coarse grid representation of v induced by full weighting. 
Function values are not necessarily preserved.

The coarse grid representations produced by full-weighting and injection are nearly iden
tical in this case.

For the interpolation operator, there is no canonical method. In practice, a common 
choice is linear interpolation in 1D or bilinear interpolation in 2D. Both methods involve an 
injection for the coarse grid points and a weighted average for others.
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C oa rse  grid  co rrection  as an iterative m eth od

We have now seen the basics of how one might transfer a vector between a coarse grid 
and a fine grid. The goal we have in mind is the implementation of the ideas that led to 
our formulation of A lg or ith m ic  Fram ew ork 2 -  that is, combining relaxation methods 
with grid transfer operators to take full advantage of the smoothing property without running 
afoul of the poor asymptotic convergence results encountered in our discussion of local Fourier 
analysis. The key insight that supported that framework was the fact that smooth errors can 
be accurately represented on a coarse grid. As we did with the relaxation schemes, we now 
wish to take a step back and examine the coarse grid correction as an iteration independent 
of other machinery like smoothers.

Suppose we have a discrete linear elliptic boundary value problem of the form

Ahuh =  f h

where Ah is invertible. The model problem would be one example, although the discussion 
that follows is widely applicable. Recall that solving the linear equation listed above is 
equivalent to solving the error equation (3.1) .

The idea of the coarse grid correction is to transfer the residual to the coarse grid, solve 
the error equation to to approximate the coarse grid error, return our approximation to the 
fine grid, and correct the previous guess with the old error. Concretely, we start with initial 
data

Ah : fine grid operator 

AH : coarse grid operator 

vh : initial guess

Rh : restriction operator (fine to coarse transfer)

PH : interpolation operator (coarse to fine transfer).

We compute the residual
rh =  f h -  Avh,

and transfer to the coarse grid to find

rH =  RH rh

We then solve the coarse grid equation

A h eH =  rH
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and transfer the result back to the fine grid

Our new guess to the solution of the original system A 2u2 =  f 2 is then given by

w2 =  e2 +  v2.

Repeated iteratively, this method has the form of (3.3) , and the iteration matrix is

N (2h) <  N (h), where N (h) denotes the number of grid points with spacing h, the matrix 
P2 (A H)- 1R ^ A 2 has nontrivial kernel. Hence

and there is no hope of the coarse grid correction converging on its own, despite the poten
tially large computational speed-ups from implementing the scheme recursively. Fortunately, 
we can return to our original goal of combining the coarse grid correction and relaxation in 
a single algorithm.

3.1.3 M u ltigr id  C ycles

We return to the original idea of a multigrid cycle. The two grid correction scheme, as we 
outlined previously in A lg or ith m ic  F ram ew ork  2 , is stated formally and completely in 
A lg or ith m  3 on the next page. The algorithm is called a V-cycle because of its V-shaped 
trajectory between the coarse grid and the fine grid, pictured in Figure 3.6 (below). This is 
the simplest, but not the only choice for a multigrid cycle; the W-cycle and F-cycle are also 
common.

where 12 is the identity matrix on the grid G2. Since R^ G R N(2)xN(22) has rank of at most

P (/h — p 2 (a h ) - 1r H a 2) >  1,

h
2h
4h
8h

Figure 3.6: From left to right: The W-cycle, F-cycle, and V-cycle for a four grid solver
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A lg or ith m  3 Multigrid V-cycle (MGV)

MGV( uh,G ,G A ,G R ,G p  , f  hl , S , lin e a r_ so lv e r , v0, v 
Parameters: initial guess v^

sequence of grids G =  {G hl,..., Gh£} with uniform spacing hi <  ... <  h  
sequence of operators GA =  |Ahl,..., A h£}
Sequences of restriction operators and prolongation operators

Fine grid right-hand side function f hl
Smoother S =  S (x, A, b)
lin e a r_ so lv e r (A , b), coarse grid solver
v0, v1 G N0: number of pre- and post-smoothing steps

h =  h1
for j  =  1, 2,..., v0 do

uh =  S (uh, Ah, f h) (v0 smoothing steps)
end for
rh =  f h — Ahuh (compute the residual)
if |G|= 1 then

eh =  lin e a r_ so lv e r (A h, rh) (solve the coarse grid system for error eh)
eH =  PhHeh, where GP =  { P ^ }  (interpolate the error back to the fine grid)
uH =  uH +  eH (coarse grid correction)
return  uH

else (solve for the error on the coarser grid GH by recursive call to MGV w / 0 initial guess) 
H  =  h2 
rH =  RH rh
uH =  MGV(0, G;, GA, GR, G p , rH, S , lin e a r_ so lv e r , v0, v 1

where G; =  RGh2, ..., Gh  1, GA =  r A h2,..., Ah  1, and so on 
for j  =  1, 2,..., v1 do

vH =  S (uH, A H, rH) (v1 smoothing steps)
end for 
return  uH 

end if
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Usually, the V-cycle is first described in a two-grid framework similar to the one discussed 
in the previous section on the coarse grid correction, with the addition of smoothing steps 
before (called pre-smoothing steps) and after (called post-smoothing steps) grid transfers. 
The extension to multiple grids from the two grid framework occurs in our choice of linear 
solver: we solve the error equation on the second grid by a recursive call to the multigrid 
V-cycle, and do not call a direct solver until we reach the coarsest grid.

In any of the multigrid solvers mentioned, we have choices to make. At a minimum, 
the number of pre- and post-smoothing steps, the linear solver on the coarse grid, the pro
longation and restriction operators, the grid spacing |h1,...,h^ j and number of grids, and 
the smoother are all chosen by the user. Our choices are also determined in part by our 
particular discretization scheme. For example, if we are working on a box grid embedded in 
Rd, we can choose to use nonuniform spacing in our d directions, so that h  =  ^h(1), ..., h(d) j  
for i =  1, 2,..., U. In a finite elements discretization, we may have totally nonuniform spacing. 
We may also make a choice of coarse grid operators -  the canonical choice is to choose A H as 
the discrete operator on the coarse grid; however, other choices are also effective in practice, 
including the Galerkin operator defined by A 2i+1 =  R2i+1 A2i P ^ -1 , the canonical choice in 
algebraic multigrid.

It is also possible to vary the number of multigrid sweeps done on each grid. For example, 
the F-cycle is obtained by doing an extra V-cycle on each grid. Hence, one can also construct 
cycles of increasing complexity simply by varying the recursive structure.

A lg or ith m  3 has iteration matrix M V given by the recursion

MV =  0

Ik — < * _ , (Ik -1 — A C O  (a 2"-1) - 1 R2k-1A2k)s;:u , k = 1 , 2, ...,u, (3.6)

where Sk is the iteration matrix corresponding to the relaxation determined by A 2" and S . 
Similarly, the iteration matrix for the F-cycle M /  is given by the recursion

M 0f  =  0

M ^ =  M 1 (from the recursion above),

M fcF =  Sv Ik — P2U  (Ik -1 — m V-1m ' - 1) ( a 2*-. ) - 1 r 2 ; -1 A 2" ) S f l  , k =  2, ...,U. (3.7)

C om p u ta tion a l E fficiency

As we alluded to earlier, the main impetus behind using a multigrid algorithm is opti

mality -  the amount of work the solver does is “proportional to the amount of real physical 
changes in the computed solution.” For one thing, this means that a multigrid solver requires
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a fixed number of iterations independent of the grid spacing h on the finest grid. That is, 
a multigrid solver does work on the order of O (N ) as the grid is refined but the number 
of iterations required for convergence is fixed. This property stands in contrast with other 
iterative matrix methods: for example, the Gauss-Seidel method does O (N ) work on each 
sweep (assuming constant sparsity, i.e., the number of nonzeros in the iteration matrix is 
O(1), as in the discretization of most PDEs), but typically requires an additional O (N ) 
iterations to converge.

Of course, the number of grids varies between implementations, and hence the method 
of refinement matters. If we assume uniform spacing and the grids are refined by a factor 
of two with a coarse grid spacing of h, so that an n-grid implementation of A lg or ith m  3 
has grids Gn =  |Gh,G 2h,.. .,G 2"h} , then we can demonstrate optimality, since the amount 
of work Wn on each iteration is proportional to

n n
Wn K ^  2k +  C  <  N  +  C

fc=1

where C  is the work done on the coarse grid. Similar results hold for more general multigrid 
cycles with standard coarsening. We emphasize that the method of coarsening may change 
these estimates, but under the mild assumption that the coarsening factor on each iteration 
is bounded by a constant factor r >  1 then the amount of work per level is bounded by a 
geometric series in N  and is always O (N ) .

The essential idea to prove h-independent multigrid convergence factors is to first bound 
the two grid multigrid operators, and with this bound in hand use the recursive nature of the 
multigrid algorithm to bound a general multigrid operator like those given by the recursions
(3.6) and (3.7) . These proofs are simple and are covered in Chapters 2 and 3 of [TSO01].

N onlinear E quations

For a nonlinear system of equations of the form A(u) =  f , the coarse grid correction 
is not effective because the error equation does not hold. That is, we may still define the 
residual

rh =  f h — Ah(vh),

but the relation
A h(eh) =  rh

is false. One option is to expand Ah(eh) in Taylor series for a local linearization, solve 
the resulting linear system for the error using multigrid, and correct the error for a new 
approximation. This approach is called Newton-multigrid.
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Another idea is to restrict the residual to the coarse grid GH as before, yielding the 
equation

:=  RHr2 =  R H (f2 — A 2(u2)) =  f H — rH A H(u2) =  AH(uH) — RHA2(u2),

where we set sH :=  RHr2 to avoid confusion with the true coarse grid residual, rH =  
f H — a h (uH).

The resulting equation
A H (uH) =  sH +  RH A2(u2) (3.8)

can then be iteratively solved for uH, the coarse grid error approximated by eH =  uH — uH, 
the error estimate transferred back to the fine grid and corrected by the formula

u2ew =  pH eH +  u2 =  pH uH — pH uH +  u2.

Rewriting (3.8) in terms of the restriction operator RH gives us

A H(uH) =  RH (f 2 — A 2(v2)) +  A H(RHu2) =  f H +  A H(RHu2) — RHA2(u2), 

where the term

=  A H (RH u2) — r h  A2(u2)

is sometimes called the t  correction. The goal of solving (3.8) , rather than directly solving 
the coarse grid system A H (uH) =  f H, is to achieve a truncation error for the coarse grid 
solutions rivaling that on the fine grid (albeit at a lower resolution). One way to see that 
this is achieved is through the fixed point property of this scheme -  the exact solution u2 is 
a fixed point of the iteration, a desirable attribute of any iterative method. Substituting u2 
for u2 in (3.8) yields

A H (uH ) =  f H +  A H (rH  u2) — r h  A 2(u2) =  AH (rH  u2),

with the solution uH =  Rfiu2. For the coarse grid error we have eH =  0, and our fine grid 
estimate for the error is exact.

The algorithm described above reduces to the coarse grid correction in the case where A 
is linear. Combining this nonlinear version of the coarse grid correction with a (nonlinear) 
smoother is called the full approximation scheme (FAS). An important thing to note is that
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FAS does not correspond to a matrix iteration like (3.3) . The behavior of FAS therefore 
cannot be understood by estimating the eigenvalues of a matrix as is possible for linear 
iterations like the multigrid V-cycle or F-cycle.

3.2 A lg eb ra ic  M u ltigr id

Algebraic multigrid (AM G) can be broadly described as the class of algorithms produced by 
applying multigrid ideas to linear systems

Au =  f

which are not necessarily defined on a grid. The goal of algebraic multigrid is the same as 
that for geometric multigrid: apply smoothers until convergence stalls and the error becomes 
smoother, then reduce the dimensionality of the problem, solve the error equation, and return 
to the fine grid. The tools are also the same: coarse grid correction and smoothers. The 
main difference lies in how we distinguish oscillatory errors and smooth errors and how we 
define a coarse grid.

The canonical methods described in previous sections for coarsening and smoothing 
proved ineffective for certain classes of problems beyond the type that we have been con
sidering, namely constant coefficient elliptic PDEs. Specifically, PDEs with highly irregular 
coefficients or similar problems are not treated correctly by the usual relaxation methods 
or geometric interpolation operators. Algebraic multigrid is an extension of the ideas that 
arose from the discovery that purely geometric ideas were not sufficient for such problems.

S m o o th in g , coarsen in g , and p ro lon ga tion  for A M G

Algebraic multigrid remains most effective when applied to linear problems arising from 
PDEs, despite using no geometric information whatsoever. Moreover, from a theoretical 
standpoint algebraic multigrid solvers remain largely heuristic. That is, there are no nontriv
ial black box algebraic multigrid solvers that are proven to be robust. However, experience 
shows that AMG black box solvers are effective on a variety of problems, especially when 
the linear operator is symmetric positive definite (SPD).

In the case of GMG, oscillatory error could be analytically described as having large 
coefficients on high frequencies in its discrete Fourier expansion or intuitively as error that 
can be accurately represented on a coarse grid. Both of these descriptions rely on underlying 
geometric properties. However, we know that the purpose of moving errors to the coarse 
grid was to counteract the failure of relaxation methods on geometrically smooth errors.
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Applying this idea, we define the error of the system of equation Au =  f  to be algebraically 
smooth if relaxation no longer effectively reduces errors. We might hope that algebraically 
smooth error is always geometrically smooth, but this is not the case.

Coarsening, refining, and grid transfers also need to be defined for a non-geometric prob
lem. For GMG, we coarsened the grid and hence reduced the dimensionality of the problem 
by taking a subset of unknowns deemed representative of the errors. In the purely alge
braic case, we try to choose a subset of unknowns which are representative of the algebraic 
relationships between unknowns.

For a PDE, the value of a function and its derivatives at a grid point x  are most strongly 
related to their values at grid points that are geometrically close to Xj. Typically, the ith lin
ear equation relates the value of the ith unknown with the unknowns which are geometrically 
adjacent to it. In a typical finite difference scheme on a box grid, for example, a particular 
grid point is only directly determined by those directly next to it in the box structure.

, gfc i

ft 4
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% g| |1¥ %

i 4
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Figure 3.7: The adjacency diagram for a discrete PDE. The node Uj has strong algebraic 
connections to its nearest geometric neighbors.

In algebraic multigrid, we use the opposite idea; loosely speaking, given two unknowns u  
and Uj, we say Uj is a determinant of u  (uj ~  Uj) if there is a large nonzero coefficient in the 
A j  position of the operator matrix A. These relationships can be represented in a graph. 
When the matrix A is a differential operator, geometric relationships are usually preserved 
algebraically as depicted in Figure 3.7. Prolongation operators can be derived algebraically 
as well.

For a concise introduction to AMG, we recommend [Fal06]. For a more substantial 
overview of the topic, see [TSO01], [BHM00], or [BEL11].
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C h apter 4

A lgorith m s

4.1 R ed u ced  Space M e th o d

The reduced space method (RSP) [BM03] is a heuristic iterative approach to solving nonlin
ear complementarity problems (NCPs). Recall the definition of a nonlinear complementarity 
problem:

D efin ition  1. Let F  : Rn ^  Rn. The nonlinear complementarity problem is to find x E Rn 
satisfying

0 <  x ±  F (x ) >  0.

The nonlinear complementarity problem associated with F  is denoted N C P (F ).

Here we will focus on the special case where F (x ) =  M x  +  q is affine, called a linear 
complementarity problem:

D efin ition  2. Let M  e Rnxn, q E Rn. The linear complementarity problem is to find x E Rn 
satisfying

0 <  x ±  M x  +  q >  0. (4.1)

The linear complementarity problem associated with M  and q is denoted L C P (M , q).

On each iteration of the reduced space method, we compute an active set of indices

A (x) =  {i : xj =  0 and Fj(x) >  0}

from the current iterate x.
The inactive set of indices I (x )  is the complement of A (x ),

I ( x )  =  { i : xj >  0 or Fj(x) <  0}.

The next iterate is found by taking a Newton step in the subspace R |1(x)| defined by the 
inactive indices, called the reduced space. A submatrix [V F (x )]j(x),x(x) of V F (x ) is computed
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by deleting rows and columns corresponding to the indices in the active set, and similarly 
F (x)x(x) is formed by deleting elements in the positions of the vector F (x ) corresponding to 
the indices in A (x). The system

([V F (x)]x(x),l(x)) 5j(x) =  — [F(x)]i(x)

is solved or approximately solved for 5j(x) , which gives the new search direction in the reduced 
space. A step size a  is determined by a line search using the merit function ||FQ(x)||2, where 
Fq defined component-wise by

{Fj (x) xj >  0
j( ) j . (4.2)

m in{Fj (x), 0 } x j =  0

If the line search fails in the Newton direction, the line search is repeated in the gradi
ent descent direction 5 =  —F (x). In case of a second line search failure, the iteration is 
terminated.

The new iterate is finally
x new =  n (x +  a5),

where n : Rn ^  {x  E Rn : x j >  0} is the projection onto the boundary of the feasible set,

{xj x j >  0 xj xj >  0

0 otherwise,

and 5 represents the extension of the reduced space search direction 5j(x) to Rn by setting 
5a(x) =  0. Note that the projection ensures that every iterate satisfies the constraint x j >  0 
but not necessarily the constraint on F (x ). The merit function ||FQ(x)||2 then measures 
the magnitude of the constraint violation by F  and the violation of the complementarity 
condition.

The affine case is where F (x ) =  M x +  q, the only case considered in this project. Then 
V F  =  M . Letting I  =  I  (x) C { 1, 2 ,.. .,n }  and using the notation I j  for the j  th largest 
element in I ,  we have

[M x]i =  P  (M x)

=  (P M  )(P  TPx)

=  (P M P t )(P  x)

=  (mi ,i ) x i ,
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where P  G R |x|xn is the matrix with rows Pj =  ex,, i.e., the jth  row of P  has a one in the 
entry corresponding to the jth  largest element of I  and zeros everywhere else. The equality 
P TP x =  x holds because P TP  has entries

1 i =  j and i e !
(P TP  )ij =  < j

I 0 otherwise.

Hence
x j i G I

[PTPx]j =  {
0 otherwise.

Since x j =  0 if i G I , it follows that [PTP x]j =  x j for all i.
Letting x (k) represent the current iterate, we set

I k =  I  (x (fc)) , x (k) =  x, x (fc+1) =  x new, and P k =  P  G R |xk|xn

where P k is the matrix associated with I k described in the previous paragraph. The new 
iterate x new before projection is found to be a convex combination of the old iterate x and 
the solution s of the reduced space equation ( — xfc) s =  :

(—M jkjk) S =  (Mjfc,jfc) xjfc +  qXk

5 =  — xi k — [Mi k ,ik ] 1q jk

x new =  x +  a P  t 5 =  (1 — a )x  +  a P Ts. (4.3)

In particular, for a full Newton step (a =  1), (4.3) becomes x new =  P Ts.
The full algorithm for the affine case is presented below (Algorithm 4) .

33



A lg or ith m  4 Affine reduced space method (RSP)

RSP(x(0), M, q, l in e a r  _solver, t o l ,  m axiters, ,5, a , '
Parameters: initial guess x (0) E Rn

M  E Rnxn, q E Rn (define the function F (x ) =  M x +  q)
Approximate linear solver lin e a r_ so lv e r  for calculating the Newton steps 
Desired residual reduction t o l
Maximum number of allowable iterations m axiters 
Line search parameters (5 ,a , y) 

for j  =  0, 1, 2,..., m axiters do
A (x) =  { i  : x j =  0 and [M x +  q]j >  0}
I (x )  =  { 1, 2,..., n } \ A (x)
5x(x) =  linear_solver(M j(x),i(x ), qi(x)) 
f a i l  = 0 
a  = 1
w hile |Fq (n(x +  a5))||2 >  (1 — aa) ||Fq (x)|2 d o  

if  a  <  y then
f a i l  =  f a i l  +  1 
if  f a i l  >  1 then

Terminate l in e  search 
end if
5 =  — [M x +  q] 
a  = 1  

else
a =  a  • f3 

end if
x (j+1) =  x (j) +  a5 

end w hile 
end for
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There are a couple of comments to be made on Algorithm 4 specifically regarding the 
details of the line search:

• We use parameters 7 =  10- 12, a =  10- 4, and ft =  .5 as suggested in [ M03].

• If the line search fails, then we switch to the steepest descent direction setting 5 =  
— [M x +  q]. If it fails again, we terminate the line search.

A desirable attribute of the reduced space method is that the submatrices M j(x),x(x) 
remain symmetric and positive definite whenever the original matrix is. The matrix produced 
by discretizing the Poisson operator is SPD. To have any hope of an optimal RSP solver, the 
linear solver for the Newton steps must be optimal. Given our discussion from the previous 
chapter, the obvious candidate for computing the Newton steps are AMG solvers which are 
generally targeted at SPD systems.

4.2 P ro je c te d  F u ll-A p p rox im a tion  Schem e

The projected full-approximation scheme (PFAS) extends multigrid ideas to linear comple
mentarity problems arising from PDEs. The full algorithm applies the FAS correction scheme 
to solve L C P (A h, f h) where AhUh =  f h is the discretization of an elliptic differential equa
tion Lu =  f . Smoothing is done using the projected Gauss-Seidel (PGS) method, presented 
for the general L C P (M , q) in Algorithm 5 (below).

A lg or ith m  5 Projected Gauss-Seidel Iteration

Given M  G Rnxn; x (0) G Rn; q G Rn; 
for k =  1, 2,... do

for i =  1, 2,..., n do
x(fc+1) =  max {  Mr (qj — E j =1 xf +1)Mij — E n=j+i x(fc)Mij)  , 0 }  

end for 
end for

The only modification to the Gauss-Seidel iteration is the projection step. Like relaxation 
methods for linear problems, projected Gauss-Seidel converges to a solution of the LCP 
[BC83]. As noted in [BC83], however, it typically settles onto positive values of both the 
objective function and the iterate rather quickly and behaves thereafter like classical Gauss- 
Seidel. In particular, we expect the iteration to stall after the error becomes smooth, in 
which case it can be accurately transferred to the coarse grid. We should note that the 
constraint makes the problem nonlinear, and hence FAS is used rather than usual linear 
multigrid solvers.
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It was observed in [BC83] that the convergence of PFAS is typically roughly twice as 
slow as that of FAS. The main difficulty occurs in locating the discrete free boundary r k, 
which is typically O (hk) from the true free boundary r  and O (hk) from r k-1.

A lg or ith m  6 PFAS V-cycle (PFASV)

coarse_so lver v 0,v 1PFASV (voh ,G ,G a ,G r ,G p , f  hl,
Parameters: initial guess v^

sequence of grids G =  |Ghl,..., Gh£} with uniform spacing h1 < 
sequence of operators GA =  |Ahl,..., A h£|
Sequences of restriction operators and prolongation operators

<  hi

GR Rh:+1
i - 1

G p
P hP j=2

Fine grid right-hand side function f hl 
coarse_solver(A , b), coarse grid solver 
v0, v1 E N: number of pre- and post-smoothing steps

h =  h1, vh =  v0h, H  =  h2 
for j  =  1, 2,..., v0 do  

vh =  PGS(vh, Ah, f h) 
end for
rh =  f h — Ahvh

H^hr
H,hv

rH

vH
=  rH +  a h  vH 

if |G|= 2 then
H c o a r s ^ s o lv e r (A H, rH)

(v0 smoothing steps)

(compute the residual)
(transfer residual to coarse grid) 
(transfer current iterate to coarse grid) 
(correct residual)

(solve the coarse grid LCP)
else (solve LCP on the coarser grid GH by recursive call to PFASV)

vH = H coarse_solver, v0, v1

for j

PFASV (vH, G, Ĝ 4, GR, G p , f 1
where G' =  4Gh2, Gh3,..., Gh£} , GA =  {A h2,..., Ah£j , and so on

H
1, 2, ... , v1 do  

vH =  PGS(vH ,A H , f H) 
end for 

end if
h h^  =  v 

return  vh
+  PH (vH — RH vh)

(v1 smoothing steps)

(coarse grid correction)

l
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C h ap ter  5

N u m erica l im p lem en tation

In this section, we present a general obstacle problem solver constructed in Python with 
s c ip y  sparse linear algebra for the numerical analysis of the algorithms discussed in the 
previous chapter. It is worth, for the sake of having the notation handy, recalling the 
original statement of the obstacle problem from Chapter 2:

Our implementation makes the following simplifying assumptions about the problem 
being solved and its discretization, and makes use of the following notation:

• The problem is two-dimensional (i.e. d = 2 ) ;

• Q =  [x1,y 1] x [x2 ,y2] is rectangular;

• We will label the number of unknowns in the horizontal direction mx and in the vertical 
direction my. If there are the same number of unknowns in each direction, we will write 
m =  m x =  m y;

• The grid spacing is uniform in the horizontal and vertical directions separately and 
defined by hx =  x2-xi, hy =  y2-y2. If mx and my are chosen so that hx =  hy, we willWx+1 1 & + 1
write h =  =  hy;

• We write N  =  (mx +  2)(m y +  2) =  O (m xmy). This is the total number of grid points 
including known boundary values. The number of unknowns is mxmy.

where Q C R d, and the formulation from Theorem 2.1 as the linear complementarity problem

u(x) — ft(x) >  0 , 

— f  (x) — Aw(x) >  0 

[—f  (x) — Au(x)][u(x) — ft(x)] =  0.
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As we have seen, it is usually desirable theoretically to choose m x and m y so that hx =  hy. 
In this case, the 2D discrete Poisson operator has the stencil:

We elect to employ a lexicographical ordering of the unknowns (denoted < le x ) , where an 
unknown ui =  uh(xi,yi) < lex  uh(x j ,y j ) if yi <  yj or yi =  yj and x i <  Xj. This corresponds 
to ordering the unknowns by sweeping through each horizontal row from left to right, starting 
with the bottom most row (i.e. the row with the lowest y-values).

With these assumptions and without eliminating boundary values, the Poisson equation 
Au =  f  uses the discretized Laplacian

A uh(xj, yj) = ui+1 2ui +  ui - 1 u(i+mx +1) + 1 2ui +  U(i+mx+3)+1
hX

+
hy

+  O(hX +  h2).

The Poisson operator has the following form:

A

I

I' T I '

I ' hyI ' T  I '

G R Nx N,

I

T
h-2 —2(h-2 +  h-2) hx

G

h -2 —2 (h -1 +  h -2) hy x  
1

G

(m-x+2) X (mx +2)

mx+2)x(mx +2)

and I  G R (mx+2)x(mx+2) is the identity matrix.

1

1

1
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5.1 A  general 2D  obstacle  p rob lem  solver

We briefly go through the details of implementation of a general obstacle problem solver. 
The obstacle problem itself is stored as an instance of the class box_obstacle_problem , 
whose attributes are the bounds { x 1,x 2,y 1,y2} of the rectangular region Q, a right-hand 
side function f , a boundary value function g, an obstacle function ft, and discrete versions 
of the Poisson operator A  and the functions ft and f . The solver can also store a current 
guess to the solution (usually used as an initial iterate in an iterative solver) and the number 
of unknowns in the horizontal direction mx and in the vertical direction my.

Attribute Description
bounds 4-tuple: (x 1 , x2 , y 1 , y2)

f callable: rhs function handle

g callable: boundary function handle
p s i callable: obstacle function handle
mx integer: #  unknowns in horizontal direction
my integer: #  unknowns in vertical direction
A sparse matrix N  x N  matrix: discrete Poisson matrix
U N-vector: guess to discrete solution
P N-vector: discrete obstacle
F N-vector: discrete rhs

An instance of box_obstacle_problem  can be initialized with only the first four attributes 
listed above. The others can be generated by the methods i n i t i a l i z e  and d is c r e t iz e . The 
d is c r e t iz e  method takes arguments mx and my and generates the Poisson matrix A and the 
grid functions, along with the discrete version of the default initial guess U(0) =  max{ft, 0}.

By setting v(x) :=  u (x ) — ft(x), b :=  —f  +  Aft, the continuous version of the LCP can 
be put in canonical form:

v(x) >  0, x G Q

b(x) — A v(x ) >  0, x G Q

[b(x) — A v(x)]v(x) =  0, x G Q.

The i n i t i a l i z e  method makes the change of variables for the discrete LCP. Regardless of 
the smoothness of the obstacle, the change of variables is feasible mathematically. However, 
a highly irregular obstacle may cause numerical difficulties.
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Finally, the obstacle problem is solved via the so lv e  method, which takes an obstacle 
problem solver (or, more generally, an LCP solver) as an argument and returns a vector u 
containing the function value at each grid point.

5.2 P F A S im plem en tation

Our implementation of PFAS follows closely the Python library of algebraic multigrid solvers 
pyamg. The class lin ea r_p fa s_so lver  stores the multigrid hierarchy, which is further em
bedded in a list of structs containing the information for each grid level. The information 
stored at each level is listed below.

Attribute Description
bounds 4-tuple: (x 1 , x2 , y 1 , y2)

mx integer: #  unknowns in horizontal direction
my integer: #  unknowns in vertical direction
hx float: grid spacing in horizontal direction

hy float: grid spacing in vertical direction
A sparse matrix: discrete Poisson matrix A G R (mx+2)x(my+2)
R sparse matrix: restriction matrix
P sparse matrix: prolongation matrix

The coarsening scheme is normally assumed to be standard coarsening, where the grid 
spacing differs by a factor of two in both the horizontal and vertical directions between 
consecutive grids. However, this implementation is flexible enough to support arbitrary 
coarsening schemes.

Other than the grid, attributes that are chosen by the user are the coarse grid solver 
and the smoother. The default for both is projected Gauss-Seidel. The prolongation and 
restriction operators are also choices made at each level. These can be added to a level 
directly as a matrix or as a callable function which generates a grid transfer matrix given a 
grid spacing. The second option assumes a standard coarsening scheme. In general, a PFAS 
solver would allow the user to choose the number of pre- and post-smoothing steps. In our 
implementation we only use one of each.

The recursion is quite straightforward to implement in this framework. The so lve  
method takes a right hand side vector b and optionally an initial guess. The default for 
the initial guess is the zero vector. It also asks for a cycle type, which can be an F-cycle, 
V-cycle, or W-cycle. The solve itself is initiated by a call to the method lv l_ s o lv e , which
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takes as arguments a grid number (0 being the finest), initial guess, right-hand side, and 
cycle type. The recursion occurs within the lv l_ s o lv e  method, which calls itself on each 
grid level until the coarsest grid.

i f  l v l  < le n (s e l f . le v e ls )  -  2 :

III

The recursion occurs here, with the restricted iterate as the initial guess for 
the coarse grid and the restricted and tau-corrected residual as the right hand side
I I I

i f  c y c le  == 'W ':
s e l f . l v l _ s o lv e ( l v l  + 1 , coarse_u , coarse_b , c y c le )
s e l f . l v l _ s o lv e ( l v l  + 1 , coarse_u , coarse_b , c y c le )

e l i f  c y c le  == 'V ' :
s e l f . l v l _ s o lv e ( l v l  + 1 , coarse_u , coarse_b , c y c le )

e l i f  c y c le  == 'F V ':
s e l f . l v l _ s o lv e ( l v l  + 1 , coarse_u , coarse_b , 'F V ')
s e l f . l v l _ s o lv e ( l v l  + 1 , coarse_u , coarse_b , 'V ')

e l s e : # The coarse grid problem is solved by smoothing until the iteration stalls.

uold  = n p .ze ro s _ lik e (co a rs e _ u ) 
du = 1.0
w hile du > 10 ** - 12 :

fo r  i  in  range( 0 , l e n (u o ld ) ) :  
u o ld [ i ]  = co a rse _ u [i]  

s e l f . sm oother(coarse_A , coarse_u , coarse_b) 
du = (s e l f . coarse_mx + 1) * n p . l i n a l g .norm (uold -  coarse_u)

P = s e l f . l e v e l s [ l v l  + 1] .P
u += P . d o t(coa rse_u  -  R. d o t (u ))  # coarse grid correction
s e l f . le v e l  = s e l f . l e v e l s [ l v l ]
s e l f . smoother(A, u, b) # one more smoothing step on the way up
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def solve(self, b, u0=None, cycle= 'FV')

i f  u0 is  None:
u0 = np . z e r o s _ lik e (b )

u = np . a rray(u 0) 
s e l f . l v l _ s o lv e ( 0 , u, b , c y c le )  
return  u

def l v l _ s o lv e (s e l f , l v l ,  u, b , c y c le ) :

s e l f . le v e l  = s e l f . l e v e l s [ l v l ]
A = s e l f . l e v e l .A 
s e l f . smoother(A, u, b)
R = s e l f . l e v e l .R
coarse_u = R.d ot(u )
coarse_b = R.d o t(b  -  A. d o t (u ))
coarse_A = s e l f . l e v e l s [ l v l  + 1] .A

# one smoothing step

# restrict current iterate
# restrict residual
# needs at least two levels

coarse_b = coarse_b + coarse_A . d ot(coa rse_u ) # tau correction

5.3 R ed u ced  space m eth od

The reduced space method is implemented as a general LCP solver. The solver class stores 
the matrix and vector information defining the affine function F  (x) =  M x +  q, along with 
the number of total iterations. Information about the current iterate (current guess, search 
direction, reduced space dimension, etc.) is stored in the struct rsp _ lcp _ ite ra te , which 
also computes the active set, inactive set and residual for each iterate. The user chooses the 
solver for linear systems. In this paper, we restrict ourselves to sparse LU factorization using 
the sp so lve  method from the s c ip y .s p a rse  library. The code for this algorithm follows 
rather closely to Algorithm 4, so we omit the details and encourage the reader to consult 
the GitHub page1 associated with this project.

1https://github.com/mheldman/Obstacle-Problem
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C h apter 6

R esu lts and analysis

E xam ple 6.1 (radial problem). This obstacle problem was adapted from [Bue04]. The 
problem is to solve the LCP (2.5) - (2.7)

Q =  {x 2 +  y2 <  4}, ^ (x , y) =  ^ m ax {1  -  x 2 -  y2, 0}, f  =  0, u|0o =  0.

For compatibility with our structured grid, we extend the problem to the box

Q =  {m ax { x , y }  <  2 } .

1.5 

1.0 

0.5 

0.0 

-0.5 

- 1.0 

-1.5
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 6.1: The contact region {u  =  ^ }  for the solution u to the radial problem. The solution 
u and obstacle ^  are pictured in Figure 1.1. Both the solution and the contact region were 
computed with m =  500.

The problem has exact solution

u(r) =  —A log(r) +  B, r =  \J x 2 +  y2,

where A and B  are constants computed numerically to 5 digits of accuracy. This defines the 
boundary condition (g =  u |do). The exact solution and the obstacle are plotted in Figure 
1.1, and the contact set is pictured in Figure 6.1.
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E xam ple 6.2 (dam problem). The dam problem is used as an example in [BC83]. The 
problem is to describe the flow of water from a reservoir of height y1 through a porous 
rectangular dam of width x 1 into a reservoir of height a <  y1. Only part of the dam is 
contacted by the water, so that the dam is separated by an unknown boundary into wet and 
dry regions. This situation is pictured in Figure 6.2 (below).

Free boundary

reservoir 1

> dry region

reservoir 2

Figure 6.2: The dam problem is to compute the wet and dry regions of a porous dam, which 
are separated by an unknown free boundary. The dam problem can be formulated as an 
LCP.

Taking 0  =  [0,x1] x [0,y1 ], the problem is formally written as an LCP by taking

f  =  1, g (x ,y )

(yi-y)2
2

(a-y)2
(x ,y ) e  I 0} x [0 , y1] 

x e  { x 1} x [0 , a]

y2(x i - f + * 2x X e [0,X 1] x {0 }

0 otherwise.

We consider the case y1 =  24, a =  4, and x 1 =  16 as in [ C 8 ] so we can compare results. 
The solution and obstacle are plotted alongside the contact set in Figure 6.3.
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Figure 6.3: The solution to the dam problem and the obstacle (right) and the contact region 
(left). The solution was computed using the RSP solver with mx =  511, my =  767.

6.1 P F A S  results

We begin with a comparison between PFAS and the unconstrained FAS iteration. The 
residual Fq (u(k)) , defined by (4.2) , will henceforth be denoted by s (k) instead of r (k), so as 
not to confuse with the residual of the unconstrained equation r (k) =  f  — Au(k). It will be 
our proxy for the grid error e(k). It is observed in [BC83] that, for example,

||e(k) ||2 <  a -1 ||s(k) ||2 ,

where a  is the coercivity constant for the SPD matrix A (the smallest of the eigenvalues for 
A). We define the geometric convergence factor ^ of the iteration as the geometric average

(̂oy for some k. We use this number to approximate 
the asymptotic convergence factor of the iteration and compare to the standard multigrid 
iterations. For this purpose, we include an unconstrained example problem:

norm reduction per iteration, ^

E xam ple 6.3 (unconstrained). Choose f  =  —to, g =  0, and

f  (x, y ) =  12(y4 — 1)x2 +  12(x4 — 1)y2

on the square Q =  [—1, 1] x [—1, 1].

We experimentally observe a grid independent geometric convergence factor for Example
6.3 of ^ ~  .2, meaning errors were reduced by roughly a factor of five on each iteration. The
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runtime of the FAS iteration seems to scale linearly with the number of unknowns, increasing 
by a factor of four as the number of points on the fine grid is doubled. The results for FAS 
are tabled below, where k is the number of iterations to convergence and N  =  (m +  2)2. All 
calculations were made to a residual tolerance of 10-10.

Table 6.1: Convergence results for the usual FAS iteration applied to the unconstrained 
example. The convergence factors h are grid independent and the timing supports the 
conclusion that FAS is optimal.

N k h time

C
O

C
O to 15 .2 7.7s

652 16 .21 31s
1292 16 .21 139s
2572 16 .21 460s

Because the number of iterations to convergence and the convergence factors are grid 
independent, the method appears to be optimal on this problem. The times are not expected 
to be a totally accurate reflection of the complexity of the algorithm, but they give a rough 
sense of how the algorithm scales. In particular, the ratio between consecutive refinements 
are 4.02, 4.39, and 3.3, which average to the factor of four we would expect for an optimal 
method.

In contrast, applying PFAS with V-cycles (denoted PFASV) to Examples 6.1 and 6.2 
we observe convergence factors that are both worse than those observed for FAS and are 
grid dependent. On the radial problem the iteration stagnates after initially quick residual 
reductions (below). In the largest problem tested, the iteration stalls after several iterations 
and residuals are no longer reduced. PFASV does better on the smallest version of the dam 
problem than it did on the radial problem of comparable size, but its performance on the 
dam problem performance degrades much more quickly with refinement.

Table 6.2: Convergence statistics for PFASV on the radial problem (left) and the dam problem 
(right). The number of iterations (capped at 50), convergence factor, and final residual norm 
are shown.

N k h l|s(fc)||II 11̂ N k h l|s(k)llII 11̂

C
O

C
O to 50 .67 2.4 ■ 10-8 33 ■ 49 40 .57 7.92 ■ 10-9

652 50 .8 8.6 ■ 10-6 65 ■ 97 50 .9 9.8 ■ 10-1
1292 50 .72 3.4 ■ 10-6 129 ■ 193 50 .9 1.79
2572 50 .92 2.14 257 ■ 385 50 .91 6.11

The reason for this behavior was not immediately obvious. In [BC83], it is posited 
that large residuals near the free boundary are to blame. In multigrid theory, it is known
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that proper boundary treatment is important in systems which enforce implicit boundary 
conditions. The residuals tend to be less smooth near the free boundary, and hence see 
slower convergence than points on the interior. The jump in the second derivative of the 
function u at the free boundary in obstacle-type problems may also play a role. To test 
this, we plotted a heat map of the residuals after six iterations of PFAS, which is usually 
when the iteration begins to stagnate. The lighter colors near the free boundary indicate 
that residuals are large there. The trend is even more obvious when we look at the same 
map for the dam problem, where the only nonzero residual appear at the location of the free 
boundary.

Figure 6.4: Heat map of the residuals for the radial problem (left) and the dam problem
(right) after six iterations of PFASV, when stagnation typically begins. Lighter colors around 
the free boundary indicate larger residuals, while darker colors indicate lower residuals. 
In both cases, residuals are largest in the neighborhood immediately surrounding the free 
boundary.

As in classic multigrid theory, one solution may be to accelerate convergence near the 
free boundary by adding extra PGS relaxations at nodes in the area. In experiments, adding 
three pre- and post-smoothing sweeps at the nodes with residuals in 90-100 percentile range 
improved geometric convergence factors for the smaller dimensional problems considerably 
but did not bring them close to the benchmark set by FAS. Moreover, the extra smoothing 
steps were not enough to make the observed convergence factors grid independent. For larger 
problems, the iteration still stalled as before, albeit with better residual reductions before 
getting stuck.

We also apply PFAS with an F-cycle instead of a V-cycle, which we will call PFASF. 
Convergence factors are only slightly worse than FAS in this case and appear more robust 
with respect to the fine grid size. This comes at a cost of extra work per iteration by the 
F-cycle.
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Table 6.3: Convergence statistics for PFASF on the radial problem (left) and the dam problem 
(right). The number of iterations (capped at 50), convergence factor, and time to convergence 
are shown.

N k h time N k h time

C
O

C
O to 23 .4 15s 33 ■ 49 18 .28 17s

652 29 .47 75s 65 ■ 97 19 .29 68s
1292 16 .26 156s 129 ■ 193 25 .38 341s
2572 27 .42 940s 257 ■ 385 21 .31 1163s

The PFASF solver seems fast and scalable on these examples. The convergence factors 
remain roughly similar, although they seem to increase slightly with the number of iterations. 
As we mentioned earlier, this may have to do with large residuals at the free boundary that 
the multigrid solver is not equipped to handle.

6.2 R ed u ced  space m eth od

This method is generally considered as the alternative to PGS for LCPs, and the results show 
that it is far outpaces PFAS on small problems, but scales much worse than linearly. The 
number of iterations to convergence and the convergence factors increase substantially with 
the size of the problem.

Table 6.4: Convergence statistics for RSP on the radial problem (left) and the dam prob
lem (right). The number of iterations (capped at 100), convergence factor, and time to 
convergence are shown.

N k h time
652 13 .09 .28s
1292 24 .28 2.1s
2572 45 .51 26s
5132 85 .71 296s

N k h time
129 ■ 193 41 .47 2.8s
257 ■ 385 79 .68 28s
513 ■ 769 100+ .99 -

The decent convergence factors that we see in the all of the reduced space experiments 
are mostly driven by the last several iterations where the norm is reduced by roughly 12 
orders of magnitude in a single step.
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